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Yüksek Lisans 

ÖZET 

LANDSAT  GÖRÜNTÜ ve LIDAR KULLANIMIYLA  
AKDEN Z ORMANLARINDAK  ORMAN D NAM N N ANAL Z  

Juan Jose MENA COSTA 

Karadeniz Teknik Üniversitesi  
Fen Bilimleri Enstitüsü 

Orman Mühendisli i Anabilim Dal  
Dan man: Prof.. Dr. Emin Zeki BA KENT 

2016, 71 Sayfa,  

Akdeniz ormanlar  karma k ekosistemler olup süreçleri ve fonksiyonlar  yeterince 

bilinmemektedir. Uzaktan alg lama teknikleri amenajman plan sonuçlar n  izlemede 

kullan lmaktad r. 2009 y l ndan sonraki Landsat görüntüleri, vejetasyon indisleri ve LiDAR tabanl  

de i kenler Random Forest modeline arazi bile imi ve yap s n  analiz etmek için entegre edilmi tir. 

Çal ma alan , 2012 y l nda yenilenmi  1981 y l na ait eski bir amenajman plan ndan al nm t r. 

1981, 1990, 2000, 2009, 2011 ve 2014 y llar  için; orman-orman d  ve çok s n fl  arazi kullan m 

haritalar n n olu turulmas nda en iyi modeller üretilmi  ve kullan lm t r. Tüm s n fland rma 

modelleri oldukça iyi bir performans sunmu tur (Do ruluk >%85 , Kappa > 0.80). Çok s n fl  tasnif 

için en iyi performans %95.37 lik do ruluk  ve 0.94 lük kappa de eriyle FUSION ile  ula lm t r.  

Binary s n fland rmas  için; %98.5’ i a an do ruluk ve  0.96’ y  a an kappa indeksiyle  LT, LVT ve 

FUSION ula m t r. Biyomass üretimi odakl  orman amenajman planlar n n uygulamas  orman 

ekosistemlerinin yap  ve bile imini de i tirdi i arazi indeksleri ile belirlenmi tir. Sonuçta, biyomas 

üretim a rl kl  çam türlerine odaklanm  silvikültürel müdahalelerin arazinin do al vejetasyonuna 

kar l k gelen me e türlerine do ru araziyi de i tirdi i görülmü tür. Parça say s n n artmas  ve 

ortalama parça büyüklü ünün azalmas yla çal maya konu alan n parçal  bir yap ya do ru gitti i 

sonucuna var lm t r. Tep tac  yüksekli i ve kapal l k tahmininde RF kullan m ; CHM, CC ve 

HMAX için 0.563m, %6.99 ve 2.3 m lik RMSE ve 0.74 civar ndaki do ruluk de erleri bulundu u 

için orman dinami ini aç klamada kuvvetli bir de i ken olarak önerilmemektedir.   

Anahtar Kelimeler: Orman Amenajman , Arazi dinami i, LIDAR, Uzaktan alg lama,  
Rassal orman 
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Master Thesis  

SUMMARY 

FOREST DYNAMICS IN MEDITERRANEAN FOREST 
USING LANDSAT IMAGERY AND LIDAR 

Juan Jose MENA COSTA 

Karadeniz Technical University  
The Graduate School of Natural and Applied Sciences 

Forest Engineering Graduate Program 
Supervisor: Prof. Dr.Emin Zeki BA KENT 

2016, 71 Pages. 

Twelve fungal strains including Lecanicillium muscarium (Petch.) Zare and Gams, Isaria 

farinosa (Holmsk.) Mediterranean forests are complex ecosystems and most aspects of their 

functioning are unknown. Remote sensing applications are used to monitoring the effect of forest 

management. The study area counted with an old management plan from 1981 which was reviewed 

in 2012. Six different databases built with Landsat bands, vegetation, tasseled cap transformations, 

LiDAR-based variables and topographic variables were used to assess the performance of Random 

Forest algorithm. Best of the models were used to produce forest-no forest and multiclass land 

cover maps for the years 1981, 1990, 2000, 2009, 2011 and 2014. Processes and patterns were 

analyzed using landscape metrics. Also RF regression models were assessed for prediction of 

canopy height model, canopy cover and maximum height for the same years. All classification 

models presented a very good performance (Accuracies > 85% with kappa > 0.80).  For multiclass 

classification, the best performance was achieved by FUSION with 95.37% of accuracy and kappa 

0.94. For binary classification LT, LVT and FUSION achieved more than 98.5% in accuracy and 

kappa index higher than 0.96. Results showed that the silvicultural activities focused on pine tree 

species for biomass production modify the landscape by recovering Holm oak species. The 

landscape in the study area became fragmented over the study period, because of the increase in the 

Number of Patches and the decrease in Mean Patch Area.Estimation of canopy height and canopy 

cover with the use of RF did not offer such a robust variable for explaining forest dynamics since 

the accuracies ranged about 0.74 with RMSE of 0.563m, 6.99% and 2.3m, for CHM, CC and 

HMAX, respectively.  

Key Words: Forest Management, Landscape Dynamics, LiDAR, Remote sensing,Random forestl  
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1. INTRODUCTION 

Mediterranean forests are complex ecosystems and, despite of its research, most 

aspects of their functioning are unknown. Experiments permit to obtain relatively fast 

results if compared with long-term monitoring, but are also costly, especially in forests, 

and their interpretation is rather complex because it is not possible to change just a variable 

at one time in the field (Terradas 2005). Nevertheless, qualitative models are often built to 

explore different attributes in order to gain knowledge to generate projections. To assess 

forest changes during the time is required to observe some variables over the time.  

New technologies improved forest dynamics assessment during the last 3 decades. 

Since the launching of the first Landsat satellite (1972), the provided a relatively long 

historical record of remote sensing data in a moderate resolution. Imagery collected from 

the several sensors of the program has been proved useful for the forest cover 

characterization. One of the first works that dealt with forest-type mapping using remote 

sensing data was realized by Heller et al. (1974) and numerous studies have proceed with 

forest cover mapping and species differentiating (Coleman et al. 1990; Aardt & Wynne 

2001).  

Furthermore, the use of Landsat imagery is becoming popular since images are freely 

available in the USGS webpage. Different forest attributes have been related to the spectral 

signal received by the sensor as in Carreiras et al. (2006) where tree canopy cover was 

estimated in Mediterranean sclerofilous oak forests  in Portugal. In Gómez et al. (2014) 

temporal spectral trajectories of Landsat images were used to estimate forest aboveground 

biomass in Mediterranean pine forests. In Vega-García & Chuvieco (2006) temporal 

vegetation spatial pattern was analyzed in Mediterranean mountainous landscape in order 

to predict fire occurrence.  

In fact, the processing of the images may be done for classification purposes but also 

for estimation or regression. In Gong et al. (2013) a World-wide classification using 

Landsat presented the first Land Use/Land Cover (LULC) map with different levels of 

characters. But in Gómez et al. (2014) temporal spectral trajectories as unique source of 

data were used for modelling and mapping of historic AGB for Mediterranean pines in 

central Spain. 
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Light Detection and Ranging (LiDAR) technology provides a new perspective to the 

estimation of forest structure variables since offers direct information of the study area. It 

gives high resolution and georeferenced spatial data that have a particular utility in forest 

mapping. Cloud cover data can be processed to obtain directly a variety of canopy-

structure variables such as canopy height, stand density, crown width and crown length 

(Leiterer et al. 2015).  Also might be estimated parameters such as vegetation cover 

(Estornell et al. 2011), aboveground biomass and stem volume (Kankare et al. 2013). In 

(Næsset 2002) mean tree height, dominant height, mean diameter, stem number, basal area, 

and timber volume were estimated using LiDAR. But also with this kind of remote sensing 

data is possible to perform classification as in Garcia-Gutierrez et al. (2011). The 

usefulness of airborne LiDAR data for forest inventory parameters extraction is determined 

by the point density. Individual tree-level biomass mapping at regional scales is 

increasingly possible (Duncanson et al. 2015). Moreover, fusion satellite images with 

LiDAR have been proved to achieve more accurate results.  

To further improve the performance of classification models different datasets are 

often combined with LiDAR data. In Shoemaker (2012) satellite data, LiDAR data and 

their combination were used to create a LULC with 6 classes. Fusion data using all LiDAR 

surface models improved class discrimination of spectrally similar forest, farmland, and 

managed clearings and produced the highest total accuracies at 1m, 5m, and 10m 

resolutions (87.2%, 86.3% and 85.4%, respectively). In  Nourzad & Pradhan (2012) were 

achieved, nevertheless, very high accuracies 98.9% for binary and 94.6% for multi-class 

classification. Applying binary classification strategies such as one-against one or one 

against all, often increases accuracy, but only marginally (Chan et al. 2008). In  Nourzad & 

Pradhan (2012) were achieved, nevertheless, very high accuracies 98.9% for binary and 

94.6% for multi-class classification.  

Computer models can significantly enhance our ability to address the issues of cause 

and effect relations on long temporal and broad spatial scales. In Pal (2005) was found that 

Random Forest  classifier performs equally well to SVMs in terms of classification 

accuracy and training time and that the number of user-defined parameters required by 

random forest classifiers is less than the number required for SVMs and easier to define.  
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1.1. Objectives 

 

The main purpose of this work is to determine the forest dynamic during the period 

of time comprised between 1984 to 2014 in both, composition and structure using fusion of 

Landsat satellite imagery, LiDAR and ancillary data. To achieve this goal was necessary to 

build some Random Forest models, assess their performance and choose the best, not only 

for classification purposes but also for the estimation of forest structural parameters such 

as canopy cover (CC), mean and maximum canopy height (CHM and HMAX). Finally, 

Landscape dynamics was assessed through landscape metrics derived from classification 

maps. The importance of the variables was also evaluated. 

 



 

2. MATERIALS AND METHODS 

2.1. Study Area 

The study site of this work is the public forest num. V95 "Sierra Negrete". We 

choose this forest because its relatively recent management plan (2012) in Valencia 

province. 

 

Figure 1. Allocation map of the study area 

Climate can be considered as Mediterranean Pluviseasonal-Oceanic with the 

characteristic precipitation peaks in autumn and in spring highlighting a long drought 

season in summer. The mean precipitation in Utiel station was about 400 mm year in 

temperatures ranging -1.4ºC to 30.9ºC with an average on 12.2 ºC.     



5 

 

 

        Figure 2.Diagrame  Bioclimatic  of Utiel. (1996-2009 S.Rivas-
Martínez, Centro de Investigaciones Fitosociológicas, 
Madrid. ) 

The elevation ranges from 740m to 1304m with an average of 948m. 

 

Figure 3. Elevation map of the study area (Elevation in meters). 

In aspects map is showed for the study area. The prevalent aspect is 225º and the 

majority of the aspect in the South.  
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Figure 4. Aspect map of the study are 

 
 

Figure 5 shows the slopes of the study area. The slopes range from 0 to 41.2% the 

mean slope is 8.34% but the 3rd quartile is 11.97%. 

 

Figure 5. Slope map of the study area. 

Bedrock is limestone in majority and prevalent soils are Leptosoles. The forest is 

characterized by sclerofilous vegetation mainly Aleppo pine (Pinus halepensis Miller) and 

Holm oak (Quercus ilex L.) and they appear also mixed forest. There exist orchards, olive 

trees and rain-fed crops such as vineyards.  

The potential vegetation corresponds with the vegetation series Bupleuro rigidi-

Querceto rotundifoliae sigmetum.   

Legal limitations unravel the sectorial normative as the Forest Act in the Valencian 

Community in which clearcuttings are forbidden due to the potential erosion. Furthermore, 

regeneration method is the most important environmental constraint since the harvesting 
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method suitable for this species is the shelter wood method. The sequence of three 

different thinnings of different intensity does not leave the ground bare. 

2.2. Data 

The work reported in this master thesis was supported by data sensed remotely. 

Information from plot and LiDAR based field inventories served as reference for 

derivation of training areas, and in the stages that required accuracy assessment of 

estimated values. Satellite remotely sensed data and LiDAR based data was the base for 

fitting classification and regression models.  Ancillary data used include aerial 

photography of 2010 and vector cartography. 

 

2.2.1. Landsat  

 

2.2.1.1. Selection of Images 

 

Monitoring and analysis of forest dynamics require the acquisition of a time series 

satellite images that overlay the study area. Anniversary cloud-free images should be 

desirable in addition to those acquired in a stable phenological stage of vegetation. 

Atmospheric conditions not always are favorable to achieve high quality images. Besides 

to that, processing and analyzing anniversary images from the 70’s decade until now 

implies a high computational effort. In this study, six summer Landsat images ranging 

from 1984 to 2014 were selected four from Landsat 5 sensor TM, one from Landsat 7 

sensor ETM+ (Scan Line Correction on) and the most recent from Landsat 8 sensor OLI-

TIRS. They were freely available from the United States Geological Survey (USGS) user 

interface (URL-1). Reflective bands were used in this work and excluded the thermal band 

from further analysis. They have a spatial resolution of 30m and are provided with 

Standard Terrain Correction (Level 1T) that ensures systematic radiometric and geometric 

accuracy. All of them are projected in the Universal Transverse Mercator (UTM), zone 30 

North (datum WGS84) coordinate system.  

For the study of vegetation changes in the Mediterranean area is suitable to select 

images from the summer period when the sun elevation in higher and, therefore, the 
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maximum radiance is received by the sensor. In addition, summer season is the time when 

the cloudiness is lower.   

 

Table 1. Landsat imagery used in this work 
 

Spacecraft Sensor  Path Row Date  Sun elevation 

LANDSAT_5 TM  199 33 8/20/1984  53.14 

LANDSAT_5 TM  199 33 9/6/1990  47.77 

LANDSAT_5 TM  199 32 7/24/2009  60.79 

LANDSAT_5 TM  199 32 8/15/2011  56.47 

LANDSAT_7 ETM  199 32 9/9/2000  49.78 

LANDSAT_8 OLI_TIRS  199 32 8/7/2014  59.86 

2.2.1.2. Image Pre-Processing 

The computational effort and time of applying algorithms to a full image was 

reduced by cropping the original extent of the Landsat scene by a window that was better 

adapted to the study area. 

Sun light energy cross the atmosphere, a part of it is absorbed by it or the earth 

surface and other part is reflected to the outer space crossing back the atmosphere. Also the 

earth surface emits a certain amount of energy but it is not of interest to the goal of this 

work. This energy is collected by the satellite sensor, transformed in Digital Numbers 

(DN) from 0 to 255 and stored in files that one can download from the USGS browser, as 

mentioned above.  

The influence of the sun energy, the characteristics of the surface elements, the 

conditions and composition of the atmosphere crossed by the energy as well as the 

properties of the sensors are frequently the main causes of radiometric anomalies in the 

images.  This may lead to errors when interpreting the real amount of energy emitted or 

reflected by the earth surface.  

Radiometric calibration is a process to convert the Digital Numbers (DN) to at-

satellite radiance, a radiometric quantity measured in W/(m2 · sr ·µm) using the 

equation(3): 
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ܩ ൌ 	
ሺݔܽ݉ܮ െ ሻ݊݅݉ܮ

ሺݔܽ݉ܰܦ െ ሻ݊݅݉ܰܦ
 

1) 

 

ܤ ൌ ݊݅݉ܮ െ ܩ   ݊݅݉ܰܦ
2) 

 

ܮ ൌ ܩ  ܰܦ   ܤ
3) 

Where L is band-specific at-satellite radiance (W m-2 sr-1 µm-1), DN is satellite 

quantized calibrated digital number, B is band-specific bias in DN, and G is band-specific 

gain (m2·sr·µm·W - 1). Lmax is band-specific spectral radiance scaled to DNmax (W m-2 sr 
-1 µm-1), Lmin is band-specific spectral radiance scaled to DNmin(W m-2 sr -1 µm-1 ), 

DNmax is maximum quantized calibrated digital number (255), and DNmin is minimum-

quantized calibrated digital number (0 for LPGS data, 1 for NLAPS data). 

Then, to calculate at-sensor reflectance the equations are:  

ܮ ൌ
ሾ݊ݑݏܧ  ሺ݁ሻሿ݊݅ݏ

ߎ  ݀ଶ
 

4) 

 

ை்ߩ 	ൌ 	
ܮ
ܮ

 
5) 

Where, d is the earth-sun distance in astronomical units, e is the solar elevation 

angle, Esun is the mean solar exoatmospheric irradiance in W · m-² · µm-1, ܮ is the sun 

radiance in W m-2 sr-1 µm-1, L is band-specific at-satellite radiance (W m-2 sr-1 µm-1) and 

ρTOA is at-sensor or Top Of Atmosphere (TOA) reflectance. 

 

2.2.1.3. Atmospheric Correction 

 

The interaction between the electromagnetic radiation (EMR) and the atmosphere 

modifies by absorption and scattering the signal collected by the sensor. There are several 

approaches for the correction of these atmospheric effects that can be clustered in two main 

groups: Absolute and Relative algorithms.  
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Relative atmospheric correction algorithms require of the sensor spectral profile and 

the atmospheric conditions at the same time of the image acquisition.  

The Dark Object Subtraction (DOS) method assumes that the darkest parts of an 

image (water, artificial structures) should be black if not for the effects of atmospheric 

scatter. Corrections make possible to use the black value from one band to correct the 

remaining bands.  

The atmospheric correction method used in this work is DOS4. GRASS7 was used to 

transform the DN to at-surface reflectance with the i.landsat.toar command.  

 

2.2.1.4. Topographic Correction 

 

Various radiometric correction methods have been proposed to reduce topographic 

effects on remotely sensed images. The Minnaert correction method (Smith et al. 

1980)adopts the bi-directional reflectance principles. In this correction, a measure of how 

close a surface is to the ideal diffuse reflector is introduced by the Minnaert constant. In 

Karathanassi et al. (2000) the classification based on the images generated by the Minnaert 

correction presented the highest overall accuracy and kappa coefficient for all scenes.  

The topographic correction of the Landsat images was performed using the Landsat 

package in R with the command minnaert. (Lu et al. 2008) The Minnaert correction model 

can be expressed as Equation (6): 

LH	 ൌ 	LT	cos ݁ /ሺcos	݁	cos	݅ሻ 6) 

where LH is the equivalent reflectance on a flat surface with incident angle of zero, 

LT is the measured radiance in the remotely sensed data, k is a Minnaert constant, e is 

slope, and i is the solar incident angle in relation to the normal of a pixel. The cosine of the 

incident solar angle (cos i), referred to as illumination, is calculated using Equation (7): 

 

cos ݅ ൌ cos ߠ cos ݁  sin ߠ sin ݁ cosሺ߮ െ ߮௦ሻ 

7) 

where ߠ and ߮ are solar zenith angle and azimuth, and e and ߮௦ are slope and 

aspect of the terrain. In order to solve k, Equation (6) can be reorganized as Equation (8): 
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logሺL	cos	eሻ ൌ 	log	Lୌ	  	k	logሺcos e cos iሻ 
8) 

Once atmospheric and topographic corrections were implemented on all images, the 

clouds and cloud-shadows were removed. To do this the i.landsat.acca the pre-processing 

stage was finished and the images were ready to be used in the production of derived 

products. 

 

2.2.1.5. Vegetation Indexes 

 

Reflectance of two or more bands may be combined in order to highlight a particular 

property of vegetation based mainly on the difference of reflectance in the Red and the 

NIR bands.  One may find abundant literature regarding to VI’s. Here, Normalized 

Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Simple 

Vegetation Ratio (SR) were calculated as well as Tasseled Cap Transformation 

components ( Brightness, Greenness, Wetness)  

 

2.2.1.5.1. Normalized Difference Vegetation Index  

 

Developed by Rouse et al. (1973), is one of the most widely used VI and can be 

defined as:  

ܫܸܦܰ ൌ 	
ܴܫܰ  ܴ
ܴܫܰ െ ܴ

 (9) 

Where NIR and R stand for the reflective values in the NIR and red bands for each 

pixel. 

 

2.2.1.5.2. Enhanced Vegetation Index 

 

The enhanced vegetation index (EVI) was developed to optimize the vegetation 

signal with improved sensitivity in high biomass regions and improved vegetation 

monitoring through a de-coupling of the canopy background signal and a reduction in 

atmosphere influences. The equation takes the form, 
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ܫܸܧ ൌ 2.5	
ܴܫܰ െ ܦܧܴ

ܴܫܰ  6  ܦܧܴ  7.5 ܧܷܮܤ  1
 

10) 

where NIR, BLUE and RED are surface reflectance of near Infrared, blue and red 

bands, respectably  (Huete et al. 2002) 

 

2.2.1.5.3. Simple Vegetation Ratio 

  

It is described as the ratio of light that is scattered in the NIR range to that which is 

absorbed in the red range. 

SR	 ൌ 	
NIR
Rܦܧ

 
11) 

The range of values is from 0 to more than 30, where healthy vegetation generally 

falls between values of 2 to 8. 

SR as well as NDVI and EVI were calculated using i.vi module in GRASS 7. 

 

2.2.1.6. Tasseled Cap Transformation  

 

The Tasseled Cap Transformation (TCT) was initially developed by Kauth and 

Thomas (1976) for crops and, then, broadly used in forest studies. The first three 

components of the TCT were named Wetness, Greenness and Brightness have received 

special attention for forest applications. 

In Meddens et al. (2013) were used to detect bark beatle-caused mortality together 

with other vegetation indices.  

They were computed using i.tasscap module in GRASS 7 from the Top Of 

Atmosphere (TOA) reflectance obtained with the i.landsat.toar module. 
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2.3. LiDAR Technology 

LIDAR (Light Detection and Ranging) is a new accurate method to measure the 

topography of the Earth’s surface. It consists of three different gears: A laser scanner 

installed in an aircraft that emits Laser pulses with a very high frequency that are reflected 

back to a receptor. The time that takes to reach an object or the ground and return back and 

the angle from nadir are used to determine the position of the reflecting surface.  

The location of the instrument is captured by a Global Positioning System (GPS) and 

the Inertial Navigation System provides orientation characteristics. Then, x, y and z 

coordinates of the surface are given. In some cases the flux is partially reflected by two or 

more different objects located at different heights. This multiple returns may be collected 

by the sensor. The sensor also register the intensity, a spectral property of LiDAR data that 

measures the amount of energy backscattered from features on the Earth’s surface. 

 

2.3.1. LiDAR Data 

 

Discrete LiDAR data for the study area were acquired on 2009 by the Instituto 

Geográfico Nacional (IGN). Nevertheless there existed a temporal bias between the forest 

management plan published, it was not considered important since, in this time interval, 

were not produced significant changes in the forest structure.  

The sensor LiDAR used was Leica ALS 50. Data gathered by this sensor present the 

following specifications: 

Table 2. Characteristics of LiDAR flight. 

Density 0,5 hits · m-2  

Separation 1,41 m 

Sensor Leica ALS 50 

FOV 50º 

PRF 89.9 

Frequency 33.2 Hz 

Hv 2200 

Speed 274 Km · h-1 

Overlapping 15% 

Ellipsoid ETRS89 

Projection UTM 30 

Vertical accuracy ≤ 0.20 m RMSE 

Horizontal accuracy ≤ 0.20 m RMSE 

A total amount of 132 tiles of airborne LiDAR data, each with dimensions 2 x 2 km, 

were obtained from the IGN website (URL-2). Each tile is compressed in “.las” format, a 
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dense collection of georeferenced points with the following attributes: x coordinate, y 

coordinate, return height (z), return, and intensity. The raw tiles are delivered with a 

classification attribute that allows discriminating between the surface types that were hit. 

Although this classification could be useful, here was preferred to avoid it in our analysis.  

The original information gathered by the sensor may contain errors since estrange 

elements such as birds or insects can interfere in the earth surface as well as its vegetal or 

anthropic cover. In addition, these returns generally differ considerably in height with other 

points of the ground and the rest of the objects and may cause variations in the data 

produced from the point clouds. On the other hand, the z coordinate is referred to an 

ellipsoid (in this case to ETRS89) and not the height over the ground that is the really 

necessary in order to perform the analysis of the variables.  

 

2.3.2. LiDAR Data Processing 

 

DEM (Digital Elevation Model) is a continuous mathematical model representing the 

shape of the surface, i.e. the elevation as function of the cartographic coordinates North-

East or a function of latitude and longitude. There exist two different kinds of DEM: the 

digital surface model (DSM) that represents all objects over the Earth’s surface including 

vegetation, buildings and so on; the digital terrain model (DTM) reproduces the bare 

Earth’s surface.   

Therefore, to correct these deficiencies one should realize the following processes: 

 Extract the points due to noise (“Denoise”). 

 Classification of the points in ground and no ground 

 Produce a Digital Terrain Model (DTM)  and a Digital Surface Model (DSM) 

 Normalization of the point-clouds to obtain height over the ground 

 Extraction of the variables 
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Figure 6. Lidar processing workflow diagram using Lasstools.  

LasTools is a new software suite for the operational processing of data from 

advanced airborne LIDAR sensor systems. LasTools provides the tools required to 

generate DSMs and DTMs from raw or basically preprocessed LIDAR data in a stand-

alone application (Hug et. Al, 2012) 

The initial 2 x 2 km tiles were split in 4 tiles of 1 x 1 km, thus, the computational 

time when applying the algorithms was dramatically reduced. Each of the resulting tiles 

had a buffer of 50m in each of its sides to avoid possible errors in the edge. At the end of 

the analysis this buffers were removed and all the tiles were merged. 

 

2.3.2.1. Denoise 

 

Lasnoise tool was used to find potential noise points. This tool tries to find points 

that have only few other points in their surrounding 4 m by 4 m by 4 m cube of cells with 

the cell   the respective point falls into being in the center. Thus, the noise points are given 

the classification code 7 (low or high noise). 
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2.3.2.2. Ground and No-Ground Points 

 

Lasground is a tool for bare-earth extraction: it classifies LiDAR points into ground 

points (class = 2) and non-ground points (class = 1). The functioning of this tool is based in 

the assumption that the last return is considered as ground while earlier returns are 

considered non-ground. In this step were ignored the points classified as noise points.  

 

2.3.2.3. Height Normalization 

 

Then we height-normalize the LiDAR using lasheight. As we know that there are no 

trees higher than 28 meters in this plot we drop all LiDAR points that are higher than 30 

meters that may be bird hits or other noise.  

 

2.3.2.4. LiDAR Derived Variables 

 

A Canopy Height Model (CHM) is a raster representation of the tree canopy height. 

In the normalized tiles resulting from the last step there exist points that returned from 

trees but also from buildings, shrubs, scrubs and other features. The most typical approach 

to obtain the CHM is by the subtraction of the DTM to the DSM.  One approach to 

generate the DTM is to create a digital elevation model (DEM) with the points classified as 

last returns. On the other hand, the DSM is performed on the same way but with the first 

returns. In this work was used the las2dem module to obtain DTM, DSM raster layers and 

with its difference, the CHM raster layer. Elevation as well as slope and aspect raster 

layers derived from the DTM were computed using R statistics software (R Development 

Core Team 2011).  

On the other hand, with the height normalized tiles as input, the lascanopy tool was 

used to produce a Canopy Cover (CC) raster layer computing the average percent of 

surface covered by vegetation; a Maximum Height raster layer (HMAX), registering the 

first return with the maximum height on a pixel; and a Maximum Intensity raster layer 

(IMAX) with the maximum intensity within each pixel.  
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All raster layers were created with a 2m resolution on .tif format and later resampled 

(by averaging) to 30 x 30 m cell size in order to harmonize the resolution with the Landsat 

images.  

 

2.3.3. Ancillary data 

 

2.4. Datasets 

 

Once processed Landsat images was obtained a dataset for each year including six 

reflective bands, three vegetation indices and three tasseled cap components. In addition, 

elevation, slope and aspect data derived from the DTM were included in the dataset of each 

year. Thus, the dataset is composed of 15 variables excluding for the year 2009 in which 

LiDAR-derived raster layers where included (table 3). 

For the classification of the reference image (2009) CHM, HMAX, CC, and IMAX 

were additional predictor variables. Later was compared the accuracy of using Landsat 

only (LO), Landsat and Vegetation Index dataset (LV) and  fusion of LVT with LiDAR 

derived-predictors (FUSION).  

 

Table 3. Model names and predictor variables. 
 

Dataset Variables 

LO B1, B2, B3, B4 , B5, B7 

LV B1, B2, B3, B4 , B5, B7, NDVI, EVI, SR, BRIGHT, GREEN, WET 

LT B1, B2, B3, B4 , B5, B7, ELEV,ASPECT,SLOPE 

LLI B1, B2, B3, B4 , B5, B7, NDVI, EVI, SR, BRIGHT, GREEN, WET, 

CHM,CC,HMAX,IMAX 

LVT B1, B2, B3, B4 , B5, B7, NDVI, EVI, SR, BRIGHT, GREEN, WET, 

ELEV,ASPECT,SLOPE 

FUSION B1, B2, B3, B4 , B5, B7, NDVI, EVI, SR, BRIGHT, GREEN, WET, 

CHM,CC,HMAX, IMAX, ELEV,ASPECT,SLOPE 

 
LO: Reflective bands Landsat.; LV: Reflective bands Landsat + Vegetation indices + 

Tasseled Cap components, LT: Reflective bands Landsat + Topographic variables; LLI: 
LV + LiDAR derived variables; LVT: LV + Topographic variables; FUSION: LTV +   
LiDAR derived variables 
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2.5. Training Areas  

 

Training data are indispensable for both classification and predicting purposes. 

Training polygons or areas are the input for the classifier.  It could be suitable to carefully 

collect class, height and other ground information in situ with a global positioning system 

(GPS) receiver. Unfortunately, it requires not only certain budget but also a considerable 

amount of time. Thus, this data gathering method was not adopted in this work. Instead of 

this, training areas were drawn taking advantage of the vegetation strata map as well as the 

forest stands map from the forest management plan published in 2011. These reference 

maps were georeferenced using ARCMAP 10 and were used to digitize the sample 

polygons in the training of the Random Forest model. 

Aerial imagery taken in 2010 with 25 cm of resolution delivered by the IDEE was 

used verification of training area classes and to visually interpret the results of the 

classification for the years 2009 and 2011 assuming that there were not important 

variations in these years with respect to 2010. 

A simple heuristic method is often used to determine the training sample size as at 

least 10-30 per class, where is the number of spectral wavebands or other discriminating 

features used in the classification (Foody, 2009). The description of the different land 

cover classes used in this thesis is shown in Table 4. Land cover types description. 

 

Table 4. Land cover types description. 
 

CLASS Description 

Man-made Arable land, crops, orchard; Urban and artificial surfaces; roads. 

Pine Forest with Pine as dominant trees with more than 80% of presence. 

Mixed Forest with Pine or Oak as dominant trees with less than 80% of presence. 

Oak Forest with Oak as dominant trees with more than 80% of presence. 

Shrubs Natural or semi-natural grasslands; shrublands 

 

The mean spectral response of each class is presented in Spectral signatures of 

classes are shown from Figure 8 to Figure 12.  
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Figure 7. Mean values of the spectral response of the classes. 

 

Figure 8. Spectral response for ‘Man-made’ class. 
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Figure 9. Spectral response for ‘Pine’ class. 

Figure 10. Spectral response for ‘Mixed’ class. 
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Figure 11. Spectral response for ‘Oak’ class 

 

 

Figure 12. Spectral response for ‘Shrubs’ class. 
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2.6. Classification Algorithms 

 

Identify to which category (or class) a new observation belongs is a statistics 

problem called classification. Thus, based on a training data containing information of 

observations whose class is known, one can achieve the objective of determining the class 

of each feature. According to  (FAO, 1998) land cover and land use mapping is considered 

a supervised learning classification problem in which the response variable corresponds 

some biophysical properties of the earth surface such as dominant vegetation, soil 

composition, and so on in the presence, or absence, of human activities.    

Classification algorithms are abundant in the literature and they are used for a large 

amount of problems. One of the most common techniques is the decision trees (Rokach 

2016), predictive models that use a set of binary rules to calculate a target value. The basic 

decision tree induction algorithm constructs decision trees in a top-down recursive divide-

and-conquer manner. In each iteration, the algorithm searches for the best partition of the 

data- set. Recall that many decision trees are univariate i.e. the dataset is split according to 

the value of a single attribute. Thus, in such cases, the algorithm needs to find the best 

splitting attribute. The selection of the most appropriate attribute is made according to 

certain splitting criteria, such as information gain or the Gini coefficient. All possible 

attributes are evaluated according to the splitting criterion and the best attribute is selected. 

After the selection of an appropriate split, each node further subdivides the training set into 

smaller subsets and the process continues in a recursive manner. 

 

2.6.1. Random Forest 

 

Breiman (2001) developed a classifier based in the combination of several decision 

trees. Random Forests is a classifier consisting of a collection of tree-structured classifiers 

{h(x,θk), k = 1,...} where the { θk } are independent identically distributed random vectors 

and each tree casts a unit vote for the most popular class at input x. This technique 

examines a large ensemble of decision trees, by first generating a random sample of the 

original data with replacement (bootstrapping), and using a user-defined number of 

variables selected at random from all of the variables to determine node splitting. Multiple 

subsets of trees are built, and the support for the role of each variable in each decision is 
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noted. Finally, classification output is created based on a majority vote of the predictions 

from all individually trained trees, for regression the average of the   results is used. 

About 33% of the cases in the training dataset are left out to estimate the error rate, 

called Out Of Bag (OOB) data, and variable importance. Then, the OOB are used to 

validate the model and represents the average of the misclassification of all the trees. The 

number of trees should be enough to maintain the error rate stable (Horning 2010). The 

relative importance of a predictor variable may be evaluated.  

The advantages of RF are the easy parametrization, since only the number of trees 

(ntree) and the number of variables to be randomly selected in each node (mtry); accuracy 

and variable importance are automatically generated; not very sensitive to outliers in 

training data; RF is able to deal with categorical data; and no need for pruning trees.  

 

2.7. Accuracy Assessment 

 

Training samples or training areas were drawn in ARCGIS v.10 taking as reference 

the vegetation strata map from the forest management plan and the aerial photograph from 

2010.  

 

Figure 13. Trainning areas. 
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For classification each dataset was divided to 60% for training (training dataset) and 

40% for validation or test dataset (TD). For regression each dataset was divided to 30% for 

training the model and 70%for validation. 

RF performance in binary classification (forest-non-forest) as well as in multiclass 

was assessed in this work. 

The output of the random forest consisted of OOB error rate and a confusion matrix 

for each classification RF. Then, with the predicted values obtained using test dataset as 

input, confusion matrix was attained. Producer’s and User’s accuracies were calculated as 

well as the overall accuracy for both, OOB and TD.  (Thomlinson et al. 1999)  set a target 

of an overall accuracy of 85% with no class less than 70% accurate. 

 

2.7.1. Cohen Kappa Agreement ands Mcnemar’s Test 

 

The agreement of the classifications was analyzed by means of the Kappa agreement 

index (Cohen, 1960) and McNemar’s test (McNemar, 1947) was used to find differences 

between classifications produced with the different RF models.  

 

2.8. Landscape Analysis 

 

The spatial structure and composition of the studied landscape were analyzed using a 

small number of metrics to evaluate patterns and processes as in Başkent & Kadioǧullari 

(2007) and Martinez del Castillo et al. (2015). Binary and multiclass cover maps were used 

as input for the ClassStat command in the “SDMTools” package (Vanderwal et al. 2012) 

within the R statistics software. The output of this command is a data frame with class 

statistics based on statistics calculated by FRAGSTATS (Mcgarigal, 1994). In this study 

we analyzed percent of landscape (PL; percent of landscape), class area (CA; sum of the 

areas of all patches belonging to a given class, in map units), number of patches (NP), 

largest patch index (LPI; percentage of the landscape comprised by the largest patch), 

mean patch area (MPA; the average patch size within a particular class), patch density 

(PD; number of patches per 100ha), mean shape index (MSI: mean shape index), 

aggregation index (AI: computed simply as an area-weighted mean class aggregation 

index, where each class is weighted by its proportional area in the landscape) and patch 



25 

 

cohesion index (COHESION: measures the physical connectedness of the corresponding 

patch type) 

Table 5. Landscape metrics assessed in this study, analysis level and landscape structure 
concept. 

Index Acronym Analysis level Landscape structure concept 

Percentage of Landscape PLAND C Fragmentation 

Class area CA C Fragmentation 

Number of patches NP L/C Fragmentation 

Patch density (#/100 ha) PD L/C Fragmentation 

Largest patch index LPI L/C Fragmentation 

Patch Area (mean) MPA L/C Fragmentation 

Aggregation index AI C Connectivity 

Patch Cohesion Index COHESION C Connectivity 

2.9. Estimating CHM, HMAX and CC 

RF models were developed using the 30% of the dataset as training samples. The 

models were validated with the rest 70% that was not used in the training of the models. R2 

and RMSE were reported. Pseudo-R2 was calculated directly by the software R. 

 

2.10. Software 

 

This study was conducted using OPEN SOURCE software with the exception of the 

digitalization of training areas since the format .ecw was only compatible with the software 

ArcGIS.10.2 (ESRI 2013) and the format .laz that was with Lastools (Hug et al. 2012). The 

preprocessing of Landsat images was performed using GRASS 7 (Neteler, 2008) and R 

statistical.  

The RF modeling was performed using the “random forest” package (Liaw, 2015)  in 

R statistical language (R Development Core Team 2011). Landscape metrics were 

calculated using package “SDMTools”. Other packages were used in this work such as 
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“rgdal” (Pebesma et al. 2012), “raster” (Hijmans et al. 2014), “ggplot2” (Wickham, 2009), 

“Landsat” (Goslee, 2011) and “irr” (Gamer et al. 2012). 

 



 

3. RESULTS 

 

This section provides all the results. The following sections present the classification 

results for the year 2009.  Accuracy of the proposed random forests for classification was 

assessed using OOB error rate and error matrix, both, from the training dataset and from 

the test dataset. Importance of the variables was also analyzed. Categorical maps for the 

1984, 1990, 2000, 2011 and 2014 were produced using the random forest that obtained the 

best accuracy considering the availability of the data.   

 

3.1. Classification 

 

3.1.1. Multiclass Classification Overall Accuracy Results 

 

All the RF models presented a very good performance, having a glance to the OOB 

and to the test data accuracies, all of them exceeded of 85%. FUSION obtained the highest 

accuracy among all RF with and OOB of 95.37% and 95.16% in the TD while the highest 

error was registered by LV (13.59% and 14.64, in OOB and TD, respectively). The 

accuracy achieved LVT (94.51 and 94.58%) is similar to FUSION that demonstrates that 

in this work LiDAR did not improve in a considerably way the performance in the 

classification. In line with this, the addition of the LiDAR-derived features (LLI) to the 

model trained with LV (Landsat bands and Vegetation indices) only improved the 

performance accuracy 5.33% while LVT increased the accuracy about 10% with respect to 

LV. Thus, the addition of topographic information to the RF training dataset leads to a 

higher improvement in accuracy terms than the addition of LiDAR-derived features in the 

land cover classification in this work. 
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Figure 14. Classification overall accuracies of the different RF models in OBB, 
TD and Average. 

3.1.1.1.  Kappa Test Results 

Kappa analysis on the individual confusion matrices from each RF is presented in the 

Table 6. Similar results were obtained both, in the training level (OOB) and in the test level 

(TD). All models showed very strong agreement since all Kappa values surpassed 0.80. 

FUSION, LVT and LT achieved the highest Kappa values (0.94, 0.93 and 0.93, 

respectively) while LO and LV got the lowest results, both OOB and TD about 0.80.  

Table 6. Kappa analysis based on OOB and Test Data (TD). 

LO LV LT LLI LVT FUSION 

OOB TD OOB TD OOB TD OOB TD OOB TD OOB TD 

Kappa 0.82 0.81 0.82 0.81 0.93 0.93 0.87 0.88 0.93 0.93 0.94 0.94 

According to the results, the addition of topographical variables (LT and LVT) 

increased agreement greatly respects to LO and LV with a difference of the overall Kappa 

superior to 0.10. However, the addition of LiDAR-derived (LLI) variables presented a 

lower increase in agreement terms (0.05 and 0.07, OOB and TD, respectively). The 

improvement of the model performance due to the integration of LiDAR data with spectral 

and topographical data (FUSION) was only of 0.01 with respect to LVT but about 0.12 

with respect to LO, in terms of Kappa. 

LO LV LT LLI LVT
FUSIO

N

OOB 86,46 86,41 94,63 90,29 94,51 95,37

TD 85,43 85,36 94,72 90,64 94,58 95,05

Average 85,95 85,88 94,67 90,46 94,54 95,21
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3.1.1.2. User’s and Producer’s Accuracy Results 

Average User’s (UA) and Producer’s (PA) accuracies of individual land cover type 

are presented in Table 7. All accuracies were higher of 75%, the lowest was 75.05% and 

the highest was 99.86%. Among all classes, Man-made class PA’s and UA‘s were almost 

100% in all cases. The PA’s of ‘Pine’ were ranged from 85.49% to 95.20%. The PA’s of 

‘Oak’ were slightly lower to the ‘Pine’ ones ranging from 82.91% to 94.03. The ‘Shrub’ 

class PA achieved the widest range from 75.05% to 92.68% followed by the ‘Mixed’ class 

(76.24% to 94.03%). The highest class-specific PA’s of all classes was generated by 

FUSION. 

Regarding to UA’s, ‘Pine’ ranged from 84.76% to 95.99%. The UA of ‘Oak’ was 

slightly lower ranging from 83.10% to 94.54%, the ‘Mixed’ class achieved 77.01% to 

92.68% and the ‘Shrub’ class had the widest range from 76.05% to 92.52%. For ‘Man-

made’, ‘Pine’ and ‘Mixed’ the highest UA was obtained using FUSION model. On the 

other hand, LT was more accurate when classifying ‘Oak’ and ‘Shrubs’ classes with 

99.59% and 92.67% in UA, respectively.  

 

Table 7. Average class-specific classification accuracies in percent. PA: Producer’s 
Accuracy, UA: User’s Accuracy. 

CLASS 
LO LV LT LLI LVT FUSION 

PA UA PA UA PA UA PA UA PA UA PA UA 

Man-made 99.68 99.29 99.27 99.48 99.80 99.29 99.32 99.71 99.79 99.36 99.86 99.82

Pine 85.49 84.76 86.63 85.96 94.49 95.09 91.03 91.11 95.10 94.94 95.20 95.99

Mixed 76.24 77.07 77.06 77.01 91.55 90.70 83.06 83.22 91.32 91.77 92.68 92.66

Oak 86.20 83.92 82.91 83.10 93.14 94.54 88.87 88.81 93.48 93.08 94.03 93.32

Shrubs 76.81 80.24 75.04 76.05 92.59 92.52 86.21 85.37 89.97 90.73 92.68 91.60

 

The improvement in the PA and the UA regarding to the addition of LiDAR and 

topographical variables to the reflective bands to train the model is evident in almost all the 

cases. It is possible to highlight that the addition of topographical variables improved 

considerably PA and UA for all classes in concordance with the overall accuracies since 

UA and PA are greater in LT with respect to LO, and in LVT than in LV. The 
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improvement in PA and in UA due to the incorporation of the LiDAR-derived variables 

was lower than when adding topographical variables. Nevertheless, the better performance 

was obtained integrating both, topographical and LiDAR-derived variables. 

 

3.1.1.3.  McNemar’s Test Results 

 

In general, McNemar’s test results (Table 8) revealed that the classification carried 

out  with LO, LV, LT, LLI and LVT were not statistically different since all p-values in 

pairwise analysis were greater than the significant level (α = 0.05). Nevertheless, there was 

found that FUSION performed better than the other RF models excluding LT and LVT that 

performed equally. Thus, the cheaper and quicker model is LT.  

 

Table 8. McNemar’s test results for the TD. 

 
χ2 p-value 

LO vs LV 6.947 0.7304 
LO vs LT 12.5073 0.2525 
LO vs LLI 8.6789 0.5628 
LO vs LVT 10.1642 0.4262 
LO vs FUSION 19.4892 0.03447 
LV vs LT 4.535 0.92 
LV vs LLI 7.8341 0.645 
LV vs LVT 6.7991 0.7443 
LV vs FUSION 20.2591 0.0269 
LT vs LLI 7.8341 0.645 
LT vs LVT 6.7991 0.7443 
LT vs FUSION 12.3268 0.2638 
LLI vs LVT 8.1393 0.6152 
LLI vs FUSION 24.8752 0.005587 
LVT vs FUSION 4.1292 0.9413 
   

Taking into consideration the overall accuracies, the UA and the McNemar’s test 

results, the model that better performed was FUSION and it was used to draw the land 

cover map of the year 2009. However, it was not possible to use this RF due to the lack of 

LiDAR data in the other years of the study. Hence, LT was used for the classification of 

the rest of the years since, having similar results than LVT in terms of OA, PA, UA, Kappa 

agreement index; it is the most simple of both. 
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3.1.1.4.  Variable Importance Results 

As mentioned in the random forest section, an interesting output from this algorithm 

is the variable importance In Table 9 are shown the variables used in each of the models 

ordered in descendent order of importance according the mean decrease in accuracy after 

the variable permutation. Thus, the most important variable across all the more accurate 

models (LT, LVT and FUSION) was ELEVATION followed by ASPECT. SLOPE also 

resulted important in LT and LVT but less important in FUSION. From the LiDAR-

derived variables, CC as the most important ranking the first in LLI and the third in 

FUSION. CHM ranged the second in importance in LLI and the fourth in FUSION.  

EVI resulted to be the most important of the vegetation indices in the most of the 

cases and GREEN was of the Tasseled Cap components. In the model only ith reflective 

bands (LO), B4, B1 and B3 were the three most important. 

 

Table 9. Variable importance from each RF classification model. Note they are ordered 
from the  most important (top) to the less important (bottom). 

LO LV LT LLI LVT FUSION 

B4 GREEN ELEVATION CC ELEVATION ELEVATION 

B1 B1 ASPECT CHM ASPECT ASPECT 

B3 B4 SLOPE HMAX SLOPE CC 

B7 EVI B4 IMAX B4 HMAX 

B2 B3 B1 GREEN EVI CHM 

B5 B5 B3 EVI GREEN IMAX 

 
B2 B5 B4 B5 EVI 

 
B7 B7 SR B7 SLOPE 

 
WET B2 NDVI NDVI GREEN 

 
SR B1 SR NDVI 

 
NDVI BRIGHT B3 B4 

 
BRIGHT WET B1 SR 

 
B7 WET B5 

 
B5 BRIGHT B1 

 
B3 B2 B3 

 
B2 BRIGHT 

 
WET 
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3.1.1.5.  Visual Assessment 

A qualitative comparison of the generated land cover maps is performed in this 

section. Hata! Başvuru kaynağı bulunamadı. represents the classification maps 

generated using the different random forest models.  LO, LV and LLI generated most noisy 

maps with a high amount of isolated pixels. This drawback seems to be reduced by the 

addition of topographical data (LT, LVT and FUSION). However, some differences can be 

seen particularly in the classification of ‘vegetated’ classes due to the similarity between 

these classes in terms of spectral response (Hata! Başvuru kaynağı bulunamadı.). 

 



33 

 

 

Figure 15. Classification maps achieved with all RF. A) LO, B) LV, C) LT, D) LLI, E) LVT 
and F) FUSION 
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3.1.1.6.  Land Cover Mapping 

Land cover maps for 1984, 1990, 2000, 2009, 2011 and 2014 are presented in Figure 

16 

 

Figure 16. Land cover maps produced with LT model: A) 1984, B) 1990, C) 2000, D) 
2009, E) 2011 and F) 2014. 
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3.1.2. Binary Classification 

 

3.1.2.1.  Classification Overall Accuracy Results 

 

Figure 17 shows the overall accuracies in the binary classification. All models 

achieved better overall accuracies that in multiclass since all of them exceeded 95%. The 

highest OOB accuracy was achieved by FUSION and LT provided the highest TD 

accuracy. In average LT performed better in absolute terms but there were not found 

significant differences. 

 

 

Figure 17. Classification overall accuracies of the different RF models in OBB, 
TD and Average. 

3.1.2.2.  Kappa Test Results 

With respect to the kappa agreement test all models obtained almost perfect 

agreement surpassing 0.9 with the exception of LO that achieved 0.898 in the test data (see 

Table 10). The best agreement was obtained by LT with a kappa index of 0.968 and 0.974, 

in OOB and TD, respectively. There were not significant differences between LT, LVT 

and FUSION. 

 

 

 

LO LT LV LLI LVT
FUSIO

N

OOB 96,65 98,58 96,72 97,86 98,55 98,72

TD 95,59 98,88 96,06 97,32 98,81 98,59

Average 96,12 98,73 96,39 97,59 98,68 98,66
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Table 10. Kappa analysis based on OOB and TD. 

 
LO LT LV LLI LVT 

FUSI

ON 

 OB D OB D OB D OB D OB D OB D 

Kappa 
.924 .898 .968 .974 .925 .909 .948 .94 .967 .973 .971 .968 

 

3.1.2.3.  User’s and Producer’s Accuracy Results 

 

As occurs with the last sections, user’s and producer’s accuracies obtained here 

indicate that all the models perform almost perfectly since all of them exceed 90% in 

accuracy in both, forest and non-forest. According to Table 11, the highest UA was 

obtained by FUSION in detecting forest pixels but LT as better in separating non-forest, 

99.06% and 98.15%, respectively. LVT obtained a better producer’s accuracy in 

discriminating forest class (99.09%) and FUSION did in non-forest.  

Table 11. Average class-specific classification accuracies in percent. PA: Producer’s 
Accuracy, UA: User’s Accuracy. 

CLASS 
LO LT LV LLI LVT FUSION 

PA UA PA UA PA UA PA UA PA UA PA UA 

Forest 97.72 97.64 97.83 99.00 97.82 96.87 98.28 98.16 99.09 98.96 98.95 99.06 

Non-forest 92.78 97.56 97.93 98.15 93.42 95.34 96.15 96.39 97.84 98.10 98.05 97.81 

 

3.1.2.4.  McNemar’s Test Results 

 

According to results for the McNemar’s test presented in Table 12, there were not 

found any difference between the binary classification obtained by the use of any of the 

models since p-values were higher than 0.05 and none of the values of the statistic χ2  was 

higher than 3.84. Therefore, one can conclude that the use of the different variables studied 

in this work did not have impact in the binary classification in a significance level of 0.05.  
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Table 12. McNemar’s test results for the TD 
 

χ2 p-value 

LO vs LV 0.1026 0.7488 

LO vs LT 2.3486 0.1254 

LO vs LLI 1.6569 0.198 

LO vs LVT 2.4381 0.1184 

LO vs FUSION 2.8174 0.09325 

LV vs LT 1.7604 0.1846 

LV vs LLI 0.9901 0.3197 

LV vs LVT 1.9205 0.1658 

LV vs FUSION 2.1635 0.1413 

LT vs LLI 0.0533 0.8174 

LT vs LVT 0 1 

LT vs FUSION 0.0238 0.8774 

LLI vs LVT 0.0548 0.8149 

LLI vs FUSION 0.4571 0.499 

LVT vs FUSION 0.025 0.8744 

 

3.1.2.5.  Variable Importance 

 

The most important of the variables in the LO and LV model is B5. From the 

Landsat reflective bands, B4 is of relative importance in all models. Regarding the addition 

of vegetation indices, EVI and GREEN ranked the most important features in almost all 

the models they appear  

The most important variable across LT, LVT and FUSION models was ASPECT 

followed by ELEVATION, conversely to the importance in multiclass classification. 

SLOPE also resulted important in LT and LVT but less important in FUSION. From the 

LiDAR-derived variables, CC as the most important ranking the first in LLI and FUSION. 

CHM ranged the second in importance in LLI and the fifth in FUSION.  
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Table 13.Variable importance from each RF model. Note they are ordered from the 
most important (top) to the less important (bottom). 

 

 

3.1.2.6.  Visual assessment 

 

A qualitative comparison of the generated land cover maps is performed in this 

section. Hata! Başvuru kaynağı bulunamadı. represents the classification maps 

generated using the different random forest models.  LO, LV and LLI generated the most 

noisy. This drawback seems to be reduced by the addition of topographical data (LT, LVT 

and FUSION).  

LO LV LT LLI LVT FUSION 

B5 B5 ASPECT CC ASPECT CC 

B3 B4 ELEVATION CHM ELEVATION ASPECT 

B4 GREEN SLOPE B2 SLOPE ELEVATION 

B7 EVI B5 HMAX B4 HMAX 

B1 B7 B4 IMAX B5 CHM 

B2 WET B7 B3 EVI SLOPE 

 
B3 B2 B4 GREEN B4 

 
B2 B3 B5 B7 EVI 

 
BRIGHT B1 B7 NDVI WET 

 
NDVI 

 
B1 SR B2 

 
SR 

 
BRIGHT BRIGHT 

 
B1 

 
WET B5 

   
B2 B7 

   
B3 NDVI 

   
B1 B3 

   
GREEN 

   
SR 

   
IMAX 

   
B1 
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Figure 18. Binary classification maps achieved with RF models. A) LO, B) LV, C) LT, D) 
LLI, E) LVT and F) FUSION 

 

3.1.2.7. Binary Classification mapping 

 

The analysis realized of the models i.e. accuracy assessment, kappa test, McNemar’s 

test in order to support the decision of which model use for the spatial distribution of 

Forested- Non-forested areas. None of the models tested here presented significant 
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differences regarding to the others. Facing this situation here was selected LT as long as 

this was the simplest and cheapest model.  

 

Figure 19. Binary classification produced with LT model: A) 1984, B) 1990, C) 2000, D) 
2009, E) 2011 and F) 2014. 
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3.2.  Land Cover Dynamics Analysis 

Forest cover dynamics was explored by means of different non-redundant landscape 

metrics regarding not only to landscape level but also to class level or even both. These 

metrics were selected in order to assess both composition and structure temporal changes. 

Forest landscape composition was assessed by means of the area covered by each 

class. Percent of landscape (PLAND) provides a more relative insight that the absolute 

class area (CA).  

Landscape structure was quantified by means of patch-based metrics, shape-based 

metrics, size-based metrics and dispersion metrics.  

Concerning to the patch-based metrics here were analyzed the number of patches 

(PN) and patch density (PD). In order to examine the size and shape of patches, the largest 

patch index (LPI), mean patch area (MPA) and mean patch size index (MSI) whilst 

dispersion was studied considering patch cohesion index (COHESION) and aggregation 

index (AGGREGATION).  

 

3.2.1. Composition 

 

3.2.2. Class Area 

 

Result showed that forest area fell only slightly from 8269 ha (53.9% of the 

landscape) in 1984 to 8045.4 ha (52.5%) in 2014 during a 30 year period (Table 14). This 

reduction was uneven within the period since the landscape underwent sub-periods when 

the amount of forested area increased (1984-1990) with a maximum in 1990 of 9192 ha 

(60%). Pine forest increased from the beginning of the period occupying 3010.1 ha 

(19.6%) until 2011 when it extended 4956.7 ha (32.3%) and later decreased dramatically to 

2138.7 ha (14%) in 2014. These differences may be explained by the use of different 

sensors. Nevertheless this trend was opposite regarding to mixed forest class that 

underwent a negative trend until 2011 but recovering in 2014 when as reached a similar 

level than in the first year of study 4234.7 ha (27.6%). Besides to this, pure oak forest had 

a slowly but positive tendency reaching at the end of the period about 1340 ha.  

On the other hand, shrublands were reduced from 1907 ha to 1371 ha in 1984 and 

2011 respectively but in the last period as recovered reaching 1834 ha. Man-made class 
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behaved more stable ranging from 4799.5 ha (31.3%) in 1990 to 5779.4 ha (37.7%) in 

2014.  

Table 14. Results of class area in ha. (Percent of landscape in %) 

Cover type CA 

(PLAND) 

          

1984 1990 2000 2009 2011 2014 

Forest 8269(53.9) 9192(60.0) 8746.2(57.1) 8265(53.9) 8848.7(57.7) 8045.4(52.5) 

Non-forest 7060.(46.1) 6137(40.0) 6582.8(42.9) 7061.9(46.1) 6480.3(42.3) 7282.7(47.5) 

Total Binary 15329(100) 15329(100) 15329.0(100) 15326.9(100) 15329(100) 15328.1(100) 

Man-made 5363.2(35) 4799.5(31.3) 5364.4(35.0) 5716(37.3) 5218.3(34) 5779.4(37.7) 

Mixed forest 4282.1(27.9) 4574.8(29.8) 3299.5(21.5) 2834.9(18.5) 3106.6(20.3) 4234.7(27.6) 

Oak forest 766.4(5.0) 603.5(3.9) 493(3.2) 888.1(5.8) 676.2(4.4) 1340.9(8.7) 

Pine forest 3010.1(19.6) 3773.9(24.6) 4778(31.2) 4411.3(28.8) 4956.7(32.3) 2138.7(14.0) 

Shrublands 1907.3(12.4) 1577.3(10.3) 1394.1(9.1) 1476.6(9.6) 1371.2(8.9) 1834.4(12.0) 

Total Multiclas 15329(100) 15329(100) 15329(100) 15326.9(100) 15329(100) 15328.1(100) 

 

 

 

Figure 20. Evolution of the CA in the binary classification during the study 
period 
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Figure 21. Evolution of the CA in the multiclass classification during the 
study period 

3.2.3. Number of Patches 

Having into account the binary classification, the overall number of patches 

increased from 934 to 1034, in 1984 to 2014 respectively. Both, forest and non-forest 

patches rose in number within the three decades period. But this fact was not constant in 

the study period. In the multi-class classification this trend can be also observed. Pine 

patches rose from 964 in 1984 to 1284 in 2014 although the tendency as negative until 

2011 reaching only 665 patches and three years after nearly doubled. However, mixed 

forest’s trend was found completely opposite to pine forest. Oak forest underwent a 

slightly fluctuation within the study period reaching about 363 patches in 2014, about 30 

more patches (10%). The number of patches of shrublands class also increased slightly 

from 1644 in 1984 to 2138 in 2000 but was reduced to1870 in 2014.  
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Table 15.  NP in the study period 

 

Cover 
type 

 
NP 

          

19
84 

1990 2000 2009 2011 2014 

Forest 
26

3 
256 265 

278 
246 318 

Non-
forest 

67
1 

430 631 
601 

523 716 

Total 
binary 

93
4 

686 896 
879 

769 1034 

Man-
made 

43
7 

380 392 
290 

342 384 

Mixed 
forest 

11
08 

1140 1284 
1321 

1336 976 

Oak forest 
33

1 
376 315 

286 
372 363 

Pine 
forest 

96
4 

869 651 
743 

665 1284 

Shrubland
s 

16
44 

1753 2138 
1995 

2005 1870 

Total 
multiclass 

44
84 

4518 4780 4635 4720 4877 

 

 

Figure 22. Evolution of the NP in the binary classification during the study period 
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Figure 23. Evolution of the NP in the multiclass classification during the 

study period 

3.2.4. Patch Density 

Although the overall landscape patch density registered a slight increase of 10 % 

concerning the extremes of the study period, forest patch density as maintained until 2011 

and in the last year augmented about 20% as well as Non-forest patch density. Pine forest 

patch density was reduced from 6.3 patches / 100 ha in the eighties to 4.3 patches / 100 ha 

in 2011 although in 2014 increased to 8.4 patches / 100 ha. Oak forest did not suffered 

significant variation in its patch density during all the period of study while mixed forest 

increased until 2011 and after as reduced to 6.4 patches / 100 ha in 2014. Pine forest patch 

density decreased from 6.3 patches / 100 ha in 1984 to 4.3 patches / 100 ha in 2011 and 

then doubled in 2014 until reach 8.4 patches / 100 ha. Shrublands patch density increased 

until 2000 and after as reduced to 12.2 patches / 100 ha.  
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Table 16. PD in the study period 

Cover type 
PD           

1984 1990 2000 2009 2011 2014 

Forest 1.7 1.7 1.7 1.8 1.6 2.1 

Non-forest 4.4 2.8 4.1 3.9 3.4 4.7 

Total binary 6.1 4.5 5.8 5.7 5.0 6.7 

Man-made 2.9 2.5 2.6 1.9 2.2 2.5 

Mixed forest 7.2 7.4 8.4 8.6 8.7 6.4 

Oak forest 2.2 2.5 2.1 1.9 2.4 2.4 

Pine forest 6.3 5.7 4.2 4.8 4.3 8.4 

Shrublands 10.7 11.4 13.9 13.0 13.1 12.2 

Total multiclass 29.3 29.5 31.2 30.2 30.8 31.8 

 

If total landscape area is held constant, then patch density and number of patches 

convey the same information. 

 

    Figure 24, Evolution of the PD in the binary classification during the study 
period 
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                    Figure 25. Evolution of the PD in the multiclass classification during the 
study period 

 

3.2.5. Largest Patch Index 

 

The largest patch index resulted to be a metric quite stable in this landscape and did 

not suffered important variations during the years of the study. It is possible to highlight 

that the largest patch of Man-made class was expanded about 29% of the landscape. Mixed 

forest LPI increased until 1990, decreased until 2009 and subsequently increased in 2014 

to 12%. Pine LPI grew during the first years of study until 2011 when accounted with 22% 

of the territory studied and in 2014 dramatically shrank to 2%. The rest of land cover 

classes maintained the value of this metric over the time. 

 

 

 

 

 

 

 

 

 

5

10

1984 1990 2000 2009 2011 2014
YEAR

P
a

tc
h

 D
e

n
si

ty
, (

#
/1

0
0

h
a

)

CLASS Man-made Mixed Oak Pine Shrubs



48 

 

Table 17. LPI in the study period 

Cover type 
LPI           

1984 1990 2000 2009 2011 2014 

Forest 0.5 0.6 0.6 0.5 0.6 0.5 

Non-forest 0.3 0.3 0.3 0.3 0.3 0.3 

Total 0.9 0.9 0.9 0.8 0.9 0.8 

Man-made 0.29 0.27 0.29 0.29 0.28 0.29 

Mixed forest 0.16 0.24 0.13 0.07 0.10 0.12 

Oak forest 0.02 0.01 0.01 0.02 0.02 0.03 

Pine forest 0.05 0.08 0.18 0.18 0.22 0.02 

Shrublands 0.02 0.01 0.02 0.03 0.01 0.02 

Total 0.5 0.6 0.6 0.6 0.6 0.5 

 

 

Figure 26. Evolution of the LPI in the binary classification during the study 

period 
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Figure 27. Evolution of the LPI in the multiclass classification during 
the study period 

 

3.2.6. Mean Patch Area 

 

Forest MPA resulted to grow during the 80’s, decreased until 2009, increased again 

in 2011 until 36 ha and decreased in 2014 reaching 25.3 ha. Non-forest MPA suffered 

important variations during the study period ranging from 10.5 ha in 1984 to 14.3 ha in 

1990. Forest MPA was 31.4 ha in 1984 and thirty years later descended to 25.3 ha. In the 

multi-class classification ‘man-made’ MPA increased from 1984 (12.3 ha) until 2009 (19.7 

ha) but in the following five years decreased to 15.1 ha. Pine MPA increased from 3.1 ha 

to 7.5 ha, in 1984 and 2011, respectively, and suddenly was reduced to 1.7 ha. Oak MPA 

underwent an increase from 2.3 ha to 3.7, in 1984 and 2014. Mixed forest MPA increased 

slightly from 3.9 ha in the beginning of the period until 4.3 ha in 2014 while Shrublands 

MPA decreased slightly in 0.2 ha in the same period. 
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Table 18. MPA in the study period. (in ha) 

Cover type 
MPA           

1984 1990 2000 2009 2011 2014 

Forest 31.4 35.9 33.0 29.7 36.0 25.3 

Non-forest 10.5 14.3 10.4 11.8 12.4 10.2 

Total 42.0 50.2 43.4 41.5 48.4 35.5 

Man-made 12.3 12.6 13.7 19.7 15.3 15.1 

Mixed forest 3.9 4.0 2.6 2.1 2.3 4.3 

Oak forest 2.3 1.6 1.6 3.1 1.8 3.7 

Pine forest 3.1 4.3 7.3 5.9 7.5 1.7 

Shrublands 1.2 0.9 0.7 0.7 0.7 1.0 

Total 22.7 23.5 25.8 31.6 27.5 25.7 

 

 

Figure 28. Evolution of the MPA in the binary classification during the 
study period. 
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Figure 29. Evolution of MPA in the multiclass classification during the study 
period. 

3.2.7. Mean Shape Index 

Mean shape index was a very stable landscape metrics since changes in absolute 

terms never have exceed 0.06 and the maximum variation of MSI in percent was about 2.5 

%. 

 

Table 19. MSI in the study period. 

Cover 
type 

MSI           

1984 1990 2000 2009 2011 2014 

Forest 1.28 1.27 1.25 1.28 1.31 1.26 
Non-

forest 
1.34 1.37 1.35 

1.32 
1.37 1.31 

Total 
binary 

2.62 2.64 2.6 
2.61 

2.69 2.57 

Man-
made 

1.33 1.31 1.32 
1.39 

1.37 1.36 

Mixed 
forest 

1.33 1.28 1.26 
1.25 

1.27 1.32 

Oak 
forest 

1.3 1.37 1.25 
1.29 

1.23 1.32 

Pine 
forest 

1.34 1.3 1.29 
1.28 

1.27 1.36 

Shrublan
ds 

1.34 1.31 1.24 
1.26 

1.27 1.32 

Total 
multiclass 

6.65 6.57 6.36 6.48 6.42 6.68 
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Figure 30. Evolution of MSI in the binary classification  
during the study period 

 

 

Figure 31. Evolution of MSI in the multiclass classification during the study 
period 
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3.2.8. Cohesion 

As it was the case with MSI, COHESION showed not relevant variations over the 

whole period of study.  

Table 20. COHESION in the study period. 

Cover type 
COHESION           

1984 1990 2000 2009 2011 2014 

Forest 9.9 9.9 9.9 9.9 9.9 9.9 

Non-forest 9.9 9.9 9.9 9.9 9.9 9.9 

Total binary 19.9 19.9 19.9 19.9 19.9 19.9 

Man-made 9.9 9.9 9.9 9.9 9.9 9.9 

Mixed forest 9.9 9.9 9.9 9.8 9.9 9.9 

Oak forest 9.7 9.3 9.4 9.7 9.6 9.8 

Pine forest 9.8 9.9 9.9 9.9 9.9 9.6 

Shrublands 9.6 9.4 9.6 9.7 9.4 9.6 

Total multiclass 49 48.4 48.7 49 48.8 48.7 

 

 

Figure 32. Evolution of AI in the binary classification during the period. 
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Figure 33. Evolution of COHESION in the multiclass classification during 
the period. 

3.2.9. Aggregation 

In Table 21. Aggregation index in the study period.are presented the results of the 

Aggregation index for the study area in the study period. It is possible to highlight the 

reduction of the pine AI in about 10% but in contrast the slightly increase of oak AI.  

 

Table 21. Aggregation index in the study period. 

 

Cover type 
AGREGATION         

1984 1990 2000 2009 2011 2014 

Forest 93.7 95.7 94.4 93.7 94.7 92.6 
Non-forest 92.6 93.5 92.4 92.6 92.7 91.8 

Total binary 186.4 189.3 186.8 186.4 187.3 184.4 

Man-made 93.3 92.5 93.6 93.8 93 93.2 
Mixed forest 78.7 80.7 76.7 74.7 76.2 79 
Oak forest 76.7 67.6 73.5 79.9 74.9 81.3 
Pine forest 76.1 79.4 82.6 82.3 83.6 68.2 
Shrublands 60.9 57.6 53.7 56.2 53 59.4 

Total multiclass 385.7 377.7 380 387.1 380.7 381.1 
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Figure 34.Evolution of AI in the binary classification during the period. 

 

 

Figure 35, Evolution of AI in the multiclass classification during the period. 
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3.3.  Regression  

Twelve RF models were built by using the different databases (i.e. LO, LV, LT, and 

LVT) in order to predict some of the LiDAR-derived variables (CHM, CC and HMAX). 

Here the accuracy of each model was assessed by calculating the R2 and the RMSE in 

both, OOB and the test data. Results are presented in Table 22. 

Table 22. Accuracy assessment of the RF models for regression. RMSE-OOB and RMSE 
are expressed in the same units as the variable that represent (CHM and HMAX 
in m and CC in %),  R2 in %.  

Variable CHM CC HMAX 

Database LO LT LV LVT LO LT LV LVT LO LT LV LVT 

R2 69.42 74.03 69.39 73.46 69.30 74.60 69.31 73.98 67.54 73.90 67.30 73.40

RMSE - OOB 0.611 0.563 0.611 0.569 7.683 6.988 7.681 7.072 2.574 2.308 2.583 2.330

RMSE  0.618 0.569 0.617 0.576 7.610 6.922 7.599 6.996 2.562 2.297 2.568 2.317

The performance of all RF models can be considered as good since the proportion of 

variance explained in percent was ranged from 67.30% to 74.60%. In all cases the RF built 

with LT database achieved the highest R2, 74.03%, 74.60% and 73.90% in CHM, CC and 

HMAX, respectively. Differences between RMSE and RMSE-OOB were negligible being 

as a maximum of 0.007m and 0.015m in CHM and HMAX, respectively and 0.083% in 

CC. Thus, from now on, RMSE will refer to the RMSE obtained from the test data.  All 

models built with LT also obtained the best results regarding to RMSE. With only the 

spectral response variables (LO) the RMSE as slightly higher than in the other models 

except in HMAX in which LV database obtained the worst results. In general, the addition 

of topographical data to LO reduced the RMSE. In contrast the addition of vegetation 
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ndices (LV) did not improve the accuracy of the model but even in some cases it was 

slightly worsen.  

 

Figure 36 and Figure 38 show the actual versus predicted plots for CHM, CC 
and HMAX, respectively. 

 

 

 
 

Figure 36. Actual by predicted plots of the RF models built with CHM as 
response variable: A) LO database, B) LT database, C) LV 
database, D) LVT database. 
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Figure 37.Actual by predicted plots of the RF models built with CC as response 
variable: A) LO database, B) LT database, C) LV database, D) LVT 
database. 

 

Figure 38. Actual by predicted plots of the RF models built with HMAX as 
response variable: A) LO database, B) LT database, C) LV 
database, D) LVT database. 
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3.3.1. Variable importance 

Table 23 Table 25 show the variables shorted in descending importance in the 

prediction of the variables of study.  

 

Table 23.Variable importance for the CHM prediction (shorted in descending order) 

 

LO LT LV LVT 

B4 SLOPE EVI SLOPE 

B5 ASPECT B4 ASPECT 

B2 ELEVATION GREEN ELEVATION 

B1 B4 B5 B4 

B3 B5 NDVI EVI 

B7 B3 WET B5 

  B2 SR WET 

  B1 B2 SR 

  B7 B7 GREEN 

    BRIGHT NDVI 

    B3 B2 

    B1 B7 

      B3 

      B1 

      BRIGHT 
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Table 24. Variable importance for the CC prediction  (shorted in descending order) 

 

 

Table 25. Variable importance for the CC prediction  (shorted in descending order of mean 
decrease accuracy 

LO LT LV LVT 

B4 ASPECT GREEN ASPECT 

B2 ELEVATION B4 ELEVATION 

B1 SLOPE NDVI SLOPE 

B3 B4 SR EVI 

B5 B1 EVI NDVI 

B7 B5 WET GREEN 

B2 B5 B4 

B3 B1 SR 

B7 B2 B5 

B3 WET 

B7 B7 

BRIGHT B2 

B1 

B3 

BRIGHT 

   

L
O LT LV LVT 

B
4 ASPECT EVI ELEVATION 

B
5 SLOPE GREEN SLOPE 

B
1 ELEVATION B5 ASPECT 

B
2 B5 NDVI EVI 

B
3 B4 SR GREEN 

B
7 B1 WET B5 

  B3 B1 NDVI 

  B7 B7 WET 

  B2 B4 SR 

    BRIGHT B7 

    B2 B4 

    B3 B1 

      BRIGHT 

      B2 

      B3 



61 

 

3.3.2. Prediction of CHM  

Table 26. Statistical summary of CHM (in m).shows the summary of the estimation 

of the CHM using Landsat imagery and topographical (LT) database.  

 
Table 26. Statistical summary of CHM (in m). 

 
  1984 1990 2000 2009 2011 2014 

M
in. 

0.013 0.015 0.014 0.000 0.009 0.004

1
st Qu. 

0.423 0.459 0.240 0.126 0.214 0.298

M
edian 

0.968 1.212 1.052 0.668 0.992 1.047

M
ean 

1.178 1.618 1.273 0.892 1.275 0.966

3r
d Qu. 

1.642 2.621 1.881 1.341 1.953 1.404

M
ax. 

5.412 5.339 5.992 7.555 6.396 5.406

In Figure 39 the maps representing the prediction of CHM in the different years. 

 

 

Figure 39. CHM (in m) prediction in the different years. 
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3.3.3. Prediction of CC  

Table 26. Statistical summary of CHM (in m).shows the summary of the estimation 

of the CC using Landsat imagery and topographical (LT) database. 

 

Table 27. Statistical summary of CC (in %). 

 
1984 1990 2000 2009 2011 2014 

Min. 0.03 0.02 0.12 0 0.01 0.01 
1st Qu. 5.32 6.25 4.05 1.59 2.83 2.84 
Median 13.30 16.15 14.10 9.34 13.86 15.16 
Mean 14.70 18.38 15.66 11.89 15.88 14.14 

3rd Qu. 21.36 28.64 24.01 18.72 25.35 21.86 
Max. 54.06 52.67 58.82 72.06 62.06 57.77 

 

In Figure 40 the maps representing the prediction of CC in the different years. 

 

Figure 40. CC prediction in the different years 
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3.3.4. Prediction of HMAX  

Table 26. Statistical summary of CHM (in m).shows the summary of the estimation 

of the HMAX using Landsat imagery and topographical (LT) database. In Figure 40 the 

maps representing the prediction of CC in the different years. 

 

Table 28. Statistical summary of HMAX (in m). 

 
  1984 1990 2000 2009 2011 2014

Min. 1.67 1.847 1.327 0 0.1108 0.4349
1st Qu. 4.492 4.91 4.027 3.436 3.7975 3.8862
Median 8.236 9.135 8.054 6.908 8.5209 7.9703
Mean 7.716 8.656 7.579 6.681 7.6427 6.9542
3rd Qu. 10.405 12.058 10.551 10.26 10.8731 9.2021

Max. 13.999 14.349 14.682 29.885 15.2207 13.9859
 

 

Figure 41. HMAX prediction in the different years 



 

4. DISCUSION AND CONCLUSION 

Maps used for the forest dynamics analysis were created from models whose 

performance was not possible to assess. A certain amount of bias was derived by the 

classification process. This uncertainty is derived from (i) ground reference data derived by 

ancillary data (ii) lack of test data, except from the 2009 (iii) preprocessing of Landsat 

images (iv) definition of classes, specially mixed forest that takes attributes of other two 

classes (vi) grain and spatial resolution (vii) very high local spectral variability due to 

shadows or tree cover gaps (viii) spectral resolution of the Landsat imagery and (ix) 

assumption that first returns in LiDAR data were capturing the top of the trees.  

As pointed in (Rocchini et al. 2013) any ecosystem property has an associated error 

of unknown magnitude, and that the statistical quantification of uncertainty should be a 

core part of scientific research including using remote sensing in ecosystem mapping. 

Random Forest algorithm was used for classification and regression purposes and 

different accuracies have been obtained. While the accuracies for classification in the 

forest/non-forest approach reached 98.8% and in the multiclass approach 95.35%, similar 

to Nourzad & Pradhan (2012) that obtained 98.9% for the binary classification and 94.6% 

for the multi-class classification using ensemble classification algorithms (Adaboost). 

The maximum accuracies for regression purposes were 74.0% with RMSE = 0.56m, 

74.6% with RMSE = 6.98% and 73.9% with RMSE = 2.3m for CHM, CC and HMAX, 

respectively. Classification accuracies are in concordance with other similar studies. 

Ahmed et al. (2015) obtained values of R2 of 88% with RSME = 2.39m and 72% with 

RMSE = 0.068%, for canopy height and canopy cover, respectively, in mature forest 

classification using RF.  

The analyzed Mediterranean landscape (Sierra de Negrete) has been managed during 

the last 3 decades. It showed fluctuation during the study period but landscape analysis 

through metrics pointed out that forest class area has been maintained during the study 

period. Nevertheless, it appears more fragmented since the forest NP increased about 20% 

during the period and the MPA underwent a drop of similar characteristics. 

In the multiclass classification, the analysis suggests that Man-made class increased 

in area and is less fragmented with the MPA increasing about 22%. Pine class area 
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decreased dramatically about a 30% with an important fragmentation and reducing the LPI, 

MPA and the patches are less aggregated than in the beginning of the period of study. 

 Conversely, the management strategy of conservation of oak forest is causing the 

effect of increase of area and number of patches. LPI is also increasing together with MPA 

and AI.  

The mixed forest is also being maintained in terms of area and AI but NP and LPI are 

lower than in 1981. On the other hand, the MPA is increasing. Shrublands changes are 

mainly visible in the increase of NP and the slightly decrease in LPI and MPA. 

The dramatic changes that many of the metrics show in the three forest classes may 

be induced by the focus of the harvesting of pine trees and the conservation of oak trees. 

More patches of mixed forest became oak forest since the reduction of pine trees affects 

the spectral response of the surface in the way that the classificatory recognizes it as oak. 

The addition of LiDAR-based variables to the model have increase substantially the 

performance of the classification but the inclusion of topographic variables resulted more 

important and the higher accuracy that was achieved in the FUSION of spectral, LiDAR 

and topographic variables. The vegetation indices did not produce a significant effect in the 

performance of RF for classification and for prediction purposes. 

The use of topographic variables also improved the performance of RF algorithm in 

regression when predicting LiDAR-based features altogether with spectral-based variables. 

The silvicultural activities focused on pine species for biomass production have 

modified the landscape by recovering Holm oak species which correspond to the potential 

natural vegetation of this area. The landscape in the study area became fragmented over the 

study period, because of the increase in the number of patches and the decrease in mean 

patch area. 

The prediction of CHM supposed not a big indicator to assess the evolution of the 

canopy structure over the period. That is due in part to the resampling process that differ 

the original CHM data from lastools with a resolution of 2m and the subsequently loose of 

information. This is not the case of the HMAX since even suffering the resampling to 30m 

cell, the information of the maximum point of 225 original pixels in the 2x2 grid was not 

lost in the operation of averaging. Hence, this indicator could be useful to analyze the 

canopy. Is noticeable that the prediction of this variable is underestimated and in the year 

2009 (data from lastools) the maximum height was about 30 m but in the prediction with 

RF the maximum was, in the most of the cases, lower than 15 m. 
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The estimation of the CC with lascanopy command in lastools in the year 2009 

resulted to be as maximum 72.06 % while in the rest of the years of the study were inferior. 

Again, RF prediction did not performed with accuracy and not so much useful to explain 

forest dynamics. 

The use of R statistics software provided a framework that integrates data processing, 

analysis and modelling. Furthermore, it was used for manipulating a huge amount of data 

in several formats. 

The binary approach proposed in this study could be use in other areas, not only at a 

forest scale but also at a regional scale. It could be useful to analize the changes in the 

forest during the time. 

 



 

5. RECOMMENDATIONS 

For further studies could be interesting to gather field data in order to validate the 

models. In this work was received little collaboration from the government entities that 

manage forest of the study area. In fact, inventory data was not provided when it was 

required. Overcome this drawback with the limited initial resources of funds and time was 

difficult. As outcome, easy data access could be recommended in the future to promote the 

progress of the forest science.  

In line with this, increase spectral resolution could allow obtaining more detailed 

information about the spectroradiometric properties of the landscape. As the clear cuttings 

are forbidden in the study area, the disturbances caused by sylvicultural treatments could 

be omitted.  

Also LiDAR cloud-points data with a higher density would be desirable in order to 

reduce the uncertainty.  
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