Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://acikerisim.ktu.edu.tr/jspui/handle/123456789/3410
Tüm üstveri kaydı
Dublin Core AlanıDeğerDil
dc.contributor.authorAydoğdu, Özge-
dc.date.accessioned2022-05-10T07:16:15Z-
dc.date.available2022-05-10T07:16:15Z-
dc.date.issued2021-06-
dc.identifier.urihttp://acikerisim.ktu.edu.tr/jspui/handle/123456789/3410-
dc.description.abstractTez çalışması kapsamında, son yılların popüler veri türü olan akan verilerin tüm karakteristik özelliklerini ve kısıtlamalarını göz önüne alan yeni artımlı öğrenme yaklaşımları önerilmektedir. Tezin literatüre ilk katkısı akan veriler için Ayrık Kosinüs Dönüşümü ve Sürü Zekasına dayalı otomatik öznitelik çıkartma ve seçme yaklaşımının sunulmasıdır. Bu yaklaşımdan elde edilen sonuçlar ışığında akan veriler için Çevrim içi Ardışıl – Aşırı Öğrenme Makinelerine ve Otokodlayıcılara dayalı bir öğrenme yaklaşımının geliştirilmesi tezin ikinci katkısıdır. Bir diğer katkısı, geliştirilen öğrenme yaklaşımının akan verilerin en büyük problemi olan içerik farklılaşmasına dayanıklı olacak şekilde geliştirilmesidir. Önerilen yaklaşımlar gerçek dünya problemlerinden biri olan gözetleme videosu anomali tespitine uygulanarak ve bu alan için de yeni yaklaşımlar sunulmaktadır. Video anomali tespiti uygulamasında ise gerçekleştirilen yaklaşım zayıf etiketleme ve önerilen akan veri öğrenme yaklaşımına dayalı bir anomali tespiti ve anormal olay türünün akan veri metodolojisi ile çözülmesidir ve bu tezin dördüncü katkısını oluşturmaktadır. Tezin beşinci katkısı olarak önerilen yaklaşımın performans artışı açısından otomatik öznitelik çıkartma ve seçme yaklaşımı ile birleştirilerek sunulmasıdır. Son olarak video anomali tespiti için videoların etiket değerlerine minimum şekilde ihtiyaç duyan aktif öğrenmeye dayalı akan veri öğrenme yaklaşımı gerçekleştirilmiştir. Geliştirilen tüm yaklaşımlar gerçek, sentetik akan veri ve video veri setleri üzerinde literatürdeki popüler yaklaşımlar ile karşılaştırmalı olarak test edilmiş ve elde edilen yüksek başarı ile analizi umut verici sonuçlara ulaşılmıştır.tr_TR
dc.language.isotrtr_TR
dc.publisherKaradeniz Teknik Üniversitesi / Fen Bilimleri Enstitüsütr_TR
dc.subject: Akan veri, Artımlı öğrenme, İçerik farklılaşması, Ayrık kosinüs dönüşümü, Sürü zekâsı, Aşırı öğrenme makineleri, otokodlayıcı, Aktif öğrenme, Video anomali tespiti.tr_TR
dc.subjectData stream, Incremental learning, Concept drift, Discrete Cosine Transform, Swarm intelligence, Extreme learning machine, Autoencoder, Active learning, Video anomaly detection.tr_TR
dc.titleAkan veride artımlı öğrenme yaklaşımları geliştirilmesi ile video verilerinde anomali tespiti çalışmasıtr_TR
dc.title.alternativeThe work of the incremental learning approaches development in data stream with anomaly detection in video datatr_TR
dc.typeThesistr_TR
Koleksiyonlarda Görünür:Bilgisayar Mühendisliği

Bu öğenin dosyaları:
Dosya Açıklama BoyutBiçim 
684536.pdf6.97 MBAdobe PDFKüçük resim
Göster/Aç


DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.