KARADENİZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

KENDİLİĞNDEN YERLEŞEN BETONLARIN YÜKSEK SICAKLIK ETKİSİNDE BAZI FİZİKSEL VE MEKANİK ÖZELİKLERİ İLE RENK DEĞIŞİMİNİN İNCELENMESİ

DOKTORA TEZİ

İnş. Yük. Müh. Arif Emre SAĞSÖZ

AĞUSTOS 2013 TRABZON

KARADENİZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

KENDİLİĞİNDEN YERLEŞEN BETONLARIN YÜKSEK SICAKLIK ETKİSİNDE BAZI FİZİKSEL VE MEKANİK ÖZELİKLERİ İLE RENK DEĞİŞİMİNİN İNCELENMESİ

İnş. Yük. Müh. Arif Emre SAĞSÖZ

Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsünce "DOKTOR (İNŞAAT MÜHENDİSİ)" Unvanı Verilmesi İçin Kabul Edilen Tezdir.

Tezin Enstitüye Verildiği Tarih: 28.06.2013Tezin Savunma Tarihi: 14.08.2013

Tez Danışmanı: Prof. Dr. Şakir ERDOĞDUİkinci Danışman: Yrd. Doç. Dr. A. Ferhat BİNGÖL

Trabzon 2013

Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü İnşaat Mühendisliği Anabilim Dalında Arif Emre SAĞSÖZ tarafından hazırlanan

KENDİLİĞİNDEN YERLEŞEN BETONLARIN YÜKSEK SICAKLIK ETKİSİNDE BAZI FİZİKSEL VE MEKANİK ÖZELİKLERİ İLE RENK DEĞİŞİMİNİN İNCELENMESİ

başlıklı bu çalışma, Enstitü Yönetim Kurulunun 16 /07 / 2013 gün ve 1514/02 sayılı kararıyla oluşturulan jüri tarafından yapılan sınavda

DOKTORA TEZİ

olarak kabul edilmiştir.

Jüri Üyeleri

Başkan	: Prof. Dr. Şakir ERDOĞDU
Üye	: Prof. Dr. Nabi YÜZER
Üye	: Prof. Dr. Ayşe DALOĞLU
Üye	: Doç. Dr. Tevfik KÜÇÜKÖMEROĞLU
Üve	: Yrd. Doc. Dr. Sirin KURBETCİ

Prof. Dr. Sadettin KORKMAZ Enstitü Müdürü

ÖNSÖZ

Kendiliğinden yerleşen betonların yüksek sıcaklık altında renk değişimleri ve bazı mekanik ve fiziksel özelliklerini inceleyen Karadeniz Teknik Üniversitesi Fen Bilimleri Ensititüsü İnşaat Anabilim Dalı'nda doktora tezi olarak hazırlanmıştır.

2007 yıllında benim elimden tutan ve daima yolumu açan ve desteğini hiç esirgemeyen nikah şahidim, tez danışmanım ve hocam Prof. Dr. Şakir ERDOĞDU'ya en içten teşekkürlerimi sunarım. Ayrıca gene bu yıldan beri benim derdimi çeken bana yol gösteren ablam Prof. Dr. Ayşe SAĞSÖZ ve kuzenim Murat SAĞSÖZ'e sevgi ve saygılarımı sunarım.

2010 yıllından beri Erzurum da deneylerimin yürümesinde çok büyük katkıları olan abim, ikinci danışmanım ve başkanım Yrd. Doç. Ahmet Ferhat BİNGÖL'e en içten teşekkürlerimi sunarım.

Çalışmalarım sırasında deneylerime yardım eden can kardeşlerim Yrd. Doç. Selim ŞENGÜL, Yrd. Doç. Dr. Seracettin ARASAN, Yrd. Doç. Dr. Tolga YURTCAN Arş. Gör. Rıza POLAT, Arş. Gör. Alptekin ENGİN, İnş Yük. Müh. İlhan TOHUMCU ve İnş. Teknikeri Muhammet Oğuz OKUYUCU' ya teşekkürlerimi sunmayı bir borç bilirim.

Renk ölçümlerim sırasında hem alet hem de bilgi desteği veren ablam Prof. Dr. Funda BAYINDIR ve abim Prof. Dr. Yusuf Ziya BAYINDIR' a en içten sevgilerimi sunarım.

Hep yanımda olan devamlı destek veren annem Prof. Dr. Sevim SAĞSÖZ'e en içten sevgi ve saygılarımı sunarım.

Son olarak hep bana destek veren ve bana moral veren yaşama sebebim eşim Yrd. Doç. Dr. Fatma SAĞSÖZ'e sevgilerimi sunarım.

> Arif Emre SAĞSÖZ Trabzon 2013

TEZ BEYANNAMESİ

Doktora Tezi olarak sunduğum "Kendiliğinden Yerleşen Betonların Yüksek Sıcaklık Etkisinde Bazı Fiziksel ve Mekanik Özellikleri İle Renk Değişiminin İncelenmesi" başlıklı bu çalışmayı baştan sona kadar danışmanım Prof. Dr. Şakir ERDOĞDU'un sorumluğunda tamamladığımı, verileri kendim topladığımı başka kaynaklardan aldığım bilgileri metinde ve kaynakçada eksiksiz olarak gösterdiğimi, çalışma sürecinde bilimsel araştırma ve etik kurallara uygun olarak davrandığımı ve aksinin ortaya çıkması durumunda her türlü yasal sonucu kabul ettiğimi beyan ederim.

Arif Emre SAĞSÖZ

İÇİNDEKİLER

	<u>Sayfa No</u>)
ÖNSÖZ		
TEZ BEYA	NNAMESİIV	
İÇİNDEKİL	.ERV	
ÖZET		
SUMMARY	/IX	
ŞEKİLLER	DİZİNİX	
ÇİZELGEL	ER DİZİNİ XIII	
SEMBOLLI	ER DİZİNİXIV	
1.	GİRİŞ 1	
1.1.	Giriş1	
1.2.	Çalışmanın Amacı ve Kapsamı 4	
2.	KENDİLİĞİNDEN YERLEŞEN BETON 6	
2.1.	Giriş6	
2.2.	Kendiliğinden Yerleşen Betonun Gelişimi	
3.	BETONDA YÜKSEK SICAKLIK ETKİSİ 10	
3.1.	Yüksek Sıcaklık Kaynakları 10	
3.1.1.	Yangın10	
3.1.2.	Endüstri Fırın Bacaları	
3.1.3.	Hava Alanı Pistleri	
3.1.4.	Nükler Reaktörler	
3.2.1	Yüksek Sıcaklığın Betonarme Elemanlara Etkisi 13	
3.2.2.	Yüksek Sıcaklığın Betona Etkisi 17	
3.2.2.1.	Çimento Hamuru 19	
3.2.2.2.	Agrega	
3.2.2.3.	Mineral Katkılar	
3.2.3.	Yüksek Sıcaklığın Betonun Fiziksel Özelliklerine Etkileri	
3.2.4.	Yüksek Sıcaklığın Betonun Mekanik Özelliklerine Etkileri	
3.2.4.1.	Basınç Dayanımı	
3.2.4.2.	Çekme Dayanımı	
3.2.4.3.	Elastiklik Modülü	

3.2.5.	Yüksek Sıcaklık Etkisinde Beton Özelikleri İle Renk Değişimi İlişkisi	33
4.	RENK	36
4.1.	Renk Sistemi Çalışmalarının Tarihçesi	36
4.2.	Renk	37
4.3.	İlgili ve İlgisiz Renkler	38
4.4.	Renkle İlgili Tanımlar	38
4.4.1.	Hue (Ton)	38
4.4.2.	Parlaklık (Brightness) ve Hafiflik (Ligthness)	39
4.4.3.	Renklilik (Colorfulness) ve Yoğunluk (Chroma)	39
4.4.4.	Doymuşluk (Saturation)	39
4.5.	Renk Sistemleri	40
4.5.1.	Munsell Renk Sistemi	40
4.5.2.	CMYK Renk Sistemi	41
4.5.3.	CIE Lab Renk Sistemi	42
4.5.4.	RGB Renk Sistemi	44
4.6.	Renk Ölçümü	45
4.6.1.	Spektroradiometre	45
4.6.2.	Spektrofotometre	46
4.6.3.	Renkölçer(Colormetre)	47
4.6.4.	Dijital Fotoğraf Makineleri	47
4.6.5.	Yüksek Sıcaklık Etkisinde Betonda Renk Değişimi	48
5.	DENEYSEL ÇALIŞMA	56
5.1.	Numune Üretiminde Kullanılan Malzemeler	57
5.1.1.	Agrega	57
5.1.1.1.	Elek Analizi (Granülometri)	57
5.1.1.2.	Birim Ağırlık	58
5.1.1.3.	Organik Madde Tayini	59
5.1.1.4.	İnce Madde Oranı Tayini	59
5.1.1.5.	Tane Yoğunluğu ve Su Emme Oranı Tayini	60
5.1.2.	Çimento	61
5.1.3.	Mineral Katkı	61
5.1.4.	Kimyasal Katkı	62

Numune Üretimi	. 62
Taze Beton Deneyleri	. 63
Taze Birim Hacim Ağırlık Tayini	. 64
Çökme-Yayılma Deneyi	64
V Hunisi Deneyi	65
L Kutusu Deneyi	65
U Kutusu Deneyi	66
Betonun Kürü	67
Isıtma-Soğutma Süreci	67
Kontrol Deneyleri	68
Renk Ölçümü	68
Dijital Görüntüleme ve Renk Analizi	70
Ultrases Geçiş Hızının Belirlenmesi	. 71
Kılcal Geçirimliliğin Belirlenmesi	72
Ağırlık Kayıplarının Belirlenmesi	73
Basınç Dayanımının Belirlenmesi	. 73
Sonuçları Değerlendirmede Kullanılan Metot	. 74
DENEYSEL SONUÇLARIN DEĞERLENDİRİLMESİ VE İrdelenmesi	75
Beton Basınç Dayanımlarının Değerlendirmesi ve İrdelenmesi	75
Ultrases Geçiş Hızının Değerlendirmesi ve İrdelenmesi	. 79
Ağırlık Kaybı Değerlerinin Değerlendirilmesi ve İrdelenmesi	81
Kılcal Geçirimliliklerin Değerlendirilmesi ve İrdelenmesi	82
Renk Değişimine İlişkin Değerlendirme ve İrdelenme	85
Renkölçer Aparatı İle Renk Ölçümü	85
Dijital Fotoğraf Makinesi İle Ölçülen Renk Değerleri	93
SONUÇLAR	100
ÖNERİLER	102
KAYNAKLAR	103
EKLER	111
5	
	Numune Üretimi

Doktora Tezi

ÖZET

KENDİLİĞİNDEN YERLEŞEN BETONLARIN YÜKSEK SICAKLIK ETKİSİNDE BAZI FİZİKSEL VE MEKANİK ÖZELİKLERİ İLE RENK DEĞİŞİMİNİN İNCELENMESİ Arif Emre SAĞSÖZ

Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü İnşaat Mühendisliği Anabilim Dalı Danışman: Prof. Dr. Şakir ERDOĞDU 2013, 110 (Tez Sayfa), 36 Sayfa (Ek Sayfalar)

Çalışma kapsamında kendiliğinden yerleşen betonların yüksek sıcaklık etkisinde bazı mekanik, fiziksel özelikleri ve renk değişimleri incelenmiştir. Yapılan çalışmada CEM I 42,5 R ve CEM II 42,5 (B-M)(P-L) L N tip çimento ile 0,35, 0,40 ve 0,45 su/çimento oranınında beton numuneler üretilmiştir. Üretilen beton numunelere sıcaklık uygulaması öncesi ve sonrası CIE Lab renk uzayına göre renkölçer ve fotoğraf makinesi ile görüntüleme yaparak renk ölçümü gerçekleştirilmiştir. Ayrıca basınç dayanımı, "

Havada ve suda soğutulan numuneler incelendiğinde ΔE değerinin sıcaklıkla artış gösterdiği ancak bu artış 400°C'de belirginleştiği gözlemiştir. 800°C'ye çıkıldıkça ΔE (renk değişimi) değerlerinde tekrar azalma görülmektedir. Havada ve suda soğutulan numuneler için ölçülen ΔC (renk yoğunluğu değişimi) ve ΔH (renk tonu değişimi) değerleri farklı olmasına rağmen sıcaklığa bağlı olarak değişimleri paralellik göstermektedir. D65 ışık kaynağı ve 45° ölçüm açısı baz alınarak renkölçer ve fotoğraf makinesi ile alınan ölçümler karşılaştırıldığında fotoğraf makinesinin belli bir güven aralığında renk tespiti işleminde kullanabileceği görülmüştür.

Anahtar Kelimeler: Kendiliğinden Yerleşen Beton, Yüksek Sıcaklık, Renk, Görüntü Analizi, Mekanik ve Fiziksel Özellikler, CIE Lab Renk Sistemi, Renkölçer, Dijital Fotoğraf Makines

PhD. Thesis

SUMMARY

INVESTIGATION OF SOME PHYSICAL, MECHANICAL PROPERTIES AND COLOR CHANGE OF SELF-COMPACTING CONCRETE EXPOSED TO HIGH TEMPERATURES

Arif Emre SAĞSÖZ

Karadeniz Technical University The Graduate School of Natural and Applied Sciences Civil Engineering Graduate Program Supervisor: Prof. Dr. Şakir ERDOĞDU 2013, 110 Pages, 36 Appendix Pages

In the scope of this study, influence of high temperature on some physical and mechanical properties, along with color change of self-compacting concrete were investigated. In the work, concrete specimens using CEM I 42,5 R and CEM II 42,5 (B-M) (P-L) L N type cements with water to cement ratios of 0,35, 0,40 and 0,45 were produced. Color measurements using CIE Lab color space based colormeter and photograph machine were obtained on specimens before and after temperature application. Additionally, compressive strength, ultrasound transmit velocity, mass loss and capillarity measurements were performed.

Based on a close examination, what can be seen is that ΔE increases as the temperature increases, however, the increase becomes discernible at 400°C. ΔE starts to decline as getting closer to 800°C. Although the measured value of ΔC and ΔH for specimens cooled in air and water are different, their change depending on temperature are quite similar. When measurements taken with colormeter and photograph machine with basis of D65 illumination and 45° measurement angle were compared, it can be concluded that the photograph machine would be used to measure the color of concrete reliably.

Key Words: Self-Compacting Concrete, High Temperature, Color, İmage Analysis, Mechanical and Physical Properties, CIE Lab, Colormeter, Digital Photograph Machine

ŞEKİLLER DİZİNİ

<u>Sayfa No</u>

Şekil 3.1. Standart sıcaklık-zaman eğrisi	. 12
Şekil 3.2. 380 mm boyutlu kare kolonda sıcaklık dağılımı	. 15
Şekil 3.3. Soğuk işlem görmüş çeliğin aderans gerilmesi-sıyrılma ilişkisi	. 16
Şekil 3.4. Çimento hamurunda boşluk suyunun transferi	. 20
Şekil 3.5. Betonun bağıl basınç dayanımının kullanılan agrega türüne göre sıcaklıkla değişimi	1 23
Şekil 3.6. Yangın hasarı görmüş betonun izotermine bağlı özellikleri	. 26
Şekil 3.7. Betonda sıcaklık deformasyon ilişkisi	. 27
Şekil 3.8. Beton basınç dayanımına yükleme durumunun etkisi	. 28
Şekil 3.9. Basınç dayanımının soğutma şekline göre sıcaklıkla değişimi	. 29
Şekil 3.10. Basınç dayanımının sıcaklıkla değişimi	. 30
Şekil 3.11. Puzolan katkılı ve katkısız betonların çekme dayanımının sıcaklıkla değişimi	31
Şekil 3.12. Eğilme dayanımının sıcaklıkla değişimi	. 31
Şekil 3.13. Betonun elastiklik modülünün sıcaklıkla değişimi	. 32
Şekil 3.14. Farklı beton numuneleri için sıcaklık-elastiklik modülü ilişkisi	. 33
Şekil 3.15. Basınç dayanımı sıcaklıkla değişimi	. 35
Şekil 3.16. Renklerin (tür) sıcaklık değişimi	. 35
Şekil 4.1. Renk uzayları kataloğu	. 40
Şekil 4.2. Munsell renk skalası	. 41
Şekil 4.3. CIE L* a* b* renk skalası	. 43
Şekil 4.4. RGB renk uzayı koordinat eksenleri	. 44
Şekil 4.5. Bilgisayar ekranında renkli görüntü	. 44
Şekil 4.6. Spektroradiometre'nin çalışma prensibi	. 45
Şekil 4.7. Aletsel renk ölçümünde ölçüm açısı	. 46
Şekil 4.8. Spektrophotometre çalışma prensibi	. 46
Şekil 4.9. Dijital fotoğraf makinesinin mimarisi	. 47
Şekil 4.10. Dijital fotoğraf makinesinin kayıt sistem şeması	. 48
Şekil 4.11 Farklı ışıkların tayf eğrileri	. 49
Şekil 4.12 Yüzeylerin tayfsal yansıtma çarpanları	. 51

Şekil 4.13 Silis esaslı agregalı betonda basınç dayanımı renk ilişkisi	52
Şekil 4.14 Betonda sıcaklığa bağlı renk değişimi	55
Şekil 5.1. Karışımda kullanılan agreganın granülometri eğrisi	58
Şekil 5.2. Çökme-yayılma deneyi	64
Şekil 5.3. V Hunisi deneyi	65
Şekil 5.4. L Kutusu deneyi	66
Şekil 5.5. U Kutusu deneyi	66
Şekil 5.6. Kür havuzları	67
Şekil 5.7. Yüksek sıcaklığa maruz kalan numuneler	67
Şekil 5.8. Numunelerden renk ölçümlerinin alım şekli	69
Şekil 5.9. Renkölçer cihazı	69
Şekil 5.10 (a) Nikon D80 marka SLR fotoğraf makinesi (b) 60 mm mikro lens	70
Şekil 5.11. Görüntüleme sistemi (a) çekim sehpası (b) yan lambalar ve çekim sehpası	71
Şekil 5.12. Ultrases geçiş hızı deney düzeneği	71
Şekil 5.12. Kılcal geçirimlilik deney düzeneği	73
Şekil 5.13. Press aleti	74
Şekil 6.1. Havada soğutulmuş numunelerin bağıl beton basınç dayanımları	76
Şekil 6.2. Suda soğutulmuş numunelerin bağıl beton basınç dayanımları	77
Şekil 6.3. CEM II 42,5 (B-M)(P-L)L N Çimentosu 0,40 S/Ç oranı 800°C de Dağılan	
Numuneler	77
Numuneler	78
Şekil 6.5. Havada soğutulmuş numunelerin bağıl ultrases geçiş hızı değerleri	80
Şekil 6.6. Suda soğutulmuş numunelerin bağıl ultrases geçiş hızı değerleri	81
Şekil 6.7. Havada soğutulmuş numunelerin bağıl ağırlık kayıp grafiği	81
Şekil 6.8. Suda soğutulmuş numunelerin bağıl ağırlık kayıp grafiği	82
Şekil 6.9. 400°C'de CEM I havada soğutulmuş numunelerin zaman bağlı kılcallık	82
Şekil 6.10. 400°C`de CEM I suda soğutulmuş numunelerin zaman bağlı kılcallık	03
değerleri	83
değerleri	84
Şekil 6.12. 400°C'de CEM II suda soğutulmuş numunelerin zaman bağlı kılcallık	0.4
aegerieri Sekil 6.13. Tüm karışım oranları için hazırlanan TG değerleri	84 86
Şekil 6.14. Tüm karışım oranları için hazırlanan DTA değerleri	86

Şekil 6.15. Tüm karışım oranları için hazırlanan DTG değerleri	87
Şekil 6.16. Havada soğutma sonucu elde edilen renk değişimi (ΔE)	88
Şekil 6.17. Suda soğutma sonucu elde edilen renk değişimi (ΔE)	89
Şekil 6.18. Havada soğutma sonucu elde edilen renk yoğunluğu değişimi (ΔC)	90
Şekil 6.19. Suda soğutma sonucu elde edilen renk yoğunluğu değişimi (ΔC)	91
Şekil 6.20. Havada soğutma sonucu elde edilen renk tonu değişimi (Δ H)	92
Şekil 6.21. Suda soğutma sonucu elde edilen renk tonu değişimi (ΔH)	93
Şekil 6.22. Havada soğutma sonucu elde edilen renk değişimi (ΔE)	94
Şekil 6.23. Suda soğutma sonucu elde edilen renk değişimi (ΔE)	95
Şekil 6.24. Havada soğutma sonucu elde edilen renk yoğunluğu değişimi (ΔC)	96
Şekil 6.25. Suda soğutma sonucu elde edilen renk yoğunluğu değişimi (ΔC)	97
Şekil 6.26. Havada soğutma sonucu elde edilen renk tonu değişimi (Δ H)	98
Şekil 6.27. Suda soğutma sonucu elde edilen renk tonu değişimi (ΔH)	99

ÇİZELGELER DİZİNİ

<u>Sayfa No</u>

Çizelgeler 3.1. Cüruf katkılı numunelerin EDS analiz sonuçları
Çizelgeler 4.1. Bazı minerallerin yüksek sıcaklıkta renk değişimleri
Çizelgeler 5.1. Deneysel çalışma programı ve numune kodları
Çizelgeler 5.2. İnce ve iri agregalara ilişkin elek analizleri
Çizelgeler 5.3. Agregalara ilişkin birim ağırlık değerleri
Çizelgeler 5.4. İnce agrega için ince madde oranı tayini deney sonuçları
Çizelgeler 5.5. İri agrega için ince madde oranı tayini deney sonuçları
Çizelgeler 5.6. İnce agrega için tane yoğunluğu ve su emme değerleri
Çizelgeler 5.7. İri agrega için tane yoğunluğu ve su emme değerleri
Çizelgeler 5.8. Kullanılan çimentoların kimyasal bileşimleri
Çizelgeler 5.9. Uçucu küle ilişkin kimyasal bileşim
Çizelgeler 5.10. Beton karışım oranları
Çizelgeler 5.11. KYB için sınır değerler (EFNARC 2002)
Çizelgeler 6.1. Kontrol numunelerine ait basınç dayanımı değerleri
Çizelgeler 6.2. Havada soğutma sonucu elde edilen renk değişimi (ΔE) değerleri 85
Çizelgeler 6.3. Suda soğutma sonucu elde edilen renk değişimi (ΔE) değerleri
Çizelgeler 6.4. Havada soğutma sonucu elde edilen renk yoğunluğu değişimi (ΔC) değerleri
Çizelgeler 6.5. Suda soğutma sonucu elde edilen renk yoğunluğu değişimi (ΔC)
değerleri
Çizelgeler 6.7. Suda soğutma sonucu elde edilen renk tonu değişimi (Δ H) değerleri 92
Çizelgeler 6.8. Havada soğutma sonucu elde edilen renk değişimi (ΔE) değerleri
Çizelgeler 6.9. Suda soğutma sonucu elde edilen renk değişimi (ΔE) değerleri
Çizelgeler 6.10. Havada soğutma sonucu elde edilen renk yoğunluğu değişimi (ΔC) değerleri
Çızelgeler 6.11. Suda soğutma sonucu elde edilen renk yoğunluğu değişim (ΔC) değerleri
Çizelgeler 6.12. Havada soğutma sonucu elde edilen renk tonu değişimi (Δ H) değerleri 97
Çizelgeler 6.13. Suda soğutma sonucu elde edilen renk tonu değişimi (Δ H) değerleri 98

SEMBOLLER DİZİNİ

- T: Yangın esnasında erişilen ortalama yangın gazı sıcaklığını (°C)
- T₀: Başlangıç sıcaklığı

t: süre

- SEM: Taramalı elektron mikroskobu
- ΔE: Renk değişimi değeri

 Δ H: Renk tonu değişimi

 ΔC : Renk yoğunluğu değişimi

k: Kılcal geçirimlilik katsayısı

Q: Birim alandan emilen su miktarı

1.GİRİŞ

1.1. Giriş

Geniş anlamda beton, çimento ortamı kullanılarak elde edilen herhangi bir malzemedir. Burada çimento ortamı, hidrolik çimento ile su arasında oluşan reaksiyon ürünüdür. Bu tanımlama daha da genişletilebilir. Günümüzde beton; agrega, çimento, su ve gerektiğinde doğal puzolan, yüksek firin cürufu, uçucu kül ve silis dumanı ile çeşitli kimyasal katkı maddeleri kullanılarak üretilen bir kompozit yapı malzemesidir (Erdoğdu, 2007).

Beton, günümüz yapı endüstrisinde ucuz maliyeti, dayanıklılığı, imalat üstünlükleri sayesinde tercih edilen bir yapı malzemesidir. Betonun bu denli çok tercih edilmesi bu yapı malzemesinin sürekli araştırılmasına ve geliştirilmesine neden olmuştur. Beton üretim yöntemleri ve malzeme bileşenlerinde de son yıllarda önemli gelişmeler kaydedilmiştir. Günümüzde taşıyıcı yapı malzemelerinin dayanımı, sünekliği ve uzun süreli performansları yüksek, üretimi kolay, çevre ile uyumlu ve ekonomik olmaları beklenir. Bu bakımdan sürdürülebilirlik, kullanılabilirlik ve çok işlevsellik yapı malzemelerinin araştırma konularının en başında gelmektedir (Şengül *vd.*, 2006)

Bununla beraber betonun yüksek sıcaklığa dayanıklılığının düşük olması, gerekli tedbirlerin alınmaması halinde ısıyı ve rutubeti geçirmesi, sökülüp tekrar kullanılma imkânından yoksun oluşu, tamirinin zor veya olanaksız oluşu betonun sakıncalı taraflarını oluşturmaktadır. Geleneksel betonun yetersizliğini giderebilmek için, yeni betonlar üretme yoluna gidilmiştir. Bunun için; özelikleri değişik agrega kullanarak, katkı maddeleri eklenerek, birleşimi değiştirilip yalnızca normal agrega ve çimento kullanılarak, yapım tekniğinde değişiklik yaparak ya da bu yöntemlerden birkaçını birlikte kullanılarak özel betonlar üretilmiştir (Baradan, 2002).

İnşaat sektöründe kullanılan yapı sistemlerinde betonun kullanıldığı alan çok geniştir. Beton teknolojisi ise bu yoğun talep karşısında sürekli bir gelişim içerisindedir. 1960'lı yıllarda erişilebilen en yüksek beton basınç dayanımı 15-25 MPa civarında iken 1970'li yıllarda yüksek katlı yapılarda kolon yüklerinin temele aktarılabilmesi için 40-50 MPa beton basınç dayanımlarına ulaşılmıştır. Zaman içerisinde dayanımları artan bu betonlara yüksek performanslı beton adı verilmiş ve yol, köprü, liman yapısı vb. uygulamalarda kullanılmaya başlanmıştır (Aitcin, 2000). Ancak son yıllarda betonda yüksek performans, sadece yüksek dayanımla değil betonun durabilite ve süneklik özelliklerinin de dayanımla birlikte değerlendirilmesi olarak ortaya çıkmıştır. Dayanımı artırılmış beton veya bilinen adıyla yüksek dayanımlı beton geçirimsiz olması sebebiyle durabilitesi de yüksek betondur. Bu betonda dayanım arttıkça ortaya çıkan önemli bir problem ise gevrekliktir (Taşdemir ve Bayramov, 2010).

Uygulamada giderek daha çok kullanılmaya başlanan özel karışım betonların bilhassa taze ve sertleşmiş haldeki özellikleri incelenmektedir. Bunların davranışının sıradan beton davranışına göre oldukça farklı olduğu gözlenmiş, bundan dolayı özel deneyler için farklı deney araçları ve süreçler geliştirilmiştir.

Önceki yıllarda işlenebilirliği arttırmak için s/ç oranını artırmak gerekiyordu. Bu durumda basınç dayanımı ve dayanıklılık olumsuz etkileniyordu. Bunu bertaraf etmek için dozaj arttırılıyordu. Haliyle bu maliyeti arttırıyordu. Son yıllarda beton teknolojisinde sağlanan gelişmeler sayesinde ve özellikle çeşitli kimyasal katkıların icadı ve mineral katkıların betonda kullanımıyla s/ç oranını düşürerek dayanım ve dayanıklılık itibariyle hedef değerleri sağlayana betonlar kolaylıkla üretilebilmektedir.

Kimya alanındaki gelişmeler ve polimer teknolojisinde sağlanan ilerlemeler sayesinde, 80'li yılların ortalarından itibaren çok etkili akışkanlaştırıcılar keşif edilmeye başlanmıştır. Yüksek oranda su kesme yeteneğine sahip bu akışkanlaştırıcılar aynı zamanda taze betonun işlenebilirliğini de arttırmaktadır. Yeni nesil akışkanlaştırıcıların sağladığı bu etki bilim adamlarını taze betonun yerleştirilmesi sırasında gereken sıkıştırma işlemini ortadan kaldırmak için araştırma yapmaya yöneltmiştir. Böylece kendiliğinden yerleşen beton kavramı ortaya çıkmıştır.

1980'li yılların başında Japonya'da betonarme yapılarda kalıcılık sorunları incelenmiş ve bu sorunların en önemli sebeplerinden bir tanesinin taze betonun yeterli sıkıştırma işlemi uygulanmadan yerleştirilmesi olması olarak belirlenmiştir. Özellikle taze betonun sıkıştırılması için gerekli kalifiye işçi yetersizliği, yerleştirilen betonun kalitesini olumsuz etkilemektedir. Öte yandan işçi ne kadar eğitilmiş olursa olsun, taze betona homojen sıkıştırma enerjisi verilebilmesi, özellikle işlenebilirliğin düşük olması halinde pratikte mümkün değildir. Bu problemi çözmek amacıyla sıkıştırma enerjisine ihtiyaç olmadan kendi ağırlığı ile sıkışarak yerleşebilecek özel bir tip beton üretilmesi tasarlanmıştır (Okamura ve Ouchi, 1999). Kendiliğinden Yerleşen Beton (KYB), kendi ağırlığı ile sık donatılı dar ve derin kesitlere yerleşebilen, iç ve/veya dış vibrasyon gerektirmeksizin kendiliğinden sıkışabilen, bu özelliklerini sağlarken ayrışma ve terleme gibi sorunlara neden olmayan kohezif, dayanım ve dayanıklılığı yüksek, çok akıcı kıvamlı özel bir betondur (Okamura ve Ouchi, 1999).

Kendiliğinden yerleşen betonun geleneksel betona göre bu farklı özelliği tasarımında takip edilen felsefi yaklaşım ve yeni nesil hiperakışkanlaştırıcı katkı maddelerinin kullanımı sayesindedir. KYB'ler yüksek akıcılığa sahip olması yanı sıra, ayrışmaya karşı dirençleri yüksek olan özel betonlardır. Ayrışmaya karşı viskoziteyi artırmak amacı ile uçucu kül, taş tozu, silika dumanı ve kuvartz filleri gibi malzemeler kullanılmaktadır (Persson, 2001).

Kendiliğinden yerleşen beton kendi ağırlığı altında vibrasyona gerek duymadan kalıba yerleşen ve sıkışan beton olarak tanımlanmaktadır. KYB, 1980'lerin ikinci yarısında Japonya'da deprem ihtimalinin yüksek olduğu bölgelerde, yoğun donatılı betonarme elemanlara rahatça yerleştirilebilen bir betona olan ihtiyaç sonucu doğmuş ve zamanla kullanımı dünyada yaygınlaşmıştır. KYB`nin geleneksel betonlara göre başlıca avantajları; yoğun donatılı kalıplara boşluksuz bir biçimde yerleşebilmesi, yapım süresini kısaltması, işçilik maliyetini düşürmesi, vibrasyondan dolayı oluşan ses kirliliğini azaltması, yüksek akışkanlık ve ayrışma direncinden dolayı uzun mesafelere pompalanabilmesi olarak sıralanabilir (Şahmaran *vd.*, 2004).

KYB`ler bileşim olarak geleneksel betonlara göre farklı betonlardır. Kullanılan süper akışkanlaştırıcılar sayesinde taze beton akışkanlık kazanırken, ince malzemenin fazla olması ve viskosite artırıcı katkıların kullanılmasıyla KYB'de kararlılık (ayrışmaya karşı direnç) sağlanır. KYB`nin akışkanlık özelliği, kayma eşiğinin küçük olmasından kaynaklanmaktadır. Bu özelliğin su miktarını arttırarak sağlanması ayrışmaya sebep olabilir. Bu nedenle KYB`lerde su miktarı çok önemlidir. KYB`ler genellikle düşük su/çimento oranlarına sahip olduklarından dolayı yüksek dayanım gösterirler. Ayrıca KYB bünyesinde kullanılan silis dumanı betonun durabilitesi üzerinde olumlu etki yapmaktadır. Dolayısıyla, KYB`ler yüksek performanslı betonlar olarak bilinir (Özkul ve Doğan, 2006).

Yapılarda durabilite problemine yol açan başlıca fiziksel etkilerden biri de yüksek sıcaklıktır. Bu etki yapılarda kalıcı hasarlar oluşturarak yapının servis dışı kalmasına, can ve mal kaybına neden olabilmektedir (Aydin ve Baradan, 2007). Örneğin Danimarka`da bulunan Great Belt Tünelinde ve Channel Tünelde, 1994 ve 1996 yıllarında çıkan

yangınlarda, yüksek sıcaklık etkisi ile betonda meydana gelen patlama ve parça atmalar nedeni ile beton kesitindeki azalmalar ağır hasarlara ve New York`taki Dünya Ticaret Merkezi Binalarının çökmesi ise çok sayıda can ve mal kaybına yol açmıştır (Baradan, 2002; Schrefler *vd*., 2002; Khoury, 2003).

Yüksek sıcaklığın kaynaklarından biri olan yangının betona ve betonarme yapılara etkisi 1922`den günümüze kadar araştırılmaktadır. Yapılan araştırmalarda yangın sırasında ve sonrasında malzemenin karmaşık davranışı, yapısal güvenlik ve yapının bütünlüğü anlaşılmaya çalışılmıştır (Khoury vd., 2002). 10 yıl öncesine kadarki çalışmalarda yüksek sıcaklığın normal dayanımlı betona etkileri üzerinde odaklanılmıştı (Khoury, 2003). Ancak günümüzde modern yapılarda, endüstri yapılarında, tünellerde veya özel hizmet amaçlı inşa edilen yapılarda kimyasal ve mineral katkıların kullanımı ile yüksek performanslı ve yüksek dayanımlı betonlar kullanılmaya başlanmıştır. Bu betonların yüksek sıcaklık etkisindeki davranışı iyi bilinmelidir. Çünkü bu betonların boşluk oranı düşük, yapısı daha yoğun olduğu için yüksek sıcaklık etkisinde performansı normal dayanımlı betona göre daha düşüktür (Schrefler vd., 2002).

Günümüzde pek çok ülkenin yangından korunma yönetmelikleri bulunmaktadır. Bu yönetmelikler bir binada bütün eleman ve bileşenlerin fonksiyonlarına, konum ve taşıyıcı olup olmadıklarına bakılmaksızın belirli süre yangına ve onun etkilerine direnç göstermelerini zorunlu kılmaktadır (Baradan, 2002). Yangın nedeni ile yüksek sıcaklık etkisine maruz kalan betonarme bir yapının yıkımına ya da onarımına karar vermek için yerinde ve laboratuvarda tahribatlı ve tahribatsız deneyler yapılmalıdır. Yerinde yapılan ilk inceleme görsel incelemedir. Bu aşamada betonda çatlakların, dağılmaların, renk değişiminin olup olmadığı araştırılır (Guise *vd.*, 1996).

1.2. Çalışmanın Amacı ve Kapsamı

Bu çalışma kapsamında, yüksek sıcaklık etkisinde beton ile renk değişimi araştırılması amaçlanmıştır. Havada ve suda olmak üzere iki farklı soğutma şekli kullanılmıştır. Ayrıca farklı soğutma etkilerinden sonra basınç dayanımı, ultrases geçiş hızı, ağırlık kaybı ve kılcal geçirimlilik ilişkileri incelenmiştir. Ayrıca hazırlanan tüm gruplar için TGA analizleri yapılmıştır. Çalışmada değişken olarak iki farklı çimento tipi, üç farklı s/ç oranı, sekiz farklı sıcaklıklar ve iki farklı soğutma yöntemleri kullanılırken,

mineral katkı olarak uçucu kül %15 oranında çimento yerine ikame edilmiştir. Üretilen tüm betonlar için mineral katkı sabit tutulmuştur.

Renk değişimlerinin belirlenmesi için CIE Lab renk uzayı kullanılmıştır. Renk ölçümleri renkölçer ve dijital fotoğraf makinesi kullanılarak gerçekleştirilmiştir.

2. KENDİLİĞİNDEN YERLEŞEN BETON

2.1. Giriş

Geleneksel beton dökümünde vibrasyon, yani yerleştirme ve sıkıştırma işlemi, yüksek dayanım ve dayanıklılık açısından ve aynı zamanda düzgün yüzeyli bir beton elde etmek açısından zorunludur. Vibrasyon uygulanmamış betonların basınç dayanımında, vibrasyon uygulanmış olanlara göre %30`lara varan oranda düşüşler görülmektedir. Ayrıca yeterli vibrasyon yapılmamış beton elemanlarda yüzey bozuklukları görülebilir. Özellikle binaların depreme karşı güçlendirilmesi için yapılan güçlendirme projelerinde tüm bu etkenlere dar beton kesitleri ve sık donatı eklenince, vibrasyon uygulaması daha da zahmetli, bazen de imkânsız hale gelmektedir. Oysa KYB, kendi ağırlığı altında sıkışma yeteneği sayesinde vibrasyon gerektirmez ve tüm olumsuz etkenleri ortadan kaldırarak, işçilikten ve zamandan tasarruf sağlayan özellikte özel bir betondur. Ayrıca gürültü probleminin ortadan kalkması, şehir merkezlerinde ve özellikle gece beton dökülebilmesini sağlamıştır. KYB`lerin diğer kullanım alanları aşağıdaki gibi sıralanabilir.

- Güçlendirme projeleri,
- Sık donatılı elemanlar,
- Estetik kalıp tasarımları,
- Zor ve ulaşılamaz kalıplar,
- Vibratör kullanımının imkânsız olduğu yerler.

2.2. Kendiliğinden Yerleşen Betonun Tarihi Gelişimi

1983 yılından itibaren beton yapıların dayanım problemleri Japonya`da temel araştırma konusu olmuştur. Dayanıklı beton yapıların üretimi, tecrübeli işçilerle yapılan mekanik sıkıştırma işlemine bağlı idi. Sıkıştırma işleminin yetersiz olması betonun kalitesini olumsuz olarak etkilemektedir. Beton yerleştirme aşamasındaki mekanik sıkıştırma işleminden bağımsız olarak, dayanıklı beton üretmenin yolu sıkıştırma enerjisine ihtiyaç duymayan, sadece kendi ağırlığı ile kalıpların her köşesine yerleşen ve sıkışabilen beton ile mümkün olacaktır (Okamura ve Ouchi, 1999) Betonda kendiliğinden yerleşebilirlik kavramı ilk olarak Tokyo Üniversitesinde, 1986 yılında Prof. Dr. Hajime Okamura tarafından ortaya atılmıştır. Su altında beton dökümü uygulamalarında, vibrasyonsuz beton dökümlerinden edinilen tecrübe ile KYB üretilmesi amaçlanmıştır. Okamura`nın başlattığı çalışmaları Ozawa, Ouchi ve Maekawa devam ettirmiştir. 1988 yılında aynı üniversitede yüksek performanslı KYB prototipi üretilmiş ve mekanik özellikleri incelenmiştir. Bu özel tip betonun geliştirilmesinde öncelikli amaç, dayanımın yanı sıra dayanıklılık açısından da yüksek performansı sağlamaktı (Ouchi ve Edamatsu, 1999).

Kendiliğinden yerleşen beton konusunda ilk makale, 1989 yılında Ozawa tarafından İkinci Doğu Asya ve Pasifik Yapı Mühendisliği Konferansı'nda (EASEC-2) sunulmuştur (Ozawa vd. 1989). KYB konusunda ilk kitap Okamura tarafından yazılmış olup, 1993 yılında Japonca olarak yayınlanmıştır. KYB'nin dünyaya tanıtılmasında, Ozawa'nın 1992 yılında İstanbul'daki Uluslararası CANMET-ACI konferansında yaptığı sunum hızlandırıcı bir etki yapmıştır (Ozawa vd.,1992). Daha sonra, 1994 Eylülünde Bankok'ta Prof. Paul Ziya önderliğinde yapılan Yüksek Performanslı Beton konulu ACI seminerinde, KYB tüm dünyadaki dayanıklı ve rasyonel yapı sistemleri ile ilgilenen mühendis ve araştırmacıların dikkatini çekmiştir (Okamura ve Ozawa, 1994). Bu çalışmaların ardından New Orleans'ta 1996 yılında Okamura tarafından verilen ACI kapanış toplantısı, Kuzey Amerika'daki mühendis ve araştırmacılarda büyük heyecan uyandırmıştır (Ouchi *vd.*, 1997).

Sonuç olarak KYB konusunda dünya çapında araştırmalar başlamıştır. 1997 yılında RILEM tarafından KYB konusunda çalışan bir komite kurulmuştur. 1998 yılında Japonya`nın Kochi kentinde ilk uluslararası çalışma grubu toplanmış ve internet üzerinden konuyla ilgili iletişim ağı kurulması kararlaştırılmıştır. Söz konusu ağ SCC-NET adıyla Şubat 1999 yılında hizmet vermeye başlamıştır (Okamura ve Ouchi, 1999).

Japonya`da KYB`nin hazır beton sektöründe kullanımının arttırılması amacıyla aşağıdaki konularda çalışmalar sürdürülmektedir (Okamura ve Ouchi, 1999).

- Kendiliğinden yerleşebilirlik deney yöntemleri
- Karışım tasarım yöntemleri
- Deneylerin şantiye ortamına aktarılması

KYB`nin prototipi geliştirildikten sonra birçok yerde özellikle büyük inşaat şirketlerinin araştırma enstitülerinde yoğun araştırmalar başlatılmıştır. Bunun sunucu olarak KYB çok sayıda inşaatta kullanılmıştır. İlk KYB uygulaması Haziran 1990`da gerçekleştirilmiştir. Bundan sonra KYB kullanımı gün geçtikçe artmıştır (Sakomoto vd., 1991). KYB`nin kullanımının kısa sürede yaygınlaşmasının temel sebepleri işlenebilirlikte sağlanan iyileşme ve buna bağlı olarak iş gücü maliyetlerine sağlanan ciddi azalma olarak gösterilebilir (Bouzoubaa ve Lachemi, 2001).

KYB malzeme maliyeti açısından geleneksel betonla karşılaştırıldığında, farklı araştırmacılar farklı sonuçlar elde etmiştir. Değişik ülkeler için maliyet farklılıkları doğaldır. Fakat genel kanı salt malzeme açısından karşılaştırma yapıldığında KYB`nin daha yüksek maliyetli olmasıdır.

ABD`de 2002 yılında ENR firması prefabrike beton üretiminde kullandığı 69 cm yayılma çapına sahip KYB ve 15-20 cm çökme değerine sahip geleneksel betonun tasarım maliyetleri arasında 5 \$/m³\lük bir fark tespit etmiştir. Öte yandan işçilik açısından yapılan değerlendirmede %32`lik bir maliyet azalması rapor edilmiştir (Martin *vd.*, 2013).

İsveç Prefabrike Beton Üreticileri Birliği tarafından yapılan bir başka çalışmada prefabrike KYB kullanan üye firmaların geleneksel betona kıyasla işçilikten %80 avantaj sağladıkları sonucuna varılmıştır (Byfors, 1999). Fakat İsveç`teki işçilik ücretlerinin dünya geneline kıyasla oldukça yüksek olması hesaba katılırsa az gelişmiş ve gelişmekte olan ülkelerde bu avantajın azalacağı açıktır.

Arjantin'de yapılan bir araştırmada hazır beton üretiminde KYB kullanımının malzeme maliyetlerini %25 arttırdığı, öte yandan işçilik maliyetini %75 azalttığı ve inşaat yapımını %25 hızlandırdığı tespit edilmiştir (Daczko, 2002).

Sırf malzeme açısından bakıldığında KYB daha pahalı olmakta ama şantiye ve fabrika içindeki diğer işlemlerin maliyetlerinin ilave edilmesi durumunda, KYB`nin çok daha ekonomik olduğu sonucu ortaya çıkmaktadır. Fakat Türkiye şartlarında işçiliğin çok daha ucuz olması, KYB`in ekonomikliğini etkileyebilir. Konunun fizibilitesi yerel maliyetlerle analizler yapılarak değerlendirilmelidir. Ayrıca sağlık, çevre sorunları ve kalıp maliyeti gibi unsurlar da değerlendirme dışında tutulmamalıdır (Felekoglu *vd.*, 2007).

KYB`nin inşaat hızını arttırıcı etkisi için iki farklı örnek verilebilir: Birincisi 1983 ve 1984 yıllarında Hong-Kong`da büyük çaplı bir temel kiriş betonu dökümünde KYB kullanılmıştır. Vibrasyon işleminin ortadan kaldırılmasıyla, 190 m³/saat ortalama döküm hızıyla çalışılmış ve 350 m³/saat hızına kadar çıkılmıştır (Collepardi, 2001). İkinci örnekse

İsveç`te köprüler üzerine yapılan bir araştırmadır. Araştırma sonuçlarına göre köprülerin KYB ile yapılması, inşaat süresini geleneksel yöntemlere göre %5 ila %15 arasında kısaltmıştır (CBI Raporu, 1999).

KYB, vibratör kullanılamayacak onarım ve güçlendirme işlerinde çok iyi doldurma yeteneği sayesinde kullanılabilir. Bugün KYB kullanılarak elde edilen üstünlüklerin ötesinde, bu kullanımı geleneksel hale getirerek genele yayma fikri ulaşılmak istenen bir hedef olarak görünmektedir. KYB ile ilgili dünyada yapılmış araştırmaların çoğu KYB`nin sertleşmiş ve taze haldeki özelliklerini incelemek amacıyla yapılmıştır. Pratikteki sorunları görmek için sınırlı düzeyde pilot uygulama projeleri geliştirilmiştir. Günümüz itibariyle önemli deneyimler elde edilmiş ve büyük gelişmeler kaydedilmiştir. Ancak bazı noktalarda halen yanıtlanması gereken sorular mevcuttur (Fellinger *vd.*, 2003).

3. BETONDA YÜKSEK SICAKLIK ETKİSİ

3.1. Yüksek Sıcaklık Kaynakları

Yapıya ve malzemeye zarar veren, hasara yol açan yüksek sıcaklık kaynakları, yangın, özel üretimlerden dolayı endüstri fırın bacalarında görülen sıcaklık ve hava alanı pistlerinde sürtünmenin sebep olduğu ısınma ve nükleer reaktörler olarak gösterilebilir (Aköz ve Yüzer, 1994; Aköz *vd.*, 1999; Sakr ve El-Hakim, 2005). Bu etkiler aşağıda sırası ile açıklanmıştır.

3.1.1. Yangın

Gelişen teknoloji, sanayileşme ve nüfusun giderek çoğalmasına paralel olarak toplu yerleşim bölgelerin fazlalaşması yangın riskinin ve buna bağlı olarak yangının maddi ve manevi zararlarını artırmıştır. Yapılarda dayanıklılık problemine yol açan başlıca fiziksel etkilerden biri de yüksek sıcaklıklardır. Bu etki yapılarda kalıcı hasarlar oluşturarak yapının kullanım dışı kalmasına neden olabilmektedir. Herhangi bir nedenle yüksek sıcaklık etkisine maruz kalan betonarme elemanlarda betonun ve çeliğin mekanik ve fiziksel özelliklerinde değişiklikler meydana gelir. Bu değişikliklerin sonucu olarak betonda çatlama ve parçalanma gözlenirken aderansta da önemli kayıpların meydana geldiği tespit edilmiştir (Bingöl, 2008).

Avrupa Birliği içinde yangın konusunda kullanılan standartlarda ülkeler arasında farklılıklar söz konusudur. Almanya'da Deutsches Institut für Normung (DIN) normları, İngiltere'de British Standards Institution (BSI) standartları kullanılmaktadır. Birlik içerisinde ortak standart henüz oluşturulamamıştır. Bu konudaki çalışmalar ve tartışmalar halen sürmektedir. Yangın Standardı olarak Türkiye'de Türk Standartları Enstitüsü (TSE) son on yılda yangınla ilgili European Standards (EN) standartlarını çevirmeye başlamıştır. Tercümesi yapılan 13000 serisi standartlar yürürlüğe girdikçe kullanılmaya başlanmaktadır. Çıkarılan bu standartlar daha çok testlere dönük standartlardır. Yönetmelikler açısından olaya bakmak gerekirse, ilk olarak 1992 yılında "İstanbul Belediyesi Yangından Korunma Yönetmeliği" hazırlanmıştır. Bu yönetmeliği esas alarak diğer bazı belediyeler de benzeri çalışmaları yapmışlardır. Ancak farklı uygulamalar ve belediye sınırları dışında kalan alanların durumu sebebiyle bazı karışıklar ortaya çıkmıştır. Fakat bu konuda ilk önce değerlendirilmesi gereken bir yönetmelik olması nedeniyle önemli bir aşamadır. Aksaklıları ve farklılıkları ortadan kaldırmak için uzun ve özverili çalışmalar sonucunda, Türkiye genelinde geçerli olan, kamu ve özel kurum ve kuruluşlar ile gerçek kişilerce kullanılan bina, tesis ve işletmelerin, tasarımı, yapımı, işletimi, bakımı ve kullanımı aşamalarında, herhangi şekilde çıkan yangının can ve mal kaybının en aza indirilerek söndürülmesini sağlayan tedbirler ile organizasyon, eğitim ve denetimi sağlamak amacıyla Sivil Savunma Genel Müdürlüğünün koordinatörlüğünde, çok sayıda sivil toplum örgütünün katkılarıyla Türkiye Yangından Korunma Yönetmeliği hazırlanmıştır (Bingöl, 2008). Bu yönetmelik Çevre ve Şehircilik Bakanlığı tarafından 19.12.2007 tarihinde ve 08.07.2009 tarihinde olmak üzere iki kere revize edilmiştir.

Binalardaki yangınlarda 1200°C`ye kadar çıkan sıcaklıklar ölçülmüştür. Yapı malzemeleri bu sıcaklığa kadar ısıtıldığında ahşabın yandığı, çeliğin yumuşayıp mukavemet kaybettiği, beton veya taşların ise parçalanıp döküldüğü görülmüştür. Şu halde önemli yapı malzemelerinin hiç birinin bu derece yüksek sıcaklıklara dayanamadığı tespit edilmiştir. Bu malzemelerden betonun diğerlerine kıyasla biraz daha dayanıklı olduğu ve biraz daha uzun sürede parçalandığı rapor edilmiştir (Kocataşkın, 2000).

Yanma, yakacakların oksijenle hızlı bir şekilde reaksiyona girerek, yakacak içinde depolanmış bulunan enerjinin, ısı enerjisi biçiminde açığa çıktığı kimyasal bir işlemdir. Bu işlem sırasında çıkan enerji, genellikle sıcak gazlar şeklinde olmasına rağmen, çok küçük miktarlarda elektromanyetik (ışık), elektrik (serbest iyonlar ve elektronlar) ve mekanik (ses) enerjiler şeklinde de ortaya çıkmaktadır. Yanma, yanıcı maddelerin oksijen ile kimyasal reaksiyon hızına, oksijen miktarına ve yanma bölgesindeki sıcaklığa bağlıdır (Ashrae, 1997).

Yüksek sıcaklığa sebep olan yangın ise katı, sıvı ve/veya gaz halindeki maddelerin kontrol dışı yanması olayıdır. Araştırmalar tabii bir yangının genel olarak ateşleme, yavaş yanma, ısınma ve soğuma olmak üzere dört fazdan oluştuğunu göstermektedir. Ateşleme ve yanma fazları tüm-parlama öncesi (pre-flashover), ısınma ve soğuma fazları ise tümparlama sonrası (post-flashover) fazları olarak adlandırılmaktadır. Tüm-parlama öncesi fazı gelişmekte olan yangın, tüm-parlama sonrası fazı ise gelişmiş olan yangın durumunu göstermektedir (Aköz ve Yüzer, 1994). Şekil 3.1'de verilen standart sıcaklık-zaman eğrisinde, sıcaklığın 10 dakika gibi kısa bir zamanda yaklaşık 600°C'ye hızla yükseldiği ve yangın süresince de 1200°C`ye ulaşabileceği görülmektedir. ISO-834 yangın eğrisi olarak tanımlanan bu eğri (3.1) bağıntısı ile ifade edilmektedir (TS, 2012)

$$T - T_0 = 345 \log(8t + 1) \tag{3.1}$$

Yukarıdaki ifadede, t yangın süresini (dakika), T₀ başlangıç sıcaklığını (20°C), T yangın esnasında erişilen ortalama yangın gazı sıcaklığını (°C) göstermektedir. Deneysel çalışmalarda kullanılan fırının ısıtma hızı bu bağıntıya uygun olması istenir (TS 1263, 1983).

Şekil 3.1. Standart sıcaklık-zaman eğrisi (TS, 2012)

3.1.2. Endüstri Fırın Bacaları

Bazı endüstri fırın bacalarında sıcaklığın 1250-1300 °C`ye ulaştığı bilinmektedir. Günümüzde bacalardaki artık ısı enerjisinin geri kazanımı için ısı eşanjörleri, ısı reküperatöreleri, döner tip ısıtıcılar, ısı boruları ve ısı pompaları gibi araçlar kullanılarak sıcaklık yaklaşık 200°C`ye kadar düşürülebilmektedir (Avci, 1984).

3.1.3. Hava Alanı Pistleri

Uçakların kalkış ve inişlerindeki sürtünmeler ve jet motorlarından 260 km/saat hızla çıkan 196°C`deki egzoz gazları, hava alanı pistlerinde sıcaklığın artmasına sebep olmaktadır. İniş ve kalkışlardaki tekrarlı ısınma ve soğuma etkisi ile pistlerde aşınma ve tozlanma görülmektedir. Pistler bu durumda yük alma kapasitelerini muhafaza etseler de hava alanının işlevleri kısıtlanır (Ramakrishnan *vd.*, 1991).

Jet uçaklarının hizmete sokulması sonucu beton uçak pistlerinde ve park sahalarında ciddi şekilde bozulmalar meydana gelmiştir. Özellikle F/A-18 uçağının destek kuvvet ünitesinin egzoz gazı üst beton tabakasının parçalanmasına neden olabilmektedir. Bu durumda hasarlı kısımların belli aralılarla değiştirilmesi gerekir. Benzer bir sorun jet motor test hücrelerindeki beton kaplamalarda görülür. Bu sorun Bishop (1953) tarafından incelenmiş ancak tatmin edici bir çözüm geliştirilememiştir (Malvar ve Hironaka, 1991).

3.1.4. Nükler Reaktörler

Nükleer reaktörlerde sistemin sıcak parçalarından transfer olan ısı ve nötron ve gama ışınlarının baskısı ile oluşan sıcaklık nedeniyle reaktörü koruyan beton yüksek sıcaklığa maruz kalır. Radyasyon, koruyucu betona önemli zarar vermez. Ancak sıcaklık nedeniyle beton daha zayıf hale gelir ve nötron baskısına karşı direnci azalır. Hızlı nötron ve gama ışınları yavaşlatılırken reaktör çekirdeğinden açığa çıkan enerji koruyucu malzemede tutulur ve ısı şeklinde salıverilir. Bu ısı özellikle reaktör çekirdeğine yakın bölgeleri etkiler. Sodyum yakma havuzlarının etkisi ile tipik bir sodyum-beton reaksiyonu 400°C`de başladığı ve yarım saat sonra sıcaklığın 800°C`den daha yüksek sıcaklık değerlerine ulaştığı rapor edilmektedir (Sakr ve El-Hakim, 2005).

3.2.1. Yüksek Sıcaklığın Betonarme Elemanlara Etkisi

Yapı elemanlarının yangına maruz kalmaları durumunda tasarım aşamasında belirlenen işlevlerini gerek yangına müdahale gerekse de yangından kaçış için gerekli olan süreler boyunca sürdürebilmeleri gerekir. Bakanlar Kurulu`nun 12.6.2002 tarih ve 2002/4390 sayılı kararı ile 26.7.2002 tarihinde Resmi Gazete`de yayınlanan binaların yangından korunması hakkındaki yönetmelikte "Bir yapı bileşeni ya da elemanının yük

taşıma, bütünlük ve yalıtkanlık özelliklerini belirlenen bir süre koruyarak yangına karşı dayanması" yangına karşı dayanıklılık olarak tanımlanmış ve bir yapı malzemesi ve/veya elemanının yangına dayanıklılık süresine göre Yangın Dayanıklılık Sınıfı'nın tespit edileceği belirtilmektedir. Aynı yönetmelikte yapı malzemelerinin yanıcılık sınıfları da belirlenmiştir. Bu sınıflamaya göre çelik, beton ve betonarme A1 sınıfında olup, yangında alev almaz, yanmaz, kömürleşmez olarak tanımlanmıştır. Bu malzemelerin yangındaki hasarları malzeme kaybı değildir. Ancak hasar; mukavemet, akma sınırı, elastiklik modülündeki azalmalar ve içyapı değişiklikleri şeklinde ortaya çıkar. Sıcaklık arttıkça betonarmede kullanılan çeliklerin tümünde akma sınırlarında ve çekme dayanımlarında düşüşler gözlenir. Sıcaklık 600°C`ye yükselince çekme mukavemeti güvenli bölgenin altına iner (Bingöl, 2002).

Yüksek sıcaklığa maruz kalan betonarme yapının göçmesinde en etkin faktör kolonlardaki ve düğüm noktalarındaki çeliğin hasar görmesidir. Çeliğin ısı iletkenlik katsayısı büyük olduğundan çelikteki sıcaklık artışı dakikada 40°C`den fazladır. Sıcaklık zaman eğrisine göre sıcaklığın 10 dakika gibi kısa bir zamanda 600°C`ye ulaşacağı görülmektedir. Ancak donatı üzerindeki beton örtü çelikte sıcaklığın yükselme hızını engellemektedir. Örneğin, 3 cm paspayı olan bir betonarme elemanda 600°C`de 1 saatlik yangın yüklemesinde çeliğin sıcaklığı 350°C`yi aşmamaktadır (Akman, 2001). Betonarme veya betonarme-çelik kompozit elemanların yangına karşı 2 saat dayanabilmesi için içindeki çelik profil veya donatının en dışta kalan kısımlarının en az 4 cm kalınlığında beton (pas payı) ile kaplanmış olması gerekmektedir (Binaların Yangından Korunması Hakkında Yönetmelik, 2009). Betonda mikro yapısal değişiklikler açısından malzemenin homojen olmaması ve elemanların geometrisi hesaba katılması gereken iki önemli unsurdur. Gerçek bir yangında beton elemanın geometrisi ve boyutları kritik bir rol oynar. Şekil 3.2`de kare kesitli bir kolonda farklı sürelerde sıcaklık değişimi görülmektedir. Dıştan içe doğru oluşan sıcaklık değişimi zamanın bir fonksiyonudur (Andrade *vd.*, 2003).

Yangın sonucu hasar; yangının doğasına, sistemin türüne ve yük sistemine göre değişir. Hasar; eğilme, çekme, kesme ve basınç dayanımındaki kayıp ile bağ kuvvetindeki kayıp ve betonun parçalanması şeklinde gerçekleşebilir. Yangın dayanımı tasarımları, bir elemanın bütün boyutlarının kabul edilebilir sınırlar içerisinde, bu elemana ısı transferini önleyecek şekilde tasarımını amaçlar. Beton örtüsü kalınlığı ise donatıyı kritik sıcaklığa ulaşmadan koruyabilecek şekilde belirlenmelidir. Yangın sonucu betonun patlayarak parçalanma riski betonun geçirimliliğinin azalması ile artar. Yangın etkisinde betonarme

binalarda oluşan hasarlardan birisi de sıcaklık etkisiyle beton-donatı arasındaki aderansın azalmasıdır. Aderanstaki azalma genellikle betonun çekme kuvvetindeki azalmanın sonucunda betondaki çekme hasarı ile birlikte gerçekleşir (Bingöl, 2008).

Şekil 3.2. 380 mm boyutlu kare kolonda sıcaklık dağılımı (Andrade vd., 2003)

Yapılan deneysel çalışmalar, yüksek sıcaklığa maruz betonarme elemanların aderans dayanımlarının azaldığı ve betonarme yapıların yüksek sıcaklığa karşı davranışını belirlemede temel değişkenin aderans dayanımı olduğunu ortaya koymaktadır. Çünkü kritik beton sıcaklıkları, her zaman kritik aderans sıcaklığından daha büyük olmaktadır. Diederichs ve Schneider tarafından yapılan çalışmada, 172 mm çapında ve 191 mm yüksekliğindeki silindir beton numuneler içerisine çeşitli özellikte donatılar yerleştirilmiş ve bu numunelerde çekip çıkarma deneyleri yapılmıştır. Sıcaklığın yükselmesi ile aderansda belirgin bir düşüş gözlenmiştir (Şekil 3.3). Çeliğin düz veya nervürlü olması da aderansa etki eden bir faktördür (Diederichs ve Schneider, 1981; Chiang ve Tsai, 2003).

Şekil 3.3. Soğuk işlem görmüş çeliğin aderans-sıyrılma ilişkisi (Andrade vd., 2003)

Yüksek sıcaklığa maruz kalan yapı elemanlarında, gerilme altında bulunan çeliğin elastiklik modülünde de belirgin bir azalma görülmektedir. Çeliğin elastiklik modülü 400°C`de %15, 600°C`de %40 mertebelerinde azaldığı rapor edilmektedir (Akman, 2000). Bu azalma, ısıl genleşme ve plastik deformasyonların başlaması sonucu çeliğin aşırı uzamasına sebep olmaktadır. Yüksek sıcaklık etkisinden korunma gerekliliği göz önüne alındığında betonun çelik donatıyı yüksek sıcaklık etkisinden de koruduğu görülmektedir. Bu durumda betonun örtü kalınlığı ve gerekli ısıl yalıtımın sağlaması önem kazanmaktadır (Akman, 2000; Baradan, 2002).

Bilal (2006), çalışmasında pasif yangın korunumunun rolünü; beton ve çelikteki sıcaklık yükseliş hızını sınırlamak ve böylece yapısal bütünlüğü yangın süresince ve sonrasında korumak ve betonun bünyesindeki rutubet basıncıyla beton yüzeylerdeki kayıpları ve patlayan beton parçalanmalarını azaltmak veya yok etmek olarak ifade etmiştir. Araştırmacı, yangın öncesi harçlar ve betonlarda yangın mukavemetinin elyaf donatılarla ve donatı ağlarıyla oldukça yükseltilebileceğini belirtmiştir. Sıvaların yangına dayanıklılıklarının ise büyük ölçüde üzerinde bulundukları yüzeye bağlı olduğu belirtilmiştir. Ayrıca yangından çok fazla etkilenen malzemelere korumasız olarak taşıyıcı strüktür içinde yer verilmemesi, termoplastik ve alüminyum gibi malzemelerin ayrı bir taşıyıcı sistem içinde kullanılmasının gerekli olduğu belirtilmiştir. Yangın öncesi alınacak önlemlerden sonra yangın görmüş bir yapının yeniden kullanım olanaklarının aranması ve bu konuda yapılması gerekli onarımlara da değinilmiş ve betonarmede yeniden kullanım için karar vermenin ve taşıyıcılık değerini tam olarak tespit edebilmenin oldukça güç olduğu ifade edilmiştir. Taşıyıcılık için betonun çeşitli derinliklerinden örnekler alınarak renklerine ve tahribat sonuçlarına göre karar vermenin mümkün olabileceği ifade

edilmiştir. Çalışmada konu ile ilgili çeşitli yönetmelik ve standartlar izah edilmiş, sonuç olarak insanların canına ve malına en az zarar verebilecek şekilde binaların tasarlamasının gereği vurgulanmıştır. Binaların belirlenen süreler boyunca çökmemesini sağlayacak, insanların rahatça dışarı çıkabilmesine imkân verecek tasarımlar yapılması gerektiği belirtilmiştir (Bilal, 2006).

Yüksek sıcaklık etkisinde maksimum sıcaklık, soğuk işlem görmüş çeliklerde 450°C`den ve sıcak haddelenmiş çeliklerde 600°C`den az ise akma dayanımı soğumanın ardından tekrar kazanılır. Öngerilmeli çeliklerin daha hızlı zarar gördüğü ve çekme dayanımlarında daha belirgin azalmalar oluştuğu ifade edilmektedir (Andrade, 2003).

3.2.2. Yüksek Sıcaklığın Betona Etkisi

Dünyanın her tarafında binalar bazen yangına maruz kalabilmekte ve bunun sonucunda kısmen zarar görmekte veya tamamen kullanılmaz hale gelebilmektedir. Bu sebeple betonun yangın davranışı eskiden beri göz önünde bulundurulmuş ve bu konuda çeşitli çalışmalar yapılmıştır. Bu çalışmalar genellikle farklı karışım ve mukavemetteki geleneksel, yüksek mukavemetli ve hafif betonların çeşitli sıcaklık değerlerine kadar ısıtıldıktan sonra mekanik özelliklerinin incelenmesi, bu özelliklere etki eden faktörlerin (birim ağırlık, su/çimento oranı, dozaj, ısıtma ve soğutma metotları gibi) araştırılması şeklindedir (Bingöl, 2008).

Bu konudaki ilk çalışmalar 1920'lerde Lea ve Stradling tarafından başlatılmış ve dönemin klasik yayınlarında yüksek sıcaklıklarda betonun basınç mukavemetine etki eden faktörler belirtilmiştir. Muhtemelen, agrega ile çimento hamuru arasındaki termal uyuşmazlığın bozucu etkisini ilk olarak ortaya koyan da bu iki bilim adamıdır. Küresel bir toprak parçasını çimento hamuru ile sarma esasına dayalı olarak yaptıkları elastik gerilme analizi sonucu betonun 100°C civarında bozulabileceğini fakat bununla beraber 300°C'ye kadar mukavemette artış olabileceğini belirtmişlerdir. Kullandıkları teorik model gerçek davranışı yansıtmıyordu çünkü bu modelde ilk olarak 1950'lerde ortaya çıkarılan geçici termal sünme kısmı hesaba katılmamıştı. Geçici termal sünme betonda belirgin olarak gerilmelerin yeniden bozulması eğiliminde olduğu için ilk defa ısıtılan yapılarda elastik gerilme analizlerini uygunsuz kılar. Lea ve Stradling ayrıca pek çok önemli gözlem ve buluşları ortaya koymuşlardır. Kalsiyum hidroksitin [Ca(OH)₂] kirece (CaO) dönüştüğünü ve soğutulduktan sonra kirecin rehidratasyonu sonucu genleşmesiyle ısıtma süresinde

suyun betonda ciddi zararlara yol açabileceğini belirtmişlerdir. Ayrıca soğutma süresince çatlak gelişimine ve agrega ile çimento hamuru arasında ayrışma olabileceğine dikkat çekmişler ve soğutma hızının etkisini ortaya koymuşlardır (Khoury, 1992).

Lea ve Stradling`i takiben yüksek sıcaklık uygulamalarında betonun en zayıf halkasının kalsiyum hidroksit olduğu anlaşılmıştır. Bu olay sıradan uygulamalarda portland çimentosunun ateşe dayanıklılık gerektiren uygulamalarda da alüminli çimentonun kullanılmasına öncü olmuştur. Çünkü beton için problem teşkil eden kalsiyum hidroksit alüminli çimentolarda hidratasyonun bir ürünü değildir.

Kalsiyum hidroksitin ayrışması 350-400°C`nin altında gerçekleşmez. Daha yüksek sıcaklık etkilerinde serbest kirecin rehidratasyonuna bağlı olarak soğutmadan sonra problem ortaya çıkar (Khoury, 1992). Bu sebeple konu hakkında daha fazla açıklamalara ihtiyaç duyulmuş ve 1950-1960`larda araştırmacılar agrega ile çimento hamuru arasındaki ısıl uyuşmazlığa dikkat çekmişlerdir.

Betonun aşınma tabakası ve agrega fazında bir seri değişimlerin ve reaksiyonların oluşması muhtemeldir. Oluşan bu reaksiyonlar beton özelliklerini bozucu niteliktedir. Bu bozucu özelliklerin asıl olarak sertleşmiş çimento hamurunda oluştuğu ve sıcaklık artışıyla orantılı olarak betonda zayıflamaya sebep olduğu belirtilmiştir (Shneider, 1977).

Rostasy (1980), yüksek sıcaklığın sertleşmiş çimento hamurunda bazı reaksiyonları aktive ettiğini belirtmiştir. Bu reaksiyonlar gözenek sisteminin tamamen kurumasıyla başlar ve sıcaklık artışıyla hidratasyon ürünlerinin ayrışması ve jel yapısının tahribatıyla sonuçlanır.

Lin ve Powers (1996), Scanning Electron Mikroskop (SEM) ve stereo mikroskop kullanarak yangına maruz kalmış betonların mikro yapılarını incelemişlerdir. Bu çalışmada kullanılan numuneler ya laboratuar şartlarında beton ısıtılıp soğutularak elde edilmiş ya da arazide yangın görmüş binalardan seçilmiştir. Çalışmada SEM fotoğrafları kullanılarak betonda bozulma mekanizmaları incelenmiştir.

Isıtma süresince çatlama ve parçalanmalar ve soğutma esnasındaki dağılmalar yangın esnasında betonda gözlenen yaygın davranışlardır. Betonda kusurlu davranışlara sebep olan faktörler şu şekilde sıralanabilir:

- Termal değişimlerin sebep olduğu termal gerilmeler
- Çimento hamuru içindeki kalsiyum hidroksit [Ca(OH)₂] in ayrışması
- Kireçtaşı agregalarının kireçlenmesi
- Yüksek sıcaklıklarda kuvars agregalarının faz değişimi

Yüksek sıcaklık etkisinde oluşan parça atmalar, yapı elemanının yük taşıma kapasitesini ve bütünlüğünü kaybetmesine neden olur. Parça atmalar sonucu donatılar yüksek sıcaklığa maruz kalırlar. Polipropilen lif ve hava sürükleyici kullanılması parça atma riskini azaltır. Hava sürükleyicileri nem içeriğini ve boşlukların miktarını artırarak boşluk basıncını düşürür. Parça atmaları azaltmak için termal bariyerler, polipropilen lifler, hava sürükleyici, büyük boyutlu elemanlar ve düşük ısıl genleşmeye sahip agregalar kullanmak gerekir (Khoury, 2003).

Yüksek sıcaklığın betona etkisi, betonun maruz kaldığı sıcaklık ve sürenin yanı sıra çimento hamuru fazı ve agrega türüne bağlı olarak da değişir ve bu etki betonun basınç dayanımının belirgin bir şekilde azalması ile sonuçlanır (Riley, 1991b; Akman, 2000).

Beton, günümüzde yüksek dayanımı, uygulama kolaylığı ve diğer önemli mekanik özeliklerinden dolayı yaygın kullanılan bir yapı malzemesidir. Betonun mekanik özeliklerinin performansını arttırmak, porozite ve permeabilitesinin düşük olması ile mümkündür. Ancak bu durum yüksek sıcaklık etkisine maruz kalındığında betonun performansının azalmasına neden olur. Son yıllarda görülen tünel yangınlarında betonda patlama ve parça atmalar görülmüştür. Betonda meydana gelen bu hasara, ısı farkının yükselmesi ile oluşan yüksek termo mekanik gerilme ve düşük permabiliteden dolayı dışarı çıkamayan suyun meydana getirdiği su buharı basıncı neden olur (Kanema vd., 2007).

Beton, farklı termal karakteristiklere sahip bileşenleri, farklı nem muhtevası ve poroziteden dolayı yüksek sıcaklık karsısında karmaşık bir davranış sergiler (Li vd., 2004). Bu nedenle betonun yüksek sıcaklık etkisindeki davranışı, çimento hamuru, agregalar ve mineral katkı maddeleri gibi bileşenler itibarıyla ayrı ayrı ele alınmıştır.

3.2.2.1. Çimento Hamuru

Çimento hamuru ilk ısıtma süresince oldukça kararsız bir davranış gösterir. Çünkü sıcaklık etkisi ile önemli fiziksel ve kimyasal değişime uğrar. Bu değişime, 100°C ve altındaki sıcaklıklarda serbest suyun buharlaşması, 100°C üstü sıcaklıklarda kimyasal bozulma ve bağlı suyun kaybı önemli bir rol oynamaktadır (Khoury, 1992). Şekil 3.4`de basitleştirilmiş boşluk suyu transferi görülmektedir. Burada I suyun buharlaşması veya yoğuşmasını, II betonun içine suyun transferini, III ise suyun dış çevreye transferini temsil etmektedir (Andrade, 2003).

Şekil 3.4. Çimento hamurunda boşluk suyunun transferi (Andrade, 2003)

Bilindiği gibi betonun basınç dayanımı ile porozitesi arasında kuvvetli bir ilişki mevcuttur. Betonun porozitesi arttıkça basınç dayanımı azalır (Vodák vd., 2004). Beton bünyesinde kapiler boşluklar, C-S-H jeli boşlukları ve hava boşlukları olmak üzere üç tür boşluk bulunur. Betonun katı fazları çimento hamuru ve agregalar yüksek sıcaklığa maruz kaldığında gözenek yapısı etkilenir. Katı fazlarda meydana gelen fiziksel ve kimyasal değişiklikler toplam porozitede ve gözenek boyutunun dağılımında değişikliklere neden olur. Genellikle, sertleşmiş çimento hamuru 20-200°C civarında genleşir. 200°C`nin üstünde farklı yoğunlukların etkisiyle büzülür. Bu sırada da agregalar genleşir. Bütün bu değişiklikler gözenek boyutunu büyütür (Alonso, 2003b). 500°C`ye kadar kapiler ve jel suyunun ayrılması toplam boşluk hacminde önemli bir artışa neden olur (Haddad ve Shannis, 2004). 600°C`ye kadar toplam boşluk hacmi artar. Bu artış beklenenden fazladır ve ağırlık kaybıyla benzerlik gösterir. Bunun nedeni büzülen arayüzey duvarlar ve oluşan mikro çatlaklar olabilir. Yüksek sıcaklıkta küçük boşlukların oranı azalır. Bu, 900 °C`nin üzerindeki sıcaklıklarda sinterleşmeye neden olabilir (Alonso, 2003a).

Yüksek ısıl gerilmelere maruz betonlarda çatlak oluşumunun birçok nedeni vardır. Çimento hamurunda başlangıçtaki mikro çatlakların varlığı sertleşirken oluşan rötrenin sonucudur. Bu çatlaklar yüksek sıcaklıklarda kolayca ilerlerler. Bazıları 200°C`nin altındaki sıcaklıklarda yok olurlar. Sonuçta az miktarda ama daha büyük çatlaklar oluşur. Anhidrit tanelerin etrafındaki mikro çatlaklar bu sıcaklıkta gelişir. 300°C civarında çimento fazına geçerler ve agregaları çevrelerler. Sıcaklık 500°C`nin üzerindeyken çatlaklar çimento hamurunda gelişir; boyutları 0,01mm`den daha büyük olur ve agregaları çatlatırlar. Çatlak boyutu 0,05 mm`den büyük olunca gözle görülebilir (Alonso, 2003a). Beton bünyesinde su üç farklı şekilde bulunur. Bu su, jel yapılı çimento hamurundaki kalsiyum silikat hidratın (C-S-H) katı öğelerini birbirine bağlayan adsorpsiyon suyu, hidratlardaki kimyasal bağlı su ve kılcal boşluklarda serbest sudur. Çimento türüne ve üretim sırasındaki s/ç oranına bağlı olarak, betonda hacminin %4`ü kadar bulunabilen serbest su 100°C`de kimyasal bağlı su ise 300°C`de buharlaşır. Sıcaklık etkisiyle bu mertebedeki suyun kaybı ile oluşan büzülme ve beton içinde oluşan buhar basıncı beton örtüsünün çatlamasına ve parçalanmasına neden olur. Beton örtünün tahrip olması sonucu donatı yangının başlangıcında sıcak gazla temasa geçer (Akman, 2000). 373,99 °C`de 22,64 MPa kritik su basıncı oluşmaktadır. Kritik noktanın üstünde su buhar halinde, altında ise sıvı halde kabul edilir (Khoury, 2003).

Bazı araştırmacılar 100°C civarında permabilitede azalma bulmuşlardır. Bu, diğer araştırmalarda aynı sıcaklıkta düşük basınç dayanımı bulunmasıyla çelişir. Olası tek açıklama artan basınçtan dolayı suyun yoğuşmasıdır. Çünkü nemli betonun düşük dayanım gösterdiği bilinir. Benzer sıcaklık aralıklarında etrenjitin yapısının bozulmasıyla da ilişkili olabilir. Bu olay çok miktarda suyun serbest kalmasını sağlar ve taşıyıcı fazların azaldığı farz edilir (Andrade, 2003)

Janotka ve Nurnbergerova (2005), 200°C`ye kadar yüksek sıcaklığa maruz bırakılmış yüksek mukavemetli betonun dayanımı, dinamik elastiklik modülü, gerilme deformasyon eğrisi ve hidrate fazının çözülmesinden kaynaklanan rötre davranışını incelemişlerdir. Betonun boşluk yapısı cıva porozimetresi yöntemiyle ölçülmüştür. Çimento hamurundaki C-S-H çözülmesinin 100-200°C arasında gözenek yapısının irileşmesiyle gözlemlendiği belirtilmiştir. Bunun neticesinde betonda ve çimento hamurunda belirgin olarak mukavemet kayıpları olduğu ifade edilmiştir. Yüksek sıcaklıklardan sonra ani soğutmanın, betonun ve çimento hamurunun gözenek yapısında geri dönüşü olmayan büyük bozulmalara sebebiyet verdiği bildirilmiştir.

Çimento hamuru %50-60 tabakalı C-S-H jeli, %20 Ca(OH)₂ ve diğer kimyasal bileşenlerden oluşur (Zhang ve Bicanic, 2002). Ca(OH)₂, 530°C civarında sönmemiş kirece dönüşür. Bu dönüşümde %33`e varan bir büzülme meydana gelir. Yangın sırasında sıkılan su ile CaO tekrar Ca(OH)₂`ye dönüşür. Bu olay %44 mertebesinde bir hacim artışına neden olur. Bu hacim değişimleri sonucu bünyede çatlaklar oluşur; beton ufalanır ve boşluklu bir yapıya dönüşür. Ca(OH)₂`nin boşluklardan süzülmesi yangın sonrasında yüzeyde beyaz lekeler oluşturur. Bu lekelerin varlığı yangında sıcaklığın 530°C`nin üzerine çıktığının kanıtıdır. Yüksek fırın cüruflu ve alüminli çimentolarla üretilen
betonlarda Ca(OH)₂`in az olması nedeni ile bu lekeler daha az olabilir (Akman, 2000).

Alarcon-Ruiz vd. (2005), tarafından yapılan termogravimetrik analizde üç önemli ağırlık kaybı görülmektedir. İlk ağırlık kaybı 100-200°C arasında C-S-H, karboalüminatlar ve etrenjit gibi birçok hidratın dehidrasyonu, ikinci ağırlık kaybı 450-550°C arasında portlanditin dehidroksilasyonu ve üçüncü ağırlık kaybı ise 750-850°C arasında klinker ve filler malzemeden gelen kalsiyum karbonatın dekarbonasyonu ile oluşur. Dehidroksilasyon ve dekarbonasyon reaksiyonları birbirleriyle ilişkilidir. 700-800°C`nin üstünde portlandit artarken dekarbonasyon reaksiyonları azalır. Bunun ana nedeni portlanditin firin içinde soğurken yeniden kristalleşmesidir. Ca(OH)₂`in CaO ve H₂O `ya dönüşmesi 500°C civarında gerçekleşirken, C-S-H`ın dehidratasyonu 110°C `den itibaren başlamaktadır (Scherefler *vd.*, 2003). Her iki olay da çimento hamurundaki katı madde miktarının azalmasına sebep olur.

3.2.2.2. Agrega

Agregalar betonda %60-80 arasında bir hacmi doldururlar. Özelliklerindeki farklılıklar ısıtma sırasında betonun termal genleşme katsayısı ve termal iletkenliğini ve performansını önemli derecede etkiler (Alonso, 2003b).Agregaların yüksek sıcaklıkta betona etkisi mineral yapılarına bağlıdır ve yüksek sıcaklığa dayanıklı oldukları söylenebilir.

Silis esaslı agregalar için kritik sıcaklıklar 250°C ile 575°C arasındadır (Perkins, 2007). Yüksek sıcaklıklarda karbon ayrışır ve 1200°C'de erir (Haddad ve Shannis, 2004). Kumların büyük çoğunluğunu teşkil eden kuvartz 575°C'de yaklaşık %5,7'lik bir hacim artışı ve endotermik bir reaksiyonla α -kuvartzdan β -kuvartza dönüşür (Alonso, 2003b).

Kalker ve dolomitten oluşan agregalar 700°C`ye kadar kararlıdırlar. 800-900°C civarında CaO ve MgO`ya dönüşürler (Akman, 2000). Kalkerin ve dolomitin kalsinasyonu endotermik bir olaydır ve sıcaklığın etkisi ile CO₂`in ayrışması, MgO ve CaO`in oluşması büzülmeye neden olur (Khoury, 1992). Gerek soğuma esnasında dolomitin kalsinasyonu endotermik bir olaydır ve sıcaklığın etkisi ile CO₂`nin ayrışması ortamdaki nemin absorplanması gerekse söndürme anında sıkılan suyun etkisiyle Ca(OH)₂ tekrar oluşur. Bu büzülme ve genleşmeler dayanımda ciddi azalmalar meydana getirir (Perkins, 2007).

Nükleer reaktörlerde kullanılan ağır betonlar 400-800°C arasında sıcaklığa maruz kalırlar. Sakr vd. (2005) tarafından gerçekleştirilen bir deneysel çalışmada kum, barit ve

ilmenite agregaları kullanılarak üretilen betonlar 250, 500, 750 ve 950°C`ye maruz bırakılmıştır. Kontrol deneyleri sonunda ilmenite kullanılarak üretilen ağır betonlar fiziksel ve mekanik açıdan en yüksek performansı göstermiştir.

Khoury`nin (1992) yapmış olduğu bir derlemede Abrams`ın çalışmasına yer verilmiş ve bu çalışmada üç farklı tür agreganın kullanıldığı beton numunelere yüksek sıcaklık etkisi araştırılmıştır. Çalışmada Şekil 3.5`de görüldüğü gibi 600°C`ye kadar ısıtılan kalker esaslı ve hafif agregalı betonların basınç dayanımlarının silis esaslı agregalara göre daha yüksek olduğu gözlenmektedir.

Şekil 3.5. Betonun bağıl basınç dayanımının kullanılan agrega türüne göre sıcaklıkla değişimi (Khoury, 1992)

Granit ve bazalt gibi volkanik kayaçlar ise 1000°C`ye kadar kararlı yapılarını koruyabilmektedir. Ancak sıcaklığın aniden artması ve azalmasının parçalanmalara neden olduğu ifade edilmektedir (Perkins, 2007).

Ponza, köpük cüruf ve genleştirilmiş kil ürünleri gibi hafif agregaların yangın dirençleri yüksektir. Hafif agregalardan üretilmiş betonların ısı iletkenliği düşüktür (Shoaib *vd.*, 2001).

Allen ve Desai (1967) tarafından yapılan çalışmada farklı tip agregaların kullanıldığı betonlar 300°C sıcaklığa maruz bırakılmış, agrega olarak killi ateş tuğlasının kullanıldığı betonlar, en iyi mekanik özelliği göstermiştir. Genellikle silis içermeyen agregalar, örneğin kalker ve volkanik kökenli agregalar ile üretilen betonların yüksek

sıcaklık etkisine karşı daha dayanıklı olduğu rapor edilmektedir (Postacıoğlu, 1987).

3.2.2.3. Mineral Katkılar

Beton, uygulamada daha iyi performans göstermesi amacıyla son yirmi yılda gerek kimyasal gerekse mineral katkı malzemelerinin kullanımı ile basınç dayanımları 80 MPa ve üzerinde olan betonlar üretilmiştir (Kalifa *vd*., 2000; Neville, 2006)

Yüksek dayanımlı ve dayanıklı beton birçok açıdan üzerinde çalışılan bir konudur. Yüksek performanslı beton, betonarme yapılarda kullanıldığında birçok açıdan avantaj sağlasa da gevrek yapısı en zayıf yönüdür (Poon ve Ho, 2004). Yüksek sıcaklığa maruz kaldığında yüksek performanslı betonda normal betona göre özelliğini kaybedip parçalanma, dağılma gibi daha ciddi hasarlar oluşmaktadır. Yüksek sıcaklıkta dağılmaya ve parça atmaya sebep, yüksek performanslı betonun yoğun olmasıdır. İçyapıdaki sıkılık yangın direncini azaltır ve yüksek dayanımlı betonu normal betona göre yüksek sıcaklıkt etkisinde daha riskli duruma getirir (Chan *vd.*, 2000; Kalifa *vd.*, 2000). Yüksek sıcaklık etkisinde puzolanlardan beklenen fayda kalsiyum hidroksitleri tüketerek C-S-H oluşumuna katkıda bulunmalarıdır (Haddad ve Shannis, 2004).

Silis dumanı, uçucu kül ve cüruf gibi mineral katkı malzemelerinin kullanımı yüksek performanslı beton üretmede en etkin yoldur (Poon ve Ho, 2004). Silis dumanı içeren betonlarda yüksek sıcaklıklara karsı direnç katkı miktarına ve dayanım düzeyine bağlı olarak değişebilmektedir. Silis dumanı %20`nin üzerinde olan yüksek dayanımlı betonların direnci normal betonlara göre daha azdır. Sıcaklık 300°C'yi aştığında jelde adsorbe suyu serbest hale geçmekte, yüksek performanslı betonlarda kılcal boşlukların boyutu küçük olduğundan bu boşluklarda buhar basıncı artmakta, betonda büyük gerilmeler oluşmaktadır. Ortaya çıkan basınç etkisi, betonda patlamalara ve dağılmalara neden olmaktadır (Baradan, 2002; Yüzer vd., 2004). Poon vd., (2001) tarafından yüksek sıcaklığın yüksek dayanımlı betona etkilerinin araştırıldığı çalışmada, silis dumanı katkılı beton numuneler üzerinde yapılan deneysel çalışmalardan örnekler verilmiş, bu örneklerden birinde %14-20 silis dumanı katkılı ve basınç dayanımı 170 MPa olan beton numunelerde, 350°C'ye kadar olan sıcaklıklarda basınç dayanımının arttığı, daha yüksek sıcaklıklarda ise dayanımda ani bir düşüşün olduğu, 650°C'de çatlama, parça atma ve patlama seklinde hasarlar görüldüğü belirtilmiştir. Aynı çalışmada verilen diğer bir örnekte ise %10 silis dumanı katkılı numunelerde, silis dumanının yüksek sıcaklık etkisinde betona

herhangi bir yararının olmadığı ifade edilmiştir. Diğer bir çalışmada %10 oranında silis dumanı katkısının yüksek sıcaklık etkisindeki çimento hamuruna olumlu yönde bir katkısının olmadığı, uçucu kül ve cüruf katkılı numunelerin silis dumanı katkılı ve katkısıza göre daha iyi performans gösterdiği, mineral katkılar içerisinde en iyi sonuçların cüruf katkılılarda görüldüğü bildirilmiştir (Sarshar ve Khoury, 1993). Farklı su/çimento oranına sahip ve farklı oranlarda silis dumanı katkılı, yüksek dayanımlı betonların yüksek sıcaklık etkisi altında basınç dayanımındaki değişimin araştırıldığı bir diğer çalışmada, silis dumanı katkı oranının 300°C'ye kadar önemli bir etkisinin olmadığı bu sıcaklıktan sonra ise %10 silis dumanı katkılı betonun basınç dayanımındaki azalmanın, %6 silis dumanı katkılıya oranla daha fazla olduğu tespit edilmiş, yüksek sıcaklık etkisinde kalan betonda optimum su/bağlayıcı oranı ve silis dumanı ikamesi ise sırası ile 0.35 ve %6 olarak bulunmuştur (Behnood ve Ziari, 2008). Benzer çalışmalarda yüksek sıcaklık etkisi sonrası dayanım kaybının %10 oranında silis dumanı katkılı harç ve betonlarda katkısıza göre daha fazla olduğu tespit edilmiştir (Akoz *vd.*, 1995; Ghandehari *vd.*, 2010).

Uçucu kül, 121-149°C arasında, sıcaklığın ve basıncın etkisiyle C-S-H jelinden iki üç kat daha güçlü tobermorit jeli oluşturarak betonun basınç dayanımını %152 oranında arttırmaktadır. Oluşan tobermorit jeli termal uyumsuzluk gösteren agrega ile çimento hamuru arayüzeyini güçlendirerek mikro çatlak oluşumunu engeller. Örneğin, uçucu kül katkısız betonlarda 200°C'de basınç dayanımı azalırken, uçucu kül katkılı betonların dayanımının arttığı tespit edilmiştir. Yüksek fırın cürufu ise yüksek sıcaklıkta diğer puzolanlara göre en iyi performansı göstermektedir (Poon vd., 2001b; Tang ve Lo, 2009). Mendes vd. (2008) tarafından yapılan çalışmada %35, %50 ve %65 oranlarında, öğütülmüş yüksek fırın cürufu katkılı ve katkısız çimento ile üretilen dört seri çimento hamurunun yüksek sıcaklık etkisi altındaki davranışı incelenmiştir. Yapılan thermogravimetric analizlerde cüruf katkılı çimento hamurunun katkısıza oranla ağırlık kaybının daha az olduğu görülmüştür. Aynı zamanda cüruf katkılı çimento hamurunun yüksek sıcaklık etkisi altında mekanik özelikler bakımından da katkısıza oranla daha iyi performans gösterdiği sonucuna varılmıştır. Silis dumanı katkılı betonlarda yüksek sıcaklıklara karsı direnç katkı miktarına ve dayanım düzeyine bağlı olarak değişmekle birlikte, %10'un üzerinde silis dumanı katkılı betonlar hariç tüm puzolan katkılılar, katkısız betonlara oranla yüksek sıcaklıklarda daha iyi performans göstermektedir (Poon vd., 2001a).

3.2.3. Yüksek Sıcaklığın Betonun Fiziksel Özelliklerine Etkisi

Yüksek sıcaklık, betonun ısı yayınımına, ısı iletkenliğine, ısıl genlesmesine, özgül ısısına, birim ağırlığına ve rengine etki eder. Bu fiziksel değişimler sırasında betonun mekanik özelliklerinde de değişiklikler meydana gelir. Beton yüksek sıcaklık etkisinde kaldığında, düşük ısı iletkenliğine sahip yüzey tabakasının oluşması ile ısı yayınımı azalır. Bunun sonucu olarak yüksek sıcaklığa maruz yüzey ile betonun iç kısımları arasında sıcaklık farkları oluşur. Riley (1991) bir çalışmasında, 30 mm çapında 60 mm yüksekliğinde silindir harç numuneleri yüzeyden itibaren ısıtmış ve sıcaklıkları 5 adet termokupul ile ölçerek izotermleri çizmiş ve bu noktalardan aldığı ince kesitlerin analizi ile betonun fiziksel özelliklerinin bu izotermlere benzer değişimler gösterdiğini belirtmiştir. Şekil 3,6'da görüldüğü gibi çatlak kısım bütün numunelerde yüksek sıcaklığa maruz kalan yüzeyinden itibaren 25-30 mm içeriye girmiştir. 300°C'den daha düşük sıcaklığa maruz kalan bölgelerde yerel arayüzey çatlakları, 300-500°C arasında arayüzey ve çimento hamurunda, 500°C`nin üzerindeki sıcaklıklarda ise çimento hamurunda ve agrega tanelerinde ciddi çatlaklar meydana gelmiştir. Bu da betonun anizotrop özellikte bir malzeme olmasının bir sonucudur. Yüksek sıcaklığa maruz kalmış bir betonda anizotropik özellikler gözleniyorsa, sıcaklık 500°C`yi aşmış demektir (Riley, 1991b).

Şekil 3.6. Yangın hasarı görmüş betonun izotermine bağlı özellikleri (Riley, 1991a)

Şekil 3.7`de görüldüğü üzere 150 mm çapında 300 mm yüksekliğinde silindir beton numunelerde yüksek sıcaklık etkisi esnasında yapılan ölçümlerde yüksüz durumda 400°C`ye kadar büzülme daha sonra genleşme gözlenmektedir (Papayianni vd., 2005).

Şekil 3.7. Betonda sıcaklık deformasyon ilişkisi (Papayianni ve Valliasis, 2005)

3.2.4. Yüksek Sıcaklığın Betonun Mekanik Özelliklerine Etkisi

Betonarme yapılar, yangın, termal şok, endüstriyel uygulamalar vb. durumlarda yüksek sıcaklığa maruz kalmaktadır. Çoğu durumda yüksek sıcaklık beton elemanlarda ve taşıyıcı duvarlarda önemli hasarlara yol açmaktadır (Cülfik ve Özturan, 2002). Betonarme yapılarda ana taşıyıcının beton olduğunu düşünürsek, betonun yüksek sıcaklıklardaki mekanik özelliklerinin iyi bilinmesi gerekmektedir. Yüksek sıcaklığın betonun basınç dayanımı, çekme dayanımı ve elastiklik modülü gibi mekanik özeliklerine etkisi ayrı ayrı incelenecektir.

3.2.4.1.Basınç Dayanımı

Yüksek sıcaklığa maruz kalan betonun basınç dayanımı, çimento tipi, agrega türü, su/çimento oranı gibi kullanılan malzeme özelikleri ve sıcaklığa maruz kalınan süre, nem durumu, ısınma ve soğuma hızı, yükleme durumu gibi çevresel faktörlere bağlıdır (Neville, 2006).

Yükleme durumuna göre basınç dayanımındaki değişim Şekil 3.8`de verilmiştir. Şekilde verilen A grubu numuneler herhangi bir yüklemeye maruz kalmadan ısıtılan; B grubu numuneler, basınç dayanımlarının %40`1 kadar bir gerilme altında iken ısıtılan; C grubu numuneler ise ısıtılıp 7 gün 21°C`de bekletilen numunelerin basınç deneyi sonuçlarını temsil etmektedir. Şekilden de görüldüğü üzere yüklü numunelerde 600°C'de basınç dayanımı kaybı görülmemiş, yüksüz numunelerde %25, ısıtmadan 7 gün sonra basınç deneyi yapılan grupta ise %60 dayanım kaybı olmuştur . Şekilden görüldüğü üzere, C grubu numunelerin temsil ettiği, yüksüz durumda ısıtılıp soğutulduktan sonra basınç dayanımlarının belirlenmesi yönteminin daha güvenli bölgede kaldığını göstermektedir(Neville, 2006).

Şekil 3.8. Beton basınç dayanımına yükleme durumunun etkisi (Neville, 2006)

Soğutma türü de yüksek sıcaklığa maruz betonun basınç dayanımı üzerinde etkilidir. Su ile soğutulan numunelerin basınç dayanımlarındaki azalma (Şekil 3.9) havada soğutulan numunelere nazaran daha fazladır (Yüzer *vd.*, 2004; Lee *vd.*, 2008).

Şekil 3.9. Basınç dayanımının soğutma şekline göre sıcaklıkla değişimi (Lee vd., 2008)

Lea ve Straaling, betonda 300°C`ye kadar olan dayanım artışına dikkat çekmişlerdir. Dayanımdaki artış silis esaslı agrega ile üretilen betonlarda daha fazladır ve bunun nedeni çimento ile agrega arasındaki aderansın silisli agregalarda daha yüksek olmasıdır (Savva *vd.*, 2005).

Yüksek sıcaklığın betonun basınç dayanımına etkisi şu şekilde özetlenebilir: Basınç dayanımı 90°C`de azalır, bu azalma %10-35 oranındadır. Bu sıcaklıktan sonra 200°C`ye kadar dayanımda artış gözlenirken bu sıcaklıktan sonra beton dayanımı sürekli olarak azalmaktadır (Şekil 3.10). 800°C`de dayanım kaybı %20-50 mertebesindedir. Dayanımdaki bu değişimi beton üretiminde kullanılan agrega türü ve oranı doğrudan etkiler. Kalker esaslı agrega ile üretilen betonlar yüksek sıcaklık etkisi altında, silis esaslı agrega ile üretilen betonlar yüksek sıcaklık etkisi altında, silis esaslı agrega ile üretilen betonlar daha iyi performans gösterirler. Agrega türünün yanı sıra beton karışımına giren agrega oranı da basınç dayanımındaki değişime etki eder ve bu oran arttıkça betonun dayanıklılığı artar. Farklı su/çimento oranlarının yüksek sıcaklığa maruz kalan betonun basınç dayanımındaki değişime önemli bir etkisi yoktur. Isıtma ve soğutma hızı da basınç dayanımına etki eder ve soğutma hızı arttıkça dayanımdaki kayıp oranı artar.

Deneysel çalışmalar sonucunda yüklü durumda yüksek sıcaklığa maruz kalan betondaki dayanım kaybının yüksüz olarak ısıtılan betonlardan daha az olduğu tespit edilmiştir. Dayanıma numune boyut ve biçimi de etki eder. Küp numunelerin etki sonrası dayanımları prizma seklindeki numunelere göre daha fazladır. Aynı zamanda numune boyutu küçüldükçe dayanım kaybı artar. Agrega boyut ve biçimi de yüksek sıcaklığa maruz kalan betonların basınç dayanımını etkiler (Bazant, 1996).

Şekil 3.10. Basınç dayanımının sıcaklıkla değişimi (Bazant ve Kaplan, 1996)

3.2.4.2. Çekme Dayanımı

Betonun çekme dayanımı genellikle eğilmede çekme ve yarma deneyi ile belirlenir. Silindir numunelerde değişik sıcaklık etkisinde iken ve soğutulduktan sonra yapılan yarma deneyi ile elde edilen çekme dayanımlarında 100°C`den itibaren önemli düşüşler gözlenmekte ve 600°C`de kayıp %70`e ulaşmaktadır (CEB, 1991).

Guise vd. (1996) tarafından yapılan deneysel çalışma sonucunda yüksek sıcaklık etkisinde, uçucu kül ve yüksek fırın cürufu katkılı ve katkısız beton numunelerde 200°C ve 300°C`de eğilmede çekme dayanımında önemli azalmalar görülmektedir (Şekil 3.11).

Şekil 3.11. Puzolan katkılı ve katkısız betonların çekme dayanımının sıcaklıkla değişimi (Guise *vd.*, 1996)

Yüksek sıcaklık etkisinin araştırıldığı silis dumanı katkılı ve katkısız harçlar üzerinde yapılan diğer bir deneysel çalışmada harçların eğilme dayanımı (Şekil 3.12) 100°C`den itibaren bütün gruplarda azalma göstermiştir. Suda soğutulanlardaki kayıp, 300°C`de yaklaşık %40`a varmıştır (Akoz *vd.*, 1995).

Şekil 3.12. Eğilme dayanımının sıcaklıkla değişimi (Akoz vd., 1995)

Yüksek sıcaklık etkisine maruz kalan harcın mekanik özeliklerindeki değişimin araştırıldığı çalışmada, silis esaslı agrega ile üretilen harçlardaki dayanım kaybının kalker esaslı agrega ile üretilen numunelerden daha fazla olduğu, suda soğutmanın havada soğutmaya göre daha zararlı olduğu belirlenmiştir (Kızılkanat, 2004).

3.2.4.3. Elastiklik Modülü

Betonarme yapıların davranışı betonun elastiklik modülüne bağlıdır ve bu modül sıcaklıktan oldukça etkilenir. Sıcaklığın betonun elastiklik modülüne etkisi Şekil 3.12'de verilmiştir. Kütle halinde kür edilmiş betonlarda 21 ila 96°C arasında elastiklik modülünün değerinde herhangi bir değişiklik yoktur. Ancak sıcaklık 121°C'ye ulaştığında elastiklik modülü azalmaktadır. Su betondan uzaklaştığında, 50 ila 800°C arası elastiklik modülündeki azalma giderek artmaktadır. Genel olarak dayanımdaki azalma ile elastiklik modülündeki azalma benzer eğilim göstermektedir (Neville, 2006).

Şekil 3.13. Betonun elastiklik modülünün sıcaklıkla değişimi (Neville, 2006).

Savva vd. (2005) tarafından gerçekleştirilen deneysel çalışmada farklı tür ve oranda puzolan katkılı silis esaslı ve kalker esaslı agrega ile üretilen betonlarda tüm sıcaklıklarda elastiklik modülünde devamlı bir azalma gözlenmiştir. Bu azalma kalker esaslı agrega ile üretilen gruplarda daha fazladır (Şekil 3.13). Puzolanların elastiklik modülüne etkisi açıkça görülmemekle birlikte betonun kırılması daha az gevrek davranış gösterir.

Şekil 3.14. Farklı beton numuneleri için sıcaklık-elastiklik modülü ilişkisi (Savva vd., 2005)

Uçucu kül kullanılarak yapılan diğer bir çalışmada 150 mm çapında 300 mm yüksekliğinde silindir beton numunelerde yüksek sıcaklık etkisinden sonra elastiklik modülündeki azalmanın uçucu kül içeren betonlarda daha fazla olduğu görüldüğü rapor edilmektedir (Papayianni ve Valliasis, 2005).

3.2.5. Yüksek Sıcaklık Etkisinde Beton Özelikleri İle Renk Değişimi İlişkisi

Tekstil ve boya sanayinde kalite kontrol testlerinde, UV ışınlarının polimerlere etkisinin belirlenmesinde tahribatsız bir deney yöntemi olan renk ölçümünden yararlanılmaktadır. Harç ve beton numuneler üzerinde yapılan deneysel çalışmalarda tahribatsız bir deney yöntemi olan renk ölçümünün, yüksek sıcaklık etkisinde kalan betonun basınç dayanımının tahmininde kullanımı 2001 yılından bu yana araştırılmaktadır (Short *vd.*, 2001; Yüzer *vd.*, 2001; Yuzer *vd.*, 2004; Kızılkanat, 2010).

Kızılkanat (2010) tarafından yangına maruz kalan yapılarda beton basınç dayanımırenk değişimi ilişkisinin araştırılması amacı ile yapılan çalışmada puzolan katkılı ve katkısız çimento hamurlarında yüksek sıcaklık etkisi öncesi ve sonrası taramalı elektron mikroskobunda EDS (Energy Dispersion Spectrum) analizleri yapılmış ve SEM (Scanning Electron Microscope) görüntüleri alınmıştır. 600°C ve 900°C sıcaklıklara maruz kalan numuneler havada ve suda olmak üzere iki farklı şekilde ortam sıcaklığına kadar soğutulmuştur. Bu çalışmadan örnek olarak alınan cüruf katkılı çimento hamuruna ait deney sonuçları Çizelge 3.1`te verilmiştir. Proje kapsamında yapılan çalışmada yüksek sıcaklık etkisi sonrası çimento hamurundaki C-S-H jellerin ve oksitlerin bünyesinde bulunan kalsiyum, silisyum, oksijen gibi elementlerin oranlarının değiştiği; bu değişimin betonun yüzey renginin değişmesine neden olduğu; renkte meydana gelen değişim ile basınç dayanımındaki değişim arasında paralellik gözlendiği renk incelemesi ile betonun hangi sıcaklığa maruz kaldığı hakkında fikir edinilebileceği sonucuna varılmıştır. Renkteki değişimin nedeninin demirli bileşenlerin varlığı olduğunu ifade eden Andrade vd. (2003a) de bu değişim ile yangın esnasında maruz kalınan maksimum sıcaklığın tespit edilebileceğini belirtmişlerdir. Ayrıca Li vd. (2004)`nin belirttiği gibi betonun yapısında ve bileşiminde meydana gelen değişikliklerin bir sonucu olan renk değişimi, basınç dayanımındaki azalmaya da referans olabilecektir.

Numune	С	0	Mg	Al	Si	Ca	Fe
Kontrol	2,61	40,92	0,54	1,93	7,78	43,97	2,26
600°C/havada soğutulan	2,84	33,23	0,53	2,26	8,93	49,60	2,61
600°C/suda soğutulan	2,37	38,56	0,56	2,33	8,03	45,83	2,33
900°C/havada soğutulan	2,81	34,61	0,60	2,05	7,61	49,10	3,23
900°C/suda soğutulan	2,52	36,79	0,55	2,39	7,87	46,88	3,01

Çizelge 3.1. Cüruf katkılı numunelerin EDS analiz sonuçları (Yüzer vd., 2007a)

Luo ve Lin (2007) tarafından yapılan benzer çalışmada atık çamur katkılı harçta yüksek sıcaklık etkisi araştırılmış, 600°C ve 1000°C`ye maruz kalan numunelerde EDS analizi yapılmıştır. Yapılan analizlerde silisyum, oksijen ve kalsiyum elementlerinin oranlarının önemli ölçüde değiştiği tespit edilmiştir.

Yüzer vd. (2001) tarafından yüksek sıcaklık etkisi altında kalan harçların mekanik ve fiziksel özelliklerinin araştırıldığı deneysel çalışmada, harçların maruz bırakıldığı her sıcaklık için yüzey rengi ve basınç dayanımları belirlenmiş, rengin tür bileşeni ile basınç dayanımı arasında bir ilişki kurulabileceği sonucuna varılmıştır. Şekil 3.15 ve 3.16'da sıcaklığın etkisi ile harcın, basınç dayanımında ve renginde benzer değişikliklerin meydana geldiği görülmektedir. Bu değişiklikler betonun hangi sıcaklığa maruz kaldığı ve dayanımdaki kayıp oranı hakkında fikir verebilmektedir (Yüzer, 2001).

Şekil 3.15. Basınç dayanımı sıcaklıkla değişimi (Yüzer vd., 2001)

Şekil 3.16. Renklerin (tür) sıcaklık değişimi (Yüzer vd., 2001)

Silis ve kalker esaslı agregalar ayrı ayrı kullanılarak üretilen beton numuneler üzerinde yapılan diğer çalışmalarda da benzer sonuçlar elde edilmiştir. Bu çalışmalarda rengin tür, değer ve doymuşluk bileşenleri ile ultra ses geçiş hızı olmak üzere 4 girdi parametresi kullanılarak oluşturulan Yapay Sinir Ağı modelleri ile yüksek sıcaklık etkisi sonrası betonun basınç dayanımı teorik olarak belirlenmiştir (Kızılkanat, 2010)

4. RENK

4.1. Renk Sistemi Çalışmalarının Tarihçesi

19. yüzyılda renk bilimi tüm zamanların en iyi bilim adamlarından bazıları olan Thomas Young, Helmholtz ve Maxwell tarafından çalışılmış olsa da bundan bir asır önce Isaac Newton bu bilimin temellerinin atmıştır. Newton beyaz ışığın tek bir boyutu olmadığını ve çeşitli renklerden oluştuğunu söylemiştir. Bundan birkaç yıl sonra Paul Sherman tarafından ortaya atılan trichromatic (üç renkli yapı) teorisi 19. yüzyıllın ilk yarısına damga vurmuş bir çalışma olmuştur. Bu çalışmanın açtığı yoldan Brewster, Herschel, Wollaston ve Grassmann gibi bilim adamları devam etmiştir. Maxwell, Sherman`ın çalışmasını hayata geçirmiştir. Maxwell kutusu denilen üç rengi aynı anda karıştırmaya yarayan bir aparattır (Schanda, 2007).

Renk ölçümü için ilk aparat 1887'de J. W. Lovibond tarafından imal edildi. Bu aparat Tintometre olarak adlandırıldı. Tintometre renk ölçerlerin ilk aparatı olarak kabul edilmektedir. Trichromatic esasta çalışan bir aparattır. Aparat kırmızı, yeşil ve mavi renkleri temel alır. 19. ve 20. yüzyılında renk ölçümünde çalışma yapmış iki önemli bilim adamı A. H. Munsell ve W. Ostwald'tır. Bu bilim adamları yüzeyden renk ölçme üzerine abaklar hazırlamışladır. Bu abaklar başarılı bir şekilde kullanılmıştır ve günümüzde de kullanılmaktadır (Schanda, 2007).

20. yüzyıllın başında Amerika`da bir grup bilim adamı bir araya gelerek OSA`yı (Optical Society of America) kurmuşlardır. Bu kuruluş 1927 yılında ilk defa renkölçer raporu yayınlamışlardır.

1931 yılında altı ülkeden (Fransa, Almanya, İngiltere, Japonya, Hollanda ve Amerika) gelen 21 delege katılımıyla Uluslararası Güç Kaynağı Birliği (CIE) kurulmuştur ve günümüzde de kullanılan renk ölçerlerin de dayandığı ilk renk sistemi olan CIEXYZ`yi oluşturmuştur. Bu kuruluş 1976 yıllında yeni bir renk sistemi olan CIELab`yi oluşturdular. Bu sistem 2004 ve 2009 yıllında iki yeni düzeltme yapmış olsa da günümüzde dünyada renk ölçümünde en çok kullanılan renk sistemi olmuştur (Schanda, 2007).

4.2. Renk

Renk fiziksel bir özelliktir. Bir cismin üzerine düşen herhangi bir ışık tayfının yansıması sonucu oluşan görsel algının tamamına renk denir. Bu görsel algının içinde renkli (kromatik) ve renksiz (akromatik) içerik vardır. Bu görüntüdeki renkli içerikle kastedilen örnek olarak kırmızı, sarı ve mavi renkler iken renksiz içerikle kastedilen ise örneğin beyaz, siyah ve gri renklerdir (CIE, 2004).

Bu tanım renk bilimciler ve araştırmacılar tarafından yeteri kadar tatmin edici bulunmamıştır. Renk algının spektral dağılımına bağlıdır. Bu dağılımın parametreleri ise boyut, şekil, cisim üzerindeki uyarıcı, uyarıcıyı çerçeveleyen alan, gözlemcinin görme sistemine uyum durumu ve gözlemcinin tecrübesidir (Sharma ve Bala, 2010). Bu tanım şunu göstermektedir. Gözlemci olmadan rengi sınıflandırmak mümkün değildir. Fakat bu durum gözlemcilerin farklı olmasından dolayı standart değerler elde etmeyi zorlaştırmaktadır. Newton`a göre ışık renk içermez, renk ancak ışığın nesne ile etkileşimi sonrasında oluşur (Westland, 2003; Ahmad, 2008).

Rengin algılanmasında ışık kaynağı, cisim ve gözlemci olmak üzere üç ana faktör vardır (Brewer *vd.*, 2004).

Işık Kaynağı: Işık kaynağından yayılan ışık dalgaları ancak nesne ile etkileşime girdiği zaman gözlemci tarafından renk olarak algılanabilir. Işık kaynağından yayılan ışığın farklı dalga boylarındaki yoğunluğu ışığın renk içeriğini belirler. Yani farklı dalga boylarındaki ışık yoğunluğu farklı renkler olarak ortaya çıkar. Bu da ışık spektrumunu oluşturur. Farklı ışık kaynaklarından yayılan ışığın dalga boyları ve yoğunlukları farklı olduğu için nesneleri aydınlatan ışık kaynağı rengin algılanmasını etkilemektedir (Brewer, 2004). Aynı cismin farklı ışık kaynakları altında farklı renklerde algılanmasına "Matemarizm" adı verilir. Matemarizm çevresel faktörler ve ışık kaynağından etkilenir (Russel vd., 2004).

Renk ölçümü ve tespiti sırasında ışık kaynağının sebep olduğu farklılıkları ortadan kaldırmak amacıyla 1931 yılında CIE (Uluslar arası ışık kaynağı komisyonu - Commission International de l`Éclairge) standart ışık kaynağı kullanmayı önermiştir. Çoğu zaman sıcaklık birimi olan Kelvin ile ifade edilen ışığın sıcaklık derecesi gün ışığı için yaklaşık 1000 K ile 20000 K arasında değişir ve renk ölçümü için önerilen standart 6500 K`e karşılık gelen gün ışığı olarak belirlenmiş ve D65 olarak tanımlanmıştır (Barutcigil, 2010).

Cisim: Herhangi bir nesnenin renk özellikleri ışık ile etkileşime girdiğinde ortaya çıkar. Bu etkileşim sırasında ışık kaynağından gelen ışığın cisim tarafından ne kadar geçirildiği, ne kadar absorbe edildiği ve ne kadar yansıtıldığı önemlidir. Cismin rengi; o cismin ışık geçirgenliği, ışık absorbe etme özelliği ve yansıtma miktarı ile birlikte belirlenir (O`Brien, 2002).

Gözlemci: Rengin algılanmasındaki son faktör gözlemci, yani insan gözüdür. Işık kaynağından çıkan ve cisim tarafından yansıtılan ışık gözün kornea tabakasından geçerek retinaya düşer ve burada ışığa duyarlı olan çubuk ve koni hücreleri tarafından algılanır. Çubuk hücreleri rengi siyah-beyaz olarak algılarken, koni hücreleri yalnızca kırmızı, mavi veya yeşil olarak değerlendirir. Bu iki hücreden alınan uyarıların birlikte değerlendirilmesi sonucunda beyinde renkli bir görüntü oluşur (Ahmad, 2006).

4.3. İlgili ve İlgisiz Renkler

Bu kavram renk tanımının algılanması açısından önemlidir.

İlgili renk; rengi algılanan cismin bir alanına ait rengin diğer alanlardaki renklerle ilgili olmasıdır. Yani bir cisimden gelen yansımanın birçok uyarıcıyı içermesi ve gözlemci tarafından bu uyarıcıların aynı zamanda algılanmasıdır (Sharma, 2003).

İlgisiz renk; rengi algılanan cimin bir alanına ait rengin diğer alanlardaki renklerle ilgisiz olmasıdır. Yani bir cisimden gelen yansımanın tek bir uyarıcıyı içermesi ve gözlemci tarafından bu uyarıcının algılanmasıdır. Bu tanım ilgisiz renklerin tamamen izole olması anlamındadır (Sharma, 2003). Gerçek hayatta insanların ilgisiz renk görme olasılıkları düşüktür. Çünkü cisimlerin salt bir renkte olması çok nadirdir. Genelde renkler farklı uyarıcılar içererek farklı tonlarda algılanmaktadır (Sharma, 2003).

4.4. Renkle İlgili Tanımlar

4.4.1. Hue (Ton)

Rengin tonunun belirlenmesini sağlayan bu parametre temel olarak rengi verir. Munsell sisteminde bir renk grubunun diğerlerinden ayrıt edilmesini sağlayan niteliktir. CIE LAB`a göre dört ana renk vardır. Bunlar kırmızı, yeşil, sarı ve mavidir (CIE 1931).

4.4.2. Brightness (Parlaklık) ve Ligthness (Hafiflik)

Bu iki kavram birbirine çok karıştırılır ve birbirinin yerine kullanılır. Hafiflik değeri illuminance (ışık miktarı) değerine bağlıdır. Bir cisimden yansıyan yansımadan algılanan bir rengin daha fazla veya daha az ışık yaymasına brightness (parlaklık) denir. Ligthness (hafiflik) ise, algılanan rengin parlaklığının en parlak renk olan beyazın parlaklık değerine oranıdır (CIE, 2004).

$$Hafiflik = \frac{Parlaklık}{Parlaklık(Beyaz)}$$
(4.1)

4.4.3. Renklilik (Colorfulness) ve Yoğunluk (Chroma)

Renklilik ve yoğunluk tanımları da aynı parlaklık ve hafiflik gibi birbirine karıştırılmaktadır. Bir cisimden yansıyan yansımadan algılanan bir rengin daha fazla veya daha az renk yaymasına Colorfulness (Renklilik) denir. Chroma (Yoğunluk) ise; algılanan rengin en parlak renk olan beyazın parlaklık değerine oranıdır (CIE, 2004).

$$Yoğunluk = \frac{Renklilik}{Parlaklık(Beyaz)}$$
(4.2)

4.4.4. Doymuşluk (Saturation)

Doymuşluk (saturation) yoğunluk (chroma) kavramı ile birbirinin yerine kullanılmaktadır. Fakat doygunluk kendi başına bir kavramdır (Sharma, 2003).

$$Doymuşluk = \frac{Yoğunluk}{Hafiflik}$$
(4.3)

şeklinde ifade edilir.

Bu denklemde yoğunluk ve hafiflik tanımları yerine 4.1. ve 4.2 denklemlerini yerine yazarsak

$$Doymuşluk = \frac{Renkilik}{Parlaklık(Beyaz)} \times \frac{Parlaklık(Beyaz)}{Parlaklık} = \frac{Renklilik}{Parlaklık}$$
(4.4)

şeklinde ifade edilir. Yani doygunluk, renkliliğin parlaklığa oranıdır (Sharma, 2003).

4.5. Renk Sistemleri

Rengin belirlenmesi ve değerlendirilebilmesi için çeşitli renk ölçekleri geliştirilmiştir. Birçok alandaki renk uygulamalarında rengi belirlemek ve sayısallaştırmak için birçok renk sistemi kullanılmaktadır.

Şekil 4.1. Renk uzayları kataloğu

Şekil 4.1 de verildiği gibi renk uzayları cihaza bağımlı ve cihazdan bağımsız olmak ikiye ayrılmaktadır. Rengin mühendislik uygulamalarında genellikle Munsell, CIELab, RGB ve CMYK renk sistemleri kullanılmaktadır (Barutcigil, 2010).

4.5.1. Munsell Renk Sistemi

1905 yılında Amerikalı ressam A.H. Munsell tarafından geliştirilen ve hala geçerliliğini koruyan ilk renk ölçekleme sistemlerindendir. Şekil 4,2`de görülen 82 Munsell renk sisteminde rengin parlaklık (value), ton (hue) ve doymuşluk (chroma) olmak

üzere üç boyutu vardır (Russell, 2000).

Hue: Rengin tonunun belirlenmesini sağlayan bu parametre temel olarak rengi verir. Munsell sisteminde bir renk grubunun diğerlerinden ayrıt edilmesini sağlayan niteliktir. Munsell renk sisteminde 5 ana renk (kırmızı, sarı, yeşil, mavi, mor) vardır. Bunların arasında ise 5 yardımcı renk (sarı-kırmızı, yeşil-sarı, mavi-yeşil, mor-mavi, kırmızı-mor) vardır (O`Brien vd., 2002).

Value: Hiçbir ton içermeyen value- parlaklık değeri re ngin saf siyahtan saf beyaza sadece açıklık ve koyuluğu belirlemek için kullanılır. Rengin sadece beyazlık ve siyahlık derecesini veren value `da 0-10 arası skalada 0-siyahtan, 10-beyaza kadar her renk için siyahtan beyaza farklı bir değer verilir (Bayındır ve Alwin, 2006).

Choroma: Bir rengin yoğunluğunu gösteren choroma, o rengin tonunun doymuşluğunu yani saflığını gösterir. Parlaklık değerleri aynı olan aynı tondaki iki renk arasında doygunluk griye yaklaştıkça azalır uzaklaştıkça artar, gride doygunluk 0 olur.

Doymuşluk, Munsell skalasında 15 seviye ile gösterilir.

Şekil 4.2. Munsell renk skalası

4.5.2. CMYK Renk Sistemi

Genellikle matbaacılık ve yazıcılarda kullanılmaktadır. Dört rengin karışımından oluşur. Cyan (Camgöbeği), Magenta (Galibarda), Yellow (Sarı), Key (Siyah) renklerinin karışımından elde edilir. Fakat turuncu gibi bazı renklerin oluşturulmasında tatmin edici sonuçlar vermemektedir. Ayrıca çok yoğun kullanılan yeşil gibi ana rengin camgöbeği ve

sarı gibi renklerin karıştırılarak elde edilmesinden dolayı ekonomik bir yöntem değildir. Bu nedenle son yıllarda hexcroma, yani altı renkli CMYKOG sistemi kullanılmaya başlanmıştır.

4.5.3. CIE Lab Renk Sistemi

Commission International de l'Éclairge tarafından 1931 yılında belirlenen bu renk sisteminde renk, X, Y ve Z koordinatlarında tespit edilmekteydi. 1976 yılında ise bu sistem geliştirilerek CIE L* a* b* sistemi ortaya çıkarılmıştır.

CIE Lab renk siteminde, renk üç boyutlu olarak gösterilebilmektedir. Bu renk sisteminin avantajı Munsell renk sistemine göre rengin hemen hemen eşit aralıklarda ifade edilebilmesidir.

CIELab renk sisteminde L*, a* ve b* olmak üzere üç koordinat bulunur. L* rengin aydınlığını ifade eder ve 0-100 arası bir skalada değerlendirilir. L*=0 saf siyaha, L*=100 ise saf beyaza denk gelir. Şekil 4.3'te görülen a* ve b* ise rengin tonunu ifade eder; a kırmızıdan yeşile, b maviden sarıya renk değişimini gösterir. Bu üç koordinat rengin sayısal olarak değerini verir ve renk değişimlerinin belirlenmesinde tek bir değer ΔE kullanımını sağlar. ΔE ab* belli bir formülle hesaplanır ve iki renk arasındaki farkı ortaya koyar ve aşağıdaki gibi ilişkilendirilir (Schanda, 2007).

$$\Delta E_{ab} = (\Delta L^2 + \Delta a^2 + \Delta b^2)^{1/2} \tag{4.5}$$

$$\Delta L = L_1 - L_2 \tag{4.6}$$

$$\Delta a = a_1 - a_2 \tag{4.7}$$

$$\Delta \mathbf{b} = b_1 - b_2 \tag{4.8}$$

Ayrıca chroma değerini ve değişimini veren ilişkiler aşağıda verilmiştir.

$$C = \sqrt{a^2 + b^2} \tag{4.9}$$

$$\Delta C = C_1 - C_2 \tag{4.10}$$

Hue değeri ve değişimi ise aşağıda verilen ilişki ile belirlenir.

$$H = \arctan\left(\frac{b}{a}\right) \tag{4.11}$$

 $\Delta H = H_1 - H_2 \tag{4.12}$

Şekil 4.3. CIE L* a* b* renk skalası

 Δ Eab* iki renk arasındaki farklılığı matematiksel olarak ortaya koyar. Gözlemcinin bu renk değişimini algılaması çoğu zaman sınırlıdır. Özellikle Δ Eab 1`in altında olursa renk farkı algılanamaz. Δ Eab `nin 1-2 arasındaki değerler birçok gözlemci tarafından algılanabilir ancak klinik olarak önemli değildir. Ancak iki renk arasındaki Δ Eab* farkı 3,3 ve üzerinde ise bu renk değişimi kişisel farklılıklar dikkate alınmaksızın hemen herkes tarafından algılanabilir. Bu yüzden Δ Eab*`nin 3,3 ve üzeri değerleri birçok araştırıcı tarafından klinik olarak kabul edilebilir sınır olarak alınmıştır. Ancak yine de bu eşik değerin ne olacağı konusunda hala yazarlar arasında tartışılmaktadır. Bazı araştırmacılara göre bu kabul edilebilir renk değişimi sınırı Δ Eab* 3,7 olarak değerlendirilir (Barutcigil, 2010).

4.5.4. RGB Renk Sistemi

RGB renk uzayı toplamalı renk karışımı yöntemiyle bir birim küpün içinde renkleri tanımlayacak şekilde tasarlanmıştır. Herhangi bir rengi bilgisayarda görüntülemek için bu üç renk belirli yoğunluklarda karıştırılır. RGB renk uzayı koordinat eksenleri kırmızı, yeşil

ve mavi olan 3D bir uzay olarak düşünülebilir (Şekil 4.4). Oluşturulmak istenen renkler bu üç ana rengin koordinatları cinsinden ifade edilebilir (Sharma ve Bala, 2010).

Şekil 4.4. RGB renk uzayı koordinat eksenleri

Bilgisayar ortamında görüntüler en yaygın RGB renk uzayında temsil edilirler. Renkli görüntüler bilgisayar ekranlarında 24 bit`lik veri olarak görüntülenir. Görüntüleme R (Kırmızı), G (Yeşil), B (Mavi) kodlanmış aynı objeye ait üç adet gri düzeyli görüntünün üst üstte ekrana iletilmesi ile oluşur (Şekil 4.5). Elektro-manyetik spektrumda 0,4-0,5 µm dalga boyu mavi renge; 0,5-0,6 µm dalga boyu yeşil renge; 0,6-0,7 µm dalga boyu kırmızı renge karşılık gelir. Bu dalga boylarında elde edilmiş üç gri düzeyli görüntü bilgisayar ekranında sırası ile kırmızı-yeşil-mavi kombinasyonun da üst üste düşürülecek olursa renkli görüntü elde edilmiş olur (Sharma ve Bala, 2010).

Şekil 4.5. Bilgisayar ekranında renkli görüntünün elde edilmesi

Renkli görüntü kavramı; 1 band bir anlamda kırmızı filtrelenmiş, başka bir deyişle orijinal görüntüdeki gri değerler kırmızının tonları şeklinde ifade edilmiştir. Benzer şekilde 2 ve 3 bandlarda da yeşilin ve mavinin tonları şeklinde ifade edilip üst üste çakıştırılmış ve oluşan renk karışımından da doğal renkler elde edilmiştir (Sharma ve Bala, 2010).

4.6. Renk Ölçümü

Renk ölçümü görsel ve aletsel olmak üzere iki türlü yapılabilir. Görsel olarak yapılan ölçümler de Munsell renk sistemi kullanılır ve ortam, ışık kaynağı, matermarizm, gözlemcinin görme sorunları gibi birçok sebepten kaynaklanan hatalar doğabilir. Bu sebeple aletsel ölçümler daha güvenilirdir. Aletsel renk tespiti için spektrofotometreler, kolorimetreler ve dijital fotoğraf makineleri kullanılabilir (Craig 2002; Ahmad 2006).

4.6.1. Spektroradiometre

Direkt renk ölçüm tekniklerinden bir tasnidir. Spektroradiometre optik radyasyonun cisim içinden geçen dalga boyunu ölçen bir aparattır. Sabit bir sistem olduğu için çok kullanışlı değildir. Şekil 4.6`da görüldüğü gibi spektroradiometre gelen ışık önce objektiften geçerek 45° lik yatayla açı yapan yansıtıcıya çarpıyor ve daha sonra R, G ve B detektörleri tarafından algılanmaktadır (Sharma, 2003).

Şekil 4.6.Spektroradiometre`nin çalışma prensibi

4.6.2. Spektrofotometre

Cihazla ölçüm metotlarında en çok kullanılan ve en güvenilir cihazlardan biri olan spektrofotometreler rengin yansımasını ve geçirgenliğini tam olarak belirleyebilir. Ancak en büyük dezavantajları karmaşık bir teknolojiye sahip olmaları ve pahalı olmalarıdır. Ayrıca renk tespiti yapılacak materyal cihazın içine konulur. Ölçüm, Şekil 4.7'de görüldüğü gibi 45° açı yapacak şekilde yapılmaktadır. Ayrıca Şekil 4.8'de aparatın nasıl çalıştığı gösterilmektedir (Sharma, 2003).

Şekil 4.7. Aletsel renk ölçümünde ölçüm açısı (Sharma, 2003)

Şekil 4.8. Spektrophotometre çalışma prensibi (Sharma, 2003)

4.6.3. Renkölçer (Colormeter)

Cisimden yansıyan belli renkleri tespit edebilen renkölçerler sadece rengin üç boyutu olan sistemlerde X, Y, Z veya L, a, b koordinatlarında rengi hesaplayabilir. Renkölçerlerde ölçümler spektrofotmetrelerde olduğu kadar hassas olmasa da kullanım kolaylığı ve taşınabilir olması her türlü malzeme üzerinde kullanılabilmeleri gibi avantajları vardır. En büyük dezavantaj ışığı geçiren materyalleri okumada yetersiz olmalarıdır. Bu nedenle (Ahmad 2006; Bayındır 2006) bu tür materyallerin ölçümlerinde standart bir arka plan kullanılmalıdır.

4.6.4. Dijital Fotoğraf Makineleri

Son yıllarda kullanımları artan dijital fotoğraf makinelerinde elde edilen görüntü bilgisayar ortamına aktarılarak rengin boyutları özel yazılımlar ile tespit edilir. Bir başka şekilde ise fotoğraf makineleri, spektrofotometreler ile birlikte kullanılır (Ahmad 2006).

Fotoğraf makineleri taşınabilir olmasından dolayı renk ölçümlerinde daha büyük kolaylık sağlar. Fakat fotoğraf makineleri her zaman kalibre edilerek kullanılmadığı için alınan değerler kendi içlerinde değerlendirilmesi gerekir. Çünkü fotoğraf makinelerinin ışık ayarı çok kolay değildir (Felicetti, 2009). Bunun sebebi fotoğraf makinelerinin karmaşık mimarileridir (Şekil 4.9) (Sharma, 2003).

Şekil 4.9. Dijital fotoğraf makinesinin mimarisi (Sharma, 2003)

Digital fotoğraf makinesi ile fotoğraf çekme, kaydetme ve daha sonra yeniden oluşturma aşamaları aşağıda verildiği şekilde olmaktadır (Şekil 4.10).

- Önce makine cisme odaklanır.
- Görüntü yakalanır.
- Kabaca beyaz balans ayarı yapılır.
- Kayıp olmadan sıkıştırılır.
- TIFF formatında kayıt edilir.
- Sıkıştırılmış dosya açılır.
- Renk sensörü tarafından yeniden mozaikleme yapılır.
- Ton skalasını renk yeniden oluşturulur.

Şekil 4.10. Dijital fotoğraf makinesinin kayıt sistem şeması (Sharma, 2003).

4.7. Yüksek Sıcaklık Etkisinde Betonda Renk Değişimi

Renk, cisimlerin fiziksel özeliklerinden biridir. Rengin görülmesi kaynağından çıkan ışığın yüzeyden yansıyarak göze ulaştığında gözdeki ağtabaka üzerinde oluşturduğu etkinin beyin tarafından algılanmasıyla olur (Paksoy, 1999). Dolayısıyla rengin algılanması için ışık kaynağına, yüzeye ve bir görme organına ihtiyaç vardır.

Bir cismin rengi, bir ışık kaynağından yansıtılan enerjinin o cisim tarafından soğrulmayan ve yansıtılan kısmıdır. Kırmızı renk, örneğin, 625 nm ile 740 nm aralığı dışındaki tüm görünür spektrum dalga boylarının soğrulmasıyla algılanır. Beyaz ve siyah renkler özel durumlardır. Onlar tüm dalga boylarının yansıması ya da soğrulması sonucu

ortaya çıkar. Gri renkler her bir dalga boyunun aynı oranda emilimiyle oluşurlar. Malzemenin yapısı ve doğası soğrulma miktarı için çok önemlidir (Stone, 2003).

Işık ışınları dalga boyu 360-400 nm ila 760-830 nm arasında değişen ışınlardır. Beyaz ışık bütün tek renkli ışıkların eşit oranlarda karışmasından oluşmuştur. Şekil 4.11`de ölçün D65, ölçün C ve ölçün A (akkor lamba ışığı) ışığının tayfsal eğrileri görülmektedir. Grafiğin x ekseninde ışığın dalga boyu (λ , nm), y ekseninde ise bağıl erke (E, mW/nm) verilmiştir. Grafikten de görüldüğü üzere kuramsal beyaz ışığa en yakın ışık ölçün D65 ışığıdır (Sirel, 1974).

Şekil 4.11. Farklı ışıkların tayf eğrileri (Sirel, 1974)

Renklerin belirlenmesi ve işlenmesi günlük rutin bir işlemdir. Sistemler rengin tanımlanmasına ihtiyaç duyarlar. Örneğin, bir arabanın farklı bölümlerinin rengini eşleştirmek için kullanılır. Dahası, görüntü işleme için renk modellerine ihtiyaç vardır. Çünkü tarama, görüntüleme ve yazdırma işlemleri için aynı renk hassasiyeti istenir (Stone, 2003)`e göre, geleneksel renkli görüntü kopyalama doğrusal bir işlemdir. Bu işlem cisim ve ışık kaynağı ile başlar; bunların renkleri öncelikle yakalanır ve RGB dijital piksellere kodlanır. Bu pikseller bazı fiziksel formlarda bir görüntü elde edebilmek amacıyla gönderildikleri görüntü çıktı sistemlerinde (yazıcı vb) görünür kılınır. Bu süreçte her bir adımda renk transformasyonları vardır ve bunlar uygun renk kopyalamasını yapabilmesi için kontrol edilmelidir. İdeal olarak, görüntü almak, doğru bir şekilde tüm görünür renk dizilerini kapsamalıdır. Uygulamada, yakalanan renkler sadece insan gözünün görebildiğine yakınlaştırma yapılmıştır (Annerel ve Taerwe, 2011).

Renk uzayı birçok özelliğe sahip olabilir;

- Algısal Doğrusallık: CIE Lab renk uzayında bir renk değişimi insanların algıladığı oranda olur (veya meydana gelir).
- Sezgisellik: Doğal yollarla algılanan renk ile renk uzayları arasında hiçbir soyut ilişki yoktur.
- Cihazdan Bağımsızlık: Renk uzayları hangi cihaz kullanılırsa kullanılsın bir takım parametreler aynı renk ile sonuçlanır

İnsan gözünden, renk uzayları trichromatic ve renk karıştırma yasaları temelindedir. Üç renk karışımı (RGB) veya üç uyarıcı (tristimulus) (CIE XYZ) birçok 3D renkölçer sistemin ki bunların özellikleri bu makalede tartışılmıştır ve makalenin temelini teşkil etmektedir (Ford ve Roberts, 1998; Annerel ve Taerwe, 2011).

Bir yüzeyin renkli görülmesi o yüzeyi aydınlatan beyaz ışığın bileşimindeki bütün renkli ışınların aynı oranda yansımamaları ve böylece yansıyarak göze gelen ışığın bileşiminin beyaz ışığınkinden farklı oluşu, yani yansıyan ışığın renkli oluşu sonucudur. Örneğin, bir yüzey kırmızı görünüyorsa; bu, o yüzeyin kırmızı ışıkları ötekilerden daha büyük oranlarda yansıtması, diğer bir deyişle, kırmızı olmayan ve özellikle kırmızıdan uzak renkli ısınları daha büyük oranlarda yutması demektir. Böylece, kırmızı yüzeyden göze gelen ışıkta kırmızı ışıkların oranı daha büyük olur ve yüzey kırmızı görünür (Sirel, 1974).

Yüzeylerin ışığı yansıtma çarpanlarının dalga boyuna göre değişme özelikleri Şekil 4.12`de göstermektedir. Burada x ekseni dalga boylarını, y ekseni ise yüzeyin dalga boyuna göre değişen yansıtma çarpanlarını göstermektedir. Bu grafikten de görüldüğü üzere gri yüzeyler yansıtma çarpanları ışığın dalga boyuna göre değişmeyen yüzeylerdir. Bu özeliklerinden ötürü üzerine düsen ışığın tayfsal bileşiminde bir değişiklik yapmadan yansıtırlar ve bu nedenle gri, yani renksiz görünürler. Gri yüzeyler bütün yansıtma çarpanlarına göre siyahtan beyaza değişen adlar alırlar. Renkli yüzeyler ise ışığın değişik dalga boyuna göre değişik yansıtma çarpanlarına sahip olduklarından dolayı, üzerine düşen ışığın tayfsal bileşimini değiştirir ve bu nedenle renkli görünürler (Sirel, 1974).

Şekil 4.12. Yüzeylerin tayfsal yansıtma çarpanları (Kızılkanat, 2010)

Beton yapılar yangından dolayı önemli derecede hasara uğrasalar da bu yapıların yangın sonrası onarımı mümkündür. Yıkmak ve yeninden yapım maliyetinden kaçınılabileceğinden dolayı böyle bir yaklaşım ekonomik öneme sahiptir. Dahası, bina onarımı genellikle daha hızlı bir metottur ve binanın daha kısa süre zarfında kullanılmasına neden olur. Yangından sonra yapı elemanlarının geri kalan taşıma kapasitelerini belirlemek için elemanlar içine nüfuz eden sıcaklık bilgisi gereklidir. Porozite artışı, beton sertliği ve rengine bağlı olarak yangın hasarını tahmin etmek için birçok teknik irdelenmiştir (Annerel ve Taerwe, 2008).

Oda sıcaklığında gri olan çimento hamuru beton ısıtıldığında 300-600°C arasında kırmızıya, 600-900°C civarında beyazımsı griye, 900-1000°C de devetüyü rengine (bir tür sarı) dönüşür. Agrega rengi de sıcaklıkla değişmektedir. Ancak, silisli ve kalkerli agregalar arasında fark bulunmaktadır. Silisli agregalar ortam sıcaklığında geniş bir renk dağılımına sahiptir. Isıtıldıklarında, bileşenlerine bağlı olarak farklı renk değişikliklerine uğrarlar (Annerel ve Taerwe, 2009). Ancak birçoğu içlerindeki demir iyonu nedeniyle oluşan oksidasyon dolayısıyla sıcaklık arttıkça yaklaşık 250-300°C de pembeye dönmektedir. Diğer taraftan, kalker agregalar ortam sıcaklığında siyah renkli iken değişim ancak yaklaşık 700°C de görülebilmektedir ki bu durumda dekarbonatlaşmadan dolayı beyaza dönmektedirler (Annnerel ve Taerwe, 2011).

Yüksek sıcaklığın etkisinde kalan betonun renginde bazen önemli değişiklikler meydana geldiği, bu değişikliklere bakılarak kalker ve silis esaslı agregalı betonun maruz kaldığı maksimum sıcaklığın tahmin edilebildiği, özellikle silisli nehir agregaları ile üretilen betonlarda renk değişiminin belirgin olarak görüldüğü; örneğin, renk pembe veya kırmızı ise sıcaklığın 300-600°C`ye, gri ise 600-900°C`ye yükseldiği önceki çalışmalarda ifade edilmiştir (Cioni *vd.*, 2001; Neville, 2006).

Çizelge 4.1`de görüldüğü gibi bazı minerallerin renkleri yüksek sıcaklık etkisiyle değişmektedir. Örneğin, kuvartz`ın (SiO₂) bir türü olan Ametist`in 300°C`de renginin değiştiği, koyu renkli çeşitlerinin ısıtılınca sarı renge dönüştüğü belirtilmiştir (Uz, 1994).

Minaral	Renk			
Minerai	Soğuk Halde Gözlenen	Sıcak Halde Gözlenen		
Demir	Sarımtırak	Kırmızımsı Kahve		
Bakır	Mavi	Kirli Yeşil		
Manganez	Grimsi Kirli Yeşil	Grimsi Kahve (Koyu)		
Krom	Sarımsı Yeşil	Koyu Pembe- Kırmızı		

Çizelge 4.1. Bazı minerallerin yüksek sıcaklıkta renk değişimleri (Uz, 1994)

Silis esaslı agrega ile üretilen betonlarda Şekil 4.13`de görüldüğü gibi 300°C civarında oluşan pembe renk betonun dayanımı ve elastiklik modülü önemli şekilde azalmaktadır. Beyazımsı gri veya sarımtırak bej renkli beton zayıf ve gevrektir. Renkteki değişime limonite, goethite gibi demir bileşenlerinin varlığı neden olur. Bu değişim betonun ulaştığı maksimum sıcaklığın ve eşdeğer yangın süresinin belirlenmesinde kullanılabilir (John *vd.*, 1998; Andrade *vd.*, 2003).

Şekil 4.13. Silis esaslı agregalı betonda basınç dayanımı renk ilişkisi (Andrade vd., 2003)

Guise tarafından renkölçerin kullanımıyla temel bir araştırma gerçekleştirilmiştir. Geleneksel olarak, yaklaşık 300°C`de pembemsi kırmızı renk değişimi dayanım kaybının başlangıcı ile ilişkilendirilmiştir ve hasar görmüş betonun tamiri için ne kadar derinlikte kesilmesi gerektiğini belirlemede kullanılmıştır. Fakat bu renk değişiminin başlangıcını çıplak gözle belirlemek zordur. Bu nedenle, Guise HSI renk uzayında renk değişimini ölçmek amacıyla ile bir polarize mikroskobu ve görüntü işleme yöntemi kullanmıştır. Bu renk uzayında, renk, rengin tonuna, doygunluğuna ve yoğunluğuna bağlı olarak tanımlanmaktadır. Sahip olunan rengin çeşidi rengin tonu ile ifade edilir. Bu ton, renk değişimdeki kırmızı renk değişiminin başlangıcındaki yoğunluğunun belirlenmesinde kullanılır. Bununla beraber, renk değişimi kalkerli ve volkanik kökenli agregalı betonlar için daha az belirgindir. Bu tip agregalarda basınç dayanımı ile renk değişimi arasındaki ilişki daha az belirgindir. Silisli agregalar dışındaki agrega tipleri için renk değişimi, dayanım kaybının başlangıcını tahmin etmede daha az güvenilir bir metot olduğu sonucuna varılmıştır. Ancak Guise, bu problemin kullanılan agrega tipinden bağımsız olarak renk ölçümlerinin sadece harç matrisine indirgemeyle çözülebileceğine inanmaktadır (Tovey ve Krinsley, 1991; Guise vd., 1996; Short vd., 2001).

Diğer taraftan, Felicetti dijital fotoğraflama ve karot tozuna bağlı olarak arazi teknikleri geliştirmiştir. Bu teknik beton üzerinde yangın hasarının tahmininde faydalı bilgiler vermiştir. Bir dijital kamera arazi incelemesi için avantajlara sahiptir. Örneğin, yangına maruz kalmış bir kolonun yüzeysel renk değişiminin incelenmesinde veya karot deliğindeki beton tozunun renk değişiminin incelenmesinde kullanılabilir. Felicetti`ye göre her zaman fotoğraf makineleri kalibre edilmiş olarak kullanılmadığından, elde edilen resimlerden alınan bilgiler karşılaştırmalı renk değişimlerini temel almaktadır ve salt referans olarak kullanılması doğru değildir. Ancak, kameranın karakterizasyonu bir masaüstü tarayıcısının karakterizasyonundan zordur. Çünkü kameranın girdi spektral görüntülerinde herhangi bir kısıtlama yoktur ve aydınlatma üzerinde fazla bir kontrol yoktur (Felicetti, 2004; Felicetti, 2007; Felicetti, 2009).

Kolorimetre yardımıyla yangın sonrası beton yapısının tahmini ile ilgili yeni katkılar yapılmıştır. İlk olarak, renk ölçümleri kalibre edilmiş masaüstü tarayıcısı ve spektrofotometre kullanılarak CIE Lab renk uzayı`na bağlı olarak ölçülmüştür. Her iki metot da salt ölçümler vermiştir. Bu bakımdan, CIE Lab renk sistemi Guise (1997)

tarafından kullanılan HSI renk sistemine göre bazı avantajlara sahiptir ve bu nedenle daha iyi bir yöntemdir. Bununla beraber (L*)a*b* renk uzayında yeni bir renk dizini bulunmuştur ve bu şekilde farklı sıcaklık bölgelerini tanımlamada kullanılabilmektedir. Bu nedenle, a ve b parametrenin kullanımı sadece pembe-kırmızı renk değişimine göre daha fazla eş-sıcaklık eğrisi ortaya çıkarmıştır (Annerel ve Taerwe, 2011).

Agrega olarak nehir kumu ve bazalt kullanılarak üretilmiş yüksek dayanımlı betonlar üzerinde yapılan diğer bir çalışmada 200°C'de renkte bir değişim olmazken, 400, 800 ve 1000°C'de sırasıyla açık sarı, kirli beyaz ve kırmızı renkler gözlenmiştir. Renkteki değişimin betonun yapısında ve bileşimindeki değişikliklerin bir sonucu olduğu ve basınç dayanımındaki azalmaya bir referans olabileceği söylenmiştir (Li *vd.*, 2004).

Chang vd. (1993) tarafından yapılan bir çalışmada normal dayanımlı beton kullanılan bir binadan örnekler alınmış; 800, 900, 1000, 1100, 1200, 1300 ve 1400°C`ye on dakika ve bir saat maruz bırakılmıştır. Betonların rengi 800 ve 900°C`de soluk kırmızı, 1000°C`de parlak kırmızı, 1100°C`de gri, 1200°C`de on dakikada grimsi sarı, bir saatte kısmen grimsi sarı kısmen kahverengi, 1300°C`de kahverengi ve 1400°C`de koyu kahverengi olarak gözlenmiştir.

Betonun basınç dayanımının ve renginin sıcaklığa bağlı değişiminin gösterildiği Şekil 4.14`de görüldüğü üzere, sıcaklık 600°C`ye ulaştığında beton dayanımının %50`sini, 800°C`ye ulaştığında ise yaklaşık %80`ini kaybettiği göz önüne alınırsa (Baradan vd., 2002), renk incelemesi ile betonun hangi sıcaklığa maruz kaldığı, dolayısı ile basınç dayanımındaki değişim hakkında fikir edinilebilir (Şekil 4.14). Buradan yüksek sıcaklık etkisinde kalan betondaki renk değişiminin önemli bir parametre olduğu anlaşılmaktadır (Yüzer vd., 2003; Yuzer vd., 2004; Kizilkanat ve Yuzer, 2008).

Şekil 4.14. Betonda sıcaklığa bağlı renk değişimi (Neville, 2006)

5. DENEYSEL ÇALIŞMA

Bu çalışma kapsamında silis kökenli dere agregası ve iki tip çimento kullanılarak farklı su/çimento oranlarında üretilen kendiliğinden yerleşen betonların yüksek sıcaklığa maruz bırakıldıktan sonra bazı fiziksel ve mekanik özelliklerinin değişimleri incelenmiştir. Ayrıca yüksek sıcaklıkla renk değişimi arasındaki ilişki araştırılmıştır.

Deneysel çalışma; kendiliğinden yerleşen beton tasarımı, üretimi ve kürü ile taze beton deneyleri, ısıtma-soğutma süreçleri ve kontrol deneyleri olmak üzere farklı aşamalardan oluşmaktadır. Üretimlerde maksimum dane çapı 16 mm olan silis kökenli dere agregası ile CEM I 42,5 R ve CEM II 42,5 B-M (P-L) L N olmak üzere iki tip çimento kullanılmıştır. Tüm üretimlerde %15 oranında uçucu kül kullanılmıştır. Kullanılan uçucu kül Bursa ili Orhaneli ilçesinde bulunan termik santralden temin edilmiştir. Her bir tip çimento ile 6`şar farklı bileşimde betonlar üretilmiştir. Deney programına ilişkin detaylar Çizelge 5.1`de verilmektedir. Tüm gruplar için 306 tanesi basınç numunesi 306 tanesi kılcal geçirimlilik numunesi olmak üzere 612 tane 10x20 cm boyutlarında silindir numune dökülmüştür. Ek Çizelge 5`de numunelerin dağılımları verilmiştir.

Üretim No	Çimento Türü	Su/ Çimento	Soğutma Şekli	Üretim Kodu	
1		0.35	Havada (H)	CEM I35H	
2		0,33	Suda (S)	CEM I35S	
3	CEM I 42,5 R (CEM I)	0.4	Havada (H)	CEM I40H	
4		0,4	Suda (S)	CEM I40S	
5		0.45	Havada (H)	CEM I45H	
6		0,43	Suda (S)	CEM I45S	
7		0.35	Havada (H)	CEM II35H	
8	CEM II 42,5 B- M (P-L) L N (CEM II)	0,35	Suda (S)	CEM II35S	
9		0.4	Havada (H)	CEM II40H	
10		0,4	Suda (S)	CEM II40S	
11		0.45	Havada (H)	CEM II45H	
12		0,43	Suda (S)	CEM II45S	

Çize	elge 5.1.	Deneysel	çalışma	programi	ve numune	kodları
,	<u> </u>	2	, ,			

Tüm üretimler için geçerli olmak üzere yüksek sıcaklık uygulaması yapılmadan

önce ve yapıldıktan sonra numune tartımları yapıldıktan sonra sırasıyla tüm numuneler için ultrases geçiş hızı deneyleri, kılcal geçirimlilik deneyleri, basınç dayanımı, renkölçer ile CIE Lab uzayına göre renk ölçümü ve dijital fotoğraf makinesi ile görüntüleme deneyleri gerçekleştirilmiştir.

Yüksek sıcaklık uygulamasında her ne kadar Binaların Yangından Korunması Hakkında Yönetmelik`te belirtilen yangın etki süresi 120 dakika olmasına rağmen teknik literatürde genelde bu sürenin 180 dakika olması nedeniyle bu çalışmada yangın süresi 180 dakika olarak uygulanmıştır.

5.1. Numune Üretiminde Kullanılan Malzemeler

Beton üretiminde özelikleri aşağıda verilen agrega, çimento, uçucu kül ve yeni nesil süper akışkanlaştırıcı katkı maddesi kullanılmıştır.

5.1.1. Agrega

5.1.1.1. Elek Analizi (Granülometri)

Standart kare göz eleklerle, etüv kurusu durumundaki agrega numuneleri, iri agrega (4-16 mm) ve ince agrega (0-4 mm) üzerinde gerçekleştirilen elek analizi sonuçları Çizelge 5.2`de verilmektedir. KYB üretimi için, iri agrega %40, ince agrega %60 oranında kullanılmış olup karışım agregası aynı çizelgede verilmektedir. Karışım agregasına ilişkin granülometri eğrisi TS 802 (1985)`de verilen standart eğrilerle birlikte Şekil 5.1`de verilmektedir. Şekilden görüldüğü üzere KYB üretimi için %40 iri agrega, %60 ince agrega oranlarıyla hazırlanan karışımın granülometri eğrisi A16 ve B16 eğrileri arasında düşmektedir.

Şekil 5.1. Karışım agregasına ilişkin granülometri eğrisi

Elek açıklığı	Elek and	Karışım agregası	
(mm) İri agrega			
16	100	100	100
8	28	100	71
4	3	81	50
2	0	66	40
1	0	48	29
0,50	0	26	16
0,25	0	7	4
0,125	0	1	1

Çizelge 5.2. İnce ve iri agregalara ilişkin elek analizleri

5.1.1.2. Birim Ağırlık

Standart birim ağırlık kabının kullanıldığı bu deneyde, ince ve iri agregaların birim ağırlık değerleri ayrı ayrı belirlenmiştir. Elde edilen birim ağırlıklar hem gevşek hal için hem de sıkı hal için Çizelge 5.3`de verilmektedir.

	Agrega				
Ölçülən dəğər	İnce	İri			
olçulen degel	(0-4 mm)	(4-16 mm)			
Gevşek birim ağırlık, kg/m ³	1420	1470			
Sıkı birim ağırlık, kg/m ³	1690	1580			

Çizelge 5.3. Agregalara ilişkin birim ağırlık değerleri

5.1.1.3. Organik Madde Tayini

TS EN 1744-1 (2011)'e göre bekletilen süre sonunda sıvının renksiz veya açık sarı olması agrega içinde beton üretimi için zararlı oranda organik maddenin bulunmadığını; koyu sarı, kahverengi veya kırmızımsı bir renk alması durumunda ise agreganın beton üretimi için zararlı miktarda organik madde içerdiğini göstermektedir. İnce agregadan alınan örnek üzerinde gerçekleştirilen organik madde tayini deneyinde herhangi bir renk değişimi gözlenmemiştir. Sonuç itibariyle yapılan değerlendirmeye göre kullanılan agregaların beton üretimi için uygun olduğu belirlenmiştir.

5.1.1.4. İnce Madde Oranı Tayini

Bu deney, kullanılan agregalar için ayrı ayrı yapılmış ve elde edilen sonuçlar Çizelge 5.4 ve Çizelge 5.5`de verilmektedir.

Numunenin etüv	Yıkandıktan sonra 0,063 mm elek üstünde	İnce malzeme oranı			
kurusu ağır. (w), g	kalan numunenin etüv kurusu ağır. (w1), g	$w-w_1/w$ (%)			
2000	1953	2,35			
TS 706 EN 12620'ye göre beton agregalarında ince madde oranı ince agrega için					
%3`ten küçük olmalıdır.					

Çizelge 5.4. İnce agrega için ince madde oranı tayini deney sonuçları

Numunenin etüv	Yıkandıktan sonra 0,063 mm elek üstünde	İnce malzeme oranı			
kurusu ağır. (w), g	kalan numunenin etüv kurusu ağır. (w ₁), g	w-w ₁ /w (%)			
5000	4976	0,48			
TS 706 EN 12620'ye göre beton agregalarında ince madde oranı ince agrega için					
%3`ten küçük olmalıdır.					

Çizelge 5.5. İri agrega için ince madde oranı tayini deney sonuçları

Beton agregalarında ince maddelerin (kil, silt) fazla miktarda bulunması, agrega taneleri ile çimento hamuru arasındaki aderansın zayıflamasına ve çimentonun prizini geciktirmesine neden olduğundan istenmeyen bir durumdur (Postacıoğlu, 1987; Bingöl, 2002). Deneylerden elde edilen sonuçlar ilgili standartlar ile karşılaştırıldığında kullanılan agregalarda betona zarar verecek oranda ince taneli maddenin bulunmadığı belirlenmiştir. Bu sebeple agregaların beton üretimin için kullanılabilir olduğuna karar verilmiştir.

5.1.1.5. Tane Yoğunluğu ve Su Emme Oranı Tayini

Agregaların tane yoğunluğu ve su emme oranlarının belirlendiği bu deneyde kuru özgül ağırlık, doygun kuru yüzey özgül ağırlık, görünen özgül ağırlık ve 24 saatlik su emme oranları tayini iri ve ince agrega için ayrı ayrı yapılmıştır. TS EN 1097-6/A1 (2007)`ye göre yapılan deneyde ince agrega için belirlenen değerler Çizelge 5.6`da verilmektedir.

Çizelge 5.6. İnce agrega için tane yoğunluğu ve su emme değerleri

Hesaplanan değerler	Yoğunluk (g/cm ³)
Görünür tane yoğunluğu (pa)	2,61
Etüvde kurutulmuş tane yoğunluğu (ρ _{rd})	2,39
Doygun ve yüzeyi kurutulmuş tane yoğunluğu (ρ_{ssd})	2,56
Su emme oranı (WA ₂₄)	3,48

TS EN1097-6/A1 (2007)`e göre yapılan deneyde iri agrega için belirlenen tane yoğunluğu ve su emme oranları Çizelge 5.7`de verilmiştir.

Hesaplanan değerler	Yoğunluk (g/cm ³)
Görünür tane yoğunluğu (p _a)	2,76
Etüvde kurutulmuş tane yoğunluğu (ρ _{rd})	2,63
Doygun ve yüzeyi kurutulmuş tane yoğunluğu (pssd)	2,68
Su emme oranı (WA ₂₄)	1,84

Çizelge 5.7. İri agrega için tane yoğunluğu ve su emme değerleri

5.1.2. Çimento

Beton üretiminde, fiziksel ve kimyasal özellikleri Çizelge 5.8'de verilen CEM I 42,5 R ve CEM II 42,5 B-M (P-L)L çimentoları kullanılmıştır.

Kimyasal Bileşim, %	CEM I 42,5 R	Cem II 45,2 (B-M) (P-L) L N
SiO ₂	18,73	18,46
Al ₂ O ₃	4,56	4,68
Fe ₂ O ₃	3,07	3,14
CaO	63,91	67,38
MgO	2,08	2,31
SO ₃	2,9	2,65
Kızdırma kaybı	3,36	9,94
K ₂ O	0,62	0,7
Na ₂ O	0,29	0,23
Cl	0,0185	0,0144
Ölçülemeyen	0,46	0,5
CaO (serbest kireç)	0,56	0,87
Çözünmeyen kalıntı	0,85	0,81

Çizelge 5.8. Kullanılan çimentoların kimyasal bileşimleri

5.1.3. Mineral Katkı

Beton üretiminde mineral katkı olarak Bursa Orhaneli termik santralinden temin edilen F tipi uçucu kül kullanılmıştır. Deney programında kullanılan uçucu küle ilişkin kimyasal özellikler Çizelge 5.9`da verilmektedir.

Kimwaal Analizlar 0/	Uanan Kül
Kiinyasai Analizier %	Uçucu Kul
SiO ₂	48,93
Al ₂ O ₃	24,63
Fe ₂ O ₃	7,59
CaO	9,06
MgO	2,28
SO ₃	2,48
Kızdırma kaybı	1,69
K ₂ O	2,51
Na ₂ O	0,29
Cl	1,69

Çizelge 5.9. Uçucu küle ilişkin kimyasal bileşim

5.1.4. Kimyasal Katkı

Kendiliğinden yerleşen beton üretiminde polikarboksilik eter esaslı klor içermeyen yüksek oranda su azaltıcı özelliğe sahip yeni nesil süper akışkanlaştırıcı katkı maddesi kullanılmıştır.

5.2. Numune Üretimi

TSE EN 206-1'e uygun olarak 612 adet 100 mm çapında 200 mm yüksekliğinde silindir numune üretilmiştir. Her sıcaklık için havada ve suda soğutma uygulaması için ve basınç ve geçirimlilik deneyleri için ayrı 3 numune üretilmiştir. Ek Çizelge 4'detaylı olarak verilmiştir. 1 m³ beton için gerekli malzeme miktarları Çizelge 5.10'da verilmektedir. Bu numunelerin 36 adedi kontrol numunesi olarak saklanmıştır. Geri kalan numuneler ısıtma soğutma işlemlerine tabi tutulmuştur.

	Çimento	UK	Toplam	İnce	İri	Su	Akış.
Malz. Üretim	(kg)	(kg)	Bağlayıcı (kg)	Agrega (kg)	Agrega (kg)	(kg)	Katkı (kg)
CEM I35	425	75	500	938	673	175	10
CEM I40	425	75	500	923	663	200	8,75
CEM I45	425	75	500	908	652	225	7,5
CEM II35	425	75	500	936	669	175	10
CEM II40	425	75	500	921	659	200	8,75
CEM II45	425	75	500	906	649	225	7,5

Çizelge 5.10. Beton karışım oranları

5.3. Taze Beton Deneyleri

Çalışmanın bu bölümünde taze beton deneylerinden taze birim hacim ağırlığı tayini, çökme-yayılma, V hunisi, L kutusu ile U Kutusu deneylerinde izlenen yöntemler açıklanmıştır.

KYB deneylerinin sonuçları EFNARC (2002)`de tavsiye edilen sınır değerlere göre kontrol edilerek taze beton karışımlarına gerekli müdahaleler yapılmış belirtilen değerler arasında kalması sağlanmıştır. KYB deney sonuçları için tavsiye edilen sınır değerler Çizelge 5.11`de verilmiştir.

Deney Birim Min. Değer Max. değer Çökme-yayılma 650 800 mm T₅₀ cm yayılma süresi 2 5 sn V hunisi 6 12 sn 0 V hunisi 5 dakika gecikmeli sn +3L kutusu H_2/H_1 0,8 1,0 U kutusu (H_2-H_1) mm 0 30

Çizelge 5.11. KYB için sınır değerler (EFNARC 2002)

5.3.1.Taze Birim Hacim Ağırlık Tayini

Taze beton birim hacim ağırlığın belirlenmesi için TS 2941 (2006) standardına uygun proktor kabı kullanılmıştır. Numuneler 1 g hassasiyette laboratuar terazisi ile tartılarak, ağırlığın hacme bölünmesiyle taze beton birim hacim ağırlık belirlenmiştir.

Taze beton birim hacim ağırlığı tayini tüm üretimler için üçer kez yapılmış ve ortalama değerler alınmıştır. Çalışmaya ilişkin sonuçlar Ek-2`de verilmektedir.

5.3.2. Çökme-Yayılma Deneyi

EFNARC (2002)'ye uygun olarak yapılan deneyde, deney aparatlarından yayılma tablası üzerinde, tabla merkezinden 200 mm ve 500 mm çaplı iç içe iki daire çizilmiştir. Abram's hunisi içteki 200 mm çaplı daire üzerine konulmuştur. Taze beton mikserden alınarak sıkıştırma işleme uygulamaksızın Abrams hunisine doldurulmuş ve üzeri düzeltildikten sonra Abram's hunisi yukarı çekilerek taze betonun tabla üzerinde yayılması sağlanmıştır. Bu sırada taze betonun Abram's hunisi kaldırıldıktan sonra 50 cm çapa yayılma süresi bir kronometre ile ölçülerek not edilmiştir (T₅₀). Yayılma tamamlandıktan sonra tabla üzerine yayılan betonun yayılma çapı birbirine dik iki doğrultuda ölçülerek ortalaması alınmış ve bu değer yayılma çapı olarak kaydedilmiştir (Şekil 5.2).

Çökme-yayılma deneyi tüm üretimler için gerçekleştirilmiş olup sonuçlar Ek-3`de verilmektedir.

Şekil 5.2. Çökme-yayılma deneyi

64

5.3.3. V Hunisi Deneyi

EFNARC (2002)'ye uygun olarak yapılan deneyde, taze beton, V hunisi deney aparatına hiçbir sıkıştırma işlemi uygulamaksızın doldurulmuş ve üzeri düzeltildikten sonra alt kapak açılıp üstten bakıldığında ışık görülene kadar geçen betonun akış süresi bir kronometre yardımıyla ölçülmüş ve V hunisi akış süresi olarak kaydedilmiştir. Daha sonra V hunisinin ağzı kapatılarak tekrar taze betonla doldurulmuş 5 dakika beklendikten sonra alt kapak açılıp üstten bakıldığında ışık görülene kadar geçen betonun akış süresi bir kronometre yardımıyla ölçülmüş ikinci değer olarak V₅ dakika gecikmeli akış süresi olarak kaydedilmiştir. V hunisi deneyi tüm üretimler için gerçekleştirilmiş olup sonuçlar Ek-4'de verilmektedir.

Şekil 5.3. V Hunisi deneyi

5.3.4. L Kutusu Deneyi

EFNARC (2002)`ye uygun olarak yapılan deneyde, taze beton mikserden alınarak sıkıştırmaksızın kutusuna doldurulmuş ve üzeri düzeltildikten sonra kapak açılarak, betonun donatılar arasından geçerek diğer bölüme 20 cm ve 40 cm ilerleme süreleri ölçülerek kaydedilmiştir. Daha sonra betonun engeller arasından akışını tamamlayıp durması beklenmiştir. L kutusu ucundaki beton yüksekliği (H₂) ve kapağın hemen önündeki beton yüksekliği (H₁) ölçülerek L kutusu bloklanma oranı (H₂/H₁) hesaplanarak

kayıt altına alınmıştır. L kutusu deneyi tüm üretimler için gerçekleştirilmiş olup ilgili sonuçlar Ek-5`te verilmektedir.

Şekil 5.4. L Kutusu deneyi

5.3.4. U Kutusu Deneyi

EFNARC (2002)'ye uygun olarak yapılan deneyde, taze beton U kutusuna hiç bir sıkıştırma işlemi uygulamaksızın doldurulmuştur. Daha sonra sürgülü kapak yukarı çekilerek açılmış ve betonun diğer kısma doğru dolarak yükselmesi beklenmiştir. Kutunun iki kolu arasındaki yükseklik farkı ölçülerek kaydedilmiştir. U kutusu deneyi tüm üretimler için gerçekleştirilmiş elde edilen sonuçlar Ek-6' da verilmektedir.

Şekil 5.5. U kutusu deney düzeneği

5.4. Betonun Kürü

TSE EN 206-1` e göre üretilen bütün betonlar 24 saat sonunda kalıptan çıkarılmış ve 27 gün süreyle 20±2°C sıcaklıkta kirece doyurulmuş su havuzunda tutulmuştur (Şekil 5.6). Kür sonunda numuneler belli bir süre kurutulduktan sonra test edilmiştir.

Şekil 5.6. Kür havuzu

5.5. Isıtma-Soğutma Süreci

Isıtma ve soğutma süreci numunelerin yüksüz olarak istenilen sıcaklık derecesine kadar ısıtılması ve oda sıcaklığına kadar soğutulduktan sonra kontrol deneyleri yapılması prensibine göre planlanmıştır. Numuneler 28. günde sudan çıkarılmış ve ısıtma hızı 11±3°C/dakika olan fırında 100, 200, 300, 400, 500, 600, 700 ve 800°C sıcaklıklara kadar tutulmuşlardır (Şekil 5.7). Fırın içi sıcaklık istenen değere ulaştığında, numuneler bu sıcaklıkta 3 saat süreyle tutulmuşlardır. Hedef sıcaklığa maruz kaldıktan sonra fırından çıkarılmıştır.

Şekil 5.7. Yüksek sıcaklık fırını Fırından çıkarılan numuneler havada soğutmada bütün yüzeylerinin hava ile teması

sağlanmıştır. Suda soğutmada ise numuneler içinde oda sıcaklığında durgun su bulunan deney kaplarına konulmuş; suyu değiştirmek sureti ile oda sıcaklığına ulaşıncaya kadar soğutulmuşlardır.

5.6. Kontrol Deneyleri

Yüksek sıcaklık etkisinde kalan betonun fiziksel ve mekanik özeliklerindeki değişimleri incelemek amacıyla beton numunelerin sırasıyla yüzey renkleri ve ultrases geçiş süreleri ölçülmüştür. Daha sonra basınç dayanımı testi gerçekleştirilmiştir. Devamında kılcal geçirimlilik, ağırlık kaybı ve dijital fotoğraf makinesi ile görüntüleme ve bu görüntülerden renk analizi işlemeleri yapılmıştır ve sıcaklığa bağlı değişimi belirlenmiştir. Aşağıda ilgili deneylerin ayrıntıları verilmektedir.

5.6.1.Renk Ölçümü

Yüksek sıcaklık uygulamasından önce tüm numunelerin renkleri ölçülmüştür. Yüksek sıcaklık işleminden sonra da tekrar tamamının renkleri ölçülmüştür. Ölçümler Şekil 5.9'da gibi numunelerin yüzeylerinden bir köşegen boyunca alınmıştır. Ölçümlerde CIE Lab renk uzayını esas alan renkölçer kullanılmıştır. Kullanılan cihaz ShadeEye NCC (Shofu Inc., Kyoto, Japan) marka olup D65 standart ışık kaynağına sahip olup ölçüm açısı 45° dir. Arka plan etkisini ortadan kaldırmak için bütün numuneler karanlık odada ve tüm ölçümlerde standart beyaz arka fon (L*= 92,4, a*= 0,5, b*= -1,3) kullanılmıştır. Her numunenin yangından önce ve yangından sonra olmak üzere iki kere toplam 30 defa renk değeri ölçülmüştür. Bu değerlerden ΔL , Δa ve Δb değerleri belirlenmiş ve bu değerlere bağlı olarak ΔE , Δc ve Δh değerleri hesaplanmıştır.

Şekil 5.8 Numunelerden renk ölçümlerinin alım şekli

Şekil 5.9. Renkölçer aparatı

5.6.2. Dijital Görüntüleme ve Renk Analizi

Üretilen bütün numuneler Nikon D80 marka SLR fotoğraf makinesi ve 60 mm mikro lens (Şekil 5.10) kullanılarak hem yangından önce hem de yangından sonra olmak üzere her numuneden 3 görüntü alınmıştır. Alınan bütün görüntüler Matlab programında bulunan görüntü işleme araç çubuğu kullanılarak RGB renk uzayından CIE Lab renk uzayına çevrilmiş ve her fotoğraftan L, a ve b için ortalama değerler alınarak bütün numuneler için Δ L, Δ a ve Δ b değerleri bu değerlere bağlı olarak Δ E, Δ c ve Δ h değerleri hesaplanmıştır.

Şekil 5.10. (a) Nikon D80 marka SLR fotoğraf makinesi (b) 60 mm mikro lens

Ayrıca görüntüleme esnasında elde edilen görüntüye gölge düşmemesi için ve standart ölçüm değerleri olan D65 ışık değerinde 45°`lik yansıma açı sağlanabilmesi için Şekil 5.11`de verilen düzenek kullanılmıştır.

Bu görüntüleme sonucu elde edilen fotoğraflar tek tek Atatürk Üniversitesi`ne ait Matlab R2011b programının Image Processing Toolbox modülü kullanılarak görüntü işleme yapılmış ve RGB renk uzayı değerinden CIE Lab renk uzayına çevrilmiştir. Bu dönüşüm CIE Lab (2004) yılında verilen D65 ışık kaynağı değeri ve 45° yansıma açısı kullanan nokta referans alarak çalışan ITU-R takviyesi ile çalışan BT.709 filtreleme sistemi esas alınmıştır.

Şekil 5.11. Görüntüleme sistemi (a) çekim sehpası (b) yan lambalar ve çekim sehpası

5.6.3. Ultrases Geçiş Hızının Belirlenmesi

Bilindiği gibi titreşim frekansı 20 kHz`den fazla olan ses dalgalarına ultrasonik dalgalar denir. Malzeme testinde kullanılan ultrasonik dalgalar piezo-elektrik özellik gösteren transdüserler yardımı ile elde edilmektedir. Betonun bir yüzeyinden gönderilen ultrasonik dalgalar beton içinde ilerlerken yolları üzerinde boşluklara rastlarlar. Bu dalgalar boşluk kenarına gelince karşı tarafa geçemediğinden boşluğun etrafını dolaşması gerekmektedir. Bu olayın pek çok sayıda tekrarlanması ultrasonik dalgaların belirli bir nokta arasındaki yolunu artıracaktır (Stefanescu 1974). Ultrason hızının azalması, betonun boşluklu olduğunu göstermekte ve buna bağlı olarak beton dayanımı da düşük çıkmaktadır. Ultrases geçiş süresi ölçüm süreci şematik olarak Şekil 5. 11`de verilmektedir.

Şekil 5.12. Ultrases geçiş hızı deney düzeneği

Transdüserlerin beton yüzeyine iyice temas etmesi için yüzeyin temiz, düzgün ve boşluksuz olması ve transdüserlerle beton yüzeyi arasında boşluk kalmayacak bir küplaj malzemesi katmanı kullanılması gerekir. Küplaj malzemesi olarak gres yağı, kil çamuru, mastik, gliserin ve alçı kullanılabilir (Akman 1965).

Ultrason hız ölçümleri, (TICO) marka dijital ultrasonik hız ölçme aleti ile gerçekleştirilmiştir. Ultrason hızlarının tespiti için direk ölçüm yöntemi kullanılmıştır. Hız ölçümleri her grup için üç numune üzerinde yapılmıştır. Ultrason hızının tespiti yapılırken numunenin ölçüm yapılacak başlıkları bir fırça ile temizlenmiştir. Diğer taraftan okumaların sağlıklı yapılabilmesi için test cihazının başlıkları ultrason jeli ile jellenmiş ve her bir numune için en az beş okuma yapılarak bu değerlerin ortalaması alınmıştır. Ölçümler ASTM C 597`deki esaslara göre yapılmıştır.

5.6.4. Kılcal Geçirimliliğin Belirlenmesi

Yapı malzemelerinin yüzeyleri su ile temas ettiği vakit, suyun yüzey gerilimi dolayısı ile numunedeki boşluklar suyu kapiler olarak içeriye doğru çekerler. Bu deney kapiller su emme veya kılcal su emme deneyi diye adlandırılan deney tekniği ile yapılır. Kılcal su emme, betonun alt yüzeyinin su ile teması sonucu suyun betonun içerisinde yükselmesidir (Kocataşkın, 2000). Su, beton ile temasa geçtikten sonra beton içerisindeki boşluklarda yükselmeye başlar. Belli bir h yüksekliğine t süre sonunda ulaşır ve durur. Kılcallık katsayısı aşağıda erilen bağıntı vasıtasıyla hesaplanır.

$$Q^2 = k \times t \tag{5.1}$$

Burada Q, birim alanda emilen su miktarı (cm³/cm²); k, kılcallık katsayısı (cm³/dak); t, zaman (s) olarak ifade edilmektedir. Bu çalışmada ölçümler 15, 30, 60 dakika ve 24 saat (1440 dak) sonunda gerçekleştirilmiştir.

Kılcal geçirimlilik deneyi için ASTM standartları tarafından belirlenmiş bir yöntem yoktur (Erdoğan, 2003). Türkiye'de ise TS EN 772-11 standardı bu konuya yakın olarak değinmiştir. Babu vd., (2004), CEB (1989)'a dayanarak geçirimlilik katsayısının (k) sayısal değerlerine göre betonun kılcal geçirimliliği hakkında bir yargıya varılabileceğini ifade etmişlerdir.

Her grup kılcallık deneyi için üç numune alınmıştır. Numuneler 24 saat fırında 105±5 °C`de kurutulduktan sonra yan yüzeylerinden su almaması için suya dayanıklı ve su geçirmez bir bantla numune alt kenarları bantlanmıştır. Daha sonra numuneler 5 mm suya girecek şekilde alt yüzeyinin su ile temas sağlanmıştır. Numuneler 5, 15, 30, 60 dakika ve 24 saat sonra çıkarılarak tartılmıştır. Numunenin 24saat içinde birim alandan kılcal yolla emdiği su miktarından hareketle kılcallık katsayısı yukarıda bahsedilen bağıntı yardımı ile hesaplanmıştır. Kılcal geçirimlilik deney düzeneği Şekil 5.12`de verilmektedir.

Şekil 5.13. Kılcal geçirimlilik deney düzeneği

5.6.5. Ağırlık Kayıplarının Belirlenmesi

Tüm numuneler yüksek sıcaklık işleminden önce ve sonra olmak üzere iki sefer ağırlık ölçümleri alınmış ve bağıl ağırlık kayıpları hesaplanmıştır.

5.6.6. Basınç Dayanımının Belirlenmesi

Numuneler, TS EN 12390-3'e uygun olarak tek eksenli basınç deneyine tabi tutulmuştur. Basınç dayanımı ölçümü için 300 ton kapasiteli ELE 1487-1-1001 tip bir hidrolik pres kullanılmıştır. Hidrolik presin hızı 2.5-4 kg/cm²/sn olacak şekilde sabitlenmiştir. Basınç dayanımına tabi tutulmadan önce basınç yükünün numuneye

üniform bir şekilde dağılması için başlıklamada kükürt kullanılmıştır. Numunelerin her iki yüzeyi başlıklandıktan sonra numuneler en az iki saat kurumaya bırakıldıktan sonra deney gerçekleştirilmiştir. Basınç dayanımı her bir deney için kırılan üç numunenin aritmetik ortalaması alınarak belirlenmiştir. Deneyde kullanılan pres Şekil 5.14`de verilmektedir.

Şekil 5.14. Press aleti

5.7. Sonuçları Değerlendirmede Kullanılan Metot

Bu çalışmada, üretilen kendiliğinden yerleşen betonlara renk değişimi, dijital görüntüleme, basınç dayanımı, ultrases geçiş hızı, ağırlık kaybı ve kılcal geçirimlilik deneyleri uygulanmıştır. Üretilen betonlarda iki farklı çimento ve üç farklı su/çimento oranı kullanılmıştır. Deneylerden elde edilen sonuçlar `Karşılaştırma Metodu` ile değerlendirilmiştir.

6. SONUÇLARIN DEĞERLENDİRİLMESİ VE İRDELENMESİ

Deneysel çalışma kapsamında elde edilen bulgular bu başlık altında değerlendirilecek ve irdelenecektir.

6.1. Beton Basınç Dayanımlarının Değerlendirilmesi ve İrdelenmesi

Basınç dayanımı değerlendirmesi için üretilen 9 adet numuneden 6 tanesi ısıtma hızı 12°C/dak olan bir fırında hedeflenen sıcaklıkta 3 saat tutulmuştur. Bu numunelerin 3 tanesi laboratuvar ortamında havada, 3 tanesi de suda oda sıcaklığına kadar soğutulmuştur. Diğer 3 numune de ısıl işleme tabi tutulmaksızın kontrol numuneleri olarak basınç dayanımı değerleri belirlenmiştir. Bu değerlendirme her iki tip çimento için ayrı ayrı yapılmıştır. Bu kapsamda elde edilen basınç dayanımı değerleri Çizelge 6.1'de verilmiştir.

Çimento Tipi	S/Ç	Basınç Dayanımı (MPa)
	0,35	56,9
CEM I	0,40	51,2
	0,45	47,3
	0,35	52,4
CEM II	0,40	46,1
	0,45	43,8

Çizelge 6.1. Kontrol numunelerine ait basınç dayanımı değerleri

Çizelge 6.1'de verilen her bir basınç dayanımı değeri üçer numunenin aritmetik ortalaması alınmak suretiyle hesaplanmıştır. Her bir sıcaklık uygulaması için elde edilen basınç dayanımı değerlerinin kontrol numunelerinin basınç dayanımlarına oranları Şekil 6.1 ve Şekil 6.2'de verilmiştir. Şekillerle ilgili detaylı değerlendirmeler aşağıda verilmektedir.

Şekil 6.1 havada soğutulmuş numunelerin bağıl basınç dayanımlarının sıcaklıkla değişimini, Şekil 6.2 ise suda soğutulmuş numunelerin bağıl basınç dayanımlarının sıcaklıkla değişimini göstermektedir.

Şekil 6.1. Havada soğutulmuş numunelerin sıcaklığa bağlı olarak bağıl beton basınç dayanımlarının değişimi

Şekil 6.1 ve Şekil 6.2`de görüldüğü gibi tüm üretim gruplarına ait beton numunelerinin sıcaklık artıkça dayanımlarda belirgin bir azalma görülmektedir. Ancak CEM I 42,5 R çimentosu için 0,40 s/ç oranında ve 200°C'de %12 oranında dayanım artışı daha sonra azalış görülmüştür. Aynı çimento tipi için 0,40 ve 0,45 s/ç oranlarında ise dayanımda herhangi bir sıcaklıkta artış gözlenmemiştir. 800°C de CEM I ile üretilen betonların dayanımları suda soğutmada %80, %74 ve %79 oranlarında dayanım kaybına uğramışken havada soğutulan numunelerde sırasıyla %86, %81 ve %83 oranlarında dayanım kayıpları gözlenmektedir. Dayanım düşüşleri CEM II 42,5 (B-M) (P-L) L N tipi çimento için daha hız olduğu görülmektedir. Bu çimento tipinin kullanıldığı üretimlerin hiçbirinde dayanım artışı görülmemektedir. Ayrıca 800°C'deki dayanımlar dikkate alındığında suda soğutulan numunelerde %81, %82 ve %83 oranlarında dayanım kayıpları gözlenirken havada soğutulanlarda ise yalnızca 0.35 s/ç oranı için %86 oranında dayanım kaybı gözlenmektedir. Bu çimento tipi ile 0,40 ve 0,45 s/ç oranlarında üretilen ve havada soğutulan numunelerin tümü Şekil 6.3 ve Şekil 6.4 `de görüldüğü gibi tamamen dağılmış olup basınç dayanımı deneyine tabi tutulamamıştır. Ayrıca 0,40 s/ç oranında üretilen numunelerde gözlenen dayanım kayıpları 0,35 ve 0,45 s/ç oranında üretilen numunelere göre daha az görülmektedir.

Şekil 6.2. Suda soğutulmuş numunelerin sıcaklığa bağlı olarak bağıl beton basınç dayanımlarının değişimi

Şekil 6.3. CEM II 42,5 (B-M) (P-L) L N çimentosu 0,40 s/ç oranında ve 800°C de işlem gören numuneler

Şekil 6.4. CEM II 42,5 (B-M) (P-L) L N çimentosu 0,45 s/ç oranında ve 800°C de işlem gören numuneler

Bu çalışmada, literatürdeki bazı araştırmalarda (Sakr ve El-Hakim, 2005; Yuan vd., 2005; Aydın ve Baradan, 2007; Mahsanlar, 2007) sıcaklık uygulaması sonrası suda soğutulan numunelerin basınç dayanımı kayıplarının havada soğutulanlara göre daha fazla olduğu rapor edilmişse de bu çalışmada bunun tam aksi sonuçlar elde edilmiştir. Bu sonuç Lin ve Powers (1996) tarafından yapılan çalışmalarda destek bulmaktadır. İlgili araştırmada ısıtmadan sonra havada ve suda soğutulan numunelerin SEM görüntülerinde hem çimento hamurunun kendi yapısında hem de çimento hamuru ile agrega arayüzeyinde ayrışmalar ve kırılma çatlakları oluşmuş olduğu ifade edilmektedir. Suda soğutma sonucu agrega-çimento hamuru ara yüzeyinde mevcut çatlaklarda rehidratasyon ürünleri oluşmaktadır. Rehidratasyon ürünleri çimento tanelerinden daha küçük boyuttadır. Isıtmadan sonra ve su ile soğutmada çimento hamurunda nem kenarlardan hamurun iç bölgelerine doğru absorbe edilir. Absorbe edilen su kalsiyum oksidin rehidratasyonuna neden olur. Bu sürecin sonucunda oluşan ürünler hamur yapısında bulunan boşlukları doldurur. Genellikle yangın etkisine maruz kalan betonlar su ile soğutularak dayanım kayıpları azaltılır. Yangına maruz kalmış betona su püskürtmenin nedeni budur (Lin ve

Powers, 1996).

Beton numunelerin yüksek sıcaklık altında davranışlarına s/ç oranı açısından baktığımızda şu bulgular elde edilmiştir. CEM I tipi çimento ile üretilen beton kontrol numunelerinin basınç dayanımları aynı s/ç oranları kullanılarak üretilen CEM II çimento tipine ait beton kontrol numunelerinden daha yüksek olduğu görülmüştür. Bunun sebebi CEM I tip çimento, CEM II tip çimentoya göre daha fazla klinker içerdiği için daha çabuk hidrate olması nedeniyle basınç dayanımları daha yüksek değerler elde edilmiştir.

Sıcaklık uygulaması sonrası CEM II tip çimento ile üretilen numunelerde basınç dayanımı kaybı daha yüksek olduğu hatta s/ç oranı 0,40 ve 0,45 olan gruplardaki tüm numunelerin tamamen dağıldığı görülmüştür. Bunun nedeni CEM II tip çimento bünyesinde bulunan puzolanik maddenin geç hidrate olması ve C-S-H jelinin daha uzun sürede meydana gelmesine bağlanabilir. Benzer durumun s/ç 0,35 olan numunelerde ortaya çıkmamasının nedeni düşük s/ç oranın hamurda oluşturduğu boşluk miktarına diğer s/ç oranlarına nazaran az olması ile ilişkilendirebilir. Bu sonuç Chan vd. (1999) paralellik göstermektedir

6.2. Ultrases Geçiş Hızının Değerlendirmesi ve İrdelenmesi

Ultrases geçiş hızı değerlendirmesi için üretilen 9 adet numuneden 6 tanesi ısıtma hızı 12°C/dak olan bir fırında hedeflenen sıcaklıkta 3 saat tutulmuştur. Bu numunelerin 3 tanesi laboratuvar ortamında havada, 3 tanesi de suda oda sıcaklığına kadar soğutulmuştur. Diğer 3 numune de ısıl işleme tabi tutulmaksızın kontrol numuneleri olarak ultrases geçiş hızı değerleri belirlenmiştir. Bu değerlendirme her iki tip çimento için ayrı ayrı yapılmıştır. Şekil 6.5 ve Şekil 6.6`da havada ve suda soğutma türleri için ayrı ayrı bağıl ultrases değerleri verilmiştir.

Havada soğutulan tüm beton gruplarında ultrases geçiş hızı 100°C de düşüş göstermiş daha sonra 200°C de artmıştır ve 300°C den sonra kademeli olarak düşüş göstermiştir. CEM II tip çimento ile üretilen beton numunelere ait ultrases geçiş hızlarındaki azalma daha belirgindir. Bu çimento ile 0,40 ve 0,45 s/ç oranında üretilen numuneler tamamen dağıldığı için bu numuneler için ultrases geçiş hızı ölçülememiştir.

Su ile soğutulan numunelerin tümü için ultrases geçiş hızları 100°C de düşüş göstermiş fakat 200°C de yeniden artmış daha sonra sıcaklık artıkça ultrases geçiş hızlarında azalma gözlenmiştir. Su numunelerindeki azalış hava numunelerine göre daha az olmuştur.

Şekil 6.5. Havada soğutulmuş numunelerin bağıl ultrases geçiş hızı değerleri

Pek çok araştırmada ultrases geçiş hızı vasıtasıyla beton dayanımının tahmininde ±%40'a varan hata yapılabileceği belirtilmektedir (Facoarou 1972). Ultrases geçiş hızı yöntemi yanı sıra Schimidt sertlik yöntemi de kullanıldığında betonun basınç dayanımının tahmininde yapılan hata azalmaktadır. Ultrases geçiç hızı büyüdükçe beton basınç dayanımı da artmaktadır. Bu sadece beton bileşimi ile ilgili olmayıp deney şartlarıyla da bağlantılıdır (Sağsöz, 2007). Alonso vd. (2003b) tarafından yapılan çalışmada ifade edildiği gibi ultrases geçiş hızlarında görülen azalmanın (Şekil 6.3 ve 6.4) nedeni beton bünyesindeki boşlukların çapı ve boşluğun miktarının sıcaklık etkisi altında değişimi bağlanabilir. Çimento hamurunun porozitesinin, 450°C'ye kadar önemli bir biçim ve hacim değişimine uğramadığı ancak sadece boyutunun değiştiği; bu sıcaklıktan sonra ise hidrate olmuş çimento ürünlerinin dehidratasyonu ile boşlukların şeklinin ve konumlarının değiştiği belirtilmektedir (Kızılkanat, 2010).

Şekil 6.6. Suda soğutulmuş numunelerin bağıl ultrases geçiş hızı değerleri

6.3. Ağırlık Kaybı Değerlerinin Değerlendirme ve İrdelenmesi

Tüm numuneler sıcaklık uygulaması öncesi ve sonrası olmak üzere ağırlıkları belirlemiş ve ağırlık kayıpları bağıl olarak hesaplanmıştır.

Şekil 6.7. Havada soğutulmuş numunelerin bağıl ağırlık kayıpları

Şekil 6.7'de görüldüğü üzere havada soğutulan tüm numunelerde sıcaklığa bağlı olarak hafif bir ağırlık kaybı gözlenmektedir. Bunun sebebi kılcal boşluklardaki ve jel boşluklarındaki suyun yüksek sıcaklık etkisinde beton bünyesinden uzaklaşmasından kaynaklandığı söylenebilir (Akman, 2000).

Şekil 6.8. Su ile soğutulmuş numunelerin bağıl ağırlık kayıpları

Suda soğutulan numunelerin ağırlık kayıpları havada soğutulanlara göre daha az oluştur. Bunun sebebi olarak betonlar suyla ani soğutmaya tabi tutulduğu için kılcal çatlaklarda ısının yüksek olması ve bu sebepten suyun soğuktan sıcağa doğru hareket etme eğiliminde olduğu düşünülmektedir. Arıöz (2007), yaptığı çalışmada betonların birim ağırlıklarında 200°C`de yaklaşık %5, 800°C`de ise yaklaşık %10 kayıp olduğunu belirtmektedir. CEM II tip çimento ile 0,40 ve 0,45 s/ç oranlarında üretilen ve havada soğutulan numuneler sıcaklık uygulaması sonrası dağıldıkları için ağırlık kayıpları belirlenememiştir. Janotka ve Nürnbergerova (2005) yaptıkları çalışmada 200°C`de gözlemledikleri kayıp %4,5 olup bu sonuç mevcut çalışmayla uyum içerisindedir.

6.4. Kılcal Geçirimliliğin Değerlendirilmesi ve İrdelenmesi

Kılcal geçirimlilik deneyleri için üretilen her grup beton için ayrıca üçer numune üretilmiştir. Bu numunelerin deney öncesi ağırlıkları belirlenmiş ve devamında kılcal geçirimlilik deneyine maruz bırakılmışlardır. Deney kapsamında elde edilen ölçümlere ilişkin detaylar Ek-6`da verilmektedir.

Şekil 6.9. 400°C`de CEM I havada soğutulmuş numunelerin zaman bağlı kılcallık değerleri

Şekil 6.10. 400°C'de CEM I suda soğutulmuş numunelerin zaman bağlı kılcallık değerleri

400°C sıcaklık uygulaması için 0.35,0.40 ve 0,45 s/ç oranlarında CEM I ve CEM II çimentoları için elde edilen kılcal geçirimlilik ilişkileri Şekil 6.9-12 verilmektedir. incelendiğinde sıcaklık artıkça kılcal geçirimliliğin artığı numunelerinin içine çektiği su miktarı artmasından anlaşılmaktadır. Ayrıca havada soğutulan numuneler suda soğutulanlara göre daha fazla kılcal geçirimlilik göstermiştir. Bu suda soğutulanların ani

büzülme göstererek kılcal boşlukları daralmasına sebep olduğu ve su soğutması sırasında boşlukların yeniden su ile dolduğu ayrıca yangın sırasında oluşan (CaO) serbest kirecin su ile soğutma sırasında içine nüfuz eden su ile yeniden reaksiyona girerek Ca(OH)₂ oluşturduğu ve yeniden sertleşme sağladığı düşünülmektedir.

Şekil 6.11. 400°C'de CEM II havada soğutulmuş numunelerin zaman bağlı kılcallık değerleri

Şekil 6.12. 400°C`de CEM II suda soğutulmuş numunelerin zaman bağlı kılcallık değerleri

6.5. Renk Değişimine İlişkin Değerlendirme ve İrdelenme

Sıcaklık uygulaması öncesi ve sonrası havada ve suda soğutulan beton numunelerin renk değişimleri numune yüzeylerinden ölçülerek belirlenmiştir. Ölçümler renkölçer ve dijital fotoğraf makinesi kullanılarak alınmıştır. Tüm ölçümler CIE Lab 2004 renk sistemine göre belirlenmiştir. Bu renk sisteminin L, a ve b olmak üzere üç ana bileşeni vardır. L bileşeni rengin ışık değerini yani griliğini göstermekte olup 0 ila 100 birim arasında değerler alır. 0 değeri siyahı 100 değeri beyazı göstermektedir. L değerleri koordinat sisteminde y ekseninde konumlandırılır. Diğer parametre a ise kırmızı-yeşil arası renkleri göstermekte olup -127 ila +127 arasında değerler almaktadır. Kırmızı +127 değerine, yeşil ise -127 değerine karşılık gelir ve x ekseni üzerinde konumlandırılır. Bir diğer bilesen b ise sarı-mavi arası renkleri verir. Sarı +127, mavi -127 ile ifade edilmekte olup z ekseninde konumlandırılır. Buradan anlaşıldığı gibi bu renk sisteminde 254 x 254 x 100 = 6451600 farklı renk tanımlanmaktadır. Bu kadar hassas bir renk uzayında renklerin adları yerine sadece bulundukları koordinatlar üzerindeki değerler dikkate alınmıştır. Bu değerlere bağlı olarak ΔE (renk değişim değeri), ΔC (renk yoğunluğu değişim değeri) ve ΔH (renk tonu değişim değeri) hesaplanmış ve bu değerlerin yüksek sıcaklıkla ilişkisi araştırılmıştır.

6.5.1. Renkölçer Aparatı ile Renk Ölçümü

Sıcaklık değişimine bağlı olarak betonların renk değişimi, renk doygunluğunun değişimi ve renk tonunun değişimi soğutma şekline bağlı olarak ayrı ayrı incelenmiştir.

ΔΕ	100°C	200°C	300°C	400°C	500°C	600°C	700°C	800°C
CEMI35H	3,4	1,8	2,2	2,6	4,9	6,5	8,1	7,2
CEMI40H	1,6	3,2	3,9	5,0	10,6	8,8	4,3	1,2
CEMI45H	1,8	3,5	4,1	4,6	8,9	6,4	7,7	2,8
CEMII35H	2,7	4,0	6,1	4,9	7,3	7,0	5,6	6,2
CEMII40H	1,9	3,7	2,5	6,1	4,6	5,5	3,6	7,8
CEMII45H	3,5	4,7	5,9	3,7	3,2	2,8	6,7	4,0

Çizelge 6.2. Havada soğutma sonucu elde edilen renk değişimi (ΔE) değerleri

Çalışma kapsamında kullanılan renkölçer D65 ışık değerine ve 45°lik gözlemci açısı değerine bağlı olarak renk ölçümleri yapılmıştır. Ölçülen bu değerler kullanılarak ΔE

değeri hesaplanmıştır. Tüm gözlemcilerin renk değişimini algıladığı ΔE değeri 5 olarak kabul edilmektedir (Annerel ve Taerwe, 2011). Çizelge 6.9`da görüldüğü gibi havada soğutma yapıldığında CEM I ve CEM II çimentoları ile üretilen betonların ΔE değerleri 400°C ila 500°C arasında 5 değeri mertebesinde olduğu görülmektedir. Bunun anlamı insan gözüyle betonda renk değişiminin ayırt edilebilmesi için betonda sıcaklığın 400°C mertebesine ulaşması gerekmektedir. Bu sıcaklığın altındaki durum için renk değişimi aletsel olarak ölçülmelidir.

Şekil 6.13. Tüm karışım oranları için hazırlanan TG değerleri

Şekil 6.14. Tüm karışım oranları için hazırlanan DTA değerleri

Şekil 6.15. Tüm karışım oranları için hazırlanan DTG değerleri

Şekil 6.14. ve Şekil 6.15. de görüldüğü özellikle 400°C ve 500°C'ler arasında portlantit'in bozulduğu görülmektedir. Bu neden dolayı ΔE değerinin yaklaşık 5 olması portlantit'in renk bozulmasında en önemli bileşen olduğu anlaşılmaktadır (Şekil 6.13.).

Şekil 6.16. incelendiğinde renk değişimi (ΔE) eğiliminin 800°C mertebesinde azaldığı gözlenmektedir. 800°C'de ölçülen değerler dikkate alındığında betonların ΔE değerlerinin azaldığı ve renklerinin başlangıç renklerine yaklaştıkları görülmektedir. Kızılkanat (2010) çalışmasında renk türü oda sıcaklığında cüruf katkılı numunelerde sarı (~25), diğerlerinde ise yeşilimsi sarı (~31) olduğu belirtilmektedir. Aynı çalışmada sıcaklık 300°C'ye ulaştığında tüm serilerde rengin tür bileşeni kırmızıya doğru değişmiş olduğu, 600°C'de rengin tür bileşeninin turuncumsu sarı (~21) ve 900°C'de ise tekrar sarı (~25) renge dönüştüğü vurgulanmaktadır. Bu araştırmaya paralel olarak bizim çalışmamızda aynı yönde sonuçlar vermiştir.

Şekil 6.16. Havada soğutma sonucu elde edilen renk değişimi (ΔE)

Çizelge 6.3 incelendiğinde suda soğutulan numunelerden elde edilen ΔE değerlerinin havada soğutulanlara paralel bir eğilim gösterdiği görülmektedir. ΔE için kritik değer 5'e 400°C ila 500°C civarında ulaşılmıştır.

ΔΕ	100°C	200°C	300°C	400°C	500°C	600°C	700°C	800°C
CEMI35S	2,3	1,1	3,5	1,9	5,5	5,8	5,1	3,3
CEMI40S	3,3	2,4	3,7	2,4	9,5	8,1	7,5	3,4
CEMI45S	1,2	3,8	5,2	5,4	7,4	7,1	5,6	4,8
CEMII35S	1,5	6,8	6,7	2,8	4,4	7,4	5,4	5,7
CEMII40S	1,1	4,2	3,3	4,6	4,0	4,0	8,1	7,1
CEMII45S	4,9	4,2	3,1	6,4	4,3	4,8	6,1	5,9

Çizelge 6.3. Suda soğutma sonucu elde edilen renk değişimi (ΔE) değerleri

Şekil 6.17 incelendiğinde suda soğutulan numuneler havada soğutulanlara nazaran ΔE değerlerinin daha az değişim gösterdiği gözlemlenmektedir.

Şekil 6.17. Suda soğutma sonucu elde edilen renk değişimi (ΔE)

Havada soğutulan numuneler renk yoğunluğu (ΔC) açısından incelendiğinde 200°C ila 300°C'de belirgin değişim görülmektedir. Bu değişim diğer sıcaklıklarda çok fazla belirgin değildir (Çizelge 6.4, Şekil 6.18).

ΔC	100°C	200°C	300°C	400°C	500°C	600°C	700°C	800°C
CEMI35H	0,1	0,4	1,3	1,7	4,7	3,9	5,0	1,5
CEMI40H	1,0	2,2	0,9	1,7	5,6	3,0	3,9	0,2
CEMI45H	1,2	3,2	3,9	4,6	3,5	3,3	3,5	1,3
CEMII35H	1,1	3,7	6,1	3,1	4,1	2,9	4,9	4,2
CEMII40H	1,7	2,4	0,5	4,2	3,8	1,4	0,5	3,4
CEMII45H	1,1	3,6	1,3	3,4	0,3	2,0	0,8	3,5

Çizelge 6.4. Havada soğutma sonucu elde edilen renk yoğunluğu değişimi (ΔC) değerleri

Şekil 6.18. Havada soğutma sonucu elde edilen renk yoğunluğu değişimi (ΔC)

Suda soğutulan numuneler için ΔC değişiminin 300°C ila 500°C arasında `belirginleşmeye başladığı, 700°C ila 800°C arasında azalarak ilk yoğunluğuna yaklaştığı görülmektedir (Çizelge 6.5, Şekil 6.19). Bu durum ΔE değerlerinin değişimi ile paralellik göstermektedir.

ΔC	100°C	200°C	300°C	400°C	500°C	600°C	700°C	800°C
CEMI35S	0,5	1,0	0,1	1,1	4,6	2,8	4,1	2,7
CEMI40S	1,4	1,1	0,1	1,4	6,2	3,2	4,6	0,5
CEMI45S	1,1	3,5	4,0	5,0	4,5	2,9	4,5	1,5
CEMII35S	1,1	2,2	5,9	2,6	4,0	2,4	4,8	3,7
CEMII40S	0,7	3,9	0,3	4,1	2,8	2,2	0,4	4,2
CEMII45S	0,6	4,0	3,0	3,3	1,5	1,9	2,0	3,4

Çizelge 6.5. Suda soğutma sonucu elde edilen renk yoğunluğu değişimi (ΔC) değerleri

Şekil 6.19. Suda soğutma sonucu elde edilen renk yoğunluğu değişim (ΔC)

CIE Lab (2004) renk uzayındaki L, a ve b değerleri Kartezyen koordinat sisteminde sırasıyla y, x ve z değerlerine karşılık gelmektedir. ΔE , ΔC ve ΔH ise silindirik koordinat sisteminde bir vektörün yönünü, şiddetini ve yatayda saat yönünün tersi ile yaptığı açıyı göstermektedir. Çizelge 6.6 ve Şekil 6.20 havada soğutulan tüm numuneler için sıcaklığa bağlı olarak renk tonu değişimi (ΔH) değerlerini içermektedir. Çizelgedeki değerler incelendiğinde renkler 100°C'de sarıdan yeşile doğru (-) yönde açı yaparak dönüşmüş olduğu, 300°C'den başlayarak 600°C'ye kadar kırmızıya, 800°C'de yeniden sarıya doğru bir eğilim göstermiş olduğu görülmektedir.

	100°C	200°C	300°C	400°C	500°C	600°C	700°C	800°C
CEMI35H	-3,2	-2,0	7,6	7,1	9,4	11,9	8,2	6,9
CEMI40H	-5,4	8,9	9,7	6,8	6,9	13,3	9,9	6,1
CEMI45H	-3,1	8,1	9,3	0,8	12,9	11,6	8,9	6,5
CEMII35H	-4,2	9,2	2,0	8,2	10,3	12,9	15,1	10,5
CEMII40H	-3,7	9,1	8,9	9,5	11,7	15,9	15,7	10,4
CEMII45H	-3,5	8,2	7,5	5,9	14,2	13,2	14,9	12,0

Çizelge 6.6. Havada soğutma sonucu elde edilen renk tonu değişimi (ΔH) değerleri

Şekil 6.20. Havada soğutma sonucu elde edilen renk tonu değişim (Δ H)

Havada soğutulan numunelerde olduğu gibi suda soğutulan numuneler de önce 100°C`de yeşile dönüşmüşler; 200°C`den itibaren kırmızıya ve 800°C`de sarı renge dönüşüm gerçekleşmiştir (Çizelge 6.7, Şekil 6.21).

ΔH								
(Derece)	100°C	200°C	300°C	400°C	500°C	600°C	700°C	800°C
CEMI35S	0,5	2,8	10,4	8,1	10,0	13,2	10,9	8,2
CEMI40S	-4,1	9,5	9,7	7,9	7,4	12,8	8,7	5,6
CEMI45S	-3,2	7,5	9,9	0,4	12,7	12,0	8,7	6,7
CEMII35S	-4,0	5,6	2,2	7,4	11,9	11,5	16,7	9,2
CEMII40S	-3,3	8,5	9,6	10,1	12,4	15,6	16,5	10,1
CEMII45S	-2,7	8,4	6,1	8,2	14,0	13,2	14,9	12,0

Çizelge 6.7. Suda soğutma sonucu elde edilen renk tonu değişimi (ΔH) değerleri

Renk tonu dönüşümü ilgili yapılan bir çalışmada şu sonuçlar verilmektedir. Silis kökenli agregalarla üretilen betonlarda renk türü oda sıcaklığında yeşilimsi sarıdır Munsell renk skalasındaki değeri ~34 dür. Söz konusu deney koşullarında sıcaklık 20°C`den 300°C`ye yükseldiğinde uçucu kül katkılı beton numuneler dışındaki numunelerde rengin tür bileşeninde yeşile doğru bir değişim gözlenmiştir. 600°C`de rengin tür bileşeninin değişerek turuncumsu sarı (~22), 900°C`de ise sarımsı turuncu (~19) olduğu gözlenmiştir (Kızılkanat, 2010).

Şekil 6.21. Suda soğutma sonucu elde edilen renk tonu değişimi (ΔH)

6.5.2. Dijital Fotoğraf Makinesi Metodu ile Ölçülen Renk Değerleri

Bu bölümde, sıcaklık uygulanan tüm beton numunelerin fotoğraf makinesi ile görüntüleri alınmıştır. Her bir numuneden sıcaklık uygulaması öncesi ve sonrası fotoğraf çekimi yapılmıştır. Her bir numuneden üç adet fotoğraf görüntüsü alınmıştır. Elde edilen fotoğraflar görüntüleri Matlab R2011b Görüntüleme Analizi Modülü kullanılarak renk değerleri (L, a ve b) CIE Lab (2004) renk uzayına göre tespit edilmiştir. Bu değerler kullanılarak ΔE , ΔC ve ΔH değerleri hesaplanmıştır. Bu hesaplamaya ilişkin değerlendirme soğutma şekillerine göre aşağıda verilmektedir.

Çizelge 6.8 incelendiğinde elde edilen değerlerin tamamı, 800°C'de elde edilen 7,6 hariç, daha önce belirtildiği gibi ΔE için verilen kritik değer 5'in altında kaldığı görülmektedir. Ancak deneysel çalışma sırasında yapılan gözlemlemede 400°C ila 500°C arasında kesin bir renk değişimi algılanmıştır. Bu sıcaklıklarda fotoğraftan ölçülen ΔE değerleri 3 ila 3,5 arasında değiştiği görülmektedir. Fotoğraf makinelerinin sensörleri yalnızca rengi değil cisimlerin şekillerini de algılayabilmektedir. Renkölçerin sensörü sadece renk değerlerini algıladığı için aralarındaki farkın sensörden kaynaklandığı düşünülmektedir. Mermerler üzerinde yapılan bir çalışmada ΔE 'nin değişimi göz tarafından algılanması mermerin orijinal rengine bağlı olduğu belirtilmektedir (Özgüven ve Özçelik, 2013). Buna göre açık renk mermerlerde renk değişimi ΔE 3,5 civarında değer
aldığında gerçekleşmiştir. Bu sonuç mevcut çalışma ile uyum göstermektedir.

Şekil 6.22`de görüldüğü üzere 800°C`de elde edilen ∆E değerleri renkölçer yöntemiyle ölçülenlere paralel olduğu ve renk değerinin ilk değerine yaklaştığı görülmektedir.

ΔΕ	100°C	200°C	300°C	400°C	500°C	600°C	700°C	800°C
CEMI35H	1,0	0,6	3,0	2,4	4,3	4,2	3,0	7,6
CEMI40H	1,1	0,8	1,3	2,2	3,3	3,2	1,6	4,6
CEMI45H	1,7	1,6	1,3	2,0	3,1	3,4	2,4	3,9
CEMII35H	1,5	2,0	3,7	3,6	3,7	4,4	3,6	2,7
CEMII40H	0,9	1,2	2,0	1,8	3,5	4,1	1,9	1,4
CEMII45H	2,1	1,1	1,5	2,6	4,2	3,1	3,5	2,9

Çizelge 6.8. Havada soğutma sonucu elde edilen renk değişimi (ΔE) değerleri

Şekil 6.22. Havada soğutma sonucu elde edilen renk değişimi (ΔE)

Çizelge 6.9 ve Şekil 6.23'den görüldüğü üzere suda soğutulan numuneler için hesaplanan ΔE değerleri incelendiğinde değişim 600°C'yi geçtikten sonra daha belirgin olmaktadır. 800°C'ye çıkıldıkça ΔE değerleri orijinal renk değerlerine geri dönmektedir.

ΔΕ	100°C	200°C	300°C	400°C	500°C	600°C	700°C	800°C
CEMI35S	1,2	1,3	1,0	2,4	2,2	2,9	2,2	5,9
CEMI40S	1,3	1,3	0,9	2,5	1,9	3,0	1,5	4,6
CEMI45S	1,4	1,0	1,7	1,9	2,2	3,2	1,2	4,8
CEMII35S	1,2	2,6	1,9	2,3	2,6	3,9	2,8	1,5
CEMII40S	2,6	0,8	2,7	2,3	3,1	3,0	3,9	1,8
CEMII45S	0,6	4,0	3,5	3,8	3,1	2,8	3,4	0,0

Çizelge 6.9. Suda soğutma sonucu elde edilen renk değişimi (ΔE) değerleri

Şekil 6.23. Suda soğutma sonucu elde edilen renk değişimi (ΔE)

Çizelge 6.10 ve Şekil 6.24 incelendiğinde havada soğutulan beton numunelerin renk yoğunluğu değişimi (ΔC) değeri renkölçerden elde edilenin aksine tüm sıcaklıklar için geçerli olmak üzere negatif değerler aldığı; yani yoğunluğun azaldığı görülmektedir. Bunun nedenin fotoğraf çekimleri sırasında kullanılan ışık kaynağının sebep olduğu düşünülmektedir. Çünkü renkölçerin kullandığı ışık kaynağı flaş şeklinde olup anlık olarak parlamaktadır. Üretilen ışık beyaz ve beyazın sarı tonlarındadır. Ancak fotoğraf makinesi için kullanılan düzenekte devamlı ışık kaynağının ışık tonlar beyaz ve beyaza yakın mavidir. Bu mavilik ΔC yi etkilediği ve negatif değerler almasına sebep olabileceği düşünülmektedir.

ΔC	100°C	200°C	300°C	400°C	500°C	600°C	700°C	800°C
CEMI35H	0,1	-0,4	-2,7	-2,2	-1,9	-2,4	-0,5	-5,5
CEMI40H	-1,1	-0,7	-1,1	-2,3	-1,6	-2,7	-0,9	-4,1
CEMI45H	-1,6	-1,1	-1,0	-1,5	-1,8	-2,8	-0,8	-4,2
CEMII35H	-1,0	-1,6	-3,2	-2,2	-2,3	-3,5	-1,5	-1,4
CEMII40H	-0,7	-1,1	-1,9	-1,7	-2,7	-2,5	-3,2	-0,7
CEMII45H	-1,3	-0,9	-2,1	-3,4	-2,8	-2,2	-3,0	0,0

Çizelge 6.10. Havada soğutma sonucu elde edilen renk yoğunluğu değişimi (ΔC) değerleri

Şekil 6.24. Havada soğutma sonucu elde edilen renk yoğunluğu değişimi (ΔC)

Suda soğutulan numuneler için Çizelge 6.11 ve Şekil 6.25`de verildiği gibi havada soğutulan numuneler gibi tüm renk yoğunluğu değişimi değerleri negatiftir. Ancak burada havada soğutulanın aksine tüm sıcaklıklar için geçerli olmak üzere ΔC değerlerinin mertebesi değişmemektedir.

Çizelge 6.11. Suda soğutma sonucu elde edilen renk yoğunluğu değişim (ΔC) değerleri

ΔC	100°C	200°C	300°C	400°C	500°C	600°C	700°C	800°C
CEMI35S	-0,6	-0,3	-0,8	-2,2	-3,0	-2,8	-1,3	-3,8
CEMI40S	-1,2	-0,9	-0,5	-2,3	-2,7	-3,0	-2,2	-2,6
CEMI45S	-1,4	-0,9	-1,6	-1,5	-3,4	-4,1	-3,2	-1,7
CEMII35S	-1,1	-1,1	-3,2	-2,2	-3,0	-3,3	-1,3	-1,7
CEMII40S	-2,4	-0,8	-1,9	-1,7	-3,7	-2,3	-2,9	-1,7
CEMII45S	-0,2	-1,3	-2,1	-3,4	-2,4	-2,3	-5,8	-2,7

Şekil 6.25. Suda soğutma sonucu elde edilen renk yoğunluğu değişimi (ΔC)

Çizelge 6.12 ve Şekil 6.26 incelendiğinde renk tonu değişimi (Δ H) havada soğutulan tüm numuneler için 300°C'den sonra fark edilir derece değişim gösterdiği görülmektedir. Ölçülen Δ H değerinin tümü pozitif olup açı cinsinden verilmektedir. Bu değerlerin pozitif olması renk tonu değişiminin saat yönünün aksi yönünde olduğunu ifade etmektedir. Tüm beton numunelerinin ilk değerleri sarı tonda olduğu için saat yönünün aksi yönünde dönme yapması ile renklerin kırmızıya doğru kaydığı anlaşılmaktadır.

ΔH								
(Derece)	100°C	200°C	300°C	400°C	500°C	600°C	700°C	800°C
CEMI35H	0,4	1,3	3,0	4,1	5,9	5,4	4,7	16,4
CEMI40H	0,5	2,7	4,1	4,8	7,8	7,5	5,6	13,9
CEMI45H	2,5	4,7	3,1	6,6	8,0	7,7	4,9	9,2
CEMII35H	0,2	3,5	2,8	4,0	6,4	7,8	7,3	4,0
CEMII40H	2,5	2,9	3,9	7,7	8,2	11,6	8,2	6,5
CEMII45H	1,7	0,6	3,6	7,4	9,4	9,8	8,2	4,4

Çizelge 6.12. Havada soğutma sonucu elde edilen renk tonu değişimi (∆H) değerleri

Şekil 6.26. Havada soğutma sonucu elde edilen renk tonu değişim (ΔH)

Çizelge 6.13 ve Şekil 6.27 incelendiğinde suda soğutulan numunelerin için ölçülen renk tonu değişiminin (Δ H) 400°C'de belirginleşmeye başladığı; 600°C'de pik yaptığı; 700°C'de renk tonu değişimi azaldığı ve 800°C'de ise en yüksek değerlerini aldığı görülmektedir. 600°C'de rehidrasyon yeniden başlamaktadır (Akman, 2000). Bu sıcaklıkta Δ H değerinin ilk pik değerine ulaşmasının sebebi bu olduğu düşünülmektedir. 800°C'de ikinci pikin meydana gelmesi betonun içyapısının tamamen bozulmaya başlaması ile ilişkilendirilmektedir (Bingöl, 2008).

ΔH								
(Derece)	100°C	200°C	300°C	400°C	500°C	600°C	700°C	800°C
CEMI35S	1,2	3,4	3,8	6,1	6,0	7,8	2,2	12,1
CEMI40S	1,6	4,4	2,5	5,6	4,6	7,1	1,3	10,9
CEMI45S	2,5	2,7	4,3	6,0	5,9	7,4	3,0	10,8
CEMII35S	2,7	1,8	2,7	4,8	6,4	9,0	5,2	2,9
CEMII40S	3,5	0,4	4,6	7,1	8,2	9,4	10,9	7,6
CEMII45S	2,8	3,6	3,4	8,4	7,1	9,5	7,4	0,0

Çizelge 6.13. Suda soğutma sonucu elde edilen renk tonu değişimi (Δ H) değerleri

Şekil 6.27. Suda soğutma sonucu elde edilen renk tonu değişim (ΔH)

7. SONUÇLAR

Deneysel çalışma kapsamında elde edilen bulgular aşağıdaki gibi özetlenebilir.

- CIE Lab renk sistemi diğer renk sistemlerine göre daha hassas bir biçimde ölçümler almaya elverişli olup ölçülen değerlerle betonun yüksek sıcaklık nedeniyle basınç dayanımında meydana gelen kayıplar arasında matematiksel bir ilişki kurmaya uygun bir yöntemdir.
- Çalışmada kullanılan renkölçer aparatının verdiği değerle dijital fotoğraf makinesinden elde edilen görüntülerin Matlab programında görüntü işleme sonucu alınan değerler arasında belli bir ilişkinin varlığından söz etmek mümkündür.
- Sıcaklık nedeniyle betonda meydana gelen renk değişiminin gözle fark edilebildiği sıcaklık 400°C dir. Daha düşük sıcaklıklardaki renk değişimi ancak ölçüm aparatı ile fark edilebilir.
- 4. 0,40 s/ç oranında CEM I tip çimento ile üretilen numuneler hariç diğer numunelerin sıcaklık artışına bağlı olarak basınç dayanımları azalmıştır. Bu kapsamdaki numunelerin basınç dayanımları 200°C'de bir artış ve devamında azalmıştır.
- 5. CEM II tip çimento ile üretilen numunelerdeki dayanım düşüşü daha hızlı gerçekleşmiştir. Bu çimento ile 0,40 ve 0,45 s/ç oranlarında üretilen ve havada soğutulan numuneler tamamen dağıldığı için basınç dayanımları ölçülememiştir.
- Çimento tipinden bağımsız olarak 0,40 s/ç oranında üretilen numunelerde gözlenen dayanım kaybı 0,35 ve 0,45 s/ç oranlarında üretilenlere göre daha az olduğu tespit edilmiştir.
- 7. Suda soğutulan numunelerde sıcaklık artışına bağlı olarak basınç dayanımı azalma göstermiştir. Ancak her iki tip çimento için geçerli olmak üzere 0,40 s/ç oranında üretilen numunelerin dayanımları ilk dayanımlarına göre 200°C`de daha yüksek çıkmıştır.
- Suda soğutulan numuneler havada soğutulan numunelere göre daha az dayanım kaybı göstermiştir.
- 9. Çimento tipinden bağımsız olarak havada soğutulan tüm numunelerde ultrases

geçiş hızı değerleri 100°C de düşüş göstermiş; 200°C de yükselmiş ve 300°C den sonra azalmıştır. CEM II tip çimento ile üretilen beton numuneler üzerinde ölçülen ultrases geçiş hızlarının azalışı daha hızlı gerçekleşmiştir.

- 10. Suda soğutulan tüm numunelerde ultrases geçiş değerleri 100°C de düşüş gösterirken 200°C de artış göstermiş olup daha sonra sıcaklık artışıyla birlikte tekrar azalma göstermiştir. Suda soğutulan numunelerin ultrases geçiş hızlarındaki azalış havada soğutulanlara göre daha az olduğu gözlemlenmiştir.
- 11. Havada soğutulan tüm numuneler sıcaklık artıkça ağırlıklarında kayıplar gözlenmiştir. Bunun sebebi öncelikle kılcal boşluklardaki ve betonun jel boşluklarındaki suyun buharlaşarak ayrılması nedeniyledir.
- 12. Suda soğutulan numunelerin ağırlık kayıpları havada soğutulanlara göre daha az oluştur. Bunun sebebi sıcaklık uygulanan beton numuneler su ile ani olarak soğutulması sonucu kılcal çatlaklarda ve boşlukların iç kısımlarında sıcaklığın henüz yüksek olması dolayısıyla suyun soğuktan sıcağa doğru hareket etme eğilimi göstermesidir.
- 13. Havada soğutulan numunelerin kılcal geçirimlilikleri suda soğutulanlara göre daha yüksek çıkmıştır. Bunun nedeni suda soğutulan numunelerin ani büzülmesi sonucu kılcal boşluklarının daralmasıdır. Soğutma sırasında boşlukların yeniden su ile dolduğu ve ayrıca ısıtma sırasında oluşan serbest kirecin (CaO) boşluklara nüfuz eden su ile yeniden reaksiyona girerek Ca(OH)₂ oluşturduğu ve bu şekilde boşlukların yeniden dolduğu düşünülmektedir.
- 14. Havada ve suda soğutulan numuneler incelendiğinde ΔE değerinin sıcaklıkla artış gösterdiği ancak bu artış 400°C'de belirginleşmektedir. 800°C'ye çıkıldıkça ΔE değerinde tekrar azalma göstermektedir.
- 15. Havada ve suda soğutulan numuneler için ölçülen ΔC ve ΔH değerleri farklı olmasına rağmen sıcaklığa bağlı olarak değişimleri paralellik göstermektedir.
- 16. D65 ışık kaynağı ve 45° ölçüm açısı baz alınarak renkölçer ve fotoğraf makinesi ile alınan ölçümler karşılaştırıldığında fotoğraf makinesinin belli bir güven aralığında renk tespiti işleminde kullanabileceği görülmüştür.
- 17. Sonuç olarak betonda yüksek sıcaklık etkisi geri dönüşü olmayan dayanım kayıplarına sebep olduğu belirlenmiştir. Ayrıca yüksek sıcaklık kılcal geçirimliliği artırdığı için betonun dayanıklılık açısından bakıldığı zaman beton ömrünü kısaltacağı düşünülmektedir.

8. ÖNERİLER

Gerçekleştirilen deneysel çalışma neticesinde aşağıdaki hususlar önerilebilir.

Beton renk açısından incelemelerde farklı agregalar, farklı mineral katkılar, Fe oranı farklı çimento tipleri ve farklı soğutma tipleri denenmelidir. Bu renk değişimleri mikro yapı incelemeleri ile desteklenmedir. Ayrıca özel beton tipleri ve bunların maruz kaldığı kimyasal ortamlardan sonra yüksek sıcaklık etkisinin renk değişimleri de araştırılmalıdır.

Yüksek sıcaklık etkisine maruz betonlarda optimum boşluk oranı ve bu boşlukların ne şekilde yerleşmesi gerektiği konusunda çalışmalar yapılmalıdır.

Renk açısından değerlendirme yapılacak olursa CIE Lab renk uzayı hassasiyeti yüksek bir uzay olduğu için farklı çimento tipleri, farklı agrega tipleri ve farklı mineral katkıların farklı oranları denemek suretiyle yangın için renk dayanım ilişkisine bakılarak bir abak oluşturulabileceği düşünülmektedir.

9. KAYNAKLAR

- Ahmad, I., 2008. Tooth Preparation. Protocols for Predictable Aesthetic Dental Restorations. Blackwell Munksgaard, 125-144.
- Akman, M., 2001. Betonarme Yapılarda Yangın Hasarı ve Yangın Sonunda Taşıyıcılığın Belirlenmesi, <u>Sika Teknik Bülten/Makaleler</u>, 141.
- Akman, S., 2000. Yapı hasarları ve onarım ilkeleri, TMMOB İnşaat Mühendisleri Odası İstanbul Şubesi.
- Akoz, F., Turker, F., Koral, S. ve Yuzer, N., 1995. Effects of Sodium-Sulfate Concentration on the Sulfate Resistance of Mortars with and without Silica Fume, <u>Cement and Concrete Research</u>, 25, 6, 1360-1368.
- Aköz, F., Türker, F., Koral, S. ve Yüzer, N., 1999. Effects of raised temperature of sulfate solutions on the sulfate resistance of mortars with and without silica fume, <u>Cement</u> and <u>Concrete Research</u>, 29, 4, 537-544.
- Aköz, F. ve Yüzer, N., 1994. Yüksek Sıcaklığın Nedenleri ve Betonarme Elemanlara Etkileri, <u>YT Ü Dergisi</u>, 3, 89-98.
- Alarcon-Ruiz, L., Platret, G., Massieu, E. ve Ehrlacher, A., 2005. The use of thermal analysis in assessing the effect of temperature on a cement paste, <u>Cement and Concrete Research</u>, 35, 3, 609-613.
- Alonso, C., Andrade, C., Castellote, M., Khoury, G.A., 2003a. Microstructure-Solid Phases, Course on Effect of Heat on Concrete, Udine/Italy.
- Alonso, C., Andrade, C., Khoury, G.A., 2003b. Porosity and Microcracking, Course on Effect of Heat on Concrete, Udine/Italy.
- Andrade, C., Alonso, C. ve Khoury, G., 2003. Relating Microstructure to Properties, <u>Course on Effect of Heat on Concrete, International Centre for Mechanical</u> <u>Sciences (CISM), Italy</u>.
- Andrade, C., Alonso, C. ve Khoury, G.A., 2003. Microstructure & Moisture, International Centre for Mechanical Sciences, Course on Effect of Heat on Concrete, Udine/Italy.
- Annerel, E. ve Taerwe, L., 2008. Diagnosis of the state of concrete structures after fire, <u>Tailor Made Concrete Structures: New Solutions for Our Society</u>, 80-80.

- Annerel, E. ve Taerwe, L., 2009. Approaches for the assessment of the residual strength of concrete exposed to fire, <u>Concrete Repair</u>, <u>Rehabilitation and Retrofitting Ii</u>, 245-246.
- Annerel, E. ve Taerwe, L., 2011. Methods to quantify the colour development of concrete exposed to fire, <u>Construction and Building Materials</u>, 25, 10, 3989-3997.
- Ashrae, 1997. Fundamentals, ASHRAE, Atlanta.
- Avci, A.U., 1984. Dökümde Enerji Tasarufu, <u>Yıldız Teknik Üniversitesi Yayınları</u>, 178.
- Aydin, S. ve Baradan, B., 2007. Effect of pumice and fly ash incorporation on high temperature resistance of cement based mortars, <u>Cement and Concrete Research</u>, 37, 6, 988-995.
- Baradan, B., 2002. Betonarme yapılarda kalıcılık (Durabilite), Dokuz Eylul University Press.
- Barutcigil, Ç., 2010. Estetil Restoratif Materyallerin Çeşitli İçecekler Karşısında Renk Değişimlerinin İncelenmesi ,Doktora Tezi, Atatürk Üniversitesi, Sağlık Bilimleri Enstitüsü Erzurum.
- Bayındır, F. ve Alwin, G., 2006. Diş Rengi Seçiminde Bilgisayar Destekli Sistemlerin Kullanımı, <u>H.Ü. Diş Hek Fak Dergisi</u>, 30, 3, 40-46.
- Bazant, Z.P. ve Kaplan, M.F., 1996. Concrete at High Temperatures, Longman GroupLimited, London.
- Behnood, A. ve Ziari, H., 2008. Effects of silica fume addition and water to cement ratio on the properties of high-strength concrete after exposure to high temperatures, <u>Cement & Concrete Composites</u>, 30, 2, 106-112.
- Bilal, F., 2006. Yangın ve Beton, İzolasyon Dünyası, 60, 70-72.
- Bingöl, A.F., 2002. Pomza ile Üretilen Hafif Betonların Yangına Karşı Dayanımı, Atatürk Üniversitesi, Yüksek Lisanas Fen Bilimleri Enstitüsü Erzurum.
- Bingöl, A.F., 2008. Beton-Donatı Aderansına Yüksek Sıcaklıkların Etkisi, Doktora Tezi, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü
- Bishop, J., The effect of jet aircraft on air force pavements; investigation conducted by the Bureau of Yards and Docks, Proceedings, American Society of Civil Engineers, (1953).
- Bouzoubaa, N. ve Lachemi, M., 2001. Self-compacting concrete incorporating high volumes of class F fly ash Preliminary results, <u>Cement and Concrete Research</u>, 31, 3, 413-420.

- Brewer, J.D., Wee, A. ve Seghi, R., 2004. Advances in color matching, <u>Dental Clinics of</u> <u>North America</u>, 48, 2, 341-358.
- Byfors, J., 1999. SCC is an important step towards industrialisation of the building industry, <u>1st International Rilem Symposium on Self Compacting Concrete</u>, 7, 15-21.
- CEB, 1991. Fire Design of Concrete Structures, Bulletin D'Information, Lausanne.
- Chan, Y.N., Peng, G.F. ve Anson, M., 1999. Residual strength and pore structure of highstrength concrete and normal strength concrete after exposure to high temperatures, <u>Cement and Concrete Composites</u>, 21, 1, 23-27.
- Chan, Y.W., Chern, J.C., Hong, C.Y. ve Lue, J.W., 2000. The analysis of shrinkage behavior of SCC and OPC under various weather conditions, <u>International Rilem</u> <u>Workshop on Shrinkage of Concrete, Shrinkage 2000, Proceedings</u>, 17, 493-505.
- Chiang, C.-H. ve Tsai, C.-L., 2003. Time-temperature analysis of bond strength of a rebar after fire exposure, <u>Cement and Concrete Research</u>, 33, 10, 1651-1654.
- CIE, C., 2004. TC8-01 Technical Report. A Colour Appearance Model for Color Management Systems: CIECAM02, Tech. Rep.(CIE, 2004).
- Cioni, P., Croce, P. ve Salvatore, W., 2001. Assessing fire damage to r.c. elements, <u>Fire</u> <u>Safety Journal</u>, 36, 2, 181-199.
- Cülfik, M.S. ve Özturan, T., 2002. Effect of elevated temperatures on the residual mechanical properties of high-performance mortar, <u>Cement and Concrete Research</u>, 32, 5, 809-816.
- Diederichs, U. ve Schneider, U., 1981. Bond strength at high temperatures, <u>Magazine of</u> <u>Concrete Research</u>, 33, 115, 75-84.
- Erdoğan, T., 2003. Beton. Ankara Syf, 183, Metu Press.
- Erdoğdu, Ş., 2007. Beton Teknolojisi Ders Notları, Karadeniz Teknik Üniversitesi, Mühendislik Fak. İnşaat Mühendisliği Bölümü Trabzon.
- Felekoglu, B., Turkel, S. ve Baradan, B., 2007. Effect of water/cement ratio on the fresh and hardened properties of self-compacting concrete, <u>Building and Environment</u>, 42, 4, 1795-1802.
- Felicetti, R., 2004. Digital camera colorimetry for the assessment of fire-damaged concrete, Fire Design of Concrete Structures: What Now? What Next, 2-3.
- Felicetti, R., 2007. Recent Advences and research needs in the assessment of fire-damaged concrete, Proceedings of The International Workshop Fire Design of Concrete Structure from Materials Modelling to Structural Performance, Coimbra.

- Felicetti, R., 2009. Combined While-Drilling Techniques for The Assessment of The Fire damaged concrete structures cover, Proceedings of The International Conference, Application of Structural Fire engineering, Prague, 208-215.
- Fellinger, J.H.H., Stark, J.W.B. ve Walraven, J.C., 2003. Bond model for prestressed strands in fire exposed concrete, <u>High Performance Materials in Bridges</u>, 21-33.
- Ford, A. ve Roberts, A., A Color Space Conversion: A Color Space Conversion. http://www.poynton.com/PDFs/coloureq.pdf
- Ghandehari, M., Behnood, A. ve Khanzadi, M., 2010. Residual Mechanical Properties of High-Strength Concretes after Exposure to Elevated Temperatures, <u>Journal of Materials in Civil Engineering</u>, 22, 1, 59-64.
- Guise, S., Short, N. ve Purkiss, J., 1996. Colour analysis for assessment of fire damaged concrete, Concrete Repair, Rehabilitation and Protection, Proceeding of The International Conference Held at The University of Dundee, Scotland/UK.
- Haddad, R.H. ve Shannis, L.G., 2004. Post-fire behavior of bond between high strength pozzolanic concrete and reinforcing steel, <u>Construction and Building Materials</u>, 18, 6, 425-435.
- Janotka, I. ve Nürnbergerová, T., 2005. Effect of temperature on structural quality of the cement paste and high-strength concrete with silica fume, <u>Nuclear Engineering and Design</u>, 235, 17, 2019-2032.
- John, D.A., Poole, A.W. ve Sims, I., 1998. Concrete Petrography, Elsevier Butterworth Heinemann, London.
- Kalifa, P., Menneteau, F.D. ve Quenard, D., 2000. Spalling and pore pressure in HPC at high temperatures, <u>Cement and Concrete Research</u>, 30, 12, 1915-1927.
- Khoury, G., 2003. Fire & Assessment, <u>International Centre for Mechanical Sciences</u>, <u>Course on Effect of Heat on Concrete</u>, <u>Udine/Italy</u>.
- Khoury, G.A., 1992. Design of Concrete for Better Performance in Fire, <u>Materials and</u> <u>Design against Fire</u>, 121-127.
- Khoury, G.A., Majorana, C.E., Pesavento, F. ve Schrefler, B.A., 2002. Modelling of heated concrete, <u>Magazine of Concrete Research</u>, 54, 2, 77-101.
- Kızılkanat, A., 2004. Yüksek Sıcaklık Etkisinde Kalan Harcın Basınç Dayanımı-Renk Değişimi İlişkisinin Araştırılması, Yüksek Lisans Tezi, <u>YTÜ Fen Bilimleri</u> <u>Enstitüsü, İstanbul</u>.
- Kızılkanat, A.B., 2010. Yüksek Sıcaklık Etkisinde Kalan Betonun Basınç Dayanımı Renk Değişimi İlişkisinin Araştırılması, Doktora Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Ensititüsü istanbul.

Kizilkanat, A.B. ve Yuzer, N., 2008. Compressive strength-color change relationship in mortars subjected to high temperatures, <u>Teknik Dergi</u>, 19, 2, 4381-4392.

Kocataşkın, F., 2000. Yapı Malzemesi Bilimi, İstanbul, Birsen Yayınevi.

- Lee, J., Xi, Y.P. ve Willam, K., 2008. Properties of concrete after high-temperature heating and cooling, <u>Aci Materials Journal</u>, 105, 4, 334-341.
- Li, M., Qian, C. ve Sun, W., 2004. Mechanical properties of high-strength concrete after fire, <u>Cement and Concrete Research</u>, 34, 6, 1001-1005.
- Lin, W.M., Lin, T.D. ve PowersCouche, L.J., 1996. Microstructures of fire-damaged concrete, <u>Aci Materials Journal</u>, 93, 3, 199-205.
- Luo, H.L. ve Lin, D.F., 2007. Study the surface color of sewage sludge mortar at high temperature, <u>Construction and Building Materials</u>, 21, 1, 90-97.
- Malvar, L.J. ve Hironaka, M.C., 1991. Heat resistant concrete for airfield pavements: Preliminary numerical study, <u>Computers & Structures</u>, 40, 2, 303-311.
- Martin, J., Montero, J.R., Moreno, F., Sala, J.L.P. ve Rubio, M.C., 2013. Feasibility analysis of the reuse of waste filler of bituminous mixtures for the production of self-compacting concrete, <u>Materials & Design</u>, 46, 372-380.
- Mendes, A., Sanjayan, J. ve Collins, F., 2008. Phase transformations and mechanical strength of OPC/Slag pastes submitted to high temperatures, <u>Materials and Structures</u>, 41, 2, 345-350.
- Neville, A., 2006. Properties of Concrete, copyright© 2000, Asia, Person Education Pte. Ltd. 844p.
- Okamura, H. ve Ouchi, M., 1999. Self-compacting concrete. Development, present use and future, 1st International Rilem Symposium on Self Compacting Concrete, 7, 3-14.
- Ouchi, M. ve Edamatsu, Y., 1999. A simple evaluation method for interaction between coarse aggregate and mortar particles in self-compacting concrete, <u>1st International</u> <u>Rilem Symposium on Self Compacting Concrete</u>, 7, 121-130.
- Ouchi, M., Hibino, M. ve Okamura, H., 1997. Effect of superplasticizer on selfcompactability of fresh concrete, <u>Advances in Concrete and Concrete Pavement</u> <u>Construction</u>, 1574, 37-40.
- Özkul, M.H. ve Doğan, U.A., 2006. Rheological properties and segregation resistance of SCC prepared by Portland cement and fly ash, <u>Measuring, Monitoring and Modeling Concrete Properties</u>, 463-468.
- Paksoy, A.S., 1999. Boya El Kitabı, TMMOB Kimya Mühendisleri Odası, İstanbul.
- Papayianni, I. ve Valliasis, T., 2005. Heat deformations of fly ash concrete, <u>Cement and</u> <u>Concrete Composites</u>, 27, 2, 249-254.

- Perkins, P.H., 2007. Repair, Protection and Waterproofing of Concrete Structures, <u>Kindle</u> <u>Edition, Tazlor & Freancis</u>, 3.
- Persson, B., 2001. A comparison between mechanical propel-ties of self-compacting concrete and the corresponding properties of normal concrete, <u>Cement and Concrete Research</u>, 31, 2, 193-198.
- Poon, C.S., Azhar, S., Anson, M. ve Wong, Y.L., 2001a. Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures, <u>Cement and Concrete Research</u>, 31, 9, 1291-1300.
- Poon, C.S., Azhar, S., Anson, M. ve Wong, Y.L., 2001b. Strength and durability recovery of fire-damaged concrete after post-fire-curing, <u>Cement and Concrete Research</u>, 31, 9, 1307-1318.
- Poon, C.S. ve Ho, D.W.S., 2004. A feasibility study on the utilization of r-FA in SCC, <u>Cement and Concrete Research</u>, 34, 12, 2337-2339.
- Postacioğlu, B., 1987. Beton Cilt II, <u>Teknik Kitaplar Yayınevi, İstanbul</u>.
- Ramakrishnan, V., Shafai, H.F. ve Wu, G., 1991. Cyclic heating and cooling effects on concrete durability, <u>ACI Special Publication</u>, 126.
- Riley, M., 1991a. Possible new method for the assessment of fire-damaged concrete, Magazine of Concrete Research, 43, 155, 87-92.
- Riley, M.A., 1991b. Possible New Method for the Assessment of Fire-Damaged Concrete, <u>Magazine of Concrete Research</u>, 43, 155, 87-92.
- Rostasy, F., Weiβ, R. ve Wiedemann, G., 1980. Changes of pore structure of cement mortars due to temperature, <u>Cement and Concrete Research</u>, 10, 2, 157-164.
- Sakr, K. ve El-Hakim, E., 2005. Effect of high temperature or fire on heavy weight concrete properties, <u>Cement and Concrete Research</u>, 35, 3, 590-596.
- Sarshar, R. ve Khoury, G.A., 1993. Materials and environmental-factors influencing the compressive strength of unsealed cement paste and concrete at high-temperatures, <u>Magazine of Concrete Research</u>, 45, 162, 51-61.
- Savva, A., Manita, P. ve Sideris, K.K., 2005. Influence of elevated temperatures on the mechanical properties of blended cement concretes prepared with limestone and siliceous aggregates, <u>Cement & Concrete Composites</u>, 27, 2, 239-248.

Schanda, J., 2007. Colorimetry: Understanding the CIE system, Wiley. com.

Scherefler, B., Gawin, D., Khoury, G. ve Majorana, C., 2003. Physical, Mathematical & Numerical Modelling, <u>International Centre for Mechanical Sciences</u>, Course on <u>Effect of Heat on Concrete</u>, <u>Udine/Italy</u>.

- Schrefler, B.A., Brunello, P., Gawin, D., Majorana, C.E. ve Pesavento, F., 2002. Concrete at high temperature with application to tunnel fire, <u>Computational Mechanics</u>, 29, 1, 43-51.
- Sharma, G. ve Bala, R., 2010. Digital color imaging handbook, CRC press.
- Shneider, U.a.W., R., 1977. Kinetic consedirations on the thermal destruction ofcementbound concrete and its mechanical effects., <u>Cement and Concrete Research</u>, 7.
- Shoaib, M.M., Ahmed, S.A. ve Balaha, M.M., 2001. Effect of fire and cooling mode on the properties of slag mortars, <u>Cement and Concrete Research</u>, 31, 11, 1533-1538.
- Short, N.R., Purkiss, J.A. ve Guise, S.E., 2001. Assessment of fire damaged concrete using colour image analysis, <u>Construction and Building Materials</u>, 15, 1, 9-15.
- Sirel, Ş., 1974. Kuramsal renk bilgisi, İ. DMM Akademisi Yayınları.
- Stone, M.C., 2003. A field guide to digital color, 3, AK Peters Natick, MA.
- Şahmaran, M., Yaman, I. ve Tokyay, M., 2004. Self-compacting concrete with high volume fly ash content and new generation of superplasticizer, Proceedings of the concrete 2005 national symposium, Turkish, 225-33.
- Şengül, C., Akkaya, Y. ve Taşdemir, M.A., 2006. Fracture behavior of high performance fiber reinforced self compacting concrete, <u>Measuring, Monitoring and Modeling</u> <u>Concrete Properties</u>, 171-177.
- Tang, W.C. ve Lo, T.Y., 2009. Mechanical and fracture properties of normal- and highstrength concretes with fly ash after exposure to high temperatures, <u>Magazine of</u> <u>Concrete Research</u>, 61, 5, 323-330.
- Taşdemir, M.A. ve Bayramov, F., 2010. Yüksek performanslı çimento esaslı kompozitlerin mekanik davranışı, <u>İTÜDERGİSİ/d</u>, 1, 2.
- Tovey, N. ve Krinsley, D., 1991. Mineralogical mapping of scanning electron micrographs, Sedimentary geology, 75, 1, 109-123.
- TS 2012. Yapı malzemeleri ve bina elemanları Yangın sınıflandırılması Ankara.
- Uz, B., 1994. Mineraller Kristallografi-Mineraloji, Kurtiş Matbaacılık, İstanbul.
- Vodák, F., Trtík, K., Kapičková, O., Hošková, Š. ve Demo, P., 2004. The effect of temperature on strength – porosity relationship for concrete, <u>Construction and Building Materials</u>, 18, 7, 529-534.
- Westland, S., 2003. Review of the CIE system of colorimetry and its use in dentistry, Journal of Esthetic and Restorative Dentistry, 15, s1, S5-S12.

- Yuzer, N., Akoz, F. ve Ozturk, L.D., 2004. Compressive strength-color change relation in mortars at high temperature, <u>Cement and Concrete Research</u>, 34, 10, 1803-1807.
- Yüzer, N., Aköz, F. ve Kızılkanat, A., 2004. Yüksek Dayanımlı Betonun Fiziksel ve Mekanik Özelliklerine Yüksek Sıcaklık Etkisi, <u>T</u>MMOB İnşaat Mühendisleri Odası, Türkiye İnşaat Mühendisliği XVII. Teknik Kongre ve Sergisi.
- Yüzer, N., Aköz, F., Öztürk, L. ve Kızılkanat, A., 2001. Yangına Maruz Yapılarda Beton Basınç Dayanımı–Renk Değişimi İlişkisi, <u>YTÜ BAPK</u>, 22-05.
- Yüzer, N., Aköz, F., Öztürk, L.D. ve Kızılkanat, A.B., 2003. Yüksek Sıcaklık Etkisinde Kalan Çimento Harcında Hasar Oranının Renk Ölçümü ile Araştırılması, 5. Ulusal Beton Kongresi, İstanbul.
- Yüzer, N., Aköz, F., Öztürk, L.D., 2001. Yangına Maruz Yapılarda Betonun Basınç Dayanımı-Renk Değisimi Đliskisi, <u>Yıldız Teknik Üniversitesi Dergisi</u>, 4, 51-60.
- Zhang, B. ve Bicanic, N., 2002. Residual Fracture Toughness of Normal-and High-Strength Gravel Concrete after Heating to 600? C, <u>Aci Materials Journal</u>, 99, 3.

10. EKLER

Numune Grubu	Yayılma	EFNARC'a	T ₅₀ süresi	EFNARC'a göre
	miktarı	göre yayılma	(sn)	viskozite sınıfı
	(cm)	çapı sınıfı		
CEM I35	64	SF1	3,1	VS2
CEM I40	69	SF1	2,9	VS2
CEM I45	72	SF2	2,4	VS2
CEM II35	65	SF2	3	VS2
CEM II40	70	SF2	2,8	VS2
CEM II45	73	SF2	2,3	VS2

|--|

Ek Çizelge 2. V Hunisi deneyi sonuçları

Numune Grubu	t (sn)	t5dakika gecikmeli (sn)	EFNARC'a göre viskozite sınıfı
CEM I35	8,15	9,13	VF1
CEM I40	7,12	8,75	VF1
CEM I45	6,02	8,48	VF1
CEM II35	7,80	8,01	VF1
CEM II40	7,01	7,70	VF1
CEM II45	6,20	6,80	VF1

Ek Çizelge 3. L kutusu deneyi sonuçları

Numune Grubu	t ₂₀	t ₄₀	H ₁ (cm)	H ₂ (cm)	H_2/H_1
	(sn)	(sn)			
CEM I35	1,55	2,80	8,0	6,7	0,86
CEM I40	1,95	3,70	9,3	8,1	0,88
CEM I45	1,40	2,30	8,7	7,6	0,95
CEM II35	1,30	1,90	8,1	7,0	0,86
CEM II40	1,38	2,70	8,8	7,5	0,89
CEM II45	1,35	2,55	8,5	7,5	0,97

Ek Çizelge 4. U kutusu deneyi sonuçları

Numune Grubu	$\Delta h (cm)$
CEM I35	1,1
CEM I40	1,8
CEM I45	2,0
CEM II35	1,0
CEM II40	0,5
CEM II45	2,9

Ek Çizelge 4. Üretilen betonların sayısı ve dağılımı

							Çimen	to Tipi					
Geoglelelelon	Deney			CE	M I					CE	M II		
Sicakiikiar	Yöntemi		Havada			Suda			Havada			Suda	
		0,35	0,40	0,45	0,35	0,40	0,45	0,35	0,40	0,45	0,35	0,40	0,45
Vontrol	Basınç	3	3	3	-	-	-	3	3	3	-	-	-
KOIIIIOI	Kılcallık	3	3	3	-	-	-	3	3	3	-	-	-
100°C Bas Kılc	Basınç	3	3	3	3	3	3	3	3	3	3	3	3
	Kılcallık	3	3	3	3	3	3	3	3	3	3	3	3
200°C	Basınç	3	3	3	3	3	3	3	3	3	3	3	3
200 C	Kılcallık	3	3	3	3	3	3	3	3	3	3	3	3
200°C Basınç Kılcallık	Basınç	3	3	3	3	3	3	3	3	3	3	3	3
	Kılcallık	3	3	3	3	3	3	3	3	3	3	3	3
300°C	Basınç	3	3	3	3	3	3	3	3	3	3	3	3
	Kılcallık	3	3	3	3	3	3	3	3	3	3	3	3
400°C	Basınç	3	3	3	3	3	3	3	3	3	3	3	3
400 C	Kılcallık	3	3	3	3	3	3	3	3	3	3	3	3
500°C	Basınç	3	3	3	3	3	3	3	3	3	3	3	3
300 C	Kılcallık	3	3	3	3	3	3	3	3	3	3	3	3
600°C	Basınç	3	3	3	3	3	3	3	3	3	3	3	3
000 C	Kılcallık	3	3	3	3	3	3	3	3	3	3	3	3
700°C	Basınç	3	3	3	3	3	3	3	3	3	3	3	3
700 C	Kılcallık	3	3	3	3	3	3	3	3	3	3	3	3
800°C	Basınç	3	3	3	3	3	3	3	3	3	3	3	3
800 C	Kılcallık	3	3	3	3	3	3	3	3	3	3	3	3
Gruplar Numu	rın Toplam ine Sayısı	54	54	54	48	48	48	54	54	54	48	48	48
Genel	l Toplam						6	12					

		1	00°C					
Cimonto Tini	Soğutma	S/C Oroni	Kılcal Su Emme Miktarları (gr)					
Çimento Tipi	Şekli	S/Ç Ülallı	Kuru Ağırlık	15dk	30dk	60dk	1440dk	
		0,35	3686	3693,5	3697,5	3699,4	3717,4	
CEM I 42,5 R		0,4	3534,5	3543,9	3548,8	3555,1	3592,9	
		0,45	3522,7	3532,6	3539	3541,4	3582	
CEM II 42,5	ΠΑΥΑΔΑ	0,35	3592,6	3599,4	3603,1	3607,1	3635,1	
(B-M)(P-L)L		0,4	3562,3	3569,4	3572,2	3578,5	3597	
Ν		0,45	3525,6	3532,3	3537,1	3541,1	3575,9	
		0,35	3606,7	3618,8	3623,1	3629,5	3651,2	
CEM I 42,5 R		0,4	3552,1	3556,2	3572,9	3583,5	3600,3	
	SUDA	0,45	3503,9	3511,9	3515,8	3518,8	3543,8	
CEM II 42,5	SUDA	0,35	3601,6	3611,4	3615	3620,1	3634,2	
(B-M)(P-L)L		0,4	3545,6	3553,1	3555,7	3560,1	3575,7	
Ν		0,45	3536,6	3544,1	3546,7	3548,1	3569,6	

Ek Çizelge 6. 100°C için kılcal geçirimlilik değerleri

Ek Çizelge 7. 200°C için kılcal geçirimlilik değerleri

	200°C										
Cimonto Tini	Soğutma	S/C Oroni	Kılcal Su Emme Miktarları (gr)								
Çimento Tipi	Şekli	S/Ç Ülallı	Kuru Ağırlık	15dk	30dk	60dk	1440dk				
		0,35	3572,4	3583,8	3587,2	3589,3	3656,9				
CEM I 42,5 R		0,4	3604,9	3615,8	3620,4	3622,2	3639,6				
		0,45	3597,8	3605,5	3607	3609,9	3618,9				
CEM II 42,5	ΠΑΥΑΔΑ	0,35	3595,1	3603,9	3607,7	3609,6	3629,4				
(B-M)(P-L)L		0,4	3503,2	3521,4	3523	3525,7	3544				
Ν		0,45	3553,1	3558,6	3561,7	3565,5	3591,1				
		0,35	3501,6	3509,5	3510	3511,1	3520				
CEM I 42,5 R		0,4	3652,9	3661	3665	3666,9	3680,4				
	SUDA	0,45	3680	3691,1	3694,2	3697,4	3707,9				
CEM II 42,5 (B-M)(P-L)L	SUDA	0,35	3591	3597,6	3600,9	3602,9	3616,4				
		0,4	3474,4	3485,6	3490,8	3493,3	3509,3				
N		0,45	3617	3626,6	3630,2	3634,2	3660,1				

		3	00°C					
Cimanta Tini	Soğutma	S/C Oroni	Kılcal Su Emme Miktarları (gr)					
Çimento Tipi	Şekli	S/Ç Ülallı	Kuru Ağırlık	15dk	30dk	60dk	1440dk	
		0,35	3448,5	3462,7	3467,6	3468,5	3504,3	
CEM I 42,5 R		0,4	3515,5	3532,7	3533	3537,3	3579,8	
	ΗΛΥΛΟΛ	0,45	3438,3	3451,6	3457,8	3461,3	3506,3	
CEM II 42,5	ΠΑΥΑDΑ	0,35	3559,4	3573,9	3579,2	3583,3	3632,9	
(B-M)(P-L)L		0,4	3493,2	3507,7	3511,3	3519,2	3554	
Ν		0,45	3485,4	3497,1	3498,3	3501	3559,2	
		0,35	3486,5	3501,1	3505,8	3510,1	3544,6	
CEM I 42,5 R		0,4	3639,6	3658,6	3660,2	3665,5	3688,1	
	SUDA	0,45	3592,9	3600,9	3604,4	3607,6	3623,1	
CEM II 42,5 (B-M)(P-L)L	SUDA	0,35	3514,2	3520,3	3526,8	3533,1	3564,1	
		0,4	3463,8	3485,7	3495,8	3496,8	3565,4	
Ν		0,45	3631,1	3646,5	3572,5	3577,7	3617,6	

Ek	Çizelge 8.	300°C için	kılcal geçirin	nlilik değerleri
----	------------	------------	----------------	------------------

Ek Çizelge 9. 400°C için kılcal geçirimlilik değerleri

	400°C											
Cimonto Tini	Soğutma	S/C Oroni	Kılcal Su Emme Miktarları (gr)									
Çimento Tipi	Şekli	S/Ç Ülallı	Kuru Ağırlık	15dk	30dk	60dk	1440dk					
		0,35	3546,1	3588,8	3594,1	3599,6	3647,5					
CEM I 42,5 R		0,4	3488,4	3499,3	3501,8	3505,2	3594,2					
	науара	0,45	3460,9	3463,4	3466,2	3468,8	3499,6					
CEM II 42,5	ΠΑΥΑDΑ	0,35	3559,6	3582,4	3583,8	3596,7	3617,4					
(B-M)(P-L)L		0,4	3541,1	3570,4	3572,5	3577,2	3606,9					
N		0,45	3348,4	3403,1	3409,2	3412,3	3478,4					
		0,35	3586,9	3597,1	3600,3	3603,5	3628,3					
CEM I 42,5 R		0,4	3587,8	3599,5	3600,9	3604,1	3632,4					
	SUDA	0,45	3569,6	3577,1	3579,4	3583,5	3603,3					
CEM II 42,5	SUDA	0,35	3640,2	3654,5	3656,3	3660,8	3692,1					
(B-M)(P-L)L		0,4	3402,1	3529,8	3533,1	3536,1	3566,5					
Ν		0,45	3511,8	3529,4	3533	3537,6	3569,9					

		5	00°C					
Cimanta Tini	Soğutma Şekli	S/C Oroni	Kılcal Su Emme Miktarları (gr)					
Çimento Tipi		S/Ç Ülallı	Kuru Ağırlık	15dk	30dk	60dk	1440dk	
		0,35	3413,4	3432,7	3437,1	3444,3	3475,3	
CEM I 42,5 R		0,4	3296,9	3315,2	3319,5	3323,8	3371,3	
	ΗΛΥΛΟΛ	0,45	3429	3456,7	3462,3	3470,1	3520,5	
CEM II 42,5	ΠΑΥΑDΑ	0,35	3483,9	3507,5	3512,2	3519,2	3570,5	
(B-M)(P-L)L		0,4	3260	3273,7	3278,5	3284,6	3317,1	
Ν		0,45	3451	3479,6	3487,4	3496,2	3573,4	
		0,35	3510,6	3530,4	3534,4	3539,1	3576,2	
CEM I 42,5 R		0,4	3583,8	3596,8	3600,9	3605,2	3631,9	
	SUDA	0,45	3530,6	3543,3	3547,7	3551,8	3585,3	
CEM II 42,5 (B-M)(P-L)L	SUDA	0,35	3581	3597,4	3597,7	3603	3635,9	
		0,4	3537,9	3556,1	3559,1	3565,9	3624,3	
Ν		0,45	3401,1	3418,6	3422,7	3426,7	3479,9	

Ek Çizelge 10. 500°C için kılcal geçirimlilik değerleri

Ek Çizelge 11. 600°C için kılcal geçirimlilik değerleri

	600°C										
Cimonto Tini	Soğutma	S/C Oroni	Kılcal Su Emme Miktarları (gr)								
Çimento Tipi	Şekli	S/Ç Ülallı	Kuru Ağırlık	15dk	30dk	60dk	1440dk				
		0,35	3268,7	3382,5	3394,4	3400,3	3455,9				
CEM I 42,5 R		0,4	3330,9	3376,7	3386,4	3395,1	3452,5				
	μανάρα	0,45	3469,4	3502,5	3510,2	3517,5	3594,2				
CEM II 42,5	IIAVADA	0,35	3469,9	3492,8	3497,9	3507,4	3577,5				
(B-M)(P-L)L		0,4	3452,3	3494,5	3506,1	3519,9	3567,9				
Ν		0,45	3280,3	3334,3	3348,2	3372,3	3427,7				
		0,35	3613,6	3630,1	3632,7	3636,1	3667,9				
CEM I 42,5 R		0,4	3587,6	3607	3611,3	3613,9	3645,1				
	SUDA	0,45	3577	3601,5	3605,5	3609,9	3648				
CEM II 42,5	SUDA	0,35	3578	3627,4	3630	3635,7	3667,9				
(B-M)(P-L)L		0,4	3604	3642,1	3650,2	3655,1	3692,1				
Ν		0,45	3546,8	3596,7	3603,2	3608,2	3660,1				

		7	00°C					
Cimanta Tini	Soğutma Şekli	S/C Oroni	Kılcal Su Emme Miktarları (gr)					
Çimento Tipi		S/Ç Ülallı	Kuru Ağırlık	15dk	30dk	60dk	1440dk	
		0,35	3286,2	3330,4	3331,3	3351,3	3410,9	
CEM I 42,5 R		0,4	3387,1	3402,4	3405,7	3412,5	3496,3	
	ΗΛΥΛΟΛ	0,45	3366,5	3419,7	3435,5	3453,7	3566,8	
CEM II 42,5	ΠΑΥΑDΑ	0,35	3329,7	3385	3389,4	3406,3	3491,3	
(B-M)(P-L)L		0,4	3384,1	3434,1	3444,3	3465,2	3526,1	
Ν		0,45	3302,1	3348,3	3396,7	3387,2	3534,8	
		0,35	3395	3419,7	3421,1	3432,5	3473,2	
CEM I 42,5 R		0,4	3461,2	3487	3492,9	3504,5	3549,5	
	SUDA	0,45	3559,5	3587,8	3591,4	3602,1	3659,5	
CEM II 42,5 (B-M)(P-L)L	SUDA	0,35	3487,7	3516,8	3524,1	3531,8	3616,6	
		0,4	3529	3564,3	3570,5	3579,7	3678,2	
Ν		0,45	3386,2	3428	3436,2	3450	3590,1	

Ek Çizelge 12. 700°C için kılcal geçirimlilik değerleri

Ek Çizelge 13. 800°C için kılcal geçirimlilik değerleri

	800°C											
Cimonto Tini	Soğutma	S/C Oroni	Kılcal Su Emme Miktarları (gr)									
Çimento Tipi	Şekli	S/Ç Ülallı	Kuru Ağırlık	15dk	30dk	60dk	1440dk					
		0,35	3206,9	3258,7	3275,7	3299,2	3461,4					
CEM I 42,5 R		0,4	3275,3	3333	3350,6	3368,9	3511,8					
	науара	0,45	3196,7	3275,7	3298	3318,4	3484,2					
CEM II 42,5	ΠΑΥΑDΑ	0,35	3379,7	3438,1	3454,6	3475,3	3631,4					
(B-M)(P-L)L		0,4	-	-	-	-	-					
Ν		0,45	-	-	-	-	-					
		0,35	3332,7	3377,3	3392,2	3414,3	3606,1					
CEM I 42,5 R		0,4	3392,6	3442	3458,1	3479,9	3661,2					
	SUDA	0,45	3324,5	3386,5	3405,5	3432,3	3664,4					
CEM II 42,5	SUDA	0,35	3408,3	3471	3487,1	3508,4	3733,7					
(B-M)(P-L)L		0,4	3414,4	3467,5	3479,5	3500	3741,6					
Ν		0,45	3233,5	3314,9	3338	3365,5	3579,8					

#1 Numune Kodu		Sıcaklıktan	önce numune	e ortalaması	Sıcaklıktan sonra numune ortalaması			
		L	а	b	L	а	b	
1	100CEMI35HB1	72.5	1.1	9.5	78.1	0.3	9	
2	100CEMI35HB2	76.2	1	10.1	79.2	0.7	9.6	
3	100CEMI35HB3	71.1	0.9	8.5	76.3	0.7	9.6	
4	100CEMI35HG1	71.4	0.8	8.3	78.1	0.3	9	
5	100CEMI35HG2	70.6	0.9	8.1	79.2	0.7	9.6	
6	100CEMI35HG3	73.1	1	8.9	76.3	0.7	9.6	
7	100CEMI35SB1	74.3	0.9	9	76.7	1	9.1	
8	100CEMI35SB2	74.7	1.2	9.4	76.9	1	9.7	
9	100CEMI35SB3	71.6	1.1	9.4	76.1	1.1	9.8	
10	100CEMI35SG1	73.4	1.2	9.6	76.7	1	9.1	
11	100CEMI35SG2	76.5	1.3	9.8	76.9	1	9.7	
12	100CEMI35SG3	76.8	1.3	9.1	76.1	1.1	9.8	
13	100CEMI40HB1	77.8	1.2	10	79.2	0.1	8.4	
14	100CEMI40HB2	77.7	1.2	10.1	78.2	0.1	9.2	
15	100CEMI40HB3	77.2	1.2	10.5	78.5	0.5	9.5	
16	100CEMI40HG1	77.8	1.2	10	79.2	0.1	8.4	
17	100CEMI40HG2	76.8	1.3	9.7	78.2	0.1	9.2	
18	100CEMI40HG3	78	1.4	10.5	78.5	0.5	9.5	
19	100CEMI40SB1	79.2	1.4	10.6	78.9	0.6	9.5	
20	100CEMI40SB2	79.1	1.4	10.6	77.5	0.6	9.5	
21	100CEMI40SB3	75.6	1.4	10.2	76.5	0.6	9.7	
22	100CEMI40SG1	77.6	1.2	10.2	76.6	0.5	9.1	
23	100CEMI40SG2	78.4	1.4	10.5	74.9	0.4	8.9	
24	100CEMI40SG3	77.1	1.3	10.7	73	0.6	9.2	
25	100CEMI45HB1	76.8	1.1	10.1	76.6	0.5	9.1	
26	100CEMI45HB2	73.6	1.1	9.7	74.9	0.4	8.9	
27	100CEMI45HB3	74.6	1	9.6	73	0.6	9.2	
28	100CEMI45HG1	76.6	1.1	10.3	76	0.4	8.8	
29	100CEMI45HG2	76.6	1.2	10.3	76.3	0.5	9	
30	100CEMI45HG3	76.1	0.9	9.5	76.4	0.5	8.9	
31	100CEMI45SB1	75.8	1.1	9.9	76	0.4	8.8	
32	100CEMI45SB2	75	1.2	10.2	76.3	0.5	9	
33	100CEMI45SB3	75.5	1.1	10.1	76.4	0.5	8.9	
34	100CEMI45SG1	74	1.1	9.9	73.8	0.7	9	
35	100CEMI45SG2	74.8	1.3	10.4	76.4	0.5	8.7	
36	100CEMI45SG3	74.3	1.1	10.4	75.3	0.3	8.7	
37	100CEMII35HB1	73.6	1.4	10.1	73.8	0.7	9	
38	100CEMII35HB2	76.3	1.1	9.2	76.4	0.5	8.7	
39	100CEMII35HB3	75.2	1	9.4	75.3	0.3	8.7	
40	100CEMII35HG1	78.3	0.9	9	77.3	0.7	9.4	

Ek Çizelge 14. Sıcaklık öncesi ve sonrası için renk ölçerle elde edilen L, a ve b değerleri

#2	Numune Kodu	Sıcaklıktan	önce numune	e ortalaması	alaması Sıcaklıktan sonra numu		
		L	a	b	L	a	b
41	100CEMII35HG2	77.1	1.1	9.8	77.4	0.7	9.4
42	100CEMII35HG3	76.7	1	9.7	75.5	0.6	9.3
43	100CEMII35SB1	77.3	1.3	10.2	77.3	0.7	9.4
44	100CEMII35SB2	78.1	1.3	10	77.4	0.7	9.4
45	100CEMII35SB3	74.8	1.3	10.4	75.5	0.6	9.3
46	100CEMII35SG1	76.5	1.3	10.3	77.3	0.2	8.7
47	100CEMII35SG2	77.4	1.3	10.5	76.5	0.3	8.4
48	100CEMII35SG3	76.6	1.5	10.4	76.2	0.6	9.6
49	100CEMII40HB1	78	1.3	10.5	77.3	0.2	8.7
50	100CEMII40HB2	79.2	1.4	10	76.5	0.3	8.4
51	100CEMII40HB3	79.7	1.3	10	76.2	0.6	9.6
52	100CEMII40HG1	78.9	1.5	10.3	77.1	0.7	9.2
53	100CEMII40HG2	80.9	1.4	9.6	79.3	0.6	8.5
54	100CEMII40HG3	79.6	1.4	10.3	77.8	0.7	9
55	100CEMII40SB1	78.3	1.2	10	77.1	0.7	9.2
56	100CEMII40SB2	78.4	1.3	9.7	79.3	0.6	8.5
57	100CEMII40SB3	80.3	1.2	9.3	77.8	0.7	9
58	100CEMII40SG1	78	1.4	9.8	78.9	0.4	9.6
59	100CEMII40SG2	81	1.2	9.5	76.8	0.5	10.1
60	100CEMII40SG3	79.6	1.2	9.5	75.9	0.6	9.9
61	100CEMII45HB1	80.8	1.3	10.8	78.9	0.4	9.6
62	100CEMII45HB2	77.3	1.3	10.4	76.8	0.5	10.1
63	100CEMII45HB3	77.5	1.2	10.2	75.9	0.6	9.9
64	100CEMII45HG1	75.8	1.2	10.4	79.9	0.6	9.1
65	100CEMII45HG2	77.3	1.3	10.2	77.1	0.7	10.4
66	100CEMII45HG3	78.5	1.3	10.3	76.5	0.6	9.5
67	100CEMII45SB1	80.4	1.1	9.9	79.9	0.6	9.1
68	100CEMII45SB2	77.4	1.4	10.7	77.1	0.7	10.4
69	100CEMII45SB3	79.9	1.2	10.3	76.5	0.6	9.5
70	100CEMII45SG1	77.4	1.2	10	72.1	0.5	9.4
71	100CEMII45SG2	79.4	1.4	10.4	72.6	0.6	9.5
72	100CEMII45SG3	81.1	1.4	9.9	75.3	0.6	8.3
73	200CEMI35HB1	71	1	9.6	72.1	0.5	9.4
74	200CEMI35HB2	75.1	0.9	8.4	72.6	0.6	9.5
75	200CEMI35HB3	73.3	1.1	9	75.3	0.6	8.3
76	200CEMI35HG1	72	0.9	8.5	71.5	0.6	9
77	200CEMI35HG2	72.8	1.2	9.4	73	0.7	9.3
78	200CEMI35HG3	73.4	1.2	9	72.1	0.8	9.8
79	200CEMI35SB1	72.8	1.1	10.2	71.5	0.6	9
80	200CEMI35SB2	70.4	1.1	9.7	73	0.7	9.3

Ek Çizelge 14 (Devam). Sıcaklık öncesi ve sonrası için renk ölçerle elde edilen L, a ve b değerleri

#3	Numune Kodu	Sıcaklıktan	önce numune	e ortalaması	ortalaması Sıcaklıktan sonra numu		
		L	a	b	L	а	b
81	200CEMI35SB3	72.2	1.1	10.3	72.1	0.8	9.8
82	200CEMI35SG1	72.3	1.1	9.5	72.5	2.2	8.9
83	200CEMI35SG2	73.4	1.2	10	76.2	2.1	8.8
84	200CEMI35SG3	70.9	1.2	10	71.1	2.2	8.9
85	200CEMI40HB1	74.6	1	9.3	71.4	1.9	7.2
86	200CEMI40HB2	74.4	1	9.3	70.6	2	7.3
87	200CEMI40HB3	73.5	1.1	9.6	73.1	1.7	6.5
88	200CEMI40HG1	75.1	0.9	8.6	74.3	1.9	7.3
89	200CEMI40HG2	78.6	0.9	8.6	74.7	1.9	6.9
90	200CEMI40HG3	75.1	0.9	8.7	71.6	1.8	6.5
91	200CEMI40SB1	78.3	0.8	8.3	73.4	1.9	7.2
92	200CEMI40SB2	71	0.9	8.7	76.5	2	7.3
93	200CEMI40SB3	76.4	1	9.2	76.8	1.7	6.5
94	200CEMI40SG1	72.6	1.1	9.4	77.8	1.9	7.3
95	200CEMI40SG2	77.1	0.8	8.2	77.7	1.9	6.9
96	200CEMI40SG3	75	0.9	8.7	77.2	1.8	6.5
97	200CEMI45HB1	76.9	0.9	9.7	77.8	1.8	6.6
98	200CEMI45HB2	76.4	1	9.2	76.8	1.4	6.5
99	200CEMI45HB3	77.4	0.8	9.2	78	1.6	6.7
100	200CEMI45HG1	75.3	0.9	9.3	79.2	1.3	5.7
101	200CEMI45HG2	75.6	0.8	8.5	79.1	1.5	6.3
102	200CEMI45HG3	77.1	0.9	9.3	75.6	1.4	6.1
103	200CEMI45SB1	77.4	1	10	77.6	1.8	7.2
104	200CEMI45SB2	78	1.1	10.3	78.4	1.4	6.2
105	200CEMI45SB3	76.4	1.1	9.8	77.1	1.6	6.7
106	200CEMI45SG1	75	1.2	10.6	76.8	1.3	5.7
107	200CEMI45SG2	78.1	1	9.4	73.6	1.5	6.3
108	200CEMI45SG3	77.4	1.2	9.7	74.6	1.4	6.1
109	200CEMII35HB1	76.7	0.7	10.9	76.6	1.5	6.9
110	200CEMII35HB2	77.7	0.7	9.9	76.6	1.8	7.4
111	200CEMII35HB3	77.7	0.6	9.2	76.1	1.8	7.6
112	200CEMII35HG1	72.7	0.8	10.3	75.8	1.5	6.8
113	200CEMII35HG2	77	0.7	9.8	75	1.4	6.3
114	200CEMII35HG3	78	0.6	9.2	75.5	1.7	7.4
115	200CEMII35SB1	81.1	1.2	9.4	74	1.5	6.9
116	200CEMII35SB2	80.4	1.2	10.3	74.8	1.8	7.4
117	200CEMII35SB3	81.8	1.2	9.5	74.3	1.8	7.6
118	200CEMII35SG1	77.8	1.4	10.7	73.6	1.5	6.8
119	200CEMII35SG2	78.7	1.4	10.7	76.3	1.4	6.3
120	200CEMII35SG3	77.8	1.5	10.6	75.2	1.7	7.4

Ek Çizelge 14 (Devam). Sıcaklık öncesi ve sonrası için renk ölçerle elde edilen L, a ve b değerleri

#4	Numune Kodu	Sıcaklıktan	önce numune	ortalaması	Sıcaklıktan sonra numune ortalaması		
		L	a	b	L	а	b
121	200CEMII40HB1	79.7	0.4	8.1	78.3	1	5.1
122	200CEMII40HB2	80.3	0.4	8.3	77.1	1.3	5.8
123	200CEMII40HB3	79.3	0.5	9	76.7	1.3	6
124	200CEMII40HG1	80	0.7	9.1	77.3	1.2	5.7
125	200CEMII40HG2	78.3	0.4	8.4	78.1	1	5.1
126	200CEMII40HG3	78.2	0.5	8.5	74.8	1.3	5.8
127	200CEMII40SB1	76.7	0.6	9.7	76.5	1.3	6
128	200CEMII40SB2	77.5	0.7	9.9	77.4	1.2	5.7
129	200CEMII40SB3	78.4	0.7	10	76.6	1	5.1
130	200CEMII40SG1	77.8	0.7	10	78	1.3	5.8
131	200CEMII40SG2	79.1	0.9	10.2	79.2	1.3	6
132	200CEMII40SG3	79.4	1.3	10.5	79.7	1.2	5.7
133	200CEMII45HB1	76.5	0.7	10	78.9	1.5	6.5
134	200CEMII45HB2	79.2	0.7	10.1	80.9	1.6	6.8
135	200CEMII45HB3	79.8	0.7	9.9	79.6	1.5	6.9
136	200CEMII45HG1	78.2	0.7	9.6	78.3	1	5.2
137	200CEMII45HG2	77.8	0.7	9.7	78.4	1.2	6
138	200CEMII45HG3	76.5	0.7	9.5	80.3	1.4	6.5
139	200CEMII45SB1	78.6	0.7	10.4	78	1.5	6.5
140	200CEMII45SB2	78.6	0.5	10.2	81	1.6	6.8
141	200CEMII45SB3	80.5	0.6	10.2	79.6	1.5	6.9
142	200CEMII45SG1	80.1	0.6	10.1	80.8	1	5.2
143	200CEMII45SG2	79.7	0.7	10.4	77.3	1.2	6
144	200CEMII45SG3	80.7	0.7	10.3	77.5	1.4	6.5
145	300CEMI35HB1	79.5	1	9.1	75.8	2.1	8.4
146	300CEMI35HB2	80.6	1	8.7	77.3	1.3	6
147	300CEMI35HB3	77.5	1.1	9.2	78.5	2.2	8.4
148	300CEMI35HG1	78	1.1	9.6	80.4	2.1	8.1
149	300CEMI35HG2	79.8	1.1	9	77.4	1.7	7.2
150	300CEMI35HG3	77.7	1	8.9	79.9	1.9	7.5
151	300CEMI35SB1	79.4	0.5	7.9	77.4	2.3	8.6
152	300CEMI35SB2	78	0.4	8.2	79.4	2.1	8.4
153	300CEMI35SB3	74.1	0.5	8.5	81.1	1.3	6
154	300CEMI35SG1	78	0.4	7.7	71	2.2	8.4
155	300CEMI35SG2	75.8	0.5	8.1	75.1	2.1	8.1
156	300CEMI35SG3	75.5	0.6	8.5	73.3	1.7	7.2
157	300CEMI40HB1	75.8	0.5	8	72	1.7	7.7
158	300CEMI40HB2	75.9	0.6	8.4	72.8	2.2	9.1
159	300CEMI40HB3	77.4	0.5	9.7	73.4	2.1	9
160	300CEMI40HG1	76.4	0.6	9.5	72.8	2.3	9.2

Ek Çizelge 14 (Devam). Sıcaklık öncesi ve sonrası için renk ölçerle elde edilen L, a ve b değerleri

#5	Numune Kodu	Sıcaklıktan	önce numune	e ortalaması	Sıcaklıktan sonra numune		e ortalaması
		L	a	b	L	a	b
161	300CEMI40HG2	76.8	0.6	10.3	70.4	1.7	7.7
162	300CEMI40HG3	80.1	0.5	8.7	72.2	2.2	9.1
163	300CEMI40SB1	76.5	0.6	9.1	72.3	2.1	9
164	300CEMI40SB2	75.8	0.5	8.9	73.4	2.3	9.2
165	300CEMI40SB3	76.3	0.5	8.9	70.9	1.7	7.7
166	300CEMI40SG1	75.9	0.4	9.1	74.6	2.2	9.1
167	300CEMI40SG2	77.7	0.4	8.8	74.4	2.1	9
168	300CEMI40SG3	77.8	0.4	8.8	73.5	2.2	8.7
169	300CEMI45HB1	76.8	0.3	8	75.1	0.8	4.4
170	300CEMI45HB2	78.5	0.4	8.4	78.6	0.8	4
171	300CEMI45HB3	74.3	0.2	7.5	75.1	0.8	3.5
172	300CEMI45HG1	76.9	0.3	8.3	78.3	0.9	4
173	300CEMI45HG2	79.5	0.3	7.9	71	0.8	4.4
174	300CEMI45HG3	74.6	0.2	7.4	76.4	0.8	4
175	300CEMI45SB1	79.1	0.3	8	72.6	0.8	3.5
176	300CEMI45SB2	76.7	0.5	9	77.1	0.9	4
177	300CEMI45SB3	79.1	0.4	9	75	0.8	4.4
178	300CEMI45SG1	78.2	0.4	9.1	76.9	0.8	4
179	300CEMI45SG2	78.8	0.3	8.5	76.4	0.8	3.5
180	300CEMI45SG3	78.6	0.3	8.8	77.4	0.9	4
181	300CEMII35HB1	76.1	0.7	10.1	75.3	0.6	4.3
182	300CEMII35HB2	74.4	0.6	9.7	75.6	0.4	4.1
183	300CEMII35HB3	77.6	0.5	9.6	77.1	0.3	3.6
184	300CEMII35HG1	75.6	0.5	9.4	77.4	0.7	4.8
185	300CEMII35HG2	75.4	0.6	9.9	78	0.1	3.3
186	300CEMII35HG3	74.2	0.6	10	76.4	0.4	3.9
187	300CEMII35SB1	73.9	0.5	9.8	75	0	3.3
188	300CEMII35SB2	75.9	0.5	9.6	78.1	0.6	4.3
189	300CEMII35SB3	76.2	0.4	9.1	77.4	0.4	4.1
190	300CEMII35SG1	74	0.5	9.2	76.7	0.3	3.6
191	300CEMII35SG2	72.3	0.5	9.5	77.7	0.7	4.8
192	300CEMII35SG3	73.7	0.6	9.3	77.7	0.1	3.5
193	300CEMII40HB1	76.7	0.6	10.1	72.7	2.2	10.1
194	300CEMII40HB2	77	0.7	10.7	77	2.5	10.4
195	300CEMII40HB3	76.6	0.5	9.7	78	2.4	11.1
196	300CEMII40HG1	75.1	0.4	9.6	81.1	2.1	10
197	300CEMII40HG2	72.5	0.7	10.7	80.4	2.1	10.1
198	300CEMII40HG3	72.2	0.7	10.7	81.8	2.3	10.5
199	300CEMII40SB1	76.2	0.5	10.3	77.8	2.2	10.1
200	300CEMII40SB2	80.4	0.4	9.3	78.7	2.5	10.4

Ek Çizelge 14 (Devam). Sıcaklık öncesi ve sonrası için renk ölçerle elde edilen L, a ve b değerleri

#6	Numune Kodu	Sıcaklıktan	Sıcaklıktan önce numune ortalaması			Sıcaklıktan sonra numune ortalaması		
		L	a	b	L	а	b	
201	300CEMII40SB3	76.8	0.6	11.1	77.8	2.4	11.1	
202	300CEMII40SG1	74.5	0.6	10.5	79.7	2.1	10	
203	300CEMII40SG2	80.3	0.5	9.7	80.3	2.1	10.1	
204	300CEMII40SG3	80.6	0.5	9.3	79.3	2.3	10.5	
205	300CEMII45HB1	83.8	0.4	8.6	80	1.1	6.8	
206	300CEMII45HB2	81.9	0.5	9.2	78.3	1.3	7.3	
207	300CEMII45HB3	82.3	0.5	9	78.2	1.4	7.4	
208	300CEMII45HG1	83.5	0.5	9.3	76.7	1.4	7.3	
209	300CEMII45HG2	80.3	0.5	10	77.5	1.3	7.3	
210	300CEMII45HG3	77.6	0.3	9.8	78.4	1.3	7.2	
211	300CEMII45SB1	78.4	0.6	9.9	77.8	1.2	7	
212	300CEMII45SB2	78.2	0.6	9.2	79.1	1.3	7.2	
213	300CEMII45SB3	80.8	0.6	9.2	79.4	1.2	7	
214	300CEMII45SG1	80.3	0.7	9.9	76.5	1.3	7.1	
215	300CEMII45SG2	80.6	0.6	9.6	79.2	0.9	5.9	
216	300CEMII45SG3	81.2	0.7	10	79.8	1	6.7	
217	400CEMI35HB1	76.7	0.8	9.9	78.2	1.8	8.5	
218	400CEMI35HB2	77.2	1	10.2	77.8	1.8	8.4	
219	400CEMI35HB3	76.8	0.9	9.8	76.5	1.3	7	
220	400CEMI35HG1	77.3	0.9	10.1	78.6	1.9	8.7	
221	400CEMI35HG2	76.1	1.2	10.2	78.6	1.8	8.4	
222	400CEMI35HG3	74.8	1.2	10.4	80.5	1.4	7.3	
223	400CEMI35SB1	78.8	0.6	9.4	80.1	1.9	8.7	
224	400CEMI35SB2	75	0.6	9	79.7	1.8	8.5	
225	400CEMI35SB3	77.8	0.7	9.2	80.7	1.6	7.8	
226	400CEMI35SG1	76.1	0.6	9.1	79.5	1.7	8.2	
227	400CEMI35SG2	77.9	0.7	9.1	80.6	1.6	8	
228	400CEMI35SG3	76.9	0.7	9.2	77.5	1.6	7.9	
229	400CEMI40HB1	73.2	1	9.5	78	1.6	7.2	
230	400CEMI40HB2	73.9	1	9.1	79.8	1.8	7.6	
231	400CEMI40HB3	75.2	0.9	8.7	77.7	1.7	7.6	
232	400CEMI40HG1	75.5	1	9.2	79.4	1.8	7.9	
233	400CEMI40HG2	76.3	1	9.2	78	1.8	7.9	
234	400CEMI40HG3	77.9	1.1	9.7	74.1	1.8	7.8	
235	400CEMI40SB1	78	0.8	9.2	78	1.6	7.2	
236	400CEMI40SB2	76.3	0.8	9.2	75.8	1.8	7.6	
237	400CEMI40SB3	77.6	0.8	9.1	75.5	1.7	7.6	
238	400CEMI40SG1	75.1	0.7	9.1	75.8	1.8	7.9	
239	400CEMI40SG2	75.8	0.8	8.6	75.9	1.8	7.9	
240	400CEMI40SG3	77	1.1	9.6	77.4	1.8	7.8	

Ek Çizelge 14 (Devam). Sıcaklık öncesi ve sonrası için renk ölçerle elde edilen L, a ve b değerleri

#7	Numune Kodu	Sıcaklıktan	önce numune	ortalaması	Sıcaklıktan sonra numune o		e ortalaması
		L	а	b	L	а	b
241	400CEMI45HB1	76.5	0.5	8.7	76.4	0.4	4.2
242	400CEMI45HB2	79.7	0.5	9	76.8	0.4	4.3
243	400CEMI45HB3	75.3	0.6	9.1	80.1	0.2	4
244	400CEMI45HG1	77	0.6	9.3	76.5	0.4	4.3
245	400CEMI45HG2	78	0.6	9.4	75.8	0.2	4
246	400CEMI45HG3	78.6	0.7	9.6	76.3	0.2	4.1
247	400CEMI45SB1	79	0.6	9.1	75.9	0.4	4.2
248	400CEMI45SB2	78.7	0.6	9.3	77.7	0.4	4.3
249	400CEMI45SB3	78.5	0.6	9.3	77.8	0.2	4
250	400CEMI45SG1	78.1	0.5	8.8	76.8	0.4	4.3
251	400CEMI45SG2	77.9	0.6	9	78.5	0.2	4
252	400CEMI45SG3	78.7	0.7	9.4	74.3	0.2	4.1
253	400CEMII35HB1	74	0.6	9.8	76.9	1.7	7.3
254	400CEMII35HB2	73.6	0.6	9.1	79.5	1.4	6.8
255	400CEMII35HB3	73.1	0.5	9	74.6	1.2	6.2
256	400CEMII35HG1	74	0.6	9.5	79.1	1.3	6.4
257	400CEMII35HG2	73.4	0.6	9.4	76.7	1.3	6.5
258	400CEMII35HG3	74.7	0.6	9.4	79.1	1.3	6.5
259	400CEMII35SB1	74.2	0.7	9.3	78.2	1.7	7.3
260	400CEMII35SB2	76.1	0.8	9.6	74.8	1.4	6.8
261	400CEMII35SB3	74.8	0.8	9.1	75.6	1.2	6.2
262	400CEMII35SG1	76.9	0.8	9.6	73.5	1.3	6.4
263	400CEMII35SG2	72.9	0.8	9.4	70.2	1.3	6.5
264	400CEMII35SG3	73.8	0.9	9.5	70.7	1.3	6.5
265	400CEMII40HB1	78	0.6	9	72	1.2	4.8
266	400CEMII40HB2	78.5	0.7	8.7	73	1.2	4.7
267	400CEMII40HB3	75	0.6	8.3	74.7	1.1	4.8
268	400CEMII40HG1	76.6	0.7	9	73.7	1.1	4.8
269	400CEMII40HG2	79.4	0.8	9.6	72.5	1	4.6
270	400CEMII40HG3	76.2	0.8	9.3	75.8	1.1	4.7
271	400CEMII40SB1	75.4	0.5	8.9	75.9	1.2	4.8
272	400CEMII40SB2	75.2	0.4	8.4	77.9	1.2	4.7
273	400CEMII40SB3	76.7	0.4	8.6	77.8	1.1	4.8
274	400CEMII40SG1	78.3	0.4	8.3	77.2	1.1	4.8
275	400CEMII40SG2	77.1	0.5	8.4	77.1	1	4.6
276	400CEMII40SG3	76.5	0.6	9.1	77.7	1.1	4.7
277	400CEMII45HB1	78.8	1	9.9	77.9	1.5	6.9
278	400CEMII45HB2	80	1.1	10.8	78.6	1.5	6.8
279	400CEMII45HB3	80.9	1.1	11	79.3	1.3	6.5
280	400CEMII45HG1	80.5	1	10.7	77.1	1.6	6.9

Ek Çizelge 14 (Devam). Sıcaklık öncesi ve sonrası için renk ölçerle elde edilen L, a ve b değerleri

#8	Numune Kodu	Sıcaklıktan	önce numune	ortalaması	Sıcaklıktan sonra numune ort		e ortalaması
_		L	а	b	L	а	b
281	400CEMII45HG2	81.2	1.1	10.8	76	1.2	6.1
282	400CEMII45HG3	79	1.1	10.6	78.2	0.8	5
283	400CEMII45SB1	81.3	0.6	9.8	77.8	1.5	6.9
284	400CEMII45SB2	82.3	0.6	10.1	76.6	1.5	6.8
285	400CEMII45SB3	79	0.6	10.2	75.2	1.3	6.5
286	400CEMII45SG1	80.8	0.7	10.5	74.3	1.6	6.9
287	400CEMII45SG2	82.1	0.6	9.9	75.7	1.2	6.1
288	400CEMII45SG3	82.2	0.6	9.7	76	0.8	5
289	500CEMI35HB1	74.5	0.5	9.1	77.3	0.9	4.1
290	500CEMI35HB2	73.4	0.5	9.2	75.7	1	4.4
291	500CEMI35HB3	74.1	0.5	8.8	75.2	1	4.4
292	500CEMI35HG1	72.1	0.6	8.8	75.3	1	4.6
293	00CEMI35HG2	71.7	0.6	8.8	75	0.9	4.1
294	500CEMI35HG3	74.1	0.7	9.2	74.6	0.9	4.1
295	500CEMI35SB1	72.7	0.4	9	73.9	0.9	4.1
296	500CEMI35SB2	71.6	0.5	9	73.6	1	4.4
297	500CEMI35SB3	72.5	0.5	8.8	74.2	1	4.4
298	500CEMI35SG1	72.5	0.7	9	76.2	1	4.6
299	500CEMI35SG2	71.1	0.8	8.3	77.6	0.9	4.1
300	500CEMI35SG3	72.4	0.8	9	77.8	0.9	4.1
301	500CEMI40HB1	67.9	1.2	9.2	77	1	3.8
302	500CEMI40HB2	71.9	1.3	10.1	76.9	0.9	3.5
303	500CEMI40HB3	72.5	1.5	10.1	77.1	0.9	3.3
304	500CEMI40HG1	70.2	1.3	9.7	76.5	0.9	3.4
305	500CEMI40HG2	70.3	1.4	9.9	75.8	0.9	3.7
306	500CEMI40HG3	69.8	1.5	10	77.7	0.8	3.4
307	500CEMI40SB1	71.7	1.2	9.8	76	1	3.8
308	500CEMI40SB2	70.3	1.1	9.5	78.2	0.9	3.5
309	500CEMI40SB3	71.3	1	9.2	79	0.9	3.3
310	500CEMI40SG1	72.9	1.1	10	79.1	0.9	3.4
311	500CEMI40SG2	72.2	1.2	9.8	80.2	0.9	3.7
312	500CEMI40SG3	70.3	1.1	8.7	80.4	0.8	3.4
313	500CEMI45HB1	71	0.6	8.9	79.7	1.4	4.8
314	500CEMI45HB2	71.5	0.6	8.6	78.3	1.7	5.5
315	500CEMI45HB3	70.1	0.5	8.9	78.7	1.8	5.6
316	500CEMI45HG1	72.5	0.7	9.3	78.7	1.6	5.3
317	500CEMI45HG2	72.4	0.7	9	79.4	1.4	4.7
318	500CEMI45HG3	71	0.8	9.5	79.6	1.5	5.3
319	500CEMI45SB1	72.6	0.7	9.9	80.2	1.4	4.8
320	500CEMI45SB2	71.2	0.6	8.7	80.4	1.7	5.5

Ek Çizelge 14 (Devam). Sıcaklık öncesi ve sonrası için renk ölçerle elde edilen L, a ve b değerleri

#9	Numune Kodu	Sıcaklıktan	Sıcaklıktan önce numune ortalaması			Sıcaklıktan sonra numune ortalaması			
		L	a	b	L	а	b		
321	500CEMI45SB3	73.5	0.7	9.4	78.6	1.8	5.6		
322	500CEMI45SG1	72.5	0.7	9.4	76.9	1.6	5.3		
323	500CEMI45SG2	73.1	0.9	9.8	77.1	1.4	4.7		
324	500CEMI45SG3	72.4	0.7	9	76.2	1.5	5.3		
325	500CEMII35HB1	73	0.8	10.3	77.6	1.6	6.2		
326	500CEMII35HB2	74.6	0.9	10.3	80.2	1.6	6.1		
327	500CEMII35HB3	73	1	9.9	79.4	1.6	6.1		
328	500CEMII35HG1	73	0.9	10.2	78.5	1.6	6.1		
329	500CEMII35HG2	73.7	0.9	10.2	78.1	1.6	5.9		
330	500CEMII35HG3	73.3	1.4	10.2	79.3	1.5	5.8		
331	500CEMII35SB1	75.2	0.5	10.2	79.5	1.6	6.2		
332	500CEMII35SB2	76.4	0.6	10.2	74.7	1.6	6.1		
333	500CEMII35SB3	75.3	0.5	10.2	73.8	1.6	6.1		
334	500CEMII35SG1	74.1	0.6	9.9	75	1.6	6.1		
335	500CEMII35SG2	73	0.5	9.6	71.1	1.6	5.9		
336	500CEMII35SG3	73.7	0.6	10.4	72.9	1.5	5.8		
337	500CEMII40HB1	74.5	0.9	10.5	74.4	2	6.8		
338	500CEMII40HB2	75.2	1	10.4	71.9	2	6.9		
339	500CEMII40HB3	74.4	0.9	10.2	71.1	1.9	6.1		
340	500CEMII40HG1	76.3	1.1	10.9	72.2	1.8	6.2		
341	500CEMII40HG2	73.3	1	10.5	72.6	2	6.5		
342	500CEMII40HG3	72.6	0.9	10	72.8	1.9	6.4		
343	500CEMII40SB1	71.8	0.7	9.5	71.9	2	6.8		
344	500CEMII40SB2	75.8	0.7	10	73.1	2	6.9		
345	500CEMII40SB3	74.1	0.7	9.9	73.7	1.9	6.1		
346	500CEMII40SG1	74	0.7	10	74.2	1.8	6.2		
347	500CEMII40SG2	77.3	0.8	10.2	74.5	2	6.5		
348	500CEMII40SG3	77.2	0.7	9.7	77.4	1.9	6.4		
349	500CEMII45HB1	73.1	0.7	9.3	77	2.9	8.7		
350	500CEMII45HB2	76.2	0.7	9.8	76	3	8.7		
351	500CEMII45HB3	72	0.6	9.6	74.2	2.9	8.6		
352	500CEMII45HG1	75.8	0.8	10.4	74.7	2.9	8.7		
353	500CEMII45HG2	75.5	0.7	10.4	74.5	2.9	8.6		
354	500CEMII45HG3	75.3	0.9	10.9	75.6	2.6	8.2		
355	500CEMII45SB1	72.6	0.8	10.5	74.5	2.9	8.7		
356	500CEMII45SB2	72.6	0.6	10.1	76.3	2.9	8.7		
357	500CEMII45SB3	74.2	0.6	9.7	77.2	2.9	8.6		
358	500CEMII45SG1	74.5	0.7	10.5	76	2.9	8.7		
359	500CEMII45SG2	72.3	0.6	9.6	76.9	2.9	8.6		
360	500CEMII45SG3	71.6	0.8	9.8	74.6	2.6	8.2		

Ek Çizelge 14 (Devam). Sıcaklık öncesi ve sonrası için renk ölçerle elde edilen L, a ve b değerleri

#10	Numune Kodu	Sıcaklıktan	önce numune	e ortalaması	Sıcaklıktan sonra numune orta		e ortalaması
		L	а	b	L	a	b
361	600CEMI35HB1	72	0.8	9.8	77.3	1.6	5.1
362	600CEMI35HB2	72.7	0.6	9.4	76.9	1.6	5.7
363	600CEMI35HB3	71.4	0.6	9.6	78.6	1.7	5.8
364	600CEMI35HG1	71	0.7	9.5	77	1.8	6
365	600CEMI35HG2	70.4	0.6	9.1	76.1	1.8	6
366	600CEMI35HG3	69.7	0.6	9.2	75.9	1.7	5.6
367	600CEMI35SB1	71.9	0.5	8.6	77.6	1.6	5.3
368	600CEMI35SB2	71	0.6	8.5	77.4	1.7	5.7
369	600CEMI35SB3	69.7	0.7	9	77.4	1.6	5.4
370	600CEMI35SG1	68.3	0.7	8.8	78	1.6	5.3
371	600CEMI35SG2	70.4	0.7	8.9	74	1.7	5.7
372	600CEMI35SG3	70.1	0.7	8.8	75.6	1.7	5.9
373	600CEMI40HB1	71.4	0.7	9.6	77.7	2	6.4
374	600CEMI40HB2	72.1	0.6	9.7	78	2.1	6.5
375	600CEMI40HB3	73.6	0.7	9.4	82	1.8	5.9
376	600CEMI40HG1	72	0.8	9.6	81.4	1.9	6.1
377	600CEMI40HG2	72.8	0.7	9.4	79.1	2	6.3
378	600CEMI40HG3	71.4	0.9	10.4	78.6	2.1	6.6
379	600CEMI40SB1	72	0.8	9.8	78.7	2	6.4
380	600CEMI40SB2	72.5	0.7	9.5	78.6	2.1	6.5
381	600CEMI40SB3	73.4	0.8	9.7	80.2	1.8	5.9
382	600CEMI40SG1	70.7	0.9	10	80	1.9	6.1
383	600CEMI40SG2	73.4	0.9	10.2	78.5	2	6.3
384	600CEMI40SG3	72.6	1	10.4	79.1	2.1	6.6
385	600CEMI45HB1	72.8	0.8	10.2	77.9	1.8	6.3
386	600CEMI45HB2	72.9	0.8	9.9	78.4	2.1	7.2
387	600CEMI45HB3	73.4	0.8	10	77.8	1.9	6.6
388	600CEMI45HG1	71.6	0.8	9.9	77.5	2	6.8
389	600CEMI45HG2	72.5	0.8	9.7	77.9	1.8	6.2
390	600CEMI45HG3	72.3	0.7	9.6	79	2	7
391	600CEMI45SB1	72.2	0.7	9.8	79.4	1.8	6.3
392	600CEMI45SB2	73.2	0.7	9.4	76.5	2.1	7.2
393	600CEMI45SB3	71.8	0.7	9.6	78.4	1.9	6.6
394	600CEMI45SG1	70.4	0.7	9.7	80	2	6.8
395	600CEMI45SG2	71.4	0.7	9.5	78.7	1.8	6.2
396	600CEMI45SG3	72.1	0.7	9.4	77.8	2	7
397	600CEMII35HB1	72.8	0.7	10.2	77.7	2.2	7.1
398	600CEMII35HB2	72.4	0.7	10.1	77.3	2.3	7.7
399	600CEMII35HB3	72.4	0.7	10	79.4	2.2	7.1
400	600CEMII35HG1	70.8	0.8	10	79.4	2.2	7.1

Ek Çizelge 14 (Devam). Sıcaklık öncesi ve sonrası için renk ölçerle elde edilen L, a ve b değerleri

#11	Numune Kodu	Sıcaklıktan	önce numune	ortalaması	Sıcaklıktan sonra numune		e ortalaması
		L	а	b	L	а	b
401	600CEMII35HG2	72.2	0.8	10.1	80.9	2	6.8
402	600CEMII35HG3	72.7	0.9	10.4	78.7	1.9	6.5
403	600CEMII35SB1	72.5	0.9	9.7	81	2.2	7.1
404	600CEMII35SB2	71.6	1	10.4	79.7	2.3	7.7
405	600CEMII35SB3	72.2	1	10	80.6	2.2	7.1
406	600CEMII35SG1	73	1.1	10.2	79	2.2	7.1
407	600CEMII35SG2	71.5	1	9.9	77.3	2	6.8
408	600CEMII35SG3	71.7	1	9.4	78.3	1.9	6.5
409	600CEMII40HB1	72.8	0.6	9	79.4	2.5	7.2
410	600CEMII40HB2	72.8	0.8	10	77.8	2.6	7.1
411	00CEMII40HB3	73	0.6	9.3	80	2.6	7.2
412	600CEMII40HG1	72	0.6	9.4	74.8	2.6	7.3
413	600CEMII40HG2	71.2	0.7	9.4	75.9	2.5	7
414	600CEMII40HG3	71.9	0.6	9.8	77.4	2.5	7
415	600CEMII40SB1	73.7	0.7	9.7	76	2.5	7
416	600CEMII40SB2	74	0.7	9.9	75.2	2.6	7.2
417	600CEMII40SB3	73.4	0.7	9.4	76.4	2.6	7.2
418	600CEMII40SG1	72.4	0.6	9.8	76.4	2.6	7.3
419	600CEMII40SG2	74	0.7	10.2	76.8	2.5	7
420	600CEMII40SG3	73.2	0.7	9.8	76.2	2.5	7
421	600CEMII45HB1	77	0.7	9.7	78.3	2.2	7.1
422	600CEMII45HB2	72.1	0.6	9.4	79.4	2.2	7.3
423	600CEMII45HB3	73.5	0.7	10	74.8	2.3	7.3
424	600CEMII45HG1	73.8	0.6	10	76.8	2.3	7.5
425	600CEMII45HG2	73.5	0.6	9.9	75.5	2.4	7.4
426	600CEMII45HG3	75	0.6	10.2	76.8	2.4	7.5
427	600CEMII45SB1	73.5	0.7	9.6	77.8	2.2	7.1
428	600CEMII45SB2	73.2	0.7	9.6	77.3	2.2	7.3
429	600CEMII45SB3	74.5	0.9	10.4	79	2.3	7.3
430	600CEMII45SG1	72.9	0.8	10	74.2	2.3	7.5
431	600CEMII45SG2	73.9	0.8	10.3	75.9	2.4	7.4
432	600CEMII45SG3	74.3	0.9	10.5	80.6	2.4	7.5
433	700CEMI35HB1	71.1	0.9	9.6	74.6	1.1	4.5
434	700CEMI35HB2	69.8	1	9.9	78.4	1.2	4.9
435	700CEMI35HB3	72.2	1	9.3	76.8	1.1	4.7
436	700CEMI35HG1	69.8	1.1	9.7	79.5	1.2	4.7
437	700CEMI35HG2	70	1	9.1	77.2	1.1	4.7
438	700CEMI35HG3	70.7	1.1	9.2	78.1	0.8	3.4
439	700CEMI35SB1	69.8	0.4	8.8	73	1	4.3
440	700CEMI35SB2	73	0.4	8.4	75.9	1.2	4.7

Ek Çizelge 14 (Devam). Sıcaklık öncesi ve sonrası için renk ölçerle elde edilen L, a ve b değerleri

#12	Numune Kodu	Sıcaklıktan	önce numune	ortalaması	Sıcaklıktan sonra numune ortala		
		L	а	b	L	а	b
441	700CEMI35SB3	74.1	0.5	8.3	70.6	1	4.2
442	700CEMI35SG1	71.9	0.5	8.7	70.7	1.1	4.7
443	700CEMI35SG2	71.8	0.5	8.9	71.3	1.2	4.8
444	700CEMI35SG3	70.7	0.6	8.3	73.3	1.1	4.7
445	700CEMI40HB1	73.3	0.8	9.1	74.9	1.1	4.9
446	700CEMI40HB2	73	0.8	10.8	74	1	3.5
447	700CEMI40HB3	75	0.8	9.4	71.9	1.5	5.7
448	700CEMI40HG1	74.8	0.8	9.1	74	1.4	5.3
449	700CEMI40HG2	73.2	0.7	9.3	75.6	1.6	5.5
450	700CEMI40HG3	76.8	0.8	9.1	77.9	1.5	5.5
451	700CEMI40SB1	71.8	1.1	9.8	78	1.3	4.9
452	700CEMI40SB2	70.3	1.1	9.5	77.4	0.9	3.5
453	700CEMI40SB3	71.3	1	9.2	76.9	1.5	5.7
454	700CEMI40SG1	72.9	1.1	10	78.3	1.4	5.3
455	700CEMI40SG2	72.2	1.2	9.8	77.3	1.6	5.5
456	700CEMI40SG3	70.3	1.1	8.7	77.7	1.5	5.5
457	700CEMI45HB1	71	0.6	8.9	79.7	1.1	5
458	700CEMI45HB2	71.5	0.6	8.6	78.4	1.2	5.3
459	700CEMI45HB3	70.1	0.5	8.9	75.4	1.3	5.9
460	700CEMI45HG1	72.5	0.7	9.3	77.7	1.3	5.5
461	700CEMI45HG2	72.4	0.7	9	78.4	1.1	5
462	700CEMI45HG3	71	0.8	9.5	76.9	1.2	5.2
463	700CEMI45SB1	72.6	0.7	9.9	76	1.1	5
464	700CEMI45SB2	71.2	0.6	8.7	74.1	1.2	5.3
465	700CEMI45SB3	73.5	0.7	9.4	75.2	1.3	5.9
466	700CEMI45SG1	72.5	0.7	9.4	76.4	1.3	5.5
467	700CEMI45SG2	73.1	0.9	9.8	76.6	1.1	5
468	700CEMI45SG3	72.4	0.7	9	75.9	1.2	5.2
469	700CEMII35HB1	73	0.8	10.3	76	1.9	5
470	700CEMII35HB2	74.6	0.9	10.3	74.8	1.8	5.2
471	700CEMII35HB3	73	1	9.9	74.8	2	5.6
472	700CEMII35HG1	73	0.9	10.2	74.6	1.9	5.5
473	700CEMII35HG2	73.7	0.9	10.2	75.8	1.7	4.9
474	700CEMII35HG3	73.3	1.4	10.2	72.7	1.6	4.5
475	700CEMII35SB1	75.2	0.5	10.2	73.6	1.9	5
476	700CEMII35SB2	76.4	0.6	10.2	76.6	1.8	5.2
477	700CEMII35SB3	75.3	0.5	10.2	76.3	2	5.6
478	700CEMII35SG1	74.1	0.6	9.9	77.9	1.9	5.5
479	700CEMII35SG2	73	0.5	9.6	76.8	1.7	4.9
480	700CEMII35SG3	73.7	0.6	10.4	77.5	1.6	4.5

Ek Çizelge 14 (Devam). Sıcaklık öncesi ve sonrası için renk ölçerle elde edilen L, a ve b değerleri

#13	Numune Kodu	Sıcaklıktan	önce numune	ortalaması	Sıcaklıktan sonra numune		e ortalaması
		L	а	b	L	a	b
481	700CEMII40HB1	74.5	0.9	10.5	76.2	3.8	10.1
482	700CEMII40HB2	75.2	1	10.4	77.9	3.3	8.6
483	700CEMII40HB3	74.4	0.9	10.2	74.6	3.5	9.3
484	700CEMII40HG1	76.3	1.1	10.9	77.2	3.5	9.4
485	700CEMII40HG2	73.3	1	10.5	76.8	3.6	9.6
486	700CEMII40HG3	72.6	0.9	10	77.5	3.5	9.3
487	700CEMII40SB1	71.8	0.7	9.5	78.1	3.4	9
488	700CEMII40SB2	75.8	0.7	10	79.5	3.4	9.1
489	700CEMII40SB3	74.1	0.7	9.9	79.4	3.8	10.1
490	700CEMII40SG1	74	0.7	10	79.5	3.5	9.4
491	700CEMII40SG2	77.3	0.8	10.2	81.2	3.4	8.9
492	700CEMII40SG3	77.2	0.7	9.7	78.4	3.6	9.4
493	700CEMII45HB1	73.1	0.7	9.3	78.6	2.8	8
494	700CEMII45HB2	76.2	0.7	9.8	78.7	2.9	8.3
495	700CEMII45HB3	72	0.6	9.6	79.9	2.8	8.1
496	700CEMII45HG1	75.8	0.8	10.4	78.5	2.6	8
497	700CEMII45HG2	75.5	0.7	10.4	80.9	2.8	8.1
498	700CEMII45HG3	75.3	0.9	10.9	79.7	3	8
499	700CEMII45SB1	72.6	0.8	10.5	80.3	2.8	8
500	700CEMII45SB2	72.6	0.6	10.1	77.3	2.9	8.3
501	700CEMII45SB3	74.2	0.6	9.7	76.7	2.8	8.1
502	700CEMII45SG1	74.5	0.7	10.5	76.2	2.6	8
503	700CEMII45SG2	72.3	0.6	9.6	77.5	2.8	8.1
504	700CEMII45SG3	71.6	0.8	9.8	78.9	3	8
505	800CEMI35HB1	72	0.8	9.8	79.8	2.4	11.4
506	800CEMI35HB2	72.7	0.6	9.4	77.8	1.9	10.3
507	800CEMI35HB3	71.4	0.6	9.6	79.6	2.3	11.1
508	800CEMI35HG1	71	0.7	9.5	77.8	2.2	11
509	800CEMI35HG2	70.4	0.6	9.1	79.8	2.4	11.4
510	800CEMI35HG3	69.7	0.6	9.2	78.8	2.4	11.4
511	800CEMI35SB1	71.9	0.5	8.6	72	2.4	11.4
512	800CEMI35SB2	71	0.6	8.5	75.6	1.9	10.3
513	800CEMI35SB3	69.7	0.7	9	72.6	2.3	11.1
514	800CEMI35SG1	68.3	0.7	8.8	72.2	2.2	11
515	800CEMI35SG2	70.4	0.7	8.9	73	2.4	11.4
516	800CEMI35SG3	70.1	0.7	8.8	72.8	2.4	11.4
517	800CEMI40HB1	71.4	0.7	9.6	71.8	1.9	9.7
518	800CEMI40HB2	72.1	0.6	9.7	71.6	1.7	9.1
519	800CEMI40HB3	73.6	0.7	9.4	72.7	1.7	9.3
520	800CEMI40HG1	72	0.8	9.6	71.8	1.8	9.4

Ek Çizelge 14 (Devam). Sıcaklık öncesi ve sonrası için renk ölçerle elde edilen L, a ve b değerleri
#14	Numune Kodu	Sıcaklıktan önce numune ortalaması			Sıcaklıktan sonra numune ortalaması			
		L	а	b	L	а	b	
521	800CEMI40HG2	72.8	0.7	9.4	72.7	1.5	9	
522	800CEMI40HG3	71.4	0.9	10.4	71.8	1.4	8.9	
523	800CEMI40SB1	72	0.8	9.8	74.5	1.9	9.7	
524	800CEMI40SB2	72.5	0.7	9.5	74.2	1.7	9.1	
525	800CEMI40SB3	73.4	0.8	9.7	74	1.7	9.3	
526	800CEMI40SG1	70.7	0.9	10	76	1.8	9.4	
527	800CEMI40SG2	73.4	0.9	10.2	78.3	1.5	9	
528	800CEMI40SG3	72.6	1	10.4	74.7	1.4	8.9	
529	800CEMI45HB1	72.8	0.8	10.2	77	1.6	10.1	
530	800CEMI45HB2	72.9	0.8	9.9	73	2.3	11.6	
531	800CEMI45HB3	73.4	0.8	10	75.5	2.7	12.2	
532	800CEMI45HG1	71.6	0.8	9.9	73.5	2	10.9	
533	800CEMI45HG2	72.5	0.8	9.7	76.6	1.8	10.5	
534	800CEMI45HG3	72.3	0.7	9.6	74.6	2.8	12.4	
535	800CEMI45SB1	72.2	0.7	9.8	78	2.4	11.7	
536	800CEMI45SB2	73.2	0.7	9.4	75.9	1.6	10.1	
537	800CEMI45SB3	71.8	0.7	9.6	77	2.3	11.6	
538	800CEMI45SG1	70.4	0.7	9.7	75.2	2.7	12.2	
539	800CEMI45SG2	71.4	0.7	9.5	76	2	10.9	
540	800CEMI45SG3	72.1	0.7	9.4	77.1	1.8	10.5	
541	800CEMII35HB1	72.8	0.7	10.2	77.5	1.5	5.2	
542	800CEMII35HB2	72.4	0.7	10.1	77.4	1.5	5.8	
543	800CEMII35HB3	72.4	0.7	10	76.5	1.4	5.5	
544	800CEMII35HG1	70.8	0.8	10	75.5	1.5	6.4	
545	800CEMII35HG2	72.2	0.8	10.1	78	1.6	5.9	
546	800CEMII35HG3	72.7	0.9	10.4	77.5	1.5	6.1	
547	800CEMII35SB1	72.5	0.9	9.7	77.1	1.5	5.2	
548	800CEMII35SB2	71.6	1	10.4	78	1.5	5.8	
549	800CEMII35SB3	72.2	1	10	76.3	1.4	5.5	
550	800CEMII35SG1	73	1.1	10.2	73.2	1.5	6.4	
551	800CEMII35SG2	71.5	1	9.9	77.4	1.6	5.9	
552	800CEMII35SG3	71.7	1	9.4	77.9	1.5	6.1	
553	800CEMII40HB1	72.8	0.6	9	81.7	1.2	4.7	
554	800CEMII40HB2	72.8	0.8	10	80.5	1.3	5.2	
555	800CEMII40HB3	73	0.6	9.3	81.3	1.4	5.6	
556	800CEMII40HG1	72	0.6	9.4	77.4	1.4	5.8	
557	800CEMII40HG2	71.2	0.7	9.4	79.2	1.4	5.4	
558	800CEMII40HG3	71.9	0.6	9.8	77.8	1.5	5.7	
559	800CEMII40SB1	73.7	0.7	9.7	80.1	1.2	4.7	
560	800CEMII40SB2	74	0.7	9.9	80.5	1.3	5.2	

Ek Çizelge 14 (Devam). Sıcaklık öncesi ve sonrası için renk ölçerle elde edilen L, a ve b değerleri

#15	Numune Kodu	Sıcaklıktan önce numune ortalaması			Sıcaklıktan sonra numune ortalaması			
		L	a	b	L	a	b	
561	800CEMII40SB3	73.4	0.7	9.4	78.5	1.4	5.6	
562	800CEMII40SG1	72.4	0.6	9.8	79.2	1.4	5.8	
563	800CEMII40SG2	74	0.7	10.2	78.5	1.4	5.4	
564	800CEMII40SG3	73.2	0.7	9.8	79	1.5	5.7	
565	800CEMII45HB1	77	0.7	9.7	76.8	1.7	5.8	
566	800CEMII45HB2	72.1	0.6	9.4	77.2	1.8	6.2	
567	800CEMII45HB3	73.5	0.7	10	78.6	1.6	5.8	
568	800CEMII45HG1	73.8	0.6	10	78.1	1.8	6.1	
569	800CEMII45HG2	73.5	0.6	9.9	79.2	1.6	5.5	
570	800CEMII45HG3	75	0.6	10.2	78.6	1.8	6.2	
571	800CEMII45SB1	73.5	0.7	9.6	77	1.7	5.8	
572	800CEMII45SB2	73.2	0.7	9.6	79.2	1.8	6.2	
573	800CEMII45SB3	74.5	0.9	10.4	79.8	1.6	5.8	
574	800CEMII45SG1	72.9	0.8	10	77.7	1.8	6.1	
575	800CEMII45SG2	73.9	0.8	10.3	77.8	1.6	5.5	
576	800CEMII45SG3	74.3	0.9	10.5	76.9	1.8	6.2	

Ek Çizelge 14 (Devam). Sıcaklık öncesi ve sonrası için renk ölçerle elde edilen L, a ve b değerleri

#1 Numune Kodu		Sıcaklıktan	önce numune	e ortalaması	Sıcaklıktan sonra numune ortalaması			
		L	а	b	L	а	b	
1	100CEMI35HB1	93.27368	-3.83154	7.345608	89.99901	-3.82631	7.247128	
2	100CEMI35HB2	93.75985	-4.0146	7.902121	92.09924	-3.55223	7.37138	
3	100CEMI35HB3	91.99727	-3.89238	7.923716	92.79477	-3.78923	7.370986	
4	100CEMI35HG1	92.94168	-3.78298	7.724312	92.94426	-3.84463	7.483456	
5	100CEMI35HG2	93.00777	-3.78906	7.43212	93.0035	-3.66449	7.087839	
6	100CEMI35HG3	93.29141	-3.8008	7.220377	92.86692	-3.83058	7.359084	
7	100CEMI35SB1	91.53283	-3.70464	7.366252	91.81435	-3.61666	7.662127	
8	100CEMI35SB2	93.54741	-3.70981	7.311161	92.84074	-3.70054	7.788599	
9	100CEMI35SB3	93.11404	-3.7395	7.603321	92.34483	-3.70362	8.124772	
10	100CEMI35SG1	92.9804	-3.75948	7.530623	92.45268	-3.72931	8.111284	
11	100CEMI35SG2	93.54239	-3.74511	7.435638	93.11517	-3.90074	8.303668	
12	100CEMI35SG3	93.03805	-3.76464	7.386501	92.89776	-4.19043	7.990759	
13	100CEMI40HB1	92.82232	-3.75586	7.436994	92.46054	-4.35397	8.350464	
14	100CEMI40HB2	92.75524	-3.73992	7.498108	92.77764	-4.20097	8.613392	
15	100CEMI40HB3	92.84875	-3.73569	7.734452	92.91194	-4.1291	8.462586	
16	100CEMI40HG1	92.89412	-3.74168	7.204316	92.97106	-4.0754	8.375376	
17	100CEMI40HG2	92.87362	-3.73886	7.334952	93.18361	-4.19683	8.135651	
18	100CEMI40HG3	92.99051	-3.71502	7.59227	93.12034	-4.03747	8.67278	
19	100CEMI40SB1	92.54503	-3.69604	7.48873	93.12153	-4.02079	8.667048	
20	100CEMI40SB2	92.84118	-3.6808	7.539842	93.0653	-3.95757	8.715224	
21	100CEMI40SB3	92.89471	-3.71356	7.694797	92.9034	-3.9607	8.638383	
22	100CEMI40SG1	92.66546	-3.74618	7.583735	93.26861	-3.95118	8.659275	
23	100CEMI40SG2	92.5967	-3.72937	7.66696	93.00684	-3.98624	8.935655	
24	100CEMI40SG3	92.67378	-3.69993	7.745637	92.85291	-4.09462	8.498619	
25	100CEMI45HB1	92.4427	-3.67734	6.929592	92.63299	-4.10574	8.365256	
26	100CEMI45HB2	91.43072	-3.6925	6.900266	92.92589	-3.99123	8.534579	
27	100CEMI45HB3	92.35995	-3.71257	6.613529	93.05675	-4.11105	8.467008	
28	100CEMI45HG1	92.19177	-3.72049	7.201438	92.35346	-4.02597	8.89716	
29	100CEMI45HG2	92.30653	-3.73091	7.009337	92.47846	-4.05546	8.416628	
30	100CEMI45HG3	92.71549	-3.74246	6.934319	92.87466	-4.01877	8.439122	
31	100CEMI45SB1	92.34109	-3.66092	7.069537	92.98993	-4.04806	8.533129	
32	100CEMI45SB2	91.98081	-3.9632	7.20665	93.12368	-4.02166	8.693976	
33	100CEMI45SB3	92.94374	-3.89536	7.319312	92.40488	-3.89012	7.923785	
34	100CEMI45SG1	91.56758	-3.83536	7.029811	93.42348	-3.92761	8.337795	
35	100CEMI45SG2	92.34236	-3.83207	7.362514	91.64336	-3.92463	8.578612	
36	100CEMI45SG3	90.71167	-3.8607	7.589775	91.90146	-3.75455	8.753908	
37	100CEMII35HB1	91.7523	-3.44247	7.285464	93.41798	-3.95409	8.110448	
38	100CEMII35HB2	93.01643	-3.60626	6.928841	92.53091	-3.94967	8.006466	
39	100CEMII35HB3	92.45761	-3.58198	7.020726	91.65767	-3.89996	8.268276	
40	100CEMII35HG1	92.17106	-3.6064	6.757926	93.23261	-3.92115	8.222959	

Ek Çizelge 15. Sıcaklık öncesi ve sonrası için dijital fotoğraf makinesi ile elde edilen L, a ve b değerleri

#2	Numune Kodu	Sıcaklıktan	önce numune	e ortalaması	Sıcaklıktan sonra numune ortalaması			
		L	а	b	L	а	b	
41	100CEMII35HG2	92.3385	-3.57794	6.829381	93.02188	-3.95189	8.057041	
42	100CEMII35HG3	92.86418	-3.61445	6.963484	92.91061	-3.77141	8.457977	
43	100CEMII35SB1	92.51135	-3.59645	7.061847	93.29152	-3.80044	8.347713	
44	100CEMII35SB2	92.46782	-3.64077	7.204055	92.93182	-3.7249	8.704319	
45	100CEMII35SB3	92.24484	-3.58407	7.535974	92.82545	-3.80734	8.380125	
46	100CEMII35SG1	91.4244	-3.53526	7.054936	93.64966	-3.6981	8.222456	
47	100CEMII35SG2	92.3684	-3.6463	7.219722	93.38676	-3.68097	8.172217	
48	100CEMII35SG3	92.40047	-3.70571	7.341713	91.10492	-3.52172	7.413489	
49	100CEMII40HB1	93.48854	-3.54622	6.941481	91.48937	-3.44803	7.442696	
50	100CEMII40HB2	93.30011	-3.51995	6.942485	92.26985	-3.32862	7.466156	
51	100CEMII40HB3	92.8683	-3.55701	6.816642	93.5099	-3.53016	7.527438	
52	100CEMII40HG1	93.19344	-3.69622	6.820315	93.51625	-3.59103	7.721093	
53	100CEMII40HG2	93.08307	-3.70949	6.529126	93.33363	-3.66164	8.171218	
54	100CEMII40HG3	93.01882	-3.48908	6.462985	93.87962	-3.5895	7.914151	
55	100CEMII40SB1	92.68839	-3.00702	5.591406	93.01554	-3.61521	7.717494	
56	100CEMII40SB2	92.69335	-3.21646	6.028482	93.61328	-3.62114	7.691336	
57	100CEMII40SB3	93.09275	-3.41602	6.37401	94.00001	-3.63424	8.084437	
58	100CEMII40SG1	93.56815	-3.68598	6.578293	94.18209	-3.66821	7.6566	
59	100CEMII40SG2	92.82457	-3.77741	6.898841	94.0035	-3.60472	7.829484	
60	100CEMII40SG3	92.7264	-3.07687	5.976862	92.44503	-3.70723	8.481584	
61	100CEMII45HB1	92.55557	-3.16521	6.541317	92.73369	-3.7523	8.608657	
62	100CEMII45HB2	92.05796	-3.42341	6.82955	92.57008	-3.61212	8.927974	
63	100CEMII45HB3	91.57154	-3.47844	7.220159	92.04835	-3.6272	8.634844	
64	100CEMII45HG1	93.22637	-3.67634	7.169686	92.62813	-3.75532	8.44546	
65	100CEMII45HG2	92.01221	-3.76818	7.388144	91.77413	-3.71196	8.572605	
66	100CEMII45HG3	93.61069	-3.82092	7.15823	-	-	-	
67	100CEMII45SB1	92.62573	-3.78505	7.532729	-	-	-	
68	100CEMII45SB2	92.11957	-3.82049	7.520406	-	-	-	
69	100CEMII45SB3	93.53635	-3.76667	7.303482	-	-	-	
70	100CEMII45SG1	93.10436	-3.79424	7.25148	-	-	-	
71	100CEMII45SG2	92.62573	-3.78505	7.532729	-	-	-	
72	100CEMII45SG3	92.62573	-3.78505	7.532729	-	-	-	
73	200CEMI35HB1	91.76296	-3.34006	6.774148	89.76183	-3.42324	7.542212	
74	200CEMI35HB2	91.77068	-3.37313	6.558062	90.46467	-3.33711	7.479876	
75	200CEMI35HB3	92.95749	-3.59865	7.051098	90.0693	-3.26259	6.857836	
76	200CEMI35HG1	91.77889	-3.69542	6.634747	92.00857	-3.36532	6.870534	
77	200CEMI35HG2	91.76689	-3.79998	6.998178	92.35357	-3.33032	7.099298	
78	200CEMI35HG3	92.47226	-3.71429	7.47993	93.21787	-3.41126	7.444415	
79	200CEMI35SB1	90.83192	-3.78449	7.151407	91.45013	-3.35293	7.363818	
80	200CEMI35SB2	91.61943	-3.70136	7.15765	92.23605	-3.39942	7.507246	

Ek Çizelge 15 (Devam). Sıcaklık öncesi ve sonrası için dijital fotoğraf makinesi ile elde edilen

L, a ve b değerleri

Ek Çizelge 15 (Devam). Sıcaklık öncesi ve sonrası için dijital fotoğraf makinesi ile elde edilen

L, a ve b değerleri

#3	Numune Kodu	Sıcaklıktan	önce numune	e ortalaması	Sıcaklıktan sonra numune ortalaması			
		L	а	b	L	а	b	
81	200CEMI35SB3	91.36538	-3.79875	7.27865	92.36636	-3.48365	8.034978	
82	200CEMI35SG1	91.46774	-3.74539	7.237985	91.86702	-3.48788	7.591578	
83	200CEMI35SG2	91.34782	-3.84007	6.903929	91.9984	-3.58553	7.513919	
84	200CEMI35SG3	91.06674	-3.88123	7.631442	92.13951	-3.62441	7.894592	
85	200CEMI40HB1	92.94283	-3.78274	7.399336	93.48113	-3.65331	8.364132	
86	200CEMI40HB2	92.71105	-3.76455	7.444291	93.40267	-3.61764	8.244482	
87	200CEMI40HB3	92.57332	-3.7732	7.607567	92.8046	-3.70656	8.480114	
88	200CEMI40HG1	91.73378	-3.80223	6.975591	91.92523	-3.80378	7.959079	
89	200CEMI40HG2	93.55727	-3.81081	7.062565	93.70886	-3.78071	7.645156	
90	200CEMI40HG3	91.78775	-3.82669	7.316099	92.69584	-3.70499	8.437347	
91	200CEMI40SB1	92.09346	-3.81142	6.920097	92.99476	-3.64664	7.523358	
92	200CEMI40SB2	90.85892	-3.82227	7.36652	92.04487	-3.64872	8.064841	
93	200CEMI40SB3	92.02621	-3.77956	7.454928	92.85598	-3.65348	8.144624	
94	200CEMI40SG1	91.75151	-3.77088	7.978681	92.75774	-3.66119	8.397875	
95	200CEMI40SG2	92.59751	-3.79052	7.402398	93.20119	-3.6944	7.874881	
96	200CEMI40SG3	92.21226	-3.75941	7.575698	92.73192	-3.637	8.253547	
97	200CEMI45HB1	90.77834	-3.79202	6.855066	91.56438	-3.69109	7.9793	
98	200CEMI45HB2	90.56303	-3.74252	7.39779	90.90522	-3.69942	7.964792	
99	200CEMI45HB3	91.99986	-3.71671	7.521867	92.10535	-3.71885	8.295928	
100	200CEMI45HG1	91.25869	-3.68597	7.739868	91.40801	-3.63972	8.668239	
101	200CEMI45HG2	91.84058	-3.77788	6.612519	91.54239	-3.70411	8.389346	
102	200CEMI45HG3	91.43097	-3.77308	6.880106	92.0891	-3.70131	7.801657	
103	200CEMI45SB1	91.58822	-3.76387	7.296891	91.84642	-3.76681	8.152849	
104	200CEMI45SB2	91.91545	-3.57803	6.875193	92.08847	-3.72679	8.120807	
105	200CEMI45SB3	91.30247	-3.64657	7.105995	92.46962	-3.73794	8.492434	
106	200CEMI45SG1	91.78482	-3.66952	7.300004	92.0312	-3.73194	8.089584	
107	200CEMI45SG2	91.30517	-3.64659	7.353506	91.65737	-3.83985	8.373064	
108	200CEMI45SG3	91.77925	-3.679	7.313846	91.90408	-3.84956	8.245901	
109	200CEMII35HB1	91.68229	-3.7209	7.210428	92.48045	-3.93576	8.402052	
110	200CEMII35HB2	91.76235	-3.69839	7.270119	92.96313	-3.89582	9.201165	
111	200CEMII35HB3	92.84566	-3.48803	7.715123	92.03672	-3.8889	8.775951	
112	200CEMII35HG1	91.68678	-3.62765	7.645849	92.83526	-3.91263	9.044092	
113	200CEMII35HG2	93.30267	-3.71082	7.430501	92.78415	-3.85326	9.098757	
114	200CEMII35HG3	93.47031	-3.6836	7.275657	93.43256	-3.97558	8.715622	
115	200CEMII35SB1	90.22763	-3.60797	7.152737	90.01401	-3.77357	8.337908	
116	200CEMII35SB2	93.52168	-3.72054	7.28202	93.0402	-3.8783	8.10942	
117	200CEMII35SB3	92.1403	-3.72006	6.951	92.9491	-3.91882	8.113236	
118	200CEMII35SG1	92.36203	-3.74188	7.787848	92.76249	-3.85948	8.02897	
119	200CEMII35SG2	93.35075	-3.70195	7.959006	93.18092	-3.85514	8.503304	
120	200CEMII35SG3	93.08201	-3.70747	7.581011	92.99735	-3.88341	8.749981	

#4	Numune Kodu	Sıcaklıktan	önce numune	ortalaması	Sıcaklıktan sonra numune ortalaması			
		L	a	b	L	а	b	
121	200CEMII40HB1	92.78438	-3.74527	6.852361	92.66169	-3.73538	8.282282	
122	200CEMII40HB2	93.33275	-3.81026	7.077365	93.2897	-3.71718	7.258619	
123	200CEMII40HB3	92.79552	-3.79098	7.392494	92.8118	-3.88565	7.769505	
124	200CEMII40HG1	93.22923	-3.76736	7.555317	93.10485	-3.86737	8.448786	
125	200CEMII40HG2	91.54682	-3.81612	7.165511	92.34787	-3.99604	8.231446	
126	200CEMII40HG3	92.82573	-3.81067	7.388121	91.81066	-4.14437	8.305821	
127	200CEMII40SB1	93.09159	-3.78747	8.142774	93.07451	-4.18337	8.448352	
128	200CEMII40SB2	92.87214	-3.74266	7.90722	92.79376	-4.00024	9.014384	
129	200CEMII40SB3	93.25026	-3.7444	7.981063	92.89546	-3.88891	8.920152	
130	200CEMII40SG1	92.86661	-3.78708	7.698251	93.39731	-4.03202	9.277271	
131	200CEMII40SG2	93.48123	-3.76493	7.745483	93.10873	-4.1786	9.083039	
132	200CEMII40SG3	92.56601	-3.80189	7.61161	92.98881	-4.25136	8.866983	
133	200CEMII45HB1	92.15018	-3.8391	8.366192	92.84021	-4.11329	9.418435	
134	200CEMII45HB2	93.11634	-3.8932	7.878954	92.58699	-4.15698	9.233623	
135	200CEMII45HB3	92.34111	-3.83815	7.901553	92.41052	-4.15355	8.848208	
136	200CEMII45HG1	91.71496	-3.8412	8.390283	93.09161	-4.0944	9.563408	
137	200CEMII45HG2	92.11032	-3.86706	7.900189	93.0123	-4.0614	9.130088	
138	200CEMII45HG3	93.15206	-3.84726	8.081644	93.28282	-4.1141	9.082176	
139	200CEMII45SB1	92.54227	-3.87293	8.195595	93.10903	-4.14144	8.882249	
140	200CEMII45SB2	93.10269	-3.84761	7.843712	92.61203	-4.0531	9.479776	
141	200CEMII45SB3	92.73519	-3.86591	8.08202	93.1945	-4.10491	9.111183	
142	200CEMII45SG1	92.56673	-3.81596	8.202109	92.51617	-4.03436	9.012999	
143	200CEMII45SG2	92.6704	-3.8528	7.863598	-	-	-	
144	200CEMII45SG3	93.01825	-3.08677	6.691599	-	-	-	
145	300CEMI35HB1	93.18646	-3.03973	5.822012	92.92072	-3.8418	8.484583	
146	300CEMI35HB2	91.76062	-2.99081	5.343501	91.53108	-3.82349	8.129855	
147	300CEMI35HB3	92.50188	-3.15793	6.022536	91.98772	-3.83637	8.47531	
148	300CEMI35HG1	92.7063	-3.35212	6.568284	92.20069	-3.8991	8.733844	
149	300CEMI35HG2	93.22387	-3.58164	6.088348	92.20654	-3.92683	8.373468	
150	300CEMI35HG3	91.94659	-3.61731	6.622511	91.45128	-3.91307	8.558349	
151	300CEMI35SB1	92.4332	-3.65684	6.990617	93.13693	-3.03155	6.995138	
152	300CEMI35SB2	92.46206	-3.64472	7.301393	92.76369	-3.11571	7.27942	
153	300CEMI35SB3	91.52184	-3.57852	7.782321	92.42632	-3.39678	8.618564	
154	300CEMI35SG1	92.40762	-3.81795	6.849669	92.42445	-3.68616	7.319099	
155	300CEMI35SG2	92.06603	-3.87786	7.766427	92.49203	-3.83946	8.588527	
156	300CEMI35SG3	92.00539	-3.86921	7.697042	92.29935	-3.86249	8.701166	
157	300CEMI40HB1	92.53721	-3.95137	7.756681	92.83712	-3.86208	8.900749	
158	300CEMI40HB2	92.53432	-3.88774	7.923706	93.11157	-3.83402	9.123032	
159	300CEMI40HB3	92.22188	-3.98286	8.662957	93.58181	-3.78822	9.432065	
160	300CEMI40HG1	92.76301	-3.95521	8.242002	92.59409	-3.70652	9.448415	

Ek Çizelge 15 (Devam). Sıcaklık öncesi ve sonrası için dijital fotoğraf makinesi ile elde edilen L, a ve b değerleri

#5	Numune Kodu	Sıcaklıktan	önce numune	ortalaması	Sıcaklıktan sonra numune ortalaması			
		L	а	b	L	а	b	
161	300CEMI40HG2	92.00738	-4.01778	8.516709	92.68929	-3.86106	8.883205	
162	300CEMI40HG3	92.16887	-3.99684	7.59742	92.75363	-3.74062	8.278387	
163	300CEMI40SB1	92.86758	-3.94697	7.81795	93.11233	-3.76813	8.403269	
164	300CEMI40SB2	92.508	-3.94794	7.923911	92.54488	-3.7637	8.546636	
165	300CEMI40SB3	92.94105	-3.91669	7.824841	93.38689	-3.7768	8.647998	
166	300CEMI40SG1	92.72053	-3.85634	7.634004	90.98348	-3.75966	8.089102	
167	300CEMI40SG2	91.39139	-3.84397	7.319631	91.38611	-3.88443	8.335663	
168	300CEMI40SG3	91.39222	-3.75562	7.399343	91.4627	-3.80232	8.464414	
169	300CEMI45HB1	90.71233	-3.81301	7.487692	91.48263	-3.79958	8.670996	
170	300CEMI45HB2	91.72149	-3.7916	7.87915	91.83099	-3.72518	8.823247	
171	300CEMI45HB3	90.02882	-3.84479	7.569465	90.6903	-3.75596	8.463768	
172	300CEMI45HG1	90.96466	-3.86683	7.523938	91.44312	-3.81999	8.576596	
173	300CEMI45HG2	90.93948	-3.85135	7.040016	91.453	-3.83585	8.197867	
174	300CEMI45HG3	91.09315	-3.77764	7.495535	91.59066	-3.82558	8.754879	
175	300CEMI45SB1	91.73564	-3.8554	7.362385	91.74837	-3.93502	8.546431	
176	300CEMI45SB2	91.29037	-3.84675	7.424475	91.36391	-3.90671	8.639509	
177	300CEMI45SB3	91.31452	-3.89776	7.20162	91.43304	-3.99153	8.355573	
178	300CEMI45SG1	90.48103	-3.86752	7.31156	92.65079	-3.93228	9.804864	
179	300CEMI45SG2	92.7572	-3.01242	7.194559	92.48998	-3.9208	9.778643	
180	300CEMI45SG3	92.31848	-3.02296	6.879952	90.66649	-3.88603	9.487551	
181	300CEMII35HB1	90.62926	-3.05086	6.549811	93.07713	-4.00314	9.694419	
182	300CEMII35HB2	92.4409	-3.17414	6.863446	91.65682	-4.00578	9.667405	
183	300CEMII35HB3	91.70463	-3.36132	7.382914	92.55957	-3.88624	9.813438	
184	300CEMII35HG1	92.69058	-3.46436	7.314744	91.77415	-3.85076	9.681774	
185	300CEMII35HG2	91.83294	-3.50782	7.994688	93.04992	-3.87104	9.487322	
186	300CEMII35HG3	93.3093	-3.6111	7.744121	92.85908	-3.94515	9.443899	
187	300CEMII35SB1	93.05809	-3.66708	7.931779	92.32632	-3.86603	9.486209	
188	300CEMII35SB2	92.07073	-3.73455	8.227836	92.05332	-3.90486	9.668617	
189	300CEMII35SB3	92.72859	-3.80239	8.163059	92.33254	-3.87386	9.386718	
190	300CEMII35SG1	92.47948	-3.84888	7.779426	91.8609	-3.92778	9.28791	
191	300CEMII35SG2	92.96691	-3.82277	8.14234	92.67196	-3.9734	9.773463	
192	300CEMII35SG3	92.55144	-3.73536	8.265371	92.44379	-3.90415	10.01535	
193	300CEMII40HB1	92.49025	-3.77622	7.62092	92.46563	-3.96403	9.892302	
194	300CEMII40HB2	92.41844	-3.76072	8.382638	92.49701	-3.95892	10.16504	
195	300CEMII40HB3	92.36935	-3.76227	8.254509	92.17786	-3.83103	9.3285	
196	300CEMII40HG1	92.63536	-3.78115	7.371927	92.32703	-3.98129	9.451014	
197	300CEMII40HG2	91.12575	-3.84751	8.781724	92.26345	-3.96884	8.659202	
198	300CEMII40HG3	91.70706	-3.84431	8.705589	90.97382	-4.07711	10.00651	
199	300CEMII40SB1	92.9692	-3.91216	7.649955	92.05445	-4.15734	10.09921	
200	300CEMII40SB2	91.99087	-3.96446	7.102388	92.63405	-4.18119	9.561438	

Ek Çizelge 15 (Devam). Sıcaklık öncesi ve sonrası için dijital fotoğraf makinesi ile elde edilen L, a ve b değerleri

#6	Numune Kodu	Sıcaklıktan	önce numune	ortalaması	Sıcaklıktan sonra numune ortalaması			
	i (uniuno illouu	L	а	b	L	а	b	
201	300CEMII40SB3	92.77222	-3.95409	7.527735	92.30396	-4.078	10.66419	
202	300CEMII40SG1	91.57248	-4.03157	7.886248	91.50331	-4.25812	9.164989	
203	300CEMII40SG2	91.74056	-4.12874	7.545129	91.37519	-4.19522	10.23019	
204	300CEMII40SG3	91.41506	-4.1208	8.205368	91.12057	-4.09239	10.47099	
205	300CEMII45HB1	91.18537	-4.12722	8.352867	92.2469	-4.18911	9.666342	
206	300CEMII45HB2	91.31055	-4.03784	8.139691	91.5026	-4.04906	11.57868	
207	300CEMII45HB3	90.12146	-4.06023	8.001183	91.34619	-4.10836	9.738015	
208	300CEMII45HG1	92.60098	-4.03297	7.591823	91.19553	-4.11689	9.398101	
209	300CEMII45HG2	91.98212	-4.04615	8.139058	90.06539	-4.15968	9.263018	
210	300CEMII45HG3	92.12284	-4.01039	7.814827	91.26498	-4.12916	9.441703	
211	300CEMII45SB1	92.36214	-4.0205	7.892474	92.07383	-4.1175	9.13497	
212	300CEMII45SB2	92.77222	-3.95409	7.527735	91.66945	-4.18307	9.541461	
213	300CEMII45SB3	91.57248	-4.03157	7.886248	91.94634	-4.21297	9.156905	
214	300CEMII45SG1	91.74056	-4.12874	7.545129	92.1287	-4.20608	9.280563	
215	300CEMII45SG2	91.41506	-4.1208	8.205368	-	-	-	
216	300CEMII45SG3	91.59821	-4.13635	8.14443	-	-	-	
217	400CEMI35HB1	92.65545	-3.30558	7.215853	93.19364	-2.83859	9.031662	
218	400CEMI35HB2	93.13685	-3.83633	8.300222	93.4967	-3.4693	9.409088	
219	400CEMI35HB3	92.47221	-3.9149	8.147506	93.00509	-3.73662	9.745175	
220	400CEMI35HG1	92.9173	-3.92574	7.982056	92.99975	-3.86391	9.51148	
221	400CEMI35HG2	92.63439	-3.87099	8.149387	92.82507	-3.80998	9.677046	
222	400CEMI35HG3	92.78033	-3.88601	8.109603	93.06711	-3.76611	10.04787	
223	400CEMI35SB1	92.85417	-3.91286	8.114625	92.67757	-3.74964	10.24071	
224	400CEMI35SB2	91.89591	-3.87417	8.12974	93.56423	-3.82459	10.63321	
225	400CEMI35SB3	92.72143	-3.82815	8.439607	93.17914	-3.78006	10.4035	
226	400CEMI35SG1	92.92899	-3.95158	8.067113	92.95927	-3.64859	10.764	
227	400CEMI35SG2	92.92079	-3.9247	8.191221	92.78112	-3.75252	10.53435	
228	400CEMI35SG3	92.58858	-3.95247	8.070597	93.47569	-3.81447	10.52019	
229	400CEMI40HB1	91.54209	-3.95467	7.921737	93.02109	-3.95516	9.712717	
230	400CEMI40HB2	90.58154	-3.96065	7.995313	93.0977	-4.01245	9.902089	
231	400CEMI40HB3	90.64664	-3.90907	7.876968	92.50285	-3.90915	9.737521	
232	400CEMI40HG1	90.98255	-3.9405	8.019475	91.94183	-3.92537	10.02067	
233	400CEMI40HG2	92.45012	-3.96346	7.865175	93.16608	-3.96635	9.822185	
234	400CEMI40HG3	92.12474	-3.92066	8.087447	91.94387	-3.86719	10.20359	
235	400CEMI40SB1	92.11699	-3.93345	7.926145	93.01503	-3.91603	10.42797	
236	400CEMI40SB2	92.41161	-3.95323	8.112491	93.17137	-3.95465	10.23476	
237	400CEMI40SB3	92.40643	-3.94924	7.852827	92.41898	-4.03421	10.50009	
238	400CEMI40SG1	91.71906	-3.94537	8.172841	91.59864	-3.95365	10.27148	
239	400CEMI40SG2	92.53094	-3.94486	7.925705	92.14978	-3.88681	10.45607	
240	400CEMI40SG3	91.3872	-3.90594	8.369219	92.30996	-3.94407	10.47601	

Ek Çizelge 15 (Devam). Sıcaklık öncesi ve sonrası için dijital fotoğraf makinesi ile elde edilen L, a ve b değerleri

#7	Numune Kodu	Sıcaklıktan	önce numune	ortalaması	Sıcaklıktan sonra numune ortalaması			
		L	a	b	L	а	b	
241	400CEMI45HB1	93.0456	-4.00485	7.691989	93.40487	-3.91908	10.41046	
242	400CEMI45HB2	93.1222	-3.98898	7.874254	92.89739	-3.90321	10.15897	
243	400CEMI45HB3	92.64972	-3.94923	7.961938	93.9521	-3.40984	9.126798	
244	400CEMI45HG1	92.62327	-3.96818	7.711302	93.56674	-3.40951	9.200056	
245	400CEMI45HG2	93.01632	-4.00556	7.782931	94.10111	-3.55076	9.235713	
246	400CEMI45HG3	92.93783	-4.00743	8.099356	93.82869	-3.71792	9.154202	
247	400CEMI45SB1	92.93764	-4.11764	8.293772	93.50948	-3.6286	9.92422	
248	400CEMI45SB2	92.20969	-4.06705	8.38343	93.66289	-3.67643	9.902228	
249	400CEMI45SB3	92.7107	-4.0939	8.072751	93.55977	-3.71551	9.887848	
250	400CEMI45SG1	92.49347	-4.08512	8.071959	93.72751	-3.79559	10.09089	
251	400CEMI45SG2	92.7008	-4.03185	8.056452	93.62929	-3.78231	10.3882	
252	400CEMI45SG3	92.57564	-4.05404	8.167157	93.7621	-3.86003	10.1948	
253	400CEMII35HB1	91.99437	-3.30154	7.267848	93.2936	-3.97178	10.30191	
254	400CEMII35HB2	92.47404	-3.52792	7.257126	93.44878	-4.00501	10.04044	
255	400CEMII35HB3	92.6912	-3.71892	7.827068	93.47364	-3.96212	10.60174	
256	400CEMII35HG1	93.30302	-3.74399	7.972753	93.75002	-3.83129	10.44902	
257	400CEMII35HG2	93.30251	-3.72354	7.93789	93.78139	-3.67869	10.61796	
258	400CEMII35HG3	93.02548	-3.74972	8.13311	93.54514	-3.77346	10.48119	
259	400CEMII35SB1	93.50621	-3.825	8.146769	93.62674	-3.61592	10.35596	
260	400CEMII35SB2	93.13899	-3.91026	7.80069	93.04007	-3.82815	10.51933	
261	400CEMII35SB3	93.21676	-4.1062	8.14196	93.86103	-3.99493	10.86719	
262	400CEMII35SG1	93.38284	-4.08457	8.428071	93.31625	-3.99581	10.22596	
263	400CEMII35SG2	92.77105	-4.07661	8.643117	93.56065	-4.02536	10.43921	
264	400CEMII35SG3	93.14407	-4.10063	8.638811	94.01894	-3.94767	10.55828	
265	400CEMII40HB1	93.3623	-4.1908	8.34572	93.24977	-3.2637	10.26483	
266	400CEMII40HB2	93.38951	-4.16927	8.231637	93.60994	-3.46689	9.791256	
267	400CEMII40HB3	92.32545	-4.18348	8.444118	94.07055	-3.44467	10.00624	
268	400CEMII40HG1	93.23406	-4.17036	8.617166	93.48339	-3.57047	9.760449	
269	400CEMII40HG2	93.56325	-4.16591	8.453238	93.64667	-3.4499	9.820156	
270	400CEMII40HG3	92.748	-4.16072	8.551389	93.6303	-3.45607	10.43996	
271	400CEMII40SB1	92.8025	-4.22601	8.564411	93.65967	-3.62454	9.943413	
272	400CEMII40SB2	92.78025	-4.22491	8.180766	93.55624	-3.57346	10.73567	
273	400CEMII40SB3	92.77736	-4.0206	8.030997	93.56509	-3.5507	10.85229	
274	400CEMII40SG1	93.5703	-4.03232	7.890385	94.44138	-3.79479	10.55588	
275	400CEMII40SG2	92.77468	-3.98294	7.955176	93.6445	-3.76426	10.77068	
276	400CEMII40SG3	93.04388	-3.97251	8.269695	93.69139	-3.79406	10.73601	
277	400CEMII45HB1	92.38712	-3.9933	8.087969	93.49066	-3.63338	10.4556	
278	400CEMII45HB2	92.39852	-4.01721	8.492075	93.53144	-3.71877	10.08387	
279	400CEMII45HB3	92.52509	-4.01361	8.319383	92.93131	-3.4413	10.60856	
280	400CEMII45HG1	91.87492	-3.96995	8.358277	93.08759	-3.44921	10.57051	

Ek Çizelge 15 (Devam). Sıcaklık öncesi ve sonrası için dijital fotoğraf makinesi ile elde edilen L, a ve b değerleri

#8	Numune Kodu	Sıcaklıktan	önce numune	ortalaması	Sıcaklıktan sonra numune ortalaması			
		L	a	b	L	а	b	
281	400CEMII45HG2	91.24849	-3.43692	7.171743	93.95663	-3.54832	9.996772	
282	400CEMII45HG3	92.27588	-3.41419	7.097512	93.43036	-3.65243	10.91813	
283	400CEMII45SB1	92.41352	-3.48419	6.890735	93.57097	-3.56954	10.58329	
284	400CEMII45SB2	92.60207	-3.52654	7.251408	93.52228	-3.52067	11.06829	
285	400CEMII45SB3	91.77508	-3.51775	7.713868	93.44807	-3.52504	10.62445	
286	400CEMII45SG1	92.61318	-3.62214	7.598502	93.32527	-3.58598	10.49938	
287	400CEMII45SG2	93.30607	-3.77201	7.497252	92.84819	-3.49397	10.56846	
288	400CEMII45SG3	92.84091	-3.79683	7.535645	92.97667	-3.46198	10.05553	
289	500CEMI35HB1	90.7908	-3.37746	7.382296	94.01666	-3.54057	10.24364	
290	500CEMI35HB2	92.52342	-3.37346	7.341182	93.86433	-3.75793	10.87471	
291	500CEMI35HB3	92.6521	-3.42409	7.334749	93.19293	-3.73412	11.33437	
292	500CEMI35HG1	92.64984	-3.5144	8.091272	93.18809	-3.62146	10.74252	
293	00CEMI35HG2	92.4394	-3.63991	8.064698	93.77435	-3.63129	10.46866	
294	500CEMI35HG3	92.61223	-3.55408	8.202839	92.91726	-3.562	10.94307	
295	500CEMI35SB1	92.93503	-3.94187	8.484088	93.63004	-3.66482	10.74684	
296	500CEMI35SB2	92.48368	-3.89378	8.658507	93.3893	-3.66424	10.61536	
297	500CEMI35SB3	92.71608	-3.88328	8.283052	93.68529	-3.6491	10.62993	
298	500CEMI35SG1	91.91323	-3.79168	8.658345	92.88203	-3.65899	10.71087	
299	500CEMI35SG2	91.76677	-3.75783	8.486918	92.75385	-3.64865	10.52472	
300	500CEMI35SG3	92.25066	-3.8351	8.573265	93.08211	-3.65998	10.84195	
301	500CEMI40HB1	92.31041	-3.8473	8.301346	92.90063	-3.51685	11.56588	
302	500CEMI40HB2	92.9808	-3.87274	8.383954	92.98875	-3.54782	11.51258	
303	500CEMI40HB3	92.71264	-3.85621	8.782599	93.00381	-3.63875	11.22245	
304	500CEMI40HG1	92.5439	-3.83456	8.786535	92.33347	-3.57679	11.54035	
305	500CEMI40HG2	92.43557	-3.80083	8.571501	92.23979	-3.57424	11.75926	
306	500CEMI40HG3	92.5906	-3.88164	8.783551	92.21983	-3.5373	12.03845	
307	500CEMI40SB1	93.0421	-3.89686	9.014906	93.80216	-3.68444	11.02189	
308	500CEMI40SB2	92.61059	-3.85518	8.82936	93.36446	-3.68938	10.72436	
309	500CEMI40SB3	92.64674	-3.84373	8.433149	93.39404	-3.66676	10.48398	
310	500CEMI40SG1	93.34896	-3.83206	8.916713	93.68129	-3.60634	11.14465	
311	500CEMI40SG2	92.76608	-3.81383	8.876203	93.64794	-3.62063	11.25687	
312	500CEMI40SG3	92.09469	-3.81666	8.223858	92.82706	-3.72816	10.24354	
313	500CEMI45HB1	92.92626	-3.87284	8.400406	93.66826	-3.41895	11.32492	
314	500CEMI45HB2	93.21426	-3.96899	8.122993	92.93695	-3.42204	11.14985	
315	500CEMI45HB3	92.477	-3.94048	8.556733	93.2632	-3.38529	11.51093	
316	500CEMI45HG1	93.01474	-3.87676	8.889707	92.90752	-3.42816	11.27842	
317	500CEMI45HG2	92.81318	-3.89947	8.6148	93.149	-3.44032	11.62781	
318	500CEMI45HG3	93.15565	-3.89164	8.827239	92.89191	-3.50201	11.73008	
319	500CEMI45SB1	92.43893	-3.93053	8.689421	92.99128	-3.53937	10.72317	
320	500CEMI45SB2	92.87491	-3.94488	8.280266	93.41687	-3.58451	10.23007	

Ek Çizelge 15 (Devam). Sıcaklık öncesi ve sonrası için dijital fotoğraf makinesi ile elde edilen L, a ve b değerleri

#9	Numune Kodu	Sıcaklıktan	önce numune	e ortalaması	Sıcaklıktan sonra numune ortalaması			
		L	a	b	L	а	b	
321	500CEMI45SB3	92.7819	-3.90557	8.62164	93.12834	-3.60549	10.88006	
322	500CEMI45SG1	93.08197	-3.9156	8.839621	93.35269	-3.57802	10.67448	
323	500CEMI45SG2	93.73618	-3.86101	8.927284	93.25766	-3.59691	10.84416	
324	500CEMI45SG3	93.13985	-3.96331	8.158759	93.80413	-3.55782	10.93136	
325	500CEMII35HB1	92.38651	-3.34104	8.079538	93.84556	-3.65366	10.21644	
326	500CEMII35HB2	93.20403	-3.38756	8.019928	92.65254	-3.30472	12.20665	
327	500CEMII35HB3	92.41643	-3.54335	8.210881	93.04128	-3.38698	12.27593	
328	500CEMII35HG1	93.79358	-3.70107	8.473308	92.89375	-3.34097	12.0357	
329	500CEMII35HG2	93.29618	-3.79676	8.596878	92.23287	-3.2791	11.43713	
330	500CEMII35HG3	93.60342	-3.62943	8.611632	93.07408	-3.27919	12.07052	
331	500CEMII35SB1	93.58851	-3.78659	8.764656	93.69623	-3.42157	11.15246	
332	500CEMII35SB2	93.47218	-3.77839	8.84838	93.4684	-3.48165	10.87423	
333	500CEMII35SB3	92.90442	-3.76217	8.65815	93.07134	-3.41331	11.5832	
334	500CEMII35SG1	93.18232	-3.77522	8.835498	93.55817	-3.47672	11.32585	
335	500CEMII35SG2	93.33758	-3.7823	8.855623	92.98389	-3.40935	11.56492	
336	500CEMII35SG3	93.28424	-3.83939	8.867276	93.60763	-3.54233	11.32867	
337	500CEMII40HB1	93.15816	-3.73831	8.983975	93.40089	-3.45746	11.51729	
338	500CEMII40HB2	93.00934	-3.68165	8.590912	91.63977	-3.1253	12.65502	
339	500CEMII40HB3	93.71091	-3.76221	8.434547	92.9409	-3.21289	12.58907	
340	500CEMII40HG1	92.47348	-3.82949	8.636927	92.35628	-3.0609	12.19141	
341	500CEMII40HG2	93.17391	-3.81004	8.721221	92.14036	-3.02964	12.67662	
342	500CEMII40HG3	92.8266	-3.79829	8.598988	92.67822	-3.10245	12.40837	
343	500CEMII40SB1	92.68292	-3.83482	8.677326	92.98694	-3.13834	12.62634	
344	500CEMII40SB2	93.23836	-3.79307	8.817145	93.26284	-3.28653	11.52292	
345	500CEMII40SB3	92.85902	-3.80372	8.526779	93.17934	-3.3463	11.56089	
346	500CEMII40SG1	93.41544	-3.81379	8.662182	93.35201	-3.23793	11.63634	
347	500CEMII40SG2	92.93697	-3.80008	8.655299	92.45812	-3.31397	11.69845	
348	500CEMII40SG3	92.85921	-3.7799	8.52534	93.0423	-3.32901	11.22114	
349	500CEMII45HB1	92.78778	-3.84216	8.566912	92.32946	-3.26256	12.04014	
350	500CEMII45HB2	92.36974	-3.79997	8.687267	91.88938	-3.15612	12.6955	
351	500CEMII45HB3	92.26411	-3.77628	8.648616	91.21376	-3.28028	13.25616	
352	500CEMII45HG1	92.90168	-3.80197	8.775926	91.96522	-3.4019	12.81205	
353	500CEMII45HG2	92.4985	-3.82304	9.02564	92.37374	-3.47692	12.50311	
354	500CEMII45HG3	93.01137	-3.85171	8.914061	91.99843	-3.41277	12.62482	
355	500CEMII45SB1	92.63614	-3.85091	8.851828	92.03672	-3.3794	12.52323	
356	500CEMII45SB2	93.0146	-3.8764	8.843038	93.19875	-3.61832	11.52957	
357	500CEMII45SB3	92.69896	-3.87279	8.540593	93.10013	-3.66005	11.25991	
358	500CEMII45SG1	93.61127	-3.9044	8.609768	92.67365	-3.44708	12.04509	
359	500CEMII45SG2	92.43105	-3.8676	8.838053	92.62348	-3.45101	12.30186	
360	500CEMII45SG3	92.7971	-3.95708	8.468875	92.50775	-3.51884	11.74859	

Ek Çizelge 15 (Devam). Sıcaklık öncesi ve sonrası için dijital fotoğraf makinesi ile elde edilen L, a ve b değerleri

#10	Numune Kodu	Sıcaklıktan	önce numune	ortalaması	Sıcaklıktan sonra numune ortalaması			
		L	а	b	L	а	b	
361	600CEMI35HB1	89.94337	-3.20171	7.563826	92.50675	-2.69668	9.70442	
362	600CEMI35HB2	91.48798	-3.31848	7.457773	93.38393	-3.03503	9.646578	
363	600CEMI35HB3	91.88943	-3.51363	8.099319	93.52655	-3.17068	9.768353	
364	600CEMI35HG1	92.27209	-3.61867	7.807781	93.58757	-3.281	10.10507	
365	600CEMI35HG2	92.0704	-3.69145	8.199355	93.46037	-3.47141	10.69675	
366	600CEMI35HG3	91.69289	-3.74205	8.118209	93.3742	-3.61678	10.94745	
367	600CEMI35SB1	92.20053	-3.80798	8.325536	92.79654	-3.33424	11.02107	
368	600CEMI35SB2	92.51504	-3.82797	8.070619	92.75663	-3.39914	10.83306	
369	600CEMI35SB3	91.42441	-3.83056	8.259228	92.91672	-3.37438	11.08394	
370	600CEMI35SG1	91.9874	-3.69181	8.640482	92.68024	-3.28846	11.40986	
371	600CEMI35SG2	91.53176	-3.66433	8.318039	92.62848	-3.36616	11.20426	
372	600CEMI35SG3	91.52124	-3.71753	8.026759	92.82585	-3.35884	11.06636	
373	600CEMI40HB1	92.30066	-3.78559	8.802198	92.67319	-3.31462	12.0388	
374	600CEMI40HB2	92.44835	-3.85907	8.583881	93.07736	-3.28032	12.066	
375	600CEMI40HB3	92.64715	-3.88245	8.624094	92.48347	-3.38232	11.84635	
376	600CEMI40HG1	92.57234	-3.87173	8.607721	93.36252	-3.43456	12.05561	
377	600CEMI40HG2	92.65932	-3.87166	8.323684	93.56545	-3.4038	11.94569	
378	600CEMI40HG3	92.68022	-3.79319	8.820212	92.85644	-3.44626	11.62757	
379	600CEMI40SB1	92.89841	-3.81237	8.676244	93.61089	-3.46	11.66089	
380	600CEMI40SB2	91.94318	-3.81761	8.517818	92.82193	-3.53575	11.37568	
381	600CEMI40SB3	92.989	-3.97781	8.639255	92.8848	-3.42392	11.61807	
382	600CEMI40SG1	91.32428	-3.90399	8.684001	92.28338	-3.44043	11.5869	
383	600CEMI40SG2	92.98405	-3.89399	8.807473	93.52787	-3.48466	11.69384	
384	600CEMI40SG3	92.43011	-3.74424	8.733007	92.4488	-3.42201	11.84431	
385	600CEMI45HB1	93.32667	-3.80661	8.762544	93.354	-3.43626	12.06248	
386	600CEMI45HB2	92.97564	-3.81792	8.477529	92.52375	-3.41186	11.84933	
387	600CEMI45HB3	93.57768	-3.84322	8.667911	92.89407	-3.49885	11.9769	
388	600CEMI45HG1	92.80681	-3.76547	8.557721	93.15665	-3.36558	12.36459	
389	600CEMI45HG2	93.03538	-3.75723	8.61262	92.82483	-3.40309	12.34416	
390	600CEMI45HG3	92.84656	-3.76127	8.547646	93.2468	-3.4568	12.01715	
391	600CEMI45SB1	93.50393	-3.7301	8.517361	93.08504	-3.32493	11.57548	
392	600CEMI45SB2	93.7715	-3.8054	8.561363	93.03366	-3.35327	11.83651	
393	600CEMI45SB3	93.61909	-3.80989	8.711156	93.68756	-3.4104	11.78763	
394	600CEMI45SG1	92.97014	-3.79862	8.662816	93.1486	-3.40218	11.76559	
395	600CEMI45SG2	92.36784	-3.74135	8.627502	92.98051	-3.44634	11.38227	
396	600CEMI45SG3	93.25821	-3.79332	8.393127	93.1352	-3.47238	11.5027	
397	600CEMII35HB1	91.6486	-3.34632	8.144928	92.37527	-3.21827	12.40098	
398	600CEMII35HB2	92.55937	-3.28575	8.026487	92.37185	-3.31763	12.35632	
399	600CEMII35HB3	91.96343	-3.38955	7.907354	92.44903	-3.27756	12.17482	
400	600CEMII35HG1	92.28382	-3.50604	8.397155	92.49021	-3.19007	12.64741	

Ek Çizelge 15 (Devam). Sıcaklık öncesi ve sonrası için dijital fotoğraf makinesi ile elde edilen L, a ve b değerleri

#11	Numune Kodu	Sıcaklıktan önce numune ortalaması			Sıcaklıktan sonra numune ortalaması		
		L	a	b	L	а	b
401	600CEMII35HG2	91.38871	-3.57471	8.170672	92.36434	-3.2362	12.91623
402	600CEMII35HG3	92.15811	-3.65703	8.758558	92.78361	-3.23999	12.49901
403	600CEMII35SB1	91.94153	-3.6675	7.764596	92.46142	-3.34466	11.78917
404	600CEMII35SB2	90.62288	-3.59793	8.291482	92.84623	-3.33977	11.25546
405	600CEMII35SB3	91.777	-3.61947	8.17034	92.77787	-3.36859	11.24357
406	600CEMII35SG1	92.07673	-3.63034	8.287021	93.16296	-3.29033	11.74403
407	600CEMII35SG2	91.44163	-3.79193	8.229577	92.35596	-3.33588	11.65099
408	600CEMII35SG3	92.44728	-3.75815	8.250083	92.79979	-3.56719	11.67492
409	600CEMII40HB1	91.00859	-3.99379	8.384636	92.20525	-2.92324	12.40001
410	600CEMII40HB2	92.16793	-3.81184	8.802463	92.35662	-3.03327	12.08884
411	00CEMII40HB3	92.80447	-3.88603	8.66976	92.17804	-3.02253	12.2609
412	600CEMII40HG1	92.16379	-3.85687	8.675693	92.02121	-3.06262	11.51739
413	600CEMII40HG2	92.2421	-3.81343	8.842899	92.01648	-2.94505	12.4677
414	600CEMII40HG3	92.1409	-3.84726	9.003837	92.37957	-3.01939	12.3982
415	600CEMII40SB1	92.64781	-3.87888	8.731249	92.83401	-3.06746	11.68792
416	600CEMII40SB2	93.01797	-3.829	8.928184	92.50537	-3.06521	11.74512
417	600CEMII40SB3	92.33247	-3.94525	8.821403	93.02354	-3.11255	11.30101
418	600CEMII40SG1	92.78679	-3.90574	8.941459	92.72411	-3.08658	11.6739
419	600CEMII40SG2	92.74116	-3.87468	9.093941	92.32396	-2.82664	12.00635
420	600CEMII40SG3	92.35365	-3.89178	8.821924	92.76939	-2.91221	11.44003
421	600CEMII45HB1	93.19912	-3.94083	8.901689	92.18376	-2.91474	11.52602
422	600CEMII45HB2	91.86588	-3.95912	8.767457	92.6438	-3.03828	11.24327
423	600CEMII45HB3	91.56659	-3.92213	8.803941	92.54383	-2.88269	11.39005
424	600CEMII45HG1	92.25549	-3.88222	8.894278	91.16174	-2.83514	12.26123
425	600CEMII45HG2	92.34967	-4.02348	8.950837	92.52814	-2.93371	11.366
426	600CEMII45HG3	92.08067	-3.98931	8.605564	92.29533	-2.92554	12.21775
427	600CEMII45SB1	92.38055	-3.91504	8.779825	92.50949	-3.02858	11.28941
428	600CEMII45SB2	92.41582	-3.79182	9.110504	91.96874	-2.9636	11.5679
429	600CEMII45SB3	92.40254	-3.70789	8.875335	93.1297	-3.02315	11.94695
430	600CEMII45SG1	92.96216	-3.81569	8.506059	92.44413	-2.92258	11.12854
431	600CEMII45SG2	92.06678	-3.84234	8.921028	92.77092	-2.88806	11.6554
432	600CEMII45SG3	89.73541	-3.28276	8.028118	92.0982	-2.96887	11.08525
433	700CEMI35HB1	91.46386	-3.3552	7.530461	93.39829	-3.32962	9.652973
434	700CEMI35HB2	91.29208	-3.35855	7.827438	93.68856	-3.3847	9.659162
435	700CEMI35HB3	90.7095	-3.46284	7.612335	94.07879	-3.31895	9.876851
436	700CEMI35HG1	90.79152	-3.52615	7.561154	93.80942	-3.42228	10.09698
437	700CEMI35HG2	91.24329	-3.59935	8.083291	93.17255	-3.50281	9.775576
438	700CEMI35HG3	92.2665	-3.71073	8.144842	93.12839	-3.58384	9.429603
439	700CEMI35SB1	91.14255	-3.64606	8.099443	93.88593	-3.4602	8.875762
440	700CEMI35SB2	92.28939	-3.67366	8.291912	93.75676	-3.50362	8.690259

Ek Çizelge 15 (Devam). Sıcaklık öncesi ve sonrası için dijital fotoğraf makinesi ile elde edilen L, a ve b değerleri

#12	Numune Kodu	Sıcaklıktan önce numune ortalaması			Sıcaklıktan sonra numune ortalaması		
		L	a	b	L	а	b
441	700CEMI35SB3	91.55424	-3.65328	8.670109	92.85709	-3.54738	8.170297
442	700CEMI35SG1	91.43649	-3.72529	8.268301	92.64234	-3.54736	8.764588
443	700CEMI35SG2	91.98685	-3.69881	8.457821	92.18998	-3.534	8.458428
444	700CEMI35SG3	92.76548	-3.7913	8.678658	93.94257	-3.47364	9.145268
445	700CEMI40HB1	93.20994	-3.80923	8.334616	93.03702	-3.37221	9.990167
446	700CEMI40HB2	92.77226	-3.81442	8.513118	93.57409	-3.4754	9.419378
447	700CEMI40HB3	93.19393	-3.85535	8.422952	93.81136	-3.32264	10.33431
448	700CEMI40HG1	89.36987	-3.33599	7.305996	93.24782	-3.43455	9.689293
449	700CEMI40HG2	92.41679	-3.37813	7.966705	93.30995	-3.39672	9.97857
450	700CEMI40HG3	93.02405	-3.41708	8.173728	93.49529	-3.39952	9.959033
451	700CEMI40SB1	92.5115	-3.46113	8.187873	93.31568	-3.50435	8.915975
452	700CEMI40SB2	93.18035	-3.49887	7.635342	93.75392	-3.63784	8.828206
453	700CEMI40SB3	92.95923	-3.56333	7.91088	93.76418	-3.54693	8.86851
454	700CEMI40SG1	92.67408	-3.67455	8.670628	93.64449	-3.55005	8.875733
455	700CEMI40SG2	92.89678	-3.70974	8.601543	93.91651	-3.61176	9.380516
456	700CEMI40SG3	92.15954	-3.7511	8.822161	93.77367	-3.7789	9.588311
457	700CEMI45HB1	93.18278	-3.76024	8.145424	93.71006	-3.80488	10.23246
458	700CEMI45HB2	93.0403	-3.7797	8.230048	94.05276	-3.82798	10.6566
459	700CEMI45HB3	92.50644	-3.80536	8.223738	93.37231	-3.7397	10.84678
460	700CEMI45HG1	92.12943	-3.67837	7.745977	93.47509	-3.6392	10.44563
461	700CEMI45HG2	93.18373	-3.81967	7.74783	93.74721	-3.82523	10.37706
462	700CEMI45HG3	93.17162	-3.7258	8.091465	93.97843	-3.94512	10.56685
463	700CEMI45SB1	93.2188	-3.82028	8.193544	93.69754	-3.69249	9.17513
464	700CEMI45SB2	93.31301	-3.92985	8.294052	94.24796	-3.70948	9.096087
465	700CEMI45SB3	92.50895	-3.90777	7.850684	94.25351	-3.69008	9.058219
466	700CEMI45SG1	92.37138	-3.8295	8.506276	93.94537	-3.7322	8.726463
467	700CEMI45SG2	91.6486	-3.34632	8.144928	93.83589	-3.57626	9.475577
468	700CEMI45SG3	92.55937	-3.28575	8.026487	93.88895	-3.6538	8.991743
469	700CEMII35HB1	91.96343	-3.38955	7.907354	93.40184	-3.23183	11.49656
470	700CEMII35HB2	92.28382	-3.50604	8.397155	92.69377	-3.30858	11.23434
471	700CEMII35HB3	91.38871	-3.57471	8.170672	92.94074	-3.25772	11.03529
472	700CEMII35HG1	92.15811	-3.65703	8.758558	93.01504	-3.24897	11.28888
473	700CEMII35HG2	91.94153	-3.6675	7.764596	92.92872	-3.17251	11.71185
474	700CEMII35HG3	90.62288	-3.59793	8.291482	92.87049	-3.24032	11.42909
475	700CEMII35SB1	91.777	-3.61947	8.17034	93.81588	-3.27825	10.01632
476	700CEMII35SB2	92.07673	-3.63034	8.287021	93.92393	-3.25539	10.27328
477	700CEMII35SB3	91.44163	-3.79193	8.229577	93.5326	-3.41526	9.903515
478	700CEMII35SG1	92.44728	-3.75815	8.250083	93.99913	-3.50388	9.655173
479	700CEMII35SG2	90.00519	-3.28881	7.529557	94.16514	-3.42534	9.789901
480	700CEMII35SG3	90.69767	-3.27705	7.817699	94.42721	-3.32381	9.946172

Ek Çizelge 15 (Devam). Sıcaklık öncesi ve sonrası için dijital fotoğraf makinesi ile elde edilen L, a ve b değerleri

#13	Numune Kodu	Sıcaklıktan önce numune ortalaması			Sıcaklıktan sonra numune ortalaması		
_		L	a	b	L	а	b
481	700CEMII40HB1	93.3623	-4.1908	8.34572	93.64578	-3.44875	9.522842
482	700CEMII40HB2	93.38951	-4.16927	8.231637	94.10591	-3.38061	9.87497
483	700CEMII40HB3	92.32545	-4.18348	8.444118	93.8905	-3.30121	9.630781
484	700CEMII40HG1	93.23406	-4.17036	8.617166	93.17294	-3.18832	10.36304
485	700CEMII40HG2	93.56325	-4.16591	8.453238	93.53915	-3.39881	10.23994
486	700CEMII40HG3	92.748	-4.16072	8.551389	93.90432	-3.43031	10.70706
487	700CEMII40SB1	92.8025	-4.22601	8.564411	94.07088	-3.67647	10.38982
488	700CEMII40SB2	92.78025	-4.22491	8.180766	93.37655	-3.44216	11.87303
489	700CEMII40SB3	92.77736	-4.0206	8.030997	93.19316	-3.26594	13.27465
490	700CEMII40SG1	93.5703	-4.03232	7.890385	92.93092	-3.23941	13.16082
491	700CEMII40SG2	92.77468	-3.98294	7.955176	92.65289	-3.16697	13.04806
492	700CEMII40SG3	93.04388	-3.97251	8.269695	93.3309	-3.42548	12.04366
493	700CEMII45HB1	92.28812	-3.78434	8.529343	93.94438	-3.5752	12.44422
494	700CEMII45HB2	92.34318	-3.81996	8.653612	92.99005	-3.14505	11.83249
495	700CEMII45HB3	92.51286	-3.79155	8.763578	93.24647	-3.23768	12.22767
496	700CEMII45HG1	92.76339	-3.79541	8.939587	93.31604	-3.25134	11.5125
497	700CEMII45HG2	92.99018	-3.84184	8.959983	93.71336	-3.30214	11.60197
498	700CEMII45HG3	92.43239	-3.8581	8.80914	94.08031	-3.44198	11.26996
499	700CEMII45SB1	93.24424	-3.85804	9.088574	93.50238	-3.51094	11.47442
500	700CEMII45SB2	92.58807	-3.89026	8.55816	93.28259	-3.07136	13.79106
501	700CEMII45SB3	93.56986	-3.88273	8.374429	93.42163	-3.65352	11.54158
502	700CEMII45SG1	92.56445	-3.89193	8.898862	93.81587	-3.43733	11.70646
503	700CEMII45SG2	93.13601	-3.86816	8.554431	93.5248	-3.655	12.44881
504	700CEMII45SG3	92.56193	-4.0544	8.675879	92.94676	-3.56379	13.67956
505	800CEMI35HB1	93.18646	-3.03973	5.822012	92.07556	-2.61863	12.48769
506	800CEMI35HB2	91.76062	-2.99081	5.343501	91.20468	-2.14083	14.27429
507	800CEMI35HB3	92.50188	-3.15793	6.022536	90.76579	-2.70822	12.132
508	800CEMI35HG1	92.7063	-3.35212	6.568284	90.36181	-2.61402	12.9816
509	800CEMI35HG2	93.22387	-3.58164	6.088348	90.99704	-2.78989	13.11599
510	800CEMI35HG3	91.94659	-3.61731	6.622511	90.98503	-2.64983	13.68332
511	800CEMI35SB1	92.4332	-3.65684	6.990617	92.22927	-3.10232	13.33626
512	800CEMI35SB2	92.46206	-3.64472	7.301393	92.17294	-3.73309	12.6447
513	800CEMI35SB3	91.52184	-3.57852	7.782321	92.17087	-3.66647	12.70241
514	800CEMI35SG1	92.40762	-3.81795	6.849669	92.31785	-3.52454	13.33632
515	800CEMI35SG2	92.06603	-3.87786	7.766427	92.37241	-3.71068	12.86178
516	800CEMI35SG3	92.00539	-3.86921	7.697042	92.81134	-3.73482	12.26838
517	800CEMI40HB1	92.53721	-3.95137	7.756681	92.23383	-3.0247	11.62496
518	800CEMI40HB2	92.53432	-3.88774	7.923706	90.94133	-2.70495	12.57822
519	800CEMI40HB3	92.22188	-3.98286	8.662957	92.77557	-3.05759	11.04197
520	800CEMI40HG1	92.76301	-3.95521	8.242002	92.01318	-2.69129	13.32143

Ek Çizelge 15 (Devam). Sıcaklık öncesi ve sonrası için dijital fotoğraf makinesi ile elde edilen L, a ve b değerleri

#14	Numune Kodu	Sıcaklıktan önce numune ortalaması			Sıcaklıktan sonra numune ortalaması		
		L	a	b	L	а	b
521	800CEMI40HG2	92.00738	-4.01778	8.516709	92.52039	-2.91503	11.77956
522	800CEMI40HG3	92.16887	-3.99684	7.59742	92.72198	-2.63777	12.7926
523	800CEMI40SB1	92.86758	-3.94697	7.81795	92.80949	-3.56925	12.04704
524	800CEMI40SB2	92.508	-3.94794	7.923911	92.5345	-3.41445	13.15228
525	800CEMI40SB3	92.94105	-3.91669	7.824841	92.22085	-3.29057	12.4052
526	800CEMI40SG1	92.72053	-3.85634	7.634004	92.46289	-3.64072	12.2855
527	800CEMI40SG2	91.39139	-3.84397	7.319631	92.58609	-3.57621	11.94846
528	800CEMI40SG3	91.39222	-3.75562	7.399343	92.41077	-3.63349	12.32426
529	800CEMI45HB1	90.71233	-3.81301	7.487692	92.43332	-3.21712	11.23351
530	800CEMI45HB2	91.72149	-3.7916	7.87915	93.6056	-3.50991	9.275628
531	800CEMI45HB3	90.02882	-3.84479	7.569465	93.66227	-3.42371	10.42686
532	800CEMI45HG1	90.96466	-3.86683	7.523938	92.56939	-3.1159	12.0485
533	800CEMI45HG2	90.93948	-3.85135	7.040016	92.95235	-3.41063	10.80787
534	800CEMI45HG3	91.09315	-3.77764	7.495535	94.06544	-3.49901	9.164097
535	800CEMI45SB1	91.73564	-3.8554	7.362385	91.92311	-3.50628	12.20831
536	800CEMI45SB2	91.29037	-3.84675	7.424475	93.40804	-3.78616	10.94779
537	800CEMI45SB3	91.31452	-3.89776	7.20162	93.17246	-3.42331	12.3463
538	800CEMI45SG1	90.48103	-3.86752	7.31156	93.43644	-3.50893	12.68521
539	800CEMI45SG2	92.7572	-3.01242	7.194559	93.33418	-3.52677	12.15577
540	800CEMI45SG3	92.31848	-3.02296	6.879952	92.64859	-3.9719	11.57477
541	800CEMII35HB1	91.99437	-3.30154	7.267848	93.61089	-3.44776	8.50518
542	800CEMII35HB2	92.47404	-3.52792	7.257126	94.24287	-3.37573	8.976947
543	800CEMII35HB3	92.6912	-3.71892	7.827068	94.18028	-3.50896	8.544296
544	800CEMII35HG1	93.30302	-3.74399	7.972753	93.58985	-3.27063	9.735683
545	800CEMII35HG2	93.30251	-3.72354	7.93789	93.75551	-3.26208	10.0825
546	800CEMII35HG3	93.02548	-3.74972	8.13311	94.40715	-3.39383	8.636141
547	800CEMII35SB1	93.50621	-3.825	8.146769	94.35245	-3.79307	9.502705
548	800CEMII35SB2	93.13899	-3.91026	7.80069	93.61277	-3.9017	9.670577
549	800CEMII35SB3	93.21676	-4.1062	8.14196	94.31513	-4.16746	9.50126
550	800CEMII35SG1	93.38284	-4.08457	8.428071	94.00413	-4.0078	9.185833
551	800CEMII35SG2	92.77105	-4.07661	8.643117	93.32273	-3.91626	10.11618
552	800CEMII35SG3	93.14407	-4.10063	8.638811	92.72002	-3.88798	9.80098
553	800CEMII40HB1	93.3623	-4.1908	8.34572	92.83138	-3.45763	8.785673
554	800CEMII40HB2	93.38951	-4.16927	8.231637	92.39641	-3.23187	10.19078
555	800CEMII40HB3	92.32545	-4.18348	8.444118	91.97914	-3.30617	9.764209
556	800CEMII40HG1	93.23406	-4.17036	8.617166	93.10649	-3.51872	8.443823
557	800CEMII40HG2	93.56325	-4.16591	8.453238	93.60867	-3.56129	8.580875
558	800CEMII40HG3	92.748	-4.16072	8.551389	91.62842	-3.23504	9.65792
559	800CEMII40SB1	92.8025	-4.22601	8.564411	92.21038	-3.26429	9.716425
560	800CEMII40SB2	92.78025	-4.22491	8.180766	92.3411	-3.4132	9.584116

Ek Çizelge 15 (Devam). Sıcaklık öncesi ve sonrası için dijital fotoğraf makinesi ile elde edilen L, a ve b değerleri

#15	Numune Kodu	Sıcaklıktan önce numune ortalaması			Sıcaklıktan sonra numune ortalaması		
		L	а	b	L	а	b
561	800CEMII40SB3	92.77736	-4.0206	8.030997	91.88511	-3.15469	10.0335
562	800CEMII40SG1	93.5703	-4.03232	7.890385	92.8472	-3.26274	9.343625
563	800CEMII40SG2	92.77468	-3.98294	7.955176	91.91555	-3.48251	9.27702
564	800CEMII40SG3	93.04388	-3.97251	8.269695	89.84001	-3.14086	10.26074
565	800CEMII45HB1	92.38712	-3.9933	8.087969	93.45347	-4.32247	10.76118
566	800CEMII45HB2	92.39852	-4.01721	8.492075	93.65142	-4.42357	9.758314
567	800CEMII45HB3	92.52509	-4.01361	8.319383	93.19868	-4.38439	10.13618
568	800CEMII45HG1	91.87492	-3.96995	8.358277	93.789	-4.39348	11.63461
569	800CEMII45HG2	91.24849	-3.43692	7.171743	92.98163	-4.49605	11.39584
570	800CEMII45HG3	92.27588	-3.41419	7.097512	92.41653	-4.05997	11.37082
571	800CEMII45SB1	92.41352	-3.48419	6.890735	-	-	-
572	800CEMII45SB2	92.60207	-3.52654	7.251408	-	-	-
573	800CEMII45SB3	91.77508	-3.51775	7.713868	-	-	-
574	800CEMII45SG1	92.61318	-3.62214	7.598502	-	-	-
575	800CEMII45SG2	93.30607	-3.77201	7.497252	-	-	-
576	800CEMII45SG3	92.84091	-3.79683	7.535645	-	-	-

Ek Çizelge 15 (Devam). Sıcaklık öncesi ve sonrası için dijital fotoğraf makinesi ile elde edilen L, a ve b değerleri

ÖZGEÇMİŞ

1978 yılında Erzurum'da doğdu. İlköğrenimini Atatürk İlkokulu, orta ve lise öğrenimini ise Erzurum Anadolu Lisesi'nde tamamladı.

2004 yılında lisans öğrenimine başladığı Atatürk Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü`nden 2001 yılında mezun oldu. 2003 yıllında Atatürk Üniversitesi Fen Bilimleri Enstitüsü İnşaat Mühendisliği Anabilim Dalı Yapı Bilim dalında yüksek lisansını tamamladı. 2007 yıllında Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü İnşaat Mühendisliği Anabilim Dalında doktoraya başladı. 2002 yıllından beri Atatürk Üniversitesi Pasinler Meslek Yüksekokulu İnşaat Bölümünde Araştırma Görevlisi olarak çalışmaktadır. Ayrıca TMMOB İnşaat Mühendisleri Odası Erzurum şubesi 9. Dönem yönetim kurulu üyesi ve 10. Dönem Üst Kurul Delegeliği yapmıştır. Halen 11. Dönem Yönetim Kurulu Üyesi olarak çalışmaktadır. Ayrıca 5. Dönem TMMOB İl Koordinasyon Kurulu Sekreterliği görevini yürütmektedir. İyi derecede İngilizce bilmektedir. Evli iki çocuk babasıdır.