Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız:
http://acikerisim.ktu.edu.tr/jspui/handle/123456789/1554
Başlık: | Γ^2, γ^3 ve Hecke gruplarının normalliyeni ve graflar |
Diğer Başlıklar: | The normalizers of γ^2, γ^3 and Hecke groups and graphs |
Yazarlar: | Şanlı, Zeynep |
Anahtar kelimeler: | Hecke Grubu, Modüler Grup, Alt yörüngesel graf, Normalliyen;Hecke Group, Modular Group, Suborbital Graph, Normalizer |
Yayın Tarihi: | 2019 |
Yayıncı: | Karadeniz Teknik Üniversitesi / Fen Bilimleri Enstitüsü / Matematik Anabilim Dalı |
Özet: | Bu tezde [8] de verilen " I=〖(2)〗^α I^',Z[λ_5 ] in bir ideali ve (2,I^' )=1 olsun. Bu takdirde H_0^5 (I) kongrüans alt grubunun H^5 Hecke grubundaki normalliyeni, α=α^'-min(2,⟦α/2⟧) olmak üzere H_0^5 (〖(2)〗^α' I^') dır." konjektürünün I nın bir karesiz ideal olması durumunda ispatı yapıldı. Ayrıca Γ modüler grubunun alt grupları olan Γ^2 ve Γ^3 te sırasıyla kongrüans alt grupları olan Γ_0^2 (n) ve Γ_0^3 (n) için normalliyen hesaplandı. Ek olarak Γ_(0,n) (N) kongrüans alt grubunun alt yörüngesel grafları incelendi. Birinci bölümde konu ile ilgili genel bilgiler ve literatürdeki bazı önemli tanım, teorem ve sonuçlar verildi. İkinci bölümde ise yukarıda belirtilen gruplar için normalliyen hesaplandı. Bunlarla ilgili teorem ve sonuçlar verildi. Bunların yanı sıra Γ_(0,n) (N) kongrüans alt grubunun alt yörüngesel graflarını incelemek için gerekli olan indeks hesapları yapıldı ve kenar şartları belirlendi. In this thesis, it is shown that the conjecture "Let I=2^α I^', where (2,I^' )=1, be an ideal of Z[λ_5 ] . Then the normalizer of H_0^5 (I) in H^5, is H_0^5 (〖(2)〗^α' I^') where α=α^'-min(2,⟦α/2⟧) ." in [8] is proved when I is a nonsquare ideal of Z[λ_5 ]. Moreover, in the groups Γ^2 and Γ^3, subgroups of modular group Γ, the normalizers of Γ_0^2 (n) and Γ_0^3 (n), the congruence subgroups of Γ^2 and Γ^3 respectively, are found. In addition, the suborbital graph of the congruence subgroup Γ_(0,n) (N) is examined. In the first chapter, some necessary definitions and notations for the foregoing chapter are given. In the second chapter, the normalizers of the above mentioned groups are determined. Some theorems and conclusions related to these are given. As well as, the necessary index calculations and edge conditions are given to examine the suborbital graph of the congruence subgroup Γ_(0,n) (N). |
URI: | http://acikerisim.ktu.edu.tr/jspui/handle/123456789/1554 |
Koleksiyonlarda Görünür: | Matematik |
Bu öğenin dosyaları:
Dosya | Açıklama | Boyut | Biçim | |
---|---|---|---|---|
535666.pdf | 3.56 MB | Adobe PDF | Göster/Aç |
DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.