KARADENİZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

KİMYA ANABİLİM DALI

HİDROKSİ AZAKALKONLARIN SENTEZİ, REAKSİYONLARI, TEORİK HESAPLAMALARI VE BİYOLOJİK AKTİVİTELERİ

DOKTORA TEZİ

Yüksek Kimyager Ahmet YAŞAR

EYLÜL 2009 TRABZON

KARADENİZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

KİMYA ANABİLİM DALI

HİDROKSİ AZAKALKONLARIN SENTEZİ, REAKSİYONLARI, TEORİK HESAPLAMALARI VE BİYOLOJİK AKTİVİTELERİ

Yüksek Kimyager Ahmet YAŞAR

Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsünce "Doktor (Kimya)" Unvanı Verilmesi İçin Kabul Edilen Tezdir.

Tezin Enstitüye Verildiği Tarih : 08. 09. 2009Tezin Savunma Tarihi: 25. 09. 2009

Tez Danışmanı : Prof. Dr. Nurettin YAYLIJüri Üyesi: Prof. Dr. Yunus BEKDEMİRJüri Üyesi: Doç. Dr. Ahmet DEMİRBAŞJüri Üyesi: Doç. Dr. Kemal SANCAKJüri Üyesi: Doç.Dr. Şengül ALPAY KARAOĞLU

Enstitü Müdürü : Prof. Dr. Salih TERZİOĞLU

Trabzon 2009

ÖNSÖZ

Bu tez çalışması, K.T.Ü. Fen Bilimleri Enstitüsü Kimya Anabilim Dalı Bitki Kimyası Yüksek Lisans Laboratuarı ve Sayın Prof. Dr. Nurettin Yaylı'nın Araştırma Laboratuarında gerçekleştirilmiştir.

Doktora ve Y. Lisans tez danışmanlığımı üstlenen, çalışmalarımın yürütülmesinde, değerlerli zamanlarını ayıran, tecrübe ve bilgileri, esirgemediği düşünsel desteği ile bana yardımcı olan, tezimin yazılmasında ve düzenlenmesinde benden hiçbir emeğini esirgemeyen değerli hocam Prof. Dr. Nurettin Yaylı'ya sonsuz teşekkür ederim.

Ayrıca çalışmalarım süresince yoğunluğuma sabır eden ve destek olan eşim Kimyager Pınar YAŞAR'a sonsuz teşekkür ederim.

Doktora çalışmam boyunca benden hiçbir zaman desteklerini esirgemeyen ve her zaman yanımda çalışma grubu arkadaşlarıma sonsuz teşekkür ediyorum.

Doktora Eğitimim süresince bana emeği geçen Kimya Bölümünün değerli öğretim üyelerine, Araştırma Görevlisi ve Yüksek Lisans-Doktora arkadaşlarıma teşekkür ederim.

Bu çalışma TUBITAK 106T076 nolu proje ve KTU Araştırma Fonu 2008.111.02.1 nolu projelerin desteği ile tamamlanmıştır. Destek sağlayan tüm kurumlara ve çalışanlarına teşekkür ederim.

> Ahmet YAŞAR Trabzon 2009

İÇİNDEKİLER

ÖNSÖZ		II
İÇİNDEK	CILER	III
ÖZET		VIII
SUMMA	RY	IX
ŞEKİLLE	ER DİZİNİ	Х
TABLOL	AR DİZİNİ	XIX
SEMBOL	LER DİZİNİ	XXIII
1.	GENEL BİLGİLER	1
1.1.	Giriş	1
1.2.	Flavonlar	6
1.3.	Kalkonoidler	7
1.3.1.	Kalkon ve Benzeri Bileşiklerin Adlandırılmaları	9
1.3.2.	Kalkon Bileşiklerinin Literatür Özeti	10
1.4.	Azakalkonlar	12
1.5.	Alkillendirme Reaksiyonları	13
1.6.	Flavon / Azaflavon Reaksiyonları	14
1.7.	Fotokimya	16
1.8.	Yapı Aydınlatılmasında Kullanılan Teknikler	22
1.9.	Kromotografi	23
2.	YAPILAN ÇALIŞMALAR	24
2.1.	Çözücüler ve Kimyasallar	24
2.2.	Enstrümentasyon	24
2.3.	1-11 Nolu Bileşiklerin Sentezi	25
2.3.1.	1 Nolu Bileşiğin Sentezi	25
2.3.2.	2 Nolu Bileşiğin Sentezi	25
2.3.3.	3 Nolu Bileşiğin Sentezi	26
2.3.4.	4 Nolu Bileşiğin Sentezi	27
2.3.5.	5 Nolu Bileşiğin Sentezi	27
2.3.6.	6 Nolu Bileşiğin Sentezi	28
2.3.7.	7 Nolu Bileşiğin Sentezi	29

2.3.8.	8 Nolu Bileşiğin Sentezi	29
2.3.9.	9 Nolu Bileşiğin Sentezi	30
2.3.10.	10 Nolu Bileşiğin Sentezi	31
2.3.11.	11 Nolu Bileşiğin Sentezi	31
2.4.1.	12-13 Nolu Bileşiklerin Sentezi	32
2.4.2.	12 Nolu Bileşiğin Sentezi	32
2.4.2	13 Nolu Bileşiğin Sentezi	33
2.5.	14-15 Nolu Bileşiklerin Sentezi	33
2.5.1.	14 Nolu Bileşiğin Sentezi	33
2.5.2.	15 Nolu Bileşiğin Sentezi	34
2.6.	16-24 Nolu Bileşiklerin Sentezi	35
2.6.1.	16 Nolu Bileşiğin Sentezi	35
2.6.2.	17 Nolu Bileşiğin Sentezi	35
2.6.3.	18 Nolu Bileşiğin Sentezi	36
2.6.4.	19 Nolu Bileşiğin Sentezi	36
2.6.5.	20 Nolu Bileşiğin Sentezi	37
2.6.6.	21 Nolu Bileşiğin Sentezi	38
2.6.7.	22 Nolu Bileşiğin Sentezi	38
2.6.8.	23 Nolu Bileşiğin Sentezi	39
2.6.9.	24 Nolu Bileşiğin Sentezi	39
2.7.	25-37 Nolu Bileşiklerin Sentezi	40
2.7.1.	25-26 Nolu Bileşiklerin Sentezi	40
2.7.2.	27 Nolu Bileşiğin Sentezi	41
2.7.3.	28 Nolu Bileşiğin Sentezi	42
2.7.4.	29 Nolu Bileşiğin Sentezi	42
2.7.5.	30-32 Nolu Bileşiklerin Sentezi	43
2.7.6.	33 Nolu Bileşiğin Sentezi	44
2.7.7.	34 ve 35 Nolu Bileşiklerin Sentezi	45
2.7.8.	36 Nolu Bileşiğin Sentezi	46
2.7.9.	37 Nolu Bileşiğin Sentezi	47
2.8	Antimikrobiyal Aktivite Tayini	48
2.8.1.	Mikrobiyal Suşlar	48

2.8.2.	Minimal İnhibisyon Konsantrasyonu (MİK) ve Minimal Bakteriyal Konsantrasyonu Teşhisi
2.8.3.	Disk Difüzyon Metodu ile <i>in vitro</i> Antimikrobiyal Aktivitenin Belirlenmesi
2.9.	Antioksidan Aktivite Çalışması
2.9.1.	Antioksidant Özellikler
2.9.2.	Kullanılan Cihazlar
2.9.3.	Kullanılan Çözeltiler
2.9.4.	DPPH Yöntemiyle Antioksidan Aktivite Tayini
2.9.5.	IC50 Değerlerinin Bulunması
3.	BULGULAR
3.1.	1-11 Nolu Azakalkon Bileşikleri
3.2.	12-13 Nolu Azaflavon Bileşikleri
3.3.	14-15 Nolu N-Dekil Azaflavon Bileşikleri
3.4.	16-24 Nolu Azakalkonların Benzoil Türevleri
3.5.	25-37 Nolu Dimer bileşikler
3.6.	Antimikrobiyal Aktiviteler
3.7.	Antioksidant Özellikler
4.	TARTIŞMA
4.1.	1-37 Nolu Bileşiklerinin Sentezi
4.2.	1-11 Nolu Bileşiklerin Sentezi, Reaksiyon Mekanizması ve Deneysel Verileri
4.2.1.	1-3 Nolu Bileşiklerin Yapılarının Aydınlatılması
4.2.2.	4-6 Nolu Bileşiklerin Yapılarının Aydınlatılması
4.2.3.	7-9 Nolu Bileşiklerin Yapılarının Aydınlatılması
4.2.4.	10-11 Nolu Bileşiklerin Yapılarının Aydınlatılması
4.2.5.	1-11 Nolu Bileşiklerin UV, Elenmental, Kütle ve FT-IR Verileri
4.3.	12-13 Nolu Bileşiklerin Yapılarının Aydınlatılması
4.3.1.	14-15 Nolu Bileşiklerin Sentezi ve Yapılarının Aydınlatılması
4.4.	1-9 ve 16-24 Nolu Bileşiklerin Teorik Hesaplamaları
4.5.	16-24 Nolu Bileşiklerin Sentezi ve Yapılarının Aydınlatılması
4.5.1.	16-18 Nolu Bileşiklerin Sentezi ve Yapılarının Aydınlatılması
4.5.2.	19-21 Nolu Bileşiklerin Sentezi ve Yapılarının Aydınlatılması

4.5.3.	22-24 Nolu Bileşiklerin Sentezi ve Yapılarının Aydınlatılması	89
4.6.	25-37 Nolu Bileşiklerin Sentezi ve Yapılarının Aydınlatılması	93
4.6.1.	25-28 Nolu Bileşiklerin Sentezi ve Yapılarının Aydınlatılması	93
4.6.2.	29-33 Nolu Bileşiklerin Sentezi ve Yapılarının Aydınlatılması	108
4.6.3.	34-37 Nolu Bileşiklerin Sentezi ve Yapılarının Aydınlatılması	114
4.7.	Antimikrobiyal ve Antioksidant Özellikler	122
5.	SONUÇLAR	124
6.	ÖNERİLER	126
7.	KAYNAKLAR	127
8.	EKLER	135
ÖZGEÇMİŞ		

ÖZET

Bu çalışmanın birinci bölümünde, Claisen-Schimdt reaksiyonuna göre 2'-, 3'-, 4'hidroksi-2"-, 3"- ve 4"-azakalkon bileşikleri (1-11) sentezlendi. Çalışmanın ikinci bölümünde sentezlenen 2'-hidroksi-4"-azakalkon bileşiklerinden katı-faz mikrodalga yöntemiyle 4'-azaflavon bileşikleri (12-13) ve 4'-azaflavonların asetonitril çözücüsü içinde geri soğutucu altında kaynatmayla alkillendirme ürünleri olan N-dekil substituye 4'azaflavonium bromür bileşikleri (14-15) elde edildi.

Çalışmanın üçüncü bölümünde ise 2'-, 3'-, 4'-benzoil-2"-, 3"- ve 4"-azakalkon bileşiklerinin (16-24) fotokimyasal reaksiyonları sonucu dimerleşme ürünleri (25-37) sentezlenip yapıları aydınlatıldı. Hyperchem ve gaussian programları ile dimerleşme bileşiklerinin (25-37) muhtemel 11 izomerinin enerjileri hesaplandı. Kinetik olarak meydana gelmesi muhtemel 11 izomerin bu çalışma ile paralel olarak Hyperchem programı ile kararlılıkları yarı-empirik yöntemlerle hesaplanmıştır. Termodinamik bakımdan en kararlı ürünün yapı aydınlatılması ile elde edilen ürün ile aynı olduğu yargısına ulaşılmıştır. Aynı zamanda reaksiyonun kinetik olarak kararlılığı da yine Hyperchem programı ile incelenmiştir. Buradan elde edilen sonuçların deneysel verilerle paralellik gösterdiği görülmüştür.

Sentezlenen **1-37** nolu bileşiklerin yapıları Nükleer Manyetik Rezonans Spektroskopisi [200 MHz NMR (1D; ¹H, ¹³C, DEPT, APT, 2D; COSY] İnfrared Spektroskopi (FT-IR), Ultraviole Spektroskopi (UV), Elemental Analiz ve Kütle Spektrometrisi (LC-MS/MS) teknikleri kullanılarak aydınlatılmıştır.

Bu çalışmada sentezlenen 37 adet bileşiğin antioksidan ve antimikrobiyal özellikleri incelenerek 7, 14, 15 ve 34 nolu maddelerin oldukça iyi antioksidan, *N*-dekil türevi olan 14-15 nolu bileşiklerin ise yüksek derecede antimikrobiyal özellik gösterdiği görüldü.

Anahtar Kelimeler: Azakalkonlar, Azaflavonlar, Fotodimerizasyon, Dimerler, Teorik Hesaplamalar

SUMMARY

Synthesis of Hydroxy Azachalcones, Reactions, Theoretical Chalculations, and Biologycal Activities

In the first part of this work, 2'-,3'-,4'-hydroxy 2"-,3"-,4"-azachalcones (1-11) were synthesized according to Claisen-Schmidt reactions. In the second part of the study, 4'- azaflavones (12-13) were prepared from 2'-hydroxy-4"-azachalcone by using solid-phase microwave method and their N-decyl derivatives (14-15) were synthesized in acetonitrile solution by reflux.

In the third part of the study, 2'-,3'-,4'-benzoyl 2"-,3"-,4"-azachalcone compounds (16-24) were exposed to UV light to give photochemical dimerization reaction products (25-37) and characterized them. In addition, the energy of the possible 11 isomers of the synthesized dimeric compounds (25-37) was calculated with Hyperchem and gaussian software. The stabilities of these kinetically possible 11 isomers were calculated with both semi-empirical and molecular mechanical methods. The calculations showed the thermodynamically most stable product to be the experimental product the structure of which was identified by all the spectroscopic methods utilized. The kinetical stability of the reaction was investigated with Hyperchem program which was in accordance with experimental findings.

The structures of the synthesized compounds (**1-37**) were identified by nuclear magnetic resonance spectroscopy (200 MHz NMR, 1D: ¹H, ¹³C, DEPT, APT; and 2D: COSY), Fourier-transform-infra-red (FT-IR) spectroscopy, ultraviolet absorption spectroscopy (UV), elemental analysis and liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques.

Antioxidant and antimicrobial properties of synthesized compounds 1-37 of this work were investigated, and then it is seen that compounds 7, 14, 15 and 34 were showed antioxidant and compound 14-15 have highly antimicrobial activity.

Key Words: Azachalcones, Azaflavones, Photodimerizations, Dimers, Theoretical Calculations

ŞEKİLLER DİZİNİ

<u>Sayfa No</u>

Şekil 1.	1-3, 16-18, ve 25-28 Nolu bileşiklerin sentez şeması	2
Şekil 2.	4-6, 19-21, ve 29-33 Nolu bileşiklerin sentez şeması	3
Şekil 3.	7-9, 22-24, ve 34-37 Nolu bileşiklerin sentez şeması	4
Şekil 4.	10-15 Nolu bileşiklerin sentez şeması	5
Şekil 5.	Bazı bitkilerden elde edilen siklobütan halkalı bileşikler	8
Şekil 6.	Kalkon ve türevi bileşiklerin adlandırılmaları	9
Şekil 7.	Etilenin sınır orbitalleri	17
Şekil 8.	Sınır orbitallerinin etkileşimi	17
Şekil 9.	Siklobütan halkasında proton piklerinin eşleşmelerinin gösterimi	21
Şekil 10.	Siklobütan halkasında grupların yönelmeleri ve proton değerleri	21
Şekil 11.	Siklobütan halkasında grupların yönelmeleri ve karbon değerleri	22
Şekil 12.	3, 10-14 bileşiklerinin DPPH radikal temizleme yöntemine göre aktivite sonuçları FRAP değerleri ve Trolox [®] referansı	60
Şekil 13.	1, 2, 5-9, 26, 28, 30-34 bileşiklerinin DPPH [•] radikal temizleme yöntemine göre aktivite sonuçları FRAP değerleri ve Trolox [®] referansı	60
Şekil 14.	1-11 Nolu bileşiklerin sentez mekanizması	62
Şekil 15.	Fotokimyasal dimerleşme reaksiyonu sonucu oluşabilecek izomerler	99
Şekil 16.	25-28 Nolu bileşikler için verilen genel formül	100
Şekil 17.	25 Nolu bileşiğin Potansiyel Enerji grafiği	102
Şekil 18.	25 Nolu bileşiğin başlangıç, ara ürün ve ürünlerinin moleküllerinin etkileşimleri	102
Şekil 19.	26 Nolu bileşiğin Potansiyel Enerji grafiği	103
Şekil 20.	26 Nolu bileşiğin başlangıç, ara ürün ve ürünlerinin moleküllerinin etkileşimleri	103
Şekil 21.	27 Nolu bileşiğin Potansiyel Enerji grafiği	104
Şekil 22.	27 Nolu bileşiğin başlangıç, ara ürün ve ürünlerinin moleküllerinin etkileşimleri	104
Şekil 23.	28 Nolu bileşiğin Potansiyel Enerji grafiği	105

Şekil 24.	28 Nolu bileşiğin başlangıç, ara ürün ve ürünlerinin moleküllerinin etkileşimleri.	10
Şekil 25.	27 Nolu bileşiğin DFT- B3LYP/6-311+G(d) ile yapılan hesaplama	10
Şekil 26.	27 Nolu bileşiğin ¹ H_NMR spektrumu	10
Şekil 27.	27 Nolu bileşiğin DFT- B3LYP/6-311+G(d) yöntemiyle hesaplanan ¹ H kayma değerleri	10
Şekil 28.	27 Nolu bileşiğin ¹³ C_NMR spektrumu	10
Şekil 29.	27 Nolu bileşiğin DFT- B3LYP/6-311+G(d) yöntemiyle hesaplanan ¹³ C kayma değerleri.	10
Şekil 30.	36 Nolu bileşiğin Potansiyel Enerji grafiği	12
Şekil 31.	37 Nolu bileşiğin Potansiyel Enerji grafiği	12
Ek Şekil 1.	1 Nolu bileşiğin ¹ H-NMR spektrumu,DMSO-d ₆	13
Ek Şekil 2.	1 Nolu bileşiğin ¹³ C-NMR spektrumu, DMSO-d ₆	13
Ek Şekil 3.	1 Nolu bileşiğin APT spektrumu, DMSO-d ₆	13
Ek Şekil 4 .	1 Nolu bileşiğin FT-IR Spektrumu, KBr	13
Ek Şekil 5.	1 Nolu bileşiğin LC-MS/MS spektrumu, DMSO	13
Ek Şekil 6.	2 Nolu bileşiğin ¹ H-NMR spektrumu, DMSO-d ₆	13
Ek Şekil 7.	2 Nolu bileşiğin APT spektrumu, DMSO-d ₆	13
Ek Şekil 8.	2 Nolu bileşiğin FT-IR Spektrumu,KBr	13
Ek Şekil 9.	2 Nolu bileşiğin LC-MS/MS spektrumu, DMSO	13
Ek Şekil 10.	3 Nolu bileşiğin ¹ H-NMR spektrumu, DMSO-d ₆	14
Ek Şekil 11.	3 Nolu bileşiğin ¹³ C-NMR spektrumu, DMSO-d ₆	14
Ek Şekil 12.	3 Nolu bileşiğin APT spektrumu, DMSO-d ₆	14
Ek Şekil 13.	3 Nolu bileşiğin COSY spektrumu, DMSO-d ₆	14
Ek Şekil 14.	3 Nolu bileşiğin FT-IR Spektrumu,KBr	14
Ek Şekil 15.	3 Nolu bileşiğin LC-MS/MS spektrumu, DMSO-d ₆	14
Ek Şekil 16.	4 Nolu bileşiğin ¹ H-NMR spektrumu, DMSO-d ₆	14
Ek Şekil 17.	4 Nolu bileşiğin ¹³ C-NMR spektrumu, DMSO-d ₆	14
Ek Şekil 18.	4 Nolu bileşiğin APT spektrumu, DMSO-d ₆	14
Ek Şekil 19.	4 Nolu bileşiğin FT-IR Spektrumu, KBr	14
Ek Şekil 20.	4 Nolu bileşiğin LC-MS/MS spektrumu, DMSO-d ₆	14
Ek Şekil 21.	5 Nolu bileşiğin ¹ H-NMR spektrumu, DMSO-d ₆	14

Ek Şekil 22.	5 Nolu bileşiğin ¹³ C-NMR spektrumu, DMSO-d ₆	144
Ek Şekil 23.	5 Nolu bileşiğin APT spektrumu, DMSO-d ₆	144
Ek Şekil 24.	5 Nolu bileşiğin COSY spektrumu, DMSO-d ₆	145
Ek Şekil 25.	5 Nolu bileşiğin FT-IR Spektrumu, KBr	145
Ek Şekil 26.	5 Nolu bileşiğin LC-MS/MS spektrumu, DMSO-d ₆	145
Ek Şekil 27.	6 Nolu bileşiğin ¹ H-NMR spektrumu, DMSO-d ₆	146
Ek Şekil 28.	6 Nolu bileşiğin ¹³ C-NMR spektrumu, DMSO-d ₆	146
Ek Şekil 29.	6 Nolu bileşiğin APT spektrumu, DMSO-d ₆	146
Ek Şekil 30.	6 Nolu bileşiğin COSY spektrumu, DMSO-d ₆	147
Ek Şekil 31.	6 Nolu bileşiğin FT-IR Spektrumu, KBr	147
Ek Şekil 32.	6 Nolu bileşiğin LC-MS/MS spektrumu, DMSO-d ₆	147
Ek Şekil 33.	7 Nolu bileşiğin ¹ H-NMR spektrumu, DMSO-d ₆	148
Ek Şekil 34.	7 Nolu bileşiğin APT spektrumu, DMSO-d ₆	148
Ek Şekil 35.	7 Nolu bileşiğin COSY spektrumu, DMSO-d ₆	148
Ek Şekil 36.	7 Nolu bileşiğin FT-IR spektrumu, KBr	149
Ek Şekil 37.	7 Nolu bileşiğin LC-MS/MS spektrumu, DMSO-d ₆	149
Ek Şekil 38.	8 Nolu bileşiğin ¹ H-NMR spektrumu, DMSO-d ₆	150
Ek Şekil 39.	8 Nolu bileşiğin APT spektrumu, DMSO-d ₆	150
Ek Şekil 40.	8 Nolu bileşiğin COSY spektrumu, DMSO-d ₆	150
Ek Şekil 41.	8 Nolu bileşiğin FT-IR spektrumu, KBr	151
Ek Şekil 42.	8 Nolu bileşiğin LC-MS/MS spektrumu, DMSO-d ₆	151
Ek Şekil 43.	9 Nolu bileşiğin ¹ H-NMR spektrumu, DMSO-d ₆	152
Ek Şekil 44.	9 Nolu bileşiğin ¹³ C-NMR spektrumu, DMSO-d ₆	152
Ek Şekil 45.	9 Nolu bileşiğin APT spektrumu, DMSO-d ₆	152
Ek Şekil 46.	9 Nolu bileşiğin COSY spektrumu, DMSO-d ₆	153
Ek Şekil 47 .	9 Nolu bileşiğin FT-IR Spektrumu, KBr	153
Ek Şekil 48.	9 Nolu bileşiğin LC-MS/MS spektrumu, DMSO-d ₆	153
Ek Şekil 49.	10 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	154
Ek Şekil 50.	10 Nolu bileşiğin ¹³ C-NMR spektrumu, CDCl ₃	154
Ek Şekil 51.	10 Nolu bileşiğin APT spektrumu, CDCl ₃	154
Ek Şekil 52.	10 Nolu bileşiğin COSY spektrumu, CDCl ₃	155
Ek Şekil 53.	10 Nolu bileşiğin FT-IR Spektrumu, KBr	155

Ek Şekil 54.	10 Nolu bileșiğin LC-MS/MS spektrumu, CDCl ₃	155
Ek Şekil 55.	11 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	156
Ek Şekil 56.	11 Nolu bileşiğin ¹³ C-NMR spektrumu, CDCl ₃	156
Ek Şekil 57.	11 Nolu bileşiğin APT spektrumu, CDCl3	156
Ek Şekil 58.	11 Nolu bileşiğin COSY spektrumu, CDCl ₃	157
Ek Şekil 59.	11 Nolu bileşiğin FT-IR Spektrumu, KBr	157
Ek Şekil 60.	11 Nolu bileşiğin LC-MS/MS spektrumu, CDCl ₃	157
Ek Şekil 61.	12 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	158
Ek Şekil 62.	12 Nolu bileşiğin ¹³ C-NMR spektrumu, CDCl ₃	158
Ek Şekil 63.	12 Nolu bileşiğin APT spektrumu, CDCl3	158
Ek Şekil 64.	12 Nolu bileşiğin COSY spektrumu, CDCl ₃	159
Ek Şekil 65.	12 Nolu bileşiğin FT-IR Spektrumu, KBr	159
Ek Şekil 66.	12 Nolu bileşiğin LC-MS/MS spektrumu, CDCl ₃	159
Ek Şekil 67.	13 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	160
Ek Şekil 68.	13 Nolu bileşiğin ¹³ C-NMR spektrumu, CDCl ₃	160
Ek Şekil 69.	13 Nolu bileşiğin APT spektrumu, CDCl3	160
Ek Şekil 70.	13 Nolu bileşiğin COSY spektrumu, CDCl ₃	161
Ek Şekil 71.	13 Nolu bileşiğin FT-IR Spektrumu, KBr	161
Ek Şekil 72.	13 Nolu bileşiğin LC-MS/MS spektrumu, CDCl ₃	161
Ek Şekil 73 .	14 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	162
Ek Şekil 74.	14 Nolu bileşiğin ¹³ C-NMR spektrumu, CDCl ₃	162
Ek Şekil 75.	14 Nolu bileşiğin APT spektrumu, CDCl3	162
Ek Şekil 76.	14 Nolu bileşiğin COSY spektrumu, CDCl ₃	163
Ek Şekil 77.	14 Nolu bileşiğin FT-IR Spektrumu, KBr	163
Ek Şekil 78.	14 Nolu bileşiğin LC-MS/MS spektrumu, CDCl ₃	163
Ek Şekil 79.	15 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	164
Ek Şekil 80.	15 Nolu bileşiğin ¹³ C-NMR spektrumu, CDCl ₃	164
Ek Şekil 81.	15 Nolu bileşiğin APT spektrumu, CDCl3	164
Ek Şekil 82.	15 Nolu bileşiğin COSY spektrumu, CDCl3	165
Ek Şekil 83.	15 Nolu bileşiğin FT-IR Spektrumu, KBr	165
Ek Şekil 84.	15 Nolu bileşiğin LC-MS/MS spektrumu, CDCl ₃	165
Ek Şekil 85.	16 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	166

Ek Şekil 86.	16 Nolu bileşiğin ¹³ C-NMR spektrumu, CDCl ₃	166
Ek Şekil 87.	16 Nolu bileşiğin APT spektrumu, CDCl ₃	166
Ek Şekil 88.	16 Nolu bileşiğin COSY spektrumu, CDCl ₃	167
Ek Şekil 89.	16 Nolu bileşiğin FT-IR Spektrumu, KBr	167
Ek Şekil 90.	16 Nolu bileşiğin LC-MS/MS spektrumu, CDCl ₃	167
Ek Şekil 91.	17 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	168
Ek Şekil 92.	17 Nolu bileşiğin ¹³ C-NMR spektrumu, CDCl ₃	168
Ek Şekil 93.	17 Nolu bileşiğin APT spektrumu, CDCl ₃	168
Ek Şekil 94.	17 Nolu bileşiğin COSY spektrumu, CDCl ₃	169
Ek Şekil 95.	17 Nolu bileşiğin FT-IR Spektrumu, KBr	169
Ek Şekil 96.	17 Nolu bileşiğin LC-MS/MS spektrumu, CDCl ₃	169
Ek Şekil 97.	18 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	170
Ek Şekil 98.	18 Nolu bileşiğin ¹³ C-NMR spektrumu, CDCl ₃	170
Ek Şekil 99.	18 Nolu bileşiğin APT spektrumu, CDCl ₃	170
Ek Şekil 100.	18 Nolu bileşiğin COSY spektrumu, CDCl ₃	171
Ek Şekil 101.	18 Nolu bileşiğin FT-IR Spektrumu, KBr	171
Ek Şekil 102.	18 Nolu bileşiğin LC-MS/MS spektrumu, CDCl ₃	171
Ek Şekil 103.	19 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	172
Ek Şekil 104.	19 Nolu bileşiğin ¹³ C-NMR spektrumu, CDCl ₃	172
Ek Şekil 105.	19 Nolu bileşiğin APT spektrumu, CDCl ₃	172
Ek Şekil 106.	19 Nolu bileşiğin COSY spektrumu, CDCl ₃	173
Ek Şekil 107.	19 Nolu bileşiğin FT-IR Spektrumu, KBr	173
Ek Şekil 108.	19 Nolu bileşiğin LC-MS/MS spektrumu, CDCl ₃	173
Ek Şekil 109.	20 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	174
Ek Şekil 110.	20 Nolu bileşiğin ¹³ C-NMR spektrumu, CDCl ₃	174
Ek Şekil 111.	20 Nolu bileşiğin APT spektrumu, CDCl ₃	174
Ek Şekil 112.	20 Nolu bileşiğin COSY spektrumu, CDCl ₃	175
Ek Şekil 113.	20 Nolu bileşiğin FT-IR Spektrumu, KBr	175
Ek Şekil 114.	20 Nolu bileşiğin LC-MS/MS spektrumu, CDCl ₃	175
Ek Şekil 115.	21 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	176
Ek Şekil 116.	21 Nolu bileşiğin ¹³ C-NMR spektrumu, CDCl ₃	176
Ek Şekil 117.	21 Nolu bileşiğin APT spektrumu, CDCl ₃	176

Ek Şekil 118.	21 Nolu bileşiğin COSY spektrumu, CDCl ₃	177
Ek Şekil 119.	21 Nolu bileşiğin FT-IR Spektrumu, KBr	177
Ek Şekil 120.	21 Nolu bileşiğin LC-MS/MS spektrumu, CDCl ₃	177
Ek Şekil 121.	22 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	178
Ek Şekil 122.	22 Nolu bileşiğin ¹³ C-NMR spektrumu, CDCl ₃	178
Ek Şekil 123.	22 Nolu bileşiğin APT spektrumu, CDCl ₃	178
Ek Şekil 124.	22 Nolu bileşiğin FT-IR Spektrumu, KBr	179
Ek Şekil 125.	22 Nolu bileşiğin LC-MS/MS spektrumu, CDCl ₃	179
Ek Şekil 126.	23 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	180
Ek Şekil 127.	23 Nolu bileşiğin ¹³ C-NMR spektrumu, CDCl ₃	180
Ek Şekil 128.	23 Nolu bileşiğin APT spektrumu, CDCl ₃	180
Ek Şekil 129.	23 Nolu bileşiğin COSY spektrumu, CDCl ₃	181
Ek Şekil 130.	23 Nolu bileşiğin FT-IR Spektrumu, KBr	181
Ek Şekil 131.	23 Nolu bileşiğin LC-MS/MS spektrumu, CDCl ₃	181
Ek Şekil 132.	24 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	182
Ek Şekil 133.	24 Nolu bileşiğin ¹³ C-NMR spektrumu, CDCl ₃	182
Ek Şekil 134.	24 Nolu bileşiğin APT spektrumu, CDCl ₃	182
Ek Şekil 135.	24 Nolu bileşiğin COSY spektrumu, CDCl ₃	183
Ek Şekil 136.	24 Nolu bileşiğin FT-IR Spektrumu, KBr	183
Ek Şekil 137.	24 Nolu bileşiğin LC-MS/MS spektrumu, CDCl ₃	183
Ek Şekil 138.	25 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	184
Ek Şekil 139.	25 Nolu bileşiğin APT spektrumu, CDCl ₃	184
Ek Şekil 140.	25 Nolu bileşiğin FT-IR Spektrumu, KBr	184
Ek Şekil 141.	25 Nolu bileşiğin LC-MS/MS spektrumu, CDCl ₃	185
Ek Şekil 142.	26 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	186
Ek Şekil 143.	26 Nolu bileşiğin APT spektrumu, CDCl ₃	186
Ek Şekil 144.	26 Nolu bileşiğin FT-IR Spektrumu, KBr	186
Ek Şekil 145.	26 Nolu bileşiğin LC-MS/MS spektrumu, CDCl ₃	187
Ek Şekil 146.	27 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	188
Ek Şekil 147.	27 Nolu bileşiğin ¹³ C-NMR spektrumu, CDCl ₃	188
Ek Şekil 148.	27 Nolu bileşiğin APT spektrumu, CDCl ₃	188
Ek Şekil 149.	27 Nolu bileşiğin COSY spektrumu, CDCl ₃	189

Ek Şekil 150.	27 Nolu bileşiğin FT-IR Spektrumu, KBr	189
Ek Şekil 151.	27 Nolu bileşiğin LC-MS/MS spektrumu, CDCl ₃	189
Ek Şekil 152.	28 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	190
Ek Şekil 153.	28 Nolu bileşiğin ¹³ C-NMR spektrumu, CDCl ₃	190
Ek Şekil 154.	28 Nolu bileşiğin APT spektrumu, CDCl ₃	190
Ek Şekil 155.	28 Nolu bileşiğin COSY spektrumu, CDCl ₃	191
Ek Şekil 156.	28 Nolu bileşiğin FT-IR Spektrumu, KBr	191
Ek Şekil 157.	28 Nolu bileşiğin LC-MS/MS spektrumu, CDCl ₃	191
Ek Şekil 158.	29 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	192
Ek Şekil 159.	29 Nolu bileşiğin ¹³ C-NMR spektrumu, CDCl ₃	192
Ek Şekil 160.	29 Nolu bileşiğin APT spektrumu, CDCl ₃	192
Ek Şekil 161.	29 Nolu bileşiğin COSY spektrumu, CDCl ₃	193
Ek Şekil 162.	29 Nolu bileşiğin FT-IR Spektrumu, KBr	193
Ek Şekil 163.	29 Nolu bileşiğin LC-MS/MS spektrumu, CDCl ₃	193
Ek Şekil 164.	30 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	194
Ek Şekil 165.	30 Nolu bileşiğin ¹³ C-NMR spektrumu, CDCl ₃	194
Ek Şekil 166.	30 Nolu bileşiğin APT spektrumu, CDCl ₃	194
Ek Şekil 167.	30 Nolu bileşiğin COSY spektrumu, CDCl ₃	195
Ek Şekil 168.	30 Nolu bileşiğin FT-IR Spektrumu, KBr	195
Ek Şekil 169.	30 Nolu bileşiğin LC-MS/MS spektrumu, CDCl ₃	195
Ek Şekil 170.	31 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	196
Ek Şekil 171.	31 Nolu bileşiğin ¹³ C-NMR spektrumu, CDCl ₃	196
Ek Şekil 172.	31 Nolu bileşiğin APT spektrumu, CDCl ₃	196
Ek Şekil 173.	31 Nolu bileşiğin COSY spektrumu, CDCl ₃	197
Ek Şekil 174.	31 Nolu bileşiğin FT-IR Spektrumu, KBr	197
Ek Şekil 175.	31 Nolu bileşiğin LC-MS/MS spektrumu, CDCl ₃	197
Ek Şekil 176.	32 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	198
Ek Şekil 177.	32 Nolu bileşiğin ¹³ C-NMR spektrumu, CDCl ₃	198
Ek Şekil 178.	32 Nolu bileşiğin APT spektrumu, CDCl ₃	198
Ek Şekil 179.	32 Nolu bileşiğin COSY spektrumu, CDCl ₃	199
Ek Şekil 180.	32 Nolu bileşiğin FT-IR Spektrumu, KBr	199
Ek Şekil 181.	32 Nolu bileşiğin LC-MS/MS spektrumu, CDCl ₃	199

Ek Şekil 182.	33 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	200
Ek Şekil 183.	33 Nolu bileşiğin ¹³ C-NMR spektrumu, CDCl ₃	200
Ek Şekil 184.	33 Nolu bileşiğin APT spektrumu, CDCl ₃	200
Ek Şekil 185.	33 Nolu bileşiğin COSY spektrumu, CDCl ₃	201
Ek Şekil 186.	33 Nolu bileşiğin FT-IR Spektrumu, KBr	201
Ek Şekil 187.	33 Nolu bileşiğin LC-MS/MS spektrumu, CDCl ₃	201
Ek Şekil 188.	34 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	202
Ek Şekil 189.	34 Nolu bileşiğin APT spektrumu, CDCl ₃	202
Ek Şekil 190.	34 Nolu bileşiğin COSY spektrumu, CDCl ₃	202
Ek Şekil 191.	34 Nolu bileşiğin FT-IR Spektrumu, KBr	203
Ek Şekil 192.	34 Nolu bileşiğin LC-MS/MS spektrumu, CDCl ₃	203
Ek Şekil 193.	35 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	204
Ek Şekil 194.	35 Nolu bileşiğin APT spektrumu, CDCl ₃	204
Ek Şekil 195.	35 Nolu bileşiğin COSY spektrumu, CDCl ₃	204
Ek Şekil 196.	35 Nolu bileşiğin FT-IR Spektrumu, KBr	205
Ek Şekil 197.	35 Nolu bileşiğin LC-MS/MS spektrumu, CDCl ₃	205
Ek Şekil 198.	36 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	206
Ek Şekil 199.	36 Nolu bileşiğin APT spektrumu, CDCl ₃	206
Ek Şekil 200.	36 Nolu bileşiğin COSY spektrumu, CDCl ₃	206
Ek Şekil 201.	36 Nolu bileşiğin FT-IR Spektrumu, KBr	207
Ek Şekil 202.	36 Nolu bileşiğin LC-MS/MS spektrumu, CDCl ₃	207
Ek Şekil 203.	37 Nolu bileşiğin ¹ H-NMR spektrumu, CDCl ₃	208
Ek Şekil 204.	37 Nolu bileşiğin APT spektrumu, CDCl ₃	208
Ek Şekil 205.	37 Nolu bileşiğin COSY spektrumu, CDCl ₃	208
Ek Şekil 206.	37 Nolu bileşiğin FT-IR Spektrumu, KBr	209
Ek Şekil 207.	37 Nolu bileşiğin LC-MS/MS spektrumu, CDCl ₃	209

TABLOLAR DİZİNİ

<u>Sayfa No</u>

Tablo 1.	Malzeme ve Cihaz adı
Tablo 2.	Denemelerde kullanılan çözeltilerin hazırlanışı
Table 3.	DPPH yöntemi için deney şartları
Table 4.	3, 10-15 bileşiklerinin Antimikrobial activiteleri
Table 5.	1, 2, 5, 7, 8, 9, 14, 15 Nolu bileşiklerin bazı bakterilere karşı antibiyotik etkileri
Table 6.	1-11 nolu bileşiklere ait deneysel veriler
Tablo 7.	1-3 Nolu bileşiklerinmaddelerin ¹ H NMR ve ¹³ C NMR spektrum değerleri,DMSO-d ₆
Tablo 8.	4-6 Nolu bileşiklerin ¹ H NMR ve ¹³ C NMR spektrum değerleri, DMSO-d ₆
Tablo 9.	7-9 Nolu bileşiklerin ¹ H NMR ve ¹³ C NMR spektrum değerleri, DMSO-d ₆
Tablo 10	10-11 Nolu bileşiklerin ¹ H NMR ve ¹³ C NMR spektrum değerleri, CDCl ₃
Tablo 11.	1-11 nolu bileşiklere ait UV-Vis λ_{nm} (log ϵ) verileri
Tablo 12.	1-11 Nolu bileşiklerin Elementel Analiz Deneysel ve Teorik verileri
Tablo 13.	1-11 Nolu bileşiklerin LC-MS/MS spektrum değerleri
Tablo 14.	1-11 Nolu bileşiklerin temel IR absorbsiyon bandları (cm ⁻¹)
Tablo 15.	12-13 nolu bileşiklere ait deneysel veriler
Tablo 16.	12-13 Nolu bileşiklerin ¹ H NMR (200MHz) ve ¹³ C NMR (50MHz) spektrum değerleri, CDCl ₃
Tablo 17.	12-13 nolu bileşiklere ait deneysel veriler
Tablo 18.	12-13 Nolu bileşiklerin Elementel Analiz Deneysel ve Teorik verileri
Tablo 19.	12-13 Nolu bileşiklerin LC-MS/MS spektrum değerleri
Tablo 20.	11-12 Nolu maddelerin temel IR absorbsiyon bandları (cm ⁻¹)
Tablo 21	14-15 Nolu bileşiklere ait deneysel veriler
Tablo 22	14-15 Nolu bileşiklerin ¹ H NMR (200MHz) ve ¹³ C NMR (50MHz) spektrum değerleri, CDCl ₃
Tablo 23	14-15 Nolu bileşiklere ait deneysel veriler
Tablo 24	4-15 Nolu bileşiklerin Elementel Analiz Deneysel ve Teorik verileri

Tablo 25	14-15 Nolu bileşiklerin LC-MS/MS spektrum değerleri
Tablo 26	11-20 Nolu maddelerin temel IR absorbsiyon bandları (cm ⁻¹)
Tablo 27	2-, 3-, 4-Hidroksi 2-,/,3-,/4-azakalkon ve benzoil bileşiklerinin dimerleşmesi sırasında bazı bağ ve açı değerleri
Tablo 28	1-3 Bileşiklerinin HOMO, LUMO, HSOMO ve LSOMO enerjileri (eV)
Tablo 29	4-6 bileşiklerinin HOMO, LUMO, HSOMO ve LSOMO enerjileri (eV)
Tablo 30	7-9 bileşiklerinin HOMO, LUMO, HSOMO ve LSOMO enerjileri (eV)
Tablo 31	16-18 nolu bileşiklere ait deneysel veriler
Tablo 32	16-18 bileşiklerin ¹ H NMR (200MHz) ve ¹³ C NMR(50 MHz) spektrum değerleri, CDCl ₃
Tablo 33	16-24 nolu bileşiklere ait UV-Vis λ_{nm} (log ϵ)veriler
Tablo 34	16-18 Nolu bileşiklerin Elementel Analiz Deneysel ve Teorik verileri
Tablo 35	13-18 Nolu bileşiklerin LC-MS/MS spektrum değerleri
Tablo 36	11-20 Nolu maddelerin temel IR absorbsiyon bandları (cm ⁻¹)
Tablo 37	16-18 bileşiklerinin HOMO, LUMO, HSOMO ve LSOMO enerjileri (eV)
Tablo 38	16-24 nolu bileşiklere ait deneysel veriler
Tablo 39	19-21 Nolu bileşiklerin ¹ H NMR (200 Mhz) ve ¹³ C NMR (50 MHz) spektrum değerleri, CDCl ₃
Tablo 40	19-21 nolu bileşiklere ait UV-Vis λ_{nm} (log ϵ) verileri
Tablo 41	19-21 Nolu bileşiklerin Elementel Analiz Deneysel ve Teorik verileri
Tablo 42	16-18 Nolu bileşiklerin LC-MS/MS spektrum değerleri
Tablo 43	19-21 Nolu maddelerin temel IR absorbsiyon bandları (cm ⁻¹)
Tablo 44	19-21 bileşiklerinin HOMO, LUMO, HSOMO ve LSOMO enerjileri (eV)
Tablo 45	22-24 nolu bileşiklere ait deneysel veriler
Tablo 46	22-24 Nolu bileşiklerin ¹ H NMR (200MHz) ve ¹³ C NMR (50MHz) spektrum değerleri, CDCl ₃
Tablo 47	22-24 Nolu bileşiklere ait UV veriler
Tablo 48	22-24 Nolu bileşiklerin Elementel Analiz Deneysel ve Teorik verileri
Tablo 49	22-24 Nolu bileşiklerin LC-MS/MS spektrum değerleri
Tablo 50	22-24 Nolu maddelerin temel IR absorbsiyon bandları (cm ⁻¹)

Tablo 51	22-24 bileşiklerinin HOMO, LUMO, HSOMO ve LSOMO enerjileri (eV)
Tablo 52	25-28 nolu bileşiklere ait deneysel veriler
Tablo 53	25-27 Nolu bileşiklerin ¹ H NMR (200MHz) ve ¹³ C NMR (50MHz) spektrum değerleri, CDCl ₃
Tablo 54	28 Nolu bileşiğin ¹ H NMR (200MHz) ve ¹³ C NMR (50MHz) spektrum değerleri, CDCl ₃
Tablo 55	25-28 Nolu bileşiklere ait UV verileri
Tablo 56	22-24 Nolu bileşiklerin Elementel Analiz Deneysel ve Teorik verileri
Tablo 57	25-32 Nolu bileşiklerin LC-MS/MS spektrum değerleri
Tablo 58	25-28 Nolu maddelerin temel IR absorbsiyon bandları (cm ⁻¹)
Tablo 59	25-28 nolu bileşikler için geçiş hali enerjileri
Tablo 60	AA'BB' ¹ H NMR spektrumlarının dimerleşme ürünleri için yorumu
Tablo 61	25-28 nolu bileşiklerin dimerleşme reaksiyonları sırasında bağ uzunluklarının hesaplanması
Tablo 62	25-28 nolu bileşiklerin dimerleşme reaksiyonları sırasında çift bağların uzunluklarının değişimi.
Tablo 63	29-33 nolu bileşiklere ait deneysel veriler
Tablo 64	29-30 Nolu bileşiklerin ¹ H NMR (200MHz) ve ¹³ C NMR (50MHz) spektrum değerleri, CDCl ₃
Tablo 65	31-33 Nolu bileşiklerin ¹ H NMR (200MHz) ve ¹³ C NMR (50MHz) spektrum değerleri, CDCl ₃
Tablo 66	29-33 nolu bileşiklere ait deneysel veriler
Tablo 67	29-33 Nolu bileşiklerin Elementel Analiz Deneysel ve Teorik verileri
Tablo 68	29-33 Nolu bileşiklerin LC-MS/MS spektrum değerleri
Tablo 69	29-33 Nolu maddelerin temel IR absorbsiyon bandları (cm ⁻¹)
Tablo 70	29-33 nolu bileşikler için geçiş hali enerjileri
Tablo 71	34-37 nolu bileşiklere ait deneysel veriler
Tablo 72	34-36 Nolu bileşiklerin ¹ H NMR (200MHz) ve ¹³ C NMR (50MHz) spektrum değerleri, CDCl ₃
Tablo 73	37 Nolu bileşiğin ¹ H NMR (200MHz) ve ¹³ C NMR (50MHz) spektrum değerleri, CDCl ₃
Tablo 74	34-37 Nolu bileşiklere ait UV verileri
Tablo 75	34-37 Nolu bileşiklerin Elementel Analiz Deneysel ve Teorik verileri
Tablo 76	34-37 Nolu bileşiklerin LC-MS/MS spektrum değerleri
Tablo 77	34-37 Nolu bileşiklerin temel IR absorbsiyon bandları (cm ⁻¹)

Tablo 78	34-37 nolu bileşikler için geçiş hali enerjileri	121
Tablo 79	36-37 nolu bileşiklerin dimerleşme reaksiyonları sırasında bağ	
	uzunluklarının hesaplanması	125

SEMBOLLER DİZİNİ

AA'BB'	: İkişer tanesi benzer dört farklı protonun meydana getirdiği spin sistemi
AB	: Komşu iki protonun meydana getirdiği spin sistemi
ACD	: Advanced Chemistry Development
AM1	: Austin Model 1
APT	: Karbon türünü söyleyen spektrum
CHCl ₃ : Klore	oform
¹³ C NMR	: Karbon sayısını veren spektrum
COSY	: Proton korelasyon spektrumu
d	: Dublet
DBU	: 1,8-diazabicyclo[5.4.0]undec-7-ene
DF	: Doğal Fosfat
E.N.	: Erime Noktası
Et ₂ O	: Dietileter
EtOAc	: Etil asetat
EtOH	: Etanol
gs	: Geniș singlet
GSAK	: Geri soğutucu altında kaynatma
¹ H NMR	: Proton nükleer manyetik rezonans spektrumu
НОМО	: En yüksek enerjili dolu moleküler orbital
HSOMO	: Uyarılmış halde en yüksek enerjili dolu moleküler orbital
HPLC	: Yüksek performanslı likit kromatografisi
Hz	: Hertz
IR	: İnfrared (spektroskopi)
LC-MS	: Likit kromatografi-kütle spektrometrisi
LSOMO	: Uyarılmış halde en düşük enerjili dolu moleküler orbital
LUMO	: En düşük enerjili boş moleküler orbital
MD	: Mikrodalga
МеОН	: Metanol
MHz	: Megahertz
MM+	: Molecular mechanics force field

MS	: Kütle spektrometri
NMR	: Nükleer magnetik rezonans
PM3	: AM1'in tekrar karakterizasyon yapılmış hali
$R_{\rm f}$: Alıkonma faktörü
S	: Singlet
TLC	: İnce tabaka kromotografisi
t	: Triblet
TMS	: Tetrametilsilan
UV	: Ultra viyolet spektrumu
UV	: Ultra viyolet spektrometrisi
Vis	: Görünür bölge
°C	: Santigrat derece
μL	: Mikrolitre
mL	: Mililitre
μg	: Mikrogram
m/z	: Moleküler iyon
δ	: Kimyasal kayma değeri
λ	: Dalga boyu (nm)
З	: Molar absorbtivite katsayısı (lt.mol.cm ⁻¹)

1. GENEL BİLGİLER

1.1. Giriş

1936 Yılında limon kabuğundan elde edilen flavanoid içeren bir karışımın P vitamini aktivitesi gösterdiğinin anlaşılmasından itibaren bu tür bileşiklere olan ilgi gittikçe artmıştır. Flavonoidler bitkilerde oldukça yaygın olup çok geniş biyolojik aktivite göstermektedirler. Özellikle yenilebilir bitkilerin birçoğunda bulunmaları ve sağlık açısından faydalı olmaları nedeniyle dikkat çeken doğal bileşikler arasında önemli bir yere sahiptirler. Bitkileri UV ışınının zararlı etkisinden korumaları, antioksidan özellikleri bakımından önemli etkiye sahip olmaları, enzim inhibitörlüğü ve iltihaba karşı savunma gibi bir dizi önemli işlevin yerine getirilmesinde görev yaptıkları belirlenmiştir [1].

Doğada birçok heterosiklik bileşikler vardır ve bu bileşiklerin biyolojik aktiviteleri ilaç sanayinde önemli bir yer tutmaktadır [1]. Bundan dolayı biyolojik aktivite çeşitliliği ve önemli özelliklerinden dolayı flavonların alt türleri olan kalkon maddelerine alternatif maddeler olarak, çalışmanın birinci bölümünde, 2-, 3-, 4-hidroksi asetofenon, 2'-, 3- ve 4-piridin karboksialdehit bileşiklerinden başlayarak, Claisen-Schmidt (aldol) reaksiyonlarına göre hetero halkalı kalkonoid türü 2'-, 3'-, 4'-hidroksi-2"-, 3"- ve 4"-azakalkon (1-11) bileşikleri sentezlendi.

Çalışmanın ikinci bölümünde sentezlenen 2'-hidroksi-4"-azakalkon bileşiklerinden mikrodalga yöntemiyle 4'-azaflavon bileşikleri (11-13) ve alkillendirme ürünleri olan N-dekil 4'-azaflavonium bromür bileşikleri (14-15) bileşikleri sentezlendi.

Çalışmanın üçüncü bölümünde 2'-, 3'-, 4'-hidroksi-2"-, 3"- ve 4"-azakalkon bileşiklerinin (1-9) fotokimyasal siklo katılma (dimerleşme) reaksiyonları denendi. Fakat yapılan bütün denemelerde sonuç alınamamıştır. Kalkon ve azakalkonları metoksi türevlerinin dimerleri literatürde mevcut olduğundan [2], 2'-, 3'-, 4'-hidroksi-2"-, 3"- ve 4"- azakalkon bileşiklerinin (1-9) benzoil türevleri 2'-, 3'-, 4'-benzoil-2"-, 3"- ve 4"-azakalkon bileşiklerinin (16-24) sentezlendi ve fotokimyasal siklokatılma reaksiyonları sonucunda da 25-37 nolu bileşikler elde edildi. Sentezlenen 1-37 nolu bileşiklerin sentez şeması şekil 1-4' de görülmektedir.

Şekil 1. 1-3, 16-18 ve 25-28 Nolu bileşiklerin sentez şeması

Şekil 2. 4-6, 19-21, ve 29-33 Nolu bileşiklerin sentez şeması

Şekil 3. 7-9, 22-24, ve 34-37 Nolu bileşiklerin sentez şeması

Şekil 4. 10-15 Nolu bileşiklerin sentez şeması

Literatürde doğal birçok bileşiğin konformasyon analizleri yapılmış ve kimyasal reaksiyonların reaksiyon koordinatları belirlenmiştir. Bundan dolayı çalışmanın dördüncü bölümünde sentezlenen maddelerin konformasyon analizleri yapılmış ve gerçekleştirilen fotokimyasal reaksiyonun sentezi üzerinde teorik olarak HYPERCHEM ve GAUSSIAN programları kullanılarak reaksiyon koordinatları belirlenmiştir.

Kalkon, flavon, azakalkon, azaflavon ve N-alkil türevlerinin oldukça biyoaktif bileşikler olması nedeniyle [2], çalışmanın son bölümünde sentezlenen bileşiklerin antioksidant ve antimikrobiyal aktiviteleri çalışılmıştır.

1.2. Flavonlar

Uzun boylu çiçekli bitkilerden otlara kadar, kimyasal yapılarında benzerlik olan pek çok bitkide bulunan etken bir maddedir. Flavon adı, bu maddeyi içeren bitkilerin çoğunun sarıçiçekli olmalarından kaynaklanır (Latince *flavus* - sarı). Fitoterapi biliminde flavonlar genellikle, hastalıklara karşı önlem olarak, kronik hastalıkların tedavisinde ve hücre bazında enzimlerle ilgili işlevlerin dengelenmesinde kullanılır. Flavonlar, bedende kısa bir süre kaldıktan sonra hızla dışarı atıldıkları için, özellikle uzun süreli tedavilerde kullanılmaya çok uygundurlar. Böylece etken maddeler organizmada birikmez ve olası zehirleyici etkiler oluşturmazlar. Bir şifalı bitkinin genel etkisinde flavonlar aktif rol oynar.

Flavon

Flavonoidlerin ilk olarak belirlenen biyolojik özelliği kılcal damar duvarlarına olumlu etkileridir [3]. Bu bileşiklerin kılcal damar sistemine olumlu etkisi, genellikle kan sızdırmanın önlenmesinde, kırılganlık ve geçirgenliğin ortadan kalkmasında kendini göstermiştir [4]. Flavonoidlerden flavon ve flavonoller [5–6], katekinler [7], leykoantosiyanidinler [8], ve flavanonların [6], kılcal damarların tedavisinde etkili oldukları tespit edilmiştir. Flavonoidlerin kan damarlarına olumlu etkisinin, spazmolitik özelliklerinden ileri geldiği kanıtlanmıştır [4-6].

Flavonoidlerin kanın bileşenleri üzerine etkisi de açıklanmıştır. Örneğin, *Hedusarum* L. türünün toplam flavonoidlerinin eritropoezi (eritrosit oluşumu) teşvik ettiği ve kanda lökositlerin (akyuvarlar) miktarını artırdığı açıklanmıştır [9]. 3-Metil flavonoidlerin kanın forumlu elementlerine (bu elementler kan hücrelerinin agregasyon ve sedimantasyonunu önlerler) etki gösterdikleri de belirtilmiştir [10]. Polifenoller olarak da adlandırılan flavonoidlerin kansere karşı aktivite gösterdikleri de literatürlerde yer almıştır [11].

1.3. Kalkonoidler

Bitkilerden izole edilebilen flavanoid türü bileşiklerin başlangıç bileşikleri olan kalkonoidler oluşturmaktadır [12]. Kalkon kelimesi 1,3-diarilprop-2-en-1-on karbon iskeleti taşıyan tüm bileşikler için verilmiş genel bir isim olup kalkonlar ve dihidrokalkonlar C_6 - C_3 - C_6 iskeletine sahip bileşiklerdir. Kalkon bileşiklerinin IUPAC isimlendirilmeleri aşağıdaki formülde verilmiştir. A halkası genellikle sola yazılır ve ilk numara buradan verilir ve B halkası da sağa yazılır [13].

Literatürde bu tür maddelerin doğal kaynaklardan elde edilmesinin yanında bazılarının da sentezlerinin yapıldığı bildirilmiştir [13-14]. Bu kalkonoid türü maddeler geniş bir alanda biyolojik aktivite göstermektedirler [15]. Literatürlerde kalkonların; antikanser [16], antienflamatuar [17], antiinvasiv, antitüberküloz ve antifungal [18] aktivite gösterdikleri; ek olarak da, antioksidant, antimalarial, antileishmanyal ve antitümör [19] ajanı oldukları bazılarının ise anti-HIV aktivitesi gösterdikleri [20] bildirilmiştir. Kalkonların kullanım amaçları da çok çeşitlidir ve flavonlar gibi doğal olarak oluşan birçok pigmentin iyi bilinen öncüleridirler [21]. Tıbbi tedavide, polimerlerde, UVabsorbsiyon filtreleri olarak farklı türdeki optik materyallerde, yiyecek endüstrisinde, holografik kayıt teknolojileri gibi birçok uygulama alanında da kullanıldıkları bilinmektedir [22]. Kalkonlar α,β doymamış karbonil grubu içerdiklerinden ve gösterdikleri biyolojik aktiviteden dolayı kalkonlarla ilgili yapılan çalışmaların sayısı gün geçtikçe artmaktadır.

Yapılan literatür araştırmaları, kalkonoid türü maddelerin fotokimyasal yolla dimerleştirilmeleri sonucu kiral merkezli bileşiklerin elde edilmesi konusunda az çalışmanın olduğunu ortaya koymaktadır [23-24]. Ayrıca dimerleşmiş kalkon türü maddelerin doğal kaynaklardan da izole edildiği bilinmektedir [25-26].

Kalkon türevi bazı doğal dimer bileşikler *Agelas sceptrum, Agelas conifera, Combretum albopunctatum ve Goniothalamus thwaitesii* bitkilerinden izole edilmesi ve bu bileşiklerin antimikrobiyal ve antibakteriyal aktivite göstermeleri bu tür bileşiklere olan ilgiyi artırmıştır [25] (Şekil 5).

Şekil 5. Bazı bitkilerden elde edilen doğal siklobütan halkalı bileşikler

Kalkonoidlerin α , β doymamış karbonil gruplarına sahip olması bu bileşiklere olan ilgiyi artırmıştır. Bu bilgilerden yola çıkarak birçok kalkon, azakolkon türü bileşikler sentezlenmiş ve dimerleşme reaksiyonları denenmiş ve birçok siklobütan halkasına sahip bileşikler elde edilmiştir (Denklem 1-2) [2, 21].

Denklem 1

Denklem 2

1.3.1. Kalkon ve Benzeri Bileşiklerin Adlandırılmaları

Kalkon ve kalkonoid bileşiklerinin geleneksel isimlendirilmeleri aşağıdaki şekil 6'da verilmiştir.

Şekil 6. Kalkon ve türevi bileşiklerin adlandırılmaları

1.3.2. Kalkon Bileşiklerinin Literatür Özeti

Literatürde değişik kalkon sentez yöntemleri rapor edilmiştir [27-31]. Bunlardan bazıları aşağıda kısaca anlatılmıştır.

Sebti ve grubu, doğal fosfat katkılı katalizörlerle yaptıkları iki çalışmayla kalkon türevi bileşikleri sentezlemeyi başarmışlardır. Önce asetofenon ve benzaldehit türevlerini metanol içerisinde katalitik miktarda doğal fosfat katkılı sodyumnitrat (NaNO₃/ DF) ile etkileştirerek [27] kalkonları elde etmişler, ikinci olarak da doğal fosfat katkılı lityumnitrat (LiNO₃/ DF) ile etkileştirerek yüksek verimlerde kalkon türevleri sentezlemişlerdir (Denklem 3) [28].

Lin ve grubu alkol içerisindeki asetofenon ve benzaldehit türevlerine % 60'lık KOH çözeltisi damlatmış, oluşan reaksiyon karışımını 2 gün süreyle 0 ⁰C'de muhafaza ettikten sonra karışımı su ile seyreltmiş, asetik asitle ile çöken kalkonu süzerek etanol ile kristallendirme ile saf kalkon türevlerini elde etmeyi başarmışlardır (Denklem 4) [29].

R₁, R₂ = F, Br, I, OH, OCH₃, COOH, OEt, NH₂, NHCOCH₃

Denklem 4

Li, kalkonların sentezinde KOH veya KF-Al₂O₃ karışımı katalizörlüğünde bir ultrasonik temizleyici su banyosu ile ultrasonik ışınlama yöntemini kullanmışlardır. Bu yöntemde aromatik aldehitleri asetofenonla, etanol içerisinde KOH ile veya metanol içerisinde KF-Al₂O₃ karışımı ile değişik sıcaklık (20–46°C) ve zaman aralıklarında ultrasonik ışınlamayla reaksiyona tabi tutarak % 70-97 arasında değişen verimlerle kalkon türevlerini sentezlemeyi başarmışlardır (Denklem 5) [30].

Denklem 5

Zhiguo Hu ve grubu yaptıkları çalışmada SOCl₂/EtOH reaktifinin aldol kondenzasyonu için iyi bir katalizör olduğunu bildirmişlerdir. Asetofenon ve benzaldehit türevlerini tiyonil klorür ile etanol içerisinde ılıman şartlarda tepkimeye sokarak % 65-95 arasında değişen verimlerle kalkon türevleri elde etmeyi başarmışlardır (Denklem 6) [31].

 R_1 , $R_2 = H$, o-NO₂, m-OCH₃, p-CH₃

Denklem 6

Satyanarayana ve grubu ise kalkon ve türevlerini asetofenon ve benzaldehitlerin metanolde % 50 lik NaOH çözeltisinde bir gece boyunca etkileştirilmesi suretiyle oldukça yüksek verimlerle (%65-98) sentezlemeyi başarmışlardır (Denklem 7) [18].

Denklem	7
Demateri	'

1.4. Azakalkonlar

Kalkonların homoloğu olan azakalkon bileşikleri fenil halkalarından birisindeki (CH) yerine N atomunun bulunduğu bileşiklerdir ve bu bileşikler, azot atomunun bağlı bulunduğu pozisyona göre (E/Z)-2, 3- veya 4-azakalkon olarak adlandırılırlar. Bu bileşiklerin de birçok biyolojik aktiviteleri bildirilmiştir [32]. Azakalkonların antibakteriyal, antimitotik, antituberkulostatik ve antiinflamatuar aktiviteleri gösterdikleri bilinmektedir [33-37].

Azakalkon

Ze Zhang ve grubu azot içeren ketondan ve değişik aldehitlerden yola çıkarak Na₂CO₃ / H₂O ve EtOH-NaOH çözeltilerinde azakalkon türü bileşikleri%61-98 verimle elde etmeyi başarmışlardır (Denklem 8) [38].

Denklem 8

Laura E. Downs ve grubu değişik asetofenon ve karboksilik aldehitlerden yola çıkarak azakalkon türü bileşikleri sentezlemeyi başarmışlardır (Denklem 9) [39].

1.5. Alkillendirme Reaksiyonları

Azakalkonlar ve *N*-alkiltürevleri bileşiklerinin antibakteriyal, antitüberkülozik, iltihap giderici etkilerini içeren birçok biyolojik çalışma yapılmıştır [40-48]. Bu çalışmalarda alkillenmiş bileşiklerin daha fazla aktiviteye sahip oldukları görülmüştür.

Azakalkonların alkil halojenürlerle reaksiyonu, piridinin elektrofil reaktiflerle reaksiyonlarına benzer şekilde gerçekleşen reaksiyonlardır. Piridin, tersiyer aminler gibi, kuaterner amonyum tuzları oluşturabilir. Bu reaksiyonda azot; üzerindeki ortaklanmamış elektron çiftini kullanarak bir nükleofil olarak hareket ederek piridinyum katyonlarını meydana getirmektedir.

Zdziskawa Nowakowska yaptığı çalışmada azakalkon türü bileşiklerin alkilizasyon reaksiyonlarını asetonitril varlığında geri soğutucu altında kaynatma yaparak sentezlemeyi başarmıştır (Denklem 10) [33,40-46].

Denklem 10

1.6. Flavon / Azaflavon Reaksiyonları

Flavonlar çok geniş biyolojik aktiviteye sahip [49-50] ve geniş tedavi alanları [51] olan önemli doğal organik bileşiklerdir. Bir flavonun etkisi, genel anlamdaki temel yapısına göre değil, yalnızca kendine özgü olan kimyasal yapısına göre biçimlenir. Flavonların çok değişik etkinliklerinden bazı örnekler: Sedefotu kanın pıhtılaşmasını ve iltihaplanmayı önler, ayrıca kılcal damarların sızıntı yapmalarını önler. Mayıs papatyası ve meyan kökü kramp çözücüdürler [6].

Organik kimyada birçok flavon sentez yöntemi mevcut olup bazı yöntemler aşağıdadır:

-Allan-Robinson reaksiyonu [52-53]

-Auwers sentezi [54]

-Baker-Venkataraman tekrar düzenlenmesi [55]

-Algar-Flynn-Oyamada reaksiyonu [56]

Bunlara ek olarak mikro dalga ile yapılmış farklı başlangıç maddelerinden başlayan flavon sentezleri vardır [57].

Ayrıca flavonların fenil propanoid üzerinden gerçekleşen biyolojik sentezleri de söz konusudur.

Mikro dalga ile flavon sentezi son yıllarda sentez süresinin çok kısa olması, çözücü olmaması veya çok az kullanımı nedeniyle çevre açısından ve ürün veriminin fazla

olmasından dolayı çok yaygınlaşan bir metot haline gelmiştir [58]. Bilinen genel flavon yöntemleri 2'-hidroksi kalkondan siklo kapanma ile oluşan flavon sentezi yöntemlerinde hidroklorik asit, sülfürük asit ve güçlü bazlar kullanılmasıyla oluşan çevresel yönden kirlilik ve uzun reaksiyon zamanı gerektirmektedir [59-64]. Flavonların homologu olan azaflavonlar da literatürde 2'-hidroksi-2"-, 3"-, ve 4"-azakalkon'lardan selenyum dioksit ile düşük verimle sentezlenmiştir (Denklem 11 ve 12) [65-68]. Ayrıca literatürde mikrodalga ile yapılan çalışmalarda 2'-hidroksi kalkonlardan yapılan sentezlerde flavonon sentezi başarılabilmiştir [59, 64, 69-70]. Fakat direkt olarak azaflavon sentezine rastlanmamıştır.

Azaflavon

Annigeri ve arkadaşı 4'-azakalkon ve 3'-azakalkon bileşiklerini sentezlemeyi başarmışlardır [65-66]. Fakat sentezi oldukça ağır şartlarda GSAK gerçekleştirmişlerdir (Denklem 11 ve 12).

Denklem 11

Denklem 12

1.7. Fotokimya

Çift bağ veya konjuge çifte bağlara sahip bileşiklerin ısı ve ışık ile reaksiyonları sonucunda çevrilme ve halka kapanması ile gerçekleşen reaksiyonlara perisiklik reaksiyonlar denir. Çift bağdaki pi elektronlarının karşı moleküldeki p orbitalleriyle etkileşmesine dayanan ve yeni bağların oluşmasıyla siklo kapanma ürününün oluşması, eş zamanlı olarak, tek basamakta meydana gelir [71-72].

Bir fotokimyasal reaksiyonun olması için sınır orbitallerdeki elektron yoğunluğunun olması gerekir ve orbital simetrisinin de aynı olması gerekir (Şekil 7 ve 8) [2, 40, 42-47]. Bu tür dimerleşme reaksiyonları stereosellektif reaksiyonlardır [2, 40, 42-47]. Reaksiyonun regiosellektifliğini sınır orbitallerinin durumu belirlemektedir [73-76, 84]. Sınır orbitallerinde HOMO-LSOMO ve HSOMO-LUMO orbitallerinin aynı anda ikisi etkileşebiliyor ve girişim yapabiliyor ise ve bunun sonucunda bir dimerleşme ürünü meydana geliyor ise buradan tek bir ürün oluşmaktadır [73-76, 82]. Bu tip reaksiyonlar

regiosellektif reaksiyonlar olarak isimlendirilmektedir [73-76, 82]. Bu orbitallerden birinin simetri veya elektron yoğunluğu bakımından girişim yapamaması sonucu dimerleşme ürünü tek bir orbitalin girişimi sonucu oluşuyor ise bu tip reaksiyonlarda regiosellektivite kaybolmaktadır ve bu dimerleşme reaksiyonundan birden fazla ürün elde edilmektedir [73-76, 84].

Şekil 7. Etilenin sınır orbitalleri

Şekil 8. Sınır orbitallerinin etkileşimi

Literatürde değişik substituye gruplar içeren kalkon ve azakalkonlardan siklobütan içeren bileşiklerin sentez yöntemleri ve biyolojik aktiviteleri rapor edilmiştir [2, 40, 42-47]. Bunlardan bazıları aşağıda kısaca anlatılmıştır.

Yaylı ve grubu metoksi substituye kalkonlardan kloroform içerisinde 400 watt civa lambası kullanarak dimer ürünü elde etmeyi başarmışlardır (Denklem 13) [2].

Denklem 13

Yaylı ve grubunun nitro substituye azakalkonlarla yaptığı fotokimyasal çalışmada 2"-azakalkonların asetonitril içerisinde dimerleştirilme reaksiyonları incelenmiş ve 4 adet dimer ürünleri elde etmeyi başarmışlardır. Bu çalışmada nitro grubunun pozisyonu dimerleşme için önemli bir durum arz etmiştir. Yapılan çalışmada nitro grubunun *meta* ve *para* pozisyonunda olduğu durumlarda bir dimerleşme olmuş fakat *orto* pozisyonunda dimerleşme meydana gelmemiştir (Denklem 14) [40].

Denklem 14

Dauri'a ve gurubunun sinnem aldehidin daha önce yapılan katı hal dimerleşme reaksiyonlarından [77-78] farklı değişik çözücü sistemleri ile yaptığı çalışmada değişik izomerler elde etmeyi başarmışlardır (Denklem 15) [73-76, 84].

Denklem 15

İlona ve gurubu hidroksi substituye kalkonlardan dimer ürünü elde etmeye çalışmışlar ve bunu başaramamışlardır (Denklem 16) [89]. Yaptıkları çalışmada bu durumun dimerleşen iki molekülün dimerleşme şartlarını yerine getiremediğinde kaynaklandığını bildirmişlerdir. Yaptıkları incelemelerde moleküldeki –OH gruplarından kaynaklanan hidrojen bağı dolayısıyla molekülün dimerleşmesi için gerekli olan uzaklığa gelememelerinden dolayı dimerleşme reaksiyonunun gerçekleşmediğini ortaya koymuşlardır.

 $R_1 = H, R_2 = o$ -OH $R_1 = H, R_2 = m$ -OH $R_1 = H, R_2 = p$ -OH $R_1 = o$ -OH, $R_2 = o$ -OH

Foto dimerleşme reaksiyonları ile ilgili yıllardır süre gelen çalışmalar yapılmış ve bu çalışmalar sonucunda reaksiyon şartları ve sınır orbitalleri araştırılmıştır [71-84]. Bu araştırmalar sonucunda katı hal ve çözücüyle dimerleşme reaksiyonları için dimerleşme şartları belirlenmiştir. Katı hal için dimerleşme şartları aşağıda verilmiştir [89-91, 94]:

- 1) d bitişik moleküllerin karbon-karbon çifte bağları arasındaki mesafeyi gösterir ve [2+2]-foto katılma reaksiyonlarında d 4.2 A°' dan daha kısa olmalıdır.
- α C=C...C=C bağları arasında oluşan tekli bağların yaklaşım açılarıdır. Sapma en az olmalıdır ve ideal açı 90°'dir.
- 3) τ oluşacak C=C..C=C bağları arasındaki torsiyon açısıdır, ideal değeri 0° olmalıdır.
- 4) ø bileşiklerin >C=C< kısmının düzlemlerinin açıları için ideal değer 0° olmalıdır.
 Bu değer p orbitallerinin paralel olup olmadıklarının göstergesidir.
- κ >C=C< karbon- karbon çifte bağı ile oluşan siklo bütan halkasının düzlemlerinin açılarının değeri 90° olmalıdır.

Literatürde dimerleşme reaksiyonu sonucu oluşabilecek 11 izomerin yönlenmeleri için değişik çalışmalar yapılmıştır [74-80, 90].

Dauri'a ve gurubu dimerleşme reaksiyonu sonucu oluşan 11 izomerin yönelmelerinin nasıl yapıldığını açıklamaya çalışmışlardır. Dimerleşme ürünlerinin siklobütan halkasındaki eşleşme sabitlerinin 9 Hz civarında olması moleküldeki siklobütandaki grupların trans yönlendiğini, 6 Hz civarında olması ise cis yönlendiğinin kanıtı olduğunu bildirmişlerdir [73].

Şekil 9. Siklobütan halkasında proton piklerinin eşleşmelerinin gösterimi.

Yine yapılan siklobütan halkasındaki grupların yönelmeleriyle ilgili çalışmalarda 11 değişik izomerin karbon ve proton piklerinin yerlerinin belirlenip literatürdeki verilerle karşılaştırılmasıyla yönelmelerin belirlenebileceğini bildirmişlerdir (Şekşl 9 ve 10) [2, 23].

Şekil 10. Siklobütan halkasında grupların yönelmeleri ve proton değerleri.

Cesarin ve grubunun yaptığı çalışmalarda siklobütan halkasındaki yönelmelere göre izomerlere α -turuksillik, β -turuksinik, δ -turuksinik ve ε -turuksillik gibi isimlendirilmeler verilmiştir [23].

Şekil 11. Siklobütan halkasında grupların yönelmeleri ve karbon değerleri.

1.8. Yapı Aydınlatılmasında Kullanılan Teknikler

Bir bileşik değişik yöntemlerle izole edildikten veya sentezlendikten sonra değişik cihazlar ve ölçüm araçları ile fiziksel ölçümler yapılarak spektroskopik işlemlerle bileşiklerin yapıları hakkında bilgi edinilir. Burada kullanılan değişik tanıma yöntemleri farklı özellikleri ölçmede kullanılan yöntemlerdir.

IR spektroskopisi bağlar arasındaki titreşimlere göre fonksiyonel grup hakkında bilgi verir. Bizim sentezlerimizde elde ettiğimiz bileşiklerde aromatiklik, karbonil ve hidroksi grupları olduğundan dolayı karboniller için IR spektrumlarındaki absorbsiyon bantları 1500-1600 ve 1620-1670 cm⁻¹ civarında, hidroksi kalkonoidlerde bulunan hidroksil grubu 3300-3450 cm⁻¹'de pikler gözlenmektedir. [12,74-76].

UV spektrumu ise 200-380 nm dalga boyu aralığında elektronik geçişleri ölçer. Sentezlediğimiz bileşik sınıflarının görünür bölge spektrumları genellikle metanol ya da etanolde alınır. 220–270 nm'de ve 340–390 nm'de olmak üzere iki tane maksimum absorbsiyon aralığı gösterirler [12, 96, 74-76, 97-99].

MS spektroskopisi bileşiğin kütlesini tayin etmede kullanılan yöntemdir. Sentezlediğimiz kalkonoid türü maddelerin MS'inin başarılı bir şekilde alınabilmesi için yüksek vakumda gaz haline geçmesi ve kararlı olması gerekir. Kalkonoidlerin çoğu 100230 °C aralığında yeterli oranda buharlaşıp ve kararlı hale geçmesine rağmen polar polihidroksi kalkonoidler gaz haline geçemezler. Bu tür kalkonoidlerin daha kolay gaz haline geçen türevleri oluşturulması gerekir. Bunun için permetilasyon, perasetilasyon, pertrifloroasetilasyon ve permetilsilizasyon uygulanan genel metodlardır [12, 96, 100-101].

NMR spektroskopisi çekirdeğin manyetik özelliklerine dayanarak genelde ¹H ve ¹³C kimyasal kayma değerleri hakkında bilgi verir. NMR teknikleri bileşiklerin yapısının aydınlatılmasında geniş şekilde kullanılan bir spektroskopi yöntemidir. NMR ölçümleri bir boyutlu ve iki boyutlu NMR teknikleri şeklinde iki gruba ayrılır [102].

Etkileşme sabitlerinden yararlanılarak orto, meta ve visinal olanlar tayin edilir [12, 74-76, 97-100, 102].

Kalkonoidlerin ¹³C NMR spektrumunda karbonil grubunun kimyasal kayma değerinden yararlanılarak keton, doymamış veya α -substituye olup olmadığı kolaylıkla tespit edilebilir [12, 74-76, 97-100, 102].

Ayrıca Elementel Analiz Cihazı bileşiklerin C,H,N,S yüzdelerini vererek kantitatif olarak maddenin bileşim yüzdesi hakkında bilgi verir.

1.9. Kromatografi

Kromatografi, kimyasal bir karışımın bileşenlerinin biri sabit faz ve diğeri hareketli faz olmak üzere birbiriyle karışmayan iki faz arasında değişik hızlarda hareket etmelerine dayanarak yapılan bir ayırma, saflaştırma ve teşhis yöntemidir. Kromatografik analizlerin esası bileşiklerin fiziksel ve kimyasal özelliklerindeki farklardan yararlanarak bir karışımı oluşturan bileşiklerin birbirinden ayrılmasıdır [96, 103-104].

2. YAPILAN ÇALIŞMALAR

2.1. Çözücü ve Kimyasallar

Teknik n-hekzan, kloroform, aseton, asetonitril, dietileter, metanol, etil asetat, etil alkol gibi çözücüler fraksiyonlu destilasyonla saflaştırıldı. Sentez için kullanılan tüm kimyasallar Fluka marka olup analitik saflıktadır.

2.2. Enstrümentasyon

Organik reaksiyonlar sonucu oluşan ortamdaki karışım ince tabaka kromatografisinde normal faz silikajel 60 F₂₅₄ kaplı alüminyum plakalar kullanılarak kontrol edildikten sonra normal faz kolon kromatografisi ile saflaştırıldı. Daha ileri saflaştırmasını yapmak için normal faz silikajel 60 F₂₅₄ 20x20 cm'lik cam PİTK plakları kullanıldı. Ayırım sonrasında çözücüleri buharlaştırmak için evaporatör kullanıldı. Silikajel 60 F₂₅₄ ayırımını kontrol etmek için 254 ve 366 nm dalga boyuna sahip kabinli UV lamba kullanıldı. NMR spektrumları Varian Mercury 200 MHz NMR cihazı ile CDCl₃/DMSO-d₆ NMR çözücüsü içinde alındı. ¹H-NMR spektrumları TMS pikine göre ve ¹³C-NMR spektrumları ise çözücü piki CDCl₃'e (8 77.36 ppm) göre ayarlandı. IR spektrumları ise KBr tabletleri halinde veya NaCl üzerinde CHCl₃ çözücüsü yardımıyla Perkin-Elmer 1600 Series FT-IR (4000-400 cm⁻¹) spektrofotometresinde alındı. UV spektrumları 25 °C'de, Unicam UV2-100 Spektrofotometresinde alındı. Bu tayinlerde 10 mm kuvartz hücreler kullanılıp ölçümler 200-400 nm bölgesinde yapıldı. Tüm UV spektrumları % 95'lik kloroform içinde 10⁻⁴-10⁻⁵ M'lık çözeltiler halinde alındı. Kütle spektrumları Micromass Quattro LC-MS/MS cihazında alındı. Erime noktaları bir mikroskopa yerleştirilen Thermo-var aparatı ile tespit edildi. Sabit faz materyali olarak normal faz 230-400 mech'lik silikajel ve bazik silikajel; daha ileri saflaştırma için ise, silikajel kaplı PİTK plakalar kullanıldı.

2.3. 1-11 Nolu Bileşiklerin Sentezi

2.3.1. 1 Nolu Bileşiğin Sentezi;

50 ml'lik yuvarlak dipli bir balona 1.07 g (10 mmol) Piridin 4-karboksialdehit alınarak magnetik karıştırıcı üzerinde 50 ml suda çözüldü. Karışmakta olan bu çözelti üzerine % 10'luk 20 mL Na₂CO₃ çözeltisi ve 1.36 g (10 mmol) 4-hidroksiasetofenon ilave edillerek oda sıcaklığında karışım çözülünceye kadar karıştırıldı ve bunu takiben reaksiyon sıcaklığı 70 °C sıcaklığa ısıtılarak karıştırılmaya devam edildi. İTK ile belirli aralıklarda kontrol edilen reaksiyon tamamlandıktan sonra oda sıcaklığına sıcaklığı oda socaklığına düşürüldü ve 2 M'lık HCl ile nötralleştirildi. Çözücü 60°C'da evaporatör ile tamamen uçuruldu. Kalan çökeleğe 50 mL etanol ilave edildi ve kristallendirmeye bırakıldı. Oluşan kristaller süzülerek ayrıldı. Vakumda kurutularak tartıldı. Kuruma işleminden sonra NMR spektrumları (DMSO-d₆) alındı.Verim 1,86 g, % 76,54; e.n.: 308-310 °C. R_f değerini belirlemek üzere çok az bir madde etanolde çözülerek İTK'da mobil faz etil asetat ile yürütülerek R_f değeri belirlendi, R_f = 0,72 (etil asetat).

¹ H NMR spektrumu	: Ek şekil 1
¹³ C NMR spektrumu	: Ek şekil 2
APT spektrumu	: Ek şekil 3
FT-IR spektrumu	: Ek şekil 4
LC-MS/ MS spektrumu	: Ek şekil 5

2.3.2. 2 Nolu Bileşiğin Sentezi;

50 ml'lik yuvarlak dipli bir balona 1.07 g (10 mmol) Piridin 4-karboksialdehit alınarak magnetik karıştırıcı üzerinde 50 ml suda çözüldü. Karışmakta olan bu çözelti üzerine % 10'luk 20 mL Na₂CO₃ çözeltisi ve 1.36 g (10 mmol) 3-hidroksiasetofenon ilave edillerek oda sıcaklığında karışım çözülünceye kadar karıştırıldı ve bunu takiben reaksiyon sıcaklığı 70 °C sıcaklığa ısıtılarak karıştırılmaya devam edildi. İTK ile belirli aralıklarda kontrol edilen reaksiyon tamamlandıktan sonra oda sıcaklığına sıcaklığı oda socaklığına düşürüldü ve 2 M'lık HCl ile nötralleştirildi. Çözücü 60 °C'da evaporatör ile tamamen uçuruldu. Kalan çökeleğe 50 mL etanol ilave edildi ve kristallendirmeye bırakıldı. Oluşan

kristaller süzülerek ayrıldı. Vakumda kurutularak tartıldı. Kuruma işleminden sonra NMR spektrumları (DMSO-d₆) alındı.Verim 2,33 g, % 96; e.n.: 183-185 °C. R_f değerini belirlemek üzere çok az bir madde etanolde çözülerek İTK'da mobil faz etil asetat ile yürütülerek R_f değeri belirlendi, R_f = 0,74 (etil asetat).

¹ H NMR spektrumu	: Ek şekil 6
APT spektrumu	: Ek şekil 7
FT-IR spektrumu	: Ek şekil 8
LC-MS/ MS spektrumu	: Ek şekil 9

2.3.3. 3 Nolu Bileşiğin Sentezi;

50 ml'lik yuvarlak dipli bir balona 50 ml su ilave edilerek buz banyosunda soğutuldu ve üzerine 1.07 g (10 mmol) Piridin 4-karboksialdehit eklenerek magnetik karıştırıcı üzerinde çözüldü. Karışmakta olan bu çözelti üzerine % 10'luk 20 mL NaOH çözeltisi ve 1.36 g (10 mmol) 3-hidroksiasetofenon ilave edillerek karıştırılmaya devam edildi. 1 saat karıştırıldıktan sonra çökme meydana geldi. İTK ile reaksiyonun bitip bitmediği kontrol edilip reaksiyonun bittiği görüldükten sonra krozeden süzüldü ve eter ile yıkandı ve suda çözülerek 2 M'lık HCl ile nötralleştirildi. Çözücü 60°C'da evaporatör ile tamamen uçuruldu. Kalan çökeleğe 50 mL etanol ilave edildi ve kristallendirmeye bırakıldı. Oluşan kristaller süzülerek ayrıldı. Vakumda kurutularak tartıldı. Kuruma işleminden sonra NMR spektrumları (CDCl₃) alındı.Verim 1,16 g, % 52; e.n.: 258-260 °C. R_f değerini belirlemek üzere çok az bir madde etanolde çözülerek İTK'da mobil faz etil asetat ile yürütülerek R_f değeri belirlendi, R_f = 0,89 (etil asetat).

¹ H NMR spektrumu	: Ek şekil 10
¹³ C NMR spektrumu	: Ek şekil 11
APT spektrumu	: Ek şekil 12
COSY spektrumu	: Ek şekil 13
FT-IR spektrumu	: Ek şekil 14
LC-MS/ MS spektrumu	: Ek şekil 15

2.3.4. 4 Nolu Bileşiğinin Sentezi;

50 ml'lik yuvarlak dipli bir balona 1.07 g (10 mmol) Piridin 3-karboksialdehit alınarak magnetik karıştırıcı üzerinde 50 ml suda çözüldü. Karışmakta olan bu çözelti üzerine % 10'luk 20 mL Na₂CO₃ çözeltisi ve 1.36 g (10 mmol) 4-hidroksiasetofenon ilave edillerek oda sıcaklığında karışım çözülünceye kadar karıştırıldı ve bunu takiben reaksiyon sıcaklığı 70 °C sıcaklığa ısıtılarak karıştırılmaya devam edildi. İTK ile belirli aralıklarda kontrol edilen reaksiyon tamamlandıktan sonra oda sıcaklığına sıcaklığı oda socaklığına düşürüldü ve 2 M'lık HCl ile nötralleştirildi. Çözücü 60 °C'da evaporatör ile tamamen uçuruldu. Kalan çökeleğe 50 mL etanol ilave edildi ve kristallendirmeye bırakıldı. Oluşan kristaller süzülerek ayrıldı. Vakumda kurutularak tartıldı. Kuruma işleminden sonra NMR spektrumları (DMSO-d₆) alındı.Verim 1,88 g, % 77; e.n.: 235-237 °C. R_f değerini belirlemek üzere çok az bir madde etanolde çözülerek İTK'da mobil faz etil asetat ile yürütülerek R_f değeri belirlendi, R_f = 0,59 (etil asetat).

¹ H NMR spektrumu	: Ek şekil 16
¹³ C NMR spektrumu	: Ek şekil 17
APT spektrumu	: Ek şekil 18
FT-IR spektrumu	: Ek şekil 19
LC-MS/ MS spektrumu	: Ek şekil 20

2.3.5. 5 Nolu Bileşiğinin Sentezi;

50 ml'lik yuvarlak dipli bir balona 1.07 g (10 mmol) Piridin 3-karboksialdehit alınarak magnetik karıştırıcı üzerinde 50 ml suda çözüldü. Karışmakta olan bu çözelti üzerine % 10'luk 20 mL Na₂CO₃ çözeltisi ve 1.36 g (10 mmol) 3-hidroksiasetofenon ilave edillerek oda sıcaklığında karışım çözülünceye kadar karıştırıldı ve bunu takiben reaksiyon sıcaklığı 70 °C sıcaklığa ısıtılarak karıştırılmaya devam edildi. İTK ile belirli aralıklarda kontrol edilen reaksiyon tamamlandıktan sonra oda sıcaklığına sıcaklığı oda socaklığına düşürüldü ve 2 M'lık HCl ile nötralleştirildi. Çözücü 60 °C'da evaporatör ile tamamen uçuruldu. Kalan çökeleğe 50 mL etanol ilave edildi ve kristallendirmeye bırakıldı. Oluşan kristaller süzülerek ayrıldı. Vakumda kurutularak tartıldı. Kuruma işleminden sonra NMR spektrumları (DMSO-d₆) alındı.Verim 2,35 g, % 98; e.n.: 146-148 °C. R_f değerini belirlemek üzere çok az bir madde etanolde çözülerek İTK'da mobil faz etil asetat ile yürütülerek R_f değeri belirlendi, R_f = 0,81 (etil asetat).

¹ H NMR spektrumu	: Ek şekil 21
¹³ C NMR spektrumu	: Ek şekil 22
APT spektrumu	: Ek şekil 23
COSY spektrumu	: Ek şekil 24
FT-IR spektrumu	: Ek şekil 25
LC-MS/ MS spektrumu	: Ek şekil 26

2.3.6. 6 Nolu Bileşiğin Sentezi;

50 ml'lik yuvarlak dipli bir balona 50 ml su ilave edilerek buz banyosunda soğutuldu ve üzerine 1.07 g (10 mmol) Piridin 3-karboksialdehit eklenerek magnetik karıştırıcı üzerinde çözüldü. Karışmakta olan bu çözelti üzerine %10'luk 20 mL NaOH çözeltisi ve 1.36 g (10 mmol) 2-hidroksiasetofenon ilave edillerek karıştırılmaya devam edildi. 1 saat karıştırıldıktan sonra çökme meydana geldi. İTK ile reaksiyonun bitip bitmediği kontrol edilip reaksiyonun bittiği görüldükten sonra krozeden süzüldü ve eter ile yıkandı ve suda çözülerek 2 M'lık HCl ile nötralleştirildi. Çözücü 60 °C'da evaporatör ile tamamen uçuruldu. Kalan çökeleğe 50 mL etanol ilave edildi ve kristallendirmeye bırakıldı. Oluşan kristaller süzülerek ayrıldı. Vakumda kurutularak tartıldı. Kuruma işleminden sonra NMR spektrumları (CDCl₃) alındı.Verim 1,58 g, % 65; e.n.: 32-35 °C. R_f değerini belirlemek üzere çok az bir madde etanolde çözülerek İTK'da mobil faz etil asetat ile yürütülerek R_f değeri belirlendi, R_f = 0,85 (etil asetat).

¹ H NMR spektrumu	: Ek şekil 27
¹³ C NMR spektrumu	: Ek şekil 28
APT spektrumu	: Ek şekil 29
COSY spektrumu	: Ek şekil 30
FT-IR spektrumu	: Ek şekil 31
LC-MS/ MS spektrumu	: Ek şekil 32

2.3.7. 7 Nolu Bileşiğin Sentezi;

50 ml'lik yuvarlak dipli bir balona 1.07 g (10 mmol) Piridin 2-karboksialdehit alınarak magnetik karıştırıcı üzerinde 50 ml suda çözüldü. Karışmakta olan bu çözelti üzerine % 10'luk 20 mL Na₂CO₃ çözeltisi ve 1.36 g (10 mmol) 4-hidroksiasetofenon ilave edillerek oda sıcaklığında karışım çözülünceye kadar karıştırıldı ve bunu takiben reaksiyon sıcaklığı 70 °C sıcaklığa ısıtılarak karıştırılmaya devam edildi. İTK ile belirli aralıklarda kontrol edilen reaksiyon tamamlandıktan sonra oda sıcaklığına sıcaklığı oda socaklığına düşürüldü ve 2 M'lık HCl ile nötralleştirildi. Çözücü 60 °C'da evaporatör ile tamamen uçuruldu. Kalan çökeleğe 50 mL etanol ilave edildi ve kristallendirmeye bırakıldı. Oluşan kristaller süzülerek ayrıldı. Vakumda kurutularak tartıldı. Kuruma işleminden sonra NMR spektrumları (DMSO-d₆) alındı.Verim 2,05 g, % 84; e.n.: 178-181 °C. R_f değerini belirlemek üzere çok az bir madde etanolde çözülerek İTK'da mobil faz etil asetat ile yürütülerek R_f değeri belirlendi, R_f = 0,79 (etil asetat).

¹ H NMR spektrumu	: Ek şekil 33
APT spektrumu	: Ek şekil 34
COSY spektrumu	: Ek şekil 35
FT-IR spektrumu	: Ek şekil 36
LC-MS/ MS spektrumu	: Ek şekil 37

2.3.8. 8 Nolu Bileşiğin Sentezi;

50 ml'lik yuvarlak dipli bir balona 1.07 g (10 mmol) Piridin 3-karboksialdehit alınarak magnetik karıştırıcı üzerinde 50 ml suda çözüldü. Karışmakta olan bu çözelti üzerine % 10'luk 20 mL Na₂CO₃ çözeltisi ve 1.36 g (10 mmol) 3-hidroksiasetofenon ilave edillerek oda sıcaklığında karışım çözülünceye kadar karıştırıldı ve bunu takiben reaksiyon sıcaklığı 70 °C sıcaklığa ısıtılarak karıştırılmaya devam edildi. İTK ile belirli aralıklarda kontrol edilen reaksiyon tamamlandıktan sonra oda sıcaklığına sıcaklığı oda socaklığına düşürüldü ve 2 M'lık HCl ile nötralleştirildi. Çözücü 60 °C'da evaporatör ile tamamen uçuruldu. Kalan çökeleğe 50 mL etanol ilave edildi ve kristallendirmeye bırakıldı. Oluşan kristaller süzülerek ayrıldı. Vakumda kurutularak tartıldı. Kuruma işleminden sonra NMR spektrumları (DMSO-d₆) alındı.Verim 2,30 g, % 95; e.n.: 148-150 °C. R_f değerini belirlemek üzere çok az bir madde etanolde çözülerek İTK'da mobil faz etil asetat ile yürütülerek R_f değeri belirlendi, $R_f = 0,77$ (etil asetat).

¹ H NMR spektrumu	: Ek şekil 38
APT spektrumu	: Ek şekil 39
COSY spektrumu	: Ek şekil 40
FT-IR spektrumu	: Ek şekil 41
LC-MS/ MS spektrumu	: Ek şekil 42

2.3.9. 9 Nolu Bileşiğin Sentezi;

50 ml'lik yuvarlak dipli bir balona 50 ml su ilave edilerek buz banyosunda soğutuldu ve üzerine 1.07 g (10 mmol) Piridin 2-karboksialdehit eklenerek magnetik karıştırıcı üzerinde çözüldü. Karışmakta olan bu çözelti üzerine % 10'luk 20 mL NaOH çözeltisi ve 1.36 g (10 mmol) 2-hidroksiasetofenon ilave edillerek karıştırılmaya devam edildi. 1 saat karıştırıldıktan sonra çökme meydana geldi. İTK ile reaksiyonun bitip bitmediği kontrol edilip reaksiyonun bittiği görüldükten sonra krozeden süzüldü ve eter ile yıkandı ve suda çözülerek 2 M'lık HCl ile nötralleştirildi. Çözücü 60 °C'da evaporatör ile tamamen uçuruldu. Kalan çökeleğe 50 mL etanol ilave edildi ve kristallendirmeye bırakıldı. Oluşan kristaller süzülerek ayrıldı. Vakumda kurutularak tartıldı. Kuruma işleminden sonra NMR spektrumları (CDCl₃) alındı.Verim 1,60 g, % 67; e.n.: 47-49 °C. R_f değerini belirlemek üzere çok az bir madde etanolde çözülerek İTK'da mobil faz etil asetat ile yürütülerek R_f değeri belirlendi, R_f = 0,85 (etil asetat).

¹ H NMR spektrumu	: Ek şekil 43
¹³ C NMR spektrumu	: Ek şekil 44
APT spektrumu	: Ek şekil 45
COSY spektrumu	: Ek şekil 46
FT-IR spektrumu	: Ek şekil 47
LC-MS/ MS spektrumu	: Ek şekil 48

2.3.10. 10 Nolu Bileşiğin Sentezi;

50 ml'lik yuvarlak dipli bir balona 50 ml su ilave edilerek buz banyosunda soğutuldu ve üzerine 1.07 g (10 mmol) Piridin 4-karboksialdehit eklenerek magnetik karıştırıcı üzerinde çözüldü. Karışmakta olan bu çözelti üzerine % 10'luk 20 mL NaCO₃ çözeltisi ve 1.36 g (10 mmol) 2-hidroksiasetofenon ilave edillerek karıştırılmaya devam edildi. 1 saat karıştırıldıktan sonra çökme meydana geldi. İTK ile reaksiyonun bitip bitmediği kontrol edilip reaksiyonun bittiği görüldükten sonra krozeden süzülerek eter ile yıkandı ve suda çözülerek 2 M'lık HCl ile nötralleştirildi. Çözücü 60 °C'da evaporatör ile tamamen uçuruldu. Kalan çökeleğe 50 mL etanol ilave edildi ve kristallendirmeye bırakıldı. Oluşan kristaller süzülerek ayrıldı. Vakumda kurutularak tartıldı. Kuruma işleminden sonra NMR spektrumları (CDCl₃) alındı. Verim 2,09 g, % 86; e.n.: 121-124 °C. R_f değerini belirlemek üzere çok az bir madde etanolde çözülerek İTK'da mobil faz etil asetat ile yürütülerek R_f değeri belirlendi, R_f = 0,86 (etil asetat).

¹ H NMR spektrumu	: Ek şekil 49
¹³ C NMR spektrumu	: Ek şekil 50
APT spektrumu	: Ek şekil 51
COSY spektrumu	: Ek şekil 52
FT-IR spektrumu	: Ek şekil 53
LC-MS/ MS spektrumu	: Ek şekil 54

2.3.11. 11 Nolu Bileşiğin Sentezi;

50 ml'lik yuvarlak dipli bir balona 50 ml su ilave edilerek buz banyosunda soğutuldu ve üzerine 1.07 g (10 mmol) 4-Piridin karboksialdehit ve 2.72 g (20 mmol) 2hidroksiasetofenon ilave edildi. Üzerine % 10'lik 10 mL NaOH çözeltisi üzerine damla damla ilave edilerek karıştırılmaya devam edildi. 1 saat karıştırıldıktan sonra çökme meydana geldi. İTK ile reaksiyonun bitip bitmediği kontrol edilip reaksiyonun bittiği görüldükten sonra krozeden süzülerek eter ile yıkandı ve 2N'lik HCl ile nötürleştirildi. Çözücü 60 °C'da evaporatör ile tamamen uçuruldu. Kalan çökeleğe 50 mL etanol ilave edildi ve kristallendirmeye bırakıldı. Oluşan kristaller süzülerek ayrıldı. Kristaller kurumaya bırakıldı ve kuruma işleminden sonra NMR (CDCl₃) spektrumları alındı. Verim 2,16 g, % 96; e.n.: 199-201 °C. R_f değerini belirlemek üzere çok az bir madde etanolde çözülerek İTK'da mobil faz etil asetat ile yürütülerek R_f değeri belirlendi, $R_f = 0,36$ (etil asetat).

¹ H NMR spektrumu	: Ek şekil 55
¹³ C NMR spektrumu	: Ek şekil 56
APT spektrumu	: Ek şekil 57
COSY spektrumu	: Ek şekil 58
FT-IR spektrumu	: Ek şekil 59
LC-MS/ MS spektrumu	: Ek şekil 60

2.4. 12-13 Nolu Bileşiklerin Sentezi

2.4.1. 12 Nolu Bileşiğin Sentezi;

3-Hidroksi-1-(2-hidroksifenil)-3-piridin-4-ilpropan-1-on (10) ve (2*E*)-1-(2-hidroksifenil)-3-piridin-4-ilprop-2-en-1-on (**3**) bileşiklerinden 2 mmol ayrı ayrı alındı ve kloroformda çözülerek NaHSO₄-SiO₂ katalizörü ile karıştırıldı ve karışımın çözücüsü evaporatörde uçuruldu. Kuru karışım teflon kaba (2 cm çaplı, 10 ml) konduktan sonra teflon kabın çevresi silika (Kieselgel 60 HF₂₅₄) ile kaplanacak şekilde daha büyük bir teflon kaba (5 cm çaplı, 30 ml) konuldu. Ve bu kap mikrodalga firınına yerleştirildikten sonra 2 dakika 700 watt'lık mikrodalgaya maruz bırakıldı. Reaksiyon bittikten sonra kapdaki madde metanolde çözülerek %10' luk NaOH ilave edilerek manyetik karıştırıcı üzerinde reaksiyon bir saat devam ettirildi. PİTK ile ayrılma sağlandı (etil asetat-metanol 3:1, 3:2, veya 2:4) ve NMR (CDCl₃) spektrumları alındı. Verim 366 mg % 82; R_f = 0,67 (etil asetat : metanol, 3:0.5), e.n.: 120-122 °C.

¹ H NMR spektrumu	: Ek şekil 61
¹³ C NMR spektrumu	: Ek şekil 62
APT spektrumu	: Ek şekil 63
COSY spektrumu	: Ek şekil 64
FT-IR spektrumu	: Ek şekil 65
LC-MS/ MS spektrumu	: Ek şekil 66

2.4.2. 13 Nolu Bileşiğin Sentezi;

1-(2-Hidroksifenil)-2-[hidroksi(piridin-4-il)metil]-3-piridin-4-il-2-propen-1-on (11) bileşiğinden 2 mmol alındı ve kloroformda çözülerek NaHSO4-SiO₂ katalizörü ile karıştırıldı ve karışımın çözücüsü evaporatörde uçuruldu. Kuru karışım teflon kaba (2 cm çaplı, 10 ml) konduktan sonra teflon kabın çevresi silika (Kieselgel 60 HF₂₅₄) ile kaplanacak şekilde daha büyük bir teflon kaba(5 cm çaplı, 30 ml) konuldu. Ve bu kap mikrodalga fırınına yerleştirildikten sonra 2 dakika 700 watt'lık mikrodalgaya maruz bırakıldı. Reaksiyon bittikten sonra kapdaki madde metanolde çözülerek %10' luk NaOH ilave edilerek manyetik karıştırıcı üzerinde reaksiyon bir saat devam ettirildi. PİTK ile ayrılma sağlandı (etil asetat-metanol 3:1, 3:2, yada 2:4) ve NMR (CDCl₃) spektrumları alındı Verim 597 mg, % 95; $R_f = 0.53$ (etil asetat : metanol, 3:0.5), e.n.: 157-159 °C.

¹ H NMR spektrumu	: Ek şekil 67
¹³ C NMR spektrumu	: Ek şekil 68
APT spektrumu	: Ek şekil 69
COSY spektrumu	: Ek şekil 70
FT-IR spektrumu	: Ek şekil 71
LC-MS/ MS spektrumu	: Ek sekil 72

2.5. 14-15 Nolu Bileşiklerin Sentezi

2.5.1. 14 Nolu Bileşiğin Sentezi;

2-Piridin-4-il-4*H*-kromen-4-on (**12**) bileşiğinden 2 mmol (446mg) ve 1-bromodekan bileşiğinden de 2 mmol (442mg) alınarak 30 ml asetonitrilde çözüldü ve 12 saat GSAK yapıldı. Reaksiyonun kontrolü İTK yardımıyla yapıldı ve reaksiyon tamamlandıktan sonra evaporator ile çözücüsü uzaklaştırıldıktan sonra kolon kromatografisi (kolon özellikleri, 30 cm uzunluğunda ve 2 cm çapında; 25 g, Merck, 230-400 mesh'lik silika jel ile dolduruldu) ile saflaştırılma sağlandı. Kolon hekzanla yıkandı ve 30 ml etil asetat ile muamele edildikten sonra ethyl asetat-metanol (3:1, 20 ml ve 3:2, 20 ml) ve metanol (30 ml) muamele edildi ve sonra metanol-su (4:1, 30 ml) ile muamele edildi. Fraksiyonlar 5-10 ml'lik kısımlar halinde toplandı ve 9-13. fraksiyonlar madde olarak tespit edildi ve NMR

(CDCl₃) spektrumları alındı. Verim 754 mg, % 85; $R_f = 0.81$ (etil asetat : metanol, 3:1, bazik İTK), e.n.: 179-180 °C.

¹ H NMR spektrumu	: Ek şekil 73
¹³ C NMR spektrumu	: Ek şekil 74
APT spektrumu	: Ek şekil 75
COSY spektrumu	: Ek şekil 76
FT-IR spektrumu	: Ek şekil 77
LC-MS/ MS spektrumu	: Ek şekil 78

2.5.2. 15 Nolu Bileşiğin Sentezi;

2 mmol (628 mg) 3-(Metilen-4-piridinil)-4'-azaflavon'dan (13) ve 5 mmol (1.105 g) 1-bromodekan bileşiğinden alınarak 30 ml asetonitrilde çözüldü ve 24 saat GSAK yapıldı. Reaksiyonun kontrolü İTK yardımıyla yapıldı ve reaksiyon tamamlandıktan sonra evaporator ile çözücüsü uzaklaştırıldıktan sonra kolon kromatografisi (kolon özellikleri, 30 cm uzunluğunda ve 2 cm çapında; 25 g, Merck, 230-400 mesh'lik silika jel ile dolduruldu) ile saflaştırılma sağlandı. Kolon hekzanla yıkandı ve 30 ml etilasetat ile muamele edildikten sonra ethyl asetat-metanol (3:1, 20 ml ve 3:2, 20 ml) ve metanol (30 ml) muamele edildi ve sonra metanol-su (4:1, 30 ml) ile muamele edildi. Fraksiyonlar 5-10 ml'lik kısımlar halinde toplandı ve 9-13. fraksiyonlar madde olarak tespit edildi ve NMR (CDCl₃) spektrumları alındı. Verim 1.164 g, % 77; $R_f = 0.75$ (etil asetat : metanol, 3:1, bazik İTK), e.n.: 104-106 °C.

¹ H NMR spektrumu	: Ek şekil 79
¹³ C NMR spektrumu	: Ek şekil 80
APT spektrumu	: Ek şekil 81
COSY spektrumu	: Ek şekil 82
FT-IR spektrumu	: Ek şekil 83
LC-MS/ MS spektrumu	: Ek şekil 84

2.6. 16-24 Nolu Bileşiklerin Sentezi

2.6.1. 16 Nolu Bileşiğin Sentezi;

1 Nolu bileşikten 2 mmol (450 mg) alınarak % 5'lik NaOH çözeltisiyle çözüldü. Buz banyosunda bir beherde yeterince soğutulduktan sonra üzerine 2 mmol (281mg) benzoil klorür ilave edildi. Reaksiyon 1 saat manyetik karıştırıcı üzerinde karıştırıldıktan sonra çöken madde su ile krozeden süzülerek yıkandı. Madde koroformda çözülerek kolon kromatografisi ile saflaştırılmaya çalışıldı. Sırasıyla şu çözücüler kullanıldı. n-heksan (30 mL), n-heksan-etil asetat (3:1, 125 mL; 3:2, 90 mL), etilasetat (100 mL). 10-15 mL'lik 15 adet fraksiyon toplandı. 5-11 nolu fraksiyonlar birleştirildi ve NMR (CDCl₃) spektrumları alındı Verim 559 mg, % 85, R_f: 0.56 (n-hekzan : etil asetat, 1:1), sarı renkli amorf katı, e.n.: 157-159 °C.

¹ H NMR spektrumu	: Ek şekil 85
¹³ C NMR spektrumu	: Ek şekil 86
APT spektrumu	: Ek şekil 87
COSY spektrumu	: Ek şekil 88
FT-IR spektrumu	: Ek şekil 89
LC-MS/ MS spektrumu	: Ek şekil 90

2.6.2. 17 Nolu Bileşiğin Sentezi;

2 Nolu bileşikten 2 mmol (450 mg) alınarak %5'lik NaOH çözeltisiyle çözüldü. Buz banyosunda bir beherde yeterince soğutulduktan sonra üzerine 2 mmol (281mg) benzoil klorür ilave edildi. Reaksiyon 1 saat manyetik karıştırıcı üzerinde karıştırıldıktan sonra çöken madde su ile krozeden süzülerek yıkandı. Madde koroformda çözülerek kolon kromatografisi ile saflaştırılmaya çalışıldı. Sırasıyla şu çözücüler kullanıldı. n-heksan (30 mL), n-heksan-etil asetat (3:1, 100 mL; 7:2, 55 mL), etilasetat (150 mL). 10-15 mL'lik 18 adet fraksiyon toplandı. 8-13 nolu fraksiyonlar birleştirildi ve NMR (CDCl₃) spektrumları alındı. Verim 529 mg, % 80, R_f: 0.81 (etil asetat), sarı renkli amorf katı, e.n.: 98-100 °C.

¹³ C NMR spektrumu	: Ek şekil 92
APT spektrumu	: Ek şekil 93
COSY spektrumu	: Ek şekil 94
FT-IR spektrumu	: Ek şekil 95
LC-MS/ MS spektrumu	: Ek şekil 96

2.6.3. 18 Nolu Bileşiğin Sentezi;

3 Nolu bileşikten 2 mmol (450 mg) alınarak % 5'lik NaOH çözeltisiyle çözüldü. Buz banyosunda bir beherde yeterince soğutulduktan sonra üzerine 2 mmol (281mg) benzoil klorür ilave edildi. Reaksiyon 1 saat manyetik karıştırıcı üzerinde karıştırıldıktan sonra çöken madde su ile krozeden süzülerek yıkandı. Madde koroformda çözülerek kolon kromatografisi ile saflaştırılmaya çalışıldı. Sırasıyla şu çözücüler kullanıldı. n-heksan (30 mL), n-heksan-etil asetat (3:1, 120 mL; 7:2, 45 mL), etilasetat (120 mL). 10-15 mL'lik 12 adet fraksiyon toplandı. 6-12 nolu fraksiyonlar birleştirildi ve NMR (CDCl₃) spektrumları alındı. Verim 289.5 mg, % 44, R_f: 0.46 (n-hekzan : etil asetat, 1:1), açık kahve renkli amorf katı, e.n.: yağımsı, turuncu renkli.

¹ H NMR spektrumu	: Ek şekil 97
¹³ C NMR spektrumu	: Ek şekil 98
APT spektrumu	: Ek şekil 99
COSY spektrumu	: Ek şekil 100
FT-IR spektrumu	: Ek şekil 101
LC-MS/ MS spektrumu	: Ek şekil 102

2.6.4. 19 Nolu Bileşiğin Sentezi;

4 Nolu bileşikten 2 mmol (450 mg) alınarak % 5'lik NaOH çözeltisiyle çözüldü. Buz banyosunda bir beherde yeterince soğutulduktan sonra üzerine 2 mmol(281 mg) benzoil klorür ilave edildi. Reaksiyon 1 saat manyetik karıştırıcı üzerinde karıştırıldıktan sonra çöken madde su ile krozeden süzülerek yıkandı. Madde koroformda çözülerek kolon kromatografisi ile saflaştırılmaya çalışıldı. Sırasıyla şu çözücüler kullanıldı. n-heksan (30

mL), n-hekzan-etil asetat (3:1, 70 mL; 3:2, 55 mL), etilasetat (80 mL). 10-15 mL'lik 12 adet fraksiyon toplandı. 5–9 nolu fraksiyonlar birleştirildi ve NMR (CDCl₃) spektrumları alındı. Verim 473.8 mg, % 72, $R_{\rm f}$: 0.75 (n-hekzan : etil asetat, 1:1), sarı renkli amorf katı, e.n.: 142-144 °C.

¹ H NMR spektrumu	:	Ek şekil	103
¹³ C NMR spektrumu	:	Ek şekil	104
APT spektrumu	:	Ek şekil	105
COSY spektrumu	:	Ek şekil	106
FT-IR spektrumu	:	Ek şekil	107
LC-MS/ MS spektrumu	:	Ek şekil 1	108

2.6.5. 20 Nolu Bileşiğin Sentezi;

5 Nolu bileşikten 2 mmol (450 mg) alınarak % 5'lik NaOH çözeltisiyle çözüldü. Buz banyosunda bir beherde yeterince soğutulduktan sonra üzerine 2 mmol (281 mg) benzoil klorür ilave edildi. Reaksiyon 1 saat manyetik karıştırıcı üzerinde karıştırıldıktan sonra çöken madde su ile krozeden süzülerek yıkandı. Madde koroformda çözülerek kolon kromatografisi ile saflaştırılmaya çalışıldı. Sırasıyla şu çözücüler kullanıldı. n-hekzan (30 mL), n-hekzan-etil asetat (3:1, 100 mL; 3:2, 100 mL), etil asetat (140 mL). 10-15 mL'lik 20 adet fraksiyon toplandı. 8-13 Nolu fraksiyonlar birleştirildi ve NMR (CDCl₃) spektrumları alındı. Verim 644.8 mg, % 98, R_f: 0.88 (etil asetat), sarı renkli amorf katı, e.n.: 70-72 °C.

¹ H NMR spektrumu	:	Ek şekil 109
¹³ C NMR spektrumu	:	Ek şekil 110
APT spektrumu	:	Ek şekil 111
COSY spektrumu	:	Ek şekil 112
FT-IR spektrumu	:	Ek şekil 113
LC-MS/ MS spektrumu	:	Ek şekil 114

2.6.6. 21 Nolu Bileşiğin Sentezi;

6 Nolu bileşikten 2 mmol (450 mg) alınarak % 5'lik NaOH çözeltisiyle çözüldü. Buz banyosunda bir beherde yeterince soğutulduktan sonra üzerine 2 mmol (281 mg) benzoil klorür ilave edildi. Reaksiyon 1 saat manyetik karıştırıcı üzerinde karıştırıldıktan sonra çöken madde su ile krozeden süzülerek yıkandı. Madde koroformda çözülerek kolon kromatografisi ile saflaştırılmaya çalışıldı. Sırasıyla şu çözücüler kullanıldı. n-heksan (30 mL), n-heksan-etil asetat (3:1, 100 mL; 3:2, 90 mL), etilasetat (140 mL). 10-15 mL'lik 16 adet fraksiyon toplandı. 8-15 nolu fraksiyonlar birleştirildi ve NMR (CDCl₃) spektrumları alındı. Verim 460.6 mg, % 70, R_f: 0.89 (etil asetat), sarı renkli amorf katı, e.n.: yağımsı.

¹ H NMR spektrumu	: Ek şekil 115
¹³ C NMR spektrumu	: Ek şekil 116
APT spektrumu	: Ek şekil 117
COSY spektrumu	: Ek şekil 118
FT-IR spektrumu	: Ek şekil 119
LC-MS/ MS spektrumu	: Ek şekil 120

2.6.7. 22 Nolu Bileşiğin Sentezi;

7 Nolu bileşikten 300mg (1.33 mmol) alınarak % 5'lik NaOH çözeltisiyle çözüldü. Buz banyosunda bir beherde yeterince soğutulduktan sonra üzerine 187mg (1.33 mmol) benzoil klorür ilave edildi. Reaksiyon 1 saat manyetik karıştırıcı üzerinde karıştırıldıktan sonra çöken madde su ile krozeden süzülerek yıkandı. Madde koroformda çözülerek kolon kromatografisi (kolon özellikleri, 30 cm uzunluğunda ve 2 cm çapında; 25 g, Merck, 230-400 mesh'lik silika jel ile dolduruldu) ile saflaştırılma sağlandı. Sırasıyla şu çözücüler kullanıldı: n-heksan (50 mL), n-heksan-etil asetat (9:1, 50 mL; 8:1, 50 mL; 6:1, 50 mL; 4:1, 30 mL; 2:1, 30 mL; 1:1, 30 mL). 10-15 mL'lik 22 adet fraksiyon toplandı. 7-15 nolu fraksiyonlar birleştirildi ve NMR (CDCl₃) spektrumları alındı. Verim 396 mg, % 90, R_f: 0.56 (n-hekzan : etil asetat, 2:1), sarı renkli amorf katı, e.n.: 136-139 °C.

¹ H NMR spektrumu	: Ek şekil 121
¹³ C NMR spektrumu	: Ek şekil 122

APT spektrumu	:	Ek şekil 123
FT-IR spektrumu	:	Ek şekil 124
LC-MS/ MS spektrumu	:	Ek şekil 125

2.6.8. 23 Nolu Bileşiğin Sentezi;

8 Nolu bileşikten 300mg (1.33 mmol) alınarak % 5'lik NaOH çözeltisiyle çözüldü. Buz banyosunda bir beherde yeterince soğutulduktan sonra üzerine 187 mg (1.33 mmol) benzoil klorür ilave edildi. Reaksiyon 1 saat manyetik karıştırıcı üzerinde karıştırıldıktan sonra çöken madde su ile krozeden süzülerek yıkandı. Madde koroformda çözülerek kolon kromatografisi (kolon özellikleri, 30 cm uzunluğunda ve 2 cm çapında; 25 g, Merck, 230-400 mesh'lik silika jel ile dolduruldu) ile saflaştırılma sağlandı. Sırasıyla şu çözücüler kullanıldı: n-hekzan (50 mL), n-heksan-etil asetat (9:1, 50 mL; 8:1, 50 mL; 6:1, 50 mL; 4:1, 30 mL; 2:1, 30 mL; 1:1, 30 mL). 10-15 mL'lik 22 adet fraksiyon toplandı. 4-10 nolu fraksiyonlar birleştirildi ve NMR (CDCl₃) spektrumları alındı. Verim 400 mg, % 91, R_f: 0.71 (n-hekzan : etil asetat, 2:1), sarı renkli amorf katı, e.n.: 65-68 °C.

¹ H NMR spektrumu	: Ek şekil 126
¹³ C NMR spektrumu	: Ek şekil 127
APT spektrumu	: Ek şekil 128
COSY spektrumu	: Ek şekil 129
FT-IR spektrumu	: Ek şekil 130
LC-MS/ MS spektrumu	: Ek şekil 131

2.6.9. 24 Nolu Bileşiğin Sentezi;

9 Nolu bileşikten 376 mg (1.67 mmol) alınarak % 5'lik NaOH çözeltisiyle çözüldü. Buz banyosunda bir beherde yeterince soğutulduktan sonra üzerine 1.67 mmol (235 mg) benzoil klorür ilave edildi. Reaksiyon 1 saat manyetik karıştırıcı üzerinde karıştırıldıktan sonra çöken madde su ile krozeden süzülerek yıkandı. Madde koroformda çözülerek kolon kromatografisi ile saflaştırılmaya çalışıldı. Sırasıyla şu çözücüler kullanıldı. n-heksan (30 mL), n-heksan-etil asetat (6:1, 70 mL; 4:1, 55 mL, 3:1 40ml; 1:1 40ml), etil asetat (50 mL). 10-15 mL'lik 25 adet fraksiyon toplandı. 11-13 nolu fraksiyonlar birleştirildi ve NMR (CDCl₃) spektrumları alındı. Verim 420 mg, % 76, R_f : 0.79 (n-hekzan : etil asetat, 1:1), sarı renkli amorf katı, e.n.: 82-85 °C.

¹ H NMR spektrumu	: Ek şekil 132
¹³ C NMR spektrumu	: Ek şekil 133
APT spektrumu	: Ek şekil 134
COSY spektrumu	: Ek şekil 135
FT-IR spektrumu	: Ek şekil 136
LC-MS/ MS spektrumu	: Ek şekil 137

2.7. 25-37 Nolu Bileşiklerin Sentezi

2.7.1. 25-26 Nolu Bileşilerin Sentezi;

18 Nolu bileşikten 0.638mmol (210 mg) madde tartılarak alındı ve 20-25 mL kloroformda çözünmesi sağlanarak 6 saat UV ışığına (400 W civa lambası) maruz bırakıldı. Reaksiyon İTK ile kontrol edilerek sonlandırıldı. Süre sonunda çözücüsü 35° C'lik evaporatörde çekildi. Kloroformda çözüldü ve normal faz silikajel 60 F₂₅₄ 20x20 cm'lik cam PİTK (0.5 mm, 2 adet) plakalara ince bant halinde uygulandı. Geliştirme tankında çözücü sistemi olarak etilasetat-aseton (1:1) kullanıldı. Hareketli fazın tepe noktasına kadar yürümesi sağlandı ve plakalar kurumaya bırakıldı. 254 nm dalga boylu UV lambada incelendi ve 3 tane net bant işaretlenip A, B ve C bantları olarak işaretlendi ve bistüri ile kazındı. Buradan 100 mL'lik bir behere alınıp kloroformda çözüldü ve vakum yardımıyla cam krozeden 50 mL'lik balona süzüldü. Çözücüsü 35° C'de vakumlu evaporatörde çekildi. NMR'a hazırlandı ve A bandının başlangıç maddesi B ve C bantlarının iki farklı izomerin yapıları olduğu tayin edildi. **25** nolu bileşik için için Verim 35.7 mg, % 13, R_f: 0.63 (etil asetat-metanol, 3:1), e.n.: 45-47 °C.

25 nolu bileşik için;

¹H NMR spektrumu : Ek şekil 138

APT spektrumu	:	Ek şekil	139
FT-IR spektrumu	:	Ek şekil	140
LC-MS/ MS spektrumu	:	Ek şekil	141

26 nolu bileşik için;

¹ H NMR spektrumu	: Ek şekil 14	2
APT spektrumu	: Ek şekil 14	3
FT-IR spektrumu	: Ek şekil 14	4
LC-MS/ MS spektrumu	: Ek şekil 14	5

2.7.2. 27 Nolu Bileşiğin Sentezi;

17 Nolu bileşikten 180mg (0.547 mmol) madde tartılarak alındı ve 20-25 mL kloroformda çözünmesi sağlanarak 8 saat UV ışığına (400 W civa lambası) maruz bırakıldı. Reaksiyon İTK ile kontrol edilerek sonlandırıldı. Süre sonunda çözücüsü 35° C'lik evaporatörde çekildi. İTK kontrolünde karışım olduğu belirlendi kloroformda çözüldü ve merck 230-400mesh 25g silikajel ile 30x2cm uzunluğundaki kolona uygulandı. Çözücü sistemi olarak 30mL n-hegzan, sonrasında sırasıyla 30:0, 20:1, 20:10, 15:15, 10:20, 0:30 oranlarında hegzan-etil asetat karışımı 20-30 mL lik kısımlar halinde kullanıldı. 16-19. Fraksiyonlar kolondan alınarak çözücüsü 35 °C'de vakumlu evaporatörde çekildi. NMR'a (CDCl₃) hazırlandı ve yapıları tayin edildi. Verim 41.4 mg, % 23, R_f: 0.61 (etil asetat : metanol, 3:1), e.n.: 171-173 °C.

¹ H NMR spektrumu	:	Ek şekil	146
¹³ C NMR spektrumu	:	Ek şekil	147
APT spektrumu	:	Ek şekil	148
COSY spektrumu	:	Ek şekil	149
FT-IR spektrumu	:	Ek şekil	150
LC-MS/ MS spektrumu	:	Ek şekil	151

2.7.3. 28 Nolu Bileşiğin Sentezi;

16 Nolu bileşikten 220 mg (0.669 mmol) madde tartılarak alındı ve 20-25 mL kloroformda çözünmesi sağlanarak 6 saat UV ışığına (400 W civa lambası) maruz bırakıldı. Reaksiyon İTK ile kontrol edilerek sonlandırıldı. Süre sonunda çözücüsü 35 °C'lik evaporatörde çekildi. İTK kontrolünde karışım olduğu belirlendi kloroformda çözüldü ve merck 230-400mesh 25g silikajel ile 30x2cm uzunluğundaki kolona uygulandı. Çözücü sistemi olarak 30mL n-hekzan, sonrasında sırasıyla 20:1, 20:2, 20:3, 20:5, 20:8, 20:10 oranlarında hegzan-etilasetat karışımı 20-30 mL lik kısımlar halinde kullanıldı. 6-7. Fraksiyonlar kolondan alınarak çözücüsü 35°C'de vakumlu evaporatörde çekildi. NMR'a (CDCl₃) hazırlandı ve yapıları tayin edildi. Verim 44 mg, % 20, R_f: 0.43 (etil asetat : metanol, 4:0:5), e.n.: 75-77 °C.

¹ H NMR spektrumu	: Ek şekil 152
¹³ C NMR spektrumu	: Ek şekil 153
APT spektrumu	: Ek şekil 154
COSY spektrumu	: Ek şekil 155
FT-IR spektrumu	: Ek şekil 156
LC-MS/ MS spektrumu	: Ek şekil 157

2.7.4. 29 Nolu Bileşiğin Sentezi;

21 Nolu bileşikten 185 mg (0.562 mmol) madde tartılarak alındı ve 20-25 mL kloroformda çözünmesi sağlanarak 6 saat UV ışığına (400 W civa lambası) maruz bırakıldı. Reaksiyon İTK ile kontrol edilerek sonlandırıldı. Süre sonunda çözücüsü 35° C'lik evaporatörde çekildi. Kloroformda çözüldü ve normal faz silikajel 60 F₂₅₄ 20x20 cm'lik cam PİTK (0.5 mm, 2 adet) plakalara ince bant halinde uygulandı. Geliştirme tankında çözücü sistemi olarak etilasetat-Aseton (1:1) kullanıldı. Hareketli fazın tepe noktasına kadar yürümesi sağlandı ve plakalar kurumaya bırakıldı. 254 nm dalga boylu UV lambada incelendi ve en net bant işaretlenip ve bistüri ile kazındı. Buradan 100 mL'lik bir behere alınıp kloroformda çözüldü ve vakum yardımıyla cam krozeden 50 mL'lik balona

süzüldü. Çözücüsü 35 °C'de vakumlu evaporatörde çekildi. NMR'a (CDCl₃) hazırlandı. Verim 27.8 mg, % 15, R_f: 0.59 (etil asetat : aseton, 1:1), e.n.: 27-30 °C.

¹ H NMR spektrumu	: Ek şekil 158
¹³ C NMR spektrumu	: Ek şekil 159
APT spektrumu	: Ek şekil 160
COSY spektrumu	: Ek şekil 161
FT-IR spektrumu	: Ek şekil 162
LC-MS/ MS spektrumu	: Ek şekil 163

2.7.5. 30-32 Nolu Bileşiğin Sentezi;

20 Nolu bileşikten 165 mg (0.502mmol) madde tartılarak alındı ve 20-25 mL kloroformda çözünmesi sağlanarak 6 saat UV ışığına (400 W civa lambası) maruz bırakıldı. Reaksiyon İTK ile kontrol edilerek sonlandırıldı. Süre sonunda çözücüsü 35°C'lik evaporatörde cekildi. ITK kontrolünde karısım olduğu belirlendi kloroformda çözüldü ve merck 230-400mesh 25g silikajel ile 30x2cm uzunluğundaki kolona uygulandı. Cözücü sistemi olarak 30mL n-hekzan, sonrasında sırasıyla 20:1, 20:2, 20:3, 20:5, 20:8, 20:10 oranlarında hekzan-etil asetat karışımı 20-30 mL lik kısımlar halinde kullanıldı. Başlangıç maddesi uzaklaştırıldı. 10-11 ve 13 14 nolu Dimer fraksiyonları kloroformda çözüldü ve normal faz silikajel 60 F₂₅₄ 20x20 cm'lik cam PİTK (0.5 mm, 2 adet) plakalara ince bant halinde ayrı ayrı uygulandı. Geliştirme tankında çözücü sistemi olarak etil asetataseton (1:1) kullanıldı. Hareketli fazın tepe noktasına kadar yürümesi sağlandı ve plakalar kurumaya bırakıldı. 254 nm dalga boylu UV lambada incelendi ve 10-11 fraksiyonunun uvgulandığı plakada en net tek bir bant işaretlendi, 13-14.fraksiyonların uvgulandığı plakada 2 bant işaretlenip bistüri ile kazındı. Buradan 100 mL'lik bir behere alınıp kloroformda çözüldü ve vakum yardımıyla cam krozeden 50 mL'lik balona süzüldü. Çözücüsü 35 °C'de vakumlu evaporatörde çekildi. NMR'a (CDCl₃) hazırlandı ve üç farklı izomerin yapıları olduğu tayin edildi. 30 nolu bileşik için Verim13.2 mg, % 8, Rf: 0.73 (etilasetat : aseton, 1:1), e.n.: 57-60 °C; 31 nolu bileşik için Verim 19.8 mg, % 12, Rf: 0.60 (etilasetat : aseton, 1:1), e.n.: 64-67° C; 32 nolu bileşik için Verim 14.9 mg, % 9, Rf: 0.48 (etil asetat : aseton, 1:1), e.n.: 69-71 °C.

30 nolu bileşik için;

¹ H NMR spektrumu	:	Ek şekil	164
¹³ C NMR spektrumu	:	Ek şekil	165
APT spektrumu	:	Ek şekil	166
COSY spektrumu	:	Ek şekil	167
FT-IR spektrumu	:	Ek şekil	168
LC-MS/ MS spektrumu	:	Ek şekil	169

31 nolu bileşik için;

¹ H NMR spektrumu	:	Ek şekil 170
¹³ C NMR spektrumu	:	Ek şekil 171
APT spektrumu	:	Ek şekil 172
COSY spektrumu	:	Ek şekil 173
FT-IR spektrumu	:	Ek şekil 174
LC-MS/ MS spektrumu	:	Ek şekil 175

32 nolu bileşik için;

¹ H NMR spektrumu	:	Ek şekil	176
¹³ C NMR spektrumu	:	Ek şekil	177
APT spektrumu	:	Ek şekil	178
COSY spektrumu	:	Ek şekil	179
FT-IR spektrumu	:	Ek şekil	180
LC-MS/ MS spektrumu	:	Ek şekil	181

2.7.6. 33 Nolu Bileşiğin Sentezi;

19 Nolu bileşikten 200 mg (0.608 mmol) madde tartılarak alındı ve 20-25 mL kloroformda çözünmesi sağlanarak 6 saat UV ışığına (400 W civa lambası) maruz bırakıldı. Reaksiyon İTK ile kontrol edilerek sonlandırıldı. Süre sonunda çözücüsü 35 °C'lik evaporatörde çekildi. Kloroformda çözüldü ve normal faz silikajel 60 F_{254} 20x20 cm'lik cam PİTK (0.5 mm, 2 adet) plakalara ince bant halinde uygulandı. Geliştirme tankında çözücü sistemi olarak etil asetat-aseton (1:1) kullanıldı. Hareketli fazın tepe

noktasına kadar yürümesi sağlandı ve plakalar kurumaya bırakıldı. 254 nm dalga boylu UV lambada incelendi ve en net bant işaretlenip ve bistüri ile kazındı. Buradan 100 mL'lik bir behere alınıp kloroformda çözüldü ve vakum yardımıyla cam krozeden 50 mL'lik balona süzüldü. Çözücüsü 35°C'de vakumlu evaporatörde çekildi. NMR'a (CDCl₃) hazırlandı. Verim 38 mg, % 19, R_f: 0.56 (etil asetat : aseton, 1:1), e.n.: 207-210 °C.

¹ H NMR spektrumu	: Ek şekil 182
¹³ C NMR spektrumu	: Ek şekil 183
APT spektrumu	: Ek şekil 184
COSY spektrumu	: Ek şekil 185
FT-IR spektrumu	: Ek şekil 186
LC-MS/MS spektrumu	: Ek şekil 187

2.7.7. 34 ve 35 Nolu Bileşiklerin Sentezi;

24 Nolu bilesikten 400 mg (1.216 mmol) madde tartılarak alındı ve 20-25 mL kloroformda çözünmesi sağlanarak 36 saat UV ışığına (400 W civa lambası) maruz bırakıldı. Reaksiyon İTK ile kontrol edilerek sonlandırıldı. Süre sonunda çözücüsü 35°C'lik evaporatörde çekildi. İTK kontrolünde karışım olduğu belirlendi kloroformda çözüldü ve merck 230-400mesh 25g silikajel ile 30x2cm uzunluğundaki kolona uygulandı. Çözücü sistemi olarak 30mL n-hekzan, sonrasında sırasıyla 20:1, 20:2, 20:3, 20:5, 20:8, 20:10 oranlarında hekzan-etil asetat karışımı 20-30 mL lik kısımlar halinde kullanıldı. Başlangıç maddesi uzaklaştırıldı. 22-24 ve 26-33 nolu fraksiyonlarda karışım halinde iki farklı iki dimer bileşiği olduğu görüldü. Dimer fraksiyonları kloroformda çözüldü ve normal faz silikajel 60 F₂₅₄ 20x20 cm'lik cam PİTK (0.5 mm, 2 adet) plakalara ince bant halinde ayrı ayrı uygulandı. Hareketli fazın tepe noktasına kadar yürümesi sağlandı ve plakalar kurumaya bırakıldı. 254 nm dalga boylu UV lambada incelendi ve en net bant işaretlenip ve bistüri ile kazındı. Buradan 100 mL'lik bir behere alınıp kloroformda çözüldü ve vakum yardımıyla cam krozeden 50 mL'lik balona süzüldü. Çözücüsü 35°C'de vakumlu evaporatörde çekildi. NMR'a (CDCl₃) hazırlandı. Sırasıyla 34 ve 35 nolu bileşikler için verim 60mg, % 15 ve 88 mg, % 22, R_f: 0.51, 48 (etil asetat : aseton, 1:1), e.n.: 174-177 °C ve 133-135 °C.

34 nolu bileşik için;

¹ H NMR spektrumu	: Ek şekil 188
APT spektrumu	: Ek şekil 189
COSY spektrumu	: Ek şekil 190
FT-IR spektrumu	: Ek şekil 191
LC-MS/ MS spektrumu	: Ek şekil 192

35 nolu bileşik için;

¹ H NMR spektrumu	: Ek şekil 193
APT spektrumu	: Ek şekil 194
COSY spektrumu	: Ek şekil 195
FT-IR spektrumu	: Ek şekil 196
LC-MS/ MS spektrumu	: Ek şekil 197

2.7.8. 36 Nolu Bileşiğin Sentezi;

23 Nolu başlangıç bileşiğinden 150mg (0.456 mmol) madde tartılarak alındı ve 20-25 mL kloroformda çözünmesi sağlanarak 6 saat UV ışığına (400 W civa lambası) maruz bırakıldı. Reaksiyon İTK ile kontrol edilerek sonlandırıldı. Süre sonunda çözücüsü 35° C'lik evaporatörde çekildi. Kloroformda çözüldü ve normal faz silikajel 60 F₂₅₄ 20x20 cm'lik cam PİTK (0.5 mm, 2 adet) plakalara ince bant halinde uygulandı. Geliştirme tankında çözücü sistemi olarak etil asetat-hekzan (2:1) kullanıldı. Hareketli fazın tepe noktasına kadar yürümesi sağlandı ve plakalar kurumaya bırakıldı. 254 nm dalga boylu UV lambada incelendi ve en net bant olab B bandı işaretlenip ve bistüri ile kazındı. Buradan 100 mL'lik bir behere alınıp kloroformda çözüldü ve vakum yardımıyla cam krozeden 50 mL'lik balona süzüldü. Çözücüsü 35 °C'de vakumlu evaporatörde çekildi. NMR'a (CDCl₃) hazırlandı. Verim 27 mg, % 18, R_f: 0.69 (etil asetat : aseton, 1:1), e.n.: 34-36 °C.

¹ H NMR spektrumu	: Ek şekil 198
APT spektrumu	: Ek şekil 199
COSY spektrumu	: Ek şekil 200
FT-IR spektrumu	: Ek şekil 201

LC-MS/ MS spektrumu : Ek şekil 202

2.7.9. 37 Nolu Bileşiğin Sentezi;

22 Nolu başlangıç maddesinden 150 mg (0.456 mmol) madde tartılarak alındı ve 20-25 mL kloroformda çözünmesi sağlanarak 6 saat UV ışığına (400 W civa lambası) maruz bırakıldı. Reaksiyon İTK ile kontrol edilerek sonlandırıldı. Süre sonunda çözücüsü 35°C'lik evaporatörde çekildi. Kloroformda çözüldü ve normal faz silikajel 60 F_{254} 20x20 cm'lik cam PİTK (0.5 mm, 2 adet) plakalara ince bant halinde uygulandı. Geliştirme tankında çözücü sistemi olarak etil asetat-hekzan (2:1) kullanıldı. Hareketli fazın tepe noktasına kadar yürümesi sağlandı ve plakalar kurumaya bırakıldı. 254 nm dalga boylu UV lambada incelendi ve en net bant olan B bandı işaretlenip ve bistüri ile kazındı. Buradan 100 mL'lik bir behere alınıp kloroformda çözüldü ve vakum yardımıyla cam krozeden 50 mL'lik balona süzüldü. Çözücüsü 35 °C'de vakumlu evaporatörde çekildi. NMR'a (CDCl₃) hazırlandı. Verim 33 mg, % 22, R_f: 0.64 (etil asetat : aseton, 1:1), e.n.: 31-34 °C.

¹ H NMR spektrumu	: Ek şekil 203
APT spektrumu	: Ek şekil 204
COSY spektrumu	: Ek şekil 205
FT-IR spektrumu	: Ek şekil 206
LC-MS/ MS spektrumu	: Ek şekil 207

2.8. Antimikrobiyal Aktivite Tayini

Çalışmada kullanılan ve aşağıda verilen tüm mikroorganizmalar Hifzissihha Refik Saydam Enstitüsü'den (Ankara) elde edildi. Bakteri olarak *Escherichia coli* ATCC 25922, *Yersinia pseudotuberculosis* ATCC 911, *Klebsiella pneumoniae* ATCC 13883, *Bacillus cereus* 709 Roma, *Listeria monocitogenes* ATCC 43251, *Staphylococcus aureus* ATCC 25923, *Enterococcus faecalis* ATCC 29212 ve maya mantarı olarak *Candida tropicalis* ATCC 13803 suşları kullanıldı. Kimyasallar 10 mg/ml konsantrasyonlarında DMSO'da çözüldü.

2.8.1. Mikrobiyal Suşlar

Ekstraktlar 3 tane G(+) bakteri [Bacillus subtilis (ATCC 6633), Staphylococcus aureus (ATCC 25923), Staphylococcus epidermidis (ATCC 12228)] ve 7 tane G(-) bakteri [Escherichia coli (ATCC 25922),Klebsiella pneumonia (ATCC 13883), Pseudomonas aeruginosa (ATCC 27853), Proteus vulgaris (ATCC 13315), Salmonella typhimirium (ATCC 14028), Yersinia pseudotuberculosis (ATCC 911), Enterobacter cloaceae (ATCC 13047)] üzerinde test edilmiştir. Bakteri kültürleri Amerikan Kültür Kolleksiyonundan (ATCC, American Type Culture Collection) temin edilmiştir. Ekstraktlar metanolde çözülerek hazırlanmıştır.

2.8.2. Minimal İnhibisyon Konsantrasyonu (MİK) Teşhisi

Maddelerin bir kısmının antimikrobiyal etkilerinin belirlenmesinde, minimal inhibisyon konsantrasyon (MİK) (µg/mL) yöntemi kullanılarak NCCLS standartlarının belirlediği yönteme göre sıvı ortamda kantitatif olarak test edildi [40-42]. Bu amaçla kullanılan besiyerleri; bakteriler için Mueller-Hinton agar (MHA) ve sıvı (MHB) (H.7.3) (Difco, Detroit, MI), maya mantarları için Patates dekstroz agar (PDA) (Difco, Detroit, MI) ve Yeast Nitrogen Base sıvı (YNBB, pH 7.0) (Difco, Detroit, MI) besiyerleri kullanıldı. Test için kullanılan bakteriler MHA, mayalar ise PDA besiyerlerinde bir gecelik taze kültürleri hazırlandı. Mikrodilüsyon testleri için steril ELISA playtleri kullanıldı. Kimyasallar DMSO içinde stok (10 mg/ml) solusyonları hazırlandıktan sonra 0.1 ml'si sıvı besiyerleri ile seri sulandırımları yapıldı. İnoküle edilecek mikroorganizmaların bir gecelik kültürlerinden McFarland 0.5 bulanıklılığında (1X10⁸ kob/ml) sulandırım hazırlanıp 1:10 sulandırılarak ve her bir kuyucuğa 0.005 ml mikroorganizma (son test konsantrasyonu 5X10⁴ koloni oluşturan birim/kuyucuk) ilave edildi. Playtler 35°C'de 16-24 saat süre ile aerobik koşullarda etüvde bekletildikten sonra. MİK değeri, ELİSA kuyucuklarındaki mikroorganizmanın üremesi tamamen engellenmiş ve çıplak gözle belirlenebilen kuyucuklardaki madde miktarı en düşük antimikrobik madde konsantrasyonu (µg/100µl cinsinden) olarak belirlendi. Standard kontrol ilaç olarak bakteriler için Ampisilin, mayalar için flukonazol ve standart çözücü kontrolü olarak da Dimetil sulfoksit (DMSO) kullanıldı. Bu çalışma sonucu elde edilen veriler tablo 4'de gösterilmiştir.

2.8.3. Disk Difüzyon Metodu ile in vitro Antimikrobiyal Aktivitenin Belirlenmesi

Her bir bakteri kültürü Mueller-hinton broth besiyeri içinde 37° C'de 16 saat inkübe edilmiştir. Daha sonra kültürün konsantrasyonu OD₆₂₅: 0,08-0,1 (yaklaşık 1*10⁷-1*10⁸ cfu/ml) olacak şekilde ayarlanmıştır. Konsantrasyonu ayarlandıktan sonra her bir bakteri kültüründen 100µl 60mm'lik Mueller-hinton agar ihtiva eden petrilere yayma ekim yapılmıştır. 6mm çapındaki diskler petriler üzerine yerleştirilmiş ve her bir ekstrakttan 10µl (300µg/disk) emdirilmiştir. Petriler 37°C'de 24 saat inkübe edilmiş ve inhibisyon zonları ölçülmüştür. Negatif kontrol olarak methanol, pozitif kontrol olarak antibiyotik kullanılmıştır. Elde edilen sonuçlar tablo 5'de verilmiştir.

2.9. Antioksidan Aktivite Çalışması

Antioksidan aktivite tayini için laboratuarda DPPH yöntemi uygulandı. Bu tayinde sentezlemiş olduğumuz bileşiklerin belirli konsantrasyonlardaki (10 mg/mL) çözeltileri hazırlanarak kullanıldı.

2.9.1. Antioksidant Özellikler

Maddelerin antioksidant aktiviteleri DPPH [35] temizleme ve FRAP [36] metodları kullanılarak test edildi. DPPH temizleme metodunda değişik konsantrasyonlarda hazırlanan maddelerden 750 µl'lik miktarlar alınarak etanolde hazırlanan 750 µl'lik DPPH çözeltisiyle (50 µM son konsantrasyon) vortex cihazıyla karıştırıldı. Oda sıcaklığında 50 dk'lık inkübasyondan sonra 517nm'de çözücü blank alınarak UV değerleri ölçüldü. Bu
metodda düşük ölçülen bileşiğin absorbansının anlamı en fazla DPPH temizleme maddesi olduğu anlamına gelmektedir. Test sonuçları çözeltideki DPPH radikallerinin %50 konsantrasyonunun temizlenmesiyle IC_{50} (mg/mL) ile açıklandı. Sonuçlar Trolox® ve vitamin C ile karşılaştırıldı. En düşük IC_{50} değerinin anlamı en iyi antioksidant anlamına gelmektedir.

FRAP analizinde ise 100 μ L'lik örneğe 3.0 mL FRAP reaktifinin eklenmesiyle 37 °C'de 20dk inkübasyonuyla test metodu uygulanır. Karışımın soğumasından sonra 595nm de örneğin absorbansı okunur. Absorbanstan hesaplanan FRAP reaktifinin değeri düşürülür ve askorbik asidin aynı şekilde hazırlanmasıyla elde edilen çözeltinin absorbansı ile karşılaştırılarak örneğin aktivitesi hesaplanır. En iyi FRAP değerini veren örnek en iyi antioksidant özelliğe sahiptir.

2.9.2. Kullanılan Cihazlar

Deneyimizde kullandığımız madde ve malzemeler K.T.Ü. Fen-Edebiyat Fakültesi Kimya Bölümü Biyoanalitik Kimya Araştırma Laboratuvarı ve Organik Kimya Laboratuvarlarından temin edilmiştir. Denemelerde kullanılan malzemeler ve satın alındıkları firmaları gösteren bilgiler Tablo 1.'de verilmektedir.

Tablo 1. Malzeme ve Cihaz adı	Markası			
UV-vis spektrofotometre	LaboMed ve LKB ultraopecK4053			
Vorteks karıştırıcı	Heidof			
Su banyosu	Nüve			
Etüv	Nüve			
Magnetik karıştırıcı	Nüve			

2.9.3. Kullanılan Çözeltiler

Denemelerde kullanılan çözeltilerin hazırlanışları aşağıdaki tablo 2. de özetlenmiştir ve tüm reaktifler analitik saflıkta olup çözeltiler metanolde ve bidestile suda hazırlanmıştır.

Trolox	0,0040g alındı ve 4 mL çözücüsüyle (etanol) çözüldü
C vitamini	0,0050g alındı ve 5 mL çözücüsüyle(su) çözüldü
DPPH	5,91mg DPPH alınıp 150 mL etanolle çözüldü

Tablo 2. Denemelerde kullanılan çözeltilerin hazırlanışı

2.9.4. DPPH Yöntemiyle Antioksidan Aktivite Tayini

DPPH radikali (2,2difenil-1-pikrilhidrazil) ticari olarak satın alınabilen bir radikal olup denemelerimizde satın alınan bu radikalin 50 μ M'lık metanolik çözeltisini kullandık. Bileşik çözeltileri değişik konsantrasyonlarda hazırlanmıştır (0,0312-0,0625-0,0125-0,250-0,500-1,000 mg/ml) ve eşit hacimde DPPH çözeltisi ve numuneler karıştırılıp oda sıcaklığında 50 dk inkübasyona bırakılmıştır. Süre sonunda DPPH'ın maksimum absorbans verdiği 517nm'de absorbanslar okunmuştur. Kontrol olarak DPPH çözeltisi ve numunenin çözüldüğü çözelti kullanılmıştır. Bulunan absorbanslar ve karşılık gelen konsantrasyonlar grafiğe geçirilerek IC₅₀ değerleri mg/mL cinsinden hesaplanmıştır.

Tablo 3. DPPH yöntemi için deney şartları

	Kör	Kontrol	Numune
numune (değişik konsant.)	750µL	-	750µL
metanol (destile)	750µL	-	-
DPPH (50 μM)	-	750µL	750µL
Çözücü	-	750µL	-

2.9.5. IC50 Değerlerinin Bulunması

Ortamdaki mevcut radikalin ya da oksidan bileşiğin konsantrasyonunu yarıya düşüren numune konsantrasyonuna IC_{50} değeri denir. IC_{50} değeri ne kadar düşükse antioksidan aktivite o kadar fazladır.

IC₅₀ değerinin bulunması için farklı konsantrasyonlarda çalışmak gereklidir. Bu nedenle çalışmalarımızda 1 mg/mL den seyreltilerek hazırlanan beş numune konsantrasyonunda ölçüm yapılmıştır. Numunenin yeterli miktarda farklı konsantrasyonları hazırlanıp absorbans ölçümleri yapılır ve absorbanslar konsantrasyona karşı grafiğe geçirilir. Maksimum absorbansın yarısına karşılık gelen konsantrasyon miktarı IC₅₀ değerini verir.

3. BULGULAR

3.1. 1-11 Nolu Azakalkon Bileşikleri

Çalışmanın birinci bölümünde, azakalkon benzeri 1–11 nolu bileşikler bilinen Claisen-Schmidt yöntemine göre sentezlendi. Yapılan literatür araştırmasında 1-9 ve 12 nolu bileşiklerin bilenen bileşikler diğer bileşiklerin de yeni bileşikler oldukları ortaya konulmuştur. Sentezlenen 1-11 nolu bileşiklerin formülleri ve IUPAC sistemine göre adlandırmaları aşağıda verilmiştir.

1	: р-ОН,	X, Y: CH, Z: N;	(2E)-1-(4-hidroksifenil)-3-piridin-4-il-prop-2-en-1-on
2	: m-OH,	X, Y: CH, Z: N;	(2E)-1-(3-hidroksifenil)-3-piridin-4-il-prop-2-en-1-on
3	: о-ОН,	X, Y: CH, Z: N;	(2E)-1-(2-hidroksifenil)-3-piridin-4-il-prop-2-en-1-on
4	: р-ОН,	X, Z: CH, Y: N;	(2E)-1-(4- hidroksifenil)-3-piridin-3-il-prop-2-en-1-on
5	: m-OH,	X, Z: CH, Y: N;	(2E)-1-(3- hidroksifenil)-3-piridin-3-il-prop-2-en-1-on
6	: о-ОН,	X, Z: CH, Y: N;	(2E)-1-(2-hidroksifenil)-3-piridin-3-il-prop-2-en-1-on
7	: р-ОН,	Y, Z: CH, X: N;	(2E)-1-(4- hidroksifenil)-3-piridin-2-il-prop-2-en-1-on
8	: m-OH,	Y, Z: CH, X: N;	(2E)-1-(3-hidroksifenil)-3-piridin-2-il-prop-2-en-1-on
9	: о-ОН,	Y, Z: CH, X: N;	(2E)-1-(2-hidroksifenil)-3-piridin-2-il-prop-2-en-1-on

3-Hidroksi-1-(2-hidroksifenil)-3-piridin-4-il-propan-1-on, 10

1-(2-Hidroksifenil)-2-[hidroksi (piridin-4-il)metil]-3-piridin-4-il-prop-2-en-1-on, 11

3.2. 12-13 Nolu Azaflavon Bileşikleri

Çalışmanın ikinci bölümünde, elde edilen 2'-hidroksi-4-azakalkon bileşiğinden katıfaz ortamında mikro dalga ile muameleleri sonucunda **12-13** nolu azaflavon bileşikleri elde edilmiştir. Sentezlenen **12-13** nolu bileşiklerin formülleri ve IUPAC sistemine göre adlandırmaları aşağıda verilmiştir.

3.3. 14-15 Nolu N-Dekil Azaflavon Bileşikleri

Çalışmanın üçüncü bölümünde, sentezlenen 4'-azaflavon bileşiklerinin asetonitril ortamındaki alkillendirme reaksiyonları sonucu **14-15** nolu bileşikler sentezlenmiştir. Sentezlenen bu bileşiklerin formülleri ve adlandırmaları aşağıda verilmiştir.

1-Dekil-4-(4-okso-4H-1-benzopiran-2-il) piridinium bromür 1-Dekill-4-{3-[(1-Dekillpiridinium-4il)metil]-4H-1-benzopiran-2-il}piridinium dibromür

15

3.4. 16-24 Nolu Azakalkonların Benzoil Türevleri

Çalışmanın dördüncü bölümünde, sentezlenen 1-9 bileşiklerinin değişik çözücü ortamlarında dimerleşme reaksiyonları vermediğinden 1-9 nolu bileşikler benzoillenerek 16-24 nolu bileşikler sentezlenmiştir. Sentezlenen bu bileşiklerin formülleri ve adlandırmaları aşağıda verilmiştir.

X, Y: CH, Z: N; 1-[(4-O-benzoil)-fenil]-(2E)-3-piridin-4-il-2-propen-1-on 16 : p-R, X, Y: CH, Z: N; 1-[(3-O-benzoil)-fenil]-(2E)-3-piridin-4-il-2-propen-1-on 17 : m-R, 18 : o-R, X, Y: CH, Z: N; 1-[(2-O-benzoil)-fenil]-(2E)-3-piridin-4-il-2-propen-1-on X, Z: CH, Y: N; 1-[(4-O-benzoil)-fenil]-(2E)-3-piridin-3-il-2-propen-1-on **19** : p-R, X, Z: CH, Y: N; 1-[(3-O-benzoil)-fenil]-(2E)-3-piridin-3-il-2-propen-1-on 20 : m-R, X, Z: CH, Y: N; 1-[(2-O-benzoil)-fenil]-(2E)-3-piridin-3-il-2-propen-1-on 21 : o-R, 22 : p-R, Y, Z: CH, X: N; 1-[(4-O-benzoil)-fenil]-(2E)-3-piridin-2-il-2-propen-1-on Y, Z: CH, X: N; 1-[(3-O-benzoil)-fenil]-(2E)-3-piridin-2-il-2-propen-1-on 23 : m-R,

54

24 : o-R, Y, Z: CH, X: N; 1-[(2-O-benzoil)-fenil]-(2E)-3-piridin-2-il-2-propen-1-on

3.5. 25-37 Nolu Dimer Bileşikler

Çalışmanın beşinci bölümünde, kalkon benzeri **16-24** nolu substituye diaril bileşiklerin [2+2] siklokatılma reaksiyonları sonucu **25-37** nolu bileşikler sentezlendi. Sentezlenen bileşiklerin siklobütan halkası stereokimyasına göre formülleri ve adlandırmaları aşağıda verilmiştir.

25 : o-R, X, Y: CH, Z: N; $(1\beta,2\beta)$ -di-[(3-O-benzoil)benzoil]-($3\alpha,4\alpha$)-di-(4-piridinil) siklobütan **30** : m-R, X, Z: CH, Y: N; $(1\beta,2\beta)$ -di-[(3-O-benzoil)benzoil]-($3\alpha,4\alpha$)-di-(3-piridinil) siklobütan

: o-R, X, Y: CH, Z: N; $(1\alpha, 2\beta)$ -di-[(4-O-benzoil)benzoil]- $(3\alpha, 4\beta)$ -di-(4-piridinil) siklobütan 26 28 : p-R, X, Y: CH, Z: N; $(1\alpha, 2\beta)$ -di-[(2-O-benzoil)benzoil]- $(3\alpha, 4\beta)$ -di-(4-piridinil) siklobütan 29 : o-R, X, Z: CH, Y: N; $(1\alpha, 2\beta)$ -di-[(4-O-benzoil)benzoil]- $(3\alpha, 4\beta)$ -di-(3-piridinil) siklobütan : m-R, X, Z: CH, Y: N; $(1\alpha, 2\beta)$ -di-[(3-O-benzoil)benzoil]- $(3\alpha, 4\beta)$ -di-(3-piridinil) siklobütan 32 33 : p-R, X, Z: CH, Y: N; $(1\alpha, 2\beta)$ -di-[(2-O-benzoil)benzoil]- $(3\alpha, 4\beta)$ -di-(3-piridinil) siklobütan : o-R, Y, Z: CH, X: N; $(1\alpha, 2\beta)$ -di-[(2-O-benzoil)benzoil]- $(3\alpha, 4\beta)$ -di-(2-piridinil) siklobütan 34 : m-R, Y, Z: CH, X: N; $(1\alpha, 2\beta)$ -di-[(3-O-benzoil)benzoil]-($3\alpha, 4\beta$)-di-(2-piridinil) siklobütan 36 37 : p-R, Y, Z: CH, X: N; $(1\alpha, 2\beta)$ -di-[(4-O-benzoil)benzoil]-($3\alpha, 4\beta$)-di-(2-piridinil) siklobütan

27 : m-R, X, Y: CH, Z: N; $(1\beta,3\beta)$ -di-[(2-O-benzoil)benzoil]- $(2\alpha,4\alpha)$ -di-(4-piridinil) siklobütan **35** : o-R, Y, Z: CH, X: N; $(1\beta,3\beta)$ -di-[(2-O-benzoil)benzoil]- $(2\alpha,4\alpha)$ -di-(2-piridinil) siklobütan

31 : p-R, X, Z: CH, Y: N; $(1\beta,4\beta)$ -di-[(3-O-benzoil)benzoil]- $(2\alpha, 3\alpha)$ -di-(3-piridinil) siklobütan

3.6. Antimikrobiyal Aktiviteler

Bir kısım kimyasalların antimikrobiyal aktiviteleri disk difüzyon metoduna göre incelendi, hem Gram negatif hemde gram pozitif bakterilere karşı etkili oldukları belirlenirken Pseudomonaslara karşı etkili olmadıkları belirlendi (Tablo 4).

	Stok									
Bileşik No	(300µg/diskl)??	Bakte	eriler	ve inh	ibisy	on zo	on çap	oları (mm)	
		Ecl.	Kp.	Yp.	Pv.	St.	Pa.	Sa.	Se.	Bs.
2					10			6		
5					8					
7					9					
8			5	5	13			9		5
9					6			5	7	
14		6				6		8	10	7
15									11	6
Kanamisin (?)	10	8	8	13	9		12	12	14
Gentamisin(?)						10			

Tablo 4. 2, 5, 7, 8, 9, 14, 15 Nolu bileşiklerin bazı bakterilere karşı antibakteriyal etkileri. (mm)

Ecl.: Enterobacter cloaceae (ATCC 13047), Kp: Klebsiella pneumonia (ATCC 13883), Yp.: Yersinia pseudotuberculosis (ATCC 911), Pv.: Proteus vulgaris (ATCC 13315), St.: Salmonella typhimirium (ATCC 14028), Pa.: Pseudomonas aeruginosa (ATCC 27853), Sa: Staphylococcus aureus (ATCC 25923), Bs.: Bacillus subtilis (ATCC 6633), Se.: Staphylococcus epidermidis (ATCC 12228).

Sentezlenen bileşiklerden 7'sinin antimikrobiyal aktiviteleri MİK yöntemine göre 7 farklı bakteri ve bir maya mantarına karşı incelendi (Tablo 5). İncelenen kimyasalların tümünün gram pozitif bakterilere ve maya mantarlarına karşı etkili oldukları gözlendi.

Bileşik	Stok	Minim	Minimal İnhibisyon Konsantrasyon Değeri (MIC, µg/100µl)						/100µl)
No.	(µg/100µl)	Ec	Үр	Кр	Bc	Li	Sa	Ef	Ct
3	1.010	>505	>505	>505	>505	505	126.2	505	505
10	1.440	>720	>720	>720	720	650	180	90	11.25
11	1.300	>650	>650	>650	5.1	20.3	5.1	>650	650
12	1.080	>540	>540	>540	540	540	270	540	540
13	1.220	>610	>610	>610	>610	>610	>610	>610	>610
14	1.000	>500	>500	>500	3.9	3.9	3.9	7.8	7.8
15	1.270	>635	>635	>635	9.9	9.9	19.8	19.8	39.7
DMSO		-	-	-	-	-	-	-	-
Amp.	2 400	8	32	32	<1	2	2	2	
Flu.	5 000								8

Tablo 5. 3, 10-15 bileşiklerinin antimikrobiyal aktivite sonuçları.

Ec: Escherichia coli ATCC 25922, Yp: Yersinia pseudotuberculosis ATCC 911, Kp: *Klebsiella pneumoniae* ATCC 13883, Bc: *Bacillus cereus* 702 Roma, Li: *Listeria monocitogenes* ATCC 43251, Sa: *Staphylococcus aureus* ATCC 25923, Ef: *Enterococcus faecalis* ATCC 29212, Ct: *Candida tropicalis* ATCC 13803, Amp: Ampicillin, Flu: Fluconazole.

3.7. Antioksidant Özellikler

Sentezlenen **1-37** bileşiklerinin antioksidan aktiviteleri DPPH (2,2-difenil-1pikrilhidrazil) radikal temizleme yöntemine göre tayin edildi. Sonuçlar Şekil 12 ve 13'de verilmiştir.

Şekil 12. 3, 10-14 bileşiklerinin DPPH⁻ radikal temizleme yöntemine göre aktivite sonuçları FRAP değerleri ve Trolox[®] referansı.

Şekil 13. 1, 2, 5-9, 26, 28, 30-34 ve 12-16 Nolu bileşiklerinin DPPH radikal temizleme yöntemine göre aktivite sonuçları DPPH değerleri; C_{vit} ve Trolox[®] referansı.

Elde edilen sonuçlara göre monomerlerden 4, 27 ve 37 nolu bileşiklerin inaktif olduğu görüldü.

4. TARTIŞMA

4.1. 1-37 Nolu bileşiklerinin Sentezi

Çalışmanın birinci bölümünde, 2'-, 3'-, 4'-hidroksi-2"-, 3"- ve 4"-azakalkon bileşikleri (1-11) bilinen Claisen-Schmidt (Aldol) reaksiyonuna göre, 2-, 3-, 4-hidroksi asetofenon ile 2-, 3-, ve 4-piridin karboksialdehit bileşiklerinden sentezlendi.

Çalışmanın ikinci aşamasında elde edilen hidroksi azakalkon bileşiklerinden 2'hidroksi-4"-azakalkon (**3**) bileşiğinin katı-faz ortamında mikrodalga yöntemine göre 4'azaflavon bileşikleri sentezlendi [105].

Elde edilen hidroksi azakalkon bileşiklerinin (1-9) fotokimyasal (400 Watt civa lambası) dimerleşme reaksiyonları katı fazda ve değişik çözücülerde denendi. Fakat dimerleşme reaksiyonu gerçekleştirilememiştir. Literatür ve teorik araştırma sonucu ve hidroksi kalkon bileşiklerinin dimerleşmediği görüldü [89]. Metoksi kalkonların dimerleşme reaksiyonları dikkate alınarak hidroksi gurubu benzoil klorür reaktifi kullanılarak benzoillenmiş azakalkon bileşikleri (16-24) sentezlendi. 16-24 Nolu bileşiklerin fotokimyasal reaksiyonları sonucu 25-37 nolu dimerik bileşikler elde edildi.

1-37 nolu bileşiklerin yapıları 200 MHz NMR (¹H, ¹³C, APT, COSY), UV, LC-MS/MS, elementel analiz, FT-IR spektroskopi yöntemleri ve ACD NMR programı yardımıyla aydınlatılmıştır [106-108].

Bu çalışmada elde edilen **1-9** nolu bileşiklerin bilinen bileşikler oldukları [19-115], çalışmanın ikinci bölümünde sentezlenen **12** nolu bileşiğin daha önceden sentezlendiği [116-117] fakat bizim burada yaptığımız sentez yöntemiyle ilk defa sentezlendiği [105] ve **10-11**, **13-37** nolu bileşiklerin ise yeni bileşikler olduğu görüldü.

4.2. 1-11 Nolu Bileşiklerin Sentezi, Reaksiyon Mekanizması ve Deneysel Verileri

1-11 Nolu bileşikler, bilinen Claisen-Schmidt (Aldol) reaksiyonuna göre, 2-, 3-, 4hidroksi asetofenon ile 2-, 3-, ve 4-piridin karboksialdehit bileşiklerinin NaOH ve/veya Na₂CO₃ bazları kullanılarak sentezlendi. 1-11 Nolu bileşiklerin sentez mekanizması Şekil 14'de görülmektedir [69, 118-119]. Bu bileşikler daha önce sentezlenmiş olmalarına rağmen literatürde bu bileşiklere ait detaylı bir veri paylaşımı bulunamamıştır.

 $R_1 = 2$ -hidroksifenil, 3- hidroksifenil, 4-hidroksifenil. $R_2 = 2$ -piridinil, 3-piridinil, 4-piridinil.

Şekil 14. 1-11 Nolu bileşiklerin sentez mekanizması

Yapılan sentezler sırasında aldehitin miktarının değiştirilmesi veya kullanılan bazın değiştirilmesiyle **10** ve **11** nolu bileşikler sentezlendi. **1-11** Nolu bileşiklere ait deneysel veriler tablo 6' da verilmiştir.

Bileşik	Kullanılan	Sıcaklık	Reaksiyon	R _f	Verim	E. N. (°C)
No	Baz	(°C)	Süresi (dk)			
1	Na ₂ CO ₃	70	180	0,72 ^a	1,86 g, %76	308-310°C
2	Na ₂ CO ₃	70	120	0,74 ^a	2,33 g, %96	183-185°C
3	NaOH	0-5	60	0,89 ^a	1,16 g, %52	258-260°C
4	Na ₂ CO ₃	70	240	0,59 ^a	1,86 g, %77	235-237°C
5	Na ₂ CO ₃	70	180	0,81 ^a	2,35 g, %98	146-148°C
6	NaOH	0-5	60	0,85 ^a	1,58 g, %65	32-35°C
7	Na ₂ CO ₃	70	180	0,79 ^a	2.05g, %84	178-181°C
8	Na ₂ CO ₃	70	180	0,77 ^a	2,30 g, %95	148-150°C
9	NaOH	0-5	60	0,85 ^a	1,60 g, %67	47-49°C
10	Na ₂ CO ₃	0-5	60	0,86 ^a	2,09 g, %86	121 - 124°C
11	NaOH	0-5	60	0,36 ^a	2,16 g, %96	199-201°C

Tablo 6. 1-11 Nolu bileşiklere ait deneysel veriler

^a etil asetat

4.2.1. 1-3 Nolu Bileşiklerin Yapılarının Aydınlatılması

1-3 Nolu bileşiklerin sentezi denklem 17' de, ¹H ve ¹³C NMR verileri tablo 7' de, UV tablo 11' de, elementel analiz tablo 12' de, kütle spektrumları tablo 13' de ve FT-IR değerleri tablo 14' de verilmiştir.

1-3 Nolu bileşiklerin ¹H NMR spektrumlarında etkileşme sabitlerinin sırasıyla 15.8,
15.4 ve 15.8 Hz olarak ölçülmesi çifte bağların *trans* yapıda olduklarını gösterdi.

Denklem 17

	1 ^{a,b}		2 ^{a,b}		3 ^{a,b}	
	δ_{H}, J	$\delta_{\rm C}$	δ _H , J	$\delta_{\rm C}$	δ _H , J	$\delta_{\rm C}$
1	-	186.8	-	188.9	-	192.5
2	7.63, d, J=15.8 Hz	126.3	7.09, d, J=15.4 Hz	126.4	7.03, d, J=15.8 Hz	124.6
3	8.13, d, J=15.8 Hz	139.7	8.09 d, J=15.4 Hz	138.4	7.83, d, J=15.8 Hz	139.3
1'	-	128.5	-	138.4	-	119.2
2'	8.11, d, J=8.4 Hz	131.4	7.48 s	122.4	-	161.1
3'	6.92, d, J=8.8 Hz	115.5	-	129.9	7.05 d, J=9.4 Hz	113.2
4'	-	162.5	7.48, t	120.7	7.58, t	136.5
5'	6.92, d, J=8.8 Hz	115.5	7.39, t	157.7	8.37, t	119.0
6'	8.11, d, J=8.4 Hz	131.4	7.69,s	114.6	8.17 d, J=9.2 Hz	130.9
-OH	10.46	-	9.88	-	11.95	-
1"	-	141.9	-	141.7	-	141.3
2"	7.83, d, J=5 Hz	122.4	7.84 d, J=6 Hz	119.7	8.36 d, J=6.4 Hz	122.2
3"	8.66, d, J=5 Hz	150.2	8.66 d, J=6 Hz	150.3	8.93 d, J=6.4 Hz	144.4
4"	-	-	-	-	-	-
5"	8.66, d, J=5 Hz	150.2	8.66 d, J=6 Hz	150.3	8.93 d, J=6.4 Hz	144.4
6"	7.83, d, J=5 Hz	122.4	7.84 d, J=6 Hz	119.8	8.36 d, J=6.4 Hz	122.2
a17 :		າາ 1	•			

Tablo 7. 1-3 Nolu bileşiklerin ¹H NMR (200MHz) ve ¹³C NMR (50 MHz) spektrum değerleri, DMSO-d₆

^bKimyasal kayma değerleri ¹H-¹H COSY ve ACD NMR programı yardımıyla çözümlendi.

4.2.2. 4-6 Nolu Bileşiklerin Yapılarının Aydınlatılması

4-6 Nolu bileşiklerin sentezi denklem 18' de, ¹H ve ¹³C NMR verileri tablo 8' de, UV tablo 11' de, elementel analiz tablo 12' de, kütle spektrumları tablo 13' de ve FT-IR değerleri tablo 14' de verilmiştir.

4-6 Nolu bileşiklerin ¹H NMR spektrumlarında etkileşme sabitlerinin sırasıyla 15.6,
16.0 ve 15.4 Hz olarak ölçülmesi çifte bağların *trans* yapıda olduklarını gösterdi.

	4 ^{a,b}		5 ^{a,b}		6 ^{a,b}	
	$\delta_{ m H}, J$	$\delta_{\rm C}$	$\delta_{ m H}, J$	$\delta_{\rm C}$	$\delta_{ m H}, J$	$\delta_{\rm C}$
1	-	186.7	-	188.9	-	193.1
2	7.68, d, J=15.6	123.8	7.99, d, J=16.0	120.9	7.72, d, J=15.4	123.8
3	8.05, d, J=15.6	149.0	7.72, d, J=16.0	140.4	7.90, d, J=15.4	141.6
1'	-	130.6	-	138.6	-	119.7
2'	8.08, d, J=8.6	131.3	7.46, s	114.6	-	163.6
3'	6.88, d, J=8.6	115.5	-	157.7	7.91, dd, J=7.88,	118.7
					1.6	
4'	-	162.5	7.07, dd, J=9.6,	120.6	6.96, t, J=7.8, 1.6	136.8
			6.4			
5'	6.88, d, J=8.6	115.5	7.39, t	129.6	7.52, t, J=8.0, 1.6	119.0
6'	8.08, d, J=8.6	131.3	7.64, d, J=7.8	124.0	7.04, d, J=7.8	134.8
-OH	10.48	-	9.58	-	12.67	-
1"	-	128.6	-	130.5	-	130.4
2"	7.33, d, J=8.2	139.1	8.98, s	150.3	8.88, dd, J=6.4, 1.8	150.1
3"	-	-	-	-	-	-
4"	7.47, d,d, J=3.4, 12.6	134.8	8.59, (dd, J=6.2, 3.0	151.0	8.66, dd, J=6.4, 1.8	151.4
5"	8.58, d, J=3.4	150.6	7.45, t	119.5	7.39, t, J=8.2, 3.0	122.0
6"	8.99, d, J=3.4	150.1	8.33, d, J= 8	135.1	7.98, dt, 8.2, 1.8	129.6

Tablo 8. **4-6** Nolu bileşiklerin ¹H NMR (200MHz) ve ¹³C NMR (50 MHz) spektrum değerleri, DMSO-d₆

^bKimyasal kayma değerleri ¹H-¹H COSY ve ACD NMR programı yardımıyla çözümlendi.

4.2.3. 7-9 Nolu Bileşiklerin Yapılarının Aydınlatılması

7-9 Nolu bileşiklerin sentezi denklem 19' da, ¹H ve ¹³C NMR verileri tablo 9' da, UV tablo 11' de, elementel analiz tablo 12' de, kütle spektrumları tablo 13' de ve FT-IR değerleri tablo 14' de verilmiştir.

7-9 Nolu bileşiklerin ¹H NMR spektrumlarında etkileşme sabitlerinin sırasıyla 15.2,
15.6 ve 15.0 Hz olarak ölçülmesi çifte bağların *trans* yapıda olduklarını gösterdi.

	- 1-		- 1-		- 1-	
_	7 ^{a,b}		8 ^{a,b}		9 ^{a,b}	
_	$\delta_{ m H}, J$	$\delta_{\rm C}$	$\delta_{ m H}, J$	$\delta_{\rm C}$	$\delta_{ m H}, J$	$\delta_{\rm C}$
1	-	194.6	-	197.0	-	194.1
2	7.64, d, J=15.2	132.6	7.68, d, 15.6	133.2	8.263, d, J=15.0	125.9
3	8.13,d, J=15.2	137.3	8.07, d, 15.6	144.2	7.843, d, J=15.0	143.2
1'	-	129.0	-	139.5	-	120.0
2'	8.02, J=8.8	131.6	7.90, s	115.8	-	163.6
3'	6.90, d, J=8.8	115.9	-	158.8	8.043, d, J=8.2	118.5
4'	-	162.6	7.06, dd, 8.0, 2.4	125.2	6.950, t, J=8.2, 4.0	137.0
5'	6.90, d, J=8.8	115.9	7.44, t	134.7	7.551, t, J=8.2, 4.0	118.9
6'	8.02, J=8.8	131.6	7.55, d, 8.0	131.0	7.749, d, J=8.2	130.3
-OH	10.45	-	9.88	-	12.767	-
1"	-	154.1	-	154.4	-	152.7
2"	-	-	-	-	-	-
3"	8.67, d, 4.6	149.6	8.68, d, 4.8	150.1	7.03, d, J=4.6	150.2
4"	7.41, dd, 4.6,	124.4	7.42, m	124.2	7.471, d, J=4.6	124.7
	2.2					
5"	7.88, m	134.0	7.38, m	138.2	7.323, dd, J=4.6, 3.0	124.1
6"	7.89, d, 4.6	123.4	7.87, d, 4.8	121.3	8.707, d, J=4.6	136.7

Tablo 9. **7-9** Nolu bileşiklerin ¹H NMR (200MHz) ve ¹³C NMR (50MHz) spektrum değerleri, DMSO-d₆

^bKimyasal kayma değerleri ¹H-¹H COSY ve ACD NMR programı yardımıyla çözümlendi.

4.2.4. 10-11 Nolu Bileşiklerin Yapılarının Aydınlatılması

Claisen-Schmidt (Aldol) reaksiyonuna göre bazın veya aldehidin konsantrasyonunun 2 katına çıkarılmasıyla **10** ve **11** nolu bileşikler elde edildi (Denklem 20-21). **10-11** Nolu bileşiklerin ¹H ve ¹³C NMR verileri tablo 10' da, UV tablo 11' de, elementel analiz tablo 12' de, kütle spektrumları tablo 13' de ve FT-IR değerleri tablo 14' de verilmiştir.

Denklem 21

Tablo 10. **10-11** Nolu bileşiklerin ¹H NMR (200MHz) ve ¹³C NMR (50MHz) spektrum değerleri, CDCl₃

	10 ^{a,b}		11 ^{a,b}	
	δ_{H}	$\delta_{\rm C}$	δ_{H}	$\delta_{\rm C}$
1	-	204.5	-	181.0
2	3.4, ABX	46.6	-	134.5
3	5.4, dd, J = 7.8, 7.4	68.2	8.0, s	136.8
1'	-	119.2	-	121.5
2'	-	162.5	-	158.5
3'	7.0, d, $J = 8.0$	118.7	7.0, dd, 8.4, 1.2	118.5
4'	7.5, t, $J = 8.0$	137.2	7.5, dt, 8.4, 1.2	127.8
5'	6.9, t, $J = 8.0$	119.2	6.9, dt, 8.0, 1.4	122.5
6'	7.7, dd, $J = 8.0$, 1.6	129.9	7.9, dd, 8.0, 1.6	136.8
1"		151.9	-	140.9
2"	7.4, d, $J = 6.0$	120.7	7.1, dd, 6.0, 2.6	123.0
3"	8.6, d, $J = 6.0$	149.8	8.6, dd, 6.0, 2.6	150.4
4"	-	-	-	-
5"	8.6, d, $J = 6.0$	149.8	8.6, dd, 6.0, 2.6	150.4
6"	7.4, d, $J = 6.0$	120.7	7.1, dd, 6.0, 2.6	123.0
-OH(CH)	3.8, gs	-	6.5, s	75.6
1'''	-	-	-	146.2
2""	-	-	7.3, dd, 6.0, 2.6	121.8
3"'	-	-	8.5, dd, 6.0, 2.6	150.4
4'''	-	-	-	-
5"'	-	-	8.5, dd, 6.0, 2.6	150.4
6'''	-	-	7.3, dd, 6.0, 2.6	121.8
ОН	11.9, gs	-	11.9, gs	-

^bKimyasal kayma değerleri ¹H-¹H COSY ve ACD NMR programı yardımıyla çözümlendi.

4.2.5. 1-11 Nolu Bileşiklerin UV, Elenmental, Kütle ve FT-IR Verileri

1-11 Nolu bileşiklerin UV verileri tablo 11' de, elementel analiz tablo 12' de, kütle spektrumları tablo 13' de ve FT-IR değerleri tablo 14' de verilmiştir.

Bileşik No	UV-Vis λ	_{nm} (log ε)		
1	206(21850)	245(27025)	284(14775)	326(22475)
2	212(14231)	287(33969)	344(5089)	
3	324(15645)	281(30112)		
4	314(12590)	278(8390)	240(5057)	
5	300(4217)			
6	362(3649)	311(10509)	257(10043)	
7	316(4125)	274(2763)	242(2074)	204(4123)
8	304(13717)	272(9635)	206(11335)	
9	366(10256)	314(31481)	280(17944)	
10	335 (5367)	260(16583)		
11	284(14054)	353(81081)		

Tablo 11. 1-11 nolu bileşiklere ait UV-Vis verileri

Tablo 12. 1-11 Nolu bileşiklerin elementel analiz deneysel ve teorik verileri

Bileşik No]	Feorik	Değerle	r		Analiz I	Değerleri	
	С	Η	Ν	0	С	Η	Ν	0
1	74.65	4.92	6.22	14.21	74.66	4.90	6.23	14.21
2	74.65	4.92	6.22	14.21	74.59	4.92	6.22	14.28
3	74.65	4.92	6.22	14.21	74.66	4.95	6.22	14.17
4	74.65	4.92	6.22	14.21	74.64	4.93	6.21	14.23
5	74.65	4.92	6.22	14.21	74.66	4.95	6.23	14.16
6	74.65	4.92	6.22	14.21	74.63	4.93	6.25	14.19
7	74.65	4.92	6.22	14.21	74.63	4.92	6.67	13.78
8	74.65	4.92	6.22	14.21	74.64	4.91	6.22	14.23
9	74.65	4.92	6.22	14.21	74.66	4.90	6.23	14.21
10	69.12	5.39	5.76	19.73	69.39	5.15	5.79	19.67
11	72.28	4.85	8.43	14.44	72.29	4.81	8.32	14.58

	m/z									
Bileşik	$[M+Na]^+$	$[M+2]^{+}$	$[M+1]^{+}$	$[\mathbf{M}]^+$	$[M-1]^+$	$[M-10]^+$	$[M-93]^+$			
No										
1			226(35)	225(100)						
2	248(13)		226(18)	225(100)						
3			226(13)			215(100)				
4			226(71)	225(68)						
5	248(14)		226(100)							
6	248(100)		226(38)							
7	248(41)						132(100)			
8	248(100)									
9	248(7)						132(100)			
10		245(25)	244(100)							
11				332(18)	331(100)					

Tablo 13. 1-11 Nolu bileşiklerin LC-MS/MS spektrum değerleri

Tablo 14. 1-11 Nolu bileşiklerin IR absorbsiyon bandları (cm⁻¹)

Bileşik No											
	1	2	3	4	5	6	7	8	9	10	11
CH=CH	2989	3042	3038	2923	3049	3034	3039	3010	3054	3086	3086
sp ² CH	3055	2944						2910			
		2826									
α, β doymamış	1637	1661	1685	1654	1661	1692	1659	1667	1645	1637	1637
C=O											
	1340	1420	1452	1442	1489	1463	1432	1476	1488	1487	1487
	1285	1378	1344	1418	1478	1304	1335	1431	1367	1445	1445
ve ve	1223	1304	1290	1350	1334	1218	1301	1356	1342	1355	1355
	1195	1282	1225	1304	1307	1157	1249	1320	1211	1292	1292
	1167	1178	1169	1242	1284	1024	1170	1278	1156	1065	1065
	801	779	807	1165	1245	809	845	1242	753	799	799
				847	1193		778	1175		765	765
				809	1021			770		615	615
					789						
-OH	3506	3406	3599	3384	3406	3425	3433	3484	3423	3410	3410
			3346	3234							

4.3. 12-13 Nolu Bileşiklerin Yapılarının Aydınlatılması

Çalışmanın ikinci bölümünde, elde edilen 2'-hidroksi-4''-azakalkon bileşiklerinden (**3**, **10**) katalizör (NaHSO₄-SiO₂) yardımıyla katı-faz ortamında mikrodalga yöntemine göre **12-13** nolu 4'-azaflavon bileşikleri elde edildi (Denklem 22) [105].

Denklem 22

12 Nolu bileşiğin katı-faz mikrodalga ile katalizör eşliğinde sentezinin düşünülen reaksiyon mekanizması aşağıda denklem 23' de verilmiştir.

13 Nolu bileşik 11 nolu bileşiğin katı-faz md yöntemi kullanılarak sentezlendi (Denklem 24) [105].

Denklem 24

13 Nolu bileşiğin mikrodalga ile katalizör eşliğinde sentezinin düşünülen reaksiyon mekanizması aşağıda denklem 25' de verilmiştir.

Denklem 25

12 ve 13 nolu bileşiklerin deneysel verileri tablo 15' de, ¹H ve ¹³C NMR verileri tablo 16' da, UV tablo 17' de, elementel analiz tablo 18' de, kütle spektrumları tablo 19' da ve FT-IR değerleri tablo 20' de verilmiştir. Deneysel veriler göz önüne alındığında mikro dalga ile azaflavon sentezinde süresinin çok kısa olması, çözücü olmaması nedeniyle çevre açısından ve ürün veriminin fazla olmasından dolayı iyi bir metot olduğu kanıtlanmıştır [105].

Bileşik No	Katalizör	Güç (Watt)	Reaksiyon Süresi (dk)	R _f	Verim	E. N. (°C)
12	NaHSO ₄ -SiO ₂	700	2	$0,67^{a}$	366 mg % 82	120-122°C
13	NaHSO ₄ -SiO ₂	700	2	$0,53^{a}$	597 mg, %95	157-159°C
a (. · · · · ·	(1 2 0 5)					

Tablo 15. 12-13 Nolu bileşiklere ait deneysel veriler

^a (etiasetat-metanol, 3:0.5)

Tablo 16. **12-13** Nolu bileşiklerin ¹H NMR (200MHz) ve ¹³C NMR (50MHz) spektrum değerleri, CDCl₃

	12 ^{a,b}		13 ^{a,b}	
	δ_{H}	δ_{C}	δ_{H}	δ_{C}
2	-	160.4	-	159.7
3	6.93, s	109.2	-	119.0
4	-	178.0	-	176.8
5	8.24, dd, 8.2, 1.6	125.7	7.96, dd, 6.8, 1.6	125.2
6	7.48, dt, 8.2, 1.0	125.6	7.17, t, 6.8	124.9
7	7.74, dt, 8.2, 1.2	134.3	7.47, t, 6.8	133.7
8	7.59, dd, 8.2, 1.0	118.1	7.27, d, 6.8	117.6
9	-	156.0	-	155.4
10	-	123.9	-	122.0
1'	-	139.0	-	139.4
2'-6'	7.79, dd, 6.4, 3.2	119.7	7.22, dd, 6.2, 1.6	121.9
3'- 5'	8.83, dd, 6.4, 3.2	150.8	8.53, dd, 6.2, 1.6	149.2
-CH ₂ -			3.69, s	29.9
1"			-	147.9
2"-6"			6.83, dd, 6.2, 1.2	122.6
3"-5"			8.19, dd, 6.2, 1.2	149.8

^aKimyasal kayma değerleri TMS' ye göredir.

^bKimyasal kayma değerleri ¹H-¹H COSY ve ACD NMR programı yardımıyla çözümlendi.

Tablo 17. 12-13 Nolu bileşiklere ait UV-Vis verileri

Bileşik No	UV-Vi	s λ _{nm} (log ε)	
12	311(26688)	287(42612)	254(67464)
13	311(7772)	281(7222)	248(18043)

Dilogily No.	r	Feorik	Değerle	r	Analiz Değerleri			
DHEŞIK INU	С	Η	Ν	0	С	Η	Ν	0
12	75.33	4.06	6.27	14.33	75.37	4.11	6.20	14.32
13	76.42	4.49	8.91	10.18	76.40	4.47	8.68	10.45

Tablo 18. 12-13 Nolu bileşiklerin elementel analiz deneysel ve teorik verileri

Tablo 19. 12-13 Nolu bileşiklerin LC-MS/MS spektrum değerleri

Bileşik No						
m/z	12	13				
$[M+Na]^+$	246(100)	337(100)				
$[M+1]^{+}$	224(6)	315(20)				
$[M+1]^{+1}$	224(6)	315(2	20)			

Tablo 20. **12-13** Nolu bileşiklerin IR absorbsiyon bandları (cm⁻¹)

Bileşi	Bileşik No							
	12	13						
CH=CH	3072	3082						
sp ² CH	3027	3048						
sp ³ CH	-	2926						
		2857						
α, β doymamış C=O	1648	1643						
	1463	1465						
	1420	1406						
	1376	1384						
ve N	112	1125						
	1043	1066						
	913	1028						
	833	950						
	787	843						

4.3.1. 14-15 Nolu Bileşiklerin Sentezi ve Yapılarının Aydınlatılması

Çalışmanın ikinci bölümünün devamında, sentezlenen 4'-azaflavon bileşikleri dekilbromür ile asetonitrilli ortamda geri soğutucu altında kaynatıldı ve alkillendirme reaksiyonları sonucu **14-15** nolu bileşikler sentezlendi. **14-15** Nolu bileşiklerin sentezi denklem 26-27' de, deneysel verileri tablo 21' de, ¹H ve ¹³C NMR verileri tablo 22' de, UV tablo 23' de, elementel analiz tablo 24' de, kütle spektrumları tablo 25' da ve FT-IR değerleri tablo 26' da verilmiştir.

12

Denklem 26

Denklem 27

	Tablo 21. 1	14-15 No	lu bileş	iklere ait	deneysel	veriler
--	-------------	-----------------	----------	------------	----------	---------

Bileşik No	Çözücü	Reak. Süresi (s)	R _f	Verim	E. N. (°C)
14	MeCN	12	0,81 ^a	%85	179-180°C
15	MeCN	24	$0,75^{a}$	%77	104-106°C
9		· · · ·			

^a Etil asetat-metanol, 3:1, bazik İTK

	14 ^{a,b}			15 ^{a,b}	
	δ_{H}	$\delta_{\rm C}$		δ_{H}	δ_{C}
2	-	155.8	2	-	161.7
3	6.93, s	112.9	3	-	117.9
4	-	177.3	4	-	177.5
5	8.17, d, 8.2	126.5	5	8.14, d, 6.2	122.6
6	7.49, t, 8.2	125.9	6	7.45, t, 6.2	122.5
7	7.79, t, 8.4	135.2	7	7.73, t, 6.0	134.6
8	7.63, d, 8.4	118.4	8	7.52, m	118.2
9	-	155.6	9	-	156.2
10	-	123.9	10	-	122.4
1'	-	146.9	1'	-	139.2
2',6'	8.70, d, 6.4	124.4	2',6'	7.80, d, 5.6	125.8
3',5'	9.72, d, 6.4	146.1	3',5'	9.08, d, 5.6	150.9
			CH_2	4.10, s	29.5
			1"	-	158.5
			2",6"	7.50, d, 5.2	127.4
			3",5"	8.78, d, 5.2	145.0
1"	5.09, t, 7.0	62.3	1''',1''''	4.80, t, 7.4	61.4
2"-9"	2.09	31.9	2'''-9'''	1.86	31.8
	1.35-1.22	31.8	2""-9""	1.25-1.90	31.6
		29.4			29.5
		29.3			29.4
		29.2			29.3
		29.0			29.2
		26.1			26.2
		22.6			22.7
10"	0.86, t, 6.6	14.2	10''', 10''''	0.85, t, 7.4	14.1

Tablo 22. **14-15** Nolu bileşiklerin ¹H NMR (200MHz) ve ¹³C NMR (50MHz) spektrum değerleri, CDCl₃

15

^bKimyasal kayma değerleri ¹H-¹H COSY ve ACD NMR programı yardımıyla çözümlendi.

Bileşik No		UV-Vis λ_{nm} (log ϵ)	
14	395(1706)	308(13392)	248(28922)

300(4571) 272(6918)

238(2951)

Tablo 23. 14-15 Nolu bileşiklere ait UV-Vis verileri

346(1659)

Dilagily No.]	Feorik]	Değerle	r		Analiz I	Değerleri	
DHEŞIK INO	С	Η	Ν	0	С	Н	Ν	0
14	64.86	6.80	3.15	7.20	64.97	6.98	3.45	-
15	63.49	7.46	3.70	4.23	63.24	7.44	3.92	-

Tablo 24. 14-15 Nolu bileşiklerin elementel analiz deneysel ve teorik verileri

Tablo 25. 14-15 Nolu bileşiklerin LC-MS/MS spektrum değerleri

Bileşik No						
m/z	14	15				
$[M+H(2x^{81}Br)]^+$		759(38)				
$[M(2x^{81}Br)]^+$ veya $[M(2x^{79}Br)+2H]^+$		756(58)				
$[M+H(^{81}Br)]^+$	446(8)					
$[M(^{81}Br)]^+$	445(14)					
$[M+H(^{79}Br)]^+$	444)(32)					
$[M-{}^{9}Br/{}^{81}Br+H]^{+}$	365(28)					
$[M-^{79}Br/^{81}Br]^+$	364(100)					
$[M-2Br-2(CH_2)_9CH_3+H]^+$		315(100)				

Tablo 26. 14-15 Nolu bileşiklerin IR absorbsiyon bandları (cm⁻¹)

Bileşik No						
	14	15				
СН=СН	3085	3082				
sp ² CH	3029	3027				
α, β doymamış C=O	1634	1638				
	1516	1515				
	1467	1470				
	1386	1360				
ve N	1320	1115				
	1129	917				
	1050	879				
	915	853				
	879	755				

4.4. 1-9 ve 16-24 Nolu Bileşiklerin Teorik Hesaplamaları

Çalışmanın üçüncü bölümünde sentezlenen hidroksi azakalkonların (1-9) katı halde ve methanol, kloroform, asetonitril gibi değişik çözücülerde UV lamba altında dimerleşme reaksiyonları denenmiş, fakat dimerleşme reaksiyonları gerçekleştirilememiştir. Gaussian programı ile yapılan teorik hesaplamalar sonucunda sentezlenen 1-9 nolu hidroksi

azakalkon bileşiklerinin S_0 temel hal ve S_1 - T_1 uyarılmış halleri frontier orbitalleri incelenmiştir. Bu incelemeler sonucu dimerleşmeninin meydana geldiği çift bağlarda elektron yoğunluğunun dimerleşmeye imkân verecek kadar elektron içermediği veya orbital simetrilerinin örtüşmediği ya da dimerleşmenin oluşabilmesi için gereken şartların oluşmadığı sonucuna varılmıştır [89].

Grubumuz tarafından yapılan sentez reaksiyonları sonucunda metoksi azakalkonların dimerleştiği görülmüştür. Buradan hareketle hidroksi azakalkonların metoksi gibi bir yapıya çevrilmesi araştırılmış ve çalışmanın üçüncü bölümünün devamında benzoillenme reaksiyonları denenmiş ve başarıyla yüksek verimle benzoillenmiş azakalkon bileşikleri (16-24) elde edilmiştir. Yine bu bölümde elde edilen 16-24 benzoillenmiş azakalkon bileşikleri görülmüştür.

Kalkon türü bileşiklerin değişik biyoaktivite gösterdikleri bilinmektedir. Doğal kalkon türü bileşiklerde heteroaril gruplarına rastlanılmamıştır. Fakat heterohalkalı kalkon türü bileşikler sentezlenip çeşitli biyolojik aktivite tayinleri yapılmıştır [40-48].

Bu çalışmada yapılan teorik hesaplamalar Density Functional Theory (DFT), Hartre Fock (HF) ve PM3 metodları kullanılarak yapılmıştır. Moleküllerin optimizasyonları, hesaplanan teorik NMR değerleri ve elektron yoğunlukları DFT//B3LYP/6-31G* temel seti kullanılarak hesaplanmıştır. **1-9** ve **16-24** nolu bileşiklerinin singlet ve triplet uyarılmış hallerinin hesaplamaları CIS// B3LYP/6-31G* temel seti kullanılarak hesaplanmıştır. **16** - **24** nolu bileşiklerin UV lambası altında verdikleri reaksiyonların potansiyel enerji yüzeyleri ve geçiş halleri HF//3-21G* temel seti kullanılarak hesaplanmıştır. Tablo 52, 64 ve 69'de verilen geçiş hallerinin enerjilerinin karşılaştırılması ise PM3 metoduna göre hesaplanmıştır.

Azakalkonların değişik substituye bileşiklerinin dimerleşme reaksiyonları literatürde olduğundan [120-122] hidroksi gruplarının benzoillenmesiyle birlikte dimerleşme reaksiyonları gerçekleştirilmeye çalışılmıştır. Ayrıca birçok bileşiğin gerek çözeltide gerek de katı halde dimerleşme reaksiyonları incelenmiş ve çözeltide gerçekleşen reaksiyonlar için frontier orbitallerinin dimerleşmeye etkileri ve katı halde dimerleşme sırasında bazı bağ ve açı değerleri incelenmiştir [80-84] ve hidroksi substituye **1-9** bileşiklerinin neden dimerleşmediği iki farklı çalışmayla ortaya koyulmuştur.

Aşağıdaki tablo 27'de **1-9** ve **16-18** nolu bileşiklerin dimerleşmesi için hesaplanan değerler verilmiştir. Bu tabloya göre **1- 9** bileşikleri dimerleşme reaksiyonu sırasında

uygun açı ile birbirlerine yaklaşamadıklarından dimerleseme reaksiyonlarının gerçekleşmediği sonucuna varılmaktadır. Burada dimerleşememelerinin en büyük nedeni azakalkon bileşiğinin hidroksi grubunun çözücü veya kendi aralarında hidrojen bağı kurmasından kaynaklanmaktadır. Bunun sonucunda iki molekül dimerleşmek için birbirlerine 4.2A°'dan daha cok yaklasabilmeleri gerekmektedir. Fakat yapılan teorik hesaplamalara göre **1-9** bileşiklerinin bu uzaklığa yukarıdaki nedenlerden dolayı gelemediklerinden dimerleşemedikleri sonucuna varılmıştır. 16-18 Nolu bileşiklerin hesaplanan değerlerine bakıldığında gerek dimerleşmek için uygun uzaklık gerek de diğer şartların oluştuğu görünmekte ve frontier orbitallerin de dimerleşme reaksiyonunun gerçekleşmesi için uygun simetri ve elektron yoğunluğu taşıdığından dolayı teorik olarak dimerleşme reaksiyonunun gerçekleşmesi mümkündür.

Tablo 27. 2'-, 3'-, 4'-Hidroksi-2"-, 3"- ve 4"-azakalkon ve benzoil bileşiklerinin dimerleşmesi sırasında bazı bağ ve açı değerleri.

Bileşik No	d	α	τ	Ø	к
1	4.40				
2	4.72				
3	6.09				
4	5.75				
5	5.74				
6	6.18				
7	5.80				
8	6.83				
9	4.97				
16	2.28	89.8	7.00	0	89.9
17	2.62	94.8	11.8	0	89.8
18	2.70	87.7	6.6	0	88.8
22	2.28	89.8	7.0	0	89.9
23	2.62	94.8	11.8	0	89.8
24	2.70	87.7	6.6	0	88.8
Ideal değerler	<4.2	90	0	0	90

1-9 Nolu bileşiklerinin teorik olarak hesaplanan HOMO, LUMO, HSOMO ve LSOMO enerjileri (eV) tablo 28-30 da aşağıda verilmiştir.

ע וי וית		1			2			2	
Bileşik No		l			2			3	
Uyarılma Hali	S_o	\mathbf{S}_1	T_1	So	\mathbf{S}_1	T_1	So	\mathbf{S}_1	T_1
HOMO (eV)	-6.24			-6.37			-6.44		
C_{α}	0.05			-0.09			0.09		
C_{β}	0.08			-0.11			0.12		
LUMO (eV)	-2.59			-2.51			-2.36		
C_{α}	-0.42			-0.42			-0.49		
C_{β}	0.60			0.34			0.55		
HSOMO (eV)		0.812	-5.86		0.98	-5.71		-8.89	-5.97
C_{α}		0.09	0.36		-0.15	0.03		-0.18	0.10
C_{β}		0.08	0.57		-0.13	-0.19		-0.09	-0.30
LSOMO (eV)		-8.60	-9.91		-8.60	-9.82		1.16	-9.74
C_{α}		-0.42	0.09		-0.43	0.40		-0.51	0.35
C_{β}		0.59	-0.30		0.58	0.59		0.55	0.61

Tablo 28. 1-3 Nolu bileşiklerin HOMO, LUMO, HSOMO ve LSOMO enerjileri (eV)

Tablo 29. 4-6 Nolu bileşiklerin HOMO, LUMO, HSOMO ve LSOMO enerjileri (eV)

Bileşik No		4			5			6	
Uyarılma Hali	So	S_1	T_1	So	S_1	T_1	So	S_1	T ₁
HOMO (eV)	-6.33			-6.24			-6.28		
C_{α}	-0.18			0.02			0.10		
C_{β}	-0.17			0.01			0.09		
LUMO (eV)	-2.02			-2.19			-2.08		
C_{α}	-0.47			-0.40			-0.42		
C_{β}	0.56			0.60			0.57		
HSOMO (eV)		-8.60	-5.89		1.23	-5.84		1.55	-5.75
Cα		-0.48	0.09		-0.39	0.04		-0.42	0.03
C_{β}		0.57	-0.30		0.59	-0.23		0.57	-0.18
LSOMO (eV)		1.42	-9.09		-8.66	-9.15		-8.56	-912
C_{α}		0.43	0.31		-0.01	0.32		0.54	0.34
C_{β}		0.30	0.48		-0.01	0.48		0.30	0.48

Bileşik No		7			8			9	
Uyarılma Hali	So	S_1	T_1	So	\mathbf{S}_1	T_1	So	S_1	T_1
HOMO (eV)	-6.02			-6.13			-6.00		
C_{α}	-0.04			0.04			0.08		
C_{β}	-0.14			0.04			0.10		
LUMO (eV)	-2.10			-2.19			-2.41		
C_{α}	-0.44			-0.46			-0.40		
C_{β}	0.57			0.53			0.57		
HSOMO (eV)		1.44	-5.55		1.35	-5.66		1.09	-5.63
C_{α}		-0.46	0.07		-0.47	0.07		-0.41	0.38
C_{β}		0.57	-0.27		0.53	-0.20		0.58	-0.29
LSOMO (eV)		-8.53	-9.13		-8.54	-9.15		-8.37	-9.31
C_{α}		-0.39	-0.32		0.11	-0.27		0.13	-0.27
C _β		-0.26	-0.49		0.09	-0.54		0.11	-0.49

Tablo 30. 7-9 Nolu bileşiklerin HOMO, LUMO, HSOMO ve LSOMO enerjileri (eV)

Burada tablo 28'den de görüleceği üzeri; **1–3** bileşiklerinin temel hallerinin HOMO orbitallerinde ve uyarılmış hal S₁ HSOMO orbitallerinde elektron yoğunluğu olmadığından dimerleşme reaksiyonu gerçekleşememektedir. **1** Nolu bileşiğin T₁ HSOMO orbitallerinde elektron yoğunluğu olmasına rağmen simetri bakımından LUMO orbitaliyle girişim yapamazlar. Bundan dolayı **1-3** bileşiklerinin fotokimyasal dimerleşme reaksiyonları çözücü ortamında ve katı fazda gerçekleşmemiştir. Gerek orbital simetrisi ve elektron yoğunluğu bakımından gerek de dimerleşme için gerekli şartlar **1-3** bileşikleri için oluşmadığı için bu bileşiklerin dimerleşme reaksiyonları gözlenememektedir.

Tablo 29'da hesaplanan teorik değerlere göre; **4** nolu bileşiğin frontier orbitalleri incelendiğinde temel hal So-LUMO orbitalleri ve singlet uyarılmış S₁-HSOMO ve So-HOMO orbitalleri ile S₁-LSOMO orbitallerinin girişimleri sonucu gerek elektron yoğunluğu gerek de simetri bakımından uygunlukları bakımından girişimleriyle dimerleşme reaksiyonu gerçekleşebilir. T₁-HSOMO orbitallerinin elektron yoğunlukları olmadığından dimerleşmenin bu orbitaller üzerinden gerçekleşmesine imkân yoktur. So-HOMO orbitalleri ile T₁-LSOMO orbitallerinin de girişimleri sonucu gerek elektron yoğunluğu gerek de simetri bakımından uygunlukları bakımından dimerleşme gerçekleşebilir. Elektronların uyarılması için gerekli orbitaller arasındaki enerji farkları triplet hal için daha az olduğundan dimerleşme triplet halden gerçekleşmesi beklenir.

5 nolu bileşiğin frontier orbitalleri incelendiğinde temel hal So-LUMO orbitalleri ve singlet uyarılmış S₁-HSOMO orbitallerinin girişimleri sonucu gerek elektron yoğunluğu

gerek de simetri bakımından uygunlukları bakımından girişimleriyle dimerleşme reaksiyonu gerçekleşebilir. So-HOMO, S₁-LSOMO ve T₁-HSOMO orbitallerinde elektron yoğunluğu olmadığından bu orbitallerin girişimleri sonucu bir dimerleşme ürünü oluşmaz (Tablo 29).

6 nolu bileşiğin frontier orbitalleri incelendiğinde temel hal So-LUMO orbitalleri ve singlet uyarılmış S₁-HSOMO orbitallerinin girişimleri sonucu gerek elektron yoğunluğu gerek de simetri bakımından uygunlukları bakımından girişimleriyle dimerleşme reaksiyonu gerçekleşebilir. So-HOMO ve T₁-HSOMO orbitallerinin elektron yoğunlukları olmadığından dimerleşmenin bu orbitaller üzerinden gerçekleşmesine imkân yoktur (Tablo 29).

7 nolu bileşiğin frontier orbitalleri incelendiğinde temel hal So-LUMO orbitalleri ve singlet uyarılmış S₁-HSOMO orbitallerinin girişimleri sonucu gerek elektron yoğunluğu gerek de simetri bakımından uygunlukları bakımından gerçekleşebilir. So ve T₁-HSOMO orbitallerinin elektron yoğunlukları olmadığından dimerleşmenin bu orbitaller üzerinden gerçekleşmesine imkân yoktur (Tablo 30).

8 nolu bileşiğin frontier orbitalleri incelendiğinde temel hal So-LUMO orbitalleri ve singlet uyarılmış S₁-HSOMO orbitallerinin girişimleri sonucu gerek elektron yoğunluğu gerek de simetri bakımından uygunlukları bakımından gerçekleşebilir. So-HOMO, S₁ ve T₁-HSOMO orbitallerinin elektron yoğunlukları olmadığından dimerleşmenin bu orbitaller üzerinden gerçekleşmesine imkân yoktur. Triplet uyarılmış halin LSOMO orbitaliyle temel hal HOMO orbitallerinin simetri bakımından da yönelmeleri uygun olmadığından dimerleşmenin beklenmesi söz konusu değildir (Tablo 30).

9 nolu bileşiğin frontier orbitalleri incelendiğinde temel hal So-LUMO orbitalleri ve singlet uyarılmış S₁-HSOMO orbitallerinin girişimleri sonucu gerek elektron yoğunluğu gerek de simetri bakımından uygunlukları bakımından gerçekleşebilir. So-HOMO, S₁-LSOMO ve T₁-HSOMO orbitallerinin elektron yoğunlukları olmadığından dimerleşmenin bu orbitaller üzerinden gerçekleşmesine imkân yoktur (Tablo 30).

Her ne kadar bir dimerleşme reaksiyonu frontier orbitallere göre gerçekleşse de deneysel olarak katı faz ve çözücü fazında **4-9** nolu bileşikler için bir dimerleşme reaksiyonu gerçekleşmemiştir. Literatüre göre dimerleşme için gerekli şartlar göz önüne alındığında iki molekülün dimerleşmesi için aralarındaki mesafenin 4.2A°'dan daha çok yaklaşabilmeleri gerekmektedir. **4-9** nolu bileşiklerin bağ mesafesi bu değerden daha fazla olduğu hesaplanan teorik verilere göre tablo 29 ve 30'da ortaya konmuş ve frontier

orbitalleri ve elektron yoğunluğu bakımından uygun olmasına rağmen dimerleşme reaksiyonu gözlenmemiştir sonucuna varılmıştır.

4.5. 16-24 Nolu Bileşiklerin Sentezi ve Yapılarının Aydınlatılması

1-9 Nolu bileşiklerinin 400 Watt yüksek basınçlı civa lambası altında dimerleştirilememelerinin ardından çalışmanın üçüncü bölümünde, sentezlenen 1-9 bileşikleri benzoillenerek 2'-, 3'-, 4'-benzoil-2"-, 3"- ve 4"-azakalkon (16-24) bileşikleri sentezlendi.

4.5.1. 16-18 Nolu Bileşiklerin Sentezi ve Yapılarının Aydınlatılması

16-18 Nolu bileşiklerin sentez denklem 28' de, deneysel veriler tablo 31' de, ¹H ve ¹³C NMR verileri tablo 32' de, UV tablo 33' de, elementel analiz tablo 34' de, kütle spektrumları tablo 35' de ve FT-IR değerleri tablo 36' da verilmiştir.

Denklem 28

Tablo 31. 16-18 Nolu biles	siklere ait deneysel veriler
----------------------------	------------------------------

Bileşik No	Kullanılan Baz	Sıcaklık (°C)	Reaksiyon Süresi (dk)	R _f	Verim	E.N.(°C)
16	NaOH	0-5	60	0.56^{a}	%85	157-159 °C
17	NaOH	0-5	60	0.8^{b}	%80	98-100 °C
18	NaOH	0-5	60	0.46^{a}	%44	yağımsı

^a n-hekzan-etil asetat, 1:1

^b etil asetat

	16 ^{a,b}		17 ^{a,b}		18 ^{a,b}	
	$\delta_{ m H}, J$	$\delta_{\rm C}$	$\delta_{ m H}, J$	$\delta_{\rm C}$	$\delta_{ m H}, J$	δ_{C}
1	-	190.6	-	188.5	-	183.3
2	7.42,s	121.7	7.67, s	126.0	7.71, s	125.6
3	7.42, s	141.5	7.67, s	141.8	7.71,s	141.5
1a	-	164.9	-	164.9	-	164.4
1'	-	128.7	-	138.7	-	134.9
2'	-	149.1	7.59, s	125.7	8.22, d, 9.2, 6.2	131.2
3'	7.80, dd, 9.4, 1.8	126.3	-	15.1	7.55, d, 9.2	122.1
4'	7.61, t	133.2	7.51, d, 7.8	16.8	-	154.7
5'	7.24, t	123.6	7.41, t	150.1	7.55, d, 9.2	122.1
6'	7.33,d 8.8	130.1	7.47, d, 7.8	128.2	8.22, d, 9.2, 6.2	131.2
1"	-	141.6	-	142.1	-	141.8
2"	7.20, dd, 6.0, 1.5	128.6	7.45, d, 5.8	130.0	7.49, dd, 6.0, 3.0	121.9
3"	8.55, dd, 6.0, 1.6	150.4	8.66, d, 5.8	122.2	8.70, dd, 6.0, 3.0	150.5
4"	-	-	-	-	-	-
5"	8.55, dd, 6.0, 1.6	150.4	8.66, d, 5.8	122.2	8.70, dd, 6.0, 3.0	150.5
6"	7.20, dd, 6.0, 1.5	128.6	7.45, d, 5.8	130.0	7.49, dd, 6.0, 3.0	121.9
1'''	-	131.8	-	131.8	-	128.7
2'''	8.11, dd, 9.8, 1.4	130.1	8.20, d, 8.4	130.1	8.13, dd, 8.8, 5.2	130.1
3'''	7.45, t	129.3	7.91, dd, 8.4, 1.0	128.3	7.40, d, 8.8	128.6
4'''	7.53, t	133.9	7.99, dd, 8.4, 3.0	133.9	7.66, dd, 8.8, 3.0	133.9
5'''	7.45, t	129.3	7.91, dd, 8.4, 1.0	128.3	7.40, d, 8.8	128.6
6'''	8.11, dd, 9.8, 1.4	130.1	8.20, d, 8.4	130.1	8.13, dd, 8.8, 5.2	130.1

Tablo 32. **16-18** Nolu bileşiklerin ¹H NMR (200MHz) ve ¹³C NMR(50 MHz) spektrum değerleri, CDCl₃

^bKimyasal kayma değerleri ¹H-¹H COSY ve ACD NMR programı yardımıyla çözümlendi.

Tablo 33. 16-18 Nolu bileşiklere ait UV-Vis verileri

Bileşik No	U	V-Vis λ _{nm} (log	(3
16	286(18219)		
17	285(22900)	242(16549)	
18	242(16645)	266(9578)	302(8384)

Tablo 34. 16-18 Nolu bileşiklerin elementel analiz deneysel ve teorik verileri

Bileşik No	Teorik Değerler				Analiz Değerleri				
	С	Η	Ν	0	С	Η	Ν	0	
16	76.58	4.59	4.25	14.57	76.57	4.59	4.27	14.57	
17	76.58	4.59	4.25	14.57	76.55	4.57	4.22	14.66	
18	76.58	4.59	4.25	14.57	76.59	4.58	4.24	14.59	

Bileşik No							
m/z	16	17	18				
$[M+15]^+$	344(15)						
$[M+1]^{+}$	330(26)	330(35)	330(58)				
[M] ⁺	329(100)	329(83)	329(63)				

Tablo 35. 16-18 Nolu bileşiklerin LC-MS/MS spektrum değerleri

Tablo 36. **16-18** Nolu maddelerin IR absorbsiyon bandları (cm⁻¹)

Bileşik No						
	16	17	18			
CH=CH sp ² CH	3057	3062	3064			
α, β doymamış C=O	1731	1723	1735			
	1663	1668	1603			
	1416	1273	1449			
	1302	1226	1314			
	1269	1167	1264			
ve N	1220	1065	1200			
	1170	1024	1176			
	1023		1061			
	801		709			

Yapılan teorik hesaplamalar sonucunda **16-18** benzoil bileşiklerinin frontier orbitalleri incelenmiştir ve sonuçlar aşağıdaki tablo 37' de gösterilmiştir. Çıkan sonuçlara göre **16** nolu bileşiğin T_1 triplet HSOMO ve LSOMO orbitallerinde elektron yoğunluğunun olmamasından dolayı S_1 singlet uyarılma sonucu gerçekleştiği görülmektedir. S_1 singlet uyarılma sonucu hem HSOMO-LUMO hem de HOMO-LSOMO orbitalleri hem elektron yoğunluğu bakımından hem de simetri bakımından dimerleşmeye uygun olduğundan reaksiyon stereo ve regiospesifik gerçekleşmiş ve tek ürün elde edilmiştir (Tablo 37).

17 nolu bileşiğin T_1 triplet uyarılması sonucu HSOMO orbitallerinde elektron yoğunluğu olmamaktadır. LSOMO orbitallerinde ise simetri bakımından farklı yönlenme olmasından dolayı dimerleşmeye imkân vermemektedir. S_1 singlet uyarılma sonucu gerçekleştiği görülmektedir. Hem HSOMO-LUMO hem de HOMO-LSOMO orbitalleri hem elektron yoğunluğu bakımından hem de simetri bakımından dimerleşmeye uygun olduğundan reaksiyon stereo ve regiospesifik gerçekleşmiş ve tek ürün elde edilmiştir (Tablo 37).

Bileşik No		16			17			18	
Uyarılma Hali	So	S_1	T_1	So	S_1	T_1	So	S_1	T_1
HOMO (eV)	-6.72			-6.75			-6.69		
C_{α}	-0.21			0.11			-0.01		
C_{β}	-0.23			0.15			-0.04		
LUMO (eV)	-2.48			-2.33			-2.41		
C_{α}	-0.47			-0.45			0.48		
C_{β}	0.42			0.56			-0.38		
HSOMO (eV)		1.05	-5.95		-0.84	2.05		1.05	2.21
C_{α}		-0.47	0.08		-0.46	-0.28		-0.04	0.26
C_{β}		0.55	-0.30		0.58	0.07		0.13	-0.29
LSOMO (eV)		-9.22	-9.82		-9.22	-7.40		-9.29	-7.41
C_{α}		-0.18	0.04		0.25	-0.75		-0.02	0.06
C_{β}		-0.15	0.06		0.19	0.86		-0.01	-0.11

Tablo 37. 16-18 Nolu bileşiklerin HOMO, LUMO, HSOMO ve LSOMO enerjileri (eV)

18 nolu bileşikde ise S_1 singlet uyarılmada HSOMO ve LSOMO orbitallerinde elektron yoğunluğunun olmamasından dolayı S_1 singlet uyarılma sonucu gerçekleşmediği görülmektedir. T_1 triplet uyarılmada LSOMO orbitallerinde elektron yoğunluğunun olmadığından dimerleşme T_1 triplet uyarılma LUMO-HSOMO orbitallerinin dimerleşmesiyle gerçekleşmekte ve regiospesifikliği kaybederek 2 ürün meydena gelmektedir (Tablo 37).

4.5.2. 19-21 Nolu Bileşiklerin Sentezi ve Yapılarının Aydınlatılması

19-21 Nolu bileşiklerin sentezi denklem 29' da, deneysel veriler tablo 38' de, ¹H ve ¹³C NMR verileri tablo 39' da, UV tablo 40' da, elementel analiz tablo 41' de, kütle spektrumları tablo 42' de ve FT-IR değerleri tablo 43' de verilmiştir.

Denklem 29

Bileşik No	Kullanılan Baz	Sıcaklık (°C)	Reaksiyon Süresi (dk)	R _f	Verim	E. N. (°C)
19	NaOH	0-5	60	0.75^{a}	%72	142-144 °C
20	NaOH	0-5	60	0.88^{b}	%98	70-72 °C
21	NaOH	0-5	60	0.89 ^b	%70	yağımsı
a 1 1	1 4 - 4 1 - 1					

Tablo 38. 19-21 Nolu bileşiklere ait deneysel verile	er
--	----

^a n-hekzan-etil asetat, 1:1

^b etil asetat

Tablo 39. **19-21** Nolu bileşiklerin ¹H NMR (200 Mhz) ve ¹³C NMR (50 MHz) spektrum değerleri, CDCl₃

	19 ^{a,b}		20 ^{a,b}		21 ^{a,b}	
	$\delta_{ m H}, J$	δ_{C}	$\delta_{ m H}, J$	δ_{C}	$\delta_{ m H}, J$	δ_{C}
1	-	190.4	-	188.3	-	188.3
2	7.30, d, 15.8	17.0	7.54, d, 15.8	123.6	7.62,d, 15.8	123.8
3	7.42, d, 15.8	140.8	7.80, d, 15.8	141.1	7.82, d, 15.8	140.9
1a	-	164.7	-	164.7	-	164.5
1'	-	131.8	-	138.9	-	135.1
2'	-	148.8	7.90, s	127.7	8.21, dd, 8.8, 1.8	133.8
3'	7.30, d, 8.8	123.4	-	151.0	7.49, dd, 8.8, 3.0	123.5
4'	7.58, t, 4.2	133.6	7.64, d, 8.8	125.8	-	154.6
5'	7.24,t, 6.0	126.1	7.50, t, 8.8	133.7	7.49, dd, 8.8, 3.0	123.5
6'	7.59, d, 8.8	129.6	7.61, d, 8.8	126.4	8.21, dd, 8.8, 1.8	133.8
1"	-	128.6	-	130.3	-	130.6
2"	8.65, s	149.4	8.85, d, 2.0	126.7	8.89,d, 2.0	149.6
3"	-	-	-	-	-	-
4"	8.55,d, 4.4	150.6	8.62, dd, 6.4, 1.8	150.8	8.65, dd, 6.4, 3.2	150.7
5"	7.19, t, 6.0	123.5	7.34, t	123.2	7.37, t	122.0
6"		132.8	7.95, dt, 6.4, 2.4	129.7	7.98, dt, 8.2, 4.0	129.7
1'''	-	129.9	-	128.8	-	128.8
2'''	8.11, dd, 9.4, 2.6	129.8	8.19, dd, 8.6, 1.6	130.0	8.13, dt, 8.6, 2.4	130.1
3'''	7.39,dd, 9.4, 3.0	128.4	7.47, dd, 8.6, 2.0	128.4	7.41, dd, 8.6, 2.0	128.6
4'''	7.78,dd, 9.4, 1.6	132.2	7.59, dt, 8.6, 3.0	134.5	7.68, dt, 8.6, 1.6	134.8
5'''	7.39,dd, 9.4, 3.0	128.4	7.47, dd, 8.6, 2.0	128.4	7.41, dd, 8.6, 2.0	128.6
6'''	8.11, dd, 9.4, 2.6	129.8	8.19, dd, 8.6, 1.6	130.0	8.13, dt, 8.6, 2.4	130.1

^aKimyasal kayma değerleri TMS' ye göredir.

^bKimyasal kayma değerleri ¹H-¹H COSY ve ACD NMR programı yardımıyla çözümlendi.

Bileşik No	UV-Vis λ_{nm} (log ε)						
19	304(26526)	288(23847)	241(16952)				
20	304(16902)	288(15262)	242(16259)				
21	302(19141)	288(17825)	242(17762)				

Tablo 40. 19-21 Nolu bileşiklere ait UV-Vis verileri

Dilasily No.	,	Teorik	Değerle	er		Analiz I	Değerleri	
DHEŞIK INU	С	Н	Ν	0	С	Η	Ν	0
19	76.58	4.59	4.25	14.57	76.58	4.58	4.25	14.58
20	76.58	4.59	4.25	14.57	76.56	4.61	4.25	14.58
21	76.58	4.59	4.25	14.57	76.58	4.61	4.23	14.58

Tablo 41. 19-21 Nolu bileşiklerin elementel analiz deneysel ve teorik verileri

Tablo 42. 19-21 Nolu bileşiklerin LC-MS/MS spektrum değerleri

Bileşik No								
m/z	19	20	21					
$[M+Na]^+$			352(62)					
$[M+4]^{+}$		333(26)						
$[M+2]^{+}$	331(22)		331(27)					
$[M+1]^{+}$	330(32)	330(31)	330(25)					
$[\mathbf{M}]^+$	329(54)	329(15)						
$[M-28]^+$			301(18)					
[M-75] ⁺		249(100)						
$[M-81]^+$	248(57)	248(84)	248(8)					
[M-99] ⁺	230(100)							
$[M-224]^+$			105(100)					

Tablo 43. **19-21** Nolu maddelerin IR absorbsiyon bandları (cm⁻¹)

Bileşik No						
	19	20	21			
CH=CH	3060	3060	3062			
sp ² CH	3025	3021				
α, β doymamış C=O	1735	1728	1735			
	1660	1669	1685			
	1598	1906	1482			
	1506	1609	1449			
	1451	1415	1313			
ve N	1416	1312	1263			
	1274	1284	1200			
	1226	1265	1177			
	1165	1171	1060			
	1059	1061	759			
			706			

Yapılan teorik hesaplamalar sonucunda **19-21** benzoil bileşiklerinin frontier orbitalleri incelenmiştir ve sonuçlar aşağıdaki tablo 44' de gösterilmiştir.

Bileşik No		19			20			21	
Uyarılma Hali	So	S_1	T_1	So	S_1	T_1	So	S_1	T_1
HOMO (eV)	-6.52			-6.62			-6.26		
C_{α}	0.31			0.07			-0.08		
C_{β}	0.47			0.27			-0.18		
LUMO (eV)	-2.25			2.37			-2.10		
C_{α}	0.56			0.58			0.54		
C_{β}	-0.40			-0.41			-0.40		
HSOMO (eV)		1.23	-5.46		1.18	-7.24		1.36	-6.17
C_{α}		-0.44	-0.41		0.57	0.86		0.56	-0.18
C_{β}		0.56	0.58		-0.44	-0.72		-0.43	0.03
LSOMO (eV)		-8.92	-9.85		-8.99	-3.20		-8.83	-9.40
C_{α}		0.55	0.35		0.34	-0.04		0.36	0.51
C_{β}		0.35	0.33		0.55	0.01		0.54	0.34

Tablo 44. 19-21 Nolu bileşiklerin HOMO, LUMO, HSOMO ve LSOMO enerjileri (eV)

19 Nolu bileşiğin uç orbitalleri incelendiğinde temel hal HOMO orbitalleri ile singlet ve triplet uyarılmış LSOMO orbitalleri ve temel hal LUMO orbitalleri ile singlet ve triplet hal HSOMO orbitalleri hem elektron yoğunluğu hem de simetri bakımından girişim yapmaya dolayısıyla da dimerleşmeye uygundur. Elektronların uyarılması için gerekli orbitaller arasındaki enerji farkları singlet hal için daha az olduğundan dimerleşme singlet halden gerçekleşir. Hesaplamalar sonucu her iki orbitalin girişmesi sonucu dimerleşme meydana geldiğinden teorik olarak hem stereo hem de regiosellective ürün yani tek bir ürün elde edilmesi beklenir. Deneysel olarak da tek bir ürün elde edilmiştir (Tablo 44).

20 Nolu bileşiğin uç orbitalleri incelendiğinde temel hal LUMO orbitalleri ile singlet uyarılmış HSOMO orbitalleri hem elektron yoğunluğu hem de simetri bakımından girişim yapmaya dolayısıyla da dimerleşmeye uygundur. Temel hal HOMO orbitallerinde elektron yoğunluğu olmadığından bu orbitallerin girişimleri sonucu dimerleşme ürünü meydana getirmeleri beklenmez. Triplet uyarılma sonucu oluşan HSOMO orbitalleri ile temel hal LUMO orbitalleri de gerek simetri gerek de elektron yoğunluğu bakımından girişim yaparak dimerleşme reaksiyonu verebilirler. Elektronların uyarılması için gerekli orbitaller arasındaki enerji farkları singlet hal için daha az olduğundan dimerleşme singlet halden gerçekleşir. Hesaplamalar sonucu tek bir orbitalin girişim yapması nedeniyle dimerleşme reaksiyonu meydana geldiğinden teorik olarak stereosellective ürün elde

edilmesi beklenir. Regiosellectivite kaybolduğundan birden fazla ürün elde edilmesi beklenir. Deneysel olarak da üç ürün elde edilmiştir (Tablo 44).

21 Nolu bileşiğin uç orbitalleri incelendiğinde temel hal LUMO orbitalleri ile singlet uyarılmış HSOMO orbitalleri hem elektron yoğunluğu hem de simetri bakımından girişim yapmaya dolayısıyla da dimerleşmeye uygundur. Temel hal HOMO orbitallerinde elektron yoğunluğu olmadığından bu orbitallerin girişimleri sonucu dimerleşme ürünü meydana getirmeleri beklenmez. Hesaplamalar sonucu tek bir orbitalin girişim yapması nedeniyle dimerleşme reaksiyonu meydana geldiğinden teorik olarak stereosellective ürün elde edilmesi beklenir. Regiosellectivite kaybolduğundan birden fazla ürün elde edilmesi beklenir. Deneysel olarak da iki ürün elde edilmiştir (Tablo 44).

4.5.3. 22-24 Nolu Bileşiklerin Sentezi ve Yapılarının Aydınlatılması

22-24 Nolu bileşiklerin sentezi denklem 30' da, deneysel veriler tablo 45' de, ¹H ve ¹³C NMR verileri tablo 46' da, UV tablo 47' de, elementel analiz tablo 48' de, kütle spektrumları tablo 49' da ve FT-IR değerleri tablo 50' de verilmiştir.

Denklem 30

Tablo 45.	22-24 Nol	u bileşikl	ere ait denev	vsel veriler
		,	-	

Bileşik No	Kullanılan Baz	Sıcaklık (°C)	Reaksiyon Süresi (dk)	R _f	Verim	E. N. (°C)
22	NaOH	0-5	60	0.56 ^a	396 mg, %90	136-139 °C
23	NaOH	0-5	60	0.71^{a}	400 mg, %91	65-68 °C
24	NaOH	0-5	60	0.79 ^b	420 mg, %76	82-85 °C

^a n-hekzan-etil asetat, 2:1

^b n-hekzan-etil asetat, 1:1

	22 ^{a,b}		23 ^{a,b})	24 ^{a,t})
	$\delta_{ m H}, J$	δ_{C}	$\delta_{ m H}, J$	$\delta_{\rm C}$	$\delta_{ m H}, J$	δ_{C}
1	-	190.9	-	189.0	-	189.0
2	7.58, d,15.6	128.5	7.74, d, 15.4	125.5	7.76, d, 15.0	128.3
3	7.77,d,15.6	143.0	8.14, d, 15.4	142.9	8.12, d, 15.0	142.5
la	-	164.8	-	164.8	-	164.5
1'	-	131.8	-	139.0	-	135.3
2'	-	148.9	8.12, s	124.5	8.20, d, 8.0	130.4
3'	7.81, nd	125.9	-	151.0	7.55, m	122.0
4'	7.60, nd	132.7	7.62, d, 7,6	126.1	-	154.7
5'	7.18,dq,13.6,	124.7	7.95, m	129.7	7.55, m	122.0
6'	7.83,dd,9.4,2	129.9	8.10, d, 7.6	126.5	8.20, d, 8.0	130.4
1"	-	152.5	-	152.6	-	152.8
2"	-	-	-	-	-	-
3"	8.57,dd,5.6,0.8	149.8	8.64, d, 4,8	149.9	8.73, d, 4.6	149.9
4"	7.16, m	124.1	7.22, t	124.9	7.32, m	125.6
5"	7.33, m	136.5	7.99, m	137.0	7.86, m	137.2
6"	7.56, m	123.4	7.41, m	121.8	7.55, d, 4,6	124.6
1'''	-	128.7	-	128.9	-	129.0
2""	8.14,dd,8.6,1.6	130.1	7.98, d, 8.2	130.0	8.24, d, 8,2	130.2
3'''	7.28, nd	128.2	7.48, m	128.5	7.71, m	128.3
4'''	7.53, nd	133.4	7.60, t	133.7	7.68, m	133.9
5'''	7.28, nd	128.2	7.48, m	128.5	7.71, m	128.3
6'''	8.14,dd,8.6,1.6	130.1	7.98, d, 8.2	130.0	8.24, d, 8.2	130.2

Tablo 46. **22-24** Nolu bileşiklerin ¹H NMR (200MHz) ve ¹³C NMR (50MHz) spektrum değerleri, CDCl₃

^aKimyasal kayma değerleri TMS' ye göredir.

^bKimyasal kayma değerleri ¹H-¹H COSY ve ACD NMR programı yardımıyla çözümlendi.

Tablo 47. 22-24 Nolu bileşiklere ait UV-Vis verileri

Bileşik No	UV-Vis λ_{nm} (log ε)						
22	310(9858)	274(9343)					
23	308(12955)	275(9928)	242(14140)				
24	242(12258)	272(12349)	. ,				

Tablo 48. 22-24 Nolu bileşiklerin elementel analiz deneysel ve teorik verileri

Dilagily No.		Teorik	Değerle	er	Analiz Değerleri			
DHEŞIK INO	С	Η	Ν	0	С	Η	Ν	0
22	76.58	4.59	4.25	14.57	76.58	4.61	4.26	14.55
23	76.58	4.59	4.25	14.57	76.59	4.59	4.27	14.56
24	76.58	4.59	4.25	14.57	76.54	4.90	4.35	14.21

Bileşik No							
m/z	22	23	24				
$[M+K]^+$			368(11)				
$[M+Na]^+$		352(31)	352(100)				
$[M+2]^{+}$	331(17)	331(22)					
$[M+1]^{+}$	330(25)	330(74)	330(30)				
$[\mathbf{M}]^+$	329(8)						
$[M-197]^+$	132(100)						
$[M-224]^+$	105(62)	105(100)					

Tablo 49. 22-24 Nolu bileşiklerin LC-MS/MS spektrum değerleri

Tablo 50. **22-24** Nolu maddelerin IR absorbsiyon bandları (cm⁻¹)

	Bileşik No						
	22	23	24				
CH=CH	3057	3056	3060				
sp ² CH		3003	3010				
α, β doymamış	1732	1735	1690				
С=О	1664	1664	1622				
	1594	1582	1593				
	1433	1563	1464				
	1324	1434	1385				
ve N	1257	1333	1289				
	1203	1244	1238				
	1060	1221	1155				
	1011	1172	1089				
	774	1062	757				
	717	709					

Yapılan teorik hesaplamalar sonucunda **22-24** benzoil bileşiklerinin frontier orbitalleri incelenmiştir ve sonuçlar aşağıdaki tablo 51' de gösterilmiştir.

Bileşik No		22			23			24	
Uyarılma Hali	So	S_1	T_1	So	S_1	T_1	So	S_1	T_1
HOMO (eV)	-6.49			-6.52			-5.95		
C_{α}	0.44			0.20			0.58		
C_{β}	0.31			0.15			0.21		
LUMO (eV)	-2.24			-2.29			-2.24		
C_{α}	-0.40			-0.47			-0.52		
C_{β}	0.55			0.53			0.58		
HSOMO (eV)		1.32	-3.00		1.26	-7.09		1.31	-7.10
Cα		0.45	0.36		-0.46	-0.75		-0.34	-0.54
C_{β}		0.53	-0.52		0.55	0.85		0.28	0.56
LSOMO (eV)		-8.85	-7.13		-8.91	-9.03		-8.91	-9.04
Cα		0.52	-0.12		0.52	0.02		-0.39	0.02
C _β		0.37	-0.26		0.37	-0.04		0.28	-0.06

Tablo 51. 22-24 Nolu bileşiklerin HOMO, LUMO, HSOMO ve LSOMO enerjileri (eV)

22 Nolu bileşiğin uç orbitalleri incelendiğinde temel hal HOMO ile Singlet uyarılmış hal LSOMO hem simetri hem de elektron yoğunluğu bakımından dimerleşmeye uygundur. Fakat singlet uyarılmış halin HSOMO orbitalleri ile temel hal LUMO orbitalleri elektron yoğunluğu bakımından dimerleşmeye uygun olmasına rağmen simetri bakımından dimerleşmeye uygun değildir. Temel hal HOMO orbitalleri ile triplet uyarılmış LSOMO orbitalleri ve temel hal LUMO orbitalleri ile triplet hal HSOMO orbitalleri hem elektron yoğunluğu hem de simetri bakımından dimerleşmeye uygundur. Elektronların uyarılması için gerekli orbitaller arasındaki enerji farkları triplet hal için daha az olduğundan dimerleşme triplet halden gerçekleşir. Hesaplamalar sonucu her iki orbitalin girişmesi sonucu dimerleşme meydana geldiğinden teorik olarak hem stereo hem de regiosellective ürün yani tek bir ürün elde edilmesi beklenir. Deneysel olarak da tek bir ürün elde edilmiştir (Tablo 51).

23 Nolu bileşiğin uç orbitalleri incelendiğinde temel hal HOMO orbitalleri ile singlet uyarılmış LSOMO orbitalleri ve temel hal LUMO orbitalleri ile singlet hal HSOMO orbitalleri hem elektron yoğunluğu hem de simetri bakımından dimerleşmeye uygundur. Temel hal HOMO ile triplet uyarılmış hal LSOMO hem simetri hem de elektron yoğunluğu bakımından dimerleşmeye uygun değildir. Fakat triplet uyarılmış halin HSOMO orbitalleri ile temel hal LUMO orbitalleri elektron yoğunluğu bakımından dimerleşmeye uygun değildir. Fakat triplet uyarılmış halin HSOMO orbitalleri ile temel hal LUMO orbitalleri elektron yoğunluğu bakımından dimerleşmeye uygundur. Elektronların uyarılması için orbitaller arasındaki gerekli enerji farkları singlet hal için daha az olduğundan dimerleşme singlet halden gerçekleşir. Hesaplamalar sonucu her iki orbitalin girişmesi sonucu dimerleşme meydana geldiğinden

teorik olarak hem stereo hem de regiosellective ürün yani tek bir ürün elde edilmesi beklenir. Deneysel olarak da tek bir ürün elde edilmiştir (Tablo 51).

24 Nolu bileşiğin uç orbitalleri incelendiğinde temel hal LUMO orbitalleri ile singlet hal HSOMO orbitalleri hem elektron yoğunluğu hem de simetri bakımından dimerleşmeye uygundur. Temel hal HOMO ile triplet uyarılmış hal LSOMO hem simetri hem de elektron yoğunluğu bakımından dimerleşmeye uygun değildir. Temel hal HOMO ile singlet uyarılmış hal LSOMO orbitalleri elektron yoğunluğu bakımından girişim yapmaya uygun olmalarına rağmen simetri bakımından girişim yapamazlar.Fakat triplet uyarılmış halin HSOMO orbitalleri ile temel hal LUMO orbitalleri elektron yoğunluğu bakımından dimerleşmeye uygundur. Elektronların uyarılması için orbitaller arasındaki gerekli enerji farkları singlet hal için daha az olduğundan dimerleşme singlet halden gerçekleşir. Hesaplamalar sonucu tek bir orbitalin girişmesi sonucu dimerleşme meydana geldiğinden teorik olarak hem stereosellective ürün yani birden fazla ürün elde edilmesi beklenir. Deneysel olarak da iki ürün elde edilmiştir (Tablo 51).

4.6. 25-37 Nolu Bileşiklerin Sentezi ve Yapılarının Aydınlatılması

2'-, 3'-, 4'-Benzoil-2"-, 3"- ve 4"-azakalkon (**16-24**) bileşiklerinin fotokimyasal dimerleşme reaksiyonları sonucu **25-37** nolu bileşikler elde edildi.

4.6.1. 25-28 Nolu Bileşiklerin Sentezi ve Yapılarının Aydınlatılması

25-28 Nolu bileşiklerin sentezi denklem 31' de, deneysel veriler tablo 52' de, ¹H ve ¹³C NMR verileri tablo 53 ve 54' de, UV tablo 55' de, elementel analiz tablo 56' da, kütle spektrumları tablo 57' de ve FT-IR değerleri tablo 58' de verilmiştir.

Denklem 31

Bileşik No	Güç(Watt)	Çözücü	Reaksiyon Süresi (s)	R _f	Verim	E. N.(°C)
25	400	CHCl ₃	6	0.63 ^a	%13	37-40 °C
26	400	CHCl ₃	6	0.47^{a}	%17	45-47 °C
27	400	CHCl ₃	8	0.61 ^a	%23	171-173 °C
28	400	CHCl ₃	6	0.43 ^b	%20	75-77 °C

^aetilasetat-metanol, 3:1 ^betilasetat-metanol, 4:0.5

	25 ^{a,b}		26 ^{a,b}		27 ^{a,b}	
	$\delta_{ m H}, J$	$\delta_{\rm C}$	$\delta_{ m H}, J$	δ_{C}	$\delta_{ m H}, J$	δ_{C}
1,2	4.72, AA'BB',	51.6	4.50, AA'BB',	44.7	4.86, s	41.5
	6.8, 5.0, 2.4,		8.8, 4.0, 2.2			
3, 4	4.58, AA'BB',	55.2	3.91, AA'BB',	48.4	4.86, s	48.8
	6.8, 5.0, 2.4		8.8, 4.0, 2.2			
1a-2a	-	199.2	-	199.3	-	196.5
3a-4a	-	173.1	-	198.2	-	164.8
1', 1"	-	133.3	-	158.0	-	137.1
2', 2"	-	150.8	-	128.0	7.90, s	121.6
3', 3"	7.20, d, 7.8	128.8	7.23, d, 7.8	149.2	-	151.0
4', 4"	7.07, t, 7.8 ,1.8	123.5	7.12, t, 7.8 ,2.0	123.6	7.62, d, 4.6	125.4
5', 5"	7.63, t, 7.8, 3.0	128.4	7.59, t, 7.8 , 1.6	129.8	7.66, t	129.8
6', 6"	7.79, d, 7.8	128.9	7.73, d, 7.8	126.1	7.52, d, 4.6	127.1
1''', 1''''	-	126.1	-	129.2	-	128.8
2''', 2''''	6.83, d, 6.4,	130.2	7.17, d, 6.4	133.8	8.38, d, 6.0	122.9
3''', 3''''	8.24, d, 6.4,	149.2	8.48, d, 6.4	122.6	7.12, dd, 6.0, 3.0	149.8
4''', 4''''	-	-	-	149.6	-	-
5''', 5''''	8.24, d, 6.4,	149.2	8.48, d, 6.4	-	7.12, dd, 6.0, 3.0	149.8
6''', 6''''	6.83, d, 6.4,	130.2	7.17, d, 6.4	149.6	8.38, d, 6.0	122.9
1""", 1"""	-	158.0	-	122.6	-	146.8
2""", 2"""	8.05, d, 8.8	134.4	8.25, d, 8.4	150.5	8.19, d, 8.8	130.2
3""", 3""""	7.48, dt, 8.8, 3.0	129.7	7.49, dt, 8.4, 3.0	130.3	7.57, d, J 8.8	128.7
4"", 4"""	7.12, t, 8.8, 2.4	125.8	7.08, t, 8.4, 1.6	128.8	7.36, t	133.9
5""", 5"""	7.48, dt, 8.8, 3.0	129.7	7.49, dt, 8.4, 3.0	134.1	7.57, d, J 8.8	128.7
6""", 6"""	8.05, d, 8.8	134.4	8.25, d, 8.4	128.8	8.19, d, 8.8	130.2

Tablo 53. **25-27** Nolu bileşiklerin ¹H NMR (200MHz) ve ¹³C NMR (50MHz) spektrum değerleri, CDCl₃

^aKimyasal kayma değerleri ¹H-¹H COSY ve ACD NMR programı yardımıyla çözümlendi.

	28 ^{a,b}	
	$\delta_{ m H}, J$	$\delta_{\rm C}$
1, 2	4.59, AA'BB', 8.8, 5.4, 3.4	45.3
3, 4	4.03, AA'BB', 8.8, 5.6, 3.4	46.8
1a-2a	-	196.6
3a-4a	-	164.3
1', 1"	-	132.4
2', 2"	7.90, dd, 9.0, 5.0	130.5
3', 3"	7.24, d, 9.0	128.6
4', 4"	-	155.4
5', 5"	7.24, d, 9.0	128.6
6', 6"	7.90, dd, 9.0, 5.0	130.5
1''', 1''''	-	149.3
2''', 2''''	7.23, d, 6.0	122.2
3''', 3''''	8.59, dd, 6.0, 3.0	150.3
4''', 4''''	-	-
5''', 5''''	8.59, dd, 6.0, 3.0	150.3
6''', 6''''	7.23, d, 6.0	122.2
1"", 1"""	-	128.8
2""", 2"""	8.14, d, 8.4	130.2
3""", 3""""	7.52, d, 8.4	128.6
4"", 4"""	7.65, m	134.0
5""", 5""""	7.52, d, 8.4	128.6
6""", 6"""	8.14, d, 8.4	130.2

Tablo 54. **28** Nolu bileşiğin ¹H NMR (200MHz) ve ¹³C NMR (50MHz) spektrum değerleri, CDCl₃

^aKimyasal kayma değerleri TMS' ye göredir.

^bKimyasal kayma değerleri ¹H-¹H COSY ve ACD NMR programı yardımıyla çözümlendi.

Bileşik No	UV-Vis λ_{nm} (log ε)				
25	260(94974)	242(75650)			
26	261(116334)	241(104416)			
27	244(40130)				
28	259(95147)	246(79688)			

Tablo 55. 25-28 Nolu bileşiklere ait UV-Vis verileri

Dilogily No		Teorik	Değerle	er	Analiz Değerleri			
DHEŞIK INU	С	Η	Ν	0	С	Н	Ν	0
25	76.58	4.59	4.25	14.57	76.56	4.55	4.29	14.61
26	76.58	4.59	4.25	14.57	76.57	4.58	4.24	14.62
27	76.58	4.59	4.25	14.57	76.59	4.56	4.29	14.57
28	76.58	4.59	4.25	14.57	76.53	4.55	4.29	14.63

Tablo 56. 25-28 Nolu bileşiklerin elementel analiz deneysel ve teorik verileri

Tablo 57. 25-32 Nolu bileşiklerin LC-MS/MS spektrum değerleri

Bileşik No							
m/z	25	26	27	28			
$[M+30]^+$	688(62)	688(45)	688(46)				
$[M+29]^+$	687(66)	687(82)	687(72)	687(73)			
$[M+15]^+$	673(92)	673(100)		673(73)			
$[M+2]^{+}$			660(81)				
$[M+1]^{+}$	659(62)	659(84)	659(83)	659(52)			
$[M-74]^+$	584(35)						
$[M-108]^+$	550(66)	550(48)	550(62)	550(74)			
[M-314] ⁺		344(55)		. ,			
[M-410] ⁺	248(98)		248(100)				
[M-411] ⁺	247(100)						
[M-428] ⁺	× ,			230(32)			
[M-429] ⁺			229(74)	~ /			
[M-554] ⁺			. ,	104(100)			

Tablo 58. **25-28** Nolu bileşiklerin IR absorbsiyon bandları (cm⁻¹)

Bileşik No								
	25	26	27	28				
CH=CH	3031	3031	3436	3055				
sp ² CH			3065					
α, β doymamış	1739	1733	1732	1740				
C=0	1687	1682	1677	1670				
	1449	1449	1266	1412				
	1264	1266	1237	1264				
	1201	1201	1062	1205				
ve N	1060	1062	706	1162				
				1055				
				710				

Elde edilen siklobütan halkalı dimerleşme ürünleri ¹H ve ¹³C NMR spektrumu kullanılarak aydınlatılmıştır. **25-28** nolu bileşiklerin siklobütan halkası spesifik kimyasal kayma değerleri sırasıyla **25** nolu bileşik için δ H4.72(H₁-2)/4.58(H₃-4), **26** nolu bileşik için δ H 4.50(H₁-2)/3.91(H₃-4), **27** nolu bileşik için δ H 4.86(H₁-4), **28** nolu bileşik için δ H4.59(H₁-2)/4.03(H₃-4) olarak hesaplanmıştır. Bu değerlere göre siklobütan halkasındaki gurupların yönelmeleri incelendiğinde siklobütan halkasına ait piklerin AA'BB' yarılmalarının *J* değerlerinin 6.8, 8.8, ve 8.8 oldukları hesaplanmış ve buna göre **25** nolu bileşik için cis **26 ve 28** nolu bileşik için trans yapıda oldukları görülmüştür. Burada yapılan araştırmalar sonucunda **25**, **26 ve 28** nolu bileşiklerin baş-baş katılması ile oluştuğu **27** nolu bileşiğin de baş kuyruk girişimi ile oluştuğu sonucuna varılmıştır. **27** nolu bileşik için ise *J*_{A ve} *J*_B değeri simetriden dolayı gözlenmemiştir. NMR verilerinden siklobütan halkasına it piklerin etkileşme sabitlerini hesaplanmıştır. Sırasıyla (*J*_{AA'}=6.8/8.8/8.8, *J*_{AB}= 5.0/4.0/5.4, *J*_{AB'}= 2.4/2.2/3.4, *J*_{BB'}= 6.8/8.8/8.8). Elde edilen bu değerden **25** nolu bileşiğin de *ɛ*-truxilic yapıda olduğu sonucuna varıldı.

Yapılan teorik hesaplamalar sonucu dimerleşme şartları ve frontier orbitaller incelenerek **1-9** bileşiklerinin dimerleşmemesinin ve **16-24** nolu bileşiklerin dimerleşme reaksiyonlarının gerçekleşmesinin nedenleri ortaya çıkarılmıştır.

Fotokimyasal dimerleşme reaksiyonu olduğunda 11 değişik izomer oluşmakatadır (Şekil 15). Bu izomerler iki bileşiğin baş-baş katılması veya baş kuyruk katılması sonucu oluşabilecek bileşiklerin toplamıdır.

Şekil 15. Fotokimyasal dimerleşme reaksiyonu sonucu oluşabilecek izomerler

16-18 Nolu benzoil bileşiklerinin dimerleşmesi ile oluşan 25-28 nolu bileşiklerin reaksiyon koordinatları ve potansiyel enerji yüzeyleri HF//3-21G* temel seti kullanılarak yapılmıştır. Elde edilen veriler MATLAB programı kullanılarak düzenlenmiştir. Oluşabilecek 11 muhtemel izomerlerin bir kısmı PM3 metodu kullanılarak geçiş hallerinin enerjileri hesaplanmıştır ve aşağıdaki tablo 59'da verilmiştir. Buna göre 25a, 26b, 27g ve 28b bileşiklerinin geçiş hallerinin enerjileri 11 muhtemel izomerleren oluşması beklenir. Deneysel olarak hesaplanan jiromanyetik hesaplamalar 16-18 nolu bileşiklerin dimerleşme reaksiyonlarının ürünlerinin izomerleri teorik olarak hesaplanan izomerlerle aynı bileşikler olduğunu göstermiştir. Bileşik 25a, 26b, 28b ve 27g için verilen genel formül şekil 16'da verilmiştir.

Şekil 16. 25-28 Nolu bileşikler için verilen genel formül

Tablo 59. 25-28 Nolu bileşikler için geçiş hali enerjileri.

İzomerler	-E	Biradikaller ∆H [≠]	İzomerler	-Е	Biradikaller ΔH^{\neq}
R _{1/4} R ₁			R ₁ R ₁		
	173383.60(25)	23.21(25)		173371.26()	34.54()
	173387.20(27)	18.72(27)		173388.27(27)	17.54(27)
R ₂ R ₂	173384.94(28)	20.87(28)	R ₂ R ₂	173383.23(28)	22.58(28)
a			d		
R_1 R_1			R_1 R_1		
	173390.77(26)	15.03(26)		173376.28()	29.53()
	173393.36(27)	12.45(37)		173386.09(27)	19.71(27)
R_2^{vv} R_2	173392.86(28)	12.95(28)	$R_2^{v} R_2$	173385.02(28)	20.80(28)
b			e		
R_1 R_1			R_1 R_1		
	173367.14()	38.67()		173371.16()	34.65()
	173393.42(27)	12.36(27)		173374.92(27)	30.85(27)
R ₂ R ₂	173388.14(28)	17.67(28)	R ₂ R ₂	173379.01(28)	26.80(28)
c			f		
R_1 R_2					
	173393(27)	12.12(27)			
\mathbf{K}_2 \mathbf{K}_1					
σ					

 $\overline{R_1}$ = o, *m*- ve *p*-PhCOO-PhCO-, R_2 = 4-Piridinil.

-- ile gösterilen izomerler 16 nolu bileşiğin dimerleşmesiyle oluşabilecek izomerlerin geçiş hallerinin enerjileridir. Birden fazla bileşik elde edildiği için karışıklığa meydan vermemesi için bu şekilde gösterime gidilmiştir.

Geçiş hali enerjilerinden de anlaşılacağı üzere 16 nolu bileşiğin dimerleşme reaksiyonu sonucu 25a ve 26b nolu izomerler elde edilmiştir. 17 nolu bileğişin dimerleşme reaksiyonun da 27g nolu izomer ve 18 nolu bileşiğin dimerleşme reaksiyonu sonucu 28a nolu izomer elde edilmiştir.

Bileşik No	Ν	L	K	М	
25	7.4	2.6	12.8	0	
26	6.6	1.8	17.6	0	
27	-	-	-	-	
28	9	2.2	17.6	0	

Tablo 60. AA'BB' ¹H NMR spektrumlarının dimerleşme ürünleri için yorumu.

Yukarıdaki tablo 60'da **25-28** nolu bileşiklere ait literatürde hesaplanan K, L, M ve N değerlerinin hesaplanması verilmiştir. Tabloya göre de elde edilen dimerlerin hesaplanan dimerlerle aynı olduğu teyit edilmiştir.

 Tablo 61.
 25-28 Nolu bileşiklerin dimerleşme reaksiyonları sırasında bağ uzunluklarının hesaplanması.

Bileşik No	Başlangıç	bileşikleri	Geçiş Hal	li	Ürünler	
	C_1-C_2	C ₃ -C ₄	C_1-C_2	C ₃ -C ₄	C_1-C_2	C ₃ -C ₄
25	2.75780	2.63818	2.27518	2.08819	1.55962	1.57723
26	2.75780	2.63818	2.27981	1.88951	1.55431	1.55492
28	2.70180	2.52691	2.35149	1.86546	1.54935	1.58096
27	C_1-C_2		C_1-C_2		C_1-C_2	
	2.62225		2.12416		1.58084	

Yapılan IRC (instict reaction coordinate) hesaplamasında **16-18** nolu bileşiklerine ait başlangıç, ara ürün ve ürünler için C_1-C_2 ve C_3-C_4 bağ uzunlukları tablo 61'de verilmiştir. Ayrıca çift bağdaki bağ uzunluğunun reaksiyon boyunca değişimi de aşağıdaki tablo 62'de verilmiştir.

Tablo 62. **25-28** nolu bileşiklerin dimerleşme reaksiyonları sırasında çift bağların uzunluklarının değişimi.

Bileşik No	Başlangıç bileşikleri	Geçiş Hali	Ürünler
	C_1 - C_4	C_1 - C_4	C ₁ -C ₄
25	1.31304	1.38890	1.54636
26	1.31304	1.40047	1.55569
27	1.32108	1.39981	1.55641
28	1.32109	1.42928	1.56614

Yapılan IRC hesaplamalarının çift bağ uzunluğu ve iki molekül arasındaki uzunluğa bağlı enerji değişimi ve moleküllerin konumu (DFT)'nin HF//3-21G* temel seti

kullanılarak hesaplanmış ve grafiğe dökülmüştür. Aşağıdaki şekil 17'de **25** nolu bileşiğin verileri gösterilmiştir.

Şekil 17. 25 nolu bileşiğin potansiyel enerji grafiği

Şekil 18'de görülen moleküllerin başlangıç, ara ürün ve ürünlerinin moleküllerinin etkileşimleri ve bağ uzunlukları aşağıdaki şekilde gösterilmiştir.

Şekil 18. 25 Nolu bileşiğin başlangıç, ara ürün ve ürünlerinin moleküllerinin etkileşimleri.

Yapılan IRC hesaplamalarının çift bağ uzunluğu ve iki molekül arasındaki uzunluğa bağlı enerji değişimi ve moleküllerin konumu (DFT)'nin HF//3-21G* temel seti kullanılarak hesaplanmış ve grafiğe dökülmüştür. Aşağıdaki şekil 19'da **26** nolu bileşiğin verileri gösterilmiştir.

Şekil 19. 26 Nolu bileşiğin potansiyel enerji grafiği

Şekil 20'de görülen moleküllerin başlangıç, ara ürün ve ürünlerinin moleküllerinin etkileşimleri ve bağ uzunlukları **26** nolu bileşik için aşağıdaki şekilde gösterilmiştir.

Şekil 20. 26 Nolu bileşiğin başlangıç, ara ürün ve ürünlerinin moleküllerinin etkileşimleri.

Yapılan IRC hesaplamalarının çift bağ uzunluğu ve iki molekül arasındaki uzunluğa bağlı enerji değişimi ve moleküllerin konumu (DFT)'nin HF//3-21G* temel seti kullanılarak hesaplanmış ve grafiğe dökülmüştür. Aşağıdaki şekil 21'de **27** nolu bileşiğin verileri gösterilmiştir.

Şekil 21. 27 Nolu bileşiğin potansiyel enerji grafiği

Şekil 22'de görülen moleküllerin başlangıç, ara ürün ve ürünlerinin moeküllerinin etkileşimleri ve bağ uzunlukları **27** nolu bileşik için aşağıdaki şekilde gösterilmiştir.

Şekil 22. 27 Nolu bileşiğin başlangıç, ara ürün ve ürünlerinin moleküllerinin etkileşimleri.

Yapılan IRC hesaplamalarının çift bağ uzunluğu ve iki molekül arasındaki uzunluğa bağlı enerji değişimi ve moleküllerin konumu (DFT)'nin HF//3-21G* temel seti kullanılarak hesaplanmış ve grafiğe dökülmüştür. Aşağıdaki şekil 23'de **28** nolu bileşiğin verileri gösterilmiştir.

Şekil 23. 28 Nolu bileşiğin potansiyel enerji grafiği

Şekil 24'de görülen moleküllerin başlangıç, ara ürün ve ürünlerinin moleküllerinin etkileşimleri ve bağ uzunlukları **28** nolu bileşik için aşağıdaki şekilde gösterilmiştir.

Şekil 24. 28 Nolu bileşiğin başlangıç, ara ürün ve ürünlerinin moleküllerinin etkileşimleri.

27 Nolu bileşiğin ¹HNMR spektrumunda siklobütan halkasına ait δ 4.86 ppm' de geniş-singlet pik verdiği görüldü. Literatür ve deneysel araştırmalarımız sonucu 27 nolu bileşik tarzında bir izomere rastlanamamıştır. Bileşiğin siklobutan halkasına ait singlet pik vermiş olması simetrik yapısından kaynaklanacağı ve ancak anti baş-kuyruk girişmi sonucu olabileceğine karar verilmiştir. Bu çalışmanın neticesinde elde edilen bu izomer literatüre yeni kazandırılmış bir izomerdir.

Daha önce yaptığımız çalışmalarda ve literatürde bu şekilde bir veriye rastlamadığımız için tahmin ettiğimiz yapının doğruluğunu kanıtlamak için teorik NMR hesabı yapılmıştır. Hesaplamalar sonucu elde edilen moleküllerin optimizasyonu (Şekil 25) ile NMR değerleri DFT- B3LYP/6-311+G(d) temel setiyle hesaplanmıştır. Elde edilen teorik sonuçlar ile deneysel veriler karşılaştırılmış ve optimizasyonun başarılı olduğu sonucuna varılmıştır. Buradan da deneysel ¹H NMR spektrum verileriyle teorik datalar paralel olduğu görülmüştür (Şekil 25-29).

Şekil 25. 27 Nolu bileşiğin DFT- B3LYP/6-311+G(d) ile yapılan hesaplama

Şekil 26. **27** Nolu bileşiğin ¹H_NMR spektrumu

Şekil 27. **27** Molu bileşiğin DFT- B3LYP/6-311+G(d) yöntemiyle hesaplanan ¹H kayma değerleri

Şekil 28. 27 Nolu bileşiğin ¹³C NMR spektrumu

Şekil 29. **27** Nolu bileşiğin DFT- B3LYP/6-311+G(d) yöntemiyle hesaplanan ¹³C kayma değerleri

4.6.2. 29-33 Nolu Bileşiklerin Sentezi ve Yapılarının Aydınlatılması

29-33 Nolu bileşiklerin sentezi denklem 32' de, deneysel veriler tablo 63' de, ¹H ve ¹³C NMR verileri tablo 64 ve tablo 65' de, UV tablo 66' da, elementel analiz tablo 67' de, kütle spektrumları tablo 68' de ve FT-IR değerleri tablo 69' da verilmiştir.

Denklem 32

Tablo 63. 29-33 Nolu bileşiklere ait deneysel veriler

Bileşik No	Güç	Çözücü	Reaksiyon	R _f	Verim	E. N. (°C)
	(Watt)		Süresi (s)			
29	400	CHCl ₃	6	0.59 ^a	%15	27-30 °C
30	400	CHCl ₃	6	0.73^{a}	%8	57-60°C
31	400	CHCl ₃	6	0.60^{a}	%12	64-67°C
32	400	CHCl ₃	6	0.48^{a}	%9	69-71°C
33	400	CHCl ₃	6	0.56 ^a	%19	207-210°C

^a etil asetat:aseton, 1:1

	29 ^{a,b}		30 ^{a,b}	
	$\delta_{ m H}, J$	δ_{C}	$\delta_{ m H}, J$	$\delta_{\rm C}$
1.2	4.50, AA'BB', 8.6,	49.1	4.63, AA'BB',	44.9
1,2	5.2, 3.2		6.4, 4.0, 2.2	
2 4	3.92, AA'BB', 8.6,	44.1	4.00, AA'BB',	47.4
3, 4	5.0, 3.2		6.4, 4.2, 2.2	
1a-2a	-	198.5	-	197.0
3a-4a	-	165.4	-	164.7
1', 1"	-	129.3	-	136.0
2', 2"	-	149.1	7.56, s	122.1
3', 3"	7.64, s	126.0	-	151.3
4', 4"	7.49, d, 8.8	133.8	7.42, d, 8.8	148.7
5', 5"	7.60, m	123.5	7.48, dt, 9, 3.2	126.2
6', 6"	7.43, d, 8.8	128.3	7.39, dd, 9.0, 3.0	127.5
1''', 1''''	-	136.6	-	136.4
2000 2000	8.50, gs	148.6	8.32, dd, 6.4,	148.9
2,2	-		2.0	
3''', 3''''	-	-	-	-
4''', 4''''	8.48, gs	148.3	8.50, d, 1.6	124.0
5''', 5''''	7.21, m	129.8	7.26, m	130.0
6''', 6''''	7.69, d, 6.4	135.2	7.75, dt, 8.2, 2.0	133.9
1''''', 1''''''	-	129.7	-	129.0
2""", 2"""	8.24, dd, 9.2, 1.8	130.3	8.15, dd, 8.4, 1.4	130.2
3""", 3"""	7.57, dt, 9.0, 2.4	128.4	7.38, dd, 8.4, 2.6	128.7
4''''', 4''''''	7.25, m	133.8	7.42, dt, 8.4, 3.2	135.1
5""", 5"""	7.57, dt, 9.0, 2.4	128.4	7.38, dd, 8.4, 2.6	128.7
6""", 6"""	8.24, dd, 9.2, 1.8	130.3	8.15, dd, 8.4, 1.4	130.2

Tablo 64. **29-30** Nolu bileşiklerin ¹H NMR (200MHz) ve ¹³C NMR (50MHz) spektrum değerleri, CDCl₃

^aKimyasal kayma değerleri TMS' ye göredir.

^bKimyasal kayma değerleri ¹H-¹H COSY ve ACD NMR programı yardımıyla çözümlendi.

	31 ^{a,b}		32 ^{a,b}		33 ^{a,b}	
	$\delta_{ m H}, J$	δ_{C}	$\delta_{ m H}, J$	δ_{C}	$\delta_{ m H}, J$	δ_{C}
1, 2	5.50, t, 9.6	39.5	4.82, AA'BB',	42.0	4.63, AA'BB',	44.6
	4.66, dd, 9.8, 9.4	48.5	6.4, 4.0, 2.8		9.0, 5.4, 3.2	
3, 4	4.95, t, 9.4	43.4	4.56, AA'BB',	48.4	4.05, AA'BB',	47.3
	4.83, dd, 9.8, 8.8	44.9	6.0, 4.0, 2.8		8.8, 5.6, 3.0	
1a-2a	-	198.3,	-	196.0	-	196.8
		195.4				
3a-4a	-	164.9,	-	164.8	-	164.4
		164.6				
1', 1"	-	133.3,	-	133.7	-	132.5
		131.3				
2', 2"	7.35, s	122.3,	7.61, gs	121.4	7.93, dd, 9.0, 3.4	130.5
,	,	121.4				
3', 3"	-	151.4,	-	151.2	7.22, dd, 9.0,2.6	122.2
,		151.0			, , , ,	
4', 4"	7.67, d, 8.4	126.7.	7.50, gs	130.0	-	155.4
,	, ,	125.2	, 0			
5', 5"	7.62, t. 8.4, 3.0	123.1.	7.66. dt. 7.8. 3.0	125.4	7.22. dd. 9.0.2.6	122.2
,		122.6	, , ,		, , , ,	
6', 6"	7.49, d, 8.4	127.5,	7.41, d, 7.8	126.9	7.93, dd, 9.0, 3.4	130.5
,	, ,	126.9	, ,		, , , ,	
1'''. 1''''	-	137.0.	-	136.7	-	136.1
,		136.4				
2"", 2""	8.31. gs	150.7.	8.38. s	149.2	8.58. gs	148.9
,	,0	148.5	,		,0	
3''', 3''''	-	-	-	-	-	-
4''', 4''''	8.26, d, 4.6	148.3.	8.37, gs	148.3	8.55, gs	148.7
,	, ,	147.6	, 0		, 0	
5''', 5'''	7.06, m	130.1,	7.12, dt. 7.8,	120.4	7.28, dt, 5.8, 3.0	128.3
,	,	129.9	4.8		, , ,	
6''', 6''''	7.19, d, 6.0	133.9,	7.34, dt, 7.8, 4.2	133.8	7.76, dd, 6.0, 3.2	133.9
,	, ,	133.8	, , , ,		, , , ,	
1"", 1"""	-	129.0.	-	128.9	-	128.8
,		128.9				
2"", 2""	8.19. d. 7.8	130.2.	8.15. dd. 9.2. 2.2	130.2	8.13. dd. 8.8. 3.0	130.2
,		130.1				
3""". 3"""	7.18, d, 7.8	128.6	7.52, d, 8.8	128.6	7.46, dd. 8.8, 3.4	128.6
4"", 4""	6.89, dt, 7.8. 5.0	136.6.	6.8, t, 8.8. 3.0	135.5	7.62, dt, 8.8, 3.0	135.0
<i>y</i> -	,,,	134.8	· - , · , - · • , • · •		·- , ···, •·•, •·•	
5""", 5"""	7.18. d. 7.8	128.6	7.52. d. 8.8	128.6	7.46. dd. 8.8. 3 4	128.6
6""", 6"""	8.19. d. 7.8	130.2.	8.15. dd. 9.2. 2.2	130.2	8.13. dd. 8.8. 3.0	130.2
- , -	- , - , • • •	130.1	· · · , · · · · , · · · · , - · · ·		· - , ····, •·•, •·•	

Tablo 65. **31-33** Nolu bileşiklerin ¹H NMR (200MHz) ve ¹³C NMR (50MHz) spektrum değerleri, CDCl₃

^aKimyasal kayma değerleri TMS' ye göredir. ^bKimyasal kayma değerleri ¹H-¹H COSY ve ACD NMR programı yardımıyla çözümlendi.

Bileşik No		UV-Vis λ _{nm} (l	0g ε)
29	286(26066)	245(119602)	
30	242(36163)		
31	260(72919)	240(120609)	
32	338(6389)	251(196229)	
33	310(11051)	265(27445)	242(28324)

Tablo 66. 29-33 Nolu bileşiklere ait UV-Vis verileri

Tablo 67. 29-33 Nolu bileşiklerin elementel analiz deneysel ve teorik verileri

Bileşik		Teorik Değerler				Analiz Değerleri			
No	С	Н	Ν	0	С	Η	Ν	0	
29	76.58	4.59	4.25	14.57	76.53	4.58	4.22	14.67	
30	76.58	4.59	4.25	14.57	76.58	4.61	4.28	14.54	
31	76.58	4.59	4.25	14.57	76.60	4.56	4.27	14.57	
32	76.58	4.59	4.25	14.57	76.57	4.60	4.28	14.56	
33	76.58	4.59	4.25	14.57	76.53	4.54	4.23	14.70	

Tablo 68. 29-33 Nolu bileşiklerin LC-MS/MS spektrum değerleri

Bileşik No	29	30	31	32	33
m/z [M+2] ⁺		660(36)	660 (47)	660 (47)	
[M+1] ⁺	659(72)	659(81)	659(100)	659(100)	659(34)
$[M-108]^+$	550(75)		550(91)	550(42)	
[M-136] ⁺			522(77)	522(47)	

	29	30	31	32	33
CH=CH sp ² CH	3060	3067	3066	3065	3054
a, β doymamış C=O C=C	1734 1682	1737 1686	1736 1675	1736 1673	1738 1661
ve	1601 1481 1449 1264 1200 1060 1023 758 707	1586 1482 1440 1264 1232 1177 1061 1001 708	1586 1482 1440 1313 1235 1178 1061 1024 756 707	1585 1482 1440 1311 1236 1061 905 707	1598 1505 1451 1415 1265 1209 1166 1060 1024 704

Tablo 69. **29-33** Nolu bileşiklerin IR absorbsiyon bandları (cm⁻¹)

29-33 nolu bileşiklerin siklobütan halkası spesifik kimyasal kayma değerleri sırasıyla **29** nolu bileşik için δ H4.50(H₁₋₂)/3.92(H₃₋₄), **30** nolu bileşik için δ H 4.630(H₁₋₂)/4.00(H₃₋ 4), **31** nolu bileşik için δ H 4.880(H₁₋₂)/4.04(H₃₋₄), **32** nolu bileşik için δ H4.82(H₁₋ $2)/4.56(H_{3-4})$, **33** nolu bileşik için δH 5.50(H₁), 4.66(H₂), 4.63(H₃) ve 4.83(H₄) olarak hesaplanmıştır. Bu değerlere göre siklobütan halkasındaki gurupların yönelmeleri incelendiğinde siklobütan halkasına ait piklerin AA'BB' yarılmalarının J değerlerinin 8.6, 6.4, 9.8-10.2-11.6-9.6, ve 6.4 oldukları hesaplanmış ve buna göre 29 ve 32 nolu bileşikler için trans 30 nolu bileşik için cis ve 31 nolu bileşiğin de baş-kuyruk girişimi sonucu oluştuğu ve yapısının trans yapıya sahip olduğu görülmüştür. Burada yapılan araştırmalar sonucunda 29, 30 ve 32 nolu bileşiklerin baş-baş katılması ile oluştuğu 31 nolu bileşiğin de baş kuyruk girişimi ile oluştuğu sonucuna varılmıştır. Bu bileşikler için NMR verilerinden siklobütan halkasına ait piklerin etkileşme sabitlerini hesaplanmıştır ve buna göre halkadaki grupların yönelmeleri belirlenmiştir. Sırasıyla ($J_{AA'}$ = değerlerinin 8.6/ 6.4/ 9.8-10.2-11.6-9.6/6.4, $J_{AB} = 5.2/4.0/5.5-4.7-4.9-4.8/4.0$, $J_{AB'} = 3.2/2.2/19.2-20.2-19.6-18.8/2.8$, $J_{BB'} = 8.6/6.4/9.8-10.2-11.6-9.6/6.4$). Elde edilen bu değerden 29, 32 ve 33 nolu bileşiklerin δ -truxinic yapıda olduğu, **30** nolu bileşiğin β -truxinic yapıda olduğu ve **31** nolu bileşiğin de ε -truxillic yapıda olduğu sonucuna varılmıştır.

19-21 Nolu benzoil bileşiklerinin dimerleşmesi ile oluşan 29-33 nolu bileşiklerin reaksiyon koordinatları ve potansiyel enerji yüzeyleri HF//3-21G* temel seti kullanılarak yapılmıştır. Elde edilen veriler MATLAB programı kullanılarak düzenlenmiştir. Oluşabilecek 11 muhtemel izomerlerin bir kısmı PM3 metodu kullanılarak geçiş hallerinin enerjileri hesaplanmıştır ve aşağıdaki tablo 70'de verilmiştir. Buna göre 29b, 30a, 31h ve 32b bileşiklerinin geçiş hallerinin enerjileri 11 muhtemel izomerleren oluşması beklenir. Deneysel olarak hesaplanan jiromanyetik değerlerinden belirlenen 19-21 nolu bileşiklerin dimerleşme reaksiyonlarının ürünlerinin izomerleri teorik olarak hesaplanan izomerlerele aynı bileşikler olduğunu göstermiştir.

İzomerler	-E	Biradikaller ∆H [≠]	İzomerler	-E	Biradikaller ∆H [≠]
$R_{1_{M_{1}}}$ R_{1}			R ₁ R ₁		
	173383.36(29)	22.45(29)		173380.56(29)	25.24(29)
	173390.02(30)	15.80(30)		173385.83()	19.98()
R_2 R_2	173390.18(33)	15.63(33)	R_2 R_2	173392.03(33)	13.78 (33)
a			d		
R_1 R_1			R_1 R_1		
	173392.73(29)	13.07(29)	$\mathbf{h} = \mathbf{h}$	173375.73(29)	30.08(29)
	173392.53(32)	13.27(32)		173387.00()	(18.80()
R_2^{W} R_2	173396.30(33)	9.52(33)	$R_2^{v} R_2$	173390.14(33)	15.66(33)
b			e		
R_1 R_1			R_1 R_1		
	173381.33(29)	24.48(29)	\rightarrow	173367.38(29)	38.44(29)
	173389.23()	16.57()		173373.11()	32.69()
R_2 R_2	173385.67(33)	20.24(33)	R ₂ R ₂	173373.97(33)	31.84(33)
c			f		
R_1 R_2			R_1		
	173387 08()	1872()		173303 16(31)	12 65(31)
$R_2^{W^{W^{*}}}$ R_1	175567.08()	10.72()	$R_2 \sim R_1$	175575.10(51)	12.03(31)
g			h		

Tablo 70. 29-33 Nolu bileşikler için geçiş hali enerjileri.

 R_1 = o, *m*- ve *p*-PhCOO-PhCO-, R_2 = 4-Piridinil.

⁻⁻ ile gösterilen izomerler 20 nolu bileşiğin dimerleşmesiyle oluşabilecek izomerlerin geçiş hallerinin enerjileridir. Birden fazla bileşik elde edildiği için karışıklığa meydan vermemesi için bu şekilde gösterime gidilmiştir.

4.6.3. 34-37 Nolu Bileşiklerin Sentezi ve Yapılarının Aydınlatılması

34-37 Nolu bileşiklerin sentezi denklem 32' de, deneysel veriler tablo 71' de, ¹H ve ¹³C NMR verileri tablo 72 ve 73' de, UV tablo 74' de, elementel analiz tablo 75' de, kütle spektrumları tablo 76' da ve FT-IR değerleri tablo 77' de verilmiştir

Denklem 32

Tablo 71. 34-37 N	Nolu bileşiklere	ait deneysel v	eriler
--------------------------	------------------	----------------	--------

Bileşik No	Güç	Çözücü	Reaksiyon	$\mathbf{R}_{\mathbf{f}}$	Verim	E. N. (°C)
	(Watt)		Süresi (s)			
34	400	CHCl ₃	36	0.51 ^a	%15	174-177°C
35	400	CHCl ₃	36	0.48^{a}	%22	133-135°C
36	400	CHCl ₃	6	0.69 ^a	%18	34-36°C
37	400	CHCl ₃	6	0.64^{a}	%22	31-34°C

^a (etilasetat:aseton, 1:1)

	34 ^{a,b}		35 ^{a,b}		36 ^{a,b}	
	$\delta_{ m H}, J$	δ_{C}	$\delta_{ m H}, J$	δ_{C}	$\delta_{ m H}, J$	$\delta_{\rm C}$
1, 2	4.81, AA'BB',	47.3	4.88, t, 9.4	50.7	5.45, AA'BB',	46.5
	8.8, 5.4, 3.0				5.6, 4.2, 1.5	
3, 4	4.16, AA'BB',	47.4	4.04, t, 9.4	44.1	4.6, AA'BB', 5.8,	45.5
	9.0, 5.8, 3.0				4.0, 1.5	
1a, 2a	-	198.5	-	198.5	-	197.7
3a, 4a	-	159.5	-	165.1	-	164.8
1', 1"	-	104.7	-	129.4	-	137.4
2', 2"	-	125.7	-	149.1	8.132, s	123.7
3', 3"	7.54, gs	133.1	7.85, d, 8.0	124.0	-	151.1
4', 4'	7.06, d, 8.8	130.1	7.13, m	130.2	7.44, d, 8.4	126.4
5', 5"	7.34, m	130.6	7.44, m	125.4	7.73, m	129.6
6', 6"	7.50, gs	125.8	7.63, d, 8.0	132.9	8.15, d, 8.4	129.3
1''', 1''''	-	149.2	-	159.0	-	157.6
2''', 2''''	-	-	-	-	-	-
3''', 3''''	8.55, d, 4.6	149.5	8.64, d, 4.6	149.5	8.41, dd, 5.6, 1.6	148.7
4''', 4''''	6.99 ,d, 7.8	123.0	7.09, d, 7.4	136.2	7.62, d, 7.4	125.6
5''', 5''''	7.14, d, 7.8	136.1	6.91, t, 7.4	123.5	6.95, t, 7.6	136.0
6''', 6''''	7.43, gs	121.9	7.35, t, 7.4	122.0	7.62, d, 7.4	121.4
1'''', 1'''''	-	129.7	-	129.7	-	129.1
2""", 2"""	8.20 ,dd, 8.2, 1.6	130.4	8.17, d, 8.6	130.4	7.78, dd, 8.8, 1.8	130.2
3""", 3"""	7.63, m	128.5	7.59, dd, 8.0, 8.6	128.5	7.51, d, 8.8	128.6
4""", 4"""	7.04, m	133.5	7.46, m	133.5	7.36, m	133.7
5""", 5"""	7.63, m	128.5	7.59, dd, 8.0, 8.6	128.5	7.78, dd, 8.8, 1.8	128.6
6""", 6"""	8.20 ,dd, 8.2, 1.6	130.4	8.17, d, 8.6	130.4	7.51, d, 8.8	130.2

Tablo 72. **34-36** Nolu bileşiklerin ¹H NMR (200MHz) ve ¹³C NMR (50MHz) spektrum değerleri, CDCl₃

^aKimyasal kayma değerleri TMS' ye göredir.

^bKimyasal kayma değerleri ¹H-¹H COSY ve ACD NMR programı yardımıyla çözümlendi.

	37 ^{a,b}					
	$\delta_{ m H}, J$	$\delta_{\rm C}$				
1, 2	5.47, AA'BB', 5.8, 4.0, 1.6	45.5				
3, 4	4.61, AA'BB', 5.6, 4.0, 1.6	46.5				
1a, 2a	-	197.4				
3a, 4a	-	165.2				
1', 1"	-	133.4				
2', 2"	7.99, d, 8.8	129.8				
3', 3"	7.21, d, 8.8	121.9				
4', 4'	-	157.5				
5', 5"	7.99, d, 8.8	121.9				
6', 6"	7.21, d, 8.8	129.8				
1''', 1''''	-	154.5				
2''', 2''''	-	-				
3''', 3''''	8.46, d, 4.0	148.5				
4''', 4''''	6.97, t, 9.4	123.9				
5''', 5''''	7.37, m	136.3				
6''', 6''''	7.41, nd	121.6				
1''''', 1''''''	-	129.0				
2""", 2"""	8.18, d, 7.2	130.2				
3""", 3"""	7.51, d, 7.2	128.6				
4""", 4"""	7.60, t, 7.4	133.9				
5""", 5"""	7.51, d, 7.2	128.6				
6""", 6"""	8.18, d, 7.2	130.2				

Tablo 73. **37** Nolu bileşiğin ¹H NMR (200MHz) ve ¹³C NMR (50MHz) spektrum değerleri, CDCl₃

^aKimyasal kayma değerleri TMS' ye göredir.

^bKimyasal kayma değerleri ¹H-¹H COSY ve ACD NMR programı yardımıyla çözümlendi.

Tablo 74.	34-37 Nolu	bileşiklere a	it UV-Vis	verileri

Bileşik No	UV-Vis λ _{nm} (log ε)				
34	215(11020)	233(13492)			
35	215(12285)	233(14979)			
36	242(52922)				
37	270(71474)				

Dilagily No	No Teorik Değerler Ar			Teorik Değerler Analiz Değerleri		i		
DHEŞIK INO	С	Η	Ν	0	С	Η	Ν	0
34	76.58	4.59	4.25	14.57	76.61	4.63	4.23	14.54
35	76.58	4.59	4.25	14.57	76.57	4.58	4.21	14.65
36	76.58	4.59	4.25	14.57	76.59	4.57	4.24	14.61
37	76.58	4.59	4.25	14.57	76.57	4.60	4.26	14.57

Tablo 75. 34-37 Nolu bileşiklerin elementel analiz deneysel ve teorik verileri

Tablo 76. 34-37 Nolu bileşiklerin LC-MS/MS spektrum değerleri

m/z	34	35	36	37
$[M+K]^+$	697(10)	697(16)	697(16)	697(13)
$[M+Na]^+$	681(26)	681(10)	681(18)	681(04)
$[M+1]^{+}$	659(100)	659(100)	659(100)	659(100)

Tablo 77. **34-37** Nolu bileşiklerin IR absorbsiyon bandları (cm⁻¹)

	34	35	36	37
CH=CH sp ² CH	3060	3060	3067	3064
α, β doymamış C=O	1738	1736	1736	1739
	1681	1685	1685	1682
ve	1602 1473 1448 1264 1200 1079 1060 749 705	1602 1448 1263 1200 1060 1024 754 705	1589 1474 1438 1263 1231 1177 1061 1001 756 707	1598 1504 1451 1412 1358 1263 1206 1164 1060 754 707

34-37 Nolu bileşiklerin siklobütan halkalarının spesifik kimyasal kayma değerleri sırasıyla **34** nolu bileşik için δ H4.81(H₁-2)/4.16(H₃-4), **35** nolu bileşik için δ H 4.880(H₁-2)/4.04(H₃-4), **36** nolu bileşik için δ H 5.45(H₁-2), 4.6(H₃-4), **37** nolu bileşik için δ H5.47(H₁-2)/4. 16(H₃-4) olarak hesaplanmıştır. Bu değerlere göre siklobütan halkasındaki gurupların yönelmeleri incelendiğinde siklobütan halkasına ait piklerin AA'BB' yarılmalarının *J* değerlerinin 8.8, 5.6, 9.4 ve 5.8 oldukları hesaplanmış ve buna göre **34-37** nolu bileşikler için *trans* yapıya sahip oldukları görülmüştür. Burada yapılan araştırmalar sonucunda **34**, 36 ve 37 nolu bileşiklerin baş-baş katılması ile oluştuğu 35 nolu bileşiğin de baş kuyruk girişimi ile oluştuğu sonucuna varılmıştır. NMR verilerinden siklobütan halkasına ait piklerin etkileşme sabitlerini hesaplanmıştır. Sırasıyla ($J_{AA'}$ = değerlerinin 8.8/5.6/9.4/5.8, $J_{AB} = 5.4/-4.2/4.0$, $J_{AB'} = 3.0/-4.5/1.6$, $J_{BB'} = 8.8/5.6/9.4/5.8$). Elde edilen bu değerden 34, 36 ve 37 nolu bileşiklerin δ -truxinic yapıda olduğu, 35 nolu bileşiğin de ε -truxillic yapıda olduğu sonucuna varılmıştır.

34-37 Nolu bileşiklerin reaksiyon koordinatları ve potansiyel enerji yüzeyleri HF//3-21G* temel seti kullanılarak yapılmıştır. Elde edilen veriler MATLAB programı kullanıldı. Oluşabilecek 11 muhtemel izomerlerin bir kısmı PM3 metodu kullanılarak geçiş hallerinin enerjileri hesaplanmıştır ve aşağıdaki tablo 78'de verilmiştir. Buna göre **34b**, **35g**, **36b** ve **37b** bileşiklerinin geçiş hallerinin enerjileri 11 muhtemel izomerden en düşük olduğundan teorik olarak bu izomerlerin oluşması beklenir. Deneysel olarak hesaplanan jiromanyetik hesaplamalar **22-24** nolu bileşiklerin dimerleşme reaksiyonlarının ürünlerinin izomerleri teorik olarak hesaplanan izomerlerle aynı bileşikler olduğunu göstermiştir.

İzomerler	-Е	Biradikaller ∆H [≠]	İzomerler	-E	Biradikaller ΔH^{\neq}
R _{1/4} R ₁			R_1 R_1		
	173378.95()	26.86()		173380.53()	25.27()
	173386.8(36)	19.04(36)		173387.4(27)	18.42(36)
R ₂ R ₂	173385.7(37)	20.13(37)	R_2 R_2	173382.3(37)	23.53(37)
а			d		
R_1 R_1			R ₁ R ₁		
	173389.59(34)	16.21(34)		173379.52()	26.29()
	173390.2(36)	15.64(36)		173382.9(36)	23.78(36)
R_2^{W} R_2	173395.5(37)	10.30(37)	R_2^{W} R_2	173385.4(37)	20.39(37)
b			e		
R_1 R_1			R_1 R_1		
	173382.07()	23.73()		173370.00()	35.80()
	173387.4(36)	18.39(36)		173373.7(27)	32.10(36)
R ₂ R ₂	173389.2(37)	16.57(37)	R_2 R_2	173377.4(37)	28.44(37)
с			f		
R_1 R_2					
	173387 11(35)	18 36(35)			
	175567.44(55)	10.50(55)			
R_2 R_1					
g					

Tablo 78. 34-37 Nolu bileşikler için geçiş hali enerjileri.

 $\overline{R_1} = o, m$ - ve *p*-PhCOO-PhCO-, $R_2 = 4$ -Piridinil.

-- ile gösterilen izomerler 24 nolu bileşiğin dimerleşmesiyle oluşabilecek izomerlerin geçiş hallerinin enerjileridir.

Yapılan IRC hesaplamalarının çift bağ uzunluğu ve iki molekül arasındaki uzunluğa bağlı enerji değişimi ve moleküllerin konumu (DFT)'nin HF//3-21G* temel seti kullanılarak hesaplanmış ve grafiğe dökülmüştür. Aşağıdaki şekil 30'da **36** nolu bileşiğin verileri gösterilmiştir.

Şekil 30. 36 Nolu bileşiğin potansiyel Enerji grafiği

Yapılan IRC hesaplamalarının çift bağ uzunluğu ve iki molekül arasındaki uzunluğa bağlı enerji değişimi ve moleküllerin konumu (DFT)'nin HF//3-21G* temel seti kullanılarak hesaplanmış ve grafiğe dökülmüştür. Aşağıdaki şekil 31'de **37** nolu bileşiğin verileri gösterilmiştir.

Şekil 31. 37 Nolu bileşiğin potansiyel enerji grafiği

Yapılan IRC (instict reaction coordinate) hesaplamasında **35-37** nolu bileşiklerine ait başlangıç, ara ürün ve ürünler için C_1 - C_2 ve C_3 - C_4 bağ uzunlukları aşağıdaki tabloda verilmiştir. Ayrıca çift bağdaki bağ uzunluğunun reaksiyon boyunca değişimi da aşağıdaki tablo 79'da verilmiştir.

Tablo 79. **36-37** Nolu bileşiklerin dimerleşme reaksiyonları sırasında bağ uzunluklarının hesaplanması.

Bileşik no	Başlangıç bileşikleri		Geçiş Hali		Ürünler	
	C_1 - C_2	C ₃ -C ₄	C_1 - C_2	C ₃ -C ₄	C_1 - C_2	C ₃ -C ₄
36	1.32141	2.74889	1.50061	2.21247	1.55788	1.62354
37	1.30855	2.71847	1.39211	2.23617	1.56328	1.56830
4.7. Antimikrobiyal ve Antioksidant Özellikler

Tablo 4-5'de görüldüğü gibi 3,10-15 bileşiklerinin antimikrobiyal ve antioksidant özellikleri çalışılmış, broth microdilution yöntemi kullanılarak antimikrobiyal özellikleri calışılmıştır[38]. 13 nolu bileşik haricindeki bileşikler Gram-positive bakterilere karşı ve maya benzeri mantara antimikrobial aktivite göstermiştir fakat 8 bileşiği de dahil tüm bileşikler Gram-negative bakteriler karşı herhangibir aktivite göstermemişlerdir. 14 ve 15 nolu bileşikler 3-20 µg/ml MIC değerinde antibakterial standart ampicilline ile karşılaştırıldığında yüksek antimikrobial aktivite göstermişlerdir. 14 nolu bileşik 3.9 µg/ml MIC değerinde özellikle B. cereus, L. monocitogenes, and S. Aureus bakterilerine karşı antimikrobial aktivite göstermiştir. Çözücü olarak kullanılan DMSO test mikroorganizmalarına karşı herhangibir etki göstermediği test edilmiştir.

3, **5-10** bileşiklerinin antioksidant özellikleri kararlı radikal DPPH (2,2-diphenyl-1picrylhydrazine)'ı temizleme özelliklerine[39] ve ferric reducing antioxidant power (FRAP) maddesine[40] göre belirledi. Bileşiklerin antioksidant özellikleri DPPH metoduna göre çözeltideki radikallerin %50'sini temizlemelerine(IC₅₀, mg/ml) göre açıklandı(Tablo 2). Sadece 9 ve 10 nolu bileşiklerinin test sonuçları sonucunda IC₅₀ değerlerinin sırasıyla 3.99 and 3.47 mM çıkması belirgin bir antioksidant özellikleri olduğunu gösterdi.3 nolu bileşik aktif çıkmadı ve **5-8** bileşikleri prooxidant karakterli çıktı.

Uygulanan FRAP metodunda şekil 13'de görüldüğü gibi bileşikler benzer şekilde 248-424 nm FRAP değeri aralığında düşük antioksidant potansiyeline sahiptirler. Bu metotda da çıkan sonuçlara göre **11**, **14**, **15** nolu bileşikler en iyi antioksidant özelliğe sahiptir. Antioksidant özellik için iki metod karşılaştırıldığında farklı nedenlerden dolayı benzer sonuçların vermediği görülmüştür.[41].

Antioksidant ile antimikrobiyal aktiviteler karşılaştırıldığında 14 ve 15 nolu bileşiklerin sonuçlarının en fazla etkiye sahip oldukları görülmüştür. Bu özellikleri bu maddelerin bakteriyal hastalıklara karşı tedavi maksatlı kullanımları olabileceği sonucuna ulaşılmasına neden olmuştur.

1-37 Nolu maddelerin antimikrobiyal aktiviteleri disk difüzyon metodu yöntemine göre bakılmış (Tablo 4), 2, 5, 7 ve 12 nolu maddeler haricinde Gram negatif bakterilere etkili olmadıkları belirlenmiştir. 8, 9, 14 ve 15 nolu bileşikler Gram pozitif bakterilere karşı etkili oldukları belirlendi.

Yapılan çalışma sonucunda, alkillenmiş flavonların çok iyi antibakteriyel özellik gösterdikleri fakat alkillenmemiş flavonların düşük aktivite gösterdikleri saptanmıştır. Bu özellik bileşiklerin bakteri hücre duvarından geçmeleriyle açıklanabilir.

5.SONUÇLAR

Bu çalışmaya, doğal kalkon ve azakalkon bileşiklerinin literatürdeki biyolojik aktivitelerinin çok geniş olması ve 3 aktif bölgeye sahip doğal bileşik türevi sentezlemek ve bu bileşiklerden değişik reaksiyonlar deneyerek doğal ürünlere alternatif bileşikler elde etmek için başlanmıştır.

Çalışmada Claisen-Schmidt reaksiyonuna göre 1-11 nolu azakalkon bileşikleri sentezlenmiştir. Bu bileşiklerden 10 ve 11 nolu bileşiklerin literatür araştırmaları sonucu yeni bileşikler oldukları bulundu. Diğer 9 bileşiğin (1-9) de literatürde deneysel şartları ve yapı tayin yöntemleri sonuçları bulunamadığından burada verildi. Sentezlenen 2'-hidroksi 4"-azakalkon bileşiklerinin katı-faz (yeşil kimya) mikrodalga yöntemine göre 12 ve 13 nolu 4'-azaflavon bileşikleri elde edildi. 4'-Azaflavon bileşiklerinin (12-13) N-dekil türevi 14-15 nolu bileşikler sentezlendi. 1-9 bileşiklerinden 400 Watt civa lambası eşliğinde dimerlesme ürünleri elde edilemedi. Fakat, metoksi azakalkon/kalkonların dimerlesme reaksiyonları bilindiğinden bunlara alternatif 1-9 bileşiklerinin benzoillenmesi ile 16-24 nolu bileşikler sentezlendi. 16-24 Nolu bileşiklerin fotokimyasal dimerleşme reaksiyonu sonucu 25-37 nolu bileşikler elde edilmiştir. Bu bileşikler; (2E)-1-(4-hidroksifenil)-3piridin-4-il-prop-2-en-1-on (1), (2E)-1-(3-hidroksifenil)-3-piridin-4-il-prop-2-en-1-on (2), (2E)-1-(2-hidroksifenil)-3-piridin-4-il-prop-2-en-1-on (3), (2E)-1-(4-hidroksifenil)-3piridin-3-il-prop-2-en-1-on (4), (2E)-1-(3- hidroksifenil)-3-piridin-3-il-prop-2-en-1-on (5), (2E)-1-(2-hidroksifenil)-3-piridin-3-il-prop-2-en-1-on (6), (2E)-1-(4-hidroksifenil)-3piridin-2-il-prop-2-en-1-on (7), (2E)-1-(3-hidroksifenil)-3-piridin-2-il-prop-2-en-1-on (8), (2E)-1-(2-hidroksifenil)-3-piridin-2-il-prop-2-en-1-on (9), 3-hidroksi-1-(2-hidroksifenil)-3piridin-4-il-propan-1-on (10), 1-(2- hidroksifenil)-2-[hidroksi (piridin-4-il)metil]-3-piridin-4-il-prop-2-en-1-on (11), 2-piridin-4-il-4H-kromen-4-on (4-Azaflavon) (12), 2-piridin-4-il-3-(piridin-4-il-metil)-4*H*-benzopiran-4-on (13), 1-dekil-4-(4-okso-4H-1-benzopiran-2-(N-dekil-4'-azaflavonium il)piridinium bromür bromür) (14),1-dekil-4-{3-[(1dekilpiridinium-4-il)metil]-4H-1-benzopiran-2-il}piridinium dibromür (N,N'-didekil-3-(piridin-4-il-metil)-4'-azaflavonium dibromür) (15), 1-[(4-O-benzoil)-fenil]-(2E)-3-piridin-4-il-2-propen-1-on (16), 1-[(3-O-benzoil)-fenil]-(2E)-3-piridin-4-il-2-propen-1-on (17), 1-[(2-O-benzoil)-fenil]-(2E)-3-piridin-4-il-2-propen-1-on (18), 1-[(4-O-benzoil)-fenil]-(2E)-3-piridin-3-il-2-propen-1-on (19), 1-[(3-O-benzoil)-fenil]-(2E)-3-piridin-3-il-2-propen-1on (20), 1-[(2-O-benzoil)-fenil]-(2E)-3-piridin-3-il-2-propen-1-on (21), 1-[(4-O-benzoil)-fenil]-(2E)-3-piridin-2-il-2-propen-1-on (22), 1-[(3-O-benzoil)-fenil]-(2E)-3-piridin-2-il-2-propen-1-on (23), 1-[(2-O-benzoil)-fenil]-(2E)-3-piridin-2-il-2-propen-1-on (24), $(1\beta, 2\beta)$ -di [(3 α 4 α) di (4 piridinil) siklobütan (25) (1 α 2 β) di [(4 Ω)

ai-[(3-0-benzon)benzon]-(3a,4a)-ai-(4-pin)	(25),	(1a, 2p)-al-[(4-0-
benzoil)benzoil]-(3α , 4β)-di-(4 -piridinil)	siklobütan (26),	(1 <i>β</i> ,3 <i>β</i>)-di-[(2-O-
benzoil)benzoil]- $(2\alpha, 4\alpha)$ -di- $(4$ -piridinil)	siklobütan (27),	(1 <i>α</i> ,2 <i>β</i>)-di-[(2-O-
benzoil)benzoil]-(3α , 4β)-di-(4 -piridinil)	siklobütan (28),	(1α,2β)-di-[(4-O-
benzoil)benzoil]-(3α , 4β)-di-(3 -piridinil)	siklobütan (29),	(1 <i>β</i> ,2 <i>β</i>)-di-[(3-O-
benzoil)benzoil]- $(3\alpha, 4\alpha)$ -di- $(3$ -piridinil)	siklobütan (30),	(1 <i>β</i> ,4 <i>β</i>)-di-[(3-O-
benzoil)benzoil]-(2α , 3α)-di-(3 -piridinil) siklobütan (31),	(1 <i>α</i> ,2 <i>β</i>)-di-[(3-O-
benzoil)benzoil]-(3 $\alpha,4\beta$)-di-(3-piridinil)	siklobütan (32),	(1 <i>α</i> ,2 <i>β</i>)-di-[(2-O-
benzoil)benzoil]-(3α , 4β)-di-(3 -piridinil)	siklobütan (33),	(1 <i>α</i> ,2 <i>β</i>)-di-[(2-O-
benzoil)benzoil]-(3α , 4β)-di-(2-piridinil)	siklobütan (34),	(1 <i>β</i> ,3 <i>β</i>)-di-[(2-O-
benzoil)benzoil]- $(2\alpha, 4\alpha)$ -di- $(2$ -piridinil)	siklobütan (35),	(1 <i>α</i> ,2 <i>β</i>)-di-[(3-O-
benzoil)benzoil]-(3α , 4β)-di-(2-piridinil)	siklobütan (36),	(1 <i>α</i> ,2 <i>β</i>)-di-[(4-O-
benzoil)benzoil]- $(3\alpha, 4\beta)$ -di- $(2$ -piridinil) siklobütan (37),		

şeklinde isimlendirildi. Sentezlenen bileşiklerin yapıları 200 MHZ NMR cihazı, LC-

MS/MS cihazı, elementel cihazı, FT-IR spektrofotometreleri ve ACD NMR programı yardımıyla tayin edildi.

25-37 nolu bileşiklerin yapı tayinlerinde siklobütan yapılarının jiromanyetik değerleri hesaplanarak *trans* ve *cis* yapıları belirlendi. Literatürde fotokimyasal dimerleşme reaksiyonu sonucu kinetik olarak 11 izomerin oluşabileceği belirtilmektedir. Optimizasyon sonucu elde edilen bileşiklerin de en kararlı olanı literatür ve deneysel verilere paralel olduğu sonucuna varılmıştır.

Ayrıca bu çalışmada sentezlenen 37 adet bileşiğin antioksidan ve antimikrobiyal özellikleri incelenerek **7**, **14**, **15** ve **34** nolu maddelerin oldukça iyi antioksidan, *N*-dekil türevi olan **14-15** nolu bileşiklerin ise yüksek derecede antimikrobiyal özellik gösterdiği görüldü.

Tez konusu çalışmalarından 1 adet makale yayımlanmış [105] bir adette yayına gönderilmiştir ve bir adette hazırlık aşamasındadır.

6. ÖNERİLER

Bu çalışmada doğal kalkonlara alternatif 11 adet azakalkon bileşiği, 2 adet flavon bileşiği, 2 adet flavonların *N*-dekil bileşiği, 9 adet benzoillenmiş azakalkon bileşiği ve 13 adet dimerleşme ürünü elde edildi. Bu çalışmada hidroksi azakalkonların neden dimerleşmediği literatür kaynaklarına ve teorik hesaplara dayanılarak verildi.

Bundan sonraki çalışmalarda;

- Hidroksi bileşiklerinin X-Ray ölçümleri alınarak deneysel verilerle teorik hesaplanan bileşiklerin uzaklıkları karşılaştırılabilir.
- Bu çalışmada benzoil dimerleri miktar açısından az olduğundan hidroksi dimerlere benzoil grubunun yok edilmesiyle ulaşılamamıştır.
- Dimerlerin madde miktarları artırılarak benzoil dimerlerden hidroksi dimerlere dönüştürülüp aktivite tayini karşılaştırılabilir.
- Bu çalışmada 4'-azakalkonlardan flavonlar sentezlenmiştir. Bundan sonraki çalışmalarda 3'- ve 2'-azakalkon bileşiklerinin flavon ve aza flavonları sentezlenebilir.
- Sentezlenen başlangıç 1-11, benzoil 16-24 bileşikleri ve elde edilen 25-37 dimer bileşiklerinin *N*-alkil bileşikleri sentezlenebilir ve biyolojik özellikleri araştırılabilir.

7. KAYNAKLAR

- 1. Pengelly, A., The Constituents of Medicinal Plants 2nd Ed. Allen & Unwin, 28, Australia, 2004.
- Yaylı, N., Üçüncü, O., Yaşar, A., Gök, Y., Küçük, M. ve Kolaylı, S., Stereoselective Photochemistry of Methoxy Chalcones in Solution and Their Radical Scavenging Activity, 28 <u>Turk. J. Chem.</u>, (2004) 515-521.
- 3. Ruzsnyak, S. ve Szent-Gyorgy, A., <u>Nature</u>, 138 (1936) 27.
- 4. Jeney, E. ve Uri, J., <u>Die Pharmazie</u>, 9 (1954).
- 5. Minayeva, V.G. ve Lapik, A.S., <u>Trudi CSBS SOAN SSSR</u>, 5 (1961) 8.
- 6. Vogel, G., The Effect of Drugs of Plants Origin on Capillary Permeability and the Tymphatic System, <u>In. Pharmacognosy and phytochemistry</u>. Ed., 1971.
- 7. Zaprometov, M. N., Biochimiya Katechinov. M. "Nauka", (1964) 265.
- 8. Tayeau, F., "Mejd. konf. povitaminate" Sofiya, BAN 39, 1962.
- 9. Ruş, A. F. ve Kulikova, A., <u>Trudi Alt. S. -X. İn-ta.</u>, 23 (1971) 32.
- 10. Robbins, R.C., <u>J. clin. pharm.</u>, 13 (1973) 401.
- 11. Chowduhry, A. R., Sharma, S., Mandal, S., Goswami, A., Mukhopadhyay, S., ve Majumder, H. K., Luteolin an Emerging Anticanser Flavonoid Poisons Eukaryotic DNA Topoisomerase I, <u>Biochem J.</u>, 366 (2002) 653-661.
- 12. Agrawal, P. K., Carbon-13 NMR of Flavanoids, Elsevier, 1989.
- 13. Bilaloğlu, G.V. ve Harmandar., M., Flavonoidler, Aktif Yayınevi, İstanbul, 2001.
- 14. Eddarir, S., Cotelle, N., Bakkour, Y. ve Rolando, C., <u>Tetrahedron</u>, 44 (2003) 5359-63.
- 15. Chao, P. D. L., Hou, S. L. ve Hou, Y. C., <u>J. Food and Drug Analysis</u>, 10 (2002) 219-228.
- 16. Buolamwini, J. K., Addo, J., Kamath, S., Patil, S., Mason, D. ve Ores, M., Small Molecule Antagonists of the Mdm2 Oncoprotein as Anticancer Agents, <u>Current Cancer Drug Targets</u>, 5 (2005) 57-68.

- Herencia, F., Ferrandiz, M. L., Ubeda, A., Dominguez, J. N., Charris, J. E., Lobo, G. M. ve Alcarez, M. J., Synthesis and Anti-Inflammatory Activity of Chalcone Derivatives, <u>Bioorganic & Medicinal Chemistry</u>, 8 (1998) 1169-1174.
- Rao, Y. K., Fang, S. H. ve Tzeng, Y. M., Differential Effects of Synthesized 2'-Oxyganeted Chalcone Derivatives: Modulation of Human Cell Cycle Phase Distribution, <u>Bioorganic & Medicinal Chemistry</u>, 12 (2004) 2679-2686.
- 19. Satyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. K. ve Pratap, R., Synthesis and Antihyperglycemic Activity of Chalcone Based Aryloxypropanolamines, <u>Bioorganic & Medicinal Chemistry</u>, 12 (2004) 883-889.
- 20. Wu, J. H., Wang, X. H., Yi, Y. H. ve Lee, K. H., Anti-AIDS Agents 54. A Potent Anti-HIV Chalcone and Flavonoids from Genus Desmos, Bioorganic & <u>Medicinal Chemistry Letters</u>, 13 (2003) 1813–1815.
- 21. Göksu, S., Çelik, H. ve Sezen, H., An Efficient Synthesis of Alnustone, A Naturally Occurring Compound, <u>Turk J Chem</u>, 27 (2003) 31-34.
- 22. Fayed, T. A. ve Awad, M. K., Dual Emission of Chalcone-Analogue Dyes Emittingin the Red Region, <u>Chemical Physics</u>, 303 (2004) 317-326.
- 23. Cesarin-Sobrinho, D. ve Netto-Ferreira, J. C., <u>Quim. Nova</u>, 25 (2002) 62-68.
- 24. Toda, F., Tanaka, K. ve Kato, M., <u>J. Chem. Soc. Perkin Trans.</u>, 1 (1998) 1315-18.
- 25. Seidel, V., Bailleul, F. ve Waterman, P. G., <u>Phytochemistry</u>, 55 (2000) 439-446.
- 26. Katerere, D. R., Gray, A. I., Kennedy, A. R., Nash, R. J. ve Waigh, R. D., Cyclobutanes from Combretum Albopunctatum, <u>Phytochemistry</u>, 65 (2004) 433–438.
- Sebti, S., Solhy, A., Tahır, R., Boulaajaj, S., Mayoral, J. A., Fraile, J. M., Kossir, A. ve Oumimoun, H., Calcined Sodium Nitrate/Natural Phosphate: An Extremely Active Catalyst for the Easy Synthesis of Chalcones in Heterogeneous Media, <u>Tetrahedron Letters</u>, 42 (2001) 7953-7955.
- 28. Sebti, S., Solhy, A., Smahi, A., Kossir, A. ve Oumimoun, H., Dramatic Activity Enhancment of Natural Phosphate Catalyst By Lithium Nitrate an Efficient Synthesis of Chalcones, <u>Catalysis Communications</u>, 3 (2002) 335-339.
- 29. Lin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. ve Chen, F. C., Chalcones and Flavonoids as Anti-Tuberculosis Agents, <u>Bioorganic &</u> <u>Medicinal Chemistry</u>, 10 (2002) 2795-2802.

- Li, J. T., Yang, W. Z., Wang, S. X., Li, S. H. ve Li, T. S., Improved Synthesis of Chalcones Under Ultrasound Irradiation, <u>Ultrasonics Sonochemistry</u>, 9 (2002) 237-239.
- Hu, Z., Liu, J., Dong, Z., Guo, L., Wang, D. ve Zeng, P., Synthesis Of Chalcones Catalysed By OCl₂/ EtOH, <u>Journal Of Chemical Research</u>, February (2004)158-159.
- 32. Edwards, M. L., Stemerick, D. M., Sabol, J. S., Diekema, K. A. ve Dinerstein, R. J., J. Med. Chem., 37 (1994) 4357.
- Nowakowska, Z., Wyrzykiewicz, E. ve Kedzia, B., Synthesis and Antimicrobial Properties of N-Substituted Derivates of (E)-4-Azachalcones, <u>II</u> <u>Farm.</u>, 56 (2001) 325–329.
- 34. Kozmik, V., Lhotak, P., Odlerova, Z. ve Palecek, J., Azachalcone Derivatives and Their Bis-substituted Analogs as Novel Antimycobacterial Agents, <u>Journal</u> <u>of Czechoslovak Chemical Communications</u>, 63 (1998) 698-712.
- 35. Kozmik, V., Lhotak, P., Odlerova, Z. ve Palecek, J., Azabischalcones a New Class of Potential Antitubercular Agents, <u>Ceska Slov. Farm.</u>, 47 (1998) 87-90.
- 36. Bradlerova, A., Pronoyova, N. ve Durinda, J., Preparation and Properties of Heterocycloalkylethoxyazachalcones, <u>Acta Facultatis Pharmaceuticae Tom.</u>, XLIV (1990) 85-101.
- 37. Edwards, M. L. ve Sunkara, P. S., Chalcones: A new class of antimitotic agents, J. Med. Chem., 33 (1990) 1948-1954.
- 38. Zhang Z., Dong Y.-W. ve Wang G. W., Efficient and Clean Aldol Condensation Catalyzed by Sodium Carbonate in Water, <u>Chemistry Letters</u>, 32, 10 (2003) 966-967.
- 39. Downs, L. E., Wolfe, D. M. ve Schreiner, P. R., Organic Base-Mediated Condensation of Pyridinecarboxaldehydes to Azachalcones, <u>Adv. Synth.</u> <u>Catal.</u>, 347 (2005) 235–238.
- Yaylı, N., Uçüncü, O., Yaşar A., Yaylı, N., Burnaz, N. A. ve Karaoğlu Ş. A., Photochemistry of Nitro-Substituted (*E*)-2-Azachalcones with Theoreticalcalculations and Biological Activities, <u>J. Photochem. Photobiol.</u> <u>A:Chem</u>, 203 (2009) 85-91.
- 41. Nowakowska, Z., Wyrzykiewicz, E. ve Kedzia, B., <u>II Farm.</u>, 57 (2002) 657.
- 42. Yaylı, N., Küçük, M., Uçüncü, O., Yaşar A., Yaylı, N. ve Karaoğlu Ş. A., J. Photoch. Photobio. A, 188 (2007) 161.
- 43. Yaylı, N., Uçüncü, O., Yaşar, A., Küçük, M., Yaylı, N., Akyüz, E. ve Karaoğlu, Ş. A., <u>Turk. J. Chem.</u>, 30 (2006) 505.

- 44. Yaylı, N., Yaşar, A., Üçüncü, O., Sivrikaya, S. Ö., Güleç, C., Küçük, M. ve Abbasov, R., J. Photochem. Photobiol. A:Chem, 171 (2005) 295-302.
- 45. Yaylı, N., Üçüncü, O., Aydın, E., Gök, Y., Yaşar, A., Balcı, C., Yıldırım, N.ve Küçük, M., J. Photochem. Photobiol. A:Chem, 169 (2005) 229-232.
- 46. Yaylı, N., Üçüncü, O., Yaylı, N., Demir, E. ve Demirbağ, Z., <u>Turk J. Chem.</u>, 32 (2008), 785 795.
- 47. Yaylı, N., Sivrikaya, S. Ö., Yaşar, A., Üçüncü, O., Güleç, C., Kolaylı, S., Küçük, M. ve Çelik, E., J. Photochem. Photobiol. A:Chem, 175 (2005) 22-28.
- 48. Yaylı, N., Gök ,Y., Üçüncü, O., Yaşar, A., Atasoy, Ç., Sahinbas, E. ve Kucuk, M., Journal of Chemical Research-S, 3 (2005) 155-159.
- 49. Solomons, F., Organik Kimya 7. basımdan çeviri, Bölüm 5.3, 191 s., 2000.
- 50. Welton, A. F., Tobias, L. D., Fiedler-Nagy, C., Anderson, W., Hope, W., Middleton, K., Harbirne, J. B. ve Liss A. R., New York, 231, 1986.
- 51. Havsteen, <u>Biochem. Pharmacol.</u>, 32 (1983) 1141.
- 52. Allan, J. ve Robinson, R., <u>J. Chem. Soc.</u>, 125 (1924) 2192.
- 53. Dyke, S. F.; Ollis, W. D. ve Sainsbury, M., <u>J. Org. Chem.</u>, 26 (1961) 2453.
- 54. Wheller, T. S. "Flavone". Organic Syntheses, 32: 72 (1952).
- Hassner, A. ve Stumer, C., Organic Synthesis Based on Name Reactions: 2. nd. Ed. Tetrahedron Organic Chemistry Series, Volume 22 Pergamon, Oxford ISBN 0-08-043260-3.
- 56. Jain, P. K., et al. "A Facile Baker-Venkataraman Synthesis of Flavones Using Phase Transfer Catalysis". <u>Synthesis</u>, (1982) 221–222.
- 57. Algar, J. ve Flynn, J. P., <u>Proc. Roy. Irish Acad.</u>, (1934) 42B.
- 58. Sarda, S. R., Pathan, M. Y., Paike, V. V., Pachmase, P. R., Jadhav, W. N. ve Pawar, R. P., A Facile Synthesis of Flavones Using Recyclable Ionic Liquid Under Microwave Irradiation, <u>ARKIVOC</u>, XVI (2006) 43-48.
- 59. Kumar, K. H. ve Perumal P. T., <u>Can. J. Chem.</u>, 84 (2006) 1079.
- 60. Kumar, K. H., Muralidharan D. ve Perumal P. T., <u>Synthesis</u>, 1 (2004) 63.
- 61. Varma R. S., <u>J. Heterocyclic Chem.</u>, 35 (1999) 1565–1571.
- 62. Harborne, J. B., 'The Flavonoids. Advances in Research', Chapman & Hall, London, 1988.

- 63. Küçükislamoğlu, M., Nebioğlu, M., Zengin, M., Arslan, M. ve Yaylı, N., J. Chem. Res.-S, 9 (2005) 556.
- 64. Ahmed, N. ve Lier, J. E., <u>Tetrahedron Lett.</u>, 47 (2006) 2725.
- 65. Annigeri, A. C. ve Siddappa, S., Monatsh. Chem., 96, 2 (1965) 625.
- 66. Annigeri, A. C. ve Siddappa, S., <u>Indian J. Chem.</u>, 2, 10 (1964) 413.
- 67. Springsteel, M. F., Galietta, L. J. V., Ma, T., By, K., Berger, G. O., Yang, H., Dicus, C. W., Choung, W., Quan, C., Shelat, A. A., Guy, R. K., Verkman, A. S., Kurth, M. J. ve Nantz, M. H., <u>Bioorgan. Med. Chem.</u>, 11 (2003) 4113.
- 68. Edwards, M. L., Stemerick, D. M., Sabol, J. S., Diekema, K. A. ve Dinerstein, R. J., J. Med. Chem., 37 (1994) 4357.
- 69. Matsushima, R. ve Hirao, I., <u>Bull. Chem. Soc. Jpn.</u>, 53 (1980) 518.
- 70. Varma, R.S., Solvent-Free Synthesis of Heterocyclic Compounds Using Microwaves, J. Heterocyclic Chem., 36 (1999) 1565.
- 71. Woodward, R. B. ve Hoffmann, R., The conversation of Orbital Symmetry, Verlag Chemie, Weinheim, 1970.
- 72. Lowe, J. P., Quantum Chemistry, Student Edition, Academic Pres, Inc., 1-26, 32887, Orlando, Florida, 1978.
- 73. D'Auria, M. ve Racioppi, R., J<u>. Photochem. Photobiol. A: Chem.</u>, 112 (1998) 145–148.
- 74. D'Auira, M. ve Racioppi, R., <u>Tetrahedron</u>, 53 (1997) 17307–17316.
- 75. D'Auira, M. ve Racioppi, R., The Photodimerisation of Coumarin, <u>J.</u> <u>Photochem. Photobiol. A: Chem.</u>, 163 (2004) 557–559
- 76. D'Auria, M., <u>Heterocycles</u>, 54 (2000) 475–496.
- 77. D'Auria, M., Electrophilic substitutions and HOMOs in Azines and Purines, <u>Tetrahedron Letters</u>, 46 (2005) 6333–6336.
- 78. D'Auira, M. ve Racioppi, R., Paterno-Büchi Reaction on 5-methyl-2furylmethanol Derivatives <u>ARKIVOC</u>, 1 (2000) 133-140.
- 79. D'Auira, M. ve Racioppi, R., The Photochemical Isomerization of Pyrazoles: an ab initio Study, Letters in Organic Chemistry, 1 (2004) 12-19.
- 80. D'Auira ve M., Ferri R., Frontier Orbitals Control in the Reactivity of Singlet Oxygen with Lignin Model Compounds an ab initio Study, <u>J. Photochem.</u> <u>Photobiol. A: Chem.</u>, 157 (2003) 1–4.

- 81. Bussotti1, L., D'Auria, M., Foggi, P., Lesma, G., Righini, R. ve Silvani, A., The Photochemical Behavior of Colchicone and Thiocolchicone, <u>Photochemistry and Photobiology</u>, 71 (1) (2000) 29–34.
- D'Auria, M., Emanuele, L., Mauriello, G. ve Racioppi, R., Photochemical Dimerisation of 2-Vinylfuran and 2-Vinylthiophene Derivatives Bearing Electron-Withdrawing Groups, <u>J. Photochem. Photobiol. A:Chem.</u>, 134 (2000) 147–154.
- 83. Stobbe, H., <u>Ber.</u>, 52 (1919) 666.
- 84. Stobbe, H. ve Bremer, A., <u>J. Prakt. Chem.</u>, 123 (1929) 1.
- 85. Volter, W. ve Breitmaier, E., Carbon-13 NMR Spectroscopy, Third Edition, VCH Veriagsgeselschaft mbh, Weinheim, 1990.
- 86. Clerc, P. ve Simon, S., Spectral Data for Structure Determination of Organic Compounds, Color-Duruck Dorfigmbh, Berlin, 1989.
- 87. Blunt, J. W. ve Stothers, J. B., ¹³C NMR Spectre of Steroids, <u>Organic</u> <u>Magnetic Resonance</u>, 9, (1977) 442-464.
- Enkelmann, V. ve Wegner, G., Single-Crystal-to-Single-Crystal Photodimerization of Cinnamic Acid, <u>J. Am. Chem. Soc</u>., 115 (1993) 10390-10391.
- 89. Tyrk, I. T., Grzes'niak, K., Trzop, E. ve Zych, T., Monitoring structural transformations in crystals. Part 4. Monitoring Structural Changes in Crystals of Pyridine Analogs of Chalcone During [2-2] Photodimerization and Possibilities of the Reaction in Hydroxy Derivatives, Journal of Solid State Chemistry, 174 (2003) 459–465.
- 90. D'Auria, M., Emanuele, L., Esposito, V. ve Racioppi, R., The Photochemical Dimerization of 3-heteroaryl-acrylates, <u>ARKIVOC</u>, XI (2002) 65-78.
- 91. Gnanaguru, K., Ramasubbu, N., Venkatesan, K. ve Ramamurthy, V., A Study on the Photochemical Dimerization of Coumarins in the Solid State, <u>J. Org.</u> <u>Chem.</u>, 50 (1985) 2337–2346.
- 92. Ghosh, P. N., Hydrogen Bond Distance And Phase Change in Crystalline HCN, J. Phys. C: Solid State Phys., 10 (1977) 4421-4424.
- 93. Kim, J. H., Lindeman, S. V. ve Kochi, J. K., Charge-Transfer Forces in the Self-Assembly of Heteromolecular Reactive Solids: Successful Design of Unique (Single-Crystal-to-Single-Crystal) Diels-Alder Cycloadditions, J. Am. Chem. Soc., 123 (2001) 4951-4959.
- 94. Gnanaguru, K., Ramasubbu, N., Venkatesan, K. ve Ramamurthy, V., J. Photochem., 27 (1984) 355.

- 95. Theocharis, C.R., Nakanishi, H. ve Jones, W., <u>Acta Crystallogr. B</u>, 37 (1981) 756.
- 96. Vogel, A. I., Furniss, B. S., Hannaford, A. J. ve Tatchell, A. R., "Vogel's Textbook of Practical Organic Chemistry", 5th ed., Longman Group, UK, 1989.
- 97. Bax, A., Two Dimensiol Nuclear Magnetic Resonance in Liguids. Delf University Pres and D.Reidel Publishing Co., Boston, 1982.
- 98. Derome, A. E., Modern NMR Techniques for Chemistry Resaarch. Pergamon Pres, 1998.
- 99. Rose, M. E. ve Johnstone, R. A. W., Mass Spectrometry for Chemists and Biochemists, Cambridge University, 1982.
- 100. Markham, K. R., "Techniques of Flavonoid Identification", Academic Pres., 1982.
- 101. Harborne, J. B., The Flavonoids, Newyork, 1988.
- 102. Balcı, M., "Nükleer Manyetik Rezonans Spektroskopisi", Metu Press., 2000.
- 103. Hışıl, Y., Enstrümental Gıda Analizieri I (Yüksek Basınç Sıvı kromatografisi), Ege Universitesi, İzmir, 1994.
- 104. Hışıl, Y., Enstrümental Gıda Analizleri II (Gaz, İnce Tabaka, Kolon Kromatografisi ve Elektroforez), Ege Universitesi, İzmir, 1994.
- 105. Yaşar, A., Akpınar, K., Burnaz, N. A., Küçük, M., Karaoğlu, Ş. A. ve Yaylı, N., Microwave Assisted 4'-Azaflavone Synthesis and Their N-Alkyl Derivatives with Biological Activities, <u>Chemistry& Biodiversity</u>, 5, 5 (2008) 830–838.
- 106. Williams, D.H. ve Fleming, I., Spectroscopic Methods in Organic Chemistry, McGraw Hill Book Company, UK., 1989.
- 107. Silverstein, R.M., Bassler, G.C. ve Morril, T. C., Spectrometric Identification of Organic Compounds, John Willey and Sons, Inc., New York, USA, 1991.
- 108. ACD/Labs Software, Educatures Pack, Advanced Chemistry Development Inc., Toronto, Canada, 2001.
- 109. Ege, S., Organic Chemistry, Second Edition, D.C. Heath and Company, 1989.
- 110. Bruice, P.Y., Organic Chemistry, Prentice Hall, 1995.

- 111. Liu, M., Wilairat, P., Croft, S. L., Lay, A., Tan, C. ve Go, M. L., Structure– Activity Relationships of Antileishmanial and Antimalarial Chalcones, <u>Bioorganic & Medicinal Chemistry</u>, 11, 13 (2003) 2729-2738.
- 112. Carson, J. R., Carmosin, R. J., Vaught, J. L., Gardocki, J. F., Costanzo, M. J., Raffa R. B. ve Almond, H. R., 2-Substituted 1-Azabicycloalkanes, a New Class of Non-Opiate Antinociceptive Agents, <u>Journal of Medicinal Chemistry</u>, 35 (1992) 2855-2863.
- 113. Nie, A., Wang, J. ve Huang, Z., Journal of Combinatorial Chemistry, 8, 5 (2006) 646-648.
- 114. Shindo, K., Osawa, A., Nakamura, R., Kagiyama, Y., Sakuda, S., Shizuri, Y., Furukawa, K. ve Misawa, N, <u>Journal of the American Chemical Society</u>, 126, 46 (2004) 15042-15043.
- 115. Villemin, D. ve Hachemi, M., Cesium Fluoride on Calcium Oxide as a Strongly Basic Catalyst. Synthesis of Flavones and Tobacco Alkaloids <u>Reaction Kinetics and Catalysis Letters</u>, 72, 1 (2001) 3-10.
- Găină, L., Cristea, C., Moldovan, C., Porumb, D., Surducan, E., Deleanu, C., Mahamoud, A., Barbe, J. ve Silberg, I. A., Microwave-Assisted Synthesis of Phenothiazine and Quinoline Derivatives, <u>Int. J. Mol. Sci.</u>, 8 (2007) 70-80.
- 117. Tu, S., Li, C., Li, G., Cao, L., Shao, Q., Zhou, D., Jiang, B., Zhou, J. ve Xia, M., Microwave-Assisted Combinatorial Synthesis of Polysubstituent Imidazo[1,2-a]quinoline, Pyrimido[1,2-a]quinoline and Quinolino[1,2a]quinazoline Derivatives, J. Comb. Chem., 9 (2007) 1144–1148.
- Nakanishi, H., Jones, W., Thomas, J. M., Hursthouse, M. B., ve Motevalli, J. M., J. Phys. Chem., 85 (1981) 3636.
- 119. Zhao, Z., Leister, W. H., Robinson, R. G., Barnett, S. F., Defeo-Jones, D., Jones, R. E., Hartman, G. D., Huff, J. R., Huber, H. E., Duggan, M. E. ve Lindsley, C. W., <u>Bioorg. Med. Chem. Lett.</u>, 15 (2005) 905–90.
- 120. Yaylı, N., Küçük ,M., Üçüncü, O., Yaşar, A., Yaylı, N. ve Karaoğlu, Ş. A., synthesis of N-Alkyl Derivatives and Photochemistry of Nitro (E)-3-Azachalcones with Theoretical Calculations Biological Activities, <u>J.</u> <u>Photochem. Photobiol. A:Chem</u>, 188 (2007) 161-168.
- 121. Usta, A., Yaşar, A., Yılmaz, N., Güleç, C., Yaylı, N., Karaoğlu, Ş. A. ve Yaylı, N., Synthesis of Methyl (E)-2',3"-Thiazachalcones and their N-Alkyl Derivatives, Photochemistry with Theoretical Calculations and Antimicrobial Activities, <u>Helvetica Chimica Acta</u>, 90 (2007) 1482–1490.
- 122. Yaylı, N., Üçüncü, O., Yaşar, A., Küçük, M., Yaylı, N., Akyüz, E. ve Karaoğlu, Ş. A., Synthesis and Biological Activities of N-Alkyl Derivatives of o-, m-, and p-Nitro (E)-4-Azachalcones and Stereoselective Photochemistry in Solution, with Theoretical Calculations, <u>Turk. J. Chem</u>, 30 (2006) 505-514.

8. EKLER

Ek Şekil 2. 1 Nolu bileşiğin ¹³C-NMR spektrumu, DMSO-d₆

Ek Şekil 3. 1 Nolu bileşiğin APT spektrumu, DMSO-d₆

Ek Şekil 4. 1 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 5. 1 Nolu bileşiğin LC-MS/MS spektrumu, DMSO

Ek Şekil 6. 2 Nolu bileşiğin ¹H-NMR spektrumu, DMSO-d₆

Ek Şekil 7 . 2 Nolu bileşiğin APT spektrumu, DMSO-d₆

Ek Şekil 8. 2 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 9. 2 Nolu bileşiğin LC-MS/MS spektrumu, DMSO

Ek Şekil 10. 3 Nolu bileşiğin ¹H-NMR spektrumu, DMSO-d₆

Ek Şekil 11. 3 Nolu bileşiğin ¹³C spektrumu, DMSO-d₆

Ek Şekil 12. 3 Nolu bileşiğin APT spektrumu, DMSO-d₆

Ek Şekil 13. 3 Nolu bileşiğin COSY spektrumu, DMSO-d₆

Ek Şekil 14. 3 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 15. 3 Nolu bileşiğin LC-MS/MS spektrumu,

Ek Şekil 16. 4 Nolu bileşiğin ¹H-NMR spektrumu, DMSO-d₆

Ek Şekil 17. 4 Nolu bileşiğin ¹³C-NMR spektrumu, DMSO-d₆

Ek Şekil 18. 4 Nolu bileşiğin APT spektrumu, DMSO-d₆

Ek Şekil 19. 4 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 20. 4 Nolu bileşiğin Lc-MS/MS spektrumu, DMSO

Ek Şekil 22. 5 Nolu bileşiğin ¹³C-NMR spektrumu, DMSO-d₆

Ek Şekil 23. 5 Nolu bileşiğin APT spektrumu, DMSO-d₆

Ek Şekil 24. 5 Nolu bileşiğin COSY spektrumu, DMSO-d₆

Ek Şekil 25. 5 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 26. 5 Nolu bileşiğin LC-MS/MS spektrumu, DMSO

Ek Şekil 27. 6 Nolu bileşiğin ¹H-NMR spektrumu, DMSO-d₆

Ek Şekil 28. 6 Nolu bileşiğin ¹³C-NMR spektrumu, DMSO-d₆

Ek Şekil 29. 6 Nolu bileşiğin APT spektrumu, DMSO-d₆

Ek Şekil 30. 6 Nolu bileşiğin COSY spektrumu, DMSO-d₆

Ek Şekil 31. 6 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 32. 6 Nolu bileşiğin LC-MS/MS spektrumu, DMSO

Ek Şekil 33. 7 Nolu bileşiğin ¹H-NMR spektrumu, DMSO-d₆

Ek Şekil 34. 7 Nolu bileşiğin APT spektrumu, DMSO-d₆

Ek Şekil 35. 7 Nolu bileşiğin COSY spektrumu, DMSO-d₆

Ek Şekil 36. 7 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 37. 7 Nolu bileşiğin LC-MS/MS spektrumu, DMSO

Ek Şekil 38. 8 Nolu bileşiğin ¹H-NMR spektrumu, DMSO-d₆

Ek Şekil 39. 8 Nolu bileşiğin APT spektrumu, DMSO-d₆

Ek Şekil 40. 8 Nolu bileşiğin COSY spektrumu, DMSO-d₆

Ek Şekil 41. 8 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 42. 8 Nolu bileşiğin LC-MS/MS spektrumu, DMSO

Ek Şekil 43. 9 Nolu bileşiğin ¹H-NMR spektrumu, DMSO-d₆

Ek Şekil 44. 9 Nolu bileşiğin ¹³C-NMR spektrumu, DMSO-d₆

Ek Şekil 45. 9 Nolu bileşiğin APT spektrumu, DMSO-d₆

Ek Şekil 46. 9 Nolu bileşiğin COSY spektrumu, DMSO-d₆

Ek Şekil 47. 9 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 48. 9 Nolu bileşiğin LC-MS/MS spektrumu, DMSO

Ek Şekil 49. 10 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 50. 10 Nolu bileşiğin ¹³C-NMR spektrumu, CDCl₃

Ek Şekil 51. 10 Nolu bileşiğin APT spektrumu, CDCl₃

Ek Şekil 52. 10 Nolu bileşiğin COSY spektrumu, CDCl₃

Ek Şekil 53. 10 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 54. 10 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

Ek Şekil 55. 11 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 56. 11 Nolu bileşiğin ¹³C-NMR spektrumu, CDCl₃

Ek Şekil 57. 11 Nolu bileşiğin APT spektrumu, CDCl₃

Ek Şekil 58. 11 Nolu bileşiğin COSY spektrumu, CDCl₃

Ek Şekil 59. 11 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 60. 11 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

Ek Şekil 61. 12 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 62. 12 Nolu bileşiğin ¹³C-NMR spektrumu, CDCl₃

Ek Şekil 63. 12 Nolu bileşiğin APT spektrumu, CDCl₃

Ek Şekil 64. 12 Nolu bileşiğin COSY spektrumu, CDCl₃

Ek Şekil 65. 12 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 66. 12 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

Ek Şekil 67. 13 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 68. 13 Nolu bileşiğin ¹³C-NMR spektrumu, CDCl₃

Ek Şekil 69. 13 Nolu bileşiğin APT spektrumu, CDCl₃

Ek Şekil 70. 13 Nolu bileşiğin COSY spektrumu, CDCl₃

Ek Şekil 71. 13 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 72. 13 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

Ek Şekil 73. 14 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 74. 14 Nolu bileşiğin ¹³C-NMR spektrumu, CDCl₃

Ek Şekil 75. 14 Nolu bileşiğin APT spektrumu, CDCl₃

Ek Şekil 76. 14 Nolu bileşiğin COSY spektrumu, CDCl₃

Ek Şekil 77. 14 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 78. 14 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

Ek Şekil 79. 15 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 80. 15 Nolu bileşiğin ¹³C-NMR spektrumu, CDCl₃

Ek Şekil 81. 15 Nolu bileşiğin APT spektrumu, CDCl₃

Ek Şekil 82. 15 Nolu bileşiğin COSY spektrumu, CDCl₃

Ek Şekil 83. 15 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 84. 15 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

Ek Şekil 85. 16 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 86. 16 Nolu bileşiğin ¹³C-NMR spektrumu, CDCl₃

Ek Şekil 87. 16 Nolu bileşiğin APT spektrumu, CDCl₃

Ek Şekil 88. 16 Nolu bileşiğin COSY spektrumu, CDCl₃

Ek Şekil 89. 16 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 90. 16 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

Ek Şekil 91. 17 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 92. 17 Nolu bileşiğin ¹³C-NMR spektrumu, CDCl₃

Ek Şekil 93. 17 Nolu bileşiğin APT spektrumu, CDCl₃

Ek Şekil 94. 17 Nolu bileşiğin COSY spektrumu, CDCl₃

Ek Şekil 95. 17 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 96. 17 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

Ek Şekil 97. 18 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 98. 18 Nolu bileşiğin ¹³C-NMR spektrumu, CDCl₃

Ek Şekil 99. 18 Nolu bileşiğin APT spektrumu, CDCl₃

Ek Şekil 100. 18 Nolu bileşiğin COSY spektrumu, CDCl₃

Ek Şekil 101. 18 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 102. 18 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

Ek Şekil 103. 19 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 104. 19 Nolu bileşiğin ¹³C-NMR spektrumu, CDCl₃

Ek Şekil 105. 19 Nolu bileşiğin APT spektrumu, CDCl₃

Ek Şekil 106. 19 Nolu bileşiğin COSY spektrumu, CDCl₃

Ek Şekil 107. 19 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 108. 19 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

Ek Şekil 109. 20 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 110. 20 Nolu bileşiğin ¹³C-NMR spektrumu, CDCl₃

Ek Şekil 111. 20 Nolu bileşiğin APT spektrumu, CDCl₃

Ek Şekil 112. 20 Nolu bileşiğin COSY spektrumu, CDCl₃

Ek Şekil 113. 20 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 114. 20 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

Ek Şekil 115. 21 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 116. 21 Nolu bileşiğin ¹³C-NMR spektrumu, CDCl₃

Ek Şekil 117. 21 Nolu bileşiğin APT spektrumu, CDCl₃

Ek Şekil 118. 21 Nolu bileşiğin COSY spektrumu, CDCl₃

Ek Şekil 119. 21 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 120. 21 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

Ek Şekil 121. 22 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 122. 22 Nolu bileşiğin ¹³C-NMR spektrumu, CDCl₃

Ek Şekil 123. 22 Nolu bileşiğin APT spektrumu, CDCl₃

Ek Şekil 124. 22 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 125. 22 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

Ek Şekil 126. 23 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 127. 23 Nolu bileşiğin ¹³C-NMR spektrumu, CDCl₃

Ek Şekil 128. 23 Nolu bileşiğin APT spektrumu, CDCl₃

Ek Şekil 129. 23 Nolu bileşiğin COSY spektrumu, CDCl₃

Ek Şekil 130. 23 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 131. 23 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

Ek Şekil 132. 24 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 133. 24 Nolu bileşiğin ¹³C-NMR spektrumu, CDCl₃

Ek Şekil 134. 24 Nolu bileşiğin APT spektrumu, CDCl₃

Ek Şekil 135. 24 Nolu bileşiğin COSY spektrumu, CDCl₃

Ek Şekil 136. 24 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 137. 24 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

Ek Şekil 138. 25 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 139. 25 Nolu bileşiğin APT spektrumu, CDCl₃

Ek Şekil 140. 25 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 141. 25 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

Ek Şekil 142. 26 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 143. 26 Nolu bileşiğin ¹³C-NMR spektrumu, CDCl₃

Ek Şekil 144. 26 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 145. 26 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

Ek Şekil 146. 27 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 147. 27 Nolu bileşiğin ¹³C-NMR spektrumu, CDCl₃

Ek Şekil 148. 27 Nolu bileşiğin APT spektrumu, CDCl₃

Ek Şekil 149. 27 Nolu bileşiğin COSY spektrumu, CDCl₃

Ek Şekil 150. 27 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 151. 27 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

Ek Şekil 152. 28 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 153. 28 Nolu bileşiğin ¹³C-NMR spektrumu, CDCl₃

Ek Şekil 154. 28 Nolu bileşiğin APT spektrumu, CDCl₃

Ek Şekil 155. 28 Nolu bileşiğin COSY spektrumu, CDCl₃

Ek Şekil 156. 28 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 157. 28 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

Ek Şekil 158. 29 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 159. 29 Nolu bileşiğin ¹³C-NMR spektrumu, CDCl₃

Ek Şekil 160. 29 Nolu bileşiğin APT spektrumu, CDCl₃

Ek Şekil 161. 29 Nolu bileşiğin COSY spektrumu, CDCl₃

Ek Şekil 162. 29 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 163. 29 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

Ek Şekil 164. 30 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 165. 30 Nolu bileşiğin ¹³C-NMR spektrumu, CDCl₃

Ek Şekil 166. 30 Nolu bileşiğin APT spektrumu, CDCl₃

Ek Şekil 167. 30 Nolu bileşiğin COSY spektrumu, CDCl₃

Ek Şekil 168. 30 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 169. 30 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

Ek Şekil 170. 31 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 171. 31 Nolu bileşiğin ¹³C-NMR spektrumu, CDCl₃

Ek Şekil 172. 31 Nolu bileşiğin APT spektrumu, CDCl₃

Ek Şekil 173. 31 Nolu bileşiğin COSY spektrumu, CDCl₃

Ek Şekil 174. 31 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 175. 31 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

Ek Şekil 176. 32 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 177. 32 Nolu bileşiğin ¹³C-NMR spektrumu, CDCl₃

Ek Şekil 178. 32 Nolu bileşiğin APT spektrumu, CDCl₃

Ek Şekil 179. 32 Nolu bileşiğin COSY spektrumu, CDCl₃

Ek Şekil 180. 32 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 181. 32 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

Ek Şekil 182. 33 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 183. 33 Nolu bileşiğin ¹³C-NMR spektrumu, CDCl₃

Ek Şekil 184. 33 Nolu bileşiğin APT spektrumu, CDCl₃

Ek Şekil 185. 33 Nolu bileşiğin COSY spektrumu, CDCl₃

Ek Şekil 186. 33 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 187. 33 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

Ek Şekil 188. 34 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 189. 34 Nolu bileşiğin APT spektrumu, CDCl₃

Ek Şekil 190. 34Nolu bileşiğin COSY spektrumu, CDCl₃

Ek Şekil 191. 34 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 192. 34 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

Ek Şekil 193. 35 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 194. 35 Nolu bileşiğin APT spektrumu, CDCl₃

Ek Şekil 195. 35 Nolu bileşiğin COSY spektrumu, CDCl₃

Ek Şekil 196. 35 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 197. 35 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

Ek Şekil 198. 36 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 199. 36 Nolu bileşiğin APT spektrumu, CDCl₃

Ek Şekil 200. 36 Nolu bileşiğin COSY spektrumu, $CDCl_3$

Ek Şekil 201. 36 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 202. 39 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

Ek Şekil 203. 37 Nolu bileşiğin ¹H-NMR spektrumu, CDCl₃

Ek Şekil 204. 37 Nolu bileşiğin APT spektrumu, CDCl₃

Ek Şekil 205. 37 Nolu bileşiğin COSY spektrumu, CDCl₃

Ek Şekil 206. 37 Nolu bileşiğin FT-IR spektrumu, KBr

Ek Şekil 207. 37 Nolu bileşiğin LC-MS/MS spektrumu, CHCl₃

ÖZGEÇMİŞ

1977'de İzmir'in Bergama ilçesinde doğdu. İlköğretimine aynı ilin Dikili ilçesinde başladı ve Trabzon Hamsiköy'de tamamladı. Ortaöğretimini Hamsiköy'de tamamladı. Lise eğitimine Gümüşhane Anadolu Öğretmen Lisesinde başladı ve Erzincan Özel Otlukbeli Lisesinde tamamladı. Üniversite eğitimini 1995-1999 tarihleri arasında Marmara Üniveristesi F. E. F Kimya Bölümünde tamamladı. Aynı zamanda burada öğretmenlik için pedagoji eğitimini aldı. 1999-2002 tarihleri arasında değişik dersanelerde kimya öğretmenliği yaptı. 2001 yılında Karadeniz Teknik Üniversitesi F. E. F. Kimya Bölümünde Yüksek Lisansa girmeye hak kazandı. Değişik sebepler dolayısıyla bir yıl kayıt dondurdu. 2002 yılı aralık döneminde Fen Bilimleri Enstitüsü 50/d kadrosu Araştırma Görevliliğine atandı. Yüksek Lisansını 2005 şubat ayında KTÜ Fen Bilimleri Enstitüsünde tamamladı. Ayrıca HPLC ve GC-MS sertifikaları almış olup LC-MS/MS kullanabilmektedir. İyi derecede İngilizce bilmektedir. Evlidir ve 2 çocuk babasıdır.