KARADENİZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

JEOLOJİ MÜHENDİSLİĞİ ANA BİLİM DALI

BAZİK VOLKANİK KAYAÇLARDA AYRIŞMAYA BAĞLI OLARAK OLUŞAN REGOLİTİK ZEMİNLERİN KARAKTERİZASYONU VE SINIFLANDIRILMASI

DOKTORA TEZİ

Jeoloji Yük. Müh. Bilgehan KUL YAHŞİ

TEMMUZ 2018 TRABZON

KARADENİZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

JEOLOJİ MÜHENDİSLİĞİ ANABİLİM DALI

BAZİK VOLKANİK KAYAÇLARDA AYRIŞMAYA BAĞLI OLARAK OLUŞAN REGOLİTİK ZEMİNLERİN KARAKTERİZASYONU VE SINIFLANDIRILMASI

Jeoloji Yüksek Mühendisi Bilgehan KUL YAHŞİ

Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsünce "DOKTOR (JEOLOJİ MÜHENDİSLİĞİ)" Unvanı Verilmesi İçin Kabul Edilen Tezdir.

 Tezin Enstitüye Verildiği Tarih : 29 / 05 / 2018
 2018

 Tezin Savunma Tarihi
 : 04 / 07 / 2018

Tez Danışmanı : Doç. Dr. Hakan ERSOY

Trabzon 2018

KARADENİZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Jeoloji Mühendisliği Anabilim Dalında Bilgehan KUL YAHŞİ Tarafından Hazırlanan

BAZİK VOLKANİK KAYAÇLARDA AYRIŞMAYA BAĞLI OLARAK OLUŞAN REGOLİTİK ZEMİNLERİN KARAKTERİZASYONU VE SINIFLANDIRILMASI

başlıklı bu çalışma, Enstitü Yönetim Kurulunun 19/06/2018 gün ve 1758 sayılı kararıyla oluşturulan jüri tarafından yapılan sınavda DOKTORA TEZİ olarak kabul edilmiştir.

Jüri Üyeleri

- Başkan : Prof. Dr. Fikri BULUT
- Üye : Prof. Dr. Remzi KARAGÜZEL
- Üye : Prof. Dr. Ekrem KALKAN
- Üye : Doç. Dr. Hakan ERSOY
- Üye : Doç. Dr. Zekai ANGIN

Prof. Dr. Sadettin KORKMAZ Enstitü Müdürü

ÖNSÖZ

Bu çalışma, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Jeoloji Mühendisliği Ana Bilim Dalı'nda Doktora Tezi olarak hazırlanmıştır. Bu tez K.T.Ü. Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından (proje no: FDK-2016-5628) desteklenmektedir.

Doktora tezi "Evlat'tır" demişti sevgili hocam. Evladımı (Doktora tezimi) büyütürken her bir satırını ilmek ilmek işleyen, bu çalışmayı yöneten, her safhasında desteğini, bilgisini, tecrübesini ve yardımını esirgemeyen çok değerli hocam Doç. Dr. Hakan ERSOY'a şükranlarımı sunarım.

Doktora tezi çalışmalarım sırasında İstanbul Teknik Üniversitesi'nde kaldığım süre boyunca bana tez çalışmamda yardımı dokunan İ.T.Ü. Öğretim Üyesi Prof. Dr. Remzi KARAGÜZEL'e saygılarımı ve teşekkürlerimi bir borç bilirim.

Tez çalışmasının her aşamasına bilgi, eleştiri ve önerileri ile katkıda bulunan Sayın Doç. Dr. Arzu FIRAT ERSOY'a, Doç. Dr. İrfan TEMİZEL'e ve Prof. Dr. Mehmet ARSLAN'a en içten teşekkürlerimi sunarım. Arazi çalışmalarında jeofizik yöntemlerdeki yardımları için Dok. Öğ. Üyesi Ali Erden BABACAN'a en içten teşekkürlerimi sunarım. Arazi çalışmalarında yardımları dokunan Arş. Gör. Murat KARAHAN ve Arş. Gör. M. Oğuz SÜNNETCİ'ye, laboratuvar çalışmalarında yardımları olan bölümümüz Öğr. Gör. Erdoğan TİMURKAYNAK, bölümümüz mezun öğrencilerinden Jeo. Müh. Alper BAYRAM ve Jeo. Müh. Satı ALÇIN'a teşekkür ederim. Ayrıca meslektaşım ve dostum Arş. Gör. Tuğba EROĞLU GÜMRÜK'e teşekkür ederim.

Her evlat için ailesi çok kıymetlidir. Her zaman yanımda olan ve hiçbir zaman desteğini benden esirgemeyen kıymetli can aileme "anneme, babama ve kardeşime" en içten teşekkürlerimi sunar ve hayattaki en büyük destekçim olan "Annem'e" ayrıca teşekkürü bir borç bilirim. Tezin her aşamasında yardımını ve desteğini esirgemeyen sevgili eşim Jeo. Müh. İrfan YAHŞİ'ye teşekkür ederim.

Hayatımın bu zorlu aşamasında hem akademisyen hem de bir anne olarak bazı zamanlar da yorulup umutsuzluğa kapıldığım anda bir gülüşüyle beni dünyanın en mutlu insanı yapan canım oğlum Göktürk YAHŞİ iyi ki varsın.

> Bilgehan KUL YAHŞİ Trabzon, 2018

ETİK BEYANNAMESİ

Doktora Tezi olarak sunduğum "Bazik Volkanik Kayaçlarda Ayrışmaya Bağlı Olarak Oluşan Regolitik Zeminlerin Karakterizasyonu ve Sınıflandırılması" başlıklı bu çalışmayı baştan sona kadar danışmanım Doç. Dr. Hakan ERSOY'un sorumluluğunda tamamladığımı, verileri/örnekleri kendim topladığımı, deneyleri/analizleri ilgili laboratuvarlarda yaptığımı/yaptırdığımı, başka kaynaklardan aldığım bilgileri metinde ve kaynakçada eksiksiz olarak gösterdiğimi, çalışma sürecinde bilimsel araştırma ve etik kurallara uygun olarak davrandığımı ve aksinin ortaya çıkması durumunda her türlü yasal sonucu kabul ettiğimi beyan ederim. 04/07/2018

Bilgehan KUL YAHŞİ

İÇİNDEKİLER

<u>Sayfa No</u>

ÖNSÖZ	
ETİK BEY	ANNAMESİIV
İÇİNDEKİ	LERV
ÖZET	VII
SUMMAR	YVIII
ŞEKİLLER	DIZINIIX
TABLOLA	R DİZİNİXII
SEMBOLL	ER DİZİNİXIV
1.	GENEL BİLGİLER
1.1.	Giriş
1.2.	Çalışmanın Amacı ve Kapsamı
1.3.	Çalışma Alanının Genel Özellikleri4
1.4.	Önceki Çalışmalar7
2.	MATERYAL VE METOD9
3.	BULGULAR11
3.1.	Çalışma Alanı ve Çevresinin Jeolojisi11
3.1.1.	Kabaköy Formasyonu11
3.1.2.	Regolitik Zeminler
3.2.	Ayrışma14
3.2.1.	Fiziksel Ayrışma15
3.2.2.	Kimyasal Ayrışma
3.3.	Mühendislik Jeolojisi Çalışmaları 15
3.3.1.	Sismik Kırılma Yöntemi
3.3.1.1.	Yüzey Dalgalarının Çok Kanallı Analiz Yöntemi (MASW) 16
3.3.2.	Temel Araștırma Sondajları
3.3.3.	Örselenmemiş Örnek Alımı
3.3.4.	Konik Penetrasyon Deneyi
3.3.5.	Zeminlerin İndeks Özelliklerinin Belirlenmesi

3.3.5.1.	Dane Boyutu Dağılımının İncelenmesi	. 39
3.3.5.2.	Birim Hacim Ağırlık Deneyi	. 45
3.3.5.3.	Piknometre Deneyi	. 45
3.3.6.	Zeminlerin Kıvam Limitlerinin Belirlenmesi	. 46
3.3.7.	Dayanım Özelliklerinin Belirlenmesi	. 52
3.4.	Mineralojik ve Tüm Kayaç Analizleri	. 53
3.4.1.	X-Işınları Difraksiyonu İncelemeleri	. 53
3.4.2.	Tüm Kayaç Analizi	. 54
3.4.3.	Mikroskobik Tayinler	. 58
4.	İRDELEME	. 60
4.1.	Sismik Deney Sonuçlarının Değerlendirilmesi	. 60
4.2.	Tüm Kayaç Analizi Deney Sonuçlarının Değerlendirilmesi	. 62
4.3.	Koni Penetrasyon Deneyi Verilerinin Değerlendirilmesi	. 65
4.4.	Indeks ve Dayanım Özelliklerinin Değerlendirilmesi	. 80
4.4.1.	Regolitik Zeminlerin Indeks Özelliklerinin Derinlikle Değişimi	. 80
4.4.2.	Regolitik Zeminlerin Kıvam Limitlerinin Derinlikle Değişimi	. 85
4.4.3.	Regolitik Zeminlerin Dayanım Özelliklerinin Derinlikle Değişimi	. 89
5.	SONUÇ VE ÖNERİLER	. 93
6.	KAYNAKLAR	. 99
7.	EKLER	106
ÖZGEÇMİ	İŞ	

Doktora Tezi

ÖZET

BAZİK VOLKANİK KAYAÇLARDA AYRIŞMAYA BAĞLI OLARAK OLUŞAN REGOLİTİK ZEMİNLERİN KARAKTERİZASYONU VE SINIFLANDIRILMASI

Bilgehan KUL YAHŞİ

Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü Jeoloji Mühendisliği Anabilim Dalı Danışman: Doç. Dr. Hakan ERSOY 2018, 185 Sayfa, 64 Sayfa Ek

Mühendislik projelerinin birçoğunda yerinde oluşmuş rezidüel zeminler homojen kabul edilir ve bu zeminlerin fiziko-mekanik özelliklerinin derinlikle değişmediği varsayılır. Halbu ki, ayrışma derecesine bağlı olarak rezidüel zeminlerin jeokimyasal özelliklerinin derinlikle değiştiği bilinmektedir. Mineralojik olarak farklılıklar gösteren zeminlerin fizikomekanik özelliklerinin değişmesi de olağandır. Bu nedenle, tez kapsamında Trabzon ilinde bulunan bazik volkanik kayaçların ayrışma ürünü regolitik zeminlerin indeks, dayanım ve mineralojik özelliklerinin derinlikle değişimi araştırılmış, 6 adet temel araştırma sondaj açılmış, özel örnek alıcılarla 50 cm'de bir örselenmemiş örnek temin edilmiştir. Sismik ölçümler yapılarak enine dalga hızının derinlikle değişimi araştırılmış, koni(k) penetrasyon deneyleriyle uç ve sürtünme dirençleri ölçülmüştür. Tüm parametreler değerlendirildiğinde regolitik zeminler 3 ayrı zona ayrılmış, yüzeyden derine doğru tanımlanan A, B ve C zonlarının kalınlıklarının 1-2 m, 2-6 m ve 5-9 m arasında değiştiği belirlenmiştir. Jeokimyasal olarak derinlikle silis içeriğinin azaldığı alüminyum içeriğinin arttığı, demir içeriğinin ise B zonunda en yüksek değere ulaştığı görülmüştür. Zeminlerin indeks özellikleri dikkate alındığında, ince dane oranının, likit limit ve kohezyon değerinin derinlikle arttığı ancak B zonundan sonra ani bir azalış gösterdiği anlaşılmıştır. Konik penetrasyon verileri incelendiğinde konik uç direnci ve sürtünme oranı değerlerinin derinliğe bağlı bir artış sunduğu görülmektedir. Elde edilen veriler değerlendirilerek Trabzon ili ve çevresinde bazik volkanik kayaçlardan oluşan regolitlerin karakterizasyonu ortaya koyulmuş, pratikte farklı derinliklerden elde edilen verilerden yararlanarak diğer derinliklerde bulunan zeminlerin özelliklerinin tahminine yönelik bir sınıflandırma geliştirilmiştir.

Anahtar Kelimeler: Regolitik zeminler, CPT, Ayrışma zonları, fiziko-mekanik özellikler

PhD. Thesis

SUMMARY

CHARACTERIZATION AND CLASSIFICATION OF REGOLITIC SOILS ORIGINATED FROM BASIC VOLCANIC ROCKS DUE TO WEATHERING

Bilgehan KUL YAHŞİ

Karadeniz Technical University The Graduate School of Natural and Applied Sciences Geological Engineering Supervisor: Assoc. Prof. Hakan ERSOY 2018, 185 Pages, 64 Pages Appendix

In most of the engineering projects residual soils are assumed to be homogenous, and their geotechnical properties don't change with depth. Yet, it is known that their geochemical properties change with depth depending on the degree of weathering. Soils with mineralogical differences likely have different geotechnical characteristics. Thus, undisturbed soil samples were gathered at every 50 cm depth of 6 boreholes in a regolith in Trabzon city, which is formed by the weathering of basic volcanic rocks, and changes in index, strength and mineralogical properties of the soil in relation to sample depths were investigated. Change of shear wave velocities were investigated by seismic measurements, and cone penetration tests were conducted to determine tip friction ratios. After the evaluation of all parameters, the regolith soil is divided into three zones as A, B and C zones from the surface to below, and their thicknesses were determined to be ranging between 1-2 m, 2-6 m and 5-9 m, respectively. It was seen that geochemically silica content decrease with increasing depth while aluminum content increases, and iron content is highest in B zone. Considering the index characteristics of the soils, it was observed that fine grain percent, liquid limit and cohesion values increase with increasing depth until B zone, beyond which the values depict a sharp decrease. When cone penetration data is evaluated, it was seen that cone tip strength and friction ratio values increase in relation to depth. The characterization of the regolitic soils originated from the basic volcanic rocks around Trabzon city were determined by evaluating the obtained data, and a practical classification on prediction of soil parameters in different zones using the obtained data from different depth was evaluated.

Key Words: Regolithic soil, CPT, Weathering zones, Physico-mechanical properties

ŞEKİLLER DİZİNİ

<u>Sayfa No</u>

Şekil 1.1.	Çalışma alanı yer bulduru haritası	4						
Şekil 1.2.	Trabzon ili yıllara göre alansal yağış dağılımı (URL-2, 2017) 6							
Şekil 1.3.	Yıllık ortalama sıcaklık ve yıllık ortalama yağış verilerine göre ayrışma derecesi (Peltier ve Wu, 1982)	6						
Şekil 3.1.	Çalışma alanının genel jeoloji haritası (Güven 1998'den değiştirilerek)	12						
Şekil 3.2.	Eosen sonrası oluşan bazik volkanik kayaçların ayrışması sonucu oluşmuş yaklaşık 10 metre kalınlığındaki bir regolit profili (SK-1, Bostancı Mahallesi, Trabzon)	14						
Şekil 3.3.	Çalışma alanında uygulanan sismik yöntem, konik penetrasyon deneyi ve sondaj noktaları	16						
Şekil 3.4.	MASW yönteminin arazide uygulanışı	18						
Şekil 3.5.	MASW yönteminden elde edilen faz hızı frekans eğrileri	18						
Şekil 3.6.	MASW yönteminden elde edilen dispersiyon eğrileri	19						
Şekil 3.7.	SK-1 regolitik zeminlerdeki sondaj logu	20						
Şekil 3.8.	SK-2 regolitik zeminlerdeki sondaj logu	21						
Şekil 3.9.	SK-3 regolitik zeminlerdeki sondaj logu	22						
Şekil 3.10.	SK-4 regolitik zeminlerdeki sondaj logu	23						
Şekil 3.11.	SK-6 regolitik zeminlerdeki sondaj logu	24						
Şekil 3.12.	SK-7 regolitik zeminlerdeki sondaj logu	25						
Şekil 3.13.	SK-1 (a-b-c-d-e), SK-2 (f-g) ve SK-3 (h-1-i) numaralı sondaj kuyuları	26						
Şekil 3.14.	SK-4 (a-b-c), SK-6 (d-e-f) ve SK-7 (g-h) numaralı sondaj kuyuları	27						
Şekil 3.15.	Çalışmada kullanılan 86 mm çaplı karot örneği (a) ve 6x6x3 cm ³ ebatlı kare prizma örnek alıcı (b)	29						
Şekil 3.16.	86 mm çaplı, 50 cm uzunluğundaki karotiyerler (a), parafinlenme işlemi (b) ve parafinlenen örneklerin kurumaya bırakılması (c) ve (d)	30						
Şekil 3.17.	Koni Penetrasyon deneyinin farklı kuyulardaki uygulanışı (CPT-1- 7)	32						
Şekil 3.18.	Çalışma alanında CPT-1 için oluşturulan loglar (Robertson 1990' a göre yapılmıştır)	34						

Şekil 3.19.	Çalışma alanında CPT-2 için oluşturulan loglar (Robertson 1990' a göre yapılmıştır)	34
Şekil 3.20.	Çalışma alanında CPT-3 için oluşturulan loglar (Robertson 1990' a göre yapılmıştır)	35
Şekil 3.21.	Çalışma alanında CPT-4 için oluşturulan loglar (Robertson 1990' a göre yapılmıştır)	35
Şekil 3.22.	Çalışma alanında CPT-6 için oluşturulan loglar (Robertson 1990' a göre yapılmıştır)	36
Şekil 3.23.	Çalışma alanında CPT-7 için oluşturulan loglar (Robertson 1990' a göre yapılmıştır)	36
Şekil 3.24.	Her bir sondaj için oluşturulan elek analizi grafikleri	4]
Şekil 3.25.	SK-1 ve SK-2 için derinlik boyunca oluşturulan granülometri eğrileri	42
Şekil 3.26.	SK-3 ve SK-4 için derinlik boyunca oluşturulan granülometri eğrileri.	43
Şekil 3.27.	SK-6 ve SK-7 için derinlik boyunca oluşturulan granülometri eğrileri.	44
Şekil 3.28.	XRD analizine göre kil cins tayini sonuçları	5.
Şekil 3.29.	Miyosen yaşlı foidli breşik tefritlerin mikroskobik görünümü; (a, ÇN)-(b, TN) klinopiroksen (kpir), opak mineral (op) ve plajiyoklas (pl)	59
Şekil 3.30.	Miyosen yaşlı foidli breşik tefritlerin mikroskobik görünümü; (a, ÇN)-(c, TN) klinopiroksen (kpir), analsim (anl) ve plajiyoklas (pl) (SK-1), (a breş çakıllarının görünümü-b bağlayıcının görünümü)	5
Şekil 3.31.	Miyosen yaşlı foidli breşik tefritlerin mikroskobik görünümü; (a, ÇN)-(b, TN) klinopiroksen (kpir) ve opak mineral (op) (SK-1), karbonatlaşma ve demir boyamaları	59
Şekil 4.1.	Hesaplanan 1-boyutlu enine dalga hızı derinlik modeli	6
Şekil 4.2.	Regolitik zemin profilindeki major oksitlerin değişimi (Akçay, 2002)	62
Şekil 4.3.	Her bir sondaja ait major oksitlerin derinlikle değişimi	6.
Şekil 4.4.	Her bir sondaja ait iyonların derinlikle değişimi	6
Şekil 4.5.	Çalışma alanı regolitik zeminlerdeki major oksitlerin değişimi	64
Şekil 4.6.	CPT-1 ve CPT-2 deney sonuçlarına göre zeminlerin zonlara ayrılarak sınıflandırılması (Robertson, 1990'a göre)	60
Şekil 4.7.	CPT-3 ve CPT-4 deney sonuçlarına göre zeminlerin zonlara ayrılarak sınıflandırılması (Robertson, 1990'a göre)	6
Şekil 4.8.	CPT-6 ve CPT-7 deney sonuçlarına göre zeminlerin zonlara ayrılarak sınıflandırılması (Robertson, 1990'a göre)	6

Şekil 4.9.	CPT deney sonuçlarına göre regolitik zeminlerin zonlara ayrılmaksızın sınıflandırılması (Robertson, 1990'a göre)	69
Şekil 4.10.	CPT-1 ve CPT-2 deney sonuçlarına göre zeminlerin zonlara ayrılarak sınıflandırılması (Eslami ve Fellenius, 1997'ye göre)	70
Şekil 4.11.	CPT-3 ve CPT-4 deney sonuçlarına göre zeminlerin zonlara ayrılarak sınıflandırılması (Eslami ve Fellenius, 1997'ye göre)	71
Şekil 4.12.	CPT-6 ve CPT-7 deney sonuçlarına göre zeminlerin zonlara ayrılarak sınıflandırılması (Eslami ve Fellenius, 1997'ye göre)	72
Şekil 4.13.	CPT deney sonuçlarına göre regolitik zeminlerin zonlara ayrılmaksızın sınıflandırılması (Eslami ve Fellenius, 1997'ye göre)	73
Şekil 4.14.	CPT-1 ve CPT-2 deney sonuçlarına göre zeminlerin zonlara ayrılarak sınıflandırılması (Jefferies ve Been, 2006'ya göre)	74
Şekil 4.15.	CPT-3 ve CPT-4 deney sonuçlarına göre zeminlerin zonlara ayrılarak sınıflandırılması (Jefferies ve Been, 2006'ya göre)	75
Şekil 4.16.	CPT-6 ve CPT-7 deney sonuçlarına göre zeminlerin zonlara ayrılarak sınıflandırılması (Jefferies ve Been, 2006'ya göre)	76
Şekil 4.17.	CPT deney sonuçlarına göre regolitik zeminlerin zonlara ayrılmaksızın sınıflandırılması (Jefferies ve Been, 2006'ya göre)	77
Şekil 4.18.	Kohezyon ve içsel sürtünme açısının derinlik boyunca her bir kuyudaki değişimi	92
Ek Şekil 3.1.	Regolitik zemin profili boyunca alınan örnekler üzerinde yapılan elek analizi deneyi sonucu oluşturulan grafikler	106
Ek Şekil 3.2.	Hidrometre deneyi sonucu oluşturulan grafikler	120
Ek Şekil 3.3.	Likit limit deneyi sonucu oluşturulan grafikler	139
Ek Şekil 3.4.	Kesme kutusu deney sonucunda oluşturulan grafikler	148

TABLOLAR DİZİNİ

<u>Sayfa No</u>

Tablo 1.1.	Trabzon ili 1929-2017 yılları arası sıcaklıkların istatistiksel değişimi (URL-1, 2017)	5
Tablo 2.1.	Çalışma alanının da uygulanan program, elde edilen veriler ve ilgili standartlar	10
Tablo 3.1.	Zemin örneklerinin örselenme derecelerine göre sınıflandırılması (Ulusay 2010)	29
Tablo 3.2.	Zemin türü, örnekleme yöntemi ve örnek kalitesi arasındaki ilişkiler (Joyce, 1982)	29
Tablo 3.3.	Robertson 1990'a göre zemin cinsleri ve I _c aralıkları	33
Tablo 3.4.	Eslami ve Fellenius (1997)'ye göre zemin cinsleri	37
Tablo 3.5.	Jefferies ve Been (2006)'ya göre zemin cinsleri	38
Tablo 3.6.	Regolitik zeminlerde derinlikten bağımsız dane dağılım oranları	45
Tablo 3.7.	Regolitik zeminlerin derinlikten bağımsız bazı indeks özellikleri	46
Tablo 3.8.	Likit limit ve plastik limit deneyi sonucunda her bir kuyudaki mak., min. ve ort. değerler	48
Tablo 3.9.	Birleştirilmiş zemin sınıflandırma sistemi (USCS)	49
Tablo 3.10.	Regolitik zeminlerin derinlik boyunca USCS'ye göre sınıflandırılması (SK-1, SK-2 ve SK-3)	50
Tablo 3.11.	Regolitik zeminlerin derinlik boyunca USCS'ye göre sınıflandırılması (SK-4, SK-6 ve SK-7)	51
Tablo 3.12.	Kohezyon ve içsel sürtünme açısı değerlerinin mak., min. ve ort. değerleri	52
Tablo 3.13.	XRD sonuçlarının değerlendirilmesi	54
Tablo 3.14.	SK-1 ve SK-2'den alınan regolitik zeminlerin derinlik boyunca tüm kayaç analiz sonuçları	55
Tablo 3.15.	SK-3 ve SK-4'den alınan regolitik zeminlerin derinlik boyunca tüm kayaç analiz sonuçları	56
Tablo 3.16.	SK-6 ve SK-7'den alınan regolitik zeminlerin derinlik boyunca tüm kayaç analiz sonuçları	57
Tablo 3.17.	Anakaya örneklerine ait tüm kayaç analiz sonuçları	58
Tablo 4.1.	NEHRP Hükümlerinde ve Uniform Building Code'da Vs ₃₀ 'a göre zemin sınıflaması	60
Tablo 4.2.	Sismik analiz sonucu regolitik profillerin zonlara göre değişimi	60
Tablo 4.3.	Regolitik zemin profilinde major oksit değerleri baz alınarak belirlenen zonlar	65

Tablo 4.4.	Regolitik zeminlerin derinlik boyunca CPT deney sonuçlarına ve USCS'ye göre sınıflandırılması (CPT-1 ve CPT-2)	78
Tablo 4.5.	Regolitik zeminlerin derinlik boyunca CPT deney sonuçlarına ve USCS'ye göre sınıflandırılması (CPT-3, CPT-4 ve CPT-6)	79
Tablo 4.6.	Regolitik zeminlerin derinlik boyunca CPT deney sonuçlarına ve USCS'ye göre sınıflandırılması (CPT-7)	80
Tablo 4.7.	SK-1, SK-2 ve SK-3'te derinliğe bağlı dane dağılımları	81
Tablo 4.8.	SK-4, SK-6 ve SK-7 derinliğe bağlı dane dağılımları	82
Tablo 4.9.	SK-1, SK-2 ve SK-4' den alınan örneklerin derinliğe bağlı indeks özellikleri	83
Tablo 4.10.	SK-3, SK-6 ve SK-7'den alınan örneklerin derinliğe bağlı özellikleri	84
Tablo 4.11.	SK-1 ve SK-4 zeminlerinden alınan örneklerin derinlik boyunca plastik özellikleri	85
Tablo 4.12.	SK-2, SK-3 ve SK-6 zeminlerinden alınan örneklerin derinlik boyunca plastik özellikleri	86
Tablo 4.13.	SK-7 zeminlerinden alınan örneklerin derinlik boyunca plastik özellikleri	87
Tablo 4.14.	İnce taneli zeminlerin kıvamlılık indisine göre sınıflandırılması (Ulusay, 2001)	87
Tablo 4.15.	Regolitik zeminlerin zonlara göre kıvamlılık indisine göre sınıflandırılması	88
Tablo 4.16.	İnce taneli zeminlerin likitlik indisine göre sınıflandırılması (Ulusay, 2001)	88
Tablo 4.17.	Regolitik zeminlerin zonlara göre likitlik indisine göre sınıflandırılması	88
Tablo 4.18.	Killerin aktivite değerlerine göre sınıflandırılması (Ulusay, 2001)	88
Tablo 4.19.	Regolitik zeminlerin zonlara ayrılarak aktivite değerine göre sınıflandırılması	89
Tablo 4.20.	SK-1, SK-2 ve SK-4'den alınan örneklerin derinlik boyunca kohezyon (c) ve içsel sürtünme açısı (Ø) değerleri	90
Tablo 4.21.	SK-3, SK-6 ve SK-7'den alınan örneklerin derinlik boyunca kohezyon (c) ve içsel sürtünme açısı (Ø) değerleri	91
Tablo 5.1.	Regolitik zeminlere ait özelliklerin zonlara göre mak., min. ve ort. değerleri	98
Tablo 5.2.	Farklı zonlar için zemin özelliklerine bağlı ayırt edici değerler	98
Ek Tablo 3.1.	Piknometre deney sonuçları	134
Ek Tablo 3.2.	Regolitik zeminler de derinlik boyunca yapılan tüm kayaç analizi sonuçları ve anakaya Tüm Kayaç Analizi sonuçları	167

SEMBOLLER DİZİNİ

Ac	: Aktivite
Al_2O_3	: Alüminyum oksit
Ba	: Baryum
$\mathbf{B}_{\mathbf{q}}$: Gözenek basıncı oranı
c	: Kohezyom
CaO	: Kalsiyum oksit
Cr_2O_3	: Krom oksit
e	: Boşluk oranı
Fe ₂ O ₃	: Demir oksit
Fr	: Düzeltilmiş sürtünme oranı
fs	: Çeper sürtünmesi
Ic	: Zemin davranış model indisi
I_{L}	: Likitlik indisi
K_2O	: Potasyum oksit
LL	: Likit limit
LOI	: Atește kayıp
MgO	: Magnezyum oksit
MnO	: Mangan oksit
n	: Porozite
Na ₂ O	: Sodyum oksit
Nb	: Niobium
Ni	: Nikel
P_2O_5	: Fosfor pentaoksit
PI	: Plastisite indisi
PL	: Plastik limit
R_{f}	: Sürtünme oranı
Sc	: Scandium
SiO ₂	: Silisyum dioksit
S	: Doygunluk derecesi
Sr	:Stronsiyum

qc	: Konik uç direnci
qE	: Efektif koni uç direnci
\mathbf{Q}_t	: Düzeltilmiş koni penetrasyon direnci
qt	: Koni arkasında ölçülen boşuk suyu basıncına göre düzeltilmiş koni uç direnci
TiO ₂	: Titan oksit
u2	: Koni arkasında ölçülen boşuk suyu basıncı
Wn	: Doğal su muhtevası
Y	: Yttrium
Zr	: Zirkon
γn	: Doğal birim hacim ağırlık
Уĸ	: Kuru birim hacim ağırlık
Ø	: İçsel sürtünme açısı
σ_{vo}	: Toplam düşey gerilme
σ'_{vo}	: Efektif gerilme

1.GENEL BİLGİLER

1.1. Giriş

Yer yüzeyindeki veya yer yüzeyinin yakın kısımlarındaki kayaçlar su, hava ve sıcaklık değişimlerinden sürekli olarak etkilenmektedir. Yer değişme olmaksızın kayaçların fiziksel ve kimyasal özelliklerini değiştiren bu yıkıcı süreçler ayrışma olarak tanımlanır. Kayaçların özellikle kimyasal ayrışması ile yerinde oluşan zeminler regolit olarak adlandırılır.

Regolit terimi ilk olarak Merrill (1897) tarafından ana kayayı örten jeolojik malzemeler için kullanılmıştır. Bu tanım Eggleton (2001) tarafından yenilenmiş, kırıklı ve ayrışmış kaya kütleleri, ana kaya blokları içeren saprolitler, zayıf çimentolu volkanik kayaçlar ve tüfler, alüvyonlar ve yamaç molozları gibi ayrışma, erozyon, taşınma, depolanma süreçlerinin biri veya birkaçı sonucunda oluşan ve yerli kaya üzerinde depolanan örtü malzemeleri bu tanım içine dahil edilmiştir. Dolayısıyla jeolojik olarak sağlam kaya ile hava arasında bulunan her türlü malzeme regolit olarak tanımlanmaktadır.

Zeminler, yüzeyden ana kayaya kadar olan kesimde fiziksel ve jeokimyasal olarak farklı özellik sunan belirgin zonlara ayrılır. Bu zonların kalınlığı bölgenin topografik, jeolojik ve iklim özelliklerine göre değişiklik gösterir.

Derinlik boyunca mineralojik farklılıklara göre yapılan ve zeminleri kendi içlerinde benzer özellikler gösteren zonlara ayırarak değişik zemin sınıflarını tanımlayan jeokimyasal sınıflama sistemleri hakkında çalışmalar bilimsel literatürde geniş yer tutmaktadır (Jackson ve Sherman, 1953; Oilier, 1959; Rose vd., 1979; Levinson 1980, Sposito, 1985; Ollier ve Galloway, 1990; Butt vd. 2000; Taylor ve Eggleton, 2001; Dubbin, 2001; Gilkes ve Kew, 2006; Shafique, 2011). Farklı fiziksel ve kimyasal özellik gösteren zonlarda derinlikle birlikte malzemenin mühendislik davranışının değiştiği bilinmesine karşın (Taylor ve Eggleton, 2001), bu değişimlerin ayrışma derecesi/derinliği ve ana kayaya uzaklık gibi faktörler ile ilişkilendiren fiziko-mekanik çalışmalar ise son derece kısıtlıdır (Little, 1971; Netterberg ve Caiger, 1983; Cord vd., 2003). Bu tür zeminlerin fiziko-mekanik özelliklerini konu alan çalışmalar ise birkaç araştırma ile sınırlıdır (Semerci, 1990; Akgün ve Bulut, 2001; Dağ, 2003; Baykan, 2012; Ersoy vd. 2013; Kul Yahşi ve Ersoy, 2017). Oysaki birçok mühendislik yapısı sığ sayılabilecek derinliklerde, genellikle kısmen ve/veya tamamen ayrışmış kaya kütleleri üzerinde inşa edilmektedir. Bu nedenle ayrışmamış ana kayadan çok farklı mühendislik özelliklerine sahip olan ayrışmış kaya ve kalıntı zeminlerin (regolitler) mühendislik özelliklerinin belirlenmesi fiziko-mekanik uygulamalarda büyük önem taşır. Fiziko-mekanik projelerde, genel olarak yamaç molozları, gölsel ve sığ denizel çökeller gibi jeolojik ortamlar, yanal ve düşey yöndeki devamsızlıklarından dolayı heterojen olarak kabul edilirken, yerinde oluşan regolitik zeminlerin fiziko-mekanik özelliklerinin genellikle değişmediği varsayılır. Ancak regolitik zeminlerde, ayrışma derecesine ve derinliğine bağlı olarak ortam farklı fiziksel ve mineralojik özellik gösterir (Taylor ve Eggleton, 2001). Bu durum doğrudan mekanik özelliklere de yansır. Bu nedenle belirli bir derinlik için belirlenmiş olan zemin parametrelerinin farklı derinlikler için yapılan çalışmalarda kullanılması fiziko-mekanik projelerin uygulama aşamasında büyük sorunlara neden olur. Özellikle bu tür ortamlarda projelendirilen şevlerin stabilite analizlerinde ortam tek bir veriyle karakterize edilmekte ve bu durum tehlikeli sonuçları da beraberinde getirmektedir.

Jeokimyasal çalışmaların aksine, fiziko-mekanik çalışmalarda zeminler sadece laboratuvar veya arazi deneylerinde elde edilen sayısal veri aralıklarına göre sınıflandırılmaktadır (Terzaghi 1929-AASHTO; Casagrande, 1948-USCS; Lambe ve Whitman, 1969; ASTM, 1985). Bu sınıflamaların başlıca amaçları; (1) farklı özellikteki zemin sınıflarının karakteristiklerini belirlemek, (2) mühendisler arasında ortak bir temele dayalı bilimsel ve teknik iletişim sağlamak ve (3) mühendislik tasarımı için sayısal veri ve kılavuz elde etmek şeklinde sıralanabilir. Ancak, bu sınıflamalarda fiziko-mekanik özelliklerin derinlik profili boyunca değişimine etki eden fiziksel ve özellikle mineralojik parametreler ele alınmamış, arazi ortamında zemin özelliklerindeki değişimler sınıflamaları dahil edilmemiştir. Oysaki kaya kütleleri ve süreksizlikler için arazi tanımlamalarına göre yapılan bozunma derecesi ve dayanım sınıflamaları (ISRM, 2007) mühendislik jeolojisi projelerinde sıkça kullanılmaktadır. Bu nedenle özellikle regolitik zeminlerin mühendislik özelliklerinin derinlikle değişimi dikkate alınarak yapılan mühendislik sınıflamalarına ihtiyaç gün geçtikçe artmaktadır.

1.2. Çalışmanın Amacı ve Kapsamı

Yapı-temel-zemin etkileşimi ile ilgili projelerin hemen hemen tümünde, yerinde oluşmuş regolitik zeminlerin homojen olduğu kabul edilmekte ve ayrışma derecesinin derinlikle değişimi ihmal edilmektedir. Bu tür kalıntı zeminlerde uygulanan inşaat projelerinde, taşıma gücü, oturma ve stabilite analizlerinde kullanılan zemin parametreleri sabit kabul edilmekte ve bu ihmal bazı durumlarda yapılarda onarımı güç hasarlar meydana getirmektedir.

Bu nedenle çalışma kapsamında, Trabzon ili ve çevresinde geniş yayılımlar gösteren Eosen sonrası volkanik kayaçların yerinde ayrışması ile oluşmuş regolitik zeminlerin yanal ve düşey yöndeki fiziko-mekanik özellikleri, (1) yerinde arazi ve laboratuvar deneyleri ile belirlenmiş, (2) ayrışma derinliği ve derecesinin dolayısı ile mineralojik özeliklerin fizikomekanik özellikler üzerindeki etkisi araştırılmış, (3) fiziko-mekanik özelliklerdeki değişime göre derinliğe bağlı regolitik zemin profili ortaya çıkarılmış, (4) bu tür zeminlerin homojen olarak kabul edildiği, geleneksel metodların yetersizliği test edilerek bilimsel literatüre katkı sağlanmış ve (5) sonuç olarak il çevresinde son yıllarda baraj, gölet ve karayolu gibi büyük çaplı mühendislik projeleri için saha karakterizasyonu ve tanımlanmasına yönelik örnek ve öncülük teşkil edecek bir araştırma yapılmıştır.

Belirtilen amaca ulaşmak için aşağıda maddeler halinde sıralanan çalışmalar planlanmıştır.

(1) Bazik volkanik kayaçların yerinde ayrışması ile oluşmuş regolitik zeminlerin dağılımı belirlenmiş ve özellikle jeofizik ölçümlerle kalınlığı 5 metreden fazla olan bölgeler çalışma programına dahil edilmiş,

(2) Her lokasyonda regolitlerin derinlik profilinin çıkarılması amacıyla sondaj yapılmış, sondajlarda geniş çaplı özel sondaj tekniklerinden yararlanılarak laboratuvarda fiziksel ve mekanik özelliklerin belirlenmesi amacıyla 50 cm de bir örnek alımı gerçekleştirilmiş,

(3) Her araştırma sondajlarından 50 cm'de bir alınan örneklerin element ve jeokimyasal içerikleri tüm kayaç ve XRD analizleri ile belirlenmiş,

(4) Aynı alanlarda yerinde arazi deneyleri (CPT) yapılarak zeminlerin fizikomekanik özellikleri belirlenmiş ve zemin profili derinlik boyunca farklı zonlara ayrılmış,

(5) Zeminlerin fiziksel ve mineralojik özelliklerinin ayrışma derecesi ve derinliğe bağlı olarak değişimi ve bu değişimin kayma direnci parametreleri üzerindeki etkisi araştırılmıştır.

1.3. Çalışma Alanının Genel Özellikleri

Çalışma alanı Doğu Karadeniz Bölümü'nde, Trabzon ili merkez Ortahisar ilçesi sınırları içerisinde bulunmakta ve 1/25.000 ölçekli Trabzon G43b1 paftasında yer almaktadır (Şekil 1.1).

Şekil 1.1. Çalışma alanı yer bulduru haritası

Trabzon ilinde deniz etkisinde kalan ılıman iklim tipi hakim olup yazlar genellikle orta sıcaklıkta, kışlar ise ılık geçmektedir. Konumu nedeniyle Trabzon kışın Türkiye'de ki diğer illerden ayrı bir özellik sunar. Kafkas Dağları Trabzon'u güneyden çevreleyerek kuzeybatının soğuk rüzgarlarına kapatır. Ayrıca Sibirya'nın soğuk havası ile Kuzey Doğu Anadolu platolarında soğuyan havanın bölgeye girmesini engeller. Aylık ortalama yağış miktarlarına bakıldığı zaman Temmuz ve Ağustos aylarının kurak geçtiği görülmektedir (Tablo 1.1). Sıcaklık değişimi denizin denetimindedir ve bu nedenle sıcaklık farkları azdır. Trabzon ilin de, toplam arazinin %10'u düz ve düze yakın, %30'u dağlık, %60'ı da kıyıdan içeriye doğru gidildikçe yükselen ve değişen eğimler gösteren arazilerdir.

Tablo 1.1. Trabzon ili 1929-2017 yılları arası sıcaklıkların istatistiksel değişimi (URL-1, 2017)

TRABZON	Ocak	Şubat	Mart	Nisan	Mayıs	Haziran	Temmuz	Ağustos	Eylül	Ekim	Kasım	Aralık	Yıllık
					Son İklir	n Periyodur	a (2009-201	7)					
Ortalama Sıcaklık (°C)	7.3	7.2	8.3	11.7	15.9	20.3	23.1	23.4	20.3	16.6	12.8	9.5	15
Ortalama En Yüksek Sıcaklık (°C)	10.7	10.7	11.8	15.5	19.1	23.1	25.8	26.5	23.6	20.0	16.4	12.9	18
Ortalama En Düşük Sıcaklık (°C)	4.5	4.3	5.3	8.6	12.8	16.9	19.8	20.3	17.3	13.6	9.9	6.6	12
Ortalama Güneşlenme Süresi (saat)	2.7	3.2	3.4	4.2	5.5	7.0	5.9	5.6	4.9	4.5	3.6	2.7	53
Ortalama Yağışlı Gün Sayısı	11.5	11.8	12.6	12.4	12.1	10.3	7.5	8.3	10.6	11.9	11.4	12.1	133
Aylık Toplam Yağış Miktarı Ortalaması (mm)	82	63.8	58.1	57.2	51.6	50.4	35.5	45.1	78.5	115	99.1	83.3	820
					Son İklir	n Periyodur	na (2009-201'	7)					
Nemlilik (%)	73	71	73	79	80	78	75	74	74	75	71	70	74.4

Tablo 1.1'e göre 1929-2017 yılları arası aylık toplam yağış miktarı ortalaması 820 mm'dir. 1981-2010 yılları arası yapılan alansal yağış grafiğine göre 929.7 mm normal olarak alınmıştır. 2016 yılındaki toplam ortalama yağış miktarı normale göre %15 oranında ve 2017 yılındaki toplam ortalama yağış miktarı normale göre %13 oranında artış göstermiştir. Trabzon yıllara göre alansal yağış dağılım grafiği Şekil 1.2'de verilmiştir.

Özellikle ortalamadan yüksek yağış, nem miktarı ve ılıman iklim nedeniyle kayaçlardaki kimyasal ayrışma oranı genel olarak bazı bölgelerde yüksektir. İl merkezinde ki bazı alanlarda ayrışma derinliği 15 m' yi aşmaktadır.

Şekil 1.2. Trabzon ili yıllara göre alansal yağış dağılımı (URL-2, 2017)

Yıllık ortalama sıcaklık ve yıllık ortalama yağış verileri kullanılarak Peltier ve Wu tarafından oluşturulan fiziksel ve kimyasal ayrışma abağına Trabzon, Rize ve Giresun illerinde ki yağış ve sıcaklık verileri yerleştirilmiştir. Buna bağlı olarak Trabzon ve Giresun da orta derecede kimyasal ayrışma, Rize de güçlü kimyasal ayrışma söz konusudur. Rize ve Giresun da zayıf fiziksel ayrışma görülürken, Trabzon da yok veya önemsiz fiziksel ayrışma mevcuttur (Şekil 1.3). Bu sonuçlara bakılarak Trabzon da ki ayrışmanın fiziksel ayrışmadan ziyade kimyasal ayrışma olduğunu göstermektedir.

Şekil 1.3. Yıllık ortalama sıcaklık ve yıllık ortalama yağış verilerine göre ayrışma derecesi (Peltier and Wu 1982)

1.4. Önceki Çalışmalar

Regolitik zeminlerin fiziko-mekanik özelliklerinin derinliğe bağlı değişimine yönelik yapılan çalışmalar kısıtlı sayıdadır. Yapılan çalışmalar genellikle zeminlerin ayrışma derinliğinin arazi deneyleri ile belirlenmesine yönelik olmakla birlikte, bu verilerin laboratuvar verileriyle karşılaştırılması ve değerlendirilmesine yönelik çalışmalar çok azdır. Bir diğer çalışma şekli ise zeminler de yapılan laboratuvar deneyleri sonucunda elde edilen fiziko-mekanik verilerin istatistiksel olarak değerlendirilmesine yöneliktir.

Akgün, A. ve Bulut, F. 2001, "Trabzon Güney Otoyolunun Arsin-Trabzon Kesimine İlişkin Mühendislik Jeolojisi" başlıklı çalışmasında alanın 1/10000 ölçekli fiziko-mekanik birim haritası oluşturulmuş ve sayısallaştırılmıştır. Oluşturulan haritada birimlerin litolojik özelliklerin yanı sıra ayrışma dereceleri açısından da değerlendirilmiştir.

Dağ, S., Bulut, F. ve Akgün, A., 2007, İki değişkenli istatistik analiz yöntemi ile Rize Çayeli ve çevresindeki heyelanların incelenmesi ve değerlendirilmesine yönelik bir çalışma yapmışlardır.

Sal, Z., 2010, SCPT testinde derinliğe bağlı olarak elde edilen makaslama dalga hızı (Vs) değerlerini kullanılarak zemin türüne göre fiziko-mekanik parametreler arasındaki ilişkileri belirlemiştir. Yapılan çalışma sonucunda doğrusal, üstel ve logaritmik regresyon modellerine göre elde edilen fonksiyonlar kullanılarak ilişkiler oluşturulmuş, ilişki katsayıları elde edilmiştir.

Baykan, İ., 2011, Trabzon ili kırmızı killerinin fiziko-mekanik özelliklerinin araştırılması adlı Yüksek lisans tezinde, Eosen-Neojen yaşlı Kabaköy Formasyonundaki regolitik zeminlerin fiziko-mekanik özelliklerini araştırmış ve Atterberg limitleri ile dayanım deneylerinden elde edilen kohezyon ve içsel sürtünme açısı değerleri arasında istatistiksel ilişkiler kurmuştur.

Kul, B., 2012, Yeşilyurt (Trabzon) Heyelanı'nın fiziko-mekanik özelliklerinin araştırılması ve geriye dönük analizlerle şev destek dizaynı adlı Yüksek lisans tezinde Yeşilyurt heyelanını araştırmış ve heyelanı önlemek için önerilerde bulunmuştur.

Wilford, J., ve Thomas, M., 2013, Güney Avustralya'da ki merkez Mt.Lofty Ranges'ta ayrışma sonucu oluşan regolit kalınlığının tahminini digital zemin haritalama yaklaşımı ile parçalı lineer regresyon yaparak bir makale yayınlamıştır.

Ersoy, H., ve diğ., 2013, tarafından yapılan çalışmada Trabzon yöresi içinde Tersiyer alkali volkanik regolitlerinden alınan 41 adet örselenmiş ve örselenmemiş zemin numunesi

üzerinde yapılan laboratuvar deneyleri sonucunda elde edilen veri setleri, analitik hiyerarşi yöntemi ve çoklu regresyon analizlerinde kullanılarak değerlendirilmiştir. Çalışma Tersiyer volkanik regolitlerinin zemin mukavemeti parametrelerinin tahmini yapılmış ve temel tasarım projeleri gibi mühendislik uygulamalarında zaman alıcı laboratuvar deneylerine ihtiyaç duymayı önleyerek, kantitatif tahminin zemin dayanımı parametrelerine uygun bir alternatif olduğunu ortaya koymuşlardır.

Yücel, C., vd., 2013, Doğu Pontidlerin kuzey kesimlerindeki Tersiyer volkanitlerinin volkanik fasiyesleri ve mineral kimyası, kuzeydoğu Türkiye: Önceden erimiş kristalleşme koşulları ve magma odası süreçleri üzerine etkileri başlıklı makalesinde çalışma konusu regolitlerin oluştuğu volkanik kayaçlar ve bu kayaçların jeolojik evrimi ile ilgili bir çalışma yapmışlardır.

Kul Yahşi, B. ve Ersoy, H., 2018, tarafından yapılan çalışmada Trabzon ili Yeşilyurt köyündeki kütle hareketi incelenmiş, kütle hareketinin olduğu zeminin regolitik bir zemin olduğunu ortaya koymuşlardır.

2.MATERYAL VE METOD

Bu çalışmanın ilk aşamasında regolitik zemin kalınlığının 5 metreden fazla olduğu alanların belirlenmesi amacıyla jeofizik (sismik) ölçümlerden yararlanılmıştır. Örselenmemiş örnek almak ve zemin profilini ortaya çıkarmak amacıyla regoitik zeminlerin bulunduğu alanların her birinde mekanik araştırma sondajı yapılmış, aynı lokasyonlarda koni(k) penetrasyon deneyi uygulanmıştır. Örnek alma işlemi her 50 cm'de tekrarlanmıştır. Regolitik zeminlerin mühendislik özelliklerinin derinliğe bağlı değişimini belirlemek amacıyla; araştırma kuyularında kuyu içi deneyler yapılmış ve 50 cm'de bir örselenmemiş örnekler alınmıştır.

Kuyu içi deney bulguları ve laboratuvar deneyleri sonuçlarından yararlanılarak zemin katmanlarının karakterizasyonu yapılmıştır. Bu kapsamda yapılan çalışmalar aşağıda sıralanmıştır.

(1) Mineralojik özellikler (XRD, kil türü ve organik madde miktarı)

(2) Tüm kayaç analizleri yardımıyla element içeriği (Zeminler için 93 adet tüm kayaç analizi, anakaya örneği için 2 adet tüm kayaç analizi yapılmıştır)

(3) Dane boyutu dağılımı, kıvam limitleri, su içeriği, birim hacim ağırlık (93 adet zemin örneği için elek analizi deneyi, hidrometre deneyi, birim hacim ağırlık deneyi yapılmış, kıvam limitlerini bulmak için plastik limit deneyinden 279 adet, düşen koni yöntemi için 440 adet deney yapılmıştır)

(4) Kayma direnci parametreleri (93 adet örselenmemiş örnek üzerinde toplamda 330 adet kesme kutusu deneyi yapılmıştır)

(5) Enine dalga hızı (Her bir sondajın olduğu alanda 1 adet toplamda 6 adet sismik kırılma yöntemi uygulanmıştır)

(6) Konik uç direnci ve sürtünme oranı (Her sondaj için anakayaya kadar konik uç direnci ve sürtünme oranı bulunmuştur)

Yukarıda sıralanmış özelliklerin belirlenmesi için uygulanan yöntemler aşağıda maddeler halinde detaylı olarak açıklanmıştır (Tablo 2.1).

Amaç	Metodoloji	Elde edilen parametreler	Standart
Zemin profilin yatay ve düşey değişimlerinin belirlenmesi	6 profilde sismik kırılma yönteminin uygulanması 6 adet sondaj yapımı (sırasıyla 9.3 m, 7.2 m, 9.15 m, 5.0 m, 7.9 m, 7.1 m)	Çalışma alanı zeminlerin derinlikle değişimi	IAEG (1976)
	6 adet Konik Penetrasyon testinin uygulanması	Konik uç direnci ve sürtünme oranının bulunması	ASTM D3441
	6 profilde sismik kırılma yönteminin uygulanması	S dalga hızının bulunması	-
Mühendislik özelliklerinin belirlenmesi	Sondajlardan 50 cm'de bir alınan 93 adet örselenmiş örneğin fiziksel özelliklerinin belirlenmesi	Birim hacim ağırlık (toplamda 93 adet deney yapılmıştır.) Kıvam limitleri (plastik limit için 279 adet deney ve likit limit için 440 adet deney yapılmıştır.) Tane boyu dağılımı (93 adet elek analizi, 93 adet hidrometre deneyi yapılmıştır.)	ASTM D4718 ASTM D4318 ASTM D422
	Sondajlardan 50 cm'de bir alınan 93 adet örselenmemiş örneğin mekanik özelliklerinin belirlenmesi (Her bir örnek için 3 tane toplamda 279 tane UU kesme kutusu deneyi yapılmıştır.)	Makaslama dayanımı parametreleri (c, Ø)	ASTM D3080
Mineralojik özelliklerinin belirlenmesi	Tüm kayaç analizi yapımı (93 adet zemin örneği için ve 2 adet kaya örneği için yapılmıştır.)	Zemin ve kaya örneklerinin mineralojik bileşimi	-
	XRD analizi	Kil cins tayini	

Tablo 2.1. Çalışma alanının da uygulanan program, elde edilen veriler ve ilgili standartlar

3.BULGULAR

3.1. Çalışma Alanı ve Çevresinin Jeolojisi

Türkiye'nin Doğu Karadeniz Bölümü'nde, Liyas'tan Eosen'e kadar belli zaman aralıklarında gelişimini sürdüren magmatik faaliyetlerin ürünleri olan magmatik kayaçlar ve magmatik faaliyetlerin durduğu dönemlerde çökelen tortul istifler yaygındır (Kul, 2012). Birçok araştırmacı tarafından tektonik, magmatik ve sedimantolojik özelliklerine göre ayrılan Doğu Pontidler (Arslan vd., 1997; Şen vd., 1998; Arslan vd., 2002; Şen, 2007), Okay ve Tüysüz (1999) tarafından belirlenen Sakarya Zonu içerisinde yer almaktadır. Doğu Pontidler Özsayar vd. (1981) tarafından Kuzey ve Güney Zon olarak ikiye ayrılırken, Bektaş vd. (1995) ve Eyüboğlu vd. (2006, 2007) tarafından Kuzey, Güney ve Eksen Zonu olarak üçe ayrılmıştır. Kuzey Zon volkanik kayaçlar ve granitik intrüzyonlar, Eksen Zonu ultramafik kayaçlar, peridotit ve metamorfitler ve Güney Zon granitik kayaçlar, metamorfik masifler ve sedimanter kayaçlar ile karakterize edilir.

Doğu Pontidler'in Kuzey Zon'unda yer alan Trabzon ve çevresinin en yaşlı kayaçları, Güven (1993) tarafından tanımlanan Üst Kretase-Paleosen yaşlı formasyonlar oluşturur. Bu birimlerin en altında içerisinde tortul seviyeler bulunan bazalt-andezit ve piroklastitleri bulunmaktadır. Tabandaki bu volkanik istif uyumlu olarak riyolit-riyodasit ve piroklastitleri tarafından örtülmektedir. Asidik volkanitler ise marn, şeyl, killi kireçtaşı tüf ardalanmasından oluşan birimler tarafından uyumlu olarak örtülmektedir. Çalışma alanı ve çevresine ait jeoloji haritası Şekil 3.1'de verilmiştir.

3.1.1. Kabaköy Formasyonu

İl merkezi ve yakın çevresinde yüzeylenen Senozoyik yaşlı volkano-tortul istif ilk olarak Güven (1993) tarafından Kabaköy Formasyonu olarak isimlendirilmiştir. Tortul ara katkılı bazik volkanitler ve piroklastitlerinden oluşan bu birimler ilk çalışmalarda Paleosen-Eosen yaşlı olarak kabul edilmiştir. Aydın vd. (2008) ve Yücel (2013) tarafından yapılan çalışmalarda ise tabanda Eosen yaşlı tüf ve breşlerle başlayan birimlerin üzerinde uyumsuz olarak Miyosen yaşlı volkanitlerin bulunduğu belirlenmiştir.

Şekil 3.1. Çalışma alanının genel jeoloji haritası (Güven 1998'den değiştirilerek)

Çalışma konusu alanda yerinde oluşmuş regolitik zeminler Miyosen yaşlı volkanik kayaçların ayrışması ile oluşan zeminlerdir. Sedimanter arakatkılı andezit, bazalt, trakibazalt ve piroklastitlerden oluşan birim Kabaköy Formasyonu ile benzer litolojik ve stratigrafik özellikler gösterdiği için aynı isimle adlandırılmıştır. İnceleme alanının tamamında yayılım gösteren ve Geç Kretase yaşlı birimler üzerine bir taban konglomerası ile açısal uyumsuzlukla gelen formasyon, kumtaşı, kumlu kireçtaşı ve marn ara tabakaları içeren andezit, bazalt ve piroklastitlerden oluşmaktadır. Formasyonun taban kesiminde bulunan tortul kayaçlar killi, karbonatlı bir matriks içindeki yuvarlak şekilli volkanik kayaç çakıllarından ve killi kireçtaşı, marn bloklarından oluşmaktadır.

3.1.2. Regolitik Zeminler

Çalışma alanında yüzeylenen regolitik zeminler, Eosen sonrası volkaniklerinin üst seviyelerinde gözükmektedir. Özellikle temeldeki volkanik kayaçların ayrışması sonucu oluşan regolitler, derine doğru ayrışmamış volkanik kayaçlara geçiş gösterir. İnceleme alanında tabakalı yapı göstermeyen regolitlerin, fosil faunası içermemesi nedeni ile karasal kökenli olduğu düşünülmektedir. Regolitler içinde volkanik çakılların varlığı, bunların kaynağının Eosen sonrası volkanik kayaçlar olduğunu göstermektedir. Bir regolit profili incelendiğinde yüzeyden alta doğru fiziksel ve kimyasal özelliklerinin değişiklik gösterdiği görülür ve zemindeki bu değişmelere göre regolitler zonlara ayrılarak sınıflandırılır.

Genelleştirilmiş regolit profilinde üstten alta doğru A, B, C olarak adlandırılan üç zon görülür. En üst zon olan A zonu organik malzeme (humus) içeren koyu renkli yıkanma zonuna karşılık gelir. Bu yıkanma zonunda eriyebilir maddeler eriyik halde, eriyemeyen maddeler ise mekanik yolla tabana doğru B zonuna aktarılır. B zonu birikim zonudur. Üst kısımda erimiş ve katı halde gelen malzeme bu kesimde çökelir. B zonu açık renklidir. B zonu sadece A zonundaki organik parçalanmadan değil daha alt kesimlerden (C zonundan) gelen çözeltilerden de bazı elementleri bünyesine alır. B zonu kil mineralleri, Fe, Mn ve Al oksitler bakımından zengindir. Toprak profilindeki C zonu B zonunun altında ve B zonuna göre kil ve organik madde bakımından daha fakir zondur. Bu zon ana kayaya geçiş zonudur. Anakayaya doğru yaklaşıldıkça kayaç parçalarında dereceli olarak artış gözlenir. C zonu ayrışmış ana kayayı temsil eder ve saprolit olarak adlandırılır.

Yapılan incelemelerde, çalışma konusu regolitik zeminlerde bu zonlar tespit edilerek, zeminlerin organik madde içerikleri ile dane boyutu dağılımları belirlenmiştir (Baykan, 2011; Kul, 2012; Ersoy vd., 2013; Kul Yahşi ve Ersoy, 2018). En üst seviye olan A zonu yaklaşık 150 cm kalınlıktadır. Organik maddeler nedeniyle rengi koyu kahverengiye yakın olan bu zonda yıkanmaya bağlı olarak humus ve kil gibi maddelerin bir kısmı taşınmıştır. A1 zonunda organik madde oranı %5'ten, kum ve silt oranı %80'den fazladır. A2 zonunda ise organik madde oranı %1'in altına düşerken silt oranı %50'ye yükselmiştir. Çalışma alanında B zonu yaklaşık 6 m kalınlıktadır. Ayrışmanın devam ettiği B zonunda A zonundan sızan suların taşıdığı kil, demir, tuz gibi maddeler birikmiştir. Yaklaşık 3.1 m kalınlığa sahip B1 zonunda organik madde oranı yaklaşık %2'dir. Bu alanda kil oranı %50'ye ulaşmıştır. 2.85 m kalınlığı sahip B2 zonunda kil oranı %20'ye düşerken silt oranı %40'a kadar yükselmiştir. Saprolitlerden oluşan ve yaklaşık 2.5 m kalınlığa sahip C zonunda ana kayayı oluşturan bloklara rastlanmıştır (Şekil 3.2.).

Şekil 3.2. Eosen sonrası oluşan bazik volkanik kayaçların ayrışması sonucu oluşmuş yaklaşık 10 metre kalınlığındaki bir regolit profili (SK-1, Bostancı Mahallesi, Trabzon)

3.2. Ayrışma

Yüzeyden itibaren başlayarak anakayaya kadar uzanan dereceli değişim ayrışma ile oluşmaktadır (Hunt, 1972; Birkeland, 1984). Buna göre ayrışma anakayanın fiziksel ve kimyasal olarak parçalanması ve bileşiminin değişimidir. Yeryüzündeki tüm kayalar, jeolojik geçmişlerinde büyük ısı ve basınca maruz kalmışlardır. Yüzeyde veya yüzeye yakın yerdeki ortam, fiziksel ve kimyasal olarak derindekinden çok farklı olduğu için kayalar bu yeni koşullar karşısında değişime uğrarlar (Rahn, 1986). Genellikle kayaçlar üzerindeki ayrışma atmosfere maruz kaldığında minerallerin fiziksel ve kimyasal parçalanması gerçekleştiği zaman başlar. Ayrışma fiziksel ayrışma ve kimyasal ayrışma olarak ikiye ayrılmaktadır.

3.2.1. Fiziksel Ayrışma

Kayaçların fiziksel olarak çatlaması, parçalanması ve ufalanması olup, kayayı kırmaya çalışan sıcaklık ve basınç değişimini de içerir. Yük kalkması ve tektonizma, ıslanma-kuruma, donma-çözünme ve bitki kökleri fiziksel ayrışmayı oluşturan etkenler arasında yeralmaktadır.

3.2.2. Kimyasal Ayrışma

Kimyasal ayrışma kayaçların içindeki minerallerin ayrışarak kimyasal açıdan değiştiği süreçleri kapsar. Fiziksel ayrışmanın tersine kimyasal ayrışma, ayrışan malzemelerin bileşimini değiştirir. Hidrasyon, hidroliz, çözünme ve oksidasyon kimyasal ayrışma süreçleridir.

Hidrasyon kayanın bünyesine su alarak mineral ve elementlerin su ile birleşmesi sonucunda meydana gelen kimyasal olaydır. Dehidrasyona gelince, hidrasyonla meydana gelen ayrışma ürünleri kuruduklarında bünyelerindeki suyu kaybederek dehidrasyona uğramaktadırlar.

Hidroliz suyun H⁺ ve OH⁻ iyonları iyonlarıyla kayaç ve minerallerin bileşiminde bulunan elementler ve iyonlar arasındaki reaksiyonlardır.

Çözünme kayacı oluşturan iyonların anyonlarına veya katyonlarına ayrılması ve katı madde erimesi aşmasını içerir.

Oksidasyon çözünen madde ile element halindeki O₂'nin birleşmesiyle oluşur. Elektronlarını kaybeden bir madde oksitlenmiş demektir.

3.3. Mühendislik Jeolojisi Çalışmaları

Bu çalışma kapsamında sondaj uygulamaları, konik penetrasyon deneyi ve sismik ölçümler gibi arazi çalışmaları gerçekleştirilmiştir (Şekil 3.3). Sondajlardan elde edilen örnekler üzerinde zeminlerin indeks, kıvam ve dayanım özelliklerinin belirlenmesi amacıyla ilgili standartlara göre deneyler yapılmıştır.

Şekil 3.3. Çalışma alanında uygulanan sismik yöntem, konik penetrasyon deneyi ve sondaj noktaları

3.3.1. Sismik Kırılma Yöntemi

Günümüzde jeoteknik projelerde arazi deney programı ile planlanacak araştırma programının içeriği henüz standartlara bağlanmamıştır. Bu nedenle çalışmanın ilk aşamasında, Eosen sonrası bazik volkanik kayaçların ayrışması ile oluşmuş rezidüel regolitlerin yayılımı belirlenmiş, sismik ölçümlerle kalınlığı 5 metreden fazla olan bölgeler ayırtlanmış ve bunların içinde en uygun bölge çalışma programına alınmıştır (Şekil 3.3). Sismik kırılma yöntemi, verinin toplanması ve değerlendirilmesi nedeniyle kolay, hızlı ve maliyeti az olan bir yöntemdir. Diğer önemli bir özelliği ise dalga yayınım hızının derinlikle arttığı tabakalı ortamlarda, tabakaların hızlarının ve derinliklerinin yeterli bir doğrulukla bulunmasını sağlar.

Yapılan çalışmada sismik yöntemlerinden biri olan yüzey dalgalarının çok kanallı analiz yöntemi ile yeraltı yapısı ve enine dalga (S) hızları belirlenmiştir.

3.3.1.1. Yüzey Dalgalarının Çok Kanallı Analiz Yöntemi (MASW)

MASW yöntemi Park vd. 1999 tarafından geliştirilmiş ve amacı faz hızının frekansla değiştiği Rayleigh dalgası dispersiyonunu elde etmek ve ters çözüm tekniği ile bunu S- dalgası hızı ve tabaka derinliğine dönüştürmektir. Buna bağlı olarak MASW yöntemi sırasıyla veri toplama, dispersiyon eğrisinin elde edilmesi ve ters çözümleme işlemleri olarak 3 ana aşamadan oluşmaktadır. Yüzey dalgası verisinin analizlerinin hemen hemen hepsinde dalga alanı dönüşüm teknikleri uygulanır. Fourier dönüşüm yöntemi kullanılarak zaman uzaklık ortamında kaydedilen veri frekans ortamına aktarılır (McMechan ve Yeldin, 1981). Aktarılan bu veriye integral dönüşümü uygulayarak faz hızı-frekans eğrisi elde edilir (Park vd., 1999a,1999b). Faz hızı-frekans ortamındaki eğrinin, her bir frekansa karşılık gelen maksimum genlik noktalarının işaretlenmesiyle dispersiyon eğrisi oluşturulur. Son olarak elde edilen dispersiyon eğrisine en küçük kareler yöntemi veya doğrusal olmayan ters çözüm yaklaşımlarından birini temel alan ters çözüm tekniklerinin uygulanmasıyla derinliğe bağlı olarak enine dalga hız yapısı bulunur.

Bu yöntem ile yeraltındaki formasyonların derinlikleri, tabakaların kalınlıkları, eğimi, kırık, fay, süreksizlik zonları, tabaka hızları ve elde edilen bu bilgilerden yer altı yapısının dinamik ve elastik parametrelerini bulmak mümkündür.

MASW ölçülerinin alımında 12 kanallı, Geometrics marka ve ES3000 model araştırma sismografı kullanılmıştır. Kaynak olarak zemin üzerine yerleştirilmiş çelik levhaya balyozla vurulmuştur (Şekil 3.4).

Tüm sondaj kuyularının bulunduğu güzergahta MASW tekniği uygulanmış ve MASW tekniği ile elde edilen verilerin çözümünden tabaka hızları ve kalınlıkları bulunmuştur. Ayrıca elde edilen dispersiyon eğrisine en küçük kareler yöntemi veya doğrusal olmayan ters çözüm yaklaşımlarından birini temel alan ters çözüm tekniklerinin uygulanmasıyla derinliğe bağlı olarak enine dalga hız yapısı elde edilmiştir.

Şekil 3.5'de MASW yönteminden elde edilen faz hızı frekans eğrileri ve Şekil 3.6'da MASW ölçümlerine göre dispersiyon eğrileri yeralmaktadır.

Şekil 3.4. MASW yönteminin arazide uygulanışı

Şekil 3.5. MASW yönteminden elde edilen faz hızı frekans eğrileri

Şekil 3.6. MASW yönteminden elde edilen dispersiyon eğrileri

MASW yönteminde dispersiyon analiz sonucuna göre hesaplanarak elde edilen dispersiyon eğrisi ile teorik dispersiyon eğrisi üst üste çakışmaktadır. Bu durum yapılan işin hassas olduğunun bir göstergesi ve doğruluğunu yansıtmaktadır.

3.3.2. Temel Araştırma Sondajları

Arazi gözlemleri ve daha önceden yapılmış olan jeofiziksel çalışmalar neticesinde çalışma alanı belirlenmiştir. Belirlenen alanda 6 adet sondaj yapılmış ve zemin profili net bir şekilde belirlenmesi için anakayaya kadar inilmiş (Şekil 3.7-12) ve buna bağlı olarak ta; sondajlar da sırasıyla 9.3 m, 7.2 m, 9.15 m, 5.0 m, 7.9 m ve 7.1 m'de ana kayaya ulaşılmıştır.

Sondajlar da her 50 cm de bir örselenmemiş örnek temin edilmiştir. Örnekler alınırken örselenmenin minimuma indirgenmesi açısından ve alınan örselenmemiş numunenin kesme kutusu deneyinde de kullanılabilmesi için 86 mm çapında 50 cm lik özel tüpler kullanılmış, sondaj susuz ve sadece baskı ile (dönme olmaksızın) gerçekleştirilmiştir. Sondaj yapımı sırasında karotiyerin 50 cm ilerlemesine dikkat edilmiş, herhangi bir hata olmaması için tijler 50 cm ara ile çizilmiştir (Şekil 3.13 ve Şekil 3.14).

Şekil 3.7. SK-1 regolitik zeminlerdeki sondaj logu

Şekil 3.8. SK-2 regolitik zeminlerdeki sondaj logu

Şekil 3.9. SK-3 regolitik zeminlerdeki sondaj logu

Şekil 3.10. SK-4 regolitik zeminlerdeki sondaj logu

Şekil 3.11. SK-6 regolitik zeminlerdeki sondaj logu

Şekil 3.12. SK-7 regolitik zeminlerdeki sondaj logu

Şekil 3.13. SK-1 (a-b-c-d-e), SK-2 (f-g) ve SK-3 (h-1-i) numaralı sondaj kuyuları

Şekil 3.14. SK-4 (a-b-c), SK-6 (d-e-f) ve SK-7 (g-h) numaralı sondaj kuyuları

3.3.3. Örselenmemiş Örnek Alımı

Jeoteknik projelerde tercih edilen zemin araştırma sondajları genellikle 30 m derinliğe kadar uygulanan sığ ve dar çaplı döner sondajlardır. Farklı jeolojik ortamlarda farklı sondaj ve örnek alım teknikleri uygulanmaktadır.

Aşağıda örselenmemiş örnek alımında yaygın kullanılan yöntemler ve/veya gereçler verilmiştir (Ulusay 2010):

A.Deney veya gözlem çukurlarından blok örnek alımı

B.Zemin içine itilen

C.Örnek alıcılar

(a).Ucu açık tüpler

(i).Kalın çeperli tüpler (U₁₀₀ tüpleri)

(ii) İnce çeperli tüpler (Shelby tüpleri)

(b) Pistonlu örnek alıcılar

(i) Serbest pistonlu örnek alıcılar

(ii) Geriye çekilebilir pistonlu örnek alıcılar

(iii) Sabit pistonlu örnek alıcılar

D.Dönel sondajlarda kullanılan örnek alıcılar

(a) Karotiyerler

(b) Denison karotiyeri

E.Kumlardan örnek alıcılar

(a) Bishop kum örnekleyicisi

(b) Delft örnek alıcısı

Zeminlerde kullanılan farklı örnekleme tekniklerine göre örselenme derecesi sınıfları Tablo 3.1'de verilmiştir. Zemin türü, örnekleme yöntemi ve örnek kalitesi arasındaki ilişkiler de Tablo 3.2'de verilmiştir. Çalışmada zeminlerin mühendislik özelliklerinin belirlenmesi amacıyla sondajlardan örnekler temin edilmiştir. Çalışma kapsamında belirlenen lokasyon da özel sondaj teknikleri uygulanmış, delgi işlemi kuru olarak gerçekleştirilmiş, sadece baskı uygulanarak dönme olmaksızın yapılmış ve her bir kuyu da anakayaya ulaşana kadar regolitik zemin profili boyunca 50 cm de bir örnek alınmıştır. Örselenmemiş örnek temin etmek ve örselenmemiş örnekten kesme kutusu deneyi için örnek alabilmek amacıyla çapı 86 mm, uzunluğu 50 cm (bağlantı yeri dahil toplam uzunluk) olan karotiyerler (örnek alıcı) (Şekil 3.15, Şekil 3.16) kullanılmıştır. Örnekleme işlemi yapıldıktan sonra karotiyerin alt ve üst kısmı parafinlenmiştir. Örselenmemiş örnekler tüpten Motorlu Hidrolik Numune Çıkarıcı (ASTM D698) ile çıkarılmış streç filmlerle sarılarak hava ile teması kesilmiş (örnek içindeki mevcut suyunu kaybetmemesi için) ve muhafaza edilmiştir.

Sınıf	Tanım	Tayin Edilebilecek Bazı Özellikler	Örnekleme Yöntemi		
1	Örselenmemiş (blok)	Sınıflama deneyleri, elek analizi, dayanım, deformasyon özellikleri, konsolidasyon vb.	-Blok örnek (duyarlı olmayan killer) -Pistonlu ince çeperli tüpler (duyarlı ve gevşek siltler) suylan dengelenmeli		
2	Örselenmemiş (baskı ile)	Su içeriği sınıflama deneyleri, yoğunluk	Baskı ile sürülen ince ve kalın çeperli tüp, suyla dengelenerek		
3	Örselenmiş	Sınıflama deneyleri, su içeriği	Baskı ile sürülen kalın çeperli tüp, burgu veya kil kesicisi, suyla dengelenme yapılmadan		
4	Örselenmiş	Sadece sınıflama deneyleri	Kavanoz torba veya kutu örnekleri		
5	Örselenmiş	Sadece istifin tanımlanması	Yıkanarak örnek alımı		

Tablo 3.1. Zemin örneklerinin örselenme derecelerine göre sınıflandırılması (Ulusay 2010)

Tablo 3.2. Zemin türü, örnekleme yöntemi ve örnek kalitesi arasındaki ilişkiler (Joyce, 1982)

Zemin türü	U ₁₀₀ tüpü	Pistonlu tüp	Bishop kum örnekleyicisi	SPT örneği	Blok örnek	Örselenmiş örnek	Dönel sondajdan karot örneği
Duyarlı (hassas) kil	2. sınıf	1. sınıf	- /	- /		3. sınıf	-
Duyarsız kil	1/2. sınıf	2. sınıf	/		1. sınıf	3. sınıf	-
Sıkı kil	2/3. sınıf	/		A	2. sınıf	3. sınıf	2/3. sınıf
Gevşek kil	3. sınıf	1. sınıf	2. sınıf	3/4. sınıf	-	3/4. sınıf	-
Sıkı silt	2. sınıf	2. sınıf	2/3. sınıf	3/4. sınıf	-	3/4. sınıf	-
Gevşek kum			2/3. sınıf	3/4. sınıf		3/4. sınıf	
İnce çakıl	-	-	2/3. sınıf	3/4. sınıf	-	3/4. sınıf	-
Orta/iri çakıl	-	-	-	3/4. sınıf	-	3/4. sınıf	-
Yumuşak kaya	3. sınıf	-	-	3/4. sınıf	2. sınıf	4/5. sınıf	1/2. sınıf
Sert kaya	-	-	-	-	-	4/5. sınıf	1. sınıf

(-) işareti, örnekleme işleminin mümkün veya uygun olmadığını ifade etmektedir. Yukarıda verilen sınıflar, Tablo 3.1'deki sınıflamaya göredir.

Şekil 3.15. Çalışmada kullanılan 86 mm çaplı karot örneği (a) ve 6x6x3 cm³ ebatlı kare prizma örnek alıcı (b)

Şekil 3.16. 86 mm çaplı, 50 cm uzunluğundaki karotiyerler (a), parafinlenme işlemi (b) ve parafinlenen örneklerin kurumaya bırakılması (c) ve (d)

3.3.4. Konik Penetrasyon Deneyi

Bilindiği üzere mühendislik jeolojisi çalışmalarında yerinde arazi deneyleri önemli bir yer tutmaktadır. Zemin özelliklerinin tahmin edilmesinde kullanılan arazi deneylerinden elde edilen sonuçların laboratuvar deneyleri ile elde edilen verilerle karşılaştırılması ve aralarındaki ilişkilerin incelenmesi, projelerin ön tasarım aşamasında fikir vermesi açısından oldukça önemli bir konudur (Özçelik, 2013). Fiziko-mekanik Mühendisliği uygulamalarında, zemin numunelerinin alınmasında, numuneler üzerinde laboratuvar deneyleri gerçekleştirilmesindeki güçlükler, bu işlemlerin maliyetinin yüksek olması ve fazla zaman gerektirmesi nedenleri ile sınırlı sayıda bilgi ile çözüme gidilme yolu tercih edilmektedir (Toğrol ve Sivrikaya, 2009). Böylelikle, arazi deneyleri sonuçlarından elde edilen verilerin önemi ortaya çıkmaktadır. Yapılacak olan çalışmaların çeşitli aşamalarında bu ilişkiler sayesinde arazi deneyleri verileri kullanılarak zeminlerin çeşitli özellikleri hakkında tahminde bulunmak mümkün olmaktadır (Özçelik, 2013). Bu nedenle, çalışmada laboratuvar deneylerine ek olarak yerinde arazi deneylerinden Konik Penetrasyon Deneyi uygulanmış ve elde edilen verilerle laboratuvar deneylerinden elde edilen sonuçlar arasındaki ilişki irdelenmiştir.

Regolitlerin derinlik profilinin çıkarılması amacıyla sondaj uygulamalarından yararlanılmıştır. Laboratuvarda fiziksel, mekanik ve mineralojik özelliklerin belirlenmesi aşamasında kullanılmak üzere 50 cm de bir örselenmemiş örnekler temin edilmiştir. Bu çalışmaları takiben uygun arazi deneyleri ile regolitler ayrıntılı olarak tanımlanmıştır. Çalışmada elde edilen ilk bulgular sayesinde, ortamın killi, siltli ve kumlu olarak belirlenmesi nedeniyle farklı arazi deneylerinin birbirlerine karşı avantaj ve dezavantajları ortaya koyulmuş ve en uygun arazi deneylerinin CPT olduğuna karar verilmiştir. Detaylı ve kesin verilerin elde edildiği bir deney olan koni(k) penetrasyon deneyi (CPT) yumuşak kil, silt, kum ve ince çakıl gibi zeminlerde başarıyla uygulanabilmektedir. Deneyin en büyük avantajı ise derinlik profili boyunca sürekli veri alınabilmesidir. Deney; kısa sürede istenilen sayıda yapılabilmekte, zemin özellikleri numune alınmasına ve laboratuvar çalışmasına gerek duyulmadan elde edilebilmektedir. Ayrıca CPT deneyin yapılmasının ve sonuçların yorumlanmasının diğer yöntemlere göre daha az zaman alması iş gücü ve maliyet açısından avantaj sağlamaktadır. Tüm bu değerlendirmeler sonucunda tanımlanan arazi ve laboratuvar programı ile çalışmanın amacına yönelik veriler bütün detayları ile belirlenmiştir. CPT ekipmanı orjinal Hollanda yapımı olup elektronik veri toplama sistemine sahiptir. ASTM D3441-05 ile standartlaştırılan deney prosedürü aşağıda açıklanmıştır;

Deneyde tepe açısı 60°, plandaki izdüşüm alanı 10 cm² ve yüzey alanı 150 cm² olan bir metal konik ucun (silindir) 20 ton kapasiteli bir hidrolik baskı yoluyla 2 cm/sn sabit hızla zemine itilmiştir (URL-3, 2017). Bu itilme (penetrasyon) sırasında 20 cm ara ile ölçülen uç (qc) ve çevre direnci verileri elektronik alıcı aracılığı ile bilgisayara kaydedilmiş, Konik uç direnci (qc) koniye uygulanan toplam kuvvetin plandaki koni kesit alanına (10 cm²) bölünmesiyle elde edilmiştir. Çeper sürtünmesi (fs) sürtünme çeperi üzerine etkiyen toplam kuvvetin silindirin yüzey alanına (150 cm²) bölünmesiyle belirlenip yüzey sürtünmesi ise sürtünme oranı (Rf=100xfsc/qc) cinsinden yüzde olarak ifade edilmiştir. Koni penetrasyon deneyi sırasında ana kayaya yaklaştıkça blok ve çakıl oranının artığı saprolitik zonlarla karşılaşılabilir. Bu durumda CPT ile ölçüm alınması imkansızdır. Şekil 3.17'de Konik Penetrasyon Deneyi'nin uygulanışı yer almaktadır.

Şekil 3.17. Koni Penetrasyon deneyinin farklı kuyulardaki uygulanışı (CPT-1-7)

Derinlikle efektif örtü yükü gerilmesi arttığı için hem koni penetrasyon direnci hem de sürtünme oranı artar (Robertson, 1990). Çok sığ ve/veya çok derin sondajlardaki örtü yükü nedeniyle CPT verilerinin normalize edilmesi (düzeltilmesi) gerekmektedir (Robertson, 1990). Düzeltilmiş CPT verilerine dayanan zemin davranış çizelgesi ilk olarak Robertson (1990) tarafından önerilmiştir. Robertson (1990) zemin türlerini gösteren bölgeleri zemin davranış modeli indisi I_c olarak tanımladığı bir parametre ile ilişkilendirmiştir.

Buna bağlı olarak Ic;

$$I_{c} = [(3.47 - \log Q_{t})^{2} + (\log F_{r} + 1.22)^{2}]^{0.5}$$
(3.1)

 $I_c = Zemin davranış modeli indisi$

 Q_t = Düzeltilmiş koni penetrasyon direnci F_r = Düzeltilmiş sürtünme oranı

$$Q_t = (q_t - \sigma_{vo}) / \sigma'_{vo}$$
(3.2)

 q_t = Koni uç direnci σ_{vo} = Yatay gerilme σ'_{vo} = Efektif gerilme

 $F_r = (fs/(q_t - \sigma_{vo})) \times 100$

(3.3)

fs= sürtünme oranı q_t= Koni uç direnci σ_{vo} = Yatay gerilme

Farklı zemin türleri için I_c aralıkları (Robertson, 1990) aşağıdaki tabloda yer almaktadır (Tablo 3.3).

Bölge	Zemin Cinsi	Ic
1	Hassas ince daneli	-
2	Organik zemin-turba	>3.6
3	Killer, kil-siltli kil	2.95-3.6
4	Siltli karışımlar, killi silt-siltli kil	2.6-2.95
5	Kumlu karışımlar, siltli kum-kumlu silt	2.05-2.6
6	Kumlar, temiz kum-siltli kum	1.31-2.05
7	Çakıllı kum-kum	<1.31
8	Çok sıkı kum-killi kum	-
9	Çok sert ince daneli	-

Tablo 3.3. Robertson 1990'a göre zemin cinsleri ve Ic aralıkları

Koni penetrasyon deneyi sonucunda elde edilen değerlere göre, her bir kuyu için düzeltilmiş koni direncinin (qc)-derinlikle değişimi, düzeltilmiş sürtünme oranınınderinlikle değişimi, düzeltilmiş zemin davranış indeksi ve düzeltilmiş zemin davranış tipi (Şekil 3.18, Şekil 3.19, Şekil 3.20, Şekil 3.21, Şekil 3.22 ve Şekil 3.23) grafikleri çizilmiştir. Buna bağlı olarak derinlik boyunca zemin türleri belirlenmiştir.

Şekil 3.18. Çalışma alanında CPT-1 için oluşturulan loglar (Robertson 1990' a göre yapılmıştır)

Şekil 3.19. Çalışma alanında CPT-2 için oluşturulan loglar (Robertson 1990' a göre yapılmıştır)

Şekil 3.20. Çalışma alanında CPT-3 için oluşturulan loglar (Robertson 1990' a göre yapılmıştır)

Şekil 3.21. Çalışma alanında CPT-4 için oluşturulan loglar (Robertson 1990' a göre yapılmıştır)

Şekil 3.22. Çalışma alanında CPT-6 için oluşturulan loglar (Robertson 1990' a göre yapılmıştır)

Şekil 3.23. Çalışma alanında CPT-7 için oluşturulan loglar (Robertson 1990' a göre yapılmıştır)

Eslami ve Fellenius (1997), kazık dizaynları için koni penetrometre verilerinin kullanımını araştırırken bir toprak profilleme yöntemi geliştirmiştir. 5 ülkede 20 siteden veri toplayan 18 kaynaktan gelen sondaj, örnekleme, laboratuvar testleri ve rutin toprak karakterizasyonu çalışmalarından elde edilen CPT ve CPTU verilerini içeren bir veri tabanı oluşturdular. Verilerin yaklaşık yarısı piyezokoni (CPTU) olarak gerçekleştirilmiş ve boşluk suyu basıncı (u2) ölçümleri bulunmaktadır. CPTU olmayan verilerin kum olan kısımlarında u2 değerleri doğal boşluk suyu (u0) basıncına eşittir kabulü yapılmıştır. Oluşturulan abakta efektif koni direncine karşılık gelen sürtünme oranı değerleri kullanılmıştır.

Buna bağlı olarak;

$$qE = (qt - u2) \tag{3.4}$$

qE = "efektif" koni uç direnci

qt = Koni arkasında ölçülen boşuk suyu basıncına göre düzeltilmiş koni uç direnci u2 = Koni arkasında ölçülen boşluk suyu basıncı

CPTU olmayan testler, kumlu topraklardan elde edildi ve her bir u2 değerinin, nötr gözenek basıncına (u0) yaklaşık olarak eşit olduğu varsayımıyla kullanılmıştır. Yapılan çalışmalar sonucunda zemin beş ana toprak tipi kategorisine ayrılmıştır (Tablo 3.4).

Bölge	Zemin Cinsi
1	Hassas ve Kil ve/veya Silt
2	Kil ve/veya Silt
3	Siltli Kil ve/veya Killi Silt
4	Kumlu Silt ve/veya Siltli Kum
5	Kum ve/veya Kumlu Çakıl

Tablo 3.4. Eslami ve Fellenius (1997)'ye göre zemin cinsleri

Jefferies ve Davies (1993), SBT indeksinin (Ic) toprak tipine göre değişen ampirik korelasyonları modifiye etmek için kullanılabileceğini ve Qt(1 - Bq) kullanılarak modifiye edilmiş düzeltilmiş koni direncine doğrudan gözenek basıncını dahil eden bir normalizasyon önerisinde bulunabileceğini denklemin de önermişlerdir.

$$I_c = \sqrt{\left[\left((3 - \log\left(Q_t \left(1 - B_q\right)\right)\right)^2 + (1.5 + 1.3\log F_r)^2\right)\right]}$$
(3.5)

Qt = Koni arkasında ölçülen boşuk suyu basıncına göre düzeltilmiş koni uç direnci $F_r = D$ üzeltilmiş sürtünme oranı

B_q = Gözenek basıncı

Daha sonra Jefferies ve Been (2006)'da, Jefferies ve Davies (1993)'te oluşturdukları çizelgeyi Qt(1-Bq)+1 parametresini kullanarak yumuşak hassas zeminlerdeki problemlerin de çözülmesi için güncellemişlerdir (Bq>1 durumu için).

Qt(1-Bq)+1 parametresi basitçe aşağıdakiler tarafından verilen efektif koni direncidir.

$$Q_t (1 - B_q) + 1 = \frac{q_t - u_2}{\sigma'_{\nu_0}}$$
(3.6)

qt= Koni uç direnci

u2 = Koni arkasında ölçülen boşuk suyu basıncı

 σ'_{vo} = Efektif gerilme

B_q = Gözenek basıncı

Daha sonra Jefferies ve Been (2006)'ya göre oluşturulmuş zemin cinsleri Tablo 3.5'de verilmiştir.

Bölge	Zemin Cinsi
1	Organik Zemin
2	Siltli Kil
3	Killi Silt
4	Siltli Kum/Kumlu Silt
5	Kum, biraz silt
6	Çakıllı kum

Tablo 3.5. Jefferies ve Been (2006)'ya göre zemin cinsleri

3.3.5. Zeminlerin İndeks Özelliklerinin Belirlenmesi

Bu çalışmada, regolitik zeminlerin fiziksel ve mekanik özelliklerini belirlemek amacıyla çalışma alanındaki toplam 6 ayrı noktada sondajlar yapılmış ve 86 mm çaplı, 60 cm'lik özel tüplerle her bir kuyu içinden 50 cm'de bir örselenmemiş numuneler alınmıştır. Örnek alınmadan önce zemin yüzeyinin 30 cm'lik kısmı kazılmıştır. Örnek alımı yapıldıktan sonra tüpün alt ve üst kısmı parafinlenmiş ve streç filmle iyice sarılarak hava ile teması kesilmiştir. Doğal özelliği muhafaza edilen zemin örnekleri laboratuvara getirilerek zemin sınıflamasına ve indeks parametrelerin tayinine yönelik deneyler yapılmıştır. Örselenmiş numunelerden yapılan deneyler sonucunda, numunelerin özgül ağırlıkları, kıvam limitleri ve buna bağlı olarak aktivasyon katsayıları, yıkamalı elek analizi ve hidrometre analizi sonucunda ise numunelerin granülometri eğrileri ve zemin sınıflaması yapılmıştır. Örselenmemiş numuneler üzerinde yapılan deneylerde numunelerin kohezyonları, içsel sürtünme açıları, birim hacim ağırlıkları ve su içeriği bulunmuştur.

3.3.5.1. Dane Boyutu Dağılımının İncelenmesi

Zemin sınıflaması, zemin malzemesinin plastik davranışını anlamak açısından oldukça kullanışlı bir yöntemdir. Zeminler genellikle değişik boyut ve şekillerde malzeme içerdiklerinden bunların tane boyutuna göre sınıflandırılması oldukça yaygındır. Bu çalışmada ASTM D422-63 standardına uygun olarak elek analizi ve hidrometre deneyleri gerçekleştirilmiştir.

Zeminler farklı geometri ve boyutlardaki danelerin bir araya gelmesi ile oluşurlar. Zeminleri oluşturan bu danelerin zemin içerisindeki dağılımları zeminlerin mühendislik özelliklerini önemli ölçüde etkilemektedir. Bu nedenle zeminleri sınıflandırırken zemini oluşturan danelerin dağılımı da etken olmaktadır (Akkaya, 2011).

Elek analizi deneyi ile zeminleri oluşturan danelerin zemin içerisindeki dağılım oranları tespit edilir. Bu deney ile zemin içerisindeki ince kum boyutunda ve daha iri tanelerin dane çapı dağılımları elde edilmiş ve ayrıca zemin içerisindeki kil ve siltin toplam miktarı da bulunmuştur. 105° C'de 24 saat kurutulmuş zemin örneğinden 500 gr alınır ve üzerine 2 gr sodyum hegza metafosfat ve 1 lt saf su eklenerek 24 saat beklenir. Oluşan karışım elek setine aktarılır ve numune alttan temiz su akıncaya kadar saf su ile yıkanır. Yıkanan bu numune saf su kullanılarak bir kurutma kabına aktarılır ve etüvde 105° C'de 24

saat kurutulur. Kurutma işlemi bitince her eleğin üzerinde kalan numune tartılır ve elek numarası ve açıklığı ile birlikte kaydedilir. Geçen yüzdeler bulunarak elek analizi için granülometri eğrisi (tane boyu eğrisi) (Şekil 3.24) çizilir. Her bir sondaj kuyusundan regolitik zemin profili boyunca alınan örnekler üzerinde yapılan elek analizi deneyi sonucu grafikler oluşturulmuştur (Ek Şekil 3.1).

Hidrometre deneyi için de, killi zeminler için etüvde kurutulmuş 50 gr numune alınır. Numunenin üstünü örtecek kadar saf su eklenir, karıştırılır ve numune bu şekilde 24 saat bekletilir. Numune karıştırıcı kaba aktarılır, sodyum hegza meta fosfat eklenir ve 10 dk. süre ile karıştırılır. Karışım saf su kullanılarak mezüre aktarılır ve mezürün 1000 ml çizgisine kadar saf su eklenir. Okumalara başlamadan önce, süspansiyonun bulunduğu mezürün açık ağzı avuç içiyle kapatılarak birkaç kez baş aşağı getirilir. Böylece karışımın homojen duruma gelmesi sağlanır (Erdeve, 2006). Sırasıyla 15. sn, 30. sn., 1. dk, 2. dk, 5. dk, 10. dk, 15. dk, 30. dk, 60. dk, 240. dk, 1440. dk, 2880. dk, 5760. dk. ve 10080. dk'da hidrometre ile okumalar yapılır ve ayrıca karışımın sıcaklığı ölçülür. Alınan okumalar, oluşturulan hidrometre abağına yerleştirilerek %P değerleri hesaplanır.

Yapılan hesaplamalar sonucunda her bir sondaj kuyusu için regolitik zemin profili boyunca alınan örnekler için grafikler oluşturulur (Ek Şekil 3.2).

Şekil 3.24. Her bir sondaj için oluşturulan elek analizi grafikleri

41

Elek analizi deney sonuçları ve hidrometre deneyi sonucunda elde edilen veriler birleştirilmiş ve bunun sonucunda her bir sondaj kuyusu için derinlik boyunca regolitik zemin profiline ait granülometri eğrileri çizilmiştir (Şekil 3.25, Şekil 3.26 ve Şekil 3.27).

Şekil 3.25. SK-1 ve SK-2 için derinlik boyunca oluşturulan granülometri eğrileri

Şekil 3.26. SK-3 ve SK-4 için derinlik boyunca oluşturulan granülometri eğrileri

Şekil 3.27. SK-6 ve SK-7 için derinlik boyunca oluşturulan granülometri eğrileri

Çizilen granülometri eğrilerine bağlı olarak sondaj kuyularında regolitik zemin profili boyunca % çakıl, % kum, % silt ve % kil oranlarının maksimum, minumum ve ortalama değerleri Tablo 3.6'da verilmiştir.

		Çakıl %	,)		Kum %			Silt %			Kil %	
	mak	min	ort	mak	min	ort	mak	min	ort	mak	min	ort
SK-1	22,9	0,1	7,2	59,0	10,0	26,4	52,3	19,4	35,1	54,0	8,0	31,2
SK-2	19,0	1,3	6,6	33,2	8,4	20,4	43,3	31,0	37,6	50,0	23,0	35,4
SK-3	19,8	0,4	5,7	29,4	10,0	22,8	47,7	21,1	32,9	53,0	24,0	38,6
SK-4	12,3	0,0	5,1	44,6	6,8	21,6	47,2	24,4	36,6	52,0	18,0	36,7
SK-6	11,2	0,3	4,5	54,2	13,8	26,6	48,7	21,0	33,9	54,0	22,0	34,9
SK-7	20,5	0,1	7,4	51,3	10,1	23,3	42,6	17,2	32,4	47,0	15,0	36,9

Tablo 3.6. Regolitik zeminlerde derinlikten bağımsız dane dağılım oranları

3.3.5.2. Birim Hacim Ağırlık Deneyi

Zemin numunelerine ait birim hacim ağırlık ve kuru birim hacim ağırlık değerlerinin belirlenmesi için ASTM D4718 standartına göre 6*6*2 ebatındaki kare şeklindeki örnek alıcılar ile alınan örselenmemiş örnekler tartılarak doğal ağırlığı bulunur. Daha sonra örnekler etüvde 24 saat kurutulur ve kurutulduktan sonra tartılarak kuru ağırlığı tespit edilir. Bulunan doğal ağırlık ve kuru ağırlık değerleri toplam hacime bölünerek doğal birim hacim ağırlık ve kuru birim hacim ağırlık değerleri elde edilir.

Yapılan deneylerden yola çıkarak, zeminlerin doğal birim hacim ağırlıklarının 11.17 kN/m³ ile 17.26 kN/m³, porozitenin 0.44 ile 0.72 ve özgül ağırlık değerlerinin 2.15 ile 2.90 arasında değiştiği görülmektedir.

3.3.5.3. Piknometre Deneyi

Zemin numunelerinin özgül ağırlığının belirlenmesi için ASTM D854-14 standartına göre etüvde kurutulmuş kohezyonlu zeminden 20-75 gr alınarak piknometreye aktarılır ve piknometre kabının yarısına kadar su eklenir. Karışım içerisinde bulunan havayı çıkartmak için piknometreye vakum uygulanır. Vakumlama işlemi bitince piknometreye saf su eklenir ve ardından tartılır. Yapılan hesaplamalar sonucunda özgül ağırlık değeri elde edilir.

Piknometre deneyi sonucu tablolar oluşturulmuştur (Ek Tablo 3.1). Regolitik zemin profilinin bazı indeks özelliklerinin mak., min. ve ort. değerleri Tablo 3.7'de yeralmaktadır.

		SK-1	SK-2	SK-3	SK-4	SK-6	SK-7
¥7	mak	16.96	17.59	16.02	16.02	15.65	16.81
$\sqrt{\frac{1}{2}}$	min	12.80	12.41	10.82	12.14	10.86	11.39
(KIN/III)	ort	14.59	14.39	13.19	13.75	13.68	13.80
0	mak	2.94	2.90	2.78	2.67	2.67	2.69
Q_s	min	2.43	2.48	2.57	2.38	2.15	2.21
(g/cm)	ort	2.72	2.70	2.66	2.53	2.50	2.47
	mak	74.71	74.71	70.09	71.78	84.75	87.86
Sr (%)	min	37.03	91.31	38.44	40.34	41.69	37.80
	ort	60.68	64.85	55.32	58.93	61.40	62.40
	mak	2.25	2.54	2.92	21.12	2.24	2.54
e	min	0.88	0.96	1.12	1.11	0.92	0.78
	ort	1.55	1.74	1.98	1.58	1.57	1.60
	mak	0.67	0.72	0.74	0.68	0.69	0.72
n	min	0.47	0.49	0.53	0.53	0.48	0.44
	ort	0.60	0.62	0.66	0.61	0.60	0.59

Tablo 3.7. Regolitik zeminlerin derinlikten bağımsız bazı indeks özellikleri

3.3.6. Zeminlerin Kıvam Limitlerinin Belirlenmesi

Çalışma alanından alınan regolitik zemin örneklerinin plastik özellikleri ASTM D 4318-17 standardına göre yapılan likit limit ve plastik limit deneyleriyle bulunmuştur.

Likit limti deneyi, 40 No'lu elekten geçen 200 g numune cam plaka üzerine konulur ve spatula yardımı ile saf su eklenerek çamur haline getirilir. Hazırlanan homojen malzeme metal deney kabının içine yerleştirilir ve yüzeyi düzeltildikten sonra penetrometre tabanına yerleştirilir. Koninin zemine batması için 5 sn süreyle koni serbest düşmeye bırakılır ve bu süre sonunda batma miktarı ölçülür. Batan koni çevresinden örnek alınarak zeminin su içeriği belirlenir. Bu işlem artan su içerikleri için 4 kez tekrarlanır. 4 deney için batmaya karşı su içeriği grafiği oluşturulur ve 4 noktanın doğrusal eğilim çizgisi çizilir. Bu eğilim çizgisinde 20 mm batmaya karşılık gelen su içeriği zeminin likit limiti olarak kabul edilir. Her bir denemede çamurun su içeriği, penetrasyon değerlerinin 15 ile 25 mm arasında olacağı biçimde ayarlanmalı ve deney kurudan ıslak karışıma doğru yürütülmelidir (Dipova, 2011).

Plastik limit deneyi yapılması için 40 no'lu elekten geçen malzemeden yaklaşık 20 gr numune alınıp bir kap içerisine konur. Daha sonra üzerine saf su eklenir ve homojen duruma gelene ve plastik olana kadar karıştırılır. Numune cam üzerine alınarak avuç içi ile 3 mm çapında silindirik parçalar elde edilinceye kadar yuvarlanır. Bu yoğurma ve yuvarlama işlemine 3 mm çapındaki zemin yüzeyinde çatlamalar ve kopmalar meydana gelinceye kadar devam edilir. Zemin istenilen özelliklere ulaştığında en az 5 gr'lık numune bir kaba konur ve terazide kap+yaş numune tartılarak ağırlığı kaydedilir. Numune kuruması için etüve konur ve 24 saat beklenir. Etüvde kurutulan numunenin kuru ağırlığının belirlenmesi ile numunenin su muhtevası (içeriği) (W_n) saptanır. Bütün bu işlemler üç defa daha yapılarak su içeriği değerleri bulunur ve bu değerlerin ortalaması alınarak plastik limit (PL) değeri belirlenir (Erdeve 2006).

Her bir sondaj da derinlik boyunca likit limit grafikler oluşturulmuştur (Ek Şekil 3.3). Likit limit (LL), plastik limit (PL), doğal su muhtevası (Wn) ve yüzde kil boyutu değerlerinden faydalanılarak zeminin plastisite indisi (PI), kıvamlılık indisi (I_c), likitlik indisi (I_L) ve aktivitesi (A_c) değerleri hesaplanmış olup, her bir sondaj da derinlik boyunca zonlar arasında zemin sınıflandırmaları yapılmıştır.

(3.7)

Ic = (LL - Wn)/PI(3.8)

Ac=PI/(kil %) (3.9)

 $I_{L}=(Wn-PL)/(LL-PL)$ (3.10)

Likit limit ve plastik limit deneyi sonucunda elde edilen verilerden (LL, PL, PI, I_L, Ic, Ac değerlerine göre) her bir kuyudaki mak., min. ve ort. değerler hesaplanmıştır (Tablo 3.8). Regolitik zeminlerin derinlik boyunca sınıflandırılması Tablo 3.9'da ki Birleştirilmiş Zemin Sınıflandırma Sistemine (USCS) göre yapılmış ve zemin türleri her bir sondaj kuyusu için Tablo 3.10 ve Tablo 3.11' de verilmiştir.

		CIZ 1	CV 2	CIZ 2	CIZ A	CV (CIZ 7
		SK-1	SK- 2	SK-3	SK-4	SK-6	SK-/
	mak	58,9	57	61,1	62	51	63
LL	min	38,4	34	34,7	44	25	22
	ort	48,6	45	48,8	52	45	50
	mak	40,3	38	44	44	42	46
PL	min	25,8	27	20	36	22	17
	ort	32,8	33	34,8	39	33	34
PI	mak	19,2	19	18,6	19	17	19
	min	7,5	6,1	7,01	6,2	2,9	5
	ort	15,8	11	14	13	12	15
	mak	1,4	13	2,14	0,7	1,8	2
\mathbf{I}_{L}	min	-1,5	-1,4	-0,3	-1,1	-1,1	-1
	ort	0,1	1,4	0,31	-0,2	0,2	0,4
	mak	2,5	2,4	1,32	2,1	2,1	2
I_{C}	min	-0,4	-12	-1,1	0,3	-0,8	-1
	ort	0,9	-0,4	0,69	1,2	0,8	1
	mak	1,2	0,6	0,67	0,9	0,8	1
Ac	min	0,3	0,2	0,23	0,2	0,1	0,2
	ort	0,6	0,3	0,38	0,4	0,4	0,4

Tablo 3.8. Likit limit ve plastik limit deneyi sonucunda her bir kuyudaki mak., min. ve ort. değerler

	sinden en	: çakıl z veya k)	GW	İyi derecelenmiş çakıl, çakıl-kum karışımları (ince taneleri az veya hiç olmayan)	lunur. taneli ır.	$C_u = \frac{D_{60}}{D_{10}} > 4$	$C_{c} = \frac{(D_{30})^{2}}{D_{10} \cdot D_{60}} = 1 - 3$	GW
No'lu XIL 1 %50 s 4 elekté ktür	Temiz (ince a yo	GP	Kötü derecelenmiş çakıl, çakıl-kum karışımları (ince taneleri az veya hiç olmayan)	eleri bu göre iri nlacakt	GW nin granülometri şartlarını karşılamayanlar			
vLER lası 200 ktür)	ÇAJ Izemeni clası No büyü	l ince emeli ça ince r)	GM	Siltli çakıllar, kötü derecelenmiş çakıl-kum-kil karışımları	m yüzde zdesine n kullar	Atterberg limitleri A hattının altında veya $I_{\rm p}{<}4$	A hattının üstünde ve $I_p=4-7$ ise sınırdadır.	GM
ZEMİN den faz ın büyü	İri mal faz	Çakıl malze (olduke va	GC	İyi derecelenmiş kumlar ve çakıllı kumlar (ince taneleri az veya hiç olmayan)	l ve kur eme yüz rılır. SC əl birde	Atterberg limitleri A hattının altında veya $I_p > 7$	İki sembol beraber kullanılacaktır.	GC
ANELİ %50'sin çapında	sinden en	: kum z veya k)	SW	Killi çakıllar kötü derecelenmiş çakıl-kum-kil karışımları	len çakı te malze nıflandı W, SP C, SM, ti sembo	$C_u = \frac{D_{60}}{D_{10}} > 6$	$C_{c} = \frac{(D_{30})^{2}}{D_{10} \cdot D_{60}} = 1 - 3$	SW
iRi T. menin ⁹ elek	IM n %50 s .4 elekt ktür	Temiz (ince a yo	SP	Kötü derecelenmiş kumlar ve çakıllı kumlar (ince taneleri az veya hiç olmayan)	eğrisinc sçen inc sçen inc kilde sı /, GP, S GM, G GM, G	SW nin granülometri şartlarını karşılamayanlar		SP
(Malzer KU zemenir lası No. küçül	İnce emeli ça ince r)	SM	Siltli kumlar, kötü derecelenmiş kum-silt karışımları	ometri (o'dan ge er şu şe i az GW en fazla sınır ha	Atterberg limitleri A hattının altında veya I _p <4	A hattının üstünde ve $I_p=4-7$ ise sınır halidir.	SM	
	İri mal faz	Kum malze (olduko va	SC	Killi kumlar, kötü derecelenmiş kum-kil karışımları	Granül Granül 200 Nc 200 Nc zeminl %5'der %12'de %5-12	Atterberg limitleri A hattının altında veya $I_p > 7$ İki sembol berab kullanılacaktır.		SC
No'lu	iller	<50	ML	İnorganik silt ve çok ince kumlar, kaya tozu, çok az plastik siltli veya killi ince kumlar	60			 រ
NLER lası 200 ctür)	er ve K	er ve Ki t Limit		İnorganik killer (düşük ile orta plastisitede) çakıllı killer, kumlu killer, siltli killer, yağsız killer	50	Düröle ələninitəli		
i ZEMi den faz n küçül	Siltl	Liki	OL	Organik siltler ve düşük plastisiteli organik silt-kil karışımları	(^d 1):sip		СН	1
fANEL %50'sin çapında	iller	>50	MH	İnorganik siltler ve düşük plastisiteli organik silt-kil karışımları	05 Insite In		мн-он	
iNCE menin gelek	er ve K	t Limit	СН	Yüksek plastisiteli inorganik killer	20	CL	→ Yüksek plastisiteli	
(Malze	Siltle	Liki	ОН	Ortadan yükseğe plastisiteli organik killer	$\begin{array}{c}10\\-$	CL-ML ML-OL		
Fazla o	organik zemin	ller	Pt	Turba ve diğer fazla organik zeminler	0 1	0 20 30 40 50 Likit Limit (60 70 80 90 10 LL)	00
	_					Likit Elilit (

Tablo 3.9. Birleştirilmiş Zemin Sınıflandırma Sistemi (USCS)

A				~ -
<u>SK-1</u>	Derinlik (cm)	<u>LL (%)</u>	$\frac{PI(\%)}{174}$	Sinifi
1	0-30 50,66	45.9 16 7	1/.4 10 0	ML-OL
² 3	66-119	45.7	19.0	ML-OL
4	119-157	49.2	17.7	ML-OL
5	157-202	51.3	12.2	MH-OH
6	220-270	57.0	17.9	MH-OH
7	270-320	53.7	14.2	MH-OH
8	310-372	58.9	18.6	MH-OH
9	372-416	49.6	16.3	ML-OL
10	416-463	46.4	16.2	ML-OL
11	405-510	43.8	13.0	ML-OL
13	564-620	49.0	18.2	ML-OL
14	620-665	50.0	17.9	MH-OH
15	665-715	50.1	18.0	MH-OH
16	715-760	48.5	15.9	ML-OL
17	760-807	44.8	7.5	SM-SP
18	807-880	43.4	9.6	SM-SP
19	880-930	38.4	9.9	ML-OL
SK-2	Derinlik (cm)	LL (%)	PI (%)	Sınıfı
1	0-50	36.8	7.4	ML-OL
2	50-114	38.8	8.9	ML-OL
3	114-168	37.8	8.5	ML-OL
4	168-218	42.1	7.4	ML-OL
3	218-205	45.8	10.2	ML-OL
07	203-314	54.8	10.8	MH-OH
8	356-418	56.5	19.4	MH-OH
ğ	418-470	50.5	12.9	MH-OH
10	470-500	47.1	10.7	ML-OL
11	500-545	46.4	12.4	ML-OL
12	545-575	34.4	7.1	ML-OL
13	575-625	41.8	6.1	ML-OL
14	625-675	45.4	14.6	ML-OL
15	073-720	30.4	9.0	ML-OL
SK-3	Derinlik (cm)	LL (%)	PI (%)	Sınıfı
1	0-50	34.7	8.4	ML-OL
2	50-110	44.9	16./	ML-OL
3 1	160 210	44.0 58.8	14.3	ML-OL MH OH
5	210-260	60.0	18.2	MH-OH
6	260-314	60.9	18.6	MH-OH
Ž	314-365	61.1	17.1	MH-OH
8	365-414	56.4	14.8	MH-OH
9	414-466	56.1	15.1	MH-OH
10	466-505	58.7	17.8	MH-OH
11	505-555 555 605	48.0	11.2	ML-OL
12	JJJ-0UJ 605 655	43.4 12 1	13.1	ML-OL
13	655-708	40.5	9.5 10.0	ML-OL
15	708-725	42.0	7.0	ML-OL
16	725-775	46.2	13.6	ML-OL
17	775-825	46.8	16.1	ML-OL
18	825-840	46.0	10.9	ML-OL
19	840-915	36.0	16.0	VIL-OL

Tablo 3.10. Regolitik zeminlerin derinlik boyunca USCS'ye göre sınıflandırılması (SK-1, SK-2 ve SK-3)

SK-4	Derinlik (cm)	LL (%)	PI (%)	Sınıfı
1	0-50	46.4	9.5	ML-OL
2	50-96	47.0	9.6	ML-OL
3	96-150	46.7	11.0	ML-OL
4	150-196	59.3	18.7	MH-OH
5	196-250	57.7	15.5	MH-OH
6	250-300	62.3	18.1	MH-OH
7	300-348	53.3	12.8	MH-OH
8	348-398	44.4	6.2	ML-OL
9	398-450	53.2	16.8	SM-SP
10	450-500	45.4	8.0	ML-OL

Tablo 3.11. Regolitik zeminlerin derinlik boyunca USCS'ye göre sınıflandırılması (SK-4, SK-6 ve SK-7)

SK-6	Derinlik (cm)	LL (%)	PI (%)	Sınıfı
1	0-50	34.9	9.0	ML-OL
2	50-100	24.8	2.9	ML-OL
3	100-147	36.6	14.5	ML-OL
4	147-240	45.1	14.5	ML-OL
5	240-290	48.8	11.4	ML-OL
6	290-350	46.4	8.2	ML-OL
7	350-390	48.5	8.9	ML-OL
8	390-450	51.0	11.3	MH-OH
9	450-500	51.0	11.6	MH-OH
10	500-548	51.1	9.3	MH-OH
11	548-590	48.7	12.3	ML-OL
12	590-640	45.8	12.0	ML-OL
13	640-695	45.6	16.7	ML-OL
14	695-736	48.4	17.2	ML-OL
15	736-763	44.3	14.5	SM-SP
16	763-790	49.1	17.2	ML-OL

SK-7	Derinlik (cm)	LL (%)	PI (%)	Sınıfı
1	0-45	42.2	17.0	ML-OL
2	45-103	21.9	5.0	CL-ML
3	103-154	38.0	17.5	ML-OL
4	154-199	39.2	15.9	ML-OL
5	199-250	45.5	14.1	ML-OL
6	250-298	55.3	15.6	MH-OH
7	298-347	63.0	16.5	MH-OH
8	347-398	62.0	19.0	MH-OH
9	398-450	59.3	19.1	MH-OH
10	450-501	60.0	14.9	MH-OH
11	501-550	53.9	15.6	MH-OH
12	550-630	58.2	18.1	MH-OH
13	630-700	50.6	14.2	SM-SP
14	700-710	44.4	10.6	SM-SP

3.3.7. Dayanım Özelliklerinin Belirlenmesi

Kayma direnci parametrelerinin tespiti için, konsolidasyonsuz-drenajsız direkt kesme deneyi uygulanmış ve deneyde ASTM D 3080 standartları kullanılmıştır. Deneyde, numune 6x6 cm boyutlarında ki kare kutu içerisine yerleştirilen zemin örneği düzgün yüzeyli bir cisimle üstü düzeltilmiş ve kutu deney düzeneği içerisine yerleştirilmiştir. Deney düzeneğinde yük ve deformasyonların okunabildiği saatler bulunmaktadır. Bu düzenekler vasıtasıyla, uygulanan sabit düşey yükler ile her yük için örneğin kesildiği kayma gerilmesi okunmuş ve sonuç olarak zemin örneğine ait kayma direnci parametreleri (c ve \emptyset) hesaplanmıştır.

Tablo 3.12'de her bir sondaja ait kohezyon (c) ve içsel sürtünme açısı (Ø) değerleri mak., min. ve ort. değerleri yer almaktadır. Her bir sondaj kuyusundan alınan örnekler üzerinde yapılan kesme kutusu deney sonucunda grafikler oluşturulmuştur (Ek Şekil 3.4).

		Kohezyon	İçsel Sürtünme
		(c, kPa)	Açısı (Ø, º)
	Mak	106	36
SK-1	Min	11	4
	Ort	45	23
	Mak	70	38
SK-2	Min	7	6
	Ort	34	22
	Mak	80	44
SK-3	Min	6	14
	Ort	29	31
	Mak	106	49
SK-4	Min	9	14
	Ort	43	27
	Mak	115	41
SK-6	Min	4	8
	Ort	34	24
	Mak	62	48
SK-7	Min	3	7
	Ort	30	24

Tablo 3.12. Kohezyon ve içsel sürtünme açısı değerlerinin mak., min. ve ort. değerleri

3.4. Mineralojik ve Tüm Kayaç Analizleri

3.4.1. X-Işınları Difraksiyonu İncelemeleri

Çalışma alanında yapılan sondajlardan alınan örneklere ait kil numunelerinin XRD incelemeleri Rize R.T.E. Üniversitesi Merkezi Araştırma Laboratuvarı'nda yaptırılmıştır. Kullanılan örnekler yaklaşık bir ay oda sıcaklığında kurutulduktan sonra plastik çekiç yardımıyla 3-5 cm'lik parçalara bölünmüş ve bu parçalar ahşap plakalar arasında ezilerek ufalanmıştır. Kil fraksiyonunun tüm kayaç içerisindeki diğer minerallerden ayrılmasını sağlamak amacıyla kimyasal çözme işlemleri uygulanmış ve laboratuvarda XRD çekimleri yapılmıştır. Yapılan XRD çekimi sonucunda analiz sonuçları değerlendirilmiş, zemin örneklerin grafikleri çizilmiş (Şekil 3.28), kil cinsi ve yüzde kil miktarı bulunmuştur (Tablo 3.13).

Şekil 3.28. XRD analizine göre kil cins tayini sonuçları

	İllit-Mika (%)	Klorit veya Kaolinit (%)	Kuvars (%)	Simektit (%)
SK-1	50-60	10-20	20-25	-
SK-2	60-70	15-20	5-10	<5
SK-3	70-80	10-30	<10	5-10
SK-4	50-60	10-20	20-25	-
SK-6	60-70	15-20	5-10	<5
SK-7	70-80	10-15	<10	<5

Tablo 3.13. XRD sonuçlarının değerlendirilmesi

3.4.2. Tüm Kayaç Analizi

Zeminlerin jeokimyasal özelliklerinin derinlikle değişiminin araştırılması amacıyla sondajlardan alınan örneklere ana, iz ve nadir toprak element analizleri yapılmıştır. Tüm kayaç analizleri için; K.T.Ü. Jeoloji Mühendisliği Bölümü örnek hazırlama laboratuvarında 250-300 gr ağırlığındaki regolitik zemin örnekleri ve ana kayadan alınan örnekler önce çeneli daha sonrada halkalı öğütücüde yaklaşık 200 mesh tane boyutuna kadar öğütülmüştür. Öğütülmüş örnekler, ana, iz ve nadir toprak element analizleri için ACME Analiz Laboratuvarı (Kanada)'na gönderilmiştir. Ana ve iz elementler ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry), nadir toprak elementler ise ICP-MS (Inductively Coupled Plasma-Mass Spectrometry) aletleri kullanılarak analizler yapılmıştır.

Acme Analiz Laboratuvarına gönderilen zemin örnekleri ve anakayadan alınan örnekler LF300 paket araştırma programı ile incelenmiş ve örneklerin içerdiği major oksitler yüzde (%) olarak ve element içeriği ppm olarak hesaplanmıştır. Her bir sondaj kuyusunda derinliğe bağlı olarak elde edilen veriler de element içeriği ppm'den yüzdeye (%) çevrilmiş, bunun sonucunda da hem elementler hem de major oksitler 100'e tamamlanmıştır. Zemin örneklerinde yapılan tüm kayaç analizi sonucunda elde edilen mineralojik değişimle regolitik zeminlerin jeokimyasal olarak sınıflandırılması yapılmıştır (Tablo 3.14, Tablo 3.15 ve Tablo 3.16). Anakayadan alınan örnekler üzerinde yapılan tüm kayaç analizi sonucunda (Tablo 3.17) regolitik zeminlerin nasıl bir anakayadan türediği bulunmuştur. Regolitik zeminler de derinlik boyunca yapılan tüm kayaç analizi sonuçları ve anakaya tüm kayaç analizi sonuçlarının tabloları yapılmıştır (Ek Tablo 3.2).

					SK-	1					
Derinlik	SiO ₂	Al_2O_3	Fe_2O_3	MgO	CaO	Na ₂ O	Zr	Y	Nb	LOI	Sum
(cm)	%	%	%	%	%	%	%	%	%	%	Sum
0-50	63.33	14.54	9.58	0.65	0.47	0.09	0.032	0.002	0.002	8.70	100
50-66	69.89	11.54	8.15	0.53	0.49	0.08	0.036	0.003	0.003	6.60	100
66-119	60.42	12.31	16.38	0.43	0.20	0.04	0.028	0.002	0.002	7.91	100
119-157	64.64	12.45	12.33	0.39	0.16	0.04	0.031	0.002	0.002	7.51	100
157-202	64.46	13.92	11.31	0.38	0.09	0.03	0.021	0.002	0.001	7.70	100
220-270	55.45	19.70	11.60	0.49	0.07	0.04	0.018	0.002	0.001	10.70	100
270-320	54.97	21.87	9.14	0.82	0.08	0.03	0.020	0.002	0.001	11.51	100
310-372	43.13	25.92	12.93	0.56	0.17	0.04	0.028	0.001	0.004	14.72	100
372-416	40.04	26.44	13.04	0.86	0.37	0.08	0.031	0.002	0.006	16.13	100
416-463	35.38	27.20	15.32	0.92	0.13	0.02	0.036	0.002	0.006	17.23	100
463-516	37.65	25.52	13.83	0.91	0.74	0.05	0.031	0.004	0.006	17.24	100
516-564	34.34	24.63	13.54	0.87	3.15	0.09	0.038	0.005	0.007	16.95	100
564-620	36.59	26.65	11.71	1.08	1.91	0.10	0.029	0.003	0.005	17.63	100
620-665	36.84	24.81	13.04	0.92	2.16	0.17	0.027	0.003	0.005	17.64	100
665-715	35.25	24.26	14.15	1.35	3.31	0.12	0.029	0.002	0.005	17.04	100
715-760	38.07	24.74	13.45	0.98	1.81	0.11	0.027	0.003	0.005	16.83	100
760-807	38.89	24.67	10.68	1.28	2.89	0.46	0.026	0.003	0.005	16.53	100
807-880	38.10	22.92	11.48	1.70	3.85	0.45	0.026	0.003	0.006	16.84	100
880-930	41.44	22.15	11.05	1.95	4.61	1.10	0.024	0.003	0.005	13.03	100

Tablo 3.14. SK-1 ve SK-2'den alınan regolitik zeminlerin derinlik boyunca tüm kayaç analiz sonuçları

					SK-2	2					
Derinlik (cm)	SiO ₂ %	Al ₂ O ₃ %	Fe ₂ O ₃ %	MgO %	CaO %	Na ₂ O %	Zr %	Y %	Nb %	LOI %	Sum
0-50	68.44	10.24	10.61	0.46	0.26	0.12	0.035	0.002	0.003	7.41	100
50-114	63.10	11.57	12.58	0.63	0.44	0.16	0.031	0.002	0.002	9.20	100
114-168	66.72	10.84	11.87	0.35	0.16	0.05	0.029	0.002	0.002	7.61	100
168-218	54.90	20.40	10.62	0.51	0.14	0.03	0.015	0.001	0.001	11.71	100
218-265	58.06	21.99	6.44	0.61	0.13	0.06	0.013	0.002	0.002	10.30	100
265-314	36.09	26.97	16.47	0.60	0.20	0.03	0.035	0.001	0.006	17.22	100
314-356	36.16	25.95	16.66	1.01	0.25	0.03	0.030	0.001	0.005	17.32	100
356-418	37.43	26.68	14.14	0.81	0.21	0.04	0.032	0.002	0.005	17.64	100
418-470	37.34	26.75	12.04	0.93	1.12	0.11	0.028	0.005	0.005	17.94	100
470-500	38.52	24.78	11.95	1.48	1.86	0.24	0.029	0.006	0.005	16.73	100
500-545	39.12	23.34	12.74	1.57	3.26	0.47	0.027	0.005	0.005	14.73	100
545-575	50.35	23.58	9.57	0.68	0.30	0.05	0.017	0.002	0.002	13.50	100
575-625	40.25	22.67	11.75	2.00	4.43	0.70	0.024	0.004	0.005	13.42	100
625-675	40.38	20.67	12.19	2.68	5.78	0.73	0.024	0.004	0.006	13.33	100
675-720	40.40	20.65	12.25	2.80	5.976	0.741	0.023	0.004	0.006	12.96	100

					SK-3	3					
Derinlik	SiO ₂	Al_2O_3	Fe ₂ O ₃	MgO	CaO	Na ₂ O	Zr	Y	Nb	LOI	Sum
(cm)	%	%	%	%	%	%	%	%	%	%	Sum
0-50	64.80	10.74	8.20	1.79	2.77	0.66	0.030	0.002	0.002	8.01	100
50-110	58.22	15.53	10.91	0.83	1.19	0.18	0.024	0.002	0.002	10.41	100
110-160	50.21	24.22	9.98	0.70	0.31	0.04	0.017	0.001	0.001	12.51	100
160-210	37.25	28.73	15.32	0.61	0.27	0.02	0.030	0.000	0.005	15.22	100
210-260	37.05	27.74	15.09	0.78	0.20	0.03	0.029	0.004	0.005	15.64	100
260-314	38.87	27.39	13.24	0.83	0.24	0.04	0.030	0.003	0.005	16.23	100
314-365	38.11	27.39	13.75	0.88	0.16	0.04	0.033	0.003	0.005	16.43	100
365-414	36.09	26.55	14.88	1.25	1.09	0.06	0.026	0.004	0.005	15.43	100
414-466	36.75	24.65	13.07	1.04	2.63	0.03	0.029	0.003	0.008	17.03	100
466-505	38.55	24.44	12.58	0.90	1.93	0.28	0.029	0.006	0.006	17.04	100
505-555	38.48	26.48	11.30	0.75	0.91	0.14	0.028	0.003	0.005	18.32	100
555-605	44.48	21.73	13.75	0.89	0.37	0.09	0.026	0.002	0.004	15.52	100
605-655	39.28	24.74	12.19	1.16	2.45	0.58	0.026	0.003	0.005	14.73	100
655-708	40.06	24.99	12.17	1.10	1.39	0.16	0.028	0.003	0.005	16.23	100
708-725	43.62	20.07	11.35	2.87	5.19	1.31	0.020	0.002	0.005	10.23	100
725-775	48.01	21.99	8.13	1.44	3.45	2.37	0.022	0.003	0.005	9.12	100
775-825	39.15	23.94	13.58	1.64	2.90	0.39	0.027	0.003	0.006	13.73	100
825-840	40.55	20.25	12.30	2.85	5.87	0.92	0.023	0.003	0.005	12.53	100
840-915	40.56	20.24	12.18	3.20	5.90	0.97	0.021	0.003	0.005	12.40	100

Tablo 3.15. SK-3 ve SK-4'den alınan regolitik zeminlerin derinlik boyunca tüm kayaç analiz sonuçları

					SK-4	ł					
Derinlik	SiO ₂	Al_2O_3	Fe ₂ O ₃	MgO	CaO	Na ₂ O	Zr	Y	Nb	LOI	Sum
(cm)	%	%	%	%	%	%	%	%	%	%	Dum
0-50	61.60	15.67	9.98	0.55	0.19	0.07	0.024	0.002	0.003	9.91	100
50-96	54.90	17.20	13.44	0.66	0.23	0.08	0.023	0.002	0.002	11.60	100
96-150	62.48	12.52	12.36	0.47	0.30	0.13	0.028	0.002	0.003	9.60	100
150-196	55.88	20.35	9.59	0.59	0.09	0.05	0.018	0.001	0.002	11.71	100
196-250	56.88	21.10	8.45	0.54	0.16	0.05	0.015	0.001	0.001	11.21	100
250-300	52.19	23.33	9.54	0.52	0.18	0.05	0.020	0.001	0.002	12.51	100
300-348	39.02	28.39	12.51	0.76	0.22	0.05	0.024	0.003	0.006	16.15	100
348-398	42.83	23.33	11.44	1.55	2.71	0.95	0.023	0.012	0.005	12.73	100
398-450	43.19	23.29	12.58	1.26	1.37	1.10	0.025	0.006	0.006	12.73	100
450-500	45.39	21.37	11.06	1.92	3.24	1.51	0.024	0.010	0.005	10.83	100
					SK-6	j –					
----------	---------	-----------	--------------------------------	------	------	-------------------	-------	-------	-------	-------	-----
Derinlik	SiO_2	Al_2O_3	Fe ₂ O ₃	MgO	CaO	Na ₂ O	Zr	Y	Nb	LOI	Sum
(cm)	%	%	%	%	%	%	%	%	%	%	
0-50	61.83	14.12	10.49	0.56	0.33	0.16	0.031	0.002	0.003	9.58	100
50-100	61.93	13.98	10.45	0.57	0.34	0.15	0.031	0.002	0.003	9.63	100
100-147	62.76	13.70	10.47	0.58	0.36	0.15	0.031	0.002	0.003	9.01	100
147-240	54.14	18.88	11.47	0.62	0.32	0.09	0.028	0.002	0.004	11.52	100
240-290	40.69	24.93	15.14	0.93	0.24	0.06	0.029	0.003	0.004	14.93	100
290-350	41.85	24.24	12.92	1.67	0.38	0.08	0.026	0.004	0.004	15.22	100
350-390	36.53	24.72	15.72	1.54	1.58	0.09	0.030	0.005	0.006	15.53	100
390-450	37.90	25.34	14.74	1.36	1.25	0.10	0.028	0.004	0.005	15.34	100
450-500	36.29	24.95	15.64	1.50	2.34	0.18	0.026	0.004	0.006	14.53	100
500-548	38.11	23.98	14.73	1.62	2.56	0.32	0.026	0.004	0.005	14.03	100
590-640	41.25	24.15	14.34	1.12	0.95	0.12	0.028	0.003	0.005	14.62	100
640-695	43.10	20.84	12.65	2.18	4.22	0.97	0.024	0.003	0.005	11.12	100
695-736	43.25	20.81	12.81	1.74	3.43	0.75	0.026	0.003	0.005	12.54	100
736-763	39.28	21.61	13.69	2.29	4.40	0.36	0.027	0.004	0.005	13.83	100
763-790	53.82	15.70	12.37	1.46	2.46	0.25	0.030	0.003	0.004	10.41	100

Tablo 3.16. SK-6 ve SK-7'den alınan regolitik zeminlerin derinlik boyunca tüm kayaç analiz sonuçları

_		-	- /	-	SK-7	,			_		
Derinlik (cm)	SiO ₂ %	Al ₂ O ₃ %	Fe ₂ O ₃ %	MgO %	CaO %	Na ₂ O %	Zr %	Y %	Nb %	LOI %	Sum
0-45	59.35	13.64	12.52	0.80	0.83	0.27	0.030	0.002	0.003	9.81	100
45-103	61.41	11.69	9.48	2.15	2.93	0.81	0.024	0.002	0.002	8.52	100
103-154	67.55	10.29	9.99	0.81	0.88	0.34	0.033	0.002	0.003	7.41	100
154-199	66.48	10.52	11.72	0.45	0.24	0.13	0.034	0.002	0.003	7.80	100
199-250	50.66	12.15	23.96	0.38	0.16	0.06	0.023	0.002	0.003	10.21	100
250-298	55.21	14.98	15.42	0.79	0.76	0.22	0.026	0.002	0.003	10.11	100
298-347	39.90	26.64	14.50	0.83	0.22	0.04	0.026	0.002	0.005	15.04	100
347-398	38.62	26.24	15.60	0.89	0.31	0.05	0.026	0.001	0.005	15.13	100
398-450	39.36	27.39	13.99	1.02	0.29	0.05	0.027	0.002	0.005	14.92	100
450-501	39.41	27.03	14.40	0.97	0.27	0.04	0.027	0.002	0.005	14.83	100
501-550	37.40	26.18	17.21	1.07	0.26	0.03	0.027	0.003	0.005	14.74	100
550-630	38.44	26.28	13.78	1.36	1.64	0.05	0.028	0.003	0.006	14.43	100
630-700	41.70	24.09	12.22	1.51	3.09	0.77	0.025	0.003	0.005	11.93	100
700-710	44.53	21.28	10.41	1.87	5.06	1.43	0.022	0.003	0.004	10.43	100

	SiO ₂ %	Al ₂ O ₃ %	Fe ₂ O ₃ %	MgO %	CaO %	Na ₂ O %	Zr %	Y %	Nb %	LOI %	Sum
SK-1	41.80	14.05	7.27	4.60	15.48	2.60	0.017	0.002	0.004	9.31	100
SK-2	40.04	13.05	9.91	7.79	15.36	0.35	0.020	0.002	0.005	8.22	100

Tablo 3.17. Anakaya örneklerine ait tüm kayaç analiz sonuçları

3.4.3. Mikroskobik Tayinler

Karadeniz Teknik Üniversitesi, Jeoloji Mühendisliği Bölümü ince kesit hazırlama laboratuvarında yaptırılan ince kesitler, James Swift (Model MP3500MBL) marka polarize mikroskopta incelenerek kayaçların mineralojik ve petrografik özellikleri incelenmiş ve kayaç adlamaları yapılmıştır.

Bunun yanı sıra kayaçlardaki önemli mineralojik özelliklerin gösterilmesi amacıyla mikro fotoğraflar çekilmiştir (Şekil 3.29, Şekil 3.30 ve Şekil 3.31). Anakaya da yapılan sondajlar ile alınan örneklerin mikroskobik incelemesi sonucunda belirlenen kayaç türü foidli breşik tefrit olduğu sonucuna varılmıştır. Karbonatlaşma, yer yer demir boyamaları ve killeşme görülmektedir.

İnce kesitte foidli breşik lavlar genellikle hyalo-mikrolitik porfirik, mikrolitik porfirik ve yer yer amigdaloidal dokular gösterirler. Kayaçların mineralojik bileşiminde klinoproksen, analsim, plajiyoklas ve opak mineraller yer almaktadır.

Klinoproksenler, genellikle öz şekilli ve yarı özşekilli fenokristaller halinde bulunur. Tek nikolde açık yeşil, çapraz nikolde II. sıranın canlı renklerinde görülür.

Analsim genellikle özşekilsiz veya psödomorflar halinde, ender olarak sekiz köşeliden yuvarlağa kadar değişen fenokristaller halinde bulunur. Tek nikolde grimsi renklerde, çapraz nikolde izotrop özellik gösterirler.

Plajiyoklaslar genel olarak yarı özşekilli ve özşekilli fenokristaller halinde, nadiren özşekilli mikrofenokristaller halinde gözlenmektedirler. Tek nikolde renksiz, çapraz nikolde gri ve beyaz renklerde gözlenmektedir.

Opak mineraller genel olarak hamur içerisinde çok ince ve küçük taneler halinde gözlenmektedirler.

Şekil 3.29. Miyosen yaşlı foidli breşik tefritlerin mikroskobik görünümü; (a, ÇN)-(b, TN) klinopiroksen (kpir), opak mineral (op) ve plajiyoklas (pl)

Şekil 3.30. Miyosen yaşlı foidli breşik tefritlerin mikroskobik görünümü; (a, ÇN)-(c, TN) klinopiroksen (kpir), analsim (anl) ve plajiyoklas (pl) (SK-1), (a breş çakıllarının görünümü-b bağlayıcının görünümü)

Şekil 3.31. Miyosen yaşlı foidli breşik tefritlerin mikroskobik görünümü; (a, ÇN)-(b, TN) klinopiroksen (kpir) ve opak mineral (op) (SK-1), karbonatlaşma ve demir boyamaları

4. **İRDELEME**

4.1. Sismik Deney Sonuçlarının Değerlendirilmesi

Çalışmanın ilk aşamasında, Eosen sonrası bazik volkanik kayaçların ayrışması ile oluşmuş rezidüel regolitler ve bu regolitlerin profil kalınlığı sismik ölçümlerle yaklaşık olarak belirlenmiştir. MASW yönteminde öncelikle yüzey dalgaları elde edilir, dispersiyon analizi yapılır ve ters çözüm ile Vs (enine dalga hızı) derinlik modeli (Şekil 4.1) oluşturulur.

Sismik analiz sonucunda $V_{s_{30}}$ 404.0 m/s ile 583.6 m/s arasında değişmektedir ve regolitik zeminler NEHRP (National earthquake hazards reduction program) zemin sınıflamasına göre C sınıfı yoğun toprak-yumuşak kaya alanına düşmektedir. Tablo 4.1'de Vs₃₀'a göre zemin sınıflaması yer almaktadır.

Tablo 4.1. NEHRP Hükümlerinde ve Uniform Building Code'da Vs₃₀'a göre zemin sınıflaması

NEHRP Zemin Sınıfı	Tanımlama	30 m derinliğe kadar ortalama S-dalga hızı	Hat
А	Sert anakaya	>1500 m/sn	
В	Sağlam, dayanıklı ile sert kaya	760-1500 m/sn	
С	Yoğun toprak, yumuşak kaya	360-760 m/sn	1-2-3-4-6-7 Nolu Hatlar
D	Sert toprak	180-360 m/sn	
E	Yumuşak killer	<180 m/sn	
F	Özel çalışma gerektiren zeminler		

Hesaplanan 1 boyutlu enine dalga hızı derinlik modelinden Vs_{30} hızındaki değişimlere bakarak her bir regolitik zemin profiline ait zonlar hız değişiminin olduğu (arttığı ve azaldığı) alanlardan yaklaşık olarak belirlenebilmektedir. Elde edilen sonuçlar kesin değerleri vermemektedir. Buna göre regolitik zemin profilinin yaklaşık anakaya derinliği ve zonların geçişleri Tablo 4.2'de yeralmaktadır.

Tablo 4.2. Sismik analiz sonucu regolitik profillerin zonlara göre değişimi

	1 No'lu hat	2 No'lu hat	3 No'lu hat	4 No'lu hat	6 No'lu hat	7 No'lu hat
A zonu	0-1.7 m	0-1.7 m	0-1.7 m	0-1.1 m	0-2.1 m	0-1.1 m
B1 zonu	1.7-5.3 m	1.7-4 m	1.7-3.8 m	1.1-2.7 m	2.1-5.0 m	1.1-3.7 m
B2 zonu	5.3-7.0 m	4-6.3 m	3.8-6.3 m	2.7-5.3 m	5.0-7.0 m	3.7-5.3 m
C zonu	7.0-11.0m	6.3-12.5 m	6.3-12.5 m	5.3-7.0 m	7.0-9.0 m	5.3-11.0 m

Şekil 4.1. Hesaplanan 1-boyutlu enine dalga hızı derinlik modeli

Vs₃₀ hızındaki değişim regolitik zemin profilindeki ince taneli malzemenin (kil+silt) artmasıyla azalır, ince taneli malzemenin azalmasıyla da artış göstermektedir. Ancak bu değişim de tam bir netlik söz konusu değildir.

4.2. Tüm Kayaç Analizi Deney Sonuçlarının Değerlendirilmesi

Bir regolitik zemin profili jeokimyasal olarak incelendiğinde SiO₂ değerinin A zonunda ~%25, B zonunda ~%10-5 ve C zonunda ~%5 olduğu, Fe₂O₃ değerinin A zonunda ~%0-1, B zonunda ~%1-3 ve C zonunda ~%3 ve Al₂O₃ değerinin A zonunda ~%0-1, B zonunda ~%1-10 ve C zonunda ~%8-10 olduğu görülmektedir (Şekil 4.2).

Şekil 4.2. Regolitik zemin profilindeki major oksitlerin değişimi (Akçay, 2002)

Regolitlerin jeokimyasal sınıflamasına bağlı olarak çalışma alanında yapılan tüm kayaç analizi sonuçlarına göre major oksitlerin (Şekil 4.3) ve iyonların (Şekil 4.4) derinlikle değişim grafiği çizilmiştir.

Şekil 4.3. Her bir sondaja ait major oksitlerin derinlikle değişimi

Şekil 4.4. Her bir sondaja ait iyonların derinlikle değişimi

Zr'un derinlikle değişimi incelendiğinde A zonunda artan ve B-C zonunda azalan bir yapı sunduğu, Nb'un A zonunda az, B zonunda artan ve C zonuna doğru azalan bir eğilim gösterdiği, Y'un A zonunda az, B zonunda hafif bir artış gösterdiği ve C zonunda azalan ve sabit seviyeye ulaştığı ve LOI değerinin A zonunda az, B zonundan C zonuna doğru bir artış ve anakayaya doğru sabitlendiği görülmektedir.

Her bir sondaj kuyusundan derinlik boyunca alınan örnekler üzerinde yapılan tüm kayaç analizinden elde edilen SiO₂'nin derinlikle değişimine bakıldığında A zonunda yüksek, B zonunda azalan bir değişim gösterirken C zonunda sabit olarak ilerlemektedir. Fe₂O₃'nin derinlikle değişimine bakıldığında A zonunda az, B zonunda artan bir değişim gösterirken C zonunda azalarak anakaya geçişine kadar sabit kalmaktadır. Al₂O₃'nin derinlikle değişimine bakıldığında ise, A zonunda az, B zonunda artan bir değişim gösterirken C zonunda artarak anakaya geçişine kadar sabit kalmaktadır. (Şekil 4.5).

Şekil 4.5. Çalışma alanı regolitik zeminlerdeki major oksitlerin değişimi

Yapılan çalışma da SiO₂, Fe₂O₃ ve Al₂O₃ major oksitlerin derinlikle değişiminin regolitik zemin profilindeki değişimle benzer özellikler gösterdiği net bir şekilde görülmektedir. Sonuç olarak yapılan tüm kayaç analizi deney sonuçlarına göre söz konusu çalışma alanındaki zeminler rezidüel regolitik zemin olduğu kesinleşmiştir.

Bunun neticesinde tüm kayaç analizi sonuçlarına dayanarak zemin profili derinlik boyunca jeokimyasal olarak zonlara ayrılmıştır (Tablo 4.3).

	~~~ .	~~~ ~	~~~ ~	~~~ /		~~~ -
	SK-1	SK-2	SK-3	SK-4	SK-6	SK-7
A zonu	0-119 cm	0-114 cm	0-110 cm	0-96 cm	0-147 cm	0-103 cm
B1 zonu	119-372 cm	114-356 cm	110-314 cm	96-250 cm	147-450 cm	103-347 cm
B2 zonu	372-564 cm	356-545 cm	314-605 cm	250-348 cm	450-640 cm	347-550 cm
C zonu	564-930 cm	545-720 cm	605-915 cm	348-500 cm	640-790 cm	550-710 cm

Tablo 4.3. Regolitik zemin profilinde major oksit değerleri baz alınarak belirlenen zonlar

## 4.3. Koni Penetrasyon Deneyi Verilerinin Değerlendirilmesi

Koni penetrasyon deney sonuçlarına göre (Q_{tn} ve F_r) regolitik zeminler zonlara ayrılarak Robertson, 1990'a göre sınıflandırılmıştır (Şekil 4.6, Şekil 4.7, Şekil 4.8 ve Şekil 4.9). Buna göre A zonunda ki veriler genellikle 3-4 numaralı alanlara, B zonunda ki veriler genel olarak 3-4-5-8-9 numaralı alanlara ve C zonunda ki veriler de genel olarak 3-4-5-6-8-9 numaralı alanlara düşmektedir.

Robertson (1986) zemin sınıflama abağına göre çalışma alanındaki regolitik zemin türü Kil olarak belirlenmiştir. Robertson (1990) zemin davranış türüne göre de zeminlerin derinlik boyunca Killer (kil-siltli kil), Siltli karışımlar (killi silt-siltli kil), Kumlu karışımlar (siltli kum-kumlu silt), Kumlar (temiz kum-siltli kum), Çok sıkı kum-killi kum ve Çok sert ince daneli zemin olarak davrandığı görülmektedir.

CPT deneyi sonucunda elde edilen veriler (efektif koni direnci ve sürtünme oranı) Eslami ve Fellenius (1997) tarafından oluşturulan abağa yerleştirildiğinde A zonu genel olarak Kil-silt, Siltli kil, Killi silt ve Siltli kum, B zonu genel olarak Kil-silt, Siltli kil, Killi silt ve Siltli kum ve C zonu Killi silt, Siltli kil ve Siltli kum olduğu görülmektedir. CPT deneyi sonucunda elde edilen veriler neticesinde Eslami ve Fellenius (1997)'ye göre oluşturulan abaklar Şekil 4.10, Şekil 4.11, Şekil 4.12 ve Şekil 4.13'de yer almaktadır.

CPT deneyi sonucunda elde edilen veriler  $[Q_t(1-Bq)+1$  ve sürtünme oranı] Jefferies ve Been (2006) tarafından oluşturulan abağa yerleştirildiğinde A zonu genel olarak Killi-silt, Siltli kil, Siltli kum-Kumlu silt, B zonu genel olarak Killi-silt, Siltli kil ve C zonu Killi silt ve Siltli kil olduğu görülmektedir. CPT deneyi sonucunda elde edilen veriler neticesinde Jefferies ve Been (2006)'ya göre oluşturulan abaklar Şekil 4.14, Şekil 4.15, Şekil 4.16 ve Şekil 4.17'de yer almaktadır.



Şekil 4.6. CPT-1 ve CPT-2 deney sonuçlarına göre zeminlerin zonlara ayrılarak sınıflandırılması (Robertson, 1990'a göre)



Şekil 4.7. CPT-3 ve CPT-4 deney sonuçlarına göre zeminlerin zonlara ayrılarak sınıflandırılması (Robertson, 1990'a göre)



Şekil 4.8. CPT-6 ve CPT-7 deney sonuçlarına göre zeminlerin zonlara ayrılarak sınıflandırılması (Robertson, 1990'a göre)



Şekil 4.9. CPT deney sonuçlarına göre regolitik zeminlerin zonlara ayrılmaksızın sınıflandırılması (Robertson, 1990'a göre)



Şekil 4.10. CPT-1 ve CPT-2 deney sonuçlarına göre zeminlerin zonlara ayrılarak sınıflandırılması (Eslami ve Fellenius, 1997'ye göre)



Şekil 4.11. CPT-3 ve CPT-4 deney sonuçlarına göre zeminlerin zonlara ayrılarak sınıflandırılması (Eslami ve Fellenius, 1997'ye göre)



Şekil 4.12. CPT-6 ve CPT-7 deney sonuçlarına göre zeminlerin zonlara ayrılarak sınıflandırılması (Eslami ve Fellenius, 1997'ye göre)



Şekil 4.13. CPT deney sonuçlarına göre regolitik zeminlerin zonlara ayrılmaksızın sınıflandırılması (Eslami ve Fellenius, 1997'ye göre)



Şekil 4.14. CPT-1 ve CPT-2 deney sonuçlarına göre zeminlerin zonlara ayrılarak sınıflandırılması (Jefferies ve Been, 2006'ya göre)



Şekil 4.15. CPT-3 ve CPT-4 deney sonuçlarına göre zeminlerin zonlara ayrılarak sınıflandırılması (Jefferies ve Been, 2006'ya göre)



Şekil 4.16. CPT-6 ve CPT-7 deney sonuçlarına göre zeminlerin zonlara ayrılarak sınıflandırılması (Jefferies ve Been, 2006'ya göre)



Şekil 4.17. CPT deney sonuçlarına göre regolitik zeminlerin zonlara ayrılmaksızın sınıflandırılması (Jefferies ve Been, 2006'ya göre)

Tablo 4.4, Tablo 4.5 ve Tablo 4.6'da regolitik zeminlere ait derinlik boyunca alınan örneklerin CPT deney sonucuna göre ve laboratuvar deneyleri sonuçlarına göre sınıflandırılmalarına ait tablolar yer almaktadır.

СРТ 1	Zonlar	Dorinlik (om)	Dobortson 1000	Eslami ve	Jefferies ve	USCS
CI 1-1	Zomai	Der mitk (Cili)	Kobertson 1990	Fellenius, 1997	Been, 2006	USCS
1	٨	0-50	Kil	Siltli kum	Siltli karışım	ML-OL
2	A Zonu	50-66	Kumlu zemin	Kil Silt	Killi silt	ML-OL
3	Zollu	66-119	Clay soil	Killi silt	Killi silt	ML-OL
4		119-157	Kil ve Siltli kil	Siltli kil	Siltli karışım	ML-OL
5	D1	157-202	Çok yoğun sert zemin	Killi silt	Siltli karışım	MH-OH
6	Zonu	220-270	Kil	Killi silt	Kil	MH-OH
7	Zonu	270-320	Kil	Kil silt	Kil	MH-OH
8		310-372	Kil	Kil silt	Kil	MH-OH
9		372-416	Kil	Kil silt	Kil	ML-OL
10	B2	416-463	Kil	Kil silt	Kil	ML-OL
11	Zonu	463-516	Kil ve Siltli kil	Siltli kum	Kil	ML-OL
12		516-564	Çok yoğun sert zemin	Siltli kum	Kil	ML-OL
13		564-620	Kil	Siltli kum	Killi silt	ML-OL
14		620-665	Çok yoğun sert zemin	Siltli kum	Siltli kil	MH-OH
15	C	665-715	Çok yoğun sert zemin	Siltli kum	Siltli kil	MH-OH
16	Zonu	715-760	Çok yoğun sert zemin	Siltli kum	Siltli kil	ML-OL
17	Zonu	760-807	Çok yoğun sert zemin	Siltli kum	Siltli kil	SM-SP
18		807-880		-	_	SM-SP
19		880-930	-	-	-	ML-OL

Tablo 4.4. Regolitik zeminlerin derinlik boyunca CPT deney sonuçlarına ve USCS'ye göre sınıflandırılması (CPT-1 ve CPT-2)

CPT 2	Zonlar	Dorinlik (om)	Dobortson 1000	Eslami ve	Jefferies ve	USCS
CI 1-2	Zomai	Der mitk (Cill)	Kubertsun 1990	Fellenius, 1997	Been, 2006	0505
1	А	0-50	Kil	Siltli kum	Siltli karışım	ML-OL
2	Zonu	50-114	Kil ve Siltli kil	Kil Silt	Killi silt	ML-OL
3		114-168	Kil ve Siltli kil	Siltli kil	Siltli karışım	ML-OL
4	D1	168-218	Kil	Killi silt	Kil	ML-OL
5	DI	218-265	Kil	Killi silt	Kil	ML-OL
6	Zollu	265-314	Kil	Kil silt	Kil	MH-OH
7		314-356	Kil	Kil silt	Kil	MH-OH
8		356-418	Kil	Kil silt	Kil	MH-OH
9	B2	418-470	Kil ve Siltli kil	Kil silt	Kil	MH-OH
10	Zonu	470-500	Çok yoğun sert zemin	Siltli kum	Kil	ML-OL
11		500-545	Çok yoğun sert zemin	Siltli kum	Kil	ML-OL
12		545-575	Çok yoğun sert zemin	Killi silt	Killi silt	ML-OL
13	С	575-625	Çok yoğun sert zemin	Siltli kum	Siltli kil	ML-OL
14	Zonu	625-675	Çok yoğun sert zemin	Siltli kum	Siltli kil	ML-OL
15		675-720	Çok yoğun sert zemin	Siltli kum	Siltli kil	ML-OL

CPT-3	Zonlar	Derinlik (cm)	Robertson 1990	Eslami ve Fellenius, 1997	Jefferies ve Been, 2006	USCS
1	А	0-50	Kil	Siltli kil	Silt karışımı	ML-OL
2	Zonu	50-110	Kil ve Siltli kil	Kil Silt	Killi silt	ML-OL
3		110-160	Kil	Siltli kil	Silt karışımı	ML-OL
4	B1	160-210	Kil	Siltli kil	Kil	MH-OH
5	Zonu	210-260	Kil	Siltli kil	Kil	MH-OH
6		260-314	Kil	Siltli kil	Kil	MH-OH
7		314-365	Kil ve Siltli kil	Siltli kil	Kil	MH-OH
8	Da	365-414	Kil	Siltli kil	Kil	MH-OH
9	B2 Zonu	414-466	Kil	Siltli kil	Kil	MH-OH
10	Zonu	466-505	Kil	Siltli kil	Kil	MH-OH
11		505-555	Kil ve Siltli kil	Kumlu silt	Kil	ML-OL
12		555-605	Çok yoğun sert zemin	Siltli kum	Silt karışımı	ML-OL
13		605-655	Çok yoğun sert zemin	Siltli kum	Siltli kil	ML-OL
14		655-708	Çok yoğun sert zemin	Siltli kum	Siltli kil	ML-OL
15	C	708-725	Çok yoğun sert zemin	Siltli kum	Siltli kil	ML-OL
16	Zonu	725-775	Çok yoğun sert zemin	Siltli kum	Siltli kil	ML-OL
17	Long	775-825	Çok yoğun sert zemin	Siltli kum	Siltli kil	ML-OL
18		825-840			-	ML-OL
19		840-915	/		-	ML-OL

Tablo 4.5. Regolitik zeminlerin derinlik boyunca CPT deney sonuçlarına ve	USCS'ye göre
sınıflandırılması (CPT-3, CPT-4 ve CPT-6)	

CPT-4	Zonlar	Derinlik (cm)	Robertson 1990	Eslami ve Fellenius, 1997	Jefferies ve Been, 2006	USCS
1	А	0-50	Kil	Siltli kil	Silt karışımı	ML-OL
2	Zonu	50-96	Kil ve Siltli kil	Kil Silt	Kil	ML-OL
3	D1	96-150	Kil	Siltli kil	Kil	ML-OL
4	DI	150-196	Kil	Siltli kil	Kil	MH-OH
5	Zonu	196-250	Kil	Siltli kil	Kil	MH-OH
6	B2	250-300	Kil ve Siltli kil	Siltli kil	Kil	MH-OH
7	Zonu	300-348	Çok yoğun sert zemin	Siltli kil	Kil	MH-OH
8	C	348-398	Çok yoğun sert zemin	Kil silt	Siltli kil	ML-OL
9	Zonu	398-450	Çok yoğun sert zemin	Siltli kil	Siltli kil	SM-SP
10	Zonu	450-500	Çok yoğun sert zemin	Siltli kil	Siltli kil	ML-OL

CPT-6	Zonlar	Derinlik (cm)	Robertson 1990	Eslami ve Fellenius, 1997	Jefferies ve Been, 2006	USCS
1	٨	0-50	Clay	Siltli kil	Silt karışımı	ML-OL
2	A Zonu	50-100	Kil ve Siltli kil	Siltli kil	Kil	ML-OL
3	Zonu	100-147	Kil ve Siltli kil	Kil Silt	Kil	ML-OL
4		147-240	Çok yoğun sert zemin	Siltli kil	Silt karışımı	ML-OL
5	D1	240-290	Kil	Siltli kil	Kil	ML-OL
6	DI Zonu	290-350	Kil	Siltli kil	Kil	ML-OL
7	Zollu	350-390	Kil	Siltli kil	Kil	ML-OL
8		390-450	Kil	Siltli kil	Kil	MH-OH
9		450-500	Kil	Siltli kil	Kil	MH-OH
10	B2	500-548	Kil	Siltli kil	Kil	MH-OH
11	Zonu	548-590	Kil ve Siltli kil	Kumlu silt	Kil	ML-OL
12		590-640	Çok yoğun sert zemin	Siltli kum	Kil	ML-OL
13		640-695	Çok yoğun sert zemin	Siltli kil	Kil	ML-OL
14	С	695-736	Çok yoğun sert zemin	Siltli kum	Siltli kil	ML-OL
15	Zonu	736-763	Çok yoğun sert zemin	Siltli kum	Siltli kil	SM-SP
16		763-790	Çok yoğun sert zemin	Siltli kum	Siltli kil	ML-OL

CPT-7	Zonlar	Derinlik (cm)	Robertson 1990	Eslami ve Fellenius, 1997	Jefferies ve Been, 2006	USCS
1	А	0-45	Kil	Siltli kil	Silt karışımı	ML-OL
2	Zonu	45-103	Kil ve Siltli kil	Kil Silt	Kil	CL-ML
3		103-154	Çok yoğun sert zemin	Siltli kil	Silt karışımı	ML-OL
4	D1	154-199	Kil	Siltli kil	Kil	ML-OL
5	DI Zonu	199-250	Kil	Siltli kil	Kil	ML-OL
6	Zonu	250-298	Kil	Siltli kil	Kil	MH-OH
7		298-347	Kil	Siltli kil	Kil	MH-OH
8		347-398	Kil	Kumlu silt	Kil	MH-OH
9	B2	398-450	Kil ve Siltli kil	Siltli kil	Kil	MH-OH
10	Zonu	450-501	Çok yoğun sert zemin	Siltli kum	Kil	MH-OH
11		501-550	Çok yoğun sert zemin	Siltli kum	Kil	MH-OH
12	C	550-630	Çok yoğun sert zemin	Siltli kil	Siltili kil	MH-OH
13	Zanu	630-700	Çok yoğun sert zemin	Siltli kum	Siltili kil	SM-SP
14	Zonu	700-710	Çok yoğun sert zemin	Siltli kum	Siltili kil	SM-SP

Tablo 4.6. Regolitik zeminlerin derinlik boyunca CPT deney sonuçlarına ve USCS'ye göre sınıflandırılması (CPT-7)

CPT deneylerinden elde edilen verilere göre yapılan zemin sınıflama sistemleri ile USCS'ye göre yapılan sınıflamalar birlikte değerlendirilmiştir. Bunun sonucunda zeminler üç ayrı profile ayrılmıştır.

# 4.4. Indeks ve Dayanım Özelliklerinin Değerlendirilmesi

## 4.4.1. Regolitik Zeminlerin Indeks Özelliklerinin Derinlikle Değişimi

Zeminleri oluşturan danelerin zemin içerisindeki dağılımları zeminlerin mühendislik özelliklerini etkilemektedir. Bu nedenle zeminleri sınıflandırırken zemini oluşturan danelerin dağılımı da etken olmaktadır. Yapılan ıslak elek analizi deneyi ve hidrometre deneyi sonuçları birleştirilerek oluşturulan granülometri eğrisinden zemine ait kil, silt, kum ve çakıl yüzdeleri hesaplanmıştır. Bunun neticesinde derinliğe göre her bir sondaj kuyusu için zonlara ayrılan regolitik zemin profilindeki dane dağılım tabloları oluşturulmuştur (Tablo 4.7, Tablo 4.8).

SK-1	Zonlar	Derinlik (cm)	Çakıl %	Kum %	Silt %	Kil %
1		0-50	10.1	13.6	52.3	24.0
2	A Zonu	50-66	7.2	18.9	36.9	37.0
3		66-119	10.5	11.0	44.6	34.0
4		119-157	11.6	14.7	43.6	30.0
5		157-202	12.4	13.9	41.7	32.0
6	B1 Zonu	220-270	13.0	14.3	34.6	38.0
7		270-320	12.3	16.4	27.4	44.0
8		310-372	0.4	10.9	34.6	54.0
9		372-416	2.3	10.0	34.7	53.0
10	B2 Zonu	416-463	0.1	21.2	26.7	52.0
11	D2 Zollu	463-516	0.3	27.4	36.3	36.0
12		516-564	0.9	28.2	37.9	33.0
13		564-620	1.7	30.2	43.0	25.0
14		620-665	3.0	46.8	35.2	15.0
15		665-715	2.7	47.2	31.0	19.0
16	C Zonu	715-760	3.0	46.6	26.4	24.0
17		760-807	9.5	39.9	32.5	18.0
18		807-880	13.6	59.0	19.4	8.0
19		880-930	22.9	31.4	28.8	17.0

Tablo 4.7. SK-1, SK-2 ve SK-3'te derinliğe bağlı dane dağılımları

SK-2	Zonlar	Derinlik (cm)	Çakıl %	Kum %	Silt %	Kil %
1	A Zonu	0-50	11.9	13.8	43.3	31.0
2	A Zollu	50-114	7.0	22.7	38.2	32.0
3		114-168	10.7	19.9	35.4	34.0
4	B1 Zonu	168-218	4.3	8.4	42.3	45.0
5		218-265	3.0	16.0	31.0	50.0
6		265-314	3.3	9.6	37.1	50.0
7		314-356	1.5	23.5	35.0	40.0
8		356-418	1.3	20.2	36.6	42.0
9	D1 Zonu	418-470	4.8	20.7	36.5	38.0
10	DZ ZOIIU	470-500	7.4	20.9	39.7	32.0
11		500-545	7.8	20.6	37.6	34.0
12		545-575	19.0	20.8	34.2	26.0
13	C Zonu	575-625	10.5	26.9	37.7	25.0
14		625-675	5.1	28.8	43.1	23.0
15		675-720	1.4	33.2	36.4	29.0

SK-3	Zonlar	Derinlik (cm)	Cakıl %	Kum %	Silt %	Kil %
1	1.7	0-50	8.8	20.4	36.7	34.0
2	A Zollu	50-110	19.8	13.6	29.6	37.0
3		110-160	1.3	10.0	47.7	41.0
4	D1 Zonu	160-210	3.2	18.4	36.4	42.0
5	DI Zollu	210-260	0.5	24.6	29.9	45.0
6		260-314	0.7	27.5	25.9	46.0
7		314-365	0.4	27.2	27.4	45.0
8		365-414	1.2	28.7	21.1	49.0
9	B2 Zonu	414-466	7.2	20.3	24.5	48.0
10		466-505	0.8	18.3	27.9	53.0
11		505-555	1.3	25.8	27.9	45.0
12		555-605	2.9	15.2	37.9	44.0
13		605-655	3.1	29.4	33.5	34.0
14		655-708	7.3	20.7	34.0	38.0
15		708-725	10.1	28.7	31.2	30.0
16	C Zonu	725-775	17.1	20.9	32.1	30.0
17		775-825	8.8	27.0	39.2	25.0
18		825-840	7.9	28.1	40.0	24.0
19		840-915	6.7	27.7	41.6	24.0

SK-4	Zonlar	Derinlik (cm)	Çakıl %	Kum %	Silt %	Kil %
1	A Zopu	0-50	7.1	15.7	47.2	30.0
2	A Zonu	50-96	4.0	23.5	45.6	27.0
3		96-150	12.3	9.8	39.0	39.0
4	B1 Zonu	150-196	9.4	8.7	32.9	49.0
5		196-250	1.2	11.6	35.2	52.0
6	D) Zonu	250-300	1.1	6.8	41.1	51.0
7	DZ ZOIIU	300-348	0.0	18.5	33.5	48.0
8		348-398	2.9	36.0	35.1	26.0
9	C Zonu	398-450	5.7	44.6	31.7	18.0
10		450-500	7.7	40.9	24.4	27.0

Tablo 4.8. SK-4, SK-6 ve SK-7 derinliğe bağlı dane dağılımları

<b>SK-6</b>	Zonlar	Derinlik (cm)	Çakıl %	Kum %	Silt %	Kil %
1		0-50	9.8	23.0	34.2	33.0
2	A Zonu	50-100	3.7	19.7	41.6	35.0
3		100-147	9.3	13.8	40.9	36.0
4		147-240	5.6	25.3	28.1	41.0
5		240-290	0.4	23.9	29.7	46.0
6	B1 Zonu	290-350	2.2	18.5	25.3	54.0
7		350-390	0.3	26.4	21.3	52.0
8		390-450	1.0	26.1	30.9	42.0
9		450-500	0.7	27.8	33.4	38.0
10	P2 Zonu	500-548	9.3	17.7	43.0	30.0
11	BZ Zonu	548-590	11.2	22.7	36.1	30.0
12		590-640	9.3	14.0	48.7	28.0
13		640-695	4.1	29.5	40.4	26.0
14	C Zonu	695-736	1.2	44.0	32.8	22.0
15	C Zollu	736-763	0.8	54.2	21.0	24.0
16		763-790	3.0	39.5	35.5	22.0

<b>SK-7</b>	Zonlar	Derinlik (cm)	Çakıl %	Kum %	Silt %	Kil %
1	A Zopu	0-45	16.5	18.3	29.2	36.0
2	A Zollu	45-103	11.0	27.8	31.2	30.0
3		103-154	13.5	13.9	42.6	30.0
4	B1 Zonu	154-199	13.5	14.2	30.3	42.0
5		199-250	11.3	21.5	20.3	47.0
6		250-298	11.9	14.6	28.5	45.0
7		298-347	0.2	17.0	40.8	42.0
8		347-398	1.0	17.1	40.9	41.0
9	D) Zamu	398-450	4.5	10.1	38.4	47.0
10	D2 Zonu	450-501	0.1	12.7	40.2	47.0
11		501-550	0.1	26.2	33.7	40.0
12		550-630	0.1	34.3	32.6	33.0
13	C Zonu	630-700	0.1	51.3	27.6	21.0
14		700-710	20.5	47.3	17.2	15.0

Regolitik zeminlerin hacim ve kütle-ağırlık parametrelerini belirlemek amacıyla yapılan deneyler sonucunda elde edilen verilerin her bir sondaj kuyusunda derinlik boyunca değişimi bulunmuştur (Tablo 4.9 ve Tablo 4.10).

SK-1	Zonlar	Derinlik (cm)	$y_n (kN/m^3)$	Sr (%)	e	n	Gs
1		0-50	15.33	62.69	1.25	0.56	2.73
2	A Zonu	50-66	14.14	37.03	1.16	0.54	2.68
3		66-119	15.86	54.45	1.13	0.53	2.83
4		119-157	16.96	53.21	0.88	0.47	2.78
5		157-202	16.20	53.51	1.15	0.54	2.94
6	B1 Zonu	220-270	15.32	71.60	1.32	0.57	2.68
7		270-320	14.59	69.19	1.50	0.60	2.68
8		310-372	13.16	49.74	1.56	0.61	2.66
9		372-416	13.31	55.25	1.88	0.65	2.87
10	D) Zamu	416-463	13.01	65.72	2.25	0.69	2.83
11	D2 Zonu	463-516	13.95	69.91	1.81	0.64	2.73
12		516-564	12.92	62.60	2.00	0.67	2.70
13		564-620	12.80	62.92	2.06	0.67	2.70
14		620-665	14.65	69.89	1.56	0.61	2.73
15		665-715	13.04	66.05	2.04	0.67	2.69
16	C Zonu	715-760	13.06	65.55	1.71	0.63	2.49
17		760-807	14.53	74.71	1.29	0.56	2.43
18		807-880	14.53	61.60	1.51	0.60	2.79
19		880-930	14.55	47.19	1.30	0.56	2.80

Tablo 4.9. SK-1, SK-2 ve SK-4' den alınan örneklerin derinliğe bağlı indeks özellikleri

SK-2	Zonlar	Derinlik (cm)	yn (kN/m ³ )	Sr (%)	e	n	Gs
1	A 7000	0-50	16.85	60.84	0.83	0.45	2.64
2	A Zonu	50-114	14.81	49.22	0.96	0.49	2.48
3		114-168	12.41	50.24	1.94	0.66	2.74
4		168-218	14.20	69.83	1.62	0.62	2.66
5	B1 Zonu	218-265	15.40	66.50	1.18	0.54	2.64
6		265-314	15.08	64.40	1.27	0.56	2.68
7		314-356	12.29	70.50	2.54	0.72	2.64
8		356-418	12.65	70.95	2.34	0.70	2.65
9	D1 Zamu	418-470	15.04	69.77	1.37	0.58	2.68
10	D2 Zonu	470-500	13.15	56.90	1.87	0.65	2.78
11		500-545	13.18	56.07	1.67	0.63	2.65
12		545-575	14.18	55.84	1.50	0.60	2.78
13	C Zonu	575-625	12.37	64.88	2.34	0.70	2.69
14	C Zonu	625-675	17.26	91.31	1.26	0.56	2.83
15		675-720	13.17	71.45	2.48	0.71	2.90

SK-4	Zonlar	Derinlik (cm)	yn (kN/m ³ )	Sr (%)	e	n	Gs
1	A 70mm	0-50	15.71	63.91	1.19	0.54	2.75
2	A Zonu	50-96	15.04	71.78	1.11	0.53	2.44
3		96-150	14.72	64.55	1.26	0.56	2.58
4	B1 Zonu	150-196	12.96	40.34	1.25	0.56	2.47
5		196-250	13.74	64.87	1.31	0.57	2.38
6	D1 Zonu	250-300	12.33	51.48	1.82	0.65	2.60
7	B2 Zollu	300-348	12.84	59.77	1.84	0.65	2.62
8		348-398	13.16	65.07	1.59	0.61	2.44
9	C Zonu	398-450	12.50	59.76	1.90	0.66	2.56
10		450-500	11.91	52.73	2.12	0.68	2.67

SK-3	Zonlar	Derinlik (cm)	yn ( $kN/m^3$ )	Sr (%)	e	n	Gs
1	. 7	0-50	15.71	57.19	1.15	0.53	2.78
2	A Zonu	50-110	15.40	60.18	1.12	0.53	2.65
3		110-160	14.28	69.54	1.49	0.60	2.59
4	D17	160-210	12.64	63.95	1.97	0.66	2.57
5	BI Zonu	210-260	12.26	63.28	2.28	0.70	2.66
6		260-314	12.72	67.84	2.20	0.69	2.66
7		314-365	13.42	65.96	1.80	0.64	2.64
8		365-414	13.62	64.98	1.79	0.64	2.71
9	D1 Zonu	414-466	13.76	64.37	1.65	0.62	2.66
10	B2 Zonu	466-505	12.07	58.47	2.19	0.69	2.64
11		505-555	10.61	54.88	2.92	0.74	2.64
12		555-605	13.98	70.09	1.67	0.63	2.63
13		605-655	11.81	43.21	1.80	0.64	2.59
14		655-708	10.90	40.35	2.21	0.69	2.68
15		708-725	10.63	38.44	2.32	0.70	2.70
16	C Zonu	725-775	11.35	41.33	2.05	0.67	2.68
17		775-825	12.26	42.36	1.73	0.63	2.68
18		825-840	11.81	44.66	1.97	0.66	2.70
19		840-915	10.90	41.89	2.42	0.71	2.78
SK-6	Zonlar	Derinlik (cm)	yn (kN/m ³ )	Sr (%)	e	n	Gs
1		0-50	13.90	39.61	1.28	0.56	2.72
2	A Zonu	50-100	15.15	49.31	0.98	0.49	2.57
3		100-147	14.58	48.25	1.12	0.53	2.61
4		147-240	13.18	57.54	1.56	0.61	2.54
5		240-290	14.54	61.10	1.21	0.55	2.53
6	B1 Zonu	290-350	12.72	51.83	1.67	0.63	2.59
7		350-390	10.65	41.69	2.23	0.69	2.58
8		390-450	12.91	65.80	1.83	0.65	2.52
9		450-500	12.22	58.51	2.09	0.68	2.62
10		500-548	13.60	58.07	1.56	0.61	2.64
11	B2 Zonu	548-590	12.81	69.62	2.24	0.69	2.67
12		590-640	12.26	63.99	2.13	0.68	2.55
13		640-695	14.05	58.70	1.36	0.58	2.58
14		695-736	13.23	83.99	1.58	0.61	2.15
15	C Zonu	736-763	13.64	67.86	1.06	0.52	2.15
16		763-790	15.35	84.75	0.92	0.48	2.22
SK-7	Zonlar	Derinlik (cm)	yn (kN/m ³ )	Sr (%)	e	n	Gs
1	. 7	0-45	14.32	37.61	1.16	0.54	2.71
2	A Zonu	45-103	15.44	59.16	1.14	0.53	2.69

Tablo 4.10. SK-3, SK-6 ve SK-7'den alınan örneklerin derinliğe bağlı özellikleri

SK-7	Zonlar	Derinlik (cm)	yn (kN/m ³ )	Sr (%)	e	n	Gs
1	A Zonu	0-45	14.32	37.61	1.16	0.54	2.71
2	A Zollu	45-103	15.44	59.16	1.14	0.53	2.69
3		103-154	16.49	54.60	0.84	0.46	2.64
4		154-199	14.70	51.76	0.78	0.44	2.26
5	B1 Zonu	199-250	13.83	37.80	1.24	0.55	2.68
6		250-298	15.12	62.60	1.05	0.51	2.50
7		298-347	11.17	43.17	1.89	0.65	2.48
8		347-398	13.08	75.39	1.93	0.66	2.45
9	D1 Zonu	398-450	11.87	63.92	2.36	0.70	2.56
10	D2 Zollu	450-501	12.39	75.00	2.26	0.69	2.42
11		501-550	12.22	67.71	2.54	0.72	2.69
12		550-630	11.68	66.56	2.03	0.67	2.25
13	C Zonu	630-700	12.63	65.62	1.54	0.61	2.26
14		700-710	14.65	87.86	1.17	0.54	2.21

Elde edilen sonuçlar neticesinde bir genelleme yapmak gerekirse ince tane oranının B zonunda, kaba tane oranının C zonunda ve birim hacim ağırlık değerinin B zonunda artış gösterdiği anlaşılmaktadır.

## 4.4.2. Regolitik Zeminlerin Kıvam Limitlerinin Derinlikle Değişimi

Kıvam limitleri, ince daneli zeminleri tanımlamak için kullanılan en önemli parametrelerden biridir. İnce daneli zeminlere ait birçok özellik bu parametrelere bağlanarak ifade edilmektedir.

Çalışma konusu regolitik zeminlerde yapılan likit limit ve plastik limit deney sonuçlarına göre zeminlerin derinlik boyunca plastik özellikleri Tablo 4.11, Tablo 4.12 ve Tablo 4.13'de verilmiştir.

		Dominicity	TT	DI	DI			
SK-1	Zonlar	(cm)	(%)	(%)	(%)	IL	Ic	Ac
1		0-50	45.9	28.5	17.4	0.0	10	0.7
2	A Zonu	50-66	46.7	20.5	19.0	-0.6	1.0	0.5
3	II Lond	66-119	45.0	25.8	19.0	-0.2	1.0	0.5
		119-157	49.2	31.5	17.7	-0.8	1.2	0.0
5		157-202	51.2	39.1	17.7 12.2	-0.0	$25^{1.0}$	$0.0 \\ 0.4$
6	B1 Zonu	220-270	57.0	39.1	17.2	-0.2	$\frac{2.3}{1.2}$	0.4
7	DI Lonu	270-320	537	39.5	14.2	-0.1	11	0.3
8		310-372	58.9	40.3	18.6	-0.6	1.6	0.3
9		372-416	49.6	33.3	16.3	0.2	0.8	0.3
10		416-463	46.4	30.2	16.2	1.4	-0.4	0.3
Īľ	B2 Zonu	463-516	45.8	30.2	15.6	1.0	0.0	0.4
$\overline{12}$		516-564	49.0	30.1	18.9	0.9	0.1	0.6
13		564-620	49.1	30.9	18.2	0.9	0.1	0.7
14		620-665	50.0	32.1	17.9	0.4	0.6	1.2
15		665-715	50.1	32.1	18.0	1.0	0.0	0.9
16	C Zonu	715-760	48.5	32.6	15.9	0.8	0.2	0.7
17		760-807	44.8	37.3	7.5	0.3	0.7	0.4
18		807-880	43.4	33.8	9.6	0.0	1.0	1.2
19		880-930	38.4	28.5	9.9	-0.7	1.7	0.6
SK A	Zonlan	Derinlik	LL	PL	PI	TT	Ia	Aa
SK-4	Zomai	(cm)	(%)	(%)	(%)	IL	К	AC
1		0-50	46.4	36.9	9.5	-1.0	2.0	0.3
2	A Zollu	50-96	47.0	37.4	9.6	-0.5	1.5	0.4
3		96-150	46.7	35.7	11.0	-0.4	1.4	0.3
4	B1 Zonu	150-196	59.3	40.6	18.7	-1.1	2.1	0.4
5		196-250	57.7	42.2	15.5	-0.4	1.4	0.3
6	B2 Zonu	250-300	62.3	44.2	18.1	-0.5	1.5	0.4
7	D2 Zonu	300-348	53.3	40.5	12.8	0.1	0.9	0.3
8		348-398	44.4	38.2	6.2	0.7	0.3	0.2
9	C Zonu	398-450	53.2	36.4	16.8	0.5	0.5	0.9
10		450-500	45.4	37.4	8.0	0.6	0.4	0.3

Tablo 4. 11. SK-1 ve SK-4 zeminlerinden alınan örneklerin derinlik boyunca plastik özellikleri

SK-2	Zonlar	Derinlik (cm)	LL (%)	PL (%)	PI (%)	IL	Ic	Ac
1 2	A Zonu	0-50 50-114	36.80 38.80	29.33 29.89	7.47 8.91	-1.4 -1.2	2.4 2.2	0.2 0.3
3 4 5 6 7	B1 Zonu	114-168 168-218 218-265 265-314 314-356	37.80 42.10 45.80 53.40 54.80	29.27 34.70 35.58 36.59 37.07	8.53 7.40 10.22 16.81 17.73	1.6 1.1 -0.6 -0.4 1.7	1.6 -0.1 1.6 1.4 -0.7	$\begin{array}{c} 0.3 \\ 0.2 \\ 0.2 \\ 0.3 \\ 0.4 \end{array}$
8 9 10 11	B2 Zonu	356-418 418-470 470-500 500-545	56.50 50.50 47.10 46.40	37.07 37.54 36.36 33.92	19.43 12.96 10.74 12.48	1.3 -0.1 0.2 0.1	-0.3 1.1 0.8 0.9	0.5 0.3 0.3 0.4
12 13 14 15	C Zonu	545-575 575-625 625-675 675-720	34.40 41.80 45.40 38.40	27.22 35.70 30.74 28.77	7.18 6.10 14.66 9.63	0.4 3.4 0.7 3.4	0.6 -2.4 0.3 -2.4	0.3 0.2 0.6 0.3
		<b>D</b> 1 111		DI	DI	<u> </u>		
SK-3	Zonlar	Derinlik (cm)	LL (%)	PL (%)	P1 (%)	IL	Ic	Ac
$\frac{1}{2}$	A Zonu	0-50 50-110	34.7 44.9	26.3 28.2	8.4 16.7	-0.3 -0.2	1.3 1.2	0.2 0.5
3 4 5 6	B1 Zonu	110-160 160-210 210-260 260-314	44.8 58.8 60.0 60.9	30.3 41.7 41.8 42.3	14.5 17.1 18.2 18.6	$0.7 \\ 0.4 \\ 0.7 \\ 0.7$	0.3 0.6 0.3 0.3	$0.4 \\ 0.4 \\ 0.4 \\ 0.4$
7 8 9 10 11 12	B2 Zonu	314-365 365-414 414-466 466-505 505-555 555-605	61.1 56.4 56.1 58.7 48.0 43.4	44.0 41.6 41.0 40.9 36.8 30.3	17.1 14.8 15.1 17.8 11.2 13.1	$0.1 \\ 0.1 \\ -0.1 \\ 0.4 \\ 2.1 \\ 1.1$	0.9 0.9 1.1 0.6 -1.1 -0.1	$\begin{array}{c} 0.4 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.2 \\ 0.3 \end{array}$
13 14 15 16 17 18 19	C Zonu	605-655 655-708 708-725 725-775 775-825 825-840 840-915	$\begin{array}{r} 42.1 \\ 40.5 \\ 42.0 \\ 46.2 \\ 46.8 \\ 46.0 \\ 36.0 \end{array}$	32.8 30.5 35.0 32.6 30.7 35.1 20.0	9.3 10.0 7.0 13.6 16.1 10.9 16.0	-0.3 0.3 -0.3 -0.1 -0.2 -0.2 1.0	$ \begin{array}{c} 1.3\\ 0.7\\ 1.3\\ 1.1\\ 1.2\\ 1.2\\ 0.0\\ \end{array} $	$\begin{array}{c} 0.3 \\ 0.3 \\ 0.2 \\ 0.5 \\ 0.6 \\ 0.5 \\ 0.7 \end{array}$
SK-6	Zonlar	<b>Derinlik</b>		PL	PI (9()	IL	Ic	Ac
1 2 3	A Zonu	0-50 50-100 100-147	34.90 24.80 36.60	25.88 21.88 22.12	9.02 2.92 14.48	-0.8 -1.1 -0.1	1.8 2.1 1.1	0.3 0.1 0.4
4 5 6 7 8	B1 Zonu	147-240 240-290 290-350 350-390 390-450	$\begin{array}{r} 45.10 \\ 48.80 \\ 46.40 \\ 48.50 \\ 51.00 \end{array}$	30.58 37.40 38.25 39.63 39.66	14.52 11.40 8.15 8.87 11.34	0.3 -0.7 -0.6 -0.4 0.7	$0.7 \\ 1.7 \\ 1.6 \\ 1.4 \\ 0.3$	$\begin{array}{c} 0.4 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.3 \end{array}$
9 10 11 12	B2 Zonu	450-500 500-548 548-590 590-640	51.00 51.10 48.70 45.80	39.43 41.84 36.43 33.79	11.57 9.26 12.27 12.01	0.6 -0.8 1.8 1.6	0.4 1.8 -0.8 -0.6	0.3 0.3 0.4 0.4
13 14 15 16	C Zonu	640-695 695-736 736-763 763-790	45.60 48.40 44.30 49.10	28.91 31.23 29.83 31.90	16.69 17.17 14.47 17.20	0.1 1.8 0.3 0.2	0.9 -0.8 0.7 0.8	$0.6 \\ 0.8 \\ 0.6 \\ 0.8$

Tablo 4.12. SK-2, SK-3 ve SK-6 zeminlerinden alınan örneklerin derinlik boyunca plastik özellikleri

SK-7	Zonlar	Derinlik (cm)	LL (%)	PL (%)	PI (%)	$\mathbf{I}_{\mathrm{L}}$	Ic	Ac
1	A Zonu	0-45	42.20	25.25	16.95	-0.5	1.5	0.5
2	11 Bonta	45-103	21.90	16.91	4.99	1.6	-0.6	0.2
3		103-154	38.00	20.48	17.52	-0.2	1.2	0.6
4		154-199	39.20	23.26	15.94	-0.3	1.3	0.4
5	B1 Zonu	199-250	45.50	31.44	14.06	-1.0	2.0	0.3
6		250-298	55.30	39.75	15.55	-0.9	1.9	0.3
7		298-347	63.00	46.50	16.50	-0.8	1.8	0.4
8		347-398	62.00	42.97	19.03	0.9	0.1	0.5
9	D) Zonu	398-450	59.30	40.22	19.08	1.0	0.0	0.4
10	B2 Zollu	450-501	60.00	45.08	14.92	1.7	-0.7	0.3
11		501-550	53.90	38.29	15.61	1.6	-0.6	0.4
12		550-630	58.20	40.11	18.09	1.1	-0.1	0.5
13	C Zonu	630-700	50.60	36.36	14.24	0.6	0.4	0.7
14		700-710	44.40	33.77	10.63	1.2	-0.2	0.7

Tablo 4.13. SK-7 zeminlerinden alınan örneklerin derinlik boyunca plastik özellikleri

Aktivite değeri C zonunda, A ve B zonuna göre yüksektir. Bunun nedeni PI değerinin değişimi çok az iken % kil oranının C zonunda A ve B zonuna göre az olmasıdır.

Kohezyonlu zeminlerin kıvamlılığı, o zeminin dayanımına kabaca bir yaklaşımda bulunulabilmesi açısından oldukça önemli bir özelliktir. Zeminler doğal durumda çeşitli etkilerle farklı su içeriklerinde olurlar. Su içeriğinin plastiste cetvelinin neresinde olduğunun saptanması zeminin bazı özellikleri hakkında bilgi sağlar. Aktivite var olan kilin hangi tür olduğu hakkında dolayısıyla zemindeki olası hacim değişmesi hakkında yararlı bilgi sağlar.

Elde edilen plastik özelliklere göre Tablo 4.14'te ki ince taneli zeminlerin kıvamlılık indisine göre sınıflandırılması (Ulusay, 2001) abağından yararlanarak Tablo 4.15 oluşturulmuştur.

Kıvamlılık İndisi (Ic)	Sınıflama
<0	Akışkan (Çamur)
0-0.25	Çok yumuşak
0.25-0.50	Yumuşak
0.50-0.75	Yarı Sert (Sıkı)
0.75-1.00	Sert
>1.00	Yarı Katı (Çok Sert)

Tablo 4.14. İnce taneli zeminlerin kıvamlılık indisine göre sınıflandırılması (Ulusay, 2001)

Elde edilen plastik özelliklere göre Tablo 4.16'da ki ince taneli zeminlerin likitlik indisine göre sınıflandırılması (Ulusay, 2001) abağından yararlanılarak Tablo 4.17 oluşturulmuştur.

	Kıvamlılık İndisi (Ic)									
	A zonu	Sınıflama	B zonu	Sınıflama	C zonu	Sınıflama				
SK-1	1-1.6	Çok sert	-0.4-2.5	Akışkan-çok sert	-0.4-1.7	Akışkan-çok sert				
SK-2	2.2-2.4	Çok sert	-0.7-1.6	Akışkan-çok sert	-2.4-0.6	Akışkan-sert				
SK-3	1.2-1.3	Çok sert	-1.1-1.1	Akışkan-çok sert	0-1.3	Çok yumuşak-çok sert				
SK-4	1.5-2	Çok sert	0.9-2.1	Sert-çok sert	0.3-0.5	Yumuşak				
SK-6	1.1-2.1	Çok sert	-0.8-1.8	Akışkan-çok sert	-0.8-0.9	Akışkan-sert				
SK-7	-0.6-1.5	Çok sert	-0.7-2	Akışkan-çok sert	-0.2-0.4	Akışkan-yumuşak				

Tablo 4.15. Regolitik zeminlerin zonlara göre kıvamlılık indisine göre sınıflandırılması

Tablo4.16.İnce taneli zeminlerin likitlik indisine göre<br/>sınıflandırılması (Ulusay, 2001)

Likitlik İndisi (IL)	Sınıflama
<0	Yarı Katı veya Katı
0-1.00	Plastik
>1.00	Likit

Tablo 4.17. Regolitik zeminlerin zonlara göre likitlik indisine göre sınıflandırılması

	Likitlik İndisi (IL)							
	A zonu	Sınıflama	B zonu	Sınıflama	C zonu	Sınıflama		
SK-1	-0.6-0	Yarı katı-Plastik	-1.5-1.4	Yarı katı-Likit	-0.7-1	Yarı katı-Likit		
SK-2	-1.2-(-1.4)	Yarı katı	-0.6-1.6	Yarı katı-Likit	0.4-3.4	Plastik-Likit		
SK-3	-0.2-(-0.3)	Yarı katı	-0.1-2.1	Yarı katı-Likit	-0.3-1	Yarı katı-Likit		
SK-4	-0.5-(-1)	Yarı katı	-1.1-0.1	Yarı katı-Plastik	0.5-0.7	Plastik		
SK-6	-1.1-(-0.1)	Yarı katı	-0.8-1.8	Yarı katı-Likit	0.1-1.8	Plastik-Likit		
SK-7	-0.5-1.6	Yarı katı-Likit	-1-1.7	Yarı katı-Likit	0.6-1.2	Plastik-Likit		

Elde edilen plastik özelliklere göre Tablo 4.18'de ki killerin aktivite değerlerine göre sınıflandırılması (Ulusay, 2001) abağından yararlanılarak Tablo 4.19 oluşturulmuştur.

Tablo 4.18. Killerin aktivite değerlerine göre sınıflandırılması (Ulusay, 2001)

Aktivite (Ac)	Sınıflama
< 0.75	Aktif olmayan killer
0.75-1.25	Normal killer
>1.25	Aktif killer

Aktivite (Ac)								
	A zonu	Sınıflama	B zonu	Sınıflama	C zonu	Sınıflama		
SK-1	0.5-0.7	Aktif olmayan killer	0.3-0.6	Aktif olmayan killer	0.4-1.2	Aktif olmayan killer-Normal killer		
SK-2	0.2-0.3	Aktif olmayan killer	0.2-0.5	Aktif olmayan killer	0.2-0.6	Aktif olmayan killer		
SK-3	0.2-0.5	Aktif olmayan killer	0.2-0.4	Aktif olmayan killer	0.2-0.7	Aktif olmayan killer		
SK-4	0.3-0.4	Aktif olmayan killer	0.3-0.4	Aktif olmayan killer	0.2-0.9	Normal killer		
SK-6	0.1-0.4	Aktif olmayan killer	0.2-0.4	Aktif olmayan killer	0.6-0.8	Aktif olmayan killer-Normal killer		
SK-7	0.2-0.5	Aktif olmayan killer	0.3-0.6	Aktif olmayan killer	0.5-0.7	Aktif olmayan killer		

Tablo 4.19. Regolitik zeminlerin zonlara göre aktivite değerine göre sınıflandırılması

#### 4.4.3. Regolitik Zeminlerin Dayanım Özelliklerinin Derinlikle Değişimi

Kayma mukavemeti, zeminin kırılmadan dayanabileceği ve karşı koyabileceği en büyük kayma gerilmesidir. Zeminin kayma mukavemeti kohezyon ve içsel sürtünme açısıyla belirlenir. Regolitik zeminlerin kayma dayanımı parametreleri konsolidasyonsuz-drenajsız kesme kutusu deneyi ile belirlenmiştir. Tablo 4.20 ve Tablo 4.21'de her bir sondaja ait derinlik boyunca kohezyon (c) ve içsel sürtünme açısı (Ø) değerleri yer almaktadır.

Yapılan kesme kutusu deney sonuçlarına göre elde edilen içsel sürtünme açısı ve kohezyon değerlerinin her bir kuyu için derinliğe göre değişim grafiği Şekil 4.18'de yer almaktadır. Kohezyon değerinin derinlikle değişimi incelendiğinde A zonundan B zonuna doğru artan, B zonundan C zonuna doğru azalan bir grafik sergilemektedir.

Ancak içsel sürtünme açısının derinlikle değişimine bakıldığında ise A zonundan B zonuna doğru azalan, B ve C zonu içerisinde artış ve azalışlar gösteren bir grafik göstermektedir.

Regolitik zemin profilinde kohezyonun ve kil oranının derinlikle değişimine bakıldığında A zonunda az, B zonunda yüksek ve C zonuna doğru azalarak sabit şekilde kalması, kil oranının artmasıyla kohezyon değerinin artığını göstermektedir. Bu durum da kil oranının kohezyon ile doğru orantılı olduğu söylenebilir.

SK-1	Derinlik (cm)	Toprak Profili	Kohezyon (c, kPa)	İçsel Sürtünme Açısı (Ø, º)
1	0-50		30	30
2	50-66	A Zonu	58	58
3	66-119		70	17
4	119-157		75	16
5	157-220		98	13
6	220-270	B1 Zonu	110	43
7	270-310		108	20
8	310-372		100	13
9	372-416		85	7
10	416-463	D) Zomu	70	13
11	463-516	D2 Zollu	52	21
12	516-564		60	27
13	564-620		30	8
14	620-665		23	31
15	665-715		24	28
16	715-760	C Zonu	23	18
17	760-807		23	28
18	807-880		21	28
19	880-930		17	37

Tablo 4.20. SK-1, SK-2 ve SK-4'den alınan örneklerin derinlik boyunca kohezyon (c) ve içsel sürtünme açısı (Ø) değerleri

SK-2	Derinlik (cm)	Toprak Profili	Kohezyon (c, kPa)	İçsel Sürtünme Açısı (Ø, º)
1	0-50	A 7	31	39
2	50-114	A Zonu	32	16
3	114-168		106	7
4	168-218		100	13
5	218-265	B1 Zonu	80	4
6	265-314		50	16
7	314-356		40	4
8	356-418		75	11
9	418-470	D) Zomu	52	11
10	470-500	D2 Zollu	58	6
11	500-545		50	6
12	545-575		30	20
13	575-625	C Zonu	27	24
14	625-675	C Zollu	20	29
15	675-720		19	31

SK-4	Derinlik (cm)	Toprak Profili	Kohezyon (c, kPa)	İçsel Sürtünme Açısı (Ø, º)
1	0-50	A Zonu	30	12
2	50-96	A Zollu	58	25
3	96-150		83	14
4	150-196	B1 Zonu	106	27
5	196-250		93	44
6	250-300	DO Zomu	57	27
7	300-348	B2 Zollu	45	42
8	348-398		32	29
9	398-450	C Zonu	22	14
10	450-500		20	18

21-2	Derinlik (cm)	Toprak Profili	Kohezyon (c, kPa)	Içsel Sürtünme Açısı (Ø, º)
1	0-50	A Zomu	20	27
2	50-110	A Zollu	33	16
3	110-160		40	5
4	160-210		45	18
5	210-260	B1 Zonu	68	10
6	260-314		98	45
7	314-365		80	20
8	365 414		61	20
0	111 166		69	42
9	414-400	B2 Zonu	00	43
10	400-303		40	43
11	505-555		53	13
12	555-605		40	31
13	605-655		30	36
14	655-708		23	31
15	708-725		27	36
16	725-775	C Zonu	21	34
17	775-825		14	10
18	825-840		19	26
19	840-915		17	32
SK-6	Derinlik (cm)	Toprak Profili	Kohezvon (c. kPa)	İcsel Sürtünme Acısı (Ø. º)
1	0.50	1 opruk 1 totili	25	11
$\frac{1}{2}$	50-100	A Zonu	19	9
2	100 147		50	10
3	100-147		J9 71	10
4	240,200		/1	10
5	240-290	B1 Zonu	100	12
6	290-350		115	44
-	250 200		/ / / /	30
7	350-390		90	29
7 8	350-390 390-450		90 80	29 28
7 8 9	350-390 390-450 450-500		90 80 63	29 28 42
7 8 9 10	350-390 390-450 450-500 500-548	B2 Zonu	90 80 63 67	29 28 42 8
7 8 9 10 11	350-390 390-450 450-500 500-548 548-590	B2 Zonu	90 80 63 67 57	29 28 42 8 17
7 8 9 10 11 12	350-390 390-450 450-500 500-548 548-590 590-640	B2 Zonu	90 80 63 67 57 41	29 28 42 8 17 28
7 8 9 10 11 12 13	350-390 390-450 450-500 500-548 548-590 590-640 640-695	B2 Zonu	90 80 63 67 57 41 31	29 28 42 8 17 28 45
7 8 9 10 11 12 13 14	350-390 390-450 450-500 500-548 548-590 590-640 640-695 695-736	B2 Zonu	90 80 63 67 57 41 31 27	29 28 42 8 17 28 45 36
7 8 9 10 11 12 13 14 15	350-390 390-450 450-500 500-548 548-590 590-640 640-695 695-736 736-763	B2 Zonu C Zonu	90 80 63 67 57 41 31 27 19	29 28 42 8 17 28 45 36 35
7 8 9 10 11 12 13 14 15 16	350-390 390-450 450-500 500-548 548-590 590-640 640-695 695-736 736-763 763-790	B2 Zonu C Zonu	90 80 63 67 57 41 31 27 19 19	29 28 42 8 17 28 45 36 35 10
7 8 9 10 11 12 13 14 15 16	350-390 390-450 450-500 500-548 548-590 590-640 640-695 695-736 736-763 763-790	B2 Zonu C Zonu	90 80 63 67 57 41 31 27 19 19	29 28 42 8 17 28 45 36 35 10
7 8 9 10 11 12 13 14 15 16 SK 7	350-390 390-450 450-500 500-548 548-590 590-640 640-695 695-736 736-763 763-790	B2 Zonu C Zonu	90 80 63 67 57 41 31 27 19 19 19	29 28 42 8 17 28 45 36 35 10
7 8 9 10 11 12 13 14 15 16 SK-7	350-390 390-450 450-500 500-548 548-590 590-640 640-695 695-736 736-763 763-790 Derinlik (cm)	B2 Zonu C Zonu Toprak Profili	90 80 63 67 57 41 31 27 19 19 19 Kohezyon (c, kPa)	29 28 42 8 17 28 45 36 35 10 İçsel Sürtünme Açısı (Ø, °)
7 8 9 10 11 12 13 14 15 16 SK-7 1 2	350-390 390-450 450-500 500-548 548-590 590-640 640-695 695-736 736-763 763-790 Derinlik (cm) 0-45 45 102	B2 Zonu C Zonu Toprak Profili A Zonu	90 80 63 67 57 41 31 27 19 19 19 Kohezyon (c, kPa) 45 61	29 28 42 8 17 28 45 36 35 10 İçsel Sürtünme Açısı (Ø, º) 41
7 8 9 10 11 12 13 14 15 16 SK-7 1 2 2	350-390 390-450 450-500 500-548 548-590 590-640 640-695 695-736 736-763 763-790 Derinlik (cm) 0-45 45-103	B2 Zonu C Zonu Toprak Profili A Zonu	90 80 63 67 57 41 31 27 19 19 19 Kohezyon (c, kPa) 45 61 86	29 28 42 8 17 28 45 36 35 10 İçsel Sürtünme Açısı (Ø, º) 41 10
7 8 9 10 11 12 13 14 15 16 SK-7 1 2 3 4	350-390 390-450 450-500 500-548 548-590 590-640 640-695 695-736 736-763 763-790 Derinlik (cm) 0-45 45-103 103-154	B2 Zonu C Zonu Toprak Profili A Zonu	90 80 63 67 57 41 31 27 19 19 19 Kohezyon (c, kPa) 45 61 86 98	29 28 42 8 17 28 45 36 35 10 ^İ çsel Sürtünme Açısı (Ø, º) 41 10 15
7 8 9 10 11 12 13 14 15 16 SK-7 1 2 3 4 5	350-390 390-450 450-500 500-548 548-590 690-640 640-695 695-736 736-763 763-790 Derinlik (cm) 0-45 45-103 103-154 154-199	B2 Zonu C Zonu Toprak Profili A Zonu	90 80 63 67 57 41 31 27 19 19 19 Kohezyon (c, kPa) 45 61 86 98 101	29 28 42 8 17 28 45 36 35 10 İçsel Sürtünme Açısı (Ø, °) 41 10 15 14 25
7 8 9 10 11 12 13 14 15 16 SK-7 1 2 3 4 5 (	350-390 390-450 450-500 500-548 548-590 695-736 736-763 763-790 Derinlik (cm) 0-45 45-103 103-154 154-199 199-250	B2 Zonu C Zonu Toprak Profili A Zonu B1 Zonu	90 80 63 67 57 41 31 27 19 19 19 Kohezyon (c, kPa) 45 61 86 98 101 27	29 28 42 8 17 28 45 36 35 10 İçsel Sürtünme Açısı (Ø, °) 41 10 15 14 26
7 8 9 10 11 12 13 14 15 16 SK-7 1 2 3 4 5 6 7	350-390 390-450 450-500 500-548 548-590 590-640 640-695 695-736 736-763 763-790 Derinlik (cm) 0-45 45-103 103-154 154-199 199-250 250-298	B2 Zonu C Zonu Toprak Profili A Zonu B1 Zonu	90 80 63 67 57 41 31 27 19 19 19 Kohezyon (c, kPa) 45 61 86 98 101 89 11	29 28 42 8 17 28 45 36 35 10 İçsel Sürtünme Açısı (Ø, °) 41 10 15 14 26 11 11
7 8 9 10 11 12 13 14 15 16 SK-7 1 2 3 4 5 6 7	350-390 390-450 450-500 500-548 548-590 590-640 640-695 695-736 736-763 763-790 Derinlik (cm) 0-45 45-103 103-154 154-199 199-250 250-298 298-347	B2 Zonu C Zonu Toprak Profili A Zonu B1 Zonu	90 80 63 67 57 41 31 27 19 19 19 Kohezyon (c, kPa) 45 61 86 98 101 89 66	29 28 42 8 17 28 45 36 35 10 İçsel Sürtünme Açısı (Ø, °) 41 10 15 14 26 11 11
7 8 9 10 11 12 13 14 15 16 SK-7 1 2 3 4 5 6 7 8	350-390 390-450 450-500 500-548 548-590 695-736 736-763 763-790 Derinlik (cm) 0-45 45-103 103-154 154-199 199-250 250-298 298-347 347-398	B2 Zonu C Zonu Toprak Profili A Zonu B1 Zonu	90 80 63 67 57 41 31 27 19 19 19 Kohezyon (c, kPa) 45 61 86 98 101 89 66 69	29 28 42 8 17 28 45 36 35 10 İçsel Sürtünme Açısı (Ø, º) 41 10 15 14 26 11 11 21
7 8 9 10 11 12 13 14 15 16 SK-7 1 2 3 4 5 6 7 8 9	350-390 390-450 450-500 500-548 548-590 695-736 736-763 763-790 Derinlik (cm) 0-45 45-103 103-154 154-199 199-250 250-298 298-347 347-398 398-450	B2 Zonu C Zonu Toprak Profili A Zonu B1 Zonu	90 80 63 67 57 41 31 27 19 19 19 Kohezyon (c, kPa) 45 61 86 98 101 89 66 69 61	29 28 42 8 17 28 45 36 35 10 İçsel Sürtünme Açısı (Ø, º) 41 10 15 14 26 11 11 21 8
7 8 9 10 11 12 13 14 15 16 <b>SK-7</b> 1 2 3 4 5 6 7 8 9 10	350-390 390-450 450-500 500-548 548-590 695-736 736-763 763-790 Derinlik (cm) 0-45 45-103 103-154 154-199 199-250 250-298 298-347 347-398 398-450 450-501	B2 Zonu C Zonu Toprak Profili A Zonu B1 Zonu B2 Zonu	90 80 63 67 57 41 31 27 19 19 Kohezyon (c, kPa) 45 61 86 98 101 89 66 69 61 38	29 28 42 8 17 28 45 36 35 10 İçsel Sürtünme Açısı (Ø, º) 41 10 15 14 26 11 11 21 8 44
7 8 9 10 11 12 13 14 15 16 SK-7 1 2 3 4 5 6 7 8 9 10 11 11 12 13 14 15 16 16 10 11 12 13 14 15 16 16 10 11 11 12 13 14 15 16 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 11 15 16 10 10 11 15 16 10 10 10 10 10 10 10 10 10 10	350-390 390-450 450-500 500-548 548-590 590-640 640-695 695-736 736-763 763-790 Derinlik (cm) 0-45 45-103 103-154 154-199 199-250 250-298 298-347 347-398 398-450 450-501 501-550	B2 Zonu C Zonu Toprak Profili A Zonu B1 Zonu B2 Zonu	90 80 63 67 57 41 31 27 19 19 19 Kohezyon (c, kPa) 45 61 86 98 101 89 66 69 61 38 39	29 28 42 8 17 28 45 36 35 10 İçsel Sürtünme Açısı (Ø, º) 41 10 15 14 26 11 11 21 8 44 16
7 8 9 10 11 12 13 14 15 16 SK-7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 10 11 12 13 14 15 16 16 10 11 12 13 14 15 16 16 17 12 13 14 15 16 16 17 17 17 18 19 10 11 12 13 14 15 16 16 17 17 17 17 18 19 19 10 10 11 12 13 14 15 16 16 17 17 17 17 17 17 17 17 17 17	350-390 390-450 450-500 500-548 548-590 590-640 640-695 695-736 736-763 763-790 Derinlik (cm) 0-45 45-103 103-154 154-199 199-250 250-298 298-347 347-398 398-450 450-501 501-550 550-630	B2 Zonu C Zonu Toprak Profili A Zonu B1 Zonu B2 Zonu	90 80 63 67 57 41 31 27 19 19 19 Kohezyon (c, kPa) 45 61 86 98 101 89 66 69 61 38 39 26	29 28 42 8 17 28 45 36 35 10 İçsel Sürtünme Açısı (Ø, º) 41 10 15 14 26 11 11 21 8 44 16 27
7 8 9 10 11 12 13 14 15 16 SK-7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 SK-7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 16 7 16 17 17 16 16 16 16 17 17 17 17 17 17 17 17 17 17	350-390 390-450 450-500 500-548 548-590 695-736 736-763 763-790 Derinlik (cm) 0-45 45-103 103-154 154-199 199-250 250-298 298-347 347-398 398-450 450-501 501-550 550-630 630-700	B2 Zonu C Zonu Toprak Profili A Zonu B1 Zonu B2 Zonu C Zonu	90 80 63 67 57 41 31 27 19 19 19 Kohezyon (c, kPa) 45 61 86 98 101 89 66 69 61 38 39 26 24	$ \begin{array}{r} 29\\ 28\\ 42\\ 8\\ 17\\ 28\\ 45\\ 36\\ 35\\ 10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  21\\ 8\\ 44\\ \hline  16\\ \hline  27\\ 20\\ \hline  20\\ \hline  28\\ \hline  17\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ \hline  10\\ $
7 8 9 10 11 12 13 14 15 16 SK-7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 SK-7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 10 12 12 13 14 15 16 7 10 10 11 12 10 11 12 13 14 15 16 10 10 10 11 11 12 13 14 15 16 10 10 10 10 10 10 10 10 10 11 11	350-390 390-450 450-500 500-548 548-590 695-736 736-763 763-790 Derinlik (cm) 0-45 45-103 103-154 154-199 199-250 250-298 298-347 347-398 398-450 450-501 501-550 550-630 630-700 700-710	B2 Zonu C Zonu Toprak Profili A Zonu B1 Zonu B2 Zonu C Zonu	90 80 63 67 57 41 31 27 19 19 19 Kohezyon (c, kPa) 45 61 86 98 101 89 66 69 61 38 39 26 24 16	$ \begin{array}{r} 29\\ 28\\ 42\\ 8\\ 17\\ 28\\ 45\\ 36\\ 35\\ 10\\ \hline lçsel Sürtünme Açısı (Ø, °) $ $ \begin{array}{r} 41\\ 10\\ 15\\ 14\\ 26\\ 11\\ 11\\ 21\\ 8\\ 44\\ 16\\ 27\\ 20\\ 19\\ \end{array} $

Tablo 4.21. SK-3, SK-6 ve SK-7'den alınan örneklerin derinlik boyunca kohezyon (c) ve içsel sürtünme açısı (Ø) değerleri



Şekil 4.18. Kohezyon ve içsel sürtünme açısının derinlik boyunca her bir kuyudaki değişimi
## **5.SONUÇ VE ÖNERİLER**

Yapı-temel-zemin etkileşimi ile ilgili projelerin hemen hemen tümünde, yerinde oluşmuş regolitik zeminlerin homojen olduğu kabul edilmekte ve ayrışma derecesinin derinlikle değişimi ihmal edilmektedir. Bu tür kalıntı zeminlerde uygulanan inşaat projelerinde, taşıma gücü, oturma ve stabilite analizlerinde kullanılan zemin parametreleri sabit tutulmakta ve bu ihmal bazı durumlarda yapılarda onarımı güç hasarlar meydana getirmektedir. Bu nedenle çalışma kapsamında, Trabzon ili ve çevresinde geniş yayılımlar gösteren Eosen sonrası volkanik kayaçların yerinde ayrışması ile oluşmuş regolitik zeminlerin yanal ve düşey yöndeki fiziko-mekanik özellikleri, (1) yerinde arazi ve laboratuvar deneyleri ile belirlenmiş, (2) ayrışma derinliği ve derecesinin dolayısı ile jeokimyasal özeliklerin fiziko-mekanik özellikler üzerindeki etkisi araştırılmış, (3) fizikomekanik özelliklerdeki değişime göre derinliğe bağlı regolitik zemin profili ortaya çıkarılmış, (4) bu tür zeminlerin homojen olarak kabul edildiği, geleneksel metodların yetersizliğini test edilerek bilimsel literatüre katkı sağlanmış ve (5) sonuç olarak il çevresinde son yıllarda baraj, gölet ve karayolu gibi büyük çaplı mühendislik projeleri için saha karakterizasyonu ve tanımlanmasına yönelik örnek ve öncülük teşkil edecek bir araştırma yapılmıştır.

Çalışma alanı Doğu Karadeniz Bölümü'nde, Trabzon ili merkez Ortahisar ilçesi sınırları içerisinde bulunmakta ve 1/25.000 ölçekli Trabzon G43b1 paftasında yer almaktadır.

Çalışma alanında yerinde oluşmuş regolitik zeminler Eosen-Neojen yaşlı volkanik kayaçların ayrışması ile oluşan zeminlerdir. Sedimanter arakatkılı andezit, bazalt, trakibazalt ve piroklastitlerden oluşan birim Kabaköy Formasyonu içerisinde yeralmakatadır.

Anakayanın ayrışması sonucu oluşan regolitik zeminler de fiziksel ve kimyasal ayrışmanın önemi büyüktür. Buna bağlı olarak Peltier ve Wu (1982) abağı kullanılarak Trabzon ve Giresun da orta derecede kimyasal ayrışma, Rize de güçlü kimyasal ayrışma olduğu, Rize ve Giresun da zayıf fiziksel ayrışma görülürken, Trabzon da yok veya önemsiz fiziksel ayrışma olduğu görülmektedir.

Regolit terimi ilk olarak Merrill (1897) tarafından tanımlanmış ve Eggleton (2001) tarafından yenilenerek, kırıklı ve ayrışmış kaya kütleleri, ana kaya blokları içeren saprolitler,

zayıf çimentolu volkanik kayaçlar ve tüfler, alüvyonlar ve yamaç molozları gibi ayrışma, erozyon, taşınma, depolanma süreçlerinin biri veya birkaçı sonucunda oluşan ve yerli kaya üzerinde depolanan örtü malzemeleri bu tanım içine dahil edilmiştir. Dolayısıyla jeolojik olarak sağlam kaya ile hava arasında bulunan her türlü ortam regolit olarak tanımlanmaktadır. Söz konusu çalışma alanında ise Eosen sonrası bazik volkanik kayaçların ayrışması ile yerinde oluşmuş (taşınma yok) regolitik zeminler mevcuttur. Bu zeminler, yüzeyden itibaren ana kayaya kadar fiziksel ve jeokimyasal olarak farklı özellik sunan belirgin zonlara ayrılır. Bu zonların kalınlığı bölgenin topografik, jeolojik ve iklim özelliklerine göre değişiklik gösterir.

Çalışmanın ilk aşamasında regolitik zemin kalınlığının 5 metreden fazla olduğu alanlar sismik kırılma yöntemlerinden MASW yöntemi kullanılarak belirlenmiştir. Bunun neticesinde belirlenen çalışma alanında 6 hat boyunca sismik, 6 adet sondaj ve 6 adet CPT deneyi yapılmıştır. Çalışma alanlarında sondajlar susuz ve sadece baskı yöntemiyle uygulanmış, her 50 cm'de bir 86 mm çaplı 60 cm uzunluğunda özel karotiyerler kullanılarak örselenmemiş örnekler alınmıştır. Alınan örneklerin mineralojik, jeokimyasal ve mühendislik özellikleri yerinde ve laboratuvar ortamında yapılan deneyler ile belirlenmiştir. Zemin profilindeki kil türünün belirlenmesi için XRD yöntemi kullanılmış, tüm kayaç analizleri yardımıyla element içeriği (Zeminler için 93 adet tüm kayaç analizi, anakaya örneği için 2 adet tüm kayaç analizi yapılmıştır) belirlenmiş, dane boyutu dağılımı, kıvam limitleri, su içeriği, birim hacim ağırlık (93 adet zemin örneği için elek analizi deneyi, hidrometre deneyi, birim hacim ağırlık deneyi yapılmış, kıvam limitlerini bulmak için plastik limit deneyinden 279 adet, düşen koni yöntemi için 440 adet) deneyleri yapılmış, kayma direnci parametreleri (93 adet örselenmemiş örnek üzerinde toplamda 330 adet kesme kutusu deneyi) bulunmuş ve aynı lokasyonlarda koni(k) penetrasyon deneyi uygulanarak konik uç direnci ve sürtünme oranı bulunmuştur.

Sismik kırılma yöntemlerinden Yüzey Dalgalarının Çok Kanallı Analiz Yöntemi (MASW) uygulanmış, elde edilen enine dalga hızı derinlik modelinden tahmini anakaya derinliği her bir sismik hattı için sırasıyla 11 m, 12.5 m, 12.5 m, 7 m, 9 m ve 11 m olarak bulunmuştur. Aynı zaman da derinlik boyunca oluşan dalga hızı değişimlerinden yararlanarak ta regolitik zemin profili yaklaşık olarak zonlara ayrılmıştır. Sismik analiz sonucunda Vs₃₀ 404.0 m/sn ile 583.6 m/sn arasında değişmekte ve Vs₃₀ zemin sınıflama sistemine göre yoğun toprak yumuşak kaya olarak adlandırılmaktadır.

Yapılan sondajlar sonucunda anakaya derinliği sırasıyla 9.30 m, 7.20 m, 9.15 m, 5.00 m, 7.90 m ve 7.10 cm olarak bulunmuştur. Sondajlardan her 50 cm'de bir alınan örselenmemiş örnekler üzerinde kesme kutusu deneyi, birim hacim ağırlık deneyi ve örselenmiş örnekler üzerinde ıslak elek analizi, hidrometre deneyi, kıvam limitleri deneyleri, ve özgül ağırlık deneyi gibi laboratuvar deneyleri yapılmıştır. Ayrıca bu örnekler tüm kayaç analizi ve XRD analizi için laboratuvarlara gönderilmiştir.

Sismik kırılma yöntemi ve sondaj yoluyla belirlenen anakaya derinlikleri arasındaki fark regolitik zeminlerin tabanında yer alan saprolitler simik ölçümlerde zemin gibi görmesi, sondajlar da ise bloklu kesime geçildiği için sondajın bitirilmesidir.

İnceleme alanındaki zeminlerde derinlik boyunca alınan örnekler ve anakayadan alınan örnekler üzerinde tüm kayaç analizi yapılmış ve yapılan analiz sonuçları (SiO₂derinlik değişimi, Al₂O₃-derinlik değişimi ve Fe₂O₃-derinlik değişimi) ile bir regolitik zemin profiline ait sonuçlar kıyaslandığında benzer özellik gösterdiği ve çalışma konusu zeminlerin jeokimyasal olarak regolitik zemin olduğu kesinlik kazanmıştır. Bunun neticesinde tüm kayaç analizi sonuçlarına dayanarak zemin profili derinlik boyunca jeokimyasal olarak zonlara ayrılmıştır.

SiO₂'nin derinlikle değişimine bakıldığında A zonunda yüksek, B zonunda azalan bir değişim gösterirken C zonunda sabit olarak ilerlemektedir. Fe₂O₃'nin derinlikle değişimine bakıldığında A zonunda az, B zonunda artan bir değişim gösterirken C zonunda azalarak anakaya geçişine kadar sabit kalmaktadır. B zonunda Fe₂O₃'in yüksek değer göstermesi kimyasal ayrışmanın göstergesidir. Al₂O₃'nin derinlikle değişimine bakıldığında ise, A zonunda az, B zonunda artan bir değişim gösterirken C zonunda artarak anakaya geçişine kadar sabit kalmaktadır

XRD analizi sonucuna göre zemin örneklerinin İllit-Mika türü kil grubunda olduğu sonucuna varılmıştır.

Mühendislik çalışmalarında önemli bir yer tutan yerinde arazi deneylerin den Konik penetrasyon deneyi zeminin derinlik boyunca özelliklerinin belirlenmesi için oldukça kullanışlıdır. Koni penetrasyon deney sonuçlarına göre (Q_{tn} ve F_r) regolitik zeminler zonlara ayrılarak Robertson, 1990'a göre sınıflandırılmış ve buna göre A zonunda ki veriler genellikle 3-4 numaralı alanlara, B zonunda ki veriler genel olarak 3-4-5-8-9 numaralı alanlara ve C zonunda ki veriler de genel olarak 3-4-5-6-8-9 numaralı alanlara düşmektedir.

Robertson 1986 zemin sınıflama abağına göre çalışma alanındaki regolitik zemin türü Kil olarak belirlenmiştir. Robertson 1990 zemin davranış türüne göre de zeminlerin derinlik boyunca Killer (kil-siltli kil), Siltli karışımlar (killi silt-siltli kil), Kumlu karışımlar (siltli kum-kumlu silt), Kumlar (temiz kum-siltli kum), Çok sıkı kum-killi kum ve Çok sert ince daneli zemin olarak davrandığı görülmektedir.

CPT deneyi sonucunda Eslami ve Fellenius (1997) tarafından oluşturulan abağa yerleştirilen veriler (efektif koni direnci ve sürtünme oranı) sonucunda A zonu genel olarak Kil-silt, Siltli kil, Killi silt ve Siltli kum, B zonu genel olarak Kil-silt, Siltli kil, Killi silt ve Siltli kum ve C zonu Killi silt, Siltli kil ve Siltli kum olduğu görülmektedir.

CPT deneyi sonucunda elde edilen veriler ( $Q_t(1-B)+1$  ve sürtünme oranı) Jefferies ve Been (2006) tarafından oluşturulan abağa yerleştirildiğinde A zonu genel olarak Killi-silt, Siltli kil, Siltli kum-Kumlu silt, B zonu genel olarak Killi-silt, Siltli kil ve C zonu Killi silt ve Siltli kil olduğu görülmektedir.

Zeminlerin dane dağılımındaki değişimlerinin incelenmesi için ıslak elek analizi ve hidrometre deneyi yapılmış, alınan sonuçlar birleştirilerek granülometri eğrisi çizilmiş ve her bir sondaj kuyusu için derinlik boyunca dane dağılım yüzdeleri (%) bulunmuştur. Buna göre derinlik boyunca % çakıl oranı A zonunda ve C zonunda yüksek iken B zonunda azdır, % kum oranı A zonunda az, B zonundan C zonuna doğru artmaktadır, % silt oranı A zonundan B zonuna doğru azalmakta iken % kil oranı A ve C zonunda az, B zonunda yüksek değerlere sahiptir.

Regolitik zeminlerin hacim ve kütle-ağırlık parametrelerini belirlemek amacıyla yapılan deneyler sonucunda her bir sondaj kuyusu için elde edilen veriler değerlendirilmiş, birim hacim ağırlık, porozite, boşluk oranı, özgül ağırlık ve doygunluk dereceleri hesaplanmıştır. Ancak alınan sonuçlar neticesinde değerlerin her bir zon içerisinde artış ve azalış gösterdiği regolitik zeminlerin özelliklerini belirlemede etkili olmayacağı kanısına varılmıştır.

Çalışılan zeminler de likit limit ve plastik limit deneyleri yapılmış, her biri için derinlik boyuna tablolar oluşturulmuştur. Likit limit, plastik limit ve plastisite indeksi değerlerinden yararlanarak kıvamlılık indisi, likitlik indisi ve aktivite değeri hesaplanmıştır. Buna bağlı olarak A zonundaki zeminlerin çok sert, B ve C zonundaki zeminlerin akışkan– çok sert olduğu görülmektedir. Likitlik indisine göre A zonunda yarı katı- plastik, B zonunda yarı katı-likit ve C zonunda yarı katı-likit olduğu buunulmuştur. Killerin aktivite değerlerine göre sınıflandırılmasında A ve B zonunda aktif olmayan killer, C zonunda ise aktif olmayan killer-normal killer olduğutespit edilmiştir.

Regolitik zeminlerin dayanım özelliklerinin derinlikle değişimini incelemek için sondajlardan alınan örselenmemiş örneklerde konsolidasyonsuz-drenajsız direkt kesme kutusu deneyi yapılmış ve dayanım parametreleri (içsel sürtünme açısı ve kohezyon) bulunmuştur. Her bir sondaj kuyusunda derinlik boyunca elde edilen kohezyon değerinin derinlikle değişimi incelendiğinde A zonundan B zonuna doğru artan, B zonundan C zonuna doğru azalan bir grafik sergilemektedir. Ancak içsel sürtünme açısının derinlikle değişimine bakıldığında ise A zonundan B zonuna doğru azalan, B ve C zonu içerisinde artış ve azalışlar gösteren bir grafik göstermektedir.

Regolitik zemin profilinde kohezyonun ve kil oranının derinlikle değişimine bakıldığında A zonunda az B zonunda yüksek ve C zonuna doğru azalarak sabit şekilde kalması, kil oranının artmasıyla kohezyon değerinin artığını göstermektedir. Bu durum da kil oranının kohezyon ile doğru orantılı olduğu söylenebilir.

Yapılan birçok çalışmada kohezyon ve içsel sürtünme açısı değerleri arasında bir ilişki oluşturulmuştur. Bu ilişkiler çoğunlukla ya killi zeminler (Aas vd., 1986; Lunne ve Kleven, 1981; Bjerrum, 1972; Lunne, 1976; Bowles, 1996) için ya da kumlu zeminler (Robertson ve Campanelle, 1983; Schmertman, 1978; Kleven vd., 1986; Kulhawy ve Mayne, 1990; Mitchell ve Keaveny, 1986; Durgunoğlu ve Mitchell, 1975; Janbu ve Senneset, 1974) için uygulanmaktadır. Ancak bir karışım profili olan regolitik zeminler için böyle bir çalışma yoktur. Derinlik boyunca özellikleri değişen regolitik zeminlerin indeks ve dayanım özellikleri arasında istatistiksel ilişkilerle sonuca gitmek yanıltıcı olabilir. Çalışma da toplamda 93 adet kesme kutusu deneyi (her bir örnek için 93*3), 93 adet likit limit deneyi (her bir örnek için 93*4), 93 adet plastik limit deneyi (her bir örnek için 93*3), 93 adet ıslak elek analizi, 93 adet hidrometre deneyi ve derinlik boyunca da konik penetrasyon deneyi yapılmasına rağmen istatistiksel olarak anlamlı ilişkiler yakalanmış ancak T-testi ile yapılan ortalamaların ilişkili olmadığı görülmüştür. Bu sebeple maksimum ve minumum değerlerden faydalanarak (Tablo 5.1) basit kullanışlı bir tablo önerilmektedir (Tablo 5.2).

		Kohezyon (c, kPa)	İçsel sürtünme açısı (Ø, °)	Kaba tane ortalaması	İnce tane ortalaması	LL (%)	PL (%)	PI (%)	Koni uç direnci (qt, kPa)	Sürtünme oranı (fs, Mpa)
A zonu	mak	70	54	39	79	47	37	19	8,59	7,63
	min.	29	8	21	61	22	17	3	1,23	4,12
	ort.	44	24	28	72	39	27	12	3,02	5,52
B zonu	mak	115	45	34	92	63	46	19	14,53	9,71
	min.	38	4	8	66	38	20	7	1,10	1,50
	ort.	72	22	23	77	52	37	15	4,31	5,57
C zonu	mak	30	42	73	72	58	40	18	23,70	7,91
	min.	16	18	28	27	34	20	6	0,99	3,20
	ort.	23	30	43	57	45	33	13	9,19	5,63

Tablo 5.1. Regolitik zeminlere ait özelliklerin zonlara göre mak., min. ve ort. değerleri

Tablo 5.2. Farklı zonlar için zemin özelliklerine bağlı ayırt edici değerler

	c<30	C zonu
Kohezyon(c, kPa)	30 <c<70< td=""><td>A-B zonu</td></c<70<>	A-B zonu
	c>70	B zonu
jagal gürtünma aalal (0 °)	Ø>30	C zonu
içsel sultullile açısı (Ø, )	Ø<30	A-B zonu
	Kaba tane>35	C zonu
Kaba tane (Çakıl+Kum) (%)	24 <kaba tane<35<="" td=""><td>A-B zonu</td></kaba>	A-B zonu
	Kaba tane<24	B zonu
	İnce tane<65	C zonu
İnce tane (Silt+Kil) (%)	65<İnce tane<75	A-B zonu
	İnce tane>75	B zonu
Likit limit (%)	LL>45	B zonu

Bu tablo, proje öncesi yapılacak değerlendirmelerde zemin hakkında fikir sahibi olmak açısından son derece basit ve kullanışlıdır. Verilen değerle, proje öncesi yapılan deneylerden elde edilen veriler karşılaştırılarak, örneğin hangi zondan alındığını tespit etmek ve diğer zonların özelliklerini kolayca tahmin etmeki mümkün olabilecektir.

## 6.KAYNAKLAR

- Aas, G., Lacasse, S., Lunne, I. and Hoeg, K., 1986. Use of In situ Tests for Foundation Design in Clay, Proceedings, In Situ 86, <u>American Society of Civil Engineers</u>, 30.
- Akçay M., 2002. Jeokimya: Temel Kavramlar Ve Uygulamaya Aktarımları. KTÜ Matbaası, KTÜ Matbaası, Trabzon, 368.
- Akgün, A. ve Bulut, F., 2001. Engineering geology of the Arsin-Trabzon section of Trabzon South Expressway possible route, Fouth International Turkish Geology Symposium.
- Akgün, A., Dağ, S. and Bulut, F., 2007. Landslide susceptibility mapping for a landslideprone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. <u>Environmental Geology</u>.
- Akkaya, A. B., 2011. Bir Mikrotünel Makinesinin Farklı Jeolojik Ortamlarda Kazı Performansının Araştırılması, Doktora Tezi, İ.T.Ü., Fen Bilimleri Enstitüsü, İstanbul.
- Arslan, M., Tüysüz, N., Korkmaz, S. and Kurt, H., 1997. Geochemistry and petrogenesis of the eastern Pontide volcanic rocks, northeast Turkey, <u>Chemie Der Erde-Geochemistry</u>, 57, 157-187.
- Arslan, M., Temizel, İ. and Abdioğlu, E., 2002. Subduction input versus source enrichment and role of crustal thickening in the generation of Tertiary magmatic in the Pontid Paleo-Arc setting, NE Turkey, Workshop-Short Course on Volcanic Systems, Geochemical and Geophysical Monitoring, Melt inclusions: Methods, applications and problems, Napoli, Italya, Eylül, Bildiriler kitabı, 13-16.
- Arslan, M., Kadir, S., Abdioğlu, E. ve Kolaylı, H., 2006. Origin and formation of kaolin minerals in saprolite of Tertiary alkaline volcanic rocks, Eastern Pontides, NE Turkey, 41, 597-617.
- Arslan, M., Temizel, İ., Abdioğlu, E., Kolaylı, H., Yücel, C., Boztug, D., et al., 2013. Ar-40-Ar-39 dating, whole-rock and Sr-Nd-Pb isotope geochemistry of post-collisional Eocene volcanic rocks in the southern part of the Eastern Pontides (NE Turkey): implications for magma evolution in extension-induced origin, <u>Contributions to</u> <u>Mineralogy and Petrology</u>, 166, 113-142.
- ASTM D2487-83, 1985. Classification of Soils for Engineering Purposes (Withdrawn 1985), ASTM International, West Conshohocken, PA, 1985, www.astm.org.
- ASTM D3080 / D3080M-11, 2011. Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, ASTM International, West Conshohocken, PA, www.astm.org.

- ASTM D3441-05, 2005. Standard Test Method for Mechanical Cone Penetration Tests of Soil (Withdrawn 2014), ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D422-63, 1994. Standard Test Method for Particle Size Analysis of Soils, Annual Book of ASTM Standards, Vol. 4.08, ASTM International, West Conshohocken, PA.
- ASTM D4318-17e1, 2017. Standard Test Methods for Liquid Limit, Plastic Limit and Plasticity Index of Soils, ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D4718 / D4718M-15, 2015. Standard Practice for Correction of Unit Weight and Water Content for Soils Containing Oversize Particles, ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D698-12e2, 2012. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)), ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D854-14, 2014. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM International, West Conshohocken, PA, www.astm.org.
- Aydın, F., Karsli, O. and Chen, B., 2008. Petrogenesis of the Neogene alkaline volcanics with implications for post-collisional lithospheric thinning of the Eastern Pontides, NE Turkey. Lithos, 104, 249–266.
- Baykan, İ., 2011. Trabzon İli Kırmızı Killerinin Jeoteknik Özelliklerinin Araştırılması, Yüksek Lisans Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon.
- Bektaş, O., Yılmaz, C., Taslı, K., Akdağ, K. and Özgür, S., 1995. Cretaceous rifting of the eastern Pontide carbonate platform (NE Turkey): the formation of carbonates breccias and turbidites as evidences of a drowned platform. <u>Geologia</u>, 57, 1–2, 233–244.
- Birkeland, P. W., 1984. Soils and geomorphology. Oxford, New York.
- Bjerrum, L., 1972. Embankments on Soft Ground, Proceedings of the Specialty Conference, <u>American Society of Civil Engineers</u>, 2, 1-54.
- Bowles, J. E., 1996. Foundation Analysis and Design, 5th ed., The McGraw-Hill Companies.
- Butt, C. R. M., Lintern, M. J. ve Anand, R. R., 2000. Evolution of regoliths and landscapes in deeply weathered terrain-implications for geochemical exploration, <u>Ore Geology</u> <u>Reviews</u>, 16, 167-183.
- Casagrande, A., 1948. Classification and Identification of Soils, Transaction, ASCE, 113, 901-930.

- Cord, A. M, Pinet, P. C, Daydou, Y. and Chevrel, S. D., 2003. Planetary regolith surface analogs: optimized determination of Hapke parameters using multi-angular spectroimaging laboratory data. <u>Icarus</u>, 165, 414–427.
- Dağ, S., Yalçın, A., Dağ, N. ve Bulut, F., 2003. Yol Güzergahlarında Mühendislik Jeolojisi Çalışmaları Trabzon Örneği, Doğu Karadeniz Bölgesi'nin Jeolojisi ve Maden Potansiyeli Sempozyumu.
- Dipova, N., 2011. Zeminlerin Likit Limitinin Tek Nokta Koni Batma Yöntemiyle Belirlenmesi, Jeoloji Mühendisleri Dergisi, 35, 1, 27-42.
- Dubbin, W., 2001. Soils, Natural History Museum Press, 110.
- Durgunoglu, H. T. and Mitchell, J. K., 1973. Static Penetration Resistance of Soils. Research Report Prepared for NASA Headquarters, Washington, D.C., Univ. of California, Berkeley.
- Eggleton, R. A., 2001. The Regolith Glossary, Cooperative Research Centre for Landscape Evolution & Mineral Exploration, 144.
- Erdeve, E., 2006. 100. Yıl Heyelanı (Adana) Jeolojik Jeoteknik İncelemesi, Yüksek Lisan Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana.
- Ersoy, H., Karslı, M. B., Çellek, S., Kul, B., Baykan, İ., ve Parsons, R. L., 2013. Estimation of the soil strength parameters in Tertiary volcanic regolith (NE Turkey) using analytical hierarchy process, Journal Of Earth System Science, 122, 1545-1555.
- Eslami, A. and Fellenius, B. H., 1997. Pile capacity by direct CPT and CPTu methods applied to 102 case histories. <u>Can. Geotech.</u> J., 34, 6, 880–898.
- Eyüboğlu, Y., Bektaş, O., Seren, A., Maden, N., Jacoby, W. R. and Özer, R., 2006. Three axial extensional deformation and formation of the Liassic rift basins in the Eastern Pontides (NE Turkey). <u>Geologica Carpathica</u>, 57, 5, 337–346.
- Eyüboğlu, Y., Bektaş, O. and Pul, D., 2007. Mid Cretaceous olistostromal ophiolitic melange developed in the back-arc basin of the eastern Pontide magmatic arc (NE Turkey). <u>International Geology Review</u>, 49, 12, 1103–1126.
- Güven, D. H., 1993. Doğu Pontidlerin Jeolojisi ve 1/250 000 ölçekli kompilasyonu, MTA, Ankara.
- Güven, D. H., 1998 Trabzon-C30 ve D30 Paftaları. 1/100,000 Ölçekli Açınsama Nitelikli Türkiye Jeoloji Haritaları 59, MTA Genel Müdürlüğü, Ankara.
- Hunt, C. B., 1972. Geology of soils. W. H. freeman, San Francisco.
- IAEG (International Association of Engineering Geology) 1976. Engineering geological maps: A guide to their preparation; The Unesco Press, Paris, 1–79.

- ISRM, 2007. The Complete ISRM Suggested Methods for Characterization, Testing and Monitoring: 1974-2006. Eds: Ulusay and Hudson. Ankara, Turkey.
- Jackson, M. L. and Sherman, G. D., 1953. Chemical weathering of minerals in soils, Agron, 5, 219–318.
- Janbu, N. and Senneset, K., 1974. Effective stress interpretation of in situ static penetration tests. Proceedings of the European Symposium on Penetration Testing, ESOPT, Stockholm. 22, 81-93.
- Jefferies, M. G. and Davies, M. P., 1993. Use of CPTU to estimate equivalent SPT N60. Geotechnical Testing Journal, ASTM, 16, 4, 458-468.
- Jefferies, M. G. and Been, K., 2006. Soil Liquefaction: A critical state approach, Taylor and Francis, Abingdon, ISBN.
- Joyce, M. D., 1982. Site Investigation Practice. E. and F. N. SPON, London, New York, 396.
- Keskin, S., 2007. Güney Doğu (GD) Karadeniz Sahil Kesminin (Trabzon Yöresi) Taraçaları ve Aktif Tektoniği, Yüksek Lisans Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon, 111.
- Kew, G. and Gilkes, R., 2006. Classification, strength and water retention characteristics of lateritic regolith, <u>Geoderma</u>, 136, 184-198.
- Kleven, A., Lacasse, S. and Andersen, K. H., 1986. Foundation engineering criteria for gravity platforms, Soil Parameters for Offshore Foundation Design. Part II, NGI Report 40013-34, April.
- Kul, B., 2012. Yeşilyurt (Trabzon) Heyelanı'nın Jeoteknik Özelliklerinin Araştırılması ve Geriye Dönük Analizlerle Şev Destek Dizaynı, Yüksek Lisans Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon.
- Kul Yahşi, B. and Ersoy, H., 2017. Environmental Problems Caused By Landslides and Floods In Trabzon Province: Düzköy Landslide, ISS2017 2nd International Science Symposium "Science Festival", Tiflis, Gürcistan, Eylül, 24.
- Kul Yahşi, B. and Ersoy, H., 2018. Site characterization and evaluation of the stability of the Yeşilyurt Landslide (Trabzon, NE Turkey) using back analysis method, <u>Journal of</u> <u>Geophysics and Engineering</u>, 15, 927-937.
- Kulhawy, F. H. and Mayne, P. W., 1990. Manual on Estimating Soil Properties for Foundation Design, Electric Power Research Institute, Palo Alto, California.
- Lambe, T. W. ve Whitman, R. V., 1969. Soil Mechanics, John Wiley and Sons, Newyork.
- Levinson, A. A., 1980. Introduction to Exploration Geochemistry. Applied Pub. Co., Calgary, 612.

- Little, A. L., 1971. The engineering classification of residual torpical soils, Soil Mech. & Fdn. Eng. Conf. Proc., Mexico, 1, 1-10.
- Lunne, T., de Ruiter, J. and Eide, O., 1976. Correlation between resistance and vane shear strength in some Scandinavian soft to medium stiff clays. <u>Canadian Geotechnical</u> <u>Journal</u>, 13, 430-441
- Lunne, T. and Kleven, A., 1981. Role of CPT in North Sea Foundation Engineering, In: Symposium on Cone Penetration Engineering Division, ASCE, 49–75.
- McMechan, G. A. and Yedlin, M. J., 1981. Analysis of dispersive waves by wave-field transformation, <u>Geophysics</u>, 46, 869–874.
- Merrill, G. P., 1897. A treatise on rocks, rock-weathering and soils, MacMillan Company, New York, 411.
- Mitchell, J. K. and Keaveny, J. M., 1986. Determining Sand Strength by Cone Penetrometer. In Situ '86, Proc. Spec. Conf.GED ASCE, Virginia Tech., Blacksburg.
- Netterberg, F. and Caiger, J. H., 1983. A Geotechnical classification of calcretes and other pedocretes, The Geological Society, London, Engineering Geology Special Publications, 25, 143-157.
- NEHRP, 2003. Recommended Provisions For New Buildings And Other Structures, FEMA-450, prepared by the Building Seismic Safety Council for the Federal Emergency Management Agency, Washington, DC.
- Oilier, C. D., 1959. A two-cycle theory of tropical pedology, <u>Journal of Soil Science</u>. 10, 137-148.
- Okay, A. I. and Tüysüz, O., 1999. Tethyan sutures of northern Turkey. In "The Mediterranean Basins: Tertiary extension within the Alpine orogen" (eds. B. Durand, L. Jolivet, F. Horváth and M. Séranne), Geological Society, London, Special Publication, 156, 475-515.
- Ollier, C. D. and Galloway, R. W., 1990. The laterite profile, ferricrete and unconformity, <u>Catena</u>, 17, 97-109.
- Özçelik, K., 2013. Zemin İncelemelerinde Standart Penetrasyon ve Koni Penetrasyon Deneyleri, Yüksek Lisans Tezi, İ.T.Ü., Fen Bilimleri Enstitüsü, İstanbul.
- Özsayar, T., Pelin, S. ve Gedikoğlu, A., 1981. Doğu Pontidler'de Kretase. <u>KTÜ Yer</u> <u>Bilimleri Dergisi</u>, 1, 65–114.
- Park, C. B., Miller, R. D. and Xia, J., 1999a. Multi-channel Analysis of Surface Waves (MASW), <u>Geophysics</u>, 64, 3, 800-808.
- Park, C. B., Miller, R. D., Xia, J., Hunter, J. A. and Harris, J. B., 1999b. Higher Mode Observation y the MASW Method, SEG, 524-527.

Peltier, W. R. and Wu, P., 1982. Comments on (Sabadini et al., 1982b), Geophys.Res.

- Rahn, P. H., 1986. Engineering geology, an environmental approach. Elsevier Science Publ. Co. New York. 36.
- Robertson, P. K. and Campanella, R. G., 1983. Interpretation of Cone Penetration Tests Part I: Sand, <u>Canadian Geotechnical Journal</u>, 20, 4, 718-733.
- Robertson, P. K., Campanella, R. G., Gillespie, D. and Greig, J., 1986. Use of Piezometer Cone data. In-Situ'86 Use of In-situ testing in Geotechnical Engineering, GSP 6, ASCE, Reston, VA, Specialty Publication, 1263-1280.
- Robertson, P. K., 1990. Soil classification using the cone penetration test. <u>Canadian</u> <u>Geotechnical Journal</u>, 27, 1, 151-158.
- Rose, A. W., Hawkes, H. E. and Webb, J. S., 1979. Geochemistry in Mineral Exploration. Acedemic Press, New York, 657.
- Sal, Z., 2010. Makaslama Dalga Hızı İle Konik Penetrasyon Testi Sonucu Hesaplanan Geoteknik Parametreler Arasındaki İlişkiler, Yüksek Lisans Tezi Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
- Schmertmann, J. H., Hartmann, J. P. and Brown, P. R., 1978. Improved strain influence factor diagrams, <u>ASCE Journal of the Geotechnical Engineering Division</u>, 104, 1131-1135.
- Semerci, A., 1990.Trabzon ili yerleşim alanının mühendislik jeolojisi açısından incelenmesi, Yüksek Lisans Tezi, KTÜ Fen Bilimleri Enstitüsü, Trabzon, 115.
- Shafique, M., Meijde, M. ve Rossiter, D. G., 2011. Geophysical and remote sensing-based approach to model regolith thickness in a data-sparse environment, <u>Catena</u>, 87, 11-19.
- Sivrikaya, O. ve Toğrol E., 2009. Arazi Deneyleri ve Geoteknik Tasarımda Kullanımları, Birsen Yayınevi, İstanbul.
- Sposito, G., 1985. Chemical models of weathering in soils, <u>The Chemistry of Weathering</u>, 1–18.
- Şen, C., Arslan M. and Van A., 1998. Geochemical and petrological characteristics of the Eastern Pontide Eocene (?) alkaline volcanic province, NE Turkey, <u>Turkish Journal of</u> <u>Earth Sciences</u>, 7, 231-239.
- Şen, C., 2007. Jurassic Volcanism In The Eastern Pontides: Is It Rift Related Or Subduction Related?, <u>Turkish Journal of Earth Sciences</u>, 16, 523-539.
- Taylor, G. M. and Eggleton, R. A., 2001. Regolith Geology and Geomorphology, John Wiley & Sons. Ltd. 375.

- Taylor, G. M. and Eggleton, R. A., 2001. Regolith Geology and Geomorphology: Nature and Process, John Wiley & Sons. Ltd. 384.
- Terzaghi, K., 1929. Interrelationship of load, road and subgrade. Public Roads, 37-64.
- Ulusay, R., 2010. Uygulamalı Jeoteknik Bilgiler (Practical Information for Geotechnical Applications (Updated-Expanded 5th Edition). Jeoloji Mühendisleri Odası Yayını, Güncellenmiş ve Genişletilmiş 5. Baskı, Yayın No., 38, 458.
- URL-1, www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=TRABZON. Trabzon ili mevsim normalleri. 5 Nisan 2017.
- URL-2, www.mgm.gov.tr/veridegerlendirme/yillik-toplam-yagis-verileri.aspx?m=trabzon# B. Trabzon yıllık yağış verileri. 5 Nisan 2017.
- URL-3, www.zeminetudtasarim.com.tr. Zemin etüd ön çalışması. 3 Eylül 2017.
- Wilford, J. and Thomas, M., 2013. Predicting regolith thickness in the complex weathering setting of the central Mt Lofty Ranges, South Australia. <u>Geoderma</u>. 206, 1–13.
- Yücel, C., 2013. Trabzon-Giresun Arasındaki Tersiyer Volkanitlerinin Petrografisi, ⁴⁰Ar-³⁹Ar Jeokronolojisi, Petrokimyası, Sr-Nd-Pb İzotop Jeokimyası ve Petrolojisi, Doktora tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon, 368.

## 7.EKLER



Ek Şekil 3.1. Regolitik zemin profili boyunca alınan örnekler üzerinde yapılan elek analizi deneyi sonucu oluşturulan grafikler













Ek Şekil 3.1'in devamı







Ek Şekil 3.1'in devamı





Ek Şekil 3.1'in devamı



Ek Şekil 3.1'in devamı







Ek Şekil 3.1'in devamı



Ek Şekil 3.1'in devamı





Ek Şekil 3.2. Hidrometre deneyi sonucu oluşturulan grafikler















Ek Şekil 3.2'nin devamı







Ek Şekil 3.2'nin devamı

Ek Şekil 3.2'nin devamı


























Ek Tablo 3.1.	Piknometre deney sonu	ıçları		

	5	SK-1 0-5	0	S	K-1 50 6	6	SI	K-1 66-11	19	SK	-1 119-1	57	SK	2-1 157-2	02	SK	-1 220-2	70
Piknometre Ağırlığı (gr)	30.50	30.19	30.69	30.46	30.52	30.36	48.42	48.64	48.53	48.88	48.65	48.53	30.50	30.19	30.69	48.42	48.64	48.53
Piknometre+Zemin (gr)	38.74	38.44	38.91	38.72	38.77	38.64	56.65	56.90	56.85	57.12	56.89	56.77	38.74	38.44	38.92	56.67	56.88	56.76
Piknometre+Zemin+Su (gr)	86.26	85.90	86.16	86.16	86.01	86.32	153.54	154.70	153.50	154.61	154.34	155.70	86.46	86.10	86.40	153.40	154.49	153.31
Piknometre+Su (gr)	81.02	80.67	80.96	80.97	80.84	81.12	148.23	149.34	148.13	149.33	149.05	150.43	81.02	80.67	80.96	148.23	149.34	148.13
Özgül Ağırlık	2.75	2.73	2.72	2.69	2.68	2.69	2.82	2.85	2.82	2.78	2.79	2.77	2.94	2.93	2.95	2.68	2.67	2.70
Ortalama Özgül Ağırlık		2.73	_		2.69			2.83	_		2.78			2.94			2.68	

	SK	K-1 270-3	320	SK	K-1 310-3	372	SK	K-1 372-4	416	SK	<b>X-1</b> 416-4	463	SK	2-1 463-5	16	SK	2-1 516-5	64
Piknometre Ağırlığı (gr)	49.09	48.88	48.65	30.46	30.52	30.36	48.42	48.64	48.53	48.88	48.65	49.09	48.42	48.64	48.53	30.50	30.19	30.69
Piknometre+Zemin (gr)	57.32	57.11	56.89	38.69	38.77	38.60	56.66	56.89	56.78	57.14	56.91	57.35	56.66	56.88	56.77	38.74	38.43	38.93
Piknometre+Zemin+Su (gr)	155.5	154.5	154.19	86.10	86.00	86.26	153.6	154.7	153.51	154.6	154.4	155.75	153.4	154.5	153.3	86.18	85.86	86.18
Piknometre+Su (gr)	150.4	149.3	149.05	80.97	80.84	81.12	148.2	149.3	148.13	149.3	149.0	150.43	148.2	149.3	148.1	81.02	80.67	80.96
Özgül Ağırlık	2.66	2.71	2.66	2.65	2.67	2.66	2.87	2.86	2.87	2.84	2.85	2.81	2.72	2.75	2.73	2.68	2.70	2.73
Ortalama Özgül Ağırlık		2.68			2.66			2.87			2.83			2.73			2.70	

	SK	K-1 620-6	65	SK	-1 665-7	15	SK	-1 715-7	'60	SK	-1 760-8	807	SK	-1 807-8	80	SK	-1 880-9	30
Piknometre Ağırlığı (gr)	48.88	48.65	49.09	48.42	48.64	48.53	48.42	48.64	48.53	49.09	48.88	48.65	30.50	30.19	30.69	30.46	30.52	30.36
Piknometre+Zemin (gr)	57.12	56.91	57.29	56.65	56.89	56.75	56.79	57.08	57.62	58.05	57.30	57.03	38.74	38.44	38.94	38.69	38.76	38.60
Piknometre+Zemin+Su (gr)	154.57	154.27	155.62	153.42	154.53	153.2	153.25	154.34	153.60	155.6	154.2	153.98	86.28	85.99	86.24	86.26	86.14	86.40
Piknometre+Su (gr)	149.33	149.05	150.43	148.23	149.34	148.1	148.23	149.34	148.13	150.4	149.3	149.05	81.02	80.67	80.96	80.97	80.84	81.12
Özgül Ağırlık	2.75	2.72	2.72	2.71	2.70	2.68	2.50	2.45	2.51	2.42	2.43	2.43	2.77	2.82	2.78	2.80	2.80	2.78
Ortalama Özgül Ağırlık		2.73			2.69			2.49			2.43			2.79			2.80	

	S	SK-2 0-5	0	SF	K-2 50-1	14	Sŀ	K-2 114-1	68	SK	2-2 168-2	18	SK	-2 218-2	.65	SK	-2 265-3	14
Piknometre Ağırlığı (gr)	48.42	48.64	48.53	49.09	48.88	48.65	30.46	48.64	48.53	48.88	48.65	48.53	30.50	30.19	30.69	48.42	48.64	48.53
Piknometre+Zemin (gr)	56.66	56.87	56.77	57.32	57.11	56.89	38.69	56.90	56.85	57.12	56.89	56.77	38.74	38.44	38.92	56.67	56.88	56.76
Piknometre+Zemin+Su (gr)	153.39	154.41	153.25	155.36	154.23	153.97	86.21	154.70	153.50	154.61	154.34	155.70	86.46	86.10	86.40	153.40	154.49	153.31
Piknometre+Su (gr)	148.23	149.34	148.13	150.43	149.33	149.05	80.97	149.34	148.13	149.33	149.05	150.43	81.02	80.67	80.96	148.23	149.34	148.13
Özgül Ağırlık	2.68	2.60	2.64	2.49	2.47	2.48	2.75	2.85	2.82	2.78	2.79	2.77	2.94	2.93	2.95	2.68	2.67	2.70
Ortalama Özgül Ağırlık		2.64			2.48			2.74			2.66			2.64			2.68	

	SK	2-2 314-3	56	SK	-2 356-4	-18	SK	-2 418-4	70	SK	2 470-5	00	SK	-2 500-5	45	SK	-2 545-5	75
Piknometre Ağırlığı (gr)	30.50	30.19	30.69	48.42	48.64	48.53	49.09	48.88	48.65	48.42	48.64	48.53	30.46	30.52	30.36	30.50	30.19	30.69
Piknometre+Zemin (gr)	38.73	38.42	38.92	56.66	56.87	56.76	57.32	57.11	56.88	56.72	56.96	56.85	38.69	38.76	38.60	38.73	38.44	38.92
Piknometre+Zemin+Su (gr)	86.08	85.80	86.11	153.38	154.42	153.27	155.5	154.5	154.17	153.56	154.65	153.47	86.07	86.00	86.25	86.30	85.94	86.22
Piknometre+Su (gr)	81.02	80.67	80.96	148.23	149.34	148.13	150.4	149.3	149.05	148.23	149.34	148.13	80.97	80.84	81.12	81.02	80.67	80.96
Özgül Ağırlık	2.60	2.65	2.67	2.67	2.61	2.66	2.67	2.71	2.65	2.79	2.76	2.79	2.63	2.68	2.65	2.79	2.77	2.77
Ortalama Özgül Ağırlık	2.64 2.6		2.65			2.68			2.78			2.65			2.78			

	SK	2-2 575-6	525	SK	2-2 625-6	75	SK	-2 575-6	525
Piknometre Ağırlığı (gr)	48.42	48.64	48.53	49.09	48.88	48.65	30.46	30.53	30.36
Piknometre+Zemin (gr)	56.65	56.87	56.77	57.32	57.11	56.89	38.70	38.77	38.60
Piknometre+Zemin+Su (gr)	153.39	154.49	153.35	155.75	154.62	154.40	86.39	86.22	86.52
Piknometre+Su (gr)	148.23	149.34	148.13	150.43	149.33	149.05	80.97	80.84	81.12
Özgül Ağırlık	2.68	2.67	2.73	2.83	2.80	2.85	2.92	2.88	2.90
Ortalama Özgül Ağırlık		2.69			2.83			2.90	

	S	SK-3 0-5	0	SH	K-3 50-11	10	SK	2-3 110-1	60	SK	-3 160-2	10	SK	-3 210-2	.60	SK	-3 260-3	14
Piknometre Ağırlığı (gr)	48.42	48.64	48.53	30.50	30.19	30.69	30.46	30.52	30.36	48.42	48.64	48.53	49.09	48.88	48.65	49.09	48.88	48.65
Piknometre+Zemin (gr)	56.72	56.96	56.85	38.73	38.42	38.93	38.69	38.75	38.59	56.64	56.88	56.77	57.32	57.11	56.87	57.32	57.11	56.88
Piknometre+Zemin+Su (gr)	153.56	154.65	153.47	86.11	85.81	86.12	86.04	85.88	86.15	153.24	154.35	153.19	155.55	154.46	154.20	155.55	154.47	154.19
Piknometre+Su (gr)	148.23	149.34	148.13	81.02	80.67	80.96	80.97	80.84	81.12	148.23	149.34	148.13	150.43	149.33	149.05	150.43	149.33	149.05
Özgül Ağırlık	2.79	2.76	2.79	2.62	2.66	2.68	2.60	2.58	2.57	2.56	2.55	2.59	2.65	2.65	2.68	2.65	2.66	2.66
Ortalama Özgül Ağırlık		2.78			2.65			2.59			2.57			2.66			2.66	

	SK	K-3 314-3	365	SK	-3 365-4	14	SK	-3 414-4	66	SK	2-3 466-5	05	SK	-3 505-5	55	SK	2-3 555-6	505
Piknometre Ağırlığı (gr)	48.42	48.64	48.53	30.46	30.52	30.69	30.50	48.64	30.69	30.50	30.19	48.53	30.46	30.52	30.69	49.09	48.88	48.65
Piknometre+Zemin (gr)	56.65	56.87	56.76	38.69	38.75	38.92	38.74	56.87	38.92	38.73	38.42	56.77	38.70	38.75	38.92	57.32	57.12	56.89
Piknometre+Zemin+Su (gr)	153.37	154.42	153.26	86.16	86.01	86.17	86.10	85.80	86.10	86.07	85.79	86.10	86.05	85.95	86.10	155.52	154.47	154.15
Piknometre+Su (gr)	148.23	149.34	148.13	80.97	80.84	80.96	80.97	80.67	80.96	80.97	80.67	80.96	80.97	80.84	80.96	150.43	149.33	149.05
Özgül Ağırlık	2.66	2.61	2.65	2.71	2.69	2.73	2.65	2.65	2.66	2.63	2.65	2.66	2.61	2.64	2.66	2.62	2.66	2.62
Ortalama Özgül Ağırlık		2.64			2.71			2.66			2.64			2.64			2.63	

	SK	K-3 605-6	555	SK	-3 655-7	08	SK	-3 708-7	25	SK	X-3 725-7	75	SK	2-3 775-8	25	SK	-3 825-8	40
Piknometre Ağırlığı (gr)	48.42	48.64	48.53	30.46	30.52	30.69	30.50	30.19	30.69	48.42	48.64	48.53	49.09	48.88	48.65	30.46	30.52	30.36
Piknometre+Zemin (gr)	56.66	56.88	56.76	38.68	38.75	38.93	38.73	38.43	38.92	56.66	56.87	56.76	57.31	57.12	56.88	38.69	38.76	38.59
Piknometre+Zemin+Su (gr)	153.28	154.40	153.20	86.13	86.00	86.10	86.19	85.88	86.14	153.44	154.48	153.27	155.60	154.52	154.17	86.14	86.01	86.32
Piknometre+Su (gr)	148.23	149.34	148.13	80.97	80.84	80.96	81.02	80.67	80.96	148.23	149.34	148.13	150.43	149.33	149.05	80.97	80.84	81.12
Özgül Ağırlık	2.58	2.59	2.60	2.69	2.68	2.66	2.69	2.72	2.70	2.72	2.66	2.66	2.70	2.70	2.65	2.69	2.68	2.72
Ortalama Özgül Ağırlık		2.59	_	ľ	2.68			2.70	_		2.68			2.68			2.70	

	SK	<b>X-3 840-9</b>	015
Piknometre Ağırlığı (gr)	30.50	30.19	30.69
Piknometre+Zemin (gr)	38.73	38.43	38.91
Piknometre+Zemin+Su (gr)	86.32	85.94	86.21
Piknometre+Su (gr)	81.02	80.67	80.96
Özgül Ağırlık	2.81	2.77	2.77
Ortalama Özgül Ağırlık		2.78	

	S	SK-4 0-5	0	S	K-4 50-9	6	SH	K-4 96-15	50	SK	-4 150-1	96	SK	-4 196-2	50	SK	-4 250-3	00
Piknometre Ağırlığı (gr)	48.65	49.09	48.88	48.53	48.64	48.42	49.09	48.88	48.65	48.42	48.64	48.53	49.09	48.88	48.65	48.42	48.64	48.53
Piknometre+Zemin (gr)	56.81	57.13	56.91	56.51	56.57	56.45	57.04	56.82	56.61	56.39	56.57	56.56	57.12	56.85	56.72	56.42	56.69	56.60
Piknometre+Zemin+Su (gr)	154.25	155.57	154.40	152.83	154.00	152.99	155.30	154.20	153.90	152.86	154.10	152.99	155.04	153.98	153.76	153.06	154.30	153.20
Piknometre+Su (gr)	149.05	150.43	149.33	148.13	149.34	148.23	150.43	149.33	149.05	148.13	149.34	148.23	150.43	149.33	149.05	148.13	149.34	148.23
Özgül Ağırlık	2.76	2.77	2.71	2.43	2.43	2.46	2.58	2.59	2.56	2.46	2.50	2.46	2.35	2.40	2.40	2.61	2.61	2.60
Ortalama Özgül Ağırlık		2.75			2.44			2.58			2.47			2.38			2.60	

	SK-4 300-348			SK	X-4 348-3	898	SK	5-4 398-4	50	SK-4 450-500		
Piknometre Ağırlığı (gr)	49.09	48.88	48.65	48.42	48.64	48.53	49.09	48.88	48.65	48.42	48.64	48.53
Piknometre+Zemin (gr)	57.10	56.90	56.68	56.43	56.69	56.60	57.15	56.90	56.70	56.45	56.63	56.58
Piknometre+Zemin+Su (gr)	155.40	154.28	153.99	152.80	154.10	153.03	155.30	154.21	154.00	153.15	154.32	153.29
Piknometre+Su (gr)	150.43	149.33	149.05	148.13	149.34	148.23	150.43	149.33	149.05	148.13	149.34	148.23
Özgül Ağırlık	2.63	2.61	2.60	2.40	2.45	2.47	2.53	2.55	2.60	2.67	2.65	2.69
Ortalama Özgül Ağırlık		2.62			2.44			2.56			2.67	

	SK-6 0-50		SK-6 50-100			SK-6 100-147			SK	-6 147-2	40	SK	SK-6 240-290			6 SK-6 290-350		
Piknometre Ağırlığı (gr)	49.09	48.88	48.65	48.42	48.64	48.53	49.09	48.88	48.65	48.42	48.64	48.53	49.09	48.88	48.65	48.42	48.64	48.53
Piknometre+Zemin (gr)	57.09	56.89	56.64	56.22	56.43	56.33	57.15	56.94	56.71	56.46	56.73	56.58	57.11	56.90	56.65	56.47	56.66	56.59
Piknometre+Zemin+Su (gr)	155.47	154.40	154.12	152.89	154.10	153.00	155.40	154.31	154.00	153.00	154.26	153.10	155.27	154.20	153.89	153.11	154.26	153.16
Piknometre+Su (gr)	150.43	149.33	149.05	148.13	149.34	148.23	150.43	149.33	149.05	148.13	149.34	148.23	150.43	149.33	149.05	148.13	149.34	148.23
Özgül Ağırlık	2.70	2.72	2.74	2.57	2.57	2.57	2.61	2.62	2.59	2.54	2.55	2.53	2.52	2.55	2.53	2.62	2.59	2.58
Ortalama Özgül Ağırlık		2.72	_		2.57			2.61			2.54			2.53			2.59	

	SK-6 350-390		SK-6 390-450			SK-6 450-500			SK	X-6 500-5	48	SK	-6 548-5	90	SK-6 590-640			
Piknometre Ağırlığı (gr)	49.09	48.88	48.65	48.42	48.64	48.53	49.09	48.88	48.65	48.42	48.64	48.53	49.09	48.88	48.65	49.09	48.88	48.65
Piknometre+Zemin (gr)	57.12	56.91	56.70	56.48	56.69	56.58	57.10	56.94	56.69	56.44	56.70	56.57	57.09	56.89	56.66	57.12	56.92	56.72
Piknometre+Zemin+Su (gr)	155.34	154.21	154.01	153.03	154.19	153.05	155.36	154.28	154.09	153.11	154.38	153.21	155.45	154.32	154.07	155.32	154.18	153.97
Piknometre+Su (gr)	150.43	149.33	149.05	148.13	149.34	148.23	150.43	149.33	149.05	148.13	149.34	148.23	150.43	149.33	149.05	150.43	149.33	149.05
Özgül Ağırlık	2.57	2.55	2.61	2.55	2.52	2.49	2.60	2.59	2.68	2.64	2.67	2.63	2.68	2.65	2.68	2.56	2.52	2.56
Ortalama Özgül Ağırlık		2.58			2.52			2.62			2.64			2.67			2.55	

	SK-6 640-695			SK	K-6 695-7	'36	SK	L-6 736-7	63	SK-6 763-790			
Piknometre Ağırlığı (gr)	48.42	48.64	48.53	49.09	48.88	48.65	48.42	48.64	48.53	49.09	48.88	48.65	
Piknometre+Zemin (gr)	56.43	56.65	56.58	57.17	56.92	56.69	56.45	56.65	56.55	57.10	56.93	56.65	
Piknometre+Zemin+Su (gr)	153.03	154.24	153.16	154.73	153.61	153.40	152.49	153.61	152.45	154.83	153.76	153.45	
Piknometre+Su (gr)	148.13	149.34	148.23	150.43	149.33	149.05	148.13	149.34	148.23	150.43	149.33	149.05	
Özgül Ağırlık	2.58	2.58	2.58	2.14	2.14	2.18	2.19	2.14	2.11	2.22	2.22	2.22	
Ortalama Özgül Ağırlık		2.58			2.15			2.15			2.22		

	SK-7 0-45		SK-7 45-103			SK-7 103-154			SK	<b>X-7</b> 154-1	99	SK	-7 199-2	50	SK-7 250-298			
Piknometre Ağırlığı (gr)	49.09	48.88	48.65	48.42	48.64	48.53	49.09	48.88	48.65	48.42	48.64	48.53	49.09	48.88	48.65	48.42	48.64	48.53
Piknometre+Zemin (gr)	57.11	56.88	56.71	56.47	56.68	56.58	57.14	56.91	56.68	56.40	56.67	56.56	57.15	56.85	56.70	56.51	56.70	56.58
Piknometre+Zemin+Su (gr)	155.50	154.37	154.15	153.22	154.36	153.29	155.44	154.32	154.02	152.63	153.79	152.69	155.47	154.35	154.10	153.02	154.12	153.09
Piknometre+Su (gr)	150.43	149.33	149.05	148.13	149.34	148.23	150.43	149.33	149.05	148.13	149.34	148.23	150.43	149.33	149.05	148.13	149.34	148.23
Özgül Ağırlık	2.72	2.70	2.72	2.72	2.66	2.69	2.65	2.64	2.62	2.29	2.24	2.25	2.67	2.70	2.68	2.53	2.46	2.52
Ortalama Özgül Ağırlık		2.71	_		2.69			2.64	_		2.26			2.68			2.50	

	SK-7 298-347		SK-7 347-398			SK-7 398-450			SK	SK-7 450-501			-7 501-5	50	SK	-7 550-6	30	
Piknometre Ağırlığı (gr)	49.09	48.88	48.65	48.42	48.64	48.53	49.09	48.88	48.65	48.42	48.64	48.53	48.42	48.64	48.53	49.09	48.88	48.65
Piknometre+Zemin (gr)	57.11	56.91	56.70	56.43	56.68	56.57	57.14	56.96	56.65	56.46	56.69	56.54	56.42	56.67	56.54	57.14	56.96	56.65
Piknometre+Zemin+Su (gr)	155.24	154.11	153.83	152.89	154.10	152.97	155.31	154.30	153.89	152.88	154.07	152.89	153.16	154.37	153.26	154.93	153.77	153.53
Piknometre+Su (gr)	150.43	149.33	149.05	148.13	149.34	148.23	150.43	149.33	149.05	148.13	149.34	148.23	148.13	149.34	148.23	150.43	149.33	149.05
Özgül Ağırlık	2.50	2.47	2.46	2.46	2.45	2.44	2.54	2.60	2.53	2.44	2.42	2.39	2.69	2.68	2.69	2.27	2.22	2.27
Ortalama Özgül Ağırlık		2.48			2.45			2.56			2.42			2.69			2.25	

	SK	<b>X-7 630-7</b>	00	SK	10	
Piknometre Ağırlığı (gr)	48.42	48.64	48.53	49.09	48.88	48.65
Piknometre+Zemin (gr)	56.44	56.71	56.58	57.11	56.94	56.66
Piknometre+Zemin+Su (gr)	152.62	153.85	152.69	154.85	153.72	153.45
Piknometre+Su (gr)	148.13	149.34	148.23	150.43	149.33	149.05
Özgül Ağırlık	2.27	2.27	2.24	2.23	2.20	2.22
Ortalama Özgül Ağırlık		2.26			2.21	



Ek Şekil 3.3. Likit limit deneyi sonucu oluşturulan grafikler









SK-3-1

34.7

Su içeriği (w, %) 82 09 05

Su içeriği (w, %) 

14 16

SK-3-10

58.7

SK-3-7

61.1

SK-3-4

58.8







Ek Şekil 3.3'ün devamı









18 20







Ek Şekil 3.4. Kesme kutusu deney sonucunda oluşturulan grafikler


















































Ek Şekil 3.4'ün devamı



Ek Şekil 3.4'ün devamı



SV 1	$SiO_2$	$Al_2O_3$	$Fe_2O_3$	MgO	CaO	Na ₂ O	$K_2O$	TiO ₂	$P_2O_5$	MnO	$Cr_2O_3$	Ва	Ni	Sr	Zr	Y	Nb	Sc	LOI	Sum
38-1	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
MDL	0.01	0.01	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.002	5	20	2	5	3	5	1	-5.1	0.01
0-50	63.3330	14.5430	9.5820	0.6501	0.4701	0.0900	0.8202	1.5503	0.1300	0.0300	0.0320	0.0156	0.0038	0.0092	0.0323	0.0023	0.0024	0.0019	8.70	100
50-66	69.8861	11.5410	8.1507	0.5300	0.4900	0.0800	0.7501	1.7702	0.0700	0.0300	0.0310	0.0150	0.0035	0.0083	0.0362	0.0025	0.0031	0.0016	6.60	100
66-119	60.4241	12.3110	16.3847	0.4304	0.2002	0.0400	0.7206	1.3512	0.0601	0.0801	0.0310	0.0170	0.0035	0.0057	0.0280	0.0019	0.0019	0.0014	7.90	100
119-157	64.6359	12.4546	12.3345	0.3905	0.1602	0.0400	0.7108	1.4517	0.0801	0.1502	0.0200	0.0173	0.0037	0.0052	0.0306	0.0020	0.0024	0.0013	7.50	100
157-202	64.4597	13.9164	11.3052	0.3802	0.0900	0.0300	0.9504	1.0305	0.0600	0.0200	0.0120	0.0111	0.0021	0.0035	0.0208	0.0016	0.0014	0.0015	7.70	100
220-270	55.4504	19.6972	11.6043	0.4902	0.0700	0.0400	0.8203	0.9804	0.0700	0.0200	0.0090	0.0152	0.0035	0.0034	0.0177	0.0015	0.0011	0.0019	10.70	100
270-320	54.9682	21.8712	9.1447	0.8204	0.0800	0.0300	0.6403	0.7804	0.0500	0.0500	0.0070	0.0196	0.0035	0.0040	0.0198	0.0018	0.0008	0.0022	11.50	100
310-372	43.1268	25.9181	12.9340	0.5606	0.1702	0.0400	0.5706	1.4416	0.2703	0.1101	0.0080	0.0642	0.0086	0.0255	0.0277	0.0011	0.0043	0.0021	14.70	100
372-416	40.0373	26.4445	13.0419	0.8614	0.3706	0.0801	0.6411	1.5326	0.4508	0.2003	0.0080	0.1105	0.0069	0.0469	0.0306	0.0017	0.0056	0.0020	16.10	100
416-463	35.3796	27.1958	15.3158	0.9216	0.1302	0.0200	0.3005	2.1035	0.9917	0.1402	0.0050	0.1618	0.0055	0.0533	0.0358	0.0023	0.0059	0.0025	17.20	100
463-516	37.6464	25.5186	13.8318	0.9121	0.7417	0.0501	0.4911	1.7139	1.3531	0.1904	0.0060	0.1624	0.0047	0.0959	0.0311	0.0036	0.0055	0.0019	17.20	100
516-564	34.3420	24.6331	13.5402	0.8726	3.1494	0.0903	0.5215	1.9759	3.2998	0.1504	0.0030	0.2345	0.0048	0.1801	0.0380	0.0050	0.0066	0.0024	16.90	100
564-620	36.5948	26.6499	11.7075	1.0816	1.9129	0.1002	0.6009	1.4321	1.7727	0.2103	0.0030	0.1618	0.0035	0.1040	0.0285	0.0029	0.0050	0.0019	17.60	100
620-665	36.8370	24.8119	13.0373	0.9219	2.1645	0.1704	0.4610	1.4631	1.9942	0.1804	0.0040	0.1592	0.0050	0.1162	0.0271	0.0033	0.0049	0.0018	17.60	100
665-715	35.2505	24.2554	14.1523	1.3531	3.3076	0.1203	0.3207	1.5836	2.1148	0.2907	0.0040	0.1114	0.0051	0.0535	0.0287	0.0023	0.0048	0.0022	17.00	100
715-760	38.0676	24.7374	13.4504	0.9815	1.8127	0.1102	0.5208	1.5423	1.4722	0.2003	0.0050	0.1471	0.0052	0.0851	0.0267	0.0028	0.0054	0.0017	16.80	100
760-807	38.8931	24.6663	10.6801	1.2824	2.8854	0.4609	0.9919	1.3125	1.7533	0.1904	0.0060	0.1790	0.0053	0.1268	0.0260	0.0031	0.0050	0.0014	16.50	100
807-880	38.0996	22.9239	11.4770	1.7040	3.8490	0.4511	0.7417	1.4634	1.8644	0.2205	0.0110	0.1755	0.0073	0.1356	0.0261	0.0031	0.0056	0.0015	16.80	100
880-930	40.0280	22.8775	11.4438	1.9592	4.6217	1.1052	1.2659	1.3765	1.7382	0.1708	0.0060	0.1388	0.0045	0.1694	0.0241	0.0028	0.0050	0.0013	13.00	100
Not: değer	ler 100'e ta	mamlanmı	stır.																	
U			,																	
	0:00	11202	E 202	MO	<b>C</b> O	N 20	Vac	<b>T</b> :02	P205	MO	G 202	D	NT.	C	7	37	NT		LOI	C
SK-2	S102	AI2O3	Fe2O3	MgO	CaO	Na2O	K20	1102	P205	MnO	Cr203	Ва	IN1	Sr	Zr	Ŷ	ND	Sc	LOI	Sum
MDI	%	%	%	%	%	%	%	%	%	%	%	%	%	%	% 5	%	%	%	% 5 1	%
MDL	0.01	0.01	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.002	5	20	2	3	3	3	1	-5.1	0.01
0-50	68.4382	10.2372	10.6075	0.4603	0.2602	0.1201	0.5804	1.5911	0.1001	0.0901	0.0390	0.0197	0.0031	0.0059	0.0353	0.0024	0.0031	0.0011	7.40	100
50-114	63.1012	11.5721	12.5822	0.6301	0.4401	0.1600	0.5901	1.4403	0.0900	0.0900	0.0360	0.0198	0.0032	0.0068	0.0306	0.0022	0.0023	0.0013	9.20	100
114-168	66.7171	10.8377	11.8684	0.3502	0.1601	0.0500	0.5304	1.3810	0.1001	0.3102	0.0230	0.0252	0.0026	0.0048	0.0285	0.0019	0.0021	0.0013	7.60	100
168-218	54.9043	20.4027	10.6166	0.5103	0.1401	0.0300	0.7204	0.8105	0.0800	0.0200	0.0130	0.0179	0.0039	0.0034	0.0146	0.0013	0.0011	0.0024	11.70	100
218-265	58.0573	21.9904	6.4430	0.6103	0.1301	0.0600	1.6708	0.5803	0.0600	0.0200	0.0120	0.0365	0.0028	0.0025	0.0134	0.0019	0.0016	0.0022	10.30	100
265-314	36.0949	26.9661	16.4659	0.6006	0.2002	0.0300	0.1902	1.8818	0.0901	0.1001	0.0060	0.0799	0.0251	0.0079	0.0350	0.0006	0.0055	0.0034	17.20	100
314-356	36.1575	25.9541	16.6619	1.0113	0.2503	0.0300	0.2403	1.8925	0.1902	0.1302	0.0080	0.0885	0.0093	0.0149	0.0300	0.0009	0.0045	0.0027	17.30	100
356-418	37.4341	26.6771	14.1355	0.8120	0.2105	0.0401	0.3409	1.6943	0.5915	0.1905	0.0070	0.1150	0.0058	0.0592	0.0319	0.0021	0.0052	0.0029	17.60	100
418-470	37.3397	26.7471	12.0357	0.9320	1.1224	0.1102	0.6013	1.3729	1.3028	0.1804	0.0040	0.1663	0.0048	0.1022	0.0282	0.0054	0.0046	0.0018	17.90	100
470-500	38.5159	24.7788	11.9535	1.4829	1.8637	0.2405	1.0621	1.4729	1.3827	0.2104	0.0060	0.1555	0.0047	0.0962	0.0286	0.0057	0.0048	0.0021	16.70	100
500-545	39.1244	23.3444	12.7442	1.5730	3.2562	0.4709	1.3526	1.3726	1.4528	0.2405	0.0070	0.1799	0.0049	0.1096	0.0273	0.0048	0.0053	0.0017	14.70	100
545-575	50.3469	23.5779	9.5732	0.6802	0.3001	0.0500	0.6302	1.0103	0.1801	0.0600	0.0080	0.0372	0.0051	0.0136	0.0166	0.0017	0.0018	0.0024	13.50	100
575 625																				
575-025	40.2494	22.6734	11.7473	2.0030	4.4265	0.7010	1.2318	1.3520	1.5623	0.2704	0.0060	0.1715	0.0034	0.1474	0.0241	0.0044	0.0047	0.0015	13.40	100

0.2990

0.0060 0.1910 0.0031 0.1210 0.0231

0.0037

0.0058

0.0011 12.9578

100

Ek Tablo 3.2. Regolitik zeminler de derinlik boyunca yapılan tüm kayaç analizi sonuçları ve anakaya tüm kayaç analizi sonuçları

Not: değerler 100'e tamamlanmıştır.

20.6500

12.2500

2.8000 5.9760

0.7410

0.9580 1.2010 1.4124

675-720 40.4000

Ek Tablo 3.2'nin devamı

Ek Tab	lo 3.2'n	in deva	mı																	
SK-3	SiO2	Al2O3	Fe2O3	MgO	CaO	Na2O	K2O	TiO2	P2O5	MnO	Cr2O3	Ba	Ni	Sr	Zr	Y	Nb	Sc	LOI	Sum
513-5	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
MDL	0.01	0.01	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.002	5	20	2	5	3	5	1	-5.1	0.01
0-50	64.7990	10.7448	8.2013	1.7925	2.7738	0.6609	0.9513	1.3919	0.3104	0.2303	0.0340	0.0344	0.0040	0.0246	0.0295	0.0024	0.0023	0.0015	8.00	100
50-110	58.2185	15.5303	10.9072	0.8305	1.1908	0.1801	0.9106	1.2608	0.3302	0.1201	0.0190	0.0333	0.0045	0.0277	0.0239	0.0018	0.0021	0.0015	10.40	100
110-160	50.2077	24.2234	9.9755	0.7004	0.3102	0.0400	0.8505	1.0606	0.0400	0.0200	0.0090	0.0237	0.0047	0.0056	0.0171	0.0009	0.0013	0.0025	12.50	100
160-210	37.2497	28.7306	15.3163	0.6107	0.2703	0.0200	0.5005	1.7419	0.1401	0.0901	0.0070	0.0351	0.0196	0.0130	0.0303	0.0004	0.0051	0.0029	15.20	100
210-260	37.0493	27.7443	15.0904	0.7821	0.2005	0.0301	0.5214	1.6544	0.7620	0.1905	0.0060	0.1620	0.0081	0.1160	0.0292	0.0035	0.0054	0.0027	15.60	100
260-314	38.8741	27.3851	13.2418	0.8314	0.2404	0.0401	0.6411	1.5225	0.5910	0.1603	0.0070	0.1322	0.0065	0.0590	0.0302	0.0028	0.0052	0.0026	16.20	100
314-365	38.1147	27.3865	13.7533	0.8815	0.1603	0.0401	0.5409	1.5927	0.7413	0.1503	0.0060	0.1105	0.0052	0.0452	0.0328	0.0030	0.0053	0.0027	16.40	100
365-414	36.0944	26.5474	14.8765	1.2522	1.0919	0.0601	1.1320	1.5728	1.4326	0.2104	0.0060	0.1872	0.0075	0.0650	0.0258	0.0038	0.0047	0.0020	15.40	100
414-466	36.7477	24.6454	13.0741	1.0419	2.6349	0.0301	0.3707	1.6530	2.1039	0.3707	0.0020	0.1683	0.0041	0.0794	0.0295	0.0030	0.0082	0.0018	17.00	100
466-505	38.5460	24.4445	12.5780	0.9020	1.9343	0.2806	0.7617	1.4031	1.6136	0.2305	0.0050	0.1427	0.0048	0.0735	0.0286	0.0057	0.0055	0.0018	17.00	100
505-555	38.4835	26.4799	11.3028	0.7508	0.9110	0.1402	0.6307	1.3415	1.2214	0.1802	0.0070	0.1125	0.0081	0.0714	0.0275	0.0029	0.0051	0.0026	18.30	100
555-605	44.4778	21.7282	13.7479	0.8912	0.3705	0.0901	0.7009	1.4619	0.6709	0.1802	0.0120	0.0785	0.0089	0.0273	0.0256	0.0018	0.0041	0.0020	15.50	100
605-655	39.2818	24.7352	12.1923	1.1621	2.4545	0.5811	1.0920	1.3625	1.6029	0.5109	0.0030	0.1547	0.0046	0.0995	0.0261	0.0033	0.0049	0.0016	14.70	100
655-708	40.0552	24.9869	12.1/29	1.1021	1.3926	0.1603	0.8215	1.4127	1.1522	0.2405	0.0080	0.1399	0.0056	0.0812	0.0279	0.0033	0.0049	0.0020	16.20	100
708-725	43.6190	20.0701	11.3483 9.1266	2.8072	2 4470	1.3133	2.0752	1.1930	1.3935	0.2105	0.0160	0.2075	0.0058	0.2550	0.0202	0.0022	0.0048	0.0013	0.10	100
775 925	46.0060	21.9949	0.1200 12 5944	1.4429	3.4470	2.3746	2.0430	1.0321	1.0622	0.1405	0.0050	0.1745	0.0052	0.1340	0.0218	0.0023	0.0040	0.0011	9.10	100
225 840	39.1491 40.5520	23.9400	13.3644	1.0442	2.6975	0.3910	1.0527	1.3339	1.4956	0.2506	0.0070	0.1654	0.0000	0.1109	0.0208	0.0033	0.0038	0.0018	12.50	100
823-840	40.5530	20.2314	12.3012	3 2000	5 9000	0.9223	1.3033	1.3733	1.3935	0.2506	0.0100	0.1577	0.0055	0.1314	0.0230	0.0028	0.0047	0.0017	12.30	100
Not: doğorl	ar 100's to	20.2100	12.1000	5.2000	5.7000	0.9700	1.4010	1.2000	1.5100	0.2500	0.0110	0.1550	0.00000	0.1570	0.0210	0.0050	0.0050	0.0021	12.40	100
Not: degen	er 100 e tai	mannannnş	ur.																	
SK-4	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	$P_2O_5$	MnO	Cr ₂ O ₃	Ba	Ni	Sr	Zr	Y	Nb	Sc	LOI	Sum
011-4	0/2	0/2	0/2	0/2	0/2	0/2	0/2	0/2	0/2	0/2	0/2	0/2	0/2	0/2	0/2	0/2	0%	0/2	0/2	0/2

514-4	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
MDL	0.01	0.01	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.002	5	20	2	5	3	5	1	-5.1	0.01
0-50	61.5951	15.6715	9.9773	0.5504	0.1901	0.0701	0.6205	1.3010	0.0300	0.0100	0.0230	0.0146	0.0039	0.0050	0.0243	0.0018	0.0025	0.0016	9.9	100
50-96	54.9020	17.1969	13.4354	0.6603	0.2301	0.0800	0.6002	1.1605	0.0300	0.0200	0.0250	0.0166	0.0042	0.0058	0.0231	0.0018	0.0021	0.0013	11.6	100
96-150	62.4826	12.5245	12.3645	0.4702	0.3001	0.1300	0.6102	1.2905	0.0800	0.0600	0.0260	0.0160	0.0028	0.0053	0.0281	0.0018	0.0025	0.0014	9.6	100
150-196	55.8845	20.3489	9.5942	0.5903	0.0900	0.0500	0.6903	0.9304	0.0400	0.0200	0.0110	0.0148	0.0037	0.0041	0.0178	0.0012	0.0015	0.0021	11.7	100
196-250	56.8762	21.1034	8.4454	0.5403	0.1601	0.0500	0.6604	0.8505	0.0400	0.0200	0.0080	0.0130	0.0030	0.0029	0.0152	0.0011	0.0009	0.0022	11.2	100
250-300	52.1908	23.3327	9.5393	0.5205	0.1802	0.0500	0.4504	1.0610	0.0601	0.0400	0.0080	0.0171	0.0055	0.0065	0.0198	0.0011	0.0024	0.0022	12.5	100
300-348	39.0223	28.3917	12.5060	0.7622	0.2206	0.0501	0.3109	1.3940	0.7522	0.1304	0.0050	0.1338	0.0077	0.1314	0.0242	0.0028	0.0058	0.0024	16.1	100
348-398	42.8325	23.3258	11.4374	1.5537	2.7065	0.9523	1.6038	1.2630	1.0425	0.2807	0.0050	0.1323	0.0080	0.0842	0.0231	0.0118	0.0052	0.0016	12.7	100
398-450	43.1857	23.2916	12.5779	1.2628	1.3730	1.1024	1.8441	1.3831	0.6815	0.2906	0.0060	0.1484	0.0091	0.0771	0.0249	0.0062	0.0055	0.0018	12.7	100
450-500	45.3855	21.3691	11.0606	1.9153	3.2390	1.5142	2.0356	1.2334	0.9125	0.1905	0.0080	0.1628	0.0060	0.0970	0.0236	0.0102	0.0050	0.0017	10.8	100

Not: değerler 100'e tamamlanmıştır.

Ek Tablo 3.2'nin devamı

SV 6	SiO2	Al2O3	Fe2O3	MgO	CaO	Na2O	K2O	TiO2	P2O5	MnO	Cr2O3	Ba	Ni	Sr	Zr	Y	Nb	Sc	LOI	Sum
3K-0	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
MDL	0.01	0.01	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.002	5	20	2	5	3	5	1	-5.1	0.01
0-50	59.9543	14.0698	12.1271	0.7511	0.8111	0.3004	0.5007	1.6123	0.1702	0.1702	0.0340	0.0279	0.0036	0.0178	0.0300	0.0020	0.0031	0.0010	9.4	100
50-100	60.2961	13.7940	10.7119	1.5962	1.0039	0.3815	1.1545	1.3352	0.1807	0.1907	0.0361	0.0302	0.0059	0.0181	0.0223	0.0020	0.0027	0.0016	9.2	100
100-147	62.7554	13.7043	10.4709	0.5806	0.3604	0.1502	0.8108	1.6017	0.2002	0.2302	0.0290	0.0381	0.0052	0.0156	0.0313	0.0022	0.0031	0.0013	9.0	100
147-240	54.1384	18.8808	11.4687	0.6210	0.3205	0.0901	0.7412	1.6527	0.2905	0.1102	0.0200	0.0674	0.0082	0.0351	0.0284	0.0023	0.0041	0.0014	11.5	100
240-290	40.6877	24.9276	15.1389	0.9318	0.2405	0.0601	0.5010	1.6632	0.5811	0.1302	0.0100	0.1122	0.0073	0.0415	0.0292	0.0026	0.0044	0.0023	14.9	100
290-350	41.8483	24.2379	12.9249	1.6719	0.3804	0.0801	1.2514	1.4016	0.6407	0.1302	0.0140	0.1065	0.0054	0.0525	0.0258	0.0043	0.0042	0.0022	15.2	100
350-390	36.5312	24.7182	15.7207	1.5430	1.5831	0.0902	0.5110	1.7133	1.4729	0.2605	0.0080	0.1852	0.0066	0.0832	0.0297	0.0049	0.0059	0.0022	15.5	100
390-450	37.8996	25.3433	14.7427	1.3639	1.2536	0.1003	0.5817	1.6347	1.2536	0.2006	0.0080	0.1537	0.0057	0.0748	0.0279	0.0043	0.0047	0.0023	15.3	100
450-500	36.2911	24.9457	15.6450	1.5034	2.3352	0.1804	0.6414	1.7038	1.6537	0.2806	0.0060	0.1559	0.0054	0.0816	0.0265	0.0041	0.0055	0.0022	14.5	100
500-548	38.1107	23.9845	14.7273	1.6230	2.5648	0.3206	1.0920	1.5328	1.4226	0.3106	0.0070	0.1541	0.0058	0.0810	0.0261	0.0039	0.0051	0.0020	14.0	100
590-640	41.2522	24.1464	14.3416	1.1217	0.9514	0.1202	0.5709	1.6024	0.8513	0.1803	0.0120	0.1253	0.0063	0.0571	0.0284	0.0034	0.0048	0.0022	14.6	100
640-695	43.0957	20.8363	12.6481	2.1849	4.2194	0.9722	1.5033	1.3831	1.4833	0.2606	0.0100	0.1468	0.0053	0.0928	0.0242	0.0031	0.0046	0.0018	11.1	100
695-736	43.2472	20.8112	12.8077	1.7351	3.4301	0.7522	1.2236	1.4442	1.4543	0.2307	0.0100	0.1800	0.0054	0.0957	0.0262	0.0030	0.0048	0.0016	12.5	100
736-763	39.2844	21.6119	13.6929	2.2855	4.4006	0.3609	0.6415	1.4936	1.7442	0.2406	0.0060	0.2550	0.0039	0.1088	0.0269	0.0037	0.0049	0.0016	13.8	100
763-790	53.8193	15.7002	12.3659	1.4619	2.4632	0.2503	0.6909	1.5420	0.8110	0.2603	0.0200	0.1073	0.0046	0.0514	0.0295	0.0029	0.0044	0.0014	10.4	100

Not: değerler 100'e tamamlanmıştır.

SK-7	SiO2	Al2O3	Fe2O3	MgO	CaO	Na2O	K2O	TiO2	P2O5	MnO	Cr2O3	Ba	Ni	Sr	Zr	Y	Nb	Sc	LOI	Sum
511-7	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
MDL	0.01	0.01	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.002	5	20	2	5	3	5	1	-5.1	0.01
0-45	59.3480	13.6433	12.5222	0.8008	0.8308	0.2703	0.8008	1.5215	0.1802	0.1602	0.0330	0.0270	0.0038	0.0117	0.0302	0.0021	0.0029	0.0015	9.8	100
45-103	61.4100	11.6943	9.4778	2.1463	2.9286	0.8124	1.2236	1.2838	0.1906	0.1805	0.0421	0.0304	0.0075	0.0170	0.0239	0.0021	0.0022	0.0020	8.5	100
103-154	67.5479	10.2888	9.9886	0.8107	0.8808	0.3403	0.6906	1.6014	0.1701	0.1601	0.0370	0.0235	0.0038	0.0100	0.0334	0.0024	0.0029	0.0013	7.4	100
154-199	66.4844	10.5154	11.7161	0.4502	0.2401	0.1301	0.6003	1.6008	0.1801	0.1701	0.0360	0.0210	0.0039	0.0068	0.0342	0.0023	0.0029	0.0011	7.8	100
199-250	50.6576	12.1538	23.9573	0.3804	0.1602	0.0601	0.5406	1.1413	0.1902	0.4505	0.0290	0.0288	0.0044	0.0051	0.0233	0.0015	0.0028	0.0013	10.2	100
250-298	55.2055	14.9750	15.4155	0.7908	0.7608	0.2202	0.7107	1.3113	0.1802	0.2202	0.0240	0.0289	0.0046	0.0098	0.0259	0.0016	0.0034	0.0013	10.1	100
298-347	39.9037	26.6426	14.5041	0.8320	0.2205	0.0401	0.6515	1.2930	0.4009	0.3007	0.0060	0.0783	0.0080	0.0494	0.0260	0.0016	0.0048	0.0015	15.0	100
347-398	38.6229	26.2363	15.6035	0.8919	0.3107	0.0501	0.9019	1.2427	0.4209	0.4209	0.0040	0.0850	0.0062	0.0365	0.0264	0.0014	0.0050	0.0012	15.1	100
398-450	39.3620	27.3862	13.9885	1.0213	0.2904	0.0501	1.0113	1.2517	0.4005	0.1702	0.0070	0.0675	0.0057	0.0331	0.0270	0.0016	0.0048	0.0013	14.9	100
450-501	39.4062	27.0291	14.4015	0.9721	0.2706	0.0401	0.9421	1.2828	0.4410	0.2205	0.0050	0.0778	0.0067	0.0365	0.0275	0.0018	0.0052	0.0012	14.8	100
501-550	37.4021	26.1845	17.2124	1.0726	0.2606	0.0301	0.9724	1.2531	0.6015	0.1403	0.0030	0.0614	0.0038	0.0299	0.0269	0.0026	0.0054	0.0011	14.7	100
550-630	38.4438	26.2773	13.7800	1.3630	1.6436	0.0501	1.1425	1.2928	1.2126	0.2004	0.0020	0.0736	0.0029	0.0458	0.0280	0.0034	0.0058	0.0010	14.4	100
630-700	41.6965	24.0915	12.2212	1.5139	3.0879	0.7720	1.7445	1.1730	1.1028	0.2005	0.0020	0.2624	0.0024	0.1641	0.0255	0.0031	0.0054	0.0009	11.9	100
700-710	44.5280	21.2764	10.4076	1.8750	5.0634	1.4338	1.8950	1.0027	0.9024	0.1404	0.0020	0.5493	0.0027	0.4642	0.0220	0.0025	0.0044	0.0008	10.4	100

Not: değerler 100'e tamamlanmıştır.

V	SiO2	A12O3	Fe2O3	MgO	CaO	Na2O	K2O	TiO2	P2O5	MnO	Cr2O3	Ba	Ni	Sr	Zr	Y	Nb	Sc	LOI	Sum
Kayaç Örneği	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Ornegi	0.01	0.01	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.002	5	20	2	5	3	5	1	-5.1	0.01
SK-1	41.8808	14.0806	7.2810	4.6133	15.5148	2.6075	2.1362	0.9227	0.9527	0.1705	0.0060	0.1046	0.0023	0.3764	0.0167	0.0019	0.0038	0.0012	9.33	100
SK-2	40.0841	13.0670	9.9157	7.7980	15.3753	0.3513	1.3147	1.4653	1.5556	0.1505	0.0251	0.1753	0.0105	0.4530	0.0199	0.0020	0.0048	0.0022	8.23	100

Not: değerler 100'e tamamlanmıştır.

## ÖZGEÇMİŞ

Bilgehan KUL YAHŞİ, 05.04.1986 tarihinde Trabzon'da doğdu. İlköğrenimini 1997 yılında Çarşıbaşı Gazi İlkokulu'nda, orta öğrenimini 2000 yılında Cudibey İlköğretim Okulu'nda, lise öğrenimini 2003 yılında Trabzon Lisesi'nde tamamladıktan sonra 2004 yılında Karadeniz Teknik Üniversitesi, Mühendislik-Mimarlık Fakültesi Jeoloji Mühendisliği Bölümü'ne başladı. Bu bölümden 2009 yılında mezun oldu. Aynı yıl Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Jeoloji Mühendisliği Anabilim dalı, Uygulamalı Jeoloji Bilim dalında Yüksek Lisans'ına başladı ve 2012 yılında Yüksek Lisans'ını tamamladı. 2012 yılında Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Jeoloji Mühendisliği Anabilim dalı, Uygulamalı Jeoloji Bilim dalında doktoraya başladı. 2017-2018 yılları arasında 3 ay İstanbul Teknik Üniversitesi'nde bulundu. 2014 yılından itibaren Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Jeoloji Mühendisliği Anabilim dalında Araştırma Görevlisi olarak görev almaktadır.