Özet:
Bu araştırma, elektrik şebekelerinde simetrik ve asimetrik kısa devrede meydana gelen arazaların algılanması, sınıflandırılması ve analizleri için makine öğrenimi algoritmalarının uygulamalarını kapsamaktadır. Gerekli üç fazlı voltaj ve akım değerleri DIgSILENT yazılımı ile değişik kısadevre durumlarına göre simülasyon yapılarak üretilmiş ve analizler Python yazılımı ile gerçekleştirilmiştir. İlk olarak, ayrık dalgacık dönüşümü uygulanarak ön veri işleme yapılmış, sonrasında da minimum entropi ayrışma ve Destek Vektör Makinesi algoritması uygulanarak ana dalgacık ve ayrışma seçimi seviyesi için bir model geliştirilmiştir. Eğitmenli makine öğrenimi modellerinin performansını artırmak için makine öğrenimi eğitim adımı sırasında eğitmensiz boyut azaltma teknikleri uygulanmıştır. Son olarak, düşünülen özellikler özellik çıkarma yoluyla minimize edilmiş ve daha az özellik göz önünde bulundurarak, model veri kümelerinin aşırı yüklenmesi veya yetersiz kalması önlenmiş ve algoritmaların performansı artırabilmiştir. Geliştirilen algoritma ve yaklaşımlar daha güvenilir koruma yöntemleri elde etmek için farklı arıza problemleri için de uygulanabilir.