Özet:
Seröz efüzyonlar sitopatolojik değerlendirmelerde sıklıkla karşılaşılan bir numune türüdür. Sitopatolojik değerlendirmenin zaman alıcı, yorucu ve patolog-içi ve patologlar-arası değişken olmasından dolayı tez çalışması kapsamında, seröz efüzyon sitopatolojisinde makine öğrenmesi tabanlı otomatik tanı yaklaşımları önerilmektedir. İlk olarak, artık öğrenme tabanlı yeni bir konvolüsyonel sinir ağı modeli sitopatolojik görüntülerde boya normalizasyonu amacıyla önerilmiştir. Önerilen modelin çekirdek segmentasyonu yöntemlerinin başarılarını önemli oranda artırdığı görülmüştür. İkinci olarak, tam konvolüsyonel sinir ağlarının topluluğuna dayalı yeni bir ağ mimarisi çekirdek segmentasyonu amacıyla önerilmiştir. Önerilen ağ topluluğu mimarisi ile elde edilen segmentasyon başarısının modellerin tek başına elde ettiği başarıyı geçtiği görülmüştür. Üçüncü olarak, modern konvolüsyonel nesne algılayıcılar çekirdek algılama amacıyla önerilmiştir. YOLOv3 mimarisinde iyileştirmeler sonucunda önerilen nesne algılayıcıların diğer nesne algılayıcılara nazaran daha hızlı algılama sağlamakla birlikte algılama başarısının da güçlü olduğu görülmüştür. Son olarak, seröz hücre sınıflandırma için literatürdeki popüler konvolüsyonel sinir ağı modellerinin analizleri yapılmış ve optimum bir konvolüsyonel sinir ağı modeli önerilmiştir. Önerilen model en az sayıda öğrenilebilir parametreye sahiptir böylece test süresini büyük oranda azaltmıştır. Tez çalışmasında ayrıca ön işlem, algılama, segmentasyon ve sınıflandırma adımlarının her biri için plevral efüzyon sitopatoloji görüntülerinden oluşan özgün bir veri seti önerilmiştir.