Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://acikerisim.ktu.edu.tr/jspui/handle/123456789/3949
Başlık: K-en yakın komşuluk algoritmasını kullanarak EEG tabanlı kişi tanıma
Diğer Başlıklar: EEG-based person identification using K-nearest neighborhood algorithm
Yazarlar: Üçüncü, Mesut
Anahtar kelimeler: Elektroensefalografi (EEG), biyometri, kişi tanıma, kimlik doğrulama;Electroencephalography (EEG), biometrics, person identification, person authentication
Yayın Tarihi: Eyl-2019
Yayıncı: Karadeniz Teknik Üniversitesi / Fen Bilimleri Enstitüsü
Özet: EEG beynin elektriksel aktivitesini kaydetmek ve yorumlayabilmek için bir izleme yöntemidir. Psikolojik bazı hastalıkların tanısında, beyin-bilgisayar ara yüzü (BCI) uygulamalarında kullanılabilmektedir. Ayrıca güvenlik sistemlerinde kişiye özgü EEG tabanlı biyometriler sayesinde, e-sağlık, e-devlet, e-oylama gibi uygulamalarda da kullanılabilmektedir. Bu yazıda iki farklı veri kümesine ait deney sonuçları paylaşılacaktır. Birincisi; iki boyutlu bilgisayar imleci hayali hareketi sırasında kaydedilen EEG verilerini kullanarak 3 kişinin kimlik doğrulaması için hızlı ve doğru yöntemler önerilmiştir. EEG sinyallerinin türev varyanslarının logaritmik fonksiyonuna dayalı çıkarılan öznitelik vektörleri, k-en yakın komşuluk (k-EYK) yöntemiyle sınıflandırılmıştır. Önerilen yöntemler dört (yukarı/aşağı/sağ/sol) veri kümesine başarıyla uygulanmıştır. Bu 3 kişinin kimliğini doğrularken sırasıyla %93,86, %98,25, %96,49, %98,18 sınıflandırma doğruluğu elde edilmiştir. İkincisi; 4 adet doğal yağın (nane, karanfil, kekik, biberiye) koklatılması sonucunda ortaya çıkan EEG verilerini kullanarak 8 kişinin kimlik doğrulaması için hızlı ve doğru yöntemler önerilmiştir. EEG sinyallerinin türev varyanslarının logaritmik fonksiyonuna dayalı çıkarılan öznitelik vektörleri, k-EYK yöntemiyle sınıflandırılmıştır. Önerilen yöntemler dört veri kümesine başarıyla uygulanmıştır. Bu 8 kişinin kimliğini doğrularken sırasıyla % 93,88, %95,44, %96,13, %96,63 sınıflandırma doğruluğu elde edilmiştir.
URI: http://acikerisim.ktu.edu.tr/jspui/handle/123456789/3949
Koleksiyonlarda Görünür:Elektrik-Elektronik Mühendisliği

Bu öğenin dosyaları:
Dosya Açıklama BoyutBiçim 
601071.pdf7.49 MBAdobe PDFKüçük resim
Göster/Aç


DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.