Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://acikerisim.ktu.edu.tr/jspui/handle/123456789/4390
Tüm üstveri kaydı
Dublin Core AlanıDeğerDil
dc.contributor.authorAy, Sefa-
dc.date.accessioned2022-07-22T09:13:54Z-
dc.date.available2022-07-22T09:13:54Z-
dc.date.issued2022-03-
dc.identifier.urihttp://acikerisim.ktu.edu.tr/jspui/handle/123456789/4390-
dc.description.abstractHaber analizi, e-posta ve spam filtreleme, web sayfalarından konu çıkarımı, bloglar, film özetleri, şarkı sözleri gibi metin içeren her veri seti metin madenciliği için bir uygulama alanıdır. Bu birçok alandaki uygulamalar sayesinde büyük metin depolarından bilgi çıkarılmasına olanak sağlamaktadır. Konu modelleme ise bir belge koleksiyonunda metnin gizli anlamsal yapılarını keşfetmek için kullanılan doğal dil işleme tekniğidir. Bu tez kapsamında Türkiye ve Yunanistan'a yönelik haber metinlerini konularına göre ayırabilen otonom bir konu modellemesi gerçekleştirilmiştir. Bunun için NewsAPI haber veri sitesinden elde edilmiş olan İngilizce haber metinlerinden Gizli Dirichlet Tahsisi ve Negatif Olmayan Matris Faktorizasyonu yöntemleri kullanılmış ve bu iki yöntemin başarım karşılaştırılması yapılmıştır. Türkiye için yapılan analiz sonucundaki konular incelendiğinde dış ilişkiler ağırlıkta siyasi bir gündem olduğu görülmektedir. Yunanistan için olan analizlerde ise tek siyasi gündemin Türkiye ile aralarında yaşandığı tespit edilmiştir. Her iki algoritmanın sonuçlarında da pandeminin farklı yönlerinin çoğunluğu oluşturduğu belirlenmiştir. Böylelikle metin madenciliğinde büyük boyuttaki metin içerikli veri kaynaklarından, önceden bilinmeyen ve potansiyel olarak ihtiyaç duyulan bilginin çıkarılması sağlanmış olundu.tr_TR
dc.language.isotrtr_TR
dc.publisherKaradeniz Teknik Üniversitesi / Fen Bilimleri Enstitüsütr_TR
dc.subjectKonu Modelleme, Metin Madenciliği, GDT, NOMF, Veri Madenciliğtr_TR
dc.subjectTopic Modeling, Text Mining, LDA, NMF, Data Miningtr_TR
dc.titleİngilizce haber metinlerinde GDT ve NOMF yöntemleri ile konu modelleme: Türkiye ve Yunanistan örneğitr_TR
dc.title.alternativeTopic modeling with LDA and NMF in English news texts: The case of Turkey and Greecetr_TR
dc.typeThesistr_TR
Koleksiyonlarda Görünür:İstatistik ve Bilgisayar Bilimleri

Bu öğenin dosyaları:
Dosya Açıklama BoyutBiçim 
724944.pdf1.16 MBAdobe PDFKüçük resim
Göster/Aç


DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.