DSpace@İHÜ

Makine öğrenmesi ile gerçek zamanlı videodan yüz ifadesi analizi

Basit öğe kaydını göster

dc.contributor.author Dabanoğlu, Muhammet Bekir
dc.date.accessioned 2022-07-22T08:08:11Z
dc.date.available 2022-07-22T08:08:11Z
dc.date.issued 2018-06
dc.identifier.uri http://acikerisim.ktu.edu.tr/jspui/handle/123456789/4385
dc.description.abstract Bu çalışmada, altı temel ifadeden oluşan, mutluluk, üzüntü, korku, tiksinme, şaşırma ve öfke ifadelerinin, makine öğrenmesi yardımıyla, kişiden bağımsız olarak gerçek zamanlı videodan tanınması amaçlanmıştır. Yüz ifadesi tanımanın üç hayati adımı bulunmaktadır. Bunların ilki, görüntüden yüz görüntüsü elde etmek, ikincisi ifadeleri iyi temsil edecek öznitelikler elde etmek ve son adım ise başarılı bir makine öğrenme yöntemi ile birlikte ifade tanımanın gerçekleştirilmesidir. Çalışmada görüntüden yüz görüntüsü elde etmek için "Haar Basamaklı Sınıflandırıcıları Yöntemi" kullanılmıştır. Elde edilen yüz görüntülerinden ifadeleri temsil etmek için İkili Yerel Örüntüler (Local Binary Pattern - LBP) öznitelik olarak kullanılmış ve son olarak bu öznitelikler çeşitli makine öğrenmesi yöntemleri ile sistematik olarak Cohn-Canadian veritabanından alınan görüntülerden çeşitli verisetleri oluşturularak incelenmiştir. Yapılan kapsamlı analizlerde Yerel İkili Örüntülerin yüz ifadesi tanımada etkili olduğu gözlemlenmiştir. Deneylerden sonra, yüz ifadesi tanımada en başarılı bulunan yöntem ve veri seti, gerçek zamanlı videodan alınan görüntüler üzerinde denenmiş ve sonuçlar çalışma içerisinde sunulmuştur. Elde edilen sonuçlara göre, dört sınıftan (ifadesiz, mutluluk, şaşırma ve üzüntü) oluşan veri seti, Destek Vektör Makineleri sınıflandırıcı kullanılarak en yüksek tanıma oranı olan %85,37 tanıma doğruluğuna ulaşılmıştır. İncelenen temel altı yüz ifadesi içerisinde diğer sınıflarla en az karıştırılan iki duygu ise şaşırma ve mutluluk olarak gözlemlenmiştir. tr_TR
dc.language.iso tr tr_TR
dc.publisher Karadeniz Teknik Üniversitesi / Fen Bilimleri Enstitüsü tr_TR
dc.subject Yüz İfadesi Analizi, Görüntü İşleme, Yerel İkili Örüntüler, Makine Öğrenmesi tr_TR
dc.subject Facial Expression Analysis, Image Processing, Local Binary Patterns, Machine Learning tr_TR
dc.title Makine öğrenmesi ile gerçek zamanlı videodan yüz ifadesi analizi tr_TR
dc.title.alternative Facial expression recognition with machine learning in real-time video tr_TR
dc.type Thesis tr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster