KARADENİZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

JEOLOJİ MÜHENDİSLİĞİ ANABİLİMDALI

TRABZON-GİRESUN ARASINDAKİ TERSİYER VOLKANİTLERİNİN PETROGRAFİSİ, ⁴⁰Ar-³⁹Ar JEOKRONOLOJİSİ, PETROKİMYASI, Sr-Nd-Pb İZOTOP JEOKİMYASI VE PETROLOJİSİ

DOKTORA TEZİ

Jeoloji Yüksek Mühendisi Cem YÜCEL

HAZİRAN 2013 TRABZON

KARADENİZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

JEOLOJİ MÜHENDİSLİĞİ ANABİLİM DALI

TRABZON-GİRESUN ARASINDAKİ TERSİYER VOLKANİTLERİNİN PETROGRAFİSİ, ⁴⁰Ar-³⁹Ar JEOKRONOLOJİSİ, PETROKİMYASI, Sr-Nd-Pb İZOTOP JEOKİMYASI VE PETROLOJİSİ

Jeoloji Yüksek Mühendisi Cem YÜCEL

Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsünce "DOKTOR (JEOLOJİ MÜHENDİSLİĞİ)" Unvanı Verilmesi İçin Kabul Edilen Tezdir.

Tezin Enstitüye Verildiği Tarih: 24.05.2013Tezin Savunma Tarihi: 20.06.2013

Tez Danışmanı : Prof. Dr. Mehmet ARSLAN

Trabzon 2013

Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü Jeoloji Mühendisliği Ana Bilim Dalında Cem YÜCEL Tarafından Hazırlanan

TRABZON-GİRESUN ARASINDAKİ TERSİYER VOLKANİTLERİNİN PETROGRAFİSİ, ⁴⁰Ar-³⁹Ar JEOKRONOLOJİSİ, PETROKİMYASI, Sr-Nd-Pb İZOTOP JEOKİMYASI VE PETROLOJİSİ

başlıklı bu çalışma, Enstitü Yönetim Kurulunun 28/05/2013 gün ve 1507 sayılı kararıyla oluşturulan jüri tarafından yapılan sınavda

DOKTORA TEZİ

olarak kabul edilmiştir.

Jüri Üyeleri

Başkan : Prof. Dr. Ercan ALDANMAZ

Üye : Prof. Dr. Mehmet ARSLAN

Üye :Prof. Dr. Cüneyt ŞEN

Üye : Prof. Dr. Kenan GELİŞLİ

Üye : Doç. Dr. Emel ABDİOĞLU

lluce

Prof. Dr. Sadettin KORKMAZ Enstitü Müdürü

ÖNSÖZ

Bu çalışma Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü Jeoloji Mühendisliği Anabilim Dalın'da "Doktora Tezi" olarak hazırlanmıştır. Tez kapsamında Trabzon-Giresun illeri arasında yüzeyleme veren Tersiyer yaşlı volkanitlerin, volkanik fasiyes, petrografik, mineral kimyası, ⁴⁰Ar-³⁹Ar jeokronolojik, tüm kayaç ve izotop jeokimyası özellikleri yardımıyla kökenleri ve jeodinamik gelişimleri irdelenmiştir.

Bölgenin jeodinamik gelişiminin aydınlatılmasına önemli katkı sağlayacağını düşündüğüm bu çalışmayı bana öneren, beni yönlendiren, çalışmanın başlangıcından sonuna kadar bilgi, deneyim ve tecrübesiyle, maddi ve manevi destekleriyle beni cesaretlendiren saygıdeğer hocam Prof. Dr. Mehmet ARSLAN'a teşekkürü borç bilirim.

Bu çalısmanın gerçeklesmesinde önemli maddi destek sağlayan 108Y204 nolu ÇAYDAG projesi için TÜBİTAK ve 771 nolu BAP projesi için Karadeniz Teknik Üniversitesi yönetimlerine teşekkür ederim. Doktora Tez İzleme Komitesi'nin değerli üyeleri sayın Prof. Dr. Cüneyt ŞEN ve Prof. Dr. Kenan GELİŞLİ'ye ilgi ve desteklerinden dolayı teşekkür ederim. Bilgi, tecrübe ve görüşleriyle tez çalışması sırasında bana yardımcı olan değerli hocalarım Doç. Dr. Emel ABDİOĞLU, Dr. İrfan TEMİZEL'e, tez çalışması sırasında bana yardımcı olan Arş.Gör. Ufuk Celal YAĞCIOĞLU'na ve tüm arkadaşlarıma teşekkürlerimi sunarım. Mineral kimyası (EPMA) analizleri Clermont-Ferrant Magma ve Volkan Elektron Mikroprop Laboratuari'nda (Fransa) gerçekleştirilmiş olup, çalışmalarda emeği geçen Jean-Luc DEVIDAL'e; tüm-kayaç analizlerinin yapılmasında yardımcı olan ACME Analiz Laboratuarları Ltd. (Kanada) teknisyenlerine teşekkür ederiz. 40 Ar-39 Ar yaslandırması Dr. Gilles RUFFET'ın (Geosciences Rennes, Fransa), Sr ve Nd izotop analizleri Dr. Jean Jacques PEUCAT'ın (Geosciences Rennes, Fransa) bilimsel işbirliği çerçevesinde gerçekleştirilmiştir. Sr ve Nd izotop analizlerinde yardımcı olan teknisyen David VILBERT'e (Geosciences Rennes, Fransa) ve Pb izotop analizlerini yapan ActLab Analiz laboratuarları Ltd. (Kanada) teknisyenlerine teşekkür ederim.

Doktora çalışmamın başından sonuna kadar her zaman varlığını ve desteğini hissettiğim sevgili eşim ve kızıma ve ayrıca öğrenim hayatım boyunca desteklerini esirgemeyen ailemin diğer fertlerine şükranlarımı borç bilirim.

Cem YÜCEL Trabzon, 2013

TEZ BEYANNAMESİ

Doktora Tezi olarak sunduğum "Trabzon-Giresun Arasındaki Tersiyer Volkanitlerinin Petrografisi, ⁴⁰Ar-³⁹Ar Jeokronolosi, Petrokimyası, Sr-Nd-Pb İzotop Jeokimyası ve Petrolojisi" başlıklı bu çalışmayı baştan sona kadar danışmanım Prof. Dr. Mehmet ARSLAN'ın sorumluluğunda tamamladığımı, verileri/örnekleri kendim topladığımı, deneyleri/analizleri ilgili laboratuarlarda yaptığımı/yaptırdığımı, başka kaynaklardan aldığım bilgileri metinde ve kaynakçada eksiksiz olarak gösterdiğimi, çalışma sürecinde bilimsel araştırma ve etik kurallara uygun olarak davrandığımı ve aksinin ortaya çıkması durumunda her türlü yasal sonucu kabul ettiğimi beyan ederim.

Cem YÜCEL

İÇİNDEKİLER

		<u>Sayfa No</u>
ÖNSÖZ		III
TEZ BEYAI	NNAMESİ	IV
İÇİNDEKİL	ER	V
ÖZET		XI
SUMMARY	,	XII
ŞEKİLLER	DİZİNİ	XIII
TABLOLAF	R DİZİNİ	XXIX
SEMBOLLE	ER DİZİNİ	XXXV
1.	GENEL BİLGİLER	1
1.1.	Çalışmanın Amacı ve Kapsamı	1
1.2.	Çalışma Alanının Konumu	2
1.3.	Bölgesel Jeoloji	
1.4.	Önceki Çalışmalar	6
2.	YAPILAN ÇALIŞMALAR	
2.1.	Giriş	
2.2.	Arazi Çalışmaları	
2.3.	Mikroskobik Tayinler	
2.4.	Kimyasal Analizler	
2.4.1.	Elektron Mikroprob Analizleri	
2.4.2.	Tüm Kayaç Analizleri	
2.4.3.	Jeokronolojik Yaşlandırma ve Kökensel İzotop Analizleri	
2.4.3.1.	⁴⁰ Ar- ³⁹ Ar Yaşlandırması	
2.4.3.1.1.	⁴⁰ Ar- ³⁹ Ar Yaşlandırması İçin Örnek Hazırlama	
2.4.3.1.1.1.	Örnek Öğütme	
2.4.3.1.1.2.	Örneklerin Yıkanması	
2.4.3.1.1.3.	Mineral ve Hamur Fazlarının Ayrımı	
2.4.3.2.	Sr-Nd-Pb İzotop Analizleri	
2.5.	Büro Çalışmaları	
3.	BULGULAR	

3.1.	Giriş	
3.2.	Stratigrafi	
3.2.1.	Üst Kretase Yaşlı Bazalt- Andezit ve Piroklastitleri	
3.2.2.	Üst Kretase Yaşlı Riyolit, Riyodasit ve Piroklastitleri	
3.2.3.	Üst Kretase Yaşlı Kumtaşı, Marn, Şeyl, Killi Kireçtaşı Tüf Ardal	anması 38
3.2.4.	Eosen Yaşlı Bazaltik, Andezitik, Trakitik Lav, Dayk, Sil ve Pirok	lastitleri 39
3.2.4.1.	Piroklastitler	
3.2.4.1.1.	Volkanik Breşler	
3.2.4.1.2.	Tüfler	
3.2.4.2.	Lavlar	
3.2.4.2.1.	Yastık Lav	
3.2.4.2.2.	Bazaltik Lav	
3.2.4.3.	Dayklar ve Siler	
3.2.4.3.1.	Bazaltik Dayk ve Sil	
3.2.4.3.2.	Andezitik Dayk ve Dom	
3.2.4.3.3.	Trakitik Dayk	
3.2.5.	Miyosen Yaşlı Bazik Dayk, Sil, Lav ve Piroklastitleri	
3.2.5.1.	Piroklastitler	
3.2.5.2.1.	Foidli Volkanik Breş	
3.2.5.2.2.	Tüf	
3.2.5.2.	Foidli Breşik Lav	
3.2.5.3.	Foidli Dayk ve Sil	
3.2.5.4.	Kümülofirik Dokulu Klinopiroksen-Flogopit Nodülleri	50
3.2.6.	Miyosen Yaşlı Silttaşı, Marn, Kiltaşı Ardalanması	50
3.2.7.	Pliyosen Yaşlı Volkanoklastitler	
3.2.8.	Kırmızı Killer	
3.2.9.	Taraça	
3.2.10.	Alüvyon	53
3.3.	Petrografi	
3.3.1.	Eosen Yaşlı Volkanitlerin Petrografisi	
3.3.1.1.	Piroklastitler	
3.3.1.1.1.	Volkanik Breş	
3.3.1.1.2.	Tüf	55

3.3.1.2.	Lavlar	
3.3.1.2.1.	Yastık Lav	57
3.3.1.2.2.	Bazaltik Lav	59
3.3.1.3.	Dayklar ve Siler	61
3.3.1.3.1.	Bazaltik Dayk ve Sil	61
3.3.1.3.2.	Andezitik Dayk ve Dom	
3.3.1.3.3.	Trakitik Dayk	
3.3.2.	Miyosen Yaşlı Volkanitlerin Petrografisi	
3.3.2.1.	Piroklastitler	
3.3.2.1.1.	Foidli Volkanik Breş	66
3.3.2.1.2.	Tüf	
3.3.2.2.	Foidli Breşik Lav	69
3.3.2.3.	Foidli Dayk ve Sil	71
3.3.3.	İncelenen Volkanitlerdeki Dengesizlik Dokuları	
3.4.	Mineral Kimyası	
3.4.1.	Eosen Yaşlı Volkanitlerin Mineral Kimyası	
3.4.1.1.	Volkanik Breş	
3.4.1.1.1.	Klinopiroksen	
3.4.1.1.2.	Feldispat	
3.4.1.1.3.	Olivin	
3.4.1.1.4.	Hornblend	
3.4.1.1.5.	Fe-Ti Oksit	80
3.4.1.2.	Lavlar	
3.4.1.2.1.	Yastık Lav	
3.4.1.2.1.1.	Klinopiroksen	
3.4.1.2.1.2.	Feldispat	
3.4.1.2.1.3.	Olivin	
3.4.1.2.1.4.	Fe-Ti Oksit	
3.4.1.2.2.	Bazaltik Lav	
3.4.1.2.2.1.	Klinopiroksen	
3.4.1.2.2.2.	Feldispat	86
3.4.1.2.2.3.	Olivin	
3.4.1.2.2.4.	Biyotit	

3.4.1.2.2.5.	Fe-Ti oksit	
3.4.1.3.	Dayklar ve Siler	
3.4.1.3.1.	Bazaltik Dayk ve Sil	
3.4.1.3.1.1.	Klinopiroksenler	
3.4.1.3.1.2.	Feldispat	
3.4.1.3.1.3.	Olivin	
3.4.1.3.1.4.	Hornblend	
3.4.1.3.1.5.	Biyotit	
3.4.1.3.1.6.	Fe-Ti Oksit	
3.4.1.3.2.	Andezitik Dayk ve Dom	
3.4.1.3.2.1.	Klinopiroksen	
3.4.1.3.2.2.	Feldispat	
3.4.1.3.2.3.	Biyotit	
3.4.1.3.2.4.	Fe-Ti Oksit	101
3.4.1.3.3.	Trakitik Dayk	101
3.4.1.3.3.1.	Klinopiroksen	101
3.4.1.3.3.2.	Feldispat	103
3.4.1.3.3.3.	Biyotit	
3.4.1.3.3.4.	Fe-Ti Oksit	104
3.4.2.	Miyosen Yaşlı Volkanitlerin Mineral Kimyası	106
3.4.2.1.	Foidli Volkanik Breş	106
3.4.2.1.1.	Klinopiroksen	106
3.4.2.1.2.	Feldispat	108
3.4.2.1.3.	Analsim	108
3.4.2.1.4.	Fe-Ti Oksit	109
3.4.2.2.	Foidli Breşik Lav	109
3.4.2.2.1.	Klinopiroksen	109
3.4.2.2.2.	Feldispat	111
3.4.2.2.3.	Olivin	111
3.4.2.2.4.	Hornblend	112
3.4.2.2.5.	Analsim	112
3.4.2.2.6.	Fe-Ti Oksit	113
3.4.2.3.	Foidli Dayk ve Sil	

3.4.2.3.1.	Klinopiroksen	114
3.4.2.3.2.	Feldispat	115
3.4.2.3.3.	Hornblend	115
3.4.2.3.4.	Biyotit	116
3.4.2.3.5.	Analsim	117
3.4.2.3.6.	Apatit	117
3.4.2.3.7.	Fe-Ti Oksit	118
3.5.	Jeotermobarometre Hesaplamaları	119
3.5.1.	Jeotermometre, Hidrometre ve Oksijen Fugasitesi Hesaplamaları	119
3.5.1.1.	Olivin-Ergiyik Termometresi	119
3.5.1.2.	Plajiyoklas Termometresi ve Hidrometresi	120
3.5.1.3.	Klinopiroksen Termometresi	122
3.5.1.4.	Hornblend Termometresi, Hidrometresi ve Oksijen Fugasitesi	126
3.5.1.5.	Biyotit Termometresi ve Oksijen Fugasitesi	127
3.5.2.	Jeobarometre Hesaplamaları	130
3.5.2.1.	Klinopiroksen Barometresi	130
3.5.2.2.	Hornblend Barometresi	131
3.5.2.3.	Biyotit Barometresi	133
3.6.	⁴⁰ Ar- ³⁹ Ar Termokronolojisi	133
3.6.1.	Yastık Lav	133
3.6.2.	Bazaltik Lav	134
3.6.3.	Bazaltik Dayk ve Siler	138
3.6.4.	Andezitik Dayk ve Dom	141
3.6.5.	Trakitik Dayk	145
3.6.6.	Foidli Breşik Lav	149
3.6.7.	Foidli Dayk ve Sil	151
3.6.8.	"Cognate" İnklüzyon	153
3.7.	Jeokimya	154
3.7.1.	Tüm Kayaç Jeokimyası	154
3.7.1.1.	Giriş	154
3.7.2.	Volkanik Kayaçların Kimyasal Adlaması	155
3.7.3.	Ana ve İz Element Jeokimyası	158
3.7.4.	Uyumsuz Element Değişimleri	165

3.7.5.	Nadir Topark Element Değişimleri	167
3.7.6.	Tektonik Ortam	170
3.8.	Sr-Nd-Pb İzotop Jeokimyası	174
3.9.	Tersiyer Yaşlı Volkanitlerin Petrojenezi	182
3.9.1.	Ana Magmanın Kökeni	182
3.9.1.1.	Kaynak Alanda Granat ve Spinelin Varlığı	184
3.9.1.2.	Kaynak Alanda Sulu Fazların Varlığı	191
3.9.2.	Kısmi Ergime	193
3.9.3.	Ayrımlaşma (Fraksiyonel Kristallenme-FC)	197
3.9.3.1.	Tersiyer Volkanitlerinin Gelişimde Etkili Olan Ayrımlaşmanın Jeokimyasal Modellemesi	201
3.9.4.	Asimilasyon ve Fraksiyonel Kristallenme (AFC)	213
3.9.4.1.	Tersiyer Volkanitlerin Gelişiminde Etkili Olan Asimilasyon ve Fraksiyonel Kristallenmenin (AFC) Jeokimyasal Modellemesi	214
3.9.5.	Magma Karışımı	225
4.	İRDELEME VE TARTIŞMA	231
4.1.	Volkanitlerin Yerleşim Ortamı ve Soğuma Koşulları	231
4.2.	Ana Magmaların Gelişimi	232
4.3.	Dengesizlik Parametreleri	241
4.4.	Magma Odası Olayları	247
4.5.	Jeodinamik Gelişim Modeli	250
5.	SONUÇLAR	255
6.	ÖNERİLER	259
7.	KAYNAKLAR	260
8.	EKLER	286
ÖZGEGNÍG		

ÖZGEÇMİŞ

Doktora Tezi

ÖZET

TRABZON-GİRESUN ARASINDAKİ TERSİYER VOLKANİTLERİNİN PETROGRAFİSİ, ⁴⁰Ar-³⁹Ar JEOKRONOLOJİSİ, PETROKİMYASI, Sr-Nd-Pb İZOTOP JEOKİMYASI VE PETROLOJİSİ

Cem YÜCEL

Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü Jeoloji Mühendisliği Anabilim Dalı Danışman: Prof. Dr. Mehmet ARSLAN 2013, 285 sayfa, 82 Ek sayfalar

Trabzon-Giresun arasındaki Tersiyer volkanitlerinin petrografik, mineral kimyası, ⁴⁰Ar-³⁹Ar jeokronolojisi, tüm-kayaç ve Sr-Nd-Pb izotop jeokimyası verileri kullanılarak petrolojisi irdelenmiştir. Hafif alkali karakterli Eosen volkanitleri (42.4-44.7 My), bazalt, traki-bazalt ve bazaltik traki-andezit (BTB) ve trakit, traki-andezit (TT) takımlarından, orta alkali afiniteye sahip Miyosen volkanitleri (5.8-6.0 My) ise bazanit-tefrit (BT) takımından oluşmaktadır. Tüm takımlar; BİLE, Th ve Ce'ca zenginleşmiş, YÇAE'ce fakirleşmiş N-OOSB'a normalize iz element dağılımları ile yitim izi gösterirler. Eosen yaşlı takımlar hafif derecede zenginleşmiş (La_N/Lu_N=4.65-11.64) ve Miyosen yaşlı takım ise yüksek oranda zenginleşmiş (La_N/Lu_N=36.43-69.0) kondrite normalize NTE dağılımları sergilemektedir. Eosen takımlarında $({}^{87}\text{Sr}/{}^{86}\text{Sr})_i$ (0.703893-0.704479), $({}^{143}\text{Nd}/{}^{144}\text{Nd})_i$ (0.512680-0.512794), $\Delta7/4Pb$ (10.68-14.69) ve $\Delta8/4Pb$ (52.53-63.30), Miyosen takımında ise $({}^{87}\text{Sr}/{}^{86}\text{Sr})_i$ (0.705178-0.705362), $({}^{143}\text{Nd}/{}^{144}\text{Nd})_i$ (0.512666-0.512689), $\Delta 7/4\text{Pb}$ (11.81-13.53), $\Delta 8/4$ Pb (46.94-52.53) arasında değişmektedir. İncelenen volkanitler; çarpışma sonrası genleşme jeodinamik evrimine sahip olup, yitim akışkan±ergiyikleri ile zenginleşmiş spinel-granat(?) içeren litosferik mantodan türeyen ana magmalardan karmaşık magmatik süreçlerle farklılaşmışlardır.

Anahtar Kelimeler: Doğu Pontidler, alkali volkanitler, mineral kimyası, petrokimya, Sr-Nd-Pb izotopları, ⁴⁰Ar-³⁹Ar yaşlandırması.

PhD Thesis

SUMMARY

PETROGRAPHY, ⁴⁰Ar-³⁹Ar GEOCHRONOLOGY, PETROCHEMISTRY, Sr-Nd-Pb ISOTOPE GEOCHEMISTRY, AND PETROLOGY OF TERTIARY VOLCANIC ROCKS BETWEEN TRABZON AND GİRESUN AREAS

Cem YÜCEL

Karadeniz Technical University The Graduate School of Natural and Applied Sciences Geological Engineering Supervisor: Prof. Dr. Mehmet ARSLAN 2013, 285 Pages, 82 Pages Appendix

Tertiary volcanic rocks between Trabzon and Giresun areas were investigated by using petrography, mineral chemistry, ⁴⁰Ar-³⁹Ar geochronology, whole-rock and Sr-Nd-Pb isotope geochemistry data. Mildly alkaline Eocene volcanic rocks (42.4-44.7 Ma) comprise of basalt, trachybasalt and basaltic trachyandesite (BTB) and trachyte, trachyandesite (TT) suites, and medium alkaline Miocene volcanic rocks (5.8-6.0 My) consist of basanitetephrite (BT) suite. N-MORB normalized trace element distributions of the all suites are characterized by enrichment in LILEs, Th and Ce, and depletion in HFSEs, implying a subduction fingerprint. Chondrite normalized REE patterns of the rocks display slight enrichment with La_N/Lu_N=4.65-11.64 for the Eocene aged suites whereas high enrichment patterns with $La_N/Lu_N=36.43-69.0$ for the Miocene aged suites. $({}^{87}Sr/{}^{86}Sr)_i$, $({}^{143}Nd/{}^{144}Nd)_i$, $\Delta 7/4$ Pb and $\Delta 8/4$ Pb values are (0.703893-0.704479), (0.512680-0.512794), (10.68-14.69) and (52.53-63.30) in the Eocene suites whereas (0.705178-0.705362), (0.512666-0.512689), (11.81-13.53) and (46.94-52.53) values in the Miocene suites, respectively. The studied volcanic rocks have evolved a post-collisional extension geodynamic setting, and were differentiated via complex magmatic processes from parental magmas derived from spinel-garnet(?) bearing lithospheric mantle source which were enriched by subduction related fluids \pm melts.

Key Words: Eastern Pontides, alkaline volcanics, mineral chemistry, petrochemistry, Sr-Nd-Pb isotopes, ⁴⁰Ar-³⁹Ar dating.

ŞEKİLLER DİZİNİ

Say	vfa	No	

Şekil 1.1.	Çalışma alanını ve çevresinde yüzeyleme veren volkano-stratigrafik birimleri gösteren yer bulduru haritası (Güven, 1993; Arslan vd., 2007'den değiştirilerek)	2
Şekil 1.2.	Ana sütür zonları ve kıtasal blokları gösteren Türkiye ve yakın çevresinin tektonik haritası (Okay ve Tüysüz, 1999)	4
Şekil 3.1.	Trabzon-Giresun arasında yüzeyleme veren Tersiyer yaşlı volkanitler ve çevreleyen birimlere ait genel jeoloji haritası (Üst Kretase birimleri Güven (1993) ve Kurt vd., (2006)'dan değiştirilerek)	34
Şekil 3.2.	Trabzon-Giresun arasında yüzeyleme veren Tersiyer yaşlı volkanitlerin genelleştirilmiş stratigrafik kolon kesiti	35
Şekil 3.3.	İnceleme alanında; (a, b) Trabzon İli şehir merkezi güneyinde Değirmendere Vadisi'nde yüzeyleme veren bazaltik proklastitler; (c, d) Akçaabat ilçesi güneyinde, Akpınar yöresinde yüzeyleme veren bazaltların yakından görünümü	36
Şekil 3.4.	Şalpazarı yöresi güneyinde yüzeyleme veren (a) riyolit ve (b) riyolitik piroklastitlerin görünümü	37
Şekil 3.5.	Çalışma alanında (a) Gürbulak beldesi civarında, (b,c) Şalpazarı yöresi güneyinde, (d) Düzköy ilçesi kuzey doğusunda yüzeyleme veren Üst Kretase yaşlı kireçtaşlarının görünümü	38
Şekil 3.6.	Çalışma alanında (a) Tonya yöresinde tüflerle ardalanmalı olarak bulunan volkanik breşler ve (b) bu kayaçlarda gözlemlenen eksfoliasyon yapıları	40
Şekil 3.7.	Çalışma alanında (a, b) yüzeyleme veren tüflerin yakından görünümü, (c) tüf-marn ardalanması, (d) tüfler içerisindeki marn ara seviyeleri	41
Şekil 3.8.	Çalışma alanında yüzeyleme veren (a) altere olmamış normal yastık yapılı lavlar, (b) mega yastık yapılı lavlar, (c) Işınsal çatlaklar gösteren yastık lavlar, (d) yassılaşmış yastık yapılı lavlar, (e) yastık lavlar arasında kalan boşlukları dolduran tortullar, (f) yastık lavlar arasında yer alan tortul seviyelerin görünümü	42
Şekil 3.9.	Çalışma alanında yüzeyleme veren (a, b) prizmatik yapılı lavların görünümü, (c, d) bazaltik lav akmalarının görünümü	43
Şekil 3.10.	Çalışma alanında (a, b) yüzeyleme veren bazaltik daykların görünümü, (c) buket/demet görünümlü soğuma yapısı sunan bazaltik dayk, (d) Yoroz Burnu mevkiinde yüzeyleme veren bazaltik silin görünümü	44
Şekil 3.11.	Çalışma alanında (a, b) andezitik daykların görünümü, (c) trakitik dayk tarafından düşey yönde kesilen andezitik dayk, (d) andezitik domun yakından görünümü	45

Şekil 3.12.	Çalışma alanında (a) trakitik daykın görünümü, (b) trakitik daykı kesen normal fay, (c) bazaltik ve andezitik daykları kesen trakitik dayk, (d) bozuşmuş yastık lavları kesen trakitik daykın görünümü	46
Şekil 3.13.	Çalışma alanında Trabzon şehir merkezi ve çevresinde yüzeyleme veren (a, b) Miyosen yaşlı breşlerin görünümü	47
Şekil 3.14.	Çalışma alanında Trabzon şehir merkezi ve çevresinde yüzeyleme veren Miyosen yaşlı (a) breşik lavlar, (b) tekrarlanmalı lav akmaları (c) lav katmanları arasındaki tortular, (d) merceğimsi şekilli lav loblarının görünümü	49
Şekil 3.15.	Çalışma alanında, Trabzon şehir merkezi içerisinde yer alan (a) foidli dayk, (b) Sarraf Tepe'de Üst Kretase yaşlı birimler içerisinde yüzeyleme veren foidli silin görünümü	49
Şekil 3.16.	Çalışma alanında foidli breşik lavlar içerisinde yer alan kümülofirik dokulu, klinopiroksen ve flogopit içeren "cognate inklüzyon"un görünümü	50
Şekil 3.17.	Çalışma alanında, (a) Kaymaklı Mahallesi ve çevresinde yüzeyleme veren sarı-gri renkli kumlu killi silttaşı. Trabzon şehir merkezi ve çevresinde yer alan (b) Pliyosen yaşlı volkanoklastitler, (c) kırmızı killer, (d) Trabzon merkez ve çevresinde yüzeyleme veren denizel taraçalar	51
Şekil 3.18.	Eosen yaşlı volkanik breşlerden alınan çakılların ince kesit görünümleri; (a) klinopiroksen (kpir) ve plajiyoklas (pl) mineralleri (TN, Örnek No:118), (b) klinopiroksen (kpir) minerali (TN, Örnek No:114), (c) olivin (ol) ve albit ikizi gösteren plajiyoklas (TN, Örnek No:118), (d) kenarları opaklaşmış hornblend (hbl) (TN, Örnek No:114), (e, f) plajiyoklas ve opak kapanımı içeren klinopiroksenler (TN ve ÇN, Örnek No:250), (g) elek dokusu ve kenarlarda yeniden büyüme zarfları gözlenen plajiyoklaslar (ÇN, Örnek No:240), (h) zonlu plajiyoklas ve öz şekilsiz klinopiroksen (ÇN, Örnek No:240)	56
Şekil 3.19.	Eosen yaşlı tüflerin ince kesit görünümü; (a) litik tüf (ÇN, Örnek No:108), (b) litik kristal tüf (TN, Örnek No:108) (lit: kayaç parçası, kpir: klinopiroksen)	57
Şekil 3.20.	Eosen yaşlı yastık lavların mikroskopik görünümü; (a, b) mikrolitik pofirik doku içerisinde özşekilli olivin kapanımları içeren klinopiroksen (kpir), özşekilsiz olivin (ol) fenokristalleri ve plajiyoklas (pl) mikrofenokristalleri (ÇN ve TN, Örnek No:301), (c, d) zonlu klinopiroksenlerde gözlenen elek dokusu, opak ve olivin kapanımları (ÇN ve TN, Örnek No:301), (e, f) özşekilli klinopiroksenlerde gözlenen hamur tarafından yenmeler ve igdingsitleşmiş olivinler (ÇN ve TN, Örnek No:373)	58
Şekil 3.21.	Eosen yaşlı bazaltik lavların mikroskopik görünümü; (a, b) özşekilli klinopiroksen (kpir), öz şekilsiz olivin (ol) ve plajiyoklas (pl) mikrolitleri (ÇN ve TN, Örnek No:331), (c) hamur tarafından kemirilmiş, korrede olmuş klinopiroksen ve plajiyoklas (ÇN, Örnek No:511), (d) zonlu plajiyoklas, öz şekilsiz biyotit (bt), klinopiroksen	

- Eosen yaşlı bazaltik dayk ve sillerin mikroskopik görünümü; (a) Şekil 3.22. kenarları hamur tarafından kemirilmiş, olivin kapanımları içeren klinopiroksen (kpir), (CN, Örnek No:801), (b) kenarları hamur tarafından kemirilmiş, kalıntı merkez içeren klinopiroksen (CN, Örnek No:801), (c) elek dokusu ve kenarlarda yeniden büyüme zarfı içeren plajiyoklas (pl) opaklaşmış biyotit (bt), (TN, Örnek No:399), (d) elek dokusu gösteren plajiyoklas (ÇN, Örnek No:399) (e) özşekilli ve klinopiroksen icerisinde kapanım olarak bulunan olivinler (ol. CN. Örnek No:801), (f) kümülofirik olarak bulunan öz sekilsiz olivin taneleri (CN, Örnek No:399), (g) öz şekilli hornblend (hbl), (TN, Örnek No:121). (h) bivotit mikrolitleri ve kenarları kemirilmis

Şekil 3.28.	Miyosen yaşlı foidli dayk ve sillerin mikroskop görünümü; (a, b) zonlu
	ve ergime dokusu gösteren klinopiroksen fenokristalleri (kpir) (ÇN, TN,
	Örnek No:603), (c, d) biyotit (bt), apatit (ap) ve analsim (an) (CN, TN,
	Örnek No:603), (e, f) hornblend fenokristalleri (hbl) (TN ve CN), (g, h)
	klinopiroksen, apatit, analsim (TN ve ÇN, Örnek No:603)

Şekil 3.32.	Eosen yaşlı volkanik breşler içerisinde yer alan klinopiroksenlerin Ti'ye	
	karşı Al ^[T] diyagramı (Mitchel ve Bergman, 1991; Conticelli, 1998;	
	Perini vd., 2000; Perini ve Conticelli, 2000)	. 77

Şekil 3.35.	Eosen	yaşlı	volkanik	breşler	içerisinde	bulunan	hornblendlerin	
	sınıflar	na diya	gramı (Lea	ke vd., 19	997)			80

Şekil 3.38.	Eosen yaşlı yastık lavlar içerisinde yer alan klinopiroksenlerin Ti'ye	
	karşı Al ^[T] diyagramı (Mitchel ve Bergman, 1991; Conticelli, 1998;	
	Perini vd., 2000; Perini ve Conticelli, 2000)	82

Şekil 3.39.	Eosen yaşlı yastık lavlar içerisinde yer alan feldispatların Or-Ab-An diyagramında sınıflandırılması (Deer ve diğ., 1966)	83
Şekil 3.40.	Yastık lavlar içerisinde yer alan olivinlerin $Mg/(Fe^{+2} + Mg)$ 'ye karşı CaO diyagramı. Ayrım çizgileri Thompson ve Gibson (2000)'den alınmıştır	84
Şekil 3.41.	Yastık lavlar içerisinde yer alan Fe-Ti oksitlerin bileşimini gösteren üçgen diyagram	84
Şekil 3.42.	Eosen yaşlı bazaltik lavlar içerisinde yer alan klinopiroksenlerin; (a) Ca-Mg-Fe üçgen sınıflama diyagramı (Morimoto vd., 1988), (b) Ti-Na- Al ^[IV] üçgen sınıflama diyagramı (Papike vd., 1974)	86
Şekil 3.43.	Eosen yaşlı bazaltik lavlar içerisinde yer alan klinopiroksenlerin Ti'ye karşı Al ^[T] diyagramı (Mitchel ve Bergman, 1991; Conticelli, 1998; Perini vd., 2000; Perini ve Conticelli, 2000)	86
Şekil 3.44.	Eosen yaşlı bazaltik lavlar içerisinde yer alan feldispatların Or-Ab-An diyagramında sınıflandırılması (Deer vd., 1966)	87
Şekil 3.45.	Eosen yaşlı bazaltik lavlar içerisinde yer alan olivinlerin Mg/(Fe ⁺² + Mg) diyagramı. Ayrım çizgisi Thompson ve Gibson (2000)'den alınmıştır	88
Şekil 3.46.	Eosen yaşlı bazaltik lavlar içerisinde yer alan biyotitlerin; (a) $Fe^{[T]} + Mn + Ti$ (apfu)'ya karşı Mg – Li (apfu) sınıflama diyagramı (Tischendorf vd., 1997), (b) Mg – $Al^{[IV]} + Fe^{+2} + Ti - Fe^{+2} + Mn^{+2}$ üçgen sınıflama diyagramı (Foster, 1960), (c) $Al^{[T]}$ (apfu)'ya karşı Fe/(Fe+Mg) sınıflama diyagramı (Speer, 1984)	89
Şekil 3.47.	Eosen yaşlı bazaltik lavlar içerisinde yer alan biyotitlerin; (a) orojenik bölge ayırtman diyagramı (Speer, 1987) (A: Anorojenik alkalen bölgelerdeki biyotit, C: Kalkalkalin orojenik bölgelerdeki biyotit, P: Peralümin (S tipi) bölgelerdeki biyotit), (b) 10*TiO ₂ – FeO ^[T] + MnO – MgO ayırtman üçgen diyagramı (Nachit vd., 2005)	89
Şekil 3.48.	Eosen yaşlı bazaltik lavlar içerisinde yer alan Fe-Ti oksitlerin bileşimini gösteren üçgen diyagram	. 90
Şekil 3.49.	Eosen yaşlı bazaltik dayk ve siller içerisinde yer alan klinopiroksenlerin; (a) Ca-Mg-Fe üçgen sınıflama diyagramı (Morimoto vd., 1988). (b) Ti-Na-Al ^[IV] üçgen sınıflama diyagramı (Papike vd., 1974)	91
Şekil 3.50.	Eosen yaşlı bazaltik dayk ve siller içerisinde yer alan klinopiroksenlerin Ti'ye karşı Al ^[T] diyagramı (Mitchel ve Bergman, 1991; Conticelli, 1998; Perini vd., 2000; Perini ve Conticelli, 2000)	92
Şekil 3.51.	Eosen yaşlı bazaltik dayk ve siller içerisinde yer alan feldispatların Or- Ab-An diyagramında sınıflandırılması (Deer vd., 1966)	92
Şekil 3.52.	Bazaltik dayk ve siller içerisinde yer alan olivinlerin Mg/(Fe ⁺² + Mg)'e karşı CaO diyagramı. Ayrım çizgisi Thompson ve Gibson (2000)'den alınmıştır	93

Şekil 3.53.	Bazaltik dayk ve siller içerisinde bulunan hornblendlerin sınıflama diyagramı (Leake vd., 1997)	94
Şekil 3.54.	Bazaltik dayk ve siller içerisinde yer alan biyotitlerin; (a) $Fe^{[T]} + Mn + Ti (apfu)'ya karşı Mg - Li (apfu) sınıflama diyagramı (Tischendorf vd., 1997), (b) Mg - Al^{[VI]} + Fe^{+2} + Ti - Fe^{+2} + Mn^{+2} üçgen sınıflama diyagramı (Foster, 1960), (c) Al^{[T]} (apfu) ya karşı Fe/(Fe+Mg) sınıflama diyagramı (Speer, 1984)$	95
Şekil 3.55.	Bazaltik dayk ve siller içerisinde yer alan biyotitlerin; (a) orojenik bölge ayırtman diyagramı (Speer, 1987) (A: Anorojenik alkalen bölgelerdeki biyotit, C: Kalkalkalin orojenik bölgelerdeki biyotit, P: Peralümin (S tipi) bölgelerdeki biyotit), (b) $10*TiO_2 - FeO^{[T]} + MnO - MgO$ üçgen ayırtman diyagramı (Nachit vd., 2005)	96
Şekil 3.56.	Bazaltik dayk ve siller içerisinde yer alan Fe-Ti oksitlerin bileşimini gösteren üçgen diyagram	96
Şekil 3.57.	Eosen yaşlı andezitik dayk ve domlar içerisinde yer alan klinopiroksenlerin; (a) Ca-Mg-Fe üçgen sınıflama diyagramı (Morimoto vd., 1988), (b) Ti-Na-Al ^[IV] üçgen sınıflama diyagramı (Papike vd., 1974)	97
Şekil 3.58.	Eosen yaşlı andezitik dayk ve domlar içerisinde yer alan klinopiroksenlerin Ti'ye karşı Al ^[T] diyagramı (Mitchel ve Bergman, 1991; Conticelli, 1998; Perini vd., 2000; Perini ve Conticelli, 2000)	98
Şekil 3.59.	Eosen yaşlı andezitik dayk ve domlar içerisinde yer alan feldispatların Or-Ab-An diyagramında sınıflandırılması (Deer vd., 1966)	99
Şekil 3.60.	Eosen yaşlı andezitik dayk ve domlar içerisinde yer alan biyotitlerin; (a) $Fe^{[T]} + Mn + Ti$ (apfu)'ya karşı Mg – Li (apfu) sınıflama diyagramı (Tischendorf vd., 1997), (b) Mg – Al ^[IV] + Fe ⁺² + Ti – Fe ⁺² + Mn ⁺² üçgen sınıflama diyagramı (Foster, 1960), (c) Al ^[T] (apfu)'ya karşı Fe/(Fe+Mg) sınıflama diyagramı (Speer, 1984)	00
Şekil 3.61.	Eosen yaşlı andezitik dayk ve domlar içerisinde yer alan biyotitlerin; (a) orojenik bölge ayırtman diyagramı (Speer, 1987) (A: Anorojenik alkalen bölgelerdeki biyotit, C: kalkalkalin orojenik bölgelerdeki biyotit, P: peralümin (S tipi) bölgelerdeki biyotit), (b) 10*TiO ₂ – FeO ^[T] + MnO – MgO üçgen ayırtman diyagramı (Nachit vd., 2005)	00
Şekil 3.62.	Eosen yaşlı andezitik dayk ve domlar içerisinde yer alan Fe-Ti oksitlerin bileşimini gösteren üçgen diyagram1	01
Şekil 3.63.	Eosen yaşlı trakitik dayklar içerisinde yer alan klinopiroksenlerin; (a) Ca-Mg-Fe üçgen sınıflama diyagramı (Morimoto vd., 1988), (b) Ti-Na- Al ^[IV] üçgen sınıflama diyagramı (Papike vd., 1974)	02
Şekil 3.64.	Eosen yaşlı trakitik dayklar içerisinde yer alan klinopiroksenlerin Ti'ye karşı Al ^[T] diyagramı (Mitchel ve Bergman, 1991; Conticelli, 1998; Perini vd., 2000; Perini ve Conticelli, 2000)	03
Şekil 3.65.	Eosen yaşlı trakitik dayklar içerisinde yer alan feldispatların Or-Ab-An diyagramında sınıflandırılması (Deer vd., 1966)	03

Şekil 3.66.	Eosen yaşlı trakitik dayklar içerisinde yer alan biyotitlerin; (a) $Fe^{[T]} + Mn + Ti$ (apfu)'ya karşı Mg – Li (apfu) sınıflama diyagramı (Tischendorf vd., 1997), (b) Mg – $Al^{[IV]} + Fe^{+2} + Ti - Fe^{+2} + Mn^{+2}$ üçgen sınıflama diyagramı (Foster, 1960), (c) $Al^{[T]}$ (apfu)'ya karşı Fe/(Fe+Mg) sınıflama diyagramı (Speer, 1984)	. 105
Şekil 3.67.	Eosen yaşlı trakitik dayklar içerisinde yer alan biyotitlerin; (a) orojenik bölge ayırtman diyagramı (Speer, 1987) (A: Anorojenik alkalen bölgelerdeki biyotit, C: kalkalkalin orojenik bölgelerdeki biyotit, P: peralümin (S tipi) bölgelerdeki biyotit), (b) $10*TiO_2 - FeO^{[T]} + MnO -$ MgO üçgen ayırtman diyagramı (Nachit vd., 2005)	. 105
Şekil 3.68.	Eosen yaşlı trakitik dayklar içerisinde yer alan Fe-Ti oksitlerin bileşimini gösteren üçgen diyagram	. 106
Şekil 3.69.	Miyosen yaşlı foidli volkanik breşler içerisinde yer alan klinopiroksenlerin; (a) Ca-Mg-Fe üçgen sınıflama diyagramı (Morimoto vd., 1988), (b) Ti-Na-Al ^[IV] üçgen sınıflama diyagramı (Papike vd., 1974)	. 107
Şekil 3.70.	Miyosen yaşlı foidli volkanik breşler içerisinde yer alan klinopiroksenlerin Ti-Al ^[T] diyagramı (Mitchel ve Bergman, 1991; Conticelli, 1998; Perini vd., 2000; Perini ve Conticelli, 2000)	. 107
Şekil 3.71.	Miyosen yaşlı foidli volkanik breşler içerisinde yer alan feldispatların Or-Ab-An diyagramında sınıflandırılması (Deer vd., 1966)	. 108
Şekil 3.72.	Miyosen yaşlı foidli volkanik breşler içerisinde yer alan Fe-Ti oksitlerin bileşimini gösteren üçgen diyagram	. 109
Şekil 3.73.	Miyosen yaşlı foidli breşik lavlar içerisinde yer alan klinopiroksenlerin; (a) Ca-Mg-Fe üçgen sınıflama diyagramı (Morimoto vd., 1988), (b) Ti- Na-Al ^[IV] üçgen sınıflama diyagramı (Papike vd., 1974)	. 110
Şekil 3.74.	Miyosen yaşlı foidli breşik lavlar içerisinde yer alan klinopiroksenlerin Ti'ye karşı Al ^[T] diyagramı (Mitchel ve Bergman, 1991; Conticelli, 1998; Perini vd., 2000; Perini ve Conticelli, 2000)	. 111
Şekil 3.75.	Miyosen yaşlı foidli breşik lavlar içerisinde yer alan olivinlerin Mg/(Fe ⁺² + Mg)'e karşı CaO diyagramı. Ayrım çizgisi Thompson ve Gibson (2000)'den alınmıştır	. 112
Şekil 3.76.	Miyosen yaşlı foidli breşik lavlar içerisinde bulunan hornblendlerin sınıflama diyagramı (Leake vd., 1997)	. 113
Şekil 3.77.	Miyosen yaşlı foidli breşik lavlar içerisinde yer alan Fe-Ti oksitlerin bileşimini gösteren üçgen diyagram	. 113
Şekil 3.78.	Miyosen yaşlı foidli breşik lavlar içerisinde yer alan klinopiroksenlerin; (a) Ca-Mg-Fe üçgen sınıflama diyagramı (Morimoto vd., 1988), (b) Ti- Na-Al ^[IV] üçgen sınıflama diyagramı (Papike vd., 1974)	. 114
Şekil 3.79.	Miyosen yaşlı foidli dayk ve siller içerisinde yer alan klinopiroksenlerin Ti-Al ^[T] diyagramı (Mitchel ve Bergman, 1991; Conticelli, 1998; Perini vd., 2000; Perini ve Conticelli, 2000)	. 115

Şekil 3.80.	Miyosen yaşlı foidli dayk ve siller içerisinde bulunan hornblendlerin sınıflama diyagramı (Leake vd., 1997)	116
Şekil 3.81.	Miyosen yaşlı foidli dayk ve siller içerisinde yer alan biyotitlerin; (a) $Fe^{[T]} + Mn + Ti$ (apfu)'ya karşı Mg – Li (apfu) sınıflama diyagramı (Tischendorf vd., 1997), (b) Mg – $Al^{[IV]} + Fe^{+2} + Ti - Fe^{+2} + Mn^{+2}$ üçgen sınıflama diyagramı (Foster, 1960), (c) $Al^{[T]}$ (apfu)'ya karşı Fe/(Fe+Mg) sınıflama diyagramı (Speer, 1984)	117
Şekil 3.82.	Miyosen yaşlı foidli dayk ve siller içerisinde yer alan biyotitlerin; (a) orojenik bölge ayırtman diyagramı (Speer, 1987) (A: Anorojenik alkalen bölgelerdeki biyotit, C: kalkalkalin orojenik bölgelerdeki biyotit, P: peralümin (S tipi) bölgelerdeki biyotit), (b) 10*TiO ₂ – FeO ^[T] + MnO – MgO üçgen ayırtman diyagramı (Nachit vd., 2005)	118
Şekil 3.83.	Miyosen yaşlı foidli dayk ve siller içerisinde yer alan Fe-Ti oksitlerin bileşimini gösteren üçgen diyagram	118
Şekil 3.84.	İncelenen Tersiyer volkanitlerindeki feldispatlara ait Ab-An-Or üçgen diyagramı. İzoterm eğrilerine ait değerler Fuhrman ve Lindsley (1988)'e göredir	124
Şekil 3.85.	İncelenen Tersiyer volkanitlerindeki hornblendlerin log (fO_2) ye karşı T(°C) diyagramı (Ridolfi vd., 2010) (Semboller Şekil 3.82'deki gibidir)	127
Şekil 3.86.	İncelenen Tersiyer volkanitlerindeki biyotitlerin bileşimine göre çizilen Fe ⁺³ - Fe ⁺² - Mg diyagramı (Wones ve Eugster, 1965) (Semboller Şekil 3.82'deki gibidir)	129
Şekil 3.87.	İncelenen Tersiyer volkanitlerindeki klinopiroksen bileşimine göre hesaplanan basınç (Putirka, 2008) değerleri histogramları (mer: merkez, ken: kenar)	131
Şekil 3.88.	İncelenen Eosen yaşlı yastık lavlarda (301 ve 363) tüm kayaç hamuruna ait ⁴⁰ Ar- ³⁹ Ar yaş spektrumları ve plato yaşları	134
Şekil 3.89.	Eosen yaşlı bazaltik lavlardaki (141, 260 ve 511 nolu) tüm kayaç hamuruna ait ⁴⁰ Ar- ³⁹ Ar yaş spektrumları ve plato yaşları	134
Şekil 3.90.	Eosen yaşlı bazaltik dayk ve sillerde (399, 508, 642 ve 801) tüm kayaç hamuruna ait ⁴⁰ Ar- ³⁹ Ar yaş spektrumları ve plato yaşları	139
Şekil 3.91.	Eosen yaşlı andezitik dayk ve domlarda (232, 233 ve 777) tüm kayaç hamuru ve flogopite ait ⁴⁰ Ar- ³⁹ Ar yaş spektrumları ve plato yaşları	142
Şekil 3.92.	Eosen yaşlı trakitik dayklarda (188, 318 ve 625) tüm kayaç hamuru, sanidin ve flogopite ait ⁴⁰ Ar- ³⁹ Ar yaş spektrumları ve plato yaşları	146
Şekil 3.93.	Miyosen yaşlı foidli breşik lavlarda (721) tüm kayaç hamuruna ait ⁴⁰ Ar- ³⁹ Ar yaş spektrumları ve plato yaşları	150
Şekil 3.94.	Miyosen yaşlı foidli silde (603) tüm kayaç hamuru ve flogopite ait ⁴⁰ Ar- ³⁹ Ar yaş spektrumları ve plato yaşları	152
Şekil 3.95.	Miyosen yaşlı "cognate" inklüzyondaki (802) flogopite ait ⁴⁰ Ar- ³⁹ Ar yaş spektrumu ve plato yaşı	153

Şekil 3.96.	İncelen Tersiyer yaşlı volkanitlerin; (a) SiO ₂ 'ye karşı Na ₂ O+K ₂ O (TAS) diyagramı (Le Maitre vd., 1989). Alkali-Subalkali ayrım eğrisi Irvine ve Baragar (1971)'e göredir	. 156
Şekil 3.97.	İncelen Tersiyer yaşlı volkanitlerin, Th (ppm)'a karşı Co (ppm) diyagramı (Hastie vd., 2007; semboller Şekil 3.94'deki gibidir)	. 156
Şekil 3.98.	İncelen Tersiyer yaşlı volkanitlerin, (Na ₂ O+K ₂ O)-FeO*-MgO üçgen (AFM) diyagramı. Ayırım eğrileri Wimmenauer (1985)'e göredir (Semboller Şekil 3.94'deki gibidir)	. 157
Şekil 3.99.	İncelenen Tersiyer yaşlı volkanitlerin SiO ₂ 'ye karşı K ₂ O diyagramı (Mckenzie ve Chappel, 1972; Peccerillo ve Taylor ,1976; semboller Şekil 3.94'deki gibidir)	. 158
Şekil 3.100.	İncelenen Tersiyer yaşlı volkanitlerin ΔQ 'ya karşı K ₂ O/Na ₂ O diyagramı (Peccerillo, 2002, 2003). ΔQ = [normatif kuvars - (normatif lösit+ normatif nefelin + normatif kalsilit + normatif olivin)] (Semboller Şekil 3.94'deki gibidir)	. 158
Şekil 3.101.	Eosen yaşlı BTB ve TT takımı kayaçlarının SiO ₂ 'ye karşı ana oksit değişim diyagramları	. 160
Şekil 3.102.	Eosen yaşlı BTB ve TT takımı kayaçlarının SiO ₂ 'ye karşı iz element değişim diyagramları (Semboller Şekil 3.99'deki gibidir)	. 161
Şekil 3.103.	Miyosen yaşlı BT takımı kayaçlarının SiO ₂ 'ye karşı ana oksit değişim diyagramları	. 162
Şekil 3.104.	Miyosen BT takımı kayaçlarının SiO ₂ 'ye karşı iz element değişim diyagramları (Semboller Şekil 3.101'deki gibidir)	. 163
Şekil 3.105.	İncelenen Tersiyer volkanik kayaçlarının N-Tipi OOSB'ye göre normalize edilmiş iz element dağılımları. OOSB değerleri, Sun ve McDonough (1989)'dan alınmıştır	. 165
Şekil 3.106.	Eosen yaşlı BTB ve TT takımı ve Miyosen yaşlı BT takımı kayaçlarının N-Tipi OOSB' ye göre normalize edilmiş iz element dağılımları. OOSB değerleri, Sun ve McDonough (1989)'dan alınmıştır	. 166
Şekil 3.107.	İncelenen Tersiyer volkanik kayaçlarının kondrite göre normalize edilmiş NTE diyagramları. Kondrit değerleri, Taylor ve McLennan (1985)'den alınmıştır (Semboller Şekil 3.103'deki gibidir)	. 168
Şekil 3.108.	Eosen yaşlı BTB ve TT takımı ve Miyosen yaşlı BT takımı kayaçlarının kondrite göre normalize edilmiş NTE dağılımları. Kondrit değerleri, Taylor ve McLennan (1985)'den alınmıştır (Semboller Şekil 3.103'deki gibidir).	. 169
Şekil 3.109.	İncelenen Tersiyer volkanitlerinin Tb/Yb'a karşı Th/Yb değişim diyagramı. Merkezi Andlar ve kıtasal levha içi bazalt (LİB) alanları, Pearce (1982, 1983)'den; OÜKK: Ortalama Üst Kıtasal Kabuk bileşimi, Wedepohl (1995)'den, İM: İlksel Manto, OAB: Okyanus Adası Bazaltı, E- ve N–OOSB: Zenginleşmiş ve Tüketilmiş Okyanus Ortası Sırtı Bazaltı bileşimleri ise Sun ve McDonough (1989)'dan alınmıştır (Semboller Şekil 3.103'deki gibidir)	. 171

Şekil 3.110.	İncelenen Tersiyer volkanitlerinin Th-Ta-Hf/3 tektonik ayırtman diyagramları (Wood vd., 1979). Üçgen diyagramlar üzerindeki elips alanlar Pearce (1996)'dan alınmıştır. (a) ana magma tiplerinin ve (b) geçişli magma tiplerinin görüldüğü diyagram. VAB: volkanik yay bazaltları, OOSB: okyanus ortası sırtı bazaltı, LİB: levha içi bazaltı (Semboller Şekil 3.103'deki gibidir)	1
Şekil 3.111.	İncelenen Tersiyer volkanitlerinin Th-Ta-Hf/3 tektonik ayırtman diyagramı (Wood vd., 1979). Diyagram üzerindeki petrojenetik vektörler, Pearce (1996)'dan alınmıştır. YZ: yitim zonu bileşeni, ÜK: üst kabuk, AK: alt kabuk, MK: N-OOSB manto kaynağı (Semboller Şekil 3.103'deki gibidir)	2
Şekil 3.112.	İncelenen Tersiyer volkanitlerinin Zr-Yx3-Ti/100 tektonik ayırtman diyagramları (Pearce ve Cann, 1973). Üçgen diyagramlar üzerindeki elips alanlar Pearce (1996)'dan alınmıştır. (a) ana magma tiplerinin ve (b) geçişli magma tiplerinin görüldüğü diyagram. VAB: volkanik yay bazaltları, OOSB: okyanus ortası sırtı bazaltı, LİB: levha içi bazaltı (Semboller Şekil 3.103'deki gibidir)	3
Şekil 3.113.	İncelenen Tersiyer volkanitlerinin Zr-Yx3-Ti/100 tektonik ayırtman diyagramları (Pearce ve Cann, 1973). Diyagram üzerindeki petrojenetik vektörler, Pearce (1996)'dan alınmıştır. ÜK: üst kabuk, OM: ortalama N-tipi OOSB (Semboller Şekil 3.103'deki gibidir)	'3
Şekil 3.114.	İncelenen Tersiyer volkanik kayaçların Nb'a karşı Zr tektonik ortam diyagramı (Pearce, 1982) (Semboller Şekil 3.103'deki gibidir) 17	4
Şekil 3.115.	İncelenen Tersiyer volkanitlerinin (⁸⁷ Sr/ ⁸⁶ Sr) _i 'ye karşı (¹⁴³ Nd/ ¹⁴⁴ Nd) _i korelasyon diyagramındaki konumları. EMI ve EMII (Zenginleşmiş Manto I ve II), HIMU (²³⁸ U/ ²⁰⁴ Pb oranı yüksek manto), DM (Tüketilmiş Manto), BSE (Toplam Silikat Yerküre), PREMA (ortalama manto) alanları Zindler ve Hart (1986), Hart vd. (1992)'ye göredir	7
Şekil 3.116.	İncelenen Tersiyer volkanitlerin (⁸⁷ Sr/ ⁸⁶ Sr) _i 'ye karşı (¹⁴³ Nd/ ¹⁴⁴ Nd) _i diyagramında Türkiye'deki bazı Tersiyer alkali volkanitleri ile karşılaştırılması. Alanlar; Polatlı alkali volkanitleri (Temel vd., 2010), Çanakkale alkali volkanitleri (Aldanmaz vd., 2006); Kula alkali volkanitleri (Alıcı vd., 2002), Gölcük (Isparta) alkali volkanitleri (Alıcı vd., 1998), Denizli alkali volkanitleri (Yılmaz, 2010), Ulubey (Ordu) kalk-alkali volkanitleri (Temizel, 2008), Torul (Gümüşhane) kalk-alkali volkanitleri (Kaygusuz vd., 2011), Doğu Pontid Güney Zonu Eosen volkanitleri (Arslan vd., 2013) (Semboller Şekil 3.113'deki gibidir)	'8
Şekil 3.117.	İncelenen Tersiyer volkanitlerinin (⁸⁷ Sr/ ⁸⁶ Sr) _i 'ye karşı (¹⁴³ Nd/ ¹⁴⁴ Nd) _i diyagramında Dünya genelinde diğer bazı alkali kayaçlarla karşılaştırmaları. Alanlar; Doğu Sırbistan alkali bazaltları ve Sırbistan YPKA-Ş. (yüksek potasyum kalkalkali-şoşonitik) bazaltları (Cvetkovic' vd., 2004); Sırbistan granitleri (Karamata vd., 1990); Gaussberg (Murphy vd., 2002); Leucite Hills lamproitleri (Nelson vd., 1986); Italya lamproitleri ve kamafujitleri (Conticelli vd., 2002); Tibet ultrapotasik kayaçları (Turner vd., 1996; Miller vd., 1999); İspanya lamproitleri (Benito vd., 1999; Turner vd., 1999); Batı Avustralya	

- Şekil 3.123. İncelenen Tersiyer volkanitlerinin Sm/Yb'ye karşı La/Sm diyagramı (Modellemede, Eosen ve Miyosen yaşlı volkanitlerin SiO₂ <52 içeriğine sahip örnekler alınmıştır.). Modal fraksiyonel ve modal batch (yığın/küme) ergimesi modellemelerinde kullanılan değişik manto kaynakları, modal bileşimleri ve mineral/ergiyik ayrımlanma katsayıları ve diğer açıklamalar Tablo 3.35'de verilmiştir. Yüzdeler (%) kısmi ergime derecelerini göstermektedir (Semboller Şekil 3.118'deki gibidir)... 185
- Şekil 3.125. İncelenen Tersiyer volkanitlerinin Yb/Rb'ye karşı La/Rb diyagramı (Modellemede Eosen ve Miyosen yaşlı volkanitlerin SiO₂ <52 içeriğine

- Şekil 3.132. İncelenen Eosen yaşlı volkanitlerin kısmi ergime derecesinin belirlenmesinde kullanılan modal olmayan fraksiyonel ergime modeli. Spinel-lerzolitin farklı yüzdelerde kısmi egimeye uğratılmasıyla oluşturulan nadir toprak element dağılımları mavi çizgilerle gösterilmiştir (İlksek kaynak alan olarak alınan ilksel manto (PM) değeri Sun ve McDonough (1989)'dan; mantonun modal bileşimi ve ergime oranları Frey (1984)'den; Ayrımlanma katsayıları Keskin (1994), Foley vd. (1996), Rollinsone (1993), McKenzie ve O'Nions

- Şekil 3.133. İncelenen Eosen yaşlı volkanitlerin ana oksit ve iz element çiftlerinden yararlanılarak çizilen diyagramlar; (a) Zr (ppm)- TiO₂ (%), (b) Zr (ppm)- Y (ppm), (c) K/Rb- Rb (ppm), (d) Dy/Yb- SiO₂ (%), (e) CaO/Al₂O₃- MgO (%), (f) Sr (ppm)- MgO (%), (g) CaO/Al₂O₃- Fe₂O₃/MgO, (h) Al₂O₃ (%)- CaO/Na₂O (Vektörler minerallerin ayrımlasma yönlerini göstermektedir. Semboller 3.118'deki gibidir) 199
- Şekil 3.134. İncelenen Miyosen yaşlı volkanitlerin ana oksit ve iz element çiftlerinden yararlanılarak çizilen diyagramlar; (a) Zr (ppm)- TiO₂ (%), (b) Zr (ppm)- Y(ppm), (c) K/Rb- Rb (ppm), (d) Dy/Yb- SiO₂ (%), (e) CaO/Al₂O₃- MgO (%), (f) Sr (ppm)- MgO (%), (g) CaO/Al₂O₃- Fe₂O₃/MgO, (h) Al₂O₃ (%)- CaO/Na₂O (Vektörler minerallerin ayrımlaşma yönlerini göstermektedir. Semboller 3.118'deki gibidir) 200

- Şekil 3.143. Miyosen yaşlı volkanitlerin AFC modellemesini gösterir diyagramlar. İlksel magma bileşimi (Co) 363 numaralı örneğe ait olup, üst kıtasal

	kabuk bileşimi (CA) Taylor ve McLennan (1985)'den dağılım katsayıları Keskin (2013)'den alınmıştır (Semboller Şekil 3.113'deki gibidir)	217
Şekil 3.144.	İncelenen Tersiyer yaşlı volkanitlerin AFC modellemesini gösterir $({}^{87}\text{Sr}/{}^{86}\text{Sr})_i$ ye karşı Rb/Sr diyagramı (İlksel magma bileşimi (C _o) Aleutian yay bazaltı-SH15, Jicha vd. (2004)'den; üst kabuk (C _A) izotopik bileşimi, Davies vd. (1985)'den; iz element içerikleri ise Taylor ve McLennan (1985)'den alınmıştır. Semboller Şekil 3.113'deki gibidir)	222
Şekil 3.145.	İncelenen Tersiyer yaşlı volkanitlerin AFC modellemesini gösteren $({}^{87}\text{Sr}/{}^{86}\text{Sr})_i$ 'ye karşı Rb/Nb diyagramı (İlksel magma bileşimi (C _o) Aleutian yay bazaltı-SH15 Jicha vd. (2004)'den; üst kıtasal kabuk (C _A) izotopik bileşimi Davies vd. (1985)'den; iz element içerikleri ise Taylor ve McLennan (1985)'dan alınmıştır. Semboller Şekil 3.113'deki gibidir)	222
Şekil 3.146.	İncelenen Tersiyer yaşlı volkanitlerin izotopik AFC modellemesini gösterir $({}^{87}\text{Sr}/{}^{86}\text{Sr})_i$ 'ye karşı $({}^{143}\text{Nd}/{}^{144}\text{Nd})_i$ diyagramı (İlksel magma bileşimi (IC ₀) ve üst kıtasal kabuk (IC _A)'a ait bileşimler Tablo 3.46'de verilmiştir. Semboller Şekil 3.113'deki gibidir)	223
Şekil 3.147.	İncelenen Tersiyer yaşlı volkanitlerin (⁸⁷ Sr/ ⁸⁶ Sr) _i 'ye karşı (¹⁴³ Nd/ ¹⁴⁴ Nd) _i karışım modelleme (Depaolo ve Wasserburg, 1979) diyagramı. K değerleri, üst manto değerinin hem Sr hem de Nd içeriklerinin değişken (sabit değil) olduğu kabul edilerek hesaplanmıştır. CHUR-Nd ve CHUR-Sr: Nd ve Sr için kondritik tekdüze rezervuar. Modellemede kullanılan ÜM (Üst Manto), ÜKK-OKK-AKK (Üst-Orta-Alt Kıtasal Kabuk) ve YS (Yitim Sedimanları)'na ait Sr ve Nd iz element içerikleri ile izotopik bileşimleri, Tablo 3.48'de verilmiştir. OOSB, Okyanus Ortası Sırtı Bazaltı, Ada Yayı Volkanitleri, Okyanus Adası Bazaltları, Kıtasal Volkanitler alanları, Zindler ve Hart (1986) ve Hart vd. (1986)'ne göredir (Semboller Şekil 3.113'deki gibidir)	227
Şekil 3.148.	İncelenen Tersiyer yaşlı volkanitlerin, (a) ⁸⁷ Sr/ ⁸⁶ Sr- ²⁰⁶ Pb/ ²⁰⁴ Pb ve (b) ¹⁴³ Nd/ ¹⁴⁴ Nd- ²⁰⁶ Pb/ ²⁰⁴ Pb karışım modellemesi diyagramları. Modellemede kullanılan TM (Tüketilmiş Manto), lokal alt kabuk (Paleozoyik Graniti) ve YS (Yitim Sedimanları)'na ait Sr, Nd ve Pb iz element içerikleri ile izotop bileşimleri, Tablo 3.50'de verilmiştir (Semboller Şekil 3.113'deki gibidir)	228
Şekil 4.1.	İncelenen Tersiyer volkanitlerinin ɛNdi'ye karşı La/Nb diyagramı. Alanlar; OOSB (Okyanus ortası sırtı bazaltı), BSE (Toplam silikat yerküre), DM (Tüketilmiş manto) ve PREMA (ortalama manto) bileşimleri, Zindler ve Hart (1986)'a; OIB (Okyanus Adası Bazaltı), White ve Patchett (1984)'a; kıtasal kabuk bileşimi, Taylor ve McLennan (1985)'a göredir	235
Şekil 4.2.	İncelenen Tersiyer volkanitlerinin Ba/Th'a karşı (⁸⁷ Sr/ ⁸⁶ Sr) _i diyagramı. Üç bileşenli (OOSB, AKIŞKAN ve SED) karışım modeli ve eğrisi Turner vd. (1996)'ya göredir. Karşılaştırma için verilen alanlar, Lesser	

Antilles volkanitlerine (Davidson, 1997) aittir (Semboller Şekil 4.1'deki

Şekil 4.3.	İncelenen Tersiyer volkanitlerinin (⁸⁷ Sr/ ⁸⁶ Sr) _i 'ye karşı ²⁰⁶ Pb/ ²⁰⁴ Pb diyagramı. EMI (Zenginleşmiş Manto I), HIMU (²³⁸ U/ ²⁰⁴ Pb oranı yüksek manto) ve DMM (Tüketilmiş Manto) alanları, Zindler ve Hart (1986) ve Hart vd. (1992)'ye göredir. Tuscany Provensi, Roman Provensi, Vezüv-Stromboli-Phlegraean, Sardunya+Tiren deniz tabanı, Etna, Sicilya ve Batı-merkez Aeolian adası volkanitlerine ait alanlar, Peccerillo (1999, 2002, 2003)'den alınmıştır (Semboller Şekil 4.1'deki gibidir)	. 237
Şekil 4.4.	İncelenen Tersiyer volkanitlerinin; (a) $({}^{87}\text{Sr}){}^{86}\text{Sr}{}_{i}$ 'ye karşı $({}^{143}\text{Nd}/{}^{144}\text{Nd})_i$, (b) ${}^{206}\text{Pb}/{}^{204}\text{Pb'e}$ karşı $({}^{87}\text{Sr}){}^{86}\text{Sr}{}_{i}$, (c) ${}^{206}\text{Pb}/{}^{204}\text{Pb'e}$ karşı $({}^{143}\text{Nd}/{}^{144}\text{Nd})_i$ diyagramları. 1 nolu ok, tüketilmiş bir OOSB manto ile yitim süreçlerinin karışımını; 1a ve 1b nolu oklar, sırasıyla yiten deniz sedimanlarından türeyen sulu akışkanlar ve kısmi ergiyikler ile manto arasındaki zenginleşmeyi; 2 nolu ok ise, kıtasal litosfer veya bundan türeyen ergiyikler ve litosfer altı ergiyikler arasındaki etkileşimi ifade etmektedir. EMI, EMII, HIMU ve DMM alanları, Zindler ve Hart (1986) veHoffman (1997)'ye göredir. NHRL (kuzey yarımküre referans çizgisi), Hart (1984)'den alınmıştır (Semboller Şekil 4.1'deki gibidir)	. 238
Şekil 4.5.	İncelenen Tersiyer volkanitlerinin (⁸⁷ Sr/ ⁸⁶ Sr) _i karşı ²⁰⁶ Pb/ ²⁰⁴ Pb zenginleşmiş ve tüketilmiş manto uç üyeleri ile yitim bileşeni karışımını gösterir diyagram (Petrone vd., 2003'den değiştirilerek). Yitim bileşeni ile zenginleşmiş ve tüketilmiş mantolar arasındaki çizgiler karışım eğrilerini ifade etmektedir. Karışım eğrileri değişik akışkan/ergiyik oranları da dikkate alınarak sınırlandırılmıştır (Petrone vd., 2003) (Semboller Şekil 4.1'deki gibidir)	. 239
Şekil 4.6.	İncelenen Tersiyer volkanitlerinin (a) $\Delta 8/4Pb$ karşı $\Delta 7/4Pb$ ve (b) ²⁰⁶ Pb/ ²⁰⁴ Pb diyagramları. $\Delta 8/4Pb > 0$ olması, volkanitlerdeki yüksek Th/Pb oranını ifade etmektedir ve bu durum radyojenik ²⁰⁸ Pb zenginleşmesinin bir sonucu olarak açıklanabilir. DUPAL anomalisi Hart (1984), Tatsumoto ve Nakamura (1991) ve Escrig vd. (2004)'e göredir (Semboller Şekil 4.1'deki gibidir)	. 240
Şekil 4.7.	İncelenen Tersiyer volkanitlerinin (a) La/Yb karşı Sr/La, (b) ²⁰⁶ Pb/ ²⁰⁴ Pb karşı (⁸⁷ Sr/ ⁸⁶ Sr) _i , (c) Ba/La karşı Th/Yb, (d) ²⁰⁶ Pb/ ²⁰⁴ Pb karşı ɛNd _i , (e) Ce/Pb karşı Th/La ve (f) Nb/La karşı ɛNd _i diyagramları. OOSB, kabuk ve zenginleşmiş uç üye bileşimleri Hawkesworth vd. (1984)'den alınmıştır (Semboller Şekil 4.1'deki gibidir)	. 241
Şekil 4.8.	İncelenen Tersiyer yaşlı volkanitlerdeki; (a) plajiyoklaslarda merkez- kenar An değişimi, (b) klinopiroksenlerde merkez-kenar ve (c) merkez- manto Mg# (Mg/(Mg+Fe ²⁺) değişimi (Semboller Şekil 7.4'deki gibidir)	. 244
Şekil 4.9.	İncelenen Eosen ve Miyosen yaşlı volkanitlerdeki klinopiroksenlerin Mg# (Mg/Mg+Fe ^{tot})'na karşı Cr ₂ O ₃ (%) ve TiO ₂ (%), Ti (apfu)' a karşı Al ^T (apfu) diyagramları	. 245

Şekil 4.10.	İncelenen (a) Eosen yaşlı BTB takımı içerisinde yer alan yastık lavlar içerisindeki, (b) Miyosen yaşlı BT takımı içerisinde yer alan foidli breşik lavlar içerisindeki klinopiroksenlerin BSE (back-scattered electron) fotoğrafları ve bileşimsel değişimleri	. 247
Şekil 4.11.	(a) Eosen volkanitleri ve (b) Miyosen volkanitlerinin gelişimlerini şematize eden derin, orta ve sığ magma odalarında gerçekleşen kristallenme ortamları ve magmatik olaylar	. 251
Şekil 4.12.	Doğu Pontidler'de Tersiyer volkanitlerinin gelişimini gösteren jeodinamik model. (a) kıta-kıta çarpışması ve litosferik dilim kopması (slab break-off), (b) litosferik kalınlaşma, (c) litosferik ayrılmanın/delaminasyonun başlangıcı ve (d) delaminasyon ve litosferik incelmenin gelişimi (Temizel vd., 2012; Arslan vd. 2013) (EP, Avrasya Levhası; TAP, Torid-Anatolid Platformu)	. 254

TABLOLAR DİZİNİ

Tablo 3.1.	İncelenen Tersiyer volkanik kayaçlarının genel mineralojik ve dokusal özellikleri (Kpir, klinopiroksen; Ol, olivin; Ku, kuvars; Bt, biyotit; Hbl, hornblend; Pl, plajiyoklas; Sa, sanidin; Anl, analsim; Op, opak mineral; Ap, apatit).	54
Tablo 3.2.	İncelenen Tersiyer volkanitlerindeki olivin ve tüm-kayaç bileşimleri kullanılarak elde edilen olivin-ergiyik termometresi (Putirka, 2008) değerleri	. 120
Tablo 3.3.	İncelenen Tersiyer volkanitlerindeki plajiyoklaslardan elde edilen sıcaklık, basınç ve hidrometre (Putirka, 2008) değerleri (n, örnek sayısı)	. 123
Tablo 3.4.	İncelenen volkanitlerdeki klinopiroksenlerden elde edilen sıcaklık ve basınç (Putirka, 2008) değerleri	. 125
Tablo 3.5.	İncelenen Tersiyer volkanitlerindeki hornblendlerden elde edilen sıcaklık, basınç, hidrometre ve oksijen fugasitesi değerleri	. 128
Tablo 3.6.	İncelenen Tersiyer volkanitlerindeki biyotitlerden elde edilen sıcaklık, basınç ve oksijen fugasitesi değerleri (n, örnek sayısı)	. 129
Tablo 3.7.	İncelenen Tersiyer yaşlı volkanitlerin fasiyes ve kayaç türüne göre ⁴⁰ Ar- ³⁹ Ar yaşlandırma verileri	. 135
Tablo 3.8.	Eosen yaşlı yastık lavlarda 301 numaralı örnekten seçilen tüm kayaç hamurunda basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰ Ar- ³⁹ Ar yaşlandırma verileri	. 136
Tablo 3.9.	Eosen yaşlı yastık lavlarda 363 numaralı örnekten seçilen tüm kayaç hamurunda basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰ Ar- ³⁹ Ar yaşlandırma verileri	. 136
Tablo 3.10.	Eosen yaşlı bazaltik lavlardan 141 numaralı örnekten seçilen tüm kayaç hamurunda basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰ Ar- ³⁹ Ar yaşlandırma verileri	. 137
Tablo 3.11.	Eosen yaşlı bazaltik lavlarda 260 numaralı örnekten seçilen tüm kayaç hamurunda basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰ Ar- ³⁹ Ar yaşlandırma verileri	. 137
Tablo 3.12.	Eosen yaşlı bazaltik lavlarda 511 numaralı örnekten seçilen tüm kayaç hamurunda basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰ Ar- ³⁹ Ar yaşlandırma verileri	. 138
Tablo 3.13.	Eosen yaşlı bazaltik dayklarda 399 numaralı örnekten seçilen tüm kayaç hamurunda basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰ Ar- ³⁹ Ar yaşlandırma verileri	. 139

Tablo 3.14.	Eosen yaşlı bazaltik dayklarda 508 numaralı örnekten seçilen tüm kayaç hamurunda basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰ Ar- ³⁹ Ar yaşlandırma verileri	140
Tablo 3.15.	Eosen yaşlı bazaltik dayklarda 642 numaralı örnekten seçilen tüm kayaç hamurunda basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰ Ar- ³⁹ Ar yaşlandırma verileri	140
Tablo 3.16.	Eosen yaşlı bazaltik sillerde 801 numaralı örnekten seçilen tüm kayaç hamurunda basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰ Ar- ³⁹ Ar yaşlandırma verileri	141
Tablo 3.17.	Eosen yaşlı andezitik domlardan 232 numaralı örnekte seçilen tüm kayaç hamuru üzerinde basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰ Ar- ³⁹ Ar yaşlandırma analiz sonuçları	143
Tablo 3.18.	Eosen yaşlı andezitik domlardan 232 numaralı örnekte seçilen flogopit üzerinde basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰ Ar- ³⁹ Ar yaşlandırma verileri	143
Tablo 3.19.	Eosen yaşlı andezitik domlardan 233 numaralı örnekte seçilen tüm kayaç hamuru üzerinde basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰ Ar- ³⁹ Ar yaşlandırma verileri	144
Tablo 3.20.	Eosen yaşlı andezitik domlarda 233 numaralı örnekte seçilen flogopit üzerinde basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰ Ar- ³⁹ Ar yaşlandırma verileri	144
Tablo 3.21.	Eosen yaşlı andezitik dayklarda 777 numaralı örnekte seçilen tüm kayaç hamuru üzerinde basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰ Ar- ³⁹ Ar yaşlandırma verileri	145
Tablo 3.22.	Eosen yaşlı trakitik dayklardan 188 numaralı örnekte seçilen flogopit üzerinde basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰ Ar- ³⁹ Ar yaşlandırma verileri	147
Tablo 3.23.	Eosen yaşlı trakitik dayklardan 188 numaralı örnekte seçilen sanidin üzerinde basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰ Ar- ³⁹ Ar yaşlandırma verileri	147
Tablo 3.24.	Eosen yaşlı trakitik dayklardan 318 numaralı örnekte seçilen tüm kayaç hamuru üzerinde basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰ Ar- ³⁹ Ar yaşlandırma verileri	148
Tablo 3.25.	Eosen yaşlı trakitik dayklardan 318 numaralı örnekte seçilen flogopit üzerinde basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰ Ar- ³⁹ Ar yaşlandırma verileri	148
Tablo 3.26.	Eosen yaşlı trakitik dayklardan 625 numaralı örnekte seçilen tüm kayaç hamuru üzerinde basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰ Ar- ³⁹ Ar yaşlandırma verileri	149
Tablo 3.27.	Eosen yaşlı trakitik dayklardan 625 numaralı örnekte seçilen flogopit üzerinde basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰ Ar- ³⁹ Ar yaşlandırma verileri	150

Tablo 3.28.	Miyosen yaşlı foidli breşik lavlarda 721 numaralı örnekten seçilen tüm kayaç hamurunda basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰ Ar- ³⁹ Ar yaşlandırma verileri
Tablo 3.29.	Miyosen yaşlı foidli breşik lavlarda 726 numaralı örnekten seçilen tüm kayaç hamurunda basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰ Ar- ³⁹ Ar yaşlandırma verileri
Tablo 3.30.	Miyosen yaşlı foidli silde 603 numaralı örnekten seçilen tüm kayaç hamurundan basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰ Ar- ³⁹ Ar yaşlandırma verileri
Tablo 3.31.	Miyosen yaşlı foidli silde 603 numaralı örnekten seçilen flogopit üzerinde basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰ Ar- ³⁹ Ar yaşlandırma verileri
Tablo 3.32.	Miyosen yaşlı "cognate" inklüzyondan (802 numaralı örnek) seçilen flogopit üzerinde basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰ Ar- ³⁹ Ar yaşlandırma verileri
Tablo 3.33.	İncelenen Tersiyer volkanitlerinin Sr ve Nd izotop analizleri, hesaplanan ilksel değerler ve model yaşları
Tablo 3.34.	İncelenen Tersiyer volkanitlerinin Pb izotop analizleri, hesaplanan $\Delta 7/4$ Pb ve $\Delta 8/4$ Pb değerleri
Tablo 3.35.	Modal fraksiyonel ve modal batch (yığın/küme) ergimesi modellemelerinde kullanılan değişik manto kaynakları, modal bileşimleri ve mineral/ergiyik ayrımlanma katsayıları
Tablo 3.36.	Modal olmayan fraksiyonel kısmi ergime modellemelerinde kullanılan değişik manto kaynakları, modal bileşimleri, ergime oranları ve mineral/ergiyik ayrımlanma katsayıları
Tablo 3.37.	Modal olmayan fraksiyonel kısmi ergime modellemelerinde kullanılan değişik manto kaynakları, modal bileşimleri, ergime oranları ve mineral/ergiyik ayrımlanma katsayıları
Tablo 3.38.	Modal olmayan fraksiyonel kısmi ergime modellemelerinde kullanılan değişik manto kaynakları, modal bileşimleri, ergime oranları ve mineral/ergiyik ayrımlanma katsayıları
Tablo 3.39.	Modal olmayan fraksiyonel kısmi ergime modellemelerinde granat ve spinel lerzolitik manto kaynakları, modal bileşimleri, ergime oranları ve mineral/ergiyik ayrımlanma katsayıları
Tablo 3.40.	Eosen yaşlı bazik (BTB takımı) volkanitlerin gelişiminde etkili olan minerallerin ayrımlaşma yönlerini belirlemek için hesaplanan C _L (elementin ergiyikteki konsantrasyonu) değerleri. FC-Modelleme Programı'nda (Keskin, 2002) kullanılan dağılım katsayıları Keskin vd. (1998)'den alınmıştır
Tablo 3.41.	Eosen yaşlı ortaç (TT takımı) volkanitlerin gelişiminde etkili olan minerallerin ayrımlaşma yönlerini belirlemek için hesaplanan C _L (elementin ergiyikteki konsantrasyonu) değerleri. FC-Modelleme Programı'nda (Keskin, 2002) kullanılan dağılım katsayıları Keskin vd. (1998)'den alınmıştır

Tablo 3.42.	Miyosen yaşlı bazik (BT takımı) volkanitlerin gelişiminde etkili olan minerallerin ayrımlaşma yönlerini belirlemek için hesaplanan C _L (Elementin ergiyikteki konsantrasyonu) değerleri. FC-Modelleme Programı (Keskin, 2002)'nda kullanılan dağılım katsayıları, Keskin vd. (1998)'den alınmıştır	. 211
Tablo 3.43.	Eosen yaşlı volkanitlerin AFC modellemesinde hesaplanan C _L (elementin ergiyikteki konsantrasyonu) değerleri	. 218
Tablo 3.44.	Miyosen yaşlı volkanitlerin AFC modellemesinde hesaplanan C _L (elementin ergiyikteki konsantrasyonu) değerleri	. 220
Tablo 3.45.	İncelenen Tersiyer yaşlı volkanitlerin izotopik ve iz element oranlarına göre yapılan AFC modellemesinde, IC_L ve C_L değerlerinin hesaplanmasında kullanılan toplam dağılım katsayıları (D) ile IC_o , IC_A ve X_A bileşimsel değerleri	. 224
Tablo 3.46.	İncelenen Tersiyer yaşlı volkanitlerin izotopik bileşimlerinden yararlanılarak yapılan AFC modellemesinde, IC_L değerlerinin hesaplanmasında kullanılan toplam dağılım katsayıları (D) ile IC_o , IC_A , X_o ve X_A bileşimsel değerleri	. 224
Tablo 3.47.	İncelenen Tersiyer yaşlı volkanitlerin, izotopik AFC modellemesiyle hesaplanan (r=2 için; D_1 , D_2 , D_3 , D_4 ve D_5 'e göre) Sr ve Nd izotoplarına ait IC _L değerleri	. 225
Tablo 3.48.	İncelenen Tersiyer yaşlı volkanitlerde magma karışımı modellemesinde kullanılan üst manto (ÜM), üst ve alt-orta kıtasal kabuk (ÜKK, AKK-OKK) ve yitim sedimanları (YS)'na ait bileşimsel değerler	. 228
Tablo 3.49.	İncelenen Tersiyer yaşlı volkanitlerin izotopik karışım modellemesinde, hem Sr hem de Nd değişken (sabit değil) iken hesaplanan R _{karışım} değerleri.	. 229
Tablo 3.50.	İncelenen Tersiyer yaşlı volkanitlerin izotopik karışım modellemesinde kullanılan tüketilmiş manto (TM), yitim sedimanları (YS) ve lokal alt kabuk (Paleozoyik graniti) ait bileşimsel değerler	. 230
Tablo 3.51.	İncelenen Tersiyer yaşlı volkanitlerin izotopik karışım modellemesinde hesaplanan Sr-Nd-Pb R _{karışım} değerleri	. 230
Ek Tablo A1.	Eosen yaşlı volkanik breşlere ait klinopiroksenlerin mikroprob analiz sonuçları	. 286
Ek Tablo A2.	Eosen yaşlı yastık lavlara ait klinopiroksenlerin mikroprob analiz sonuçları	. 288
Ek Tablo A3.	Eosen yaşlı bazaltik lavlara ait klinopiroksenlerin mikroprob analiz sonuçları	. 293
Ek Tablo A4.	Eosen yaşlı bazaltik dayk ve sile ait klinopiroksenlerin mikroprob analiz sonuçları	. 295
Ek Tablo A5.	Eosen yaşlı andezitik dayk ve doma ait klinopiroksenlerin mikroprob analiz sonuçları	. 297

Ek Tablo A6.	Eosen yaşlı trakitik dayklara ait klinopiroksenlerin mikroprob analiz sonuçları	298
Ek Tablo A7.	Miyosen yaşlı foidli volkanik breşlere ait klinopiroksenlerin mikroprob analiz sonuçları	300
Ek Tablo A8.	Miyosen yaşlı foidli breşik lavlara ait klinopiroksenlerin mikroprob analiz sonuçları	301
Ek Tablo A9.	Miyosen yaşlı foidli dayk ve sillere ait klinopiroksenlerin mikroprob analiz sonuçları	306
Ek Tablo B1.	Eosen yaşlı volkanik breşlere ait plajiyoklasların mikroprob analiz sonuçları	308
Ek Tablo B2.	Eosen yaşlı yastık lavlara ait plajiyoklasların mikroprob analiz sonuçları	312
Ek Tablo B3.	Eosen yaşlı bazaltik lavlara ait plajiyoklasların mikroprob analiz sonuçları.	314
Ek Tablo B4.	Eosen yaşlı bazaltik dayk ve sile ait plajiyoklasların mikroprob analiz sonuçları.	317
Ek Tablo B5.	Eosen yaşlı andezitik dayk ve doma ait plajiyoklasların mikroprob analiz sonuçları	319
Ek Tablo B6.	Eosen yaşlı trakitik dayklara ait plajiyoklasların mikroprob analiz sonuçları.	322
Ek Tablo B7.	Miyosen yaşlı Foidli volkanik breşler, foidli breşik lavlar ve foidli dayk ve sile ait plajiyoklasların mikroprob analiz sonuçları	324
Ek Tablo C1.	Eosen yaşlı volkanik breşlere ait olivinlerin mikroprob analiz sonuçları	325
Ek Tablo C2.	Eosen yaşlı yastık lavlara ait olivinlerin mikroprob analiz sonuçları	326
Ek Tablo C3.	Eosen yaşlı bazaltik lavlara ait olivinlerin mikroprob analiz sonuçları	328
Ek Tablo C4.	Eosen yaşlı bazaltik dayk ve sile ait olivinlerin mikroprob analiz sonuçları	329
Ek Tablo C5.	Miyosen yaşlı foidli breşik lavlara ait olivinlerin mikroprob analiz sonuçları.	330
Ek Tablo D1.	Eosen yaşlı volkanik breşlere ait hornblendlerin mikroprob analiz sonuçları	331
Ek Tablo D2.	Eosen yaşlı bazaltik dayk ve sile ait hornblendlerin mikroprob analiz sonuçları.	332
Ek Tablo D3.	Miyosen yaşlı foidli breşik lavlara ait hornblendlerin mikroprob analiz sonuçları	333
Ek Tablo D4.	Miyosen yaşlı foidli dayk ve sillere ait hornblendlerin mikroprob analiz sonuçları	334
Ek Tablo E1.	Eosen yaşlı bazaltik lavlara ait biyotitlerin mikroprob analiz sonuçları	335

Ek Tablo E2.	Eosen yaşlı bazaltik dayk ve sile ait biyotitlerin mikroprob analiz sonuçları	36
Ek Tablo E3.	Eosen yaşlı andezitik dayk ve doma ait biyotitlerin mikroprob analiz sonuçları	37
Ek Tablo E4.	Eosen yaşlı trakitik dayklara ait biyotitlerin mikroprob analiz sonuçları	38
Ek Tablo E5.	Miyosen yaşlı foidli dayk ve sillere ait biyotitlerin mikroprob analiz sonuçları	40
Ek Tablo F1.	Miyosen yaşlı foidli volkanik breşlere ait analsimlerin mikroprob analiz sonuçları	41
Ek Tablo F2.	Miyosen yaşlı foidli breşik lavlara ait analsimlerin mikroprob analiz sonuçları	42
Ek Tablo F3.	Miyosen yaşlı foidli dayk ve sillere ait analsimlerin mikroprob analiz sonuçları	44
Ek Tablo G.	Miyosen yaşlı foidli dayk ve sillere ait apatitlerin mikroprob analiz sonuçları	45
Ek Tablo H1.	Eosen yaşlı volkanik breşlere ait Fe-Ti oksitlerin mikroprob analiz sonuçları	46
Ek Tablo H2.	Eosen yaşlı yastık lavlara ait Fe-Ti oksitlerin mikroprob analiz sonuçları	47
Ek Tablo H3.	Eosen yaşlı bazaltik lavlara ait Fe-Ti oksitlerin mikroprob analiz sonuçları	48
Ek Tablo H4.	Eosen yaşlı bazaltik dayk ve sile ait Fe-Ti oksitlerin mikroprob analiz sonuçları	49
Ek Tablo H5.	Eosen yaşlı andezitik dayk ve domlara ait Fe-Ti oksitlerin mikroprob analiz sonuçları	50
Ek Tablo H6.	Eosen yaşlı trakitik dayklara ait Fe-Ti oksitlerin mikroprob analiz sonuçları	51
Ek Tablo H7.	Miyosen yaşlı foidli volkanik breş, foidli breşik lav ve foidli dayk ve sile ait Fe-Ti oksitlerin mikroprob analiz sonuçları	52
Ek Tablo I.	Tersiyer yaşlı volkanitlerin ana (%) ve iz (ppm) element analizleri ve CIPW normatif mineralojik (%) bileşimleri	53
Ek Tablo J. T	ersiyer yaşlı volkanitlerin nadir toprak element (NTE) analiz sonuçları 3	63

SEMBOLLER DİZİNİ

Ab	: Albit
AFC	: Asimilasyon ile eş zamanlı gelişen ayrımlaşma
$Al^{[IV]}$: Tetrahedral koordinasyonlu alüminyum
$Al^{[T]}$: Toplam (tetrahedral ve oktahedral koordinasyonlu) alüminyum
Al ^[VI]	: Oktahedral koordinasyonlu alüminyum
ALCAF	: Alümino-kafemik
Amf	: Amfibol
An	: Anortit
Anl	: Analsim
ANTE	: Ağır Nadir Toprak Elementler
ap	: Apatit
atm	: Atmosfer
Bkz	: Bakınız
bt	: Biyotit
BİLE	: Büyük İyon Yarıçaplı Litofil Elementler
BSE	: Toplam Silikat Yerküre
BT	: Bazanit-Tefrit Takımı
BTB	: Bazalt, Trakibazalt, Bazaltik Trakiandezit
CHUR	: Kondritik tekdüze rezervuar
C_L	: Elementin ergiyikteki konsantrasyonu
cm	: santimetre
ÇN	: Çapraz Nikol
D	: Dağılım katsayısı
DAFZ	: Doğu Anadolu Fay Zonu
DM	: Tüketilmiş Manto
ТМ	: Tüketilmiş Manto
TT	: Trakit, TrakiandezitTakımı
E	: Zenginleşmiş
EADH	: Ergime, asimilasyon, depolanma, homojenleşme
EM I	: Zenginleşmiş Manto-I
EM II	: Zenginleșmiș Manto-II
-----------------	--
En	: Enstatit
E-OOSB	: Zenginleşmiş Okyanus Ortası Sırtı Bazaltı
Erg	: Ergiyik
F	: Kısmi ergime miktarı veya AFC modellemesindeki artık eriyik fraksiyonu
Fa	: Fayalit
FC	: Ayrımlaşma
Fo	: Forsterit
Fs	: Ferrosilit
G: Güney	
Ga	: Milyar yıl
GB	: Güney batı
GPa	: Giga Paskal
gr	: Gram
grn	: Granat
hbl	: Hornblend
HIMU	: μ-değeri veya (²³⁸ U/ ²⁰⁴ Pb) oranı yüksek olan manto kaynağı
HNTE	: Hafif Nadir Toprak Elementler
ICP-AES	: İndüktif Eşleşmiş Plazma-Atomik Emisyon Spektrometri
ICP-MS	: İndüktif Eşleşmiş Plazma-Kütle Spektrometri
IC _A	: Üst Kıtasal Kabuk
ICo	: İlksel magma bileşimi
İ	: İlksel
ilm	: İlmenit
İМ	: İlksel Manto
Κ	: Kelvin
kbar	: Kilobar cinsinden basınç
KAFZ	: Kuzey Anadolu Fay Zonu
KB	: Kuzey batı
KD	: Kuzey doğu
Kd	: Dağılım katsayısı
km	: Kilometre cinsinden uzunluk
kpir	: Klinopiroksen

ku	: Kuvars
LİB	: Kıtasal Levha İçi Bazaltı
lit	: Kayaç parçası
m	: Metre cinsinden uzunluk
Mg#	: Magnezyum numarası
mol	: Molekül
mt	: Magnetit
MH	: Manyetit-hematit
My	: Milyon yıl
n	: Örnek sayısı
N	: Normalize
NHRL	: Kuzey Yarıküre Referans Çizgisi
NNO	: Nikel-nikel oksit
N-OOSB	: Tüketilmiş Okyanus Ortası Sırtı Bazaltı
NTE	: Nadir Toprak Elementler
OAB	: Okyanus Adası Bazaltı
OKK	: Ortalama Kıtasal Kabuk
ol	: Olivin
OM	: Ortalama Manto
OOSB	: Okyanus Ortası Sırtı Bazaltı
op	: Opak mineral
OÜKK	: Ortalama Üst Kıtasal Kabuk
Р	: Basınç (kbar cinsinden)
pl	: Plajiyoklas
PREMA	: Ortalama Manto
r	: Asimilasyonun ayrımlaşmaya oranı
sa	: Sanidin
Sp	: Spinel
SEM	: Taramalı elektron mikroskobisi
Т	: Sıcaklık (°C cinsinden)
ТАР	: Torid-Anatolid Platformu
TAS	: Toplam alkali-SiO ₂
TN	: Tek Nikol

T-OOSB	: Geçiş Okyanus Ortası sırtı Bazaltı
Usp	: Ulvospinel
ÜK	: Üst Kabuk Bileşimi
VAB	: Volkanik Yay Bazaltları
VS	: vesaire
Wo	: Vollastonit
XRD	: X-ışınları difraktometresi
YÇAE	: Yüksek Çekim Alanlı Elementler
YPKA-Ş	: Yüksek Potasyum Kalkalkali-Şoşonitik
YS	: Yitim Sedimanları
Zr	: Zirkon
εNd	: Nd izotopik bileşiminin bir manto rezervuarına göre oranı
εSr	: Sr izotopik bileşiminin bir manto rezervuarına göre oranı

1. GENEL BİLGİLER

1.1. Çalışmanın Amacı ve Kapsamı

Eski bir ada yayı olarak bilinen Doğu Pontidler'in jeodinamik gelişimi ile ilgili olarak birbirinden farklı görüşler içeren modellerde, jeokimyasal ve petrolojik (özellikle de izotopik ve jeokronolojik) veriler açısından yetersizlikler bulunmaktadır. Jeokimyasal analiz ve yorumlamalardaki eksikliklerin yanı sıra, bölgede bulunan özellikle Tersiyer volkanik kayaçlarına ait güvenilir ve yeterli sayıda jeokronolojik yaş ve kökensel gelişimine ışık tutacak izotop analizleri bulunmamaktadır. Bu nedenle, bölgedeki Tersiyer volkanik kayaçlarının oluşumuna kaynaklık eden magma(lar)ın gelişiminde fraksiyonel kristallenme, magma karışımı, kontaminasyon veya asimilasyon olayları ve yitim ergiyik ve/veya akışkanlar yoluyla manto metazomatizmasının etkisi yeterince ortaya konulamamıştır. Tersiyer volkanitleri üzerinde gerçekleştirilen bu çalışmada ise yukarıda belirtilen eksiklikler giderilerek, bölgesel jeolojideki büyük bir problemin çözümüne katkı konulmaya çalışılmıştır. Elde edilen sonuçların bölgesel ölçekte daha sonra yapılacak olan çalışmalara bir nevi yol gösterici olacağı düşünülmektedir.

Bu çalışmada, Doğu Pontidler'in kuzeyinde Karadeniz kıyısı boyunca yer alan, Trabzon-Giresun arasında yüzeyleme veren Tersiyer volkanitlerinin mineralojik, petrografik, petrolojik, izotopik özellikleri ve jeokronolojisinin belirlenmesi hedeflenmistir. Calışma kapsamında, daha önce yörede yapılmış 1/25.000 ve daha büyük ölçekli jeolojik haritalar esas alınarak bölgenin volkano-stratigrafik ve volkanik fasiyes, litolojik özelikleri ortaya konulmuştur. Arazideki farklı volkanik fasiyes birimlerinden derlenen örneklerde petrografik, mineralojik ve mineral kimyası karakteristikleri irdelenmiştir. Elde edilen mineral kimyası verileri kullanılarak volkanitleri oluşturan magmaların termobarometrik koşulları irdelenmiştir. Ayrıca, tüm-kayaç ana, iz ve nadir toprak element analizleri ile petrokimyasal, magma-tektonik özellikler belirlenerek volkanitleri üreten ana magma(lar)ın kökeni ve gelişimi (fraksiyonel kristallenme + magma karışımı + kontaminasyon) modellenmiştir. Sanidin, flogopit gibi mineral ayrımları ve tüm-kayaç hamurundan, ⁴⁰Ar-³⁹Ar yaşlandırmaları yapılmıştır. İlave olarak, tüm-kayaç örneklerinden köken amaçlı ⁸⁷Sr/⁸⁶Sr, ¹⁴³Nd/¹⁴⁴Nd, ²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb ve ²⁰⁸Pb/²⁰⁴Pb izotop analizleri ile ana magma kaynak bölgeleri (manto ± yitim ± kabuk katkısı)

yorumlanmıştır. Elde edilen tüm bu veriler ışığında Doğu Pontidler'in kuzeyindeki Tersiyer volkanitlerinin jeodinamik gelişimi aydınlatılmaya çalışılmıştır.

1.2. Çalışma Alanının Konumu

İnceleme alanı Karadeniz Bölgesi'nin Doğu Karadeniz Bölümü, Trabzon İli, Yomra, Akçaabat, Çarşıbaşı, Düzköy, Tonya, Vakfikebir, Beşikdüzü ilçeleri ile Giresun İli, Eynesil, Görele ve Çanakçı ilçeleri ve çevrelerini kapsamaktadır. İnceleme alanı, 1/25.000 ölçekli F41-c3, F42-c3, c4, d3, d4, F43-d3, d4 paftalarının güneyi, G42-a1, a2, b1 paftalarının tamamı ve G41-b2, G42-b2, G43-a1, a2 ve b1, c1, d1, d2 paftalarının kuzeyini içine alan yaklaşık 1100 km²'lik bir alanı kapsamaktadır (Şekil 1.1).

Şekil 1.1. Çalışma alanını ve çevresinde yüzeyleme veren volkano-stratigrafik birimleri gösteren yer bulduru haritası (Güven, 1993; Arslan vd., 2007'den değiştirilerek)

Yaklaşık olarak 4.685 km² yüzölçümüne sahip Trabzon İli Doğu Karadeniz Dağları'nın kuzeye bakan yamaçlarında yer almakta olup, kuzeyinde Karadeniz, güneyinde Gümüşhane ve Bayburt, doğusunda Rize, batısında çalışma alanının bir kısmını içine alan Giresun İli bulunmaktadır. Giresun İli'nin yüz ölçümü 6934 km² olup kuzeyde yine Karadeniz, güneyde Gümüşhane, Erzincan ve Sivas, batıda ise Ordu illeriyle çevrelenmiştir.

Çalışma alanında irili ufaklı birçok akarsu bulunmakta olup bunların debileri genellikle mevsimsel değişimler göstermektedir. Çalışma alanı içerisinde yer alan başlıca akarsular Yomra Deresi, Değirmen Dere, Sera Deresi, Kalanima Deresi, Fol Dere ve Çanakçı Deresidir.

Çalışma alanı engebeli bir araziye sahip olup bölgedeki önemli yükseltiler, Sisdağı (2182 m), Karadağ (1946 m), Karlıktepe (775 m) ve Boztepe (258 m)'dir.

Trabzon yöresi, Karadeniz Bölgesi ikliminin tüm özelliklerini gösterir. Hemen her mevsim yağış alır; genelde kışları ılık ve yağışlı, yazları sıcak ve nemlidir. Bölgenin dikey boyutta değişen ılıman ve her mevsim yağışlı iklim şartları, farklı türlerden oluşan bitki örtüsü kuşaklarını meydana getirmiştir. Buna göre; 0-300 m yükseltilerde Akdeniz bitki türlerinin olduğu maki (Akçaağaç, Şimşir, Karayemiş, Defne vs.) toplulukları dağılım gösterirken, kıyıya yakın kesimlerden itibaren geniş yapraklı etek ormanları (Kızılağaç, Kestane, Meşe türleri, İhlamur, Söğüt vs.) yer almaktadır. Daha yüksek kesimlerde ise geniş yapraklıların hâkimiyetindeki geniş-iğne yapraklı karışık ormanlar (Kızılağaç, Gürgen, Kayın, Ladin, Köknar vs.) ve daha yükseklerde de iğne yapraklıların hâkimiyetindeki ormanlar (Sarıçam, Ladin ve bazı çalı türleri vs.) dağılım göstermektedir.

1.3. Bölgesel Jeoloji

Karadeniz kıyısına paralel şekilde doğu-batı doğrultusunda uzanan Doğu Pontidler Okay ve Tüysüz (1999) tarafından belirlenen Sakarya Zonu içerisinde yer almaktadır (Şekil 1.2). Eski bir ada yayını temsil eden Doğu Pontidler birçok araştırmacı tarafından tektonik, magmatik, sedimantolojik özelliklerine göre farklı zonlara ayrılmıştır (Arslan vd., 1997; Şen vd., 1998; Arslan vd., 2002; Şen, 2007). Özsayar vd. (1981) tarafından Kuzey ve Güney Zon olarak ikiye ayrılan Doğu Pontidler, Bektaş vd. (1995) ve Eyüboğlu vd. (2006, 2007) tarafından Kuzey, Güney ve Eksen Zonu olarak üçe ayrılmıştır. Kuzey Zon volkanik kayaçlar ve granitik intrüzyonlarla karakterize edilirken, Güney Zon metamorfik masifler, granitik kayaçlar ve baskın olarak sedimanter kayaçlar ile karakterize edilir.

Doğu Pontidler'in temelini oluşturan metamorfik kayaçlar değişik araştırmacılar tarafından incelenmiştir ve mikaşist, kloritşist, kalkşistler, mermerler, metagabrolar ve

metabazaltlardan oluşan birim Pulur masifi olarak adlandırılmıştır (Korkmaz ve Baki, 1984; Akdeniz, 1988; Tanyolu, 1988; Habiboğlu, 1989; Okay vd., 1997; Topuz vd., 2003 ve 2004; Kormaz ve Baki, 1984). Topuz vd. (2004a, 2004b) tarafından yapılan çalışmada Pulur masifi tektonometamorfik olarak iki farklı birliğe ayrılmıştır; 260 milyon yaşa sahip metabazit, fillit, mermer ve çört gibi düşük dereceli metamorfitlerden oluşan Doğakaynak birimi ve Karbonifer yaşlı yüksek dereceli metamorfitlerden oluşan Cenci birimi. Ayrıca, bu metamorfitler Üst Karbonifer yaşlı Gümüşhane (324-320 My; Topuz vd., 2010), Köse (Gümüşhane; 322-306 My, Dokuz vd., 2011) ve Derinoba-Kayadibi (Tonya-Trabzon; 303-317 My, Kaygusuz vd., 2012) granitleri tarafından kesilmektedir.

Şekil 1.2. Ana sütür zonları ve kıtasal blokları gösteren Türkiye ve yakın çevresinin tektonik haritası (Okay ve Tüysüz, 1999)

Doğu Pontidler'in tabanını oluşturan metamorfik temel ve bunları kesen granitik kütleler ilk defa Ağar (1977) tarafından tanımlanan Liyas yaşlı Hamurkesen Formasyonu tarafından uyumsuz olarak üzerlenmektedir. Bu formasyon genellikle taban konglomerasıyla başlayıp üste doğru Ammonitico-Rosso fasiyesiyle karakterize kırmızı renkli kireçtaşlarıyla devam eder ve en üstte kumtaşı, marn tüf-tüfit ardalanmasıyla son bulur. Aynı birim Eren (1983) tarafından Zimonköy Formasyonu olarak isimlendirilmiştir.

Hamurkesen Formasyonu üzerine ilk defa Pelin (1977) tarafından adlandırılan Dogger-Malm-Alt Kretase yaşlı Berdiga Formasyonu gelmektedir. Berdiga Formasyonu, Doğu Pontidler'in kuzeyinde genellikle gri-bej renkli masif tabakalanmalı kireçtaşları, güneyinde ise orta tabakalanmalı masif kireçtaşlarından oluşmaktadır.

Doğu Pontidler'de Üst Kretase istifleri güney ve kuzeyde farklı litolojik özellikler sergilemektedirler. Güneyde genellikle sarı renkli kumtaşı, kırmızı kireçtaşı ve filişle temsil edilirler. Kuzey de ise Güven (1993) tarafından tanımlanan alttan üste doğru bazalt ve piroklastitlerinden oluşan Çatak Formasyonu, dasit sırasıyla; ve piroklastitlerinden meydana gelen Kızılkaya Formasyonu, bazalt-andezit ve piroklastitlerinden oluşan Çağlayan Formasyonu, dasit-riyolit ve piroklastitlerinden ile karakterize edilen Çayırbağ Formasyonu ve marn, kiltaşı, kumtaşı ve kireçtaşı ardalanmasından oluşan Bakırköy Formasyonu'ndan meydana gelmektedir. Ayrıca, Üst Kretase yaşlı asidik volkanitler maden yatakları barındırmalarından dolayı oldukça önemlidirler.

Doğu Pontidler'de yüzeyleme veren Senozoyik yaşlı birimler kuzeyde ve güneyde farklı özellikler sunmaktadırlar. Kuzeyde, Paleosen-Eosen yaşlı ve Güven (1993) tarafından Kabaköy Formasyonu olarak isimlendirilen birim genellikle bazaltlar, bazaltik andezitler, trakitler ve piroklastitlerinden meydana gelmektedir. Güneyde ise Gümüşhane çevresinde tortullar ve andezitik volkanitlerden meydana gelen Alibaba Formasyonu, daha güneyde Bayburt yöresinde taban konglomerası ile birlikte uyumsuz olarak gelen ve kırıntılılardan oluşan bir istifi içeren Sırataşlar Formasyonu ve asitik karakterli piroklastitlerle (Bayburt tüfü; Arslan vd., 2005) ardalanmalı sedimanter kayaçlardan oluşan Tekçamtepe Formasyonu (Özer, 1984) ile temsil edilir. Hem güneyde hem de kuzeyde Eosen yaşlı birimlerin içerisine sokulum yapmış granitler Güven (1993) tarafından Kaçkar II granitoyidi olarak isimlendirilmiştir. Bu granitlerin yaşı yapılan jeokronolojik çalışmalarla Orta Eosen (Arslan ve Aslan, 2006; Karslı vd., 2007, 2012) olarak belirlenmiştir.

Kuzeyde Trabzon ve civarında dar bir alanda yüzeyleme veren, Aydın vd. (2008) tarafından Trabzon volkanitleri olarak tanımlanan Neojen yaşlı volkanitler genellikle gri renkte olup foid mineralleri içeren bazaltik volkanitlerden meydana gelmiştir. Bu birim üzerine uyumsuz olarak gelen, Güven (1993) tarafından adlandırılan Miyosen yaşlı Kaymaklı Formasyonu genellikle sarımsı-gri renkli kumlu killi silttaşı, açık gri-yeşil renkli marn ve kiltaşlarından meydana gelir. Kaymaklı Formasyonu ise yine uyumsuz olarak bazaltik ve andezitik aglomera, tüf, kiltaşı-kumtası-marn ardalanması, iri taneli kumtaşı ve kötü katmanlı, gevşek çimentolu konglomera ve breşlerden meydana gelen Beşirli

Formasyonu (Güven, 1993) tarafından üzerlenmektedir. İstifin en üst kısmını Neojen yaşlı volkanitlerin alterasyonu sonucu oluşmuş kırmızı renkli saprolitik killer (Arslan vd., 2006) ve Holosen-Pleyistosen olarak yaşlandırılan denizel taraçalar (Keskin, 2007) oluşturmaktadır. Bölgede Kuvaterner yaşlı taraça ve alüvyonlardan oluşan birimler tüm istifi uyumsuz olarak örtmektedir.

1.4. Önceki Çalışmalar

İnceleme alanını kapsayan yörelerde genel jeoloji, mineraloji-petrografi ve maden yatakları-jeokimya amaçlı birçok çalışma yapılmıştır. Bu çalışmalardan daha çok, Doğu Pontidler'in güneyi ve kuzeyindeki Mesozoyik ve Senozoyik volkanitlerinin ve sokulum kayaçlarının tektonik ortamlarını, jeokimyasal ve kökensel özelliklerini açıklamaya yönelik olanlar, kronolojik olarak kısaca izleyen kısımda özetlenmiştir.

Göksu (1974), 1/500.000 ölçekli Türkiye Jeoloji Haritası, Samsun paftasını derlemiştir. Ordu yöresindeki Eosen yaşlı birimlerin daha yaşlı birimlerin üzerine transgresif olarak geldiğini, bölgede faylarla kırılmış Germano tip bir yapının etken olduğunu ve bu eski fayların ise volkanizmanın çıkış yollarını ifade ettiğini belirtmiştir.

Tokel (1977), Doğu Pontidlerin güneyinde Gümüşhane yöresindeki Eosen volkanitlerini incelemiş ve bunların kalkalkalen sınıfın kalsik ucunda yer aldığını, silisyuma doymuş ve genellikle Al₂O₃ bakımından zengin olduğunu belirtmiştir.

Terlemez ve Yılmaz (1980), Ünye-Ordu-Koyulhisar-Reşadiye arasında kalan bölgede yaptıkları incelemede, yörede Orta Jura - Pliyosen yaş aralığında ve çeşitli fasiyeslerde kayaçların yüzeylendiğini, istifin temelini Jura-Alt Kretase Zinav kireçtaşlarının oluşturduğunu, bunun üzerine açısal uyumsuzlukla tüfit, andezit, aglomera, kireçtaşı ve kumtaşı ardalanmasının oturduğunu ve bu birimin dasit ve siyenitlerce kesildiğini belirtmişlerdir. Daha üstte, kuzeyde tüfit-killi kireçtaşı ardalanması, güneyde ise kumlu kireçtaşı ardalanması bulunduğunu ve bu iki dizinin daha genç birimler altında yanal geçişli olduğunu vurgulamışlardır. Ayrıca, Paleosen yaşlı tüfit, aglomera ve kömür ara katkılı kireçtaşı ve kumtaşı ardalanmasının Maestrihtiyen yaşlı birimlerin devamı şeklinde çökeldiğini ve bunların üzerine açısal uyumsuzlukla bazı yerlerde kireçtaşı, bazı yerlerde ise bazaltın geldiğini belirtmektedirler. Bu birimin üzerine Eosen yaşlı aglomera ile andezit ve aglomera ara katkılı kumtaşı istifinin geldiğini, Miyosen-Pliyosen devresinde ise çeşitli bazalt oluşumlarının geliştiğini ve bu birimlerin alüvyonlarla örtüldüğünü ortaya koymuşlardır.

Bektaş vd. (1987), Doğu Pontidler'de Liyas volkanizmasını petrokimyasal yönden irdelemiş ve volkanitlerin K ve Ti içeriklerinin güneye doğru arttığını ileri sürmüşlerdir. Bu artışın güneye doğru dalan bir okyanusal litosferden kaynaklandığını ve bunun sonucunda Doğu Pontidler'in kuzeyinde toleyitik, güneyine doğru ise kalk-alkali ve alkali özellikteki volkanik kayaçların yerleştiğini ifade etmişlerdir.

Güven (1993), Doğu Pontidler'de Eosen volkanitlerinin güneye nazaran kuzeyde (Trabzon-Tonya-Vakfikebir hattı) Karadeniz kıyı şeridi boyunca daha dar alanda yüzeylenme verdiğini ve bu birimlerin örtü kayacı özelliğini taşıdığını belirtmiştir. Kuzeyde yaygın ve kalın yüzlekler oluşturan, tamamen volkanik ve piroklastik kayaçlarla temsil edilen bu birimi Kabaköy Formasyonu olarak adlandırmıştır.

Korkmaz (1993), Doğu Pontidler'in kuzeyinde yüzeyleyen en yaşlı birimin, ayrışmış bazalt, andezit ve piroklastitlerinden meydana gelen Liyas-Dogger (?) yaşlı Gürgendağ Yayla Formasyonu olduğunu belirtmiştir. Bu birim üzerine uyumlu olarak Üst Jura-Alt Kretase yaşlı masif ve kalın tabakalı kireçtaşlarından oluşan Berdiga Formasyonu'nun oturduğunu söylemiştir. Berdiga Formasyonu üzerine uyumsuz olarak kırmızı renkli kireçtaşı ara katmanları içeren andezit, bazalt, dasit ve piroklastitlerden oluşan Kampaniyen-Maestrihtiyen yaşlı Düzköy Formasyonu'nun geldiğini ve bu Formasyonun üste doğru beyaz renkli kireçtaşı ve marn ardalanmasından oluşan Maestrihtiyen-Daniyen yaşlı Tonya Formasyonu'na geçtiğini belirtmiştir. Lütesiyen yaşlı tortul ara katmanlar içeren andezit, bazalt ve piroklastitlerden meydana gelen Foldere Formasyonu'nun Tonya Formasyonu üzerine uyumsuz olarak oturduğunu, olivin-ojitli bazalt ve piroklastitlerden oluşan Miyo-Pliyosen yaşlı Karadağ Formasyonu'nun da alttaki bütün birimleri uyumsuz olarak üzerlediğini ileri sürmüştür.

Çamur vd. (1996), Doğu Pontidler'deki volkanik kayaçları oluştukları zaman dilimine göre; Jura Volkanik Devri, Üst Kretase Alt Volkanik Devri, Üst Kretase Üst Volkanik Devri ve Eosen Volkanik Devri şeklinde dört ana volkanik devire ayırmışlardır. Bu çalışmaya göre, Jura volkanitleri yay gerisi ve zenginleşmiş okyanus ortası bazaltı özellikleri taşır ve kabuktan etkilenmemiştir. Buna karşın, Üst Kretase volkanik kayaçları toleyitik ve kalkalkali, Eosen volkanitleri ise şoşonitik karakterde olup, zenginleşmiş okyanus ortası bazaltlarına benzer bir magmadan türemişlerdir.

Arslan vd. (1997), "Doğu Pontidler Volkanik Kayaçlarının Jeokimyası ve Petrojenezi" adlı çalışmada, Doğu Pontidler'i Liyas, Üst Kretase ve Eosen'de olmak üzere üç ana volkanik evreye ayırmışlardır. Her bir evreyi jeokimyasal ve petrolojik olarak ayrı ayrı incelemişler ve birbirleriyle karşılaştırmalarını yapmışlardır. Liyas volkanizmasının ekstansiyonel rejim altında riftleşmeye bağlı olarak, Üst Kretase volkanizmasının yitim sonucu, Eosen volkanizmasının ise yitimin sonunda alt kabuk ve/veya üst mantonun kısmi ergimesi sonucu oluştuklarını belirtmişlerdir. Tüm bu jeokimyasal ve petrolojik verilerin Doğu Pontid volkanik kayaçlarının yay ortamında oluştuklarına işaret ettiklerini vurgulamışlardır. Ayrıca, kuzeydeki Eosen volkanitlerinin jeokimyasal özelliklerindeki farklıları kökensel açıdan irdeleyerek söz konusu volkanitleri Trabzon ve Tonya grubu olarak ikiye ayırmışlardır.

Hoskin ve Wysoczanski (1998), Trabzon ve çevresinde yüzeylenen volkanik kayaçlardaki iri klinopiroksenler içindeki pirit kapanımlarından elde ettikleri U-Pb yaşlandırması sonucunda bu volkanitlerin yaşını 12-16 My olduğunu ifade etmişlerdir.

Şen vd. (1998), Doğu Pontidler'in kuzeyindeki alkalen volkanitlerin Senozoyik döneminde gelişen volkanik faaliyetler sonucunda oluştuğunu, petrografik ve jeokimyasal verilere göre bu alkalen kayaçların iki farklı gruba (Tonya grubu ve Trabzon grubu) ayrılabileceğini belirtmişlerdir. Petrografik olarak, her iki grubun alkali bazalt, tefrit, fonolitik tefrit, bazanit, nefelinit, nefelin latit ve bunların piroklastik kayaçlarını içerdiğini söylemişlerdir. Tonya grubu örneklerinin Trabzon grubu örneklerine göre, daha yüksek MgO ve Ni, daha düşük hafif nadir toprak element (HNTE) içeriklerine ve büyük iyon yarıçaplı litofil element (BİLE) / yüksek çekim alanlı element (YÇAE) oranlarına sahip olduklarını vurgulamışlardır.

Aliyazıcıoğlu (1999), "Kale (Gümüşhane) Yöresi Volkanik Kayaçlarının Petrografik, Jeokimyasal ve Petrolojik İncelenmesi " adlı çalışmasında; Kale Formasyonu'nu oluşturan mikritik kireçtaşlarında ve aglomeralar içerisindeki mikritik kireçtaşı çakıllarında Paleosen mikrofosilleri bulunduğunu ve bu nedenle volkanizmanın Paleosen döneminde başlayıp Eosen'de etkili bir şekilde devam ettiğini belirtmiştir. Ayrıca petrografik ve jeokimyasal incelemeler sonucunda volkanitlerin bazik bileşimli bir ana magmadan hornblend-ojit kontrollü fraksiyonel kristallenme, kontaminasyon ve magma karışımı olayları sonucu oluştuğunu ileri sürmüştür. Volkanitlerin ana magmasının zenginleşmiş bir ana kaynaktan muhtemelen metazomatizmaya uğramış bir manto kaynağından türemiş olduğunu ve yöredeki volkanizmanın ekstansiyonel rejimdeki bir havzada önce patlamalı (aglomera ve tüfleri oluşturan) olarak, daha sonra da bunu takip eden lav püskürmesi (andezitik kayaçları oluşturan) şeklinde geliştiğini vurgulamıştır.

Bektaş vd. (1999), Doğu Pontidler'in kuzeyindeki Üst Kretase yaşlı volkanitlerin, bimodal (toleyitik-kalkalkali) özellikte ada yayı kayaçları olduğunu ve güneydeki Üst Kretase yaşlı kayaçlara göre daha erken bir zaman diliminde oluştuğunu belirtmişlerdir. Araştırmacılar bu veriyi yitim zonu üzerinde gelişen Geç Kretase volkanizmasının güneye doğru göç ettiği şeklinde yorumlamışlardır.

Arslan vd. (2000), Doğu Pontidler'deki Tersiyer volkanitlerinin petrolojisi ve petrojenezi üzerine yaptıkları çalışmada, birbiriyle ilişkili iki farklı volkanik kayaç grubunun var olduğunu ve bu kayaçların kökenleri üzerinde iki farklı görüş olabileceğini belirtmişlerdir. Dolayısıyla; söz konusu volkanitlerin ya heterojen bir manto kaynağından türemiş olabileceklerini ya da aynı kaynaktan farklı kısmî ergime dereceleriyle oluşabileceklerini ifade etmişlerdir. Ayrıca, manto kaynağının tüketilmiş okyanus ortası sırtı bazaltlarına (N-OOSB) göre zenginleşmiş bir kaynak olduğunu ve bu zenginleşmenin muhtemelen Geç Kretase sürecindeki yitime bağlı olarak geliştiğini belirtmişlerdir.

Barbieri vd. (2000), Doğu Pontidler'in kuzeyinde Senozoyik yaşlı volkanitlerde K-Ar yaşlandırma ve Sr izotop analizleri gerçekleştirmişlerdir. Elde ettikleri yaşlarının çoğunun özellikle 26 My etrafında kümelendiğini belirten yazarlar bu olayı, Doğu Pontidler'deki magmatik aktivitenin son aşamasıyla ilişkili olan hidrotermal alterasyonun neden olduğu Ar kaybına bağlamaktadırlar. Ancak, Trabzon' un güneyinden alınan silise doymamış alkali volkanik kayaç örneğinin 26.5-27 My yaşında olmasını, yöredeki Senozoyik volkanitlerinin en son ürünü olarak yorumlamışlardır. Ayrıca araştırmacılar, söz konusu kayaçların Sr izotop oranlarının alterasyondan etkilenmediğini ve bu oranların 0.70415-0.70696 arasında değiştiğini ifade etmişlerdir.

Şen (2000), Doğu Pontidler'in kuzeyinde kıyı hattı boyunca yüzeylenen alkali bazalt, tefrit, fonolitik-tefrit, bazanit, aglomera ve tüfler içerisinde, boyları birkaç cm'den birkaç dm'ye ulaşan koyu renkli ultramafik nodüllerin varlığını ortaya koymuştur. Mineral içeriği ve kimyasına göre bu nodülleri; Grup I ve Grup II olarak tanımlamış, bunların manto ksenolitleri olmadığını ve magmanın değişik derinliklerde kristallenmesi sonucu oluşan mineral birikimleri (cognate ksenolit) olduklarını ileri sürmüştür.

Arslan vd. (2001), Doğu Pontidler'de kuzeyde Trabzon ve güneyde Gümüşhane yörelerinde yüzeylenen Eosen volkanitlerinin jeolojik, mineralojik ve petrokimyasal özelliklerini karşılaştırmışlardır. Güneydeki volkanitlerin Paleosen mikritik kireçtaşlarıyla

geçişli Nummulitli seviyeler içeren tortul kayaçların hemen üzerine uyumlu olarak geldiğini, buna karşın kuzeydeki volkanitlerin çoğu yerde Üst Kretase tortulları üzerine uyumsuz olarak, bazen de Üst Kretase volkanitleri üzerine uyumsuzluk konglomerası ile oturduğunu belirtmişlerdir. Güneydeki volkanitlerin bazaltik andezit, andezit, az oranda bazalt ve piroklastitleri ile kalkalkalen karakterli bir seri oluşturduklarını; kuzeydeki volkanitlerin ise alkalen bazalt, tefrit, bazanit, fonolitik tefrit ve piroklastitleri ile alkalen seri özelliğinde olduklarını ifade etmişlerdir. Ayrıca, kuzeydeki alkalen seride, iz elementleri farklı iki grup kayacın (Trabzon ve Tonya grupları) varlığından söz etmişler ve kuzeydeki volkanitlerin gelişiminde, esasen yüksek basınç altında gerçekleşen differansiyasyon ve değişken oranda kısmi ergimenin etkili olduğunu vurgulamışlardır. Bunların yanı sıra, Paleosen sonundan itibaren oluşan güneydeki volkanitlerin, yitimin metazomatizmaya uğrattığı mantodan itibaren; kuzeydeki volkanitlerin ise sıkışmadan dolayı yitim eğim açısının dikleşmesi sonucu daha derin kökenli bir mantodan itibaren oluştuklarını ileri sürmüşlerdir.

Yılmaz vd. (2001), Doğu Pontidler'in kuzeyinde, Kretase sürecinde meydana gelen en erken aktif volkanizmanın, paleontolojik verilere göre Geç Koniasiyen- Santoniyen'de başladığını ve Tersiyer sonuna kadar devam ettiğini belirtmişlerdir.

Arslan ve Aliyazıcıoğlu (2001) Kale (Gümüşhane) yöresinde yaptıkları çalışmada sığ depolanma havzası karakterlerini yansıtan volkanitlerin başlıca plajiyoklas, ojit, hornblend ve daha az oranda biyotit ve manyetitlerden meydana geldiklerini ve porfirik, hyaloporfirik, nadiren flüidal ve glameroporfirik dokular sergilediklerini belirtmişlerdir. Volkanitlerin başlıca kalkalkalen karaktere sahip olmakla birlikte orta derecede potasyum zenginleşmesi gösterdiklerini ve ana ve iz element değişimlerine göre volkanik takımların gelişimi sırasında fraksiyonel kristallenmenin önemli rol üstlendiğini söylemişlerdir. Volkanitlerin OOSB'na göre BİLE ve HNTE içerikleri bakımından zenginleşmiş, YÇAE element içerikleri bakımından tüketilmiş değerlere sahip olduklarını, ayrıca uyumsuz element dağılımlarının E tipi OOSB'larıyla benzerlikler sunduğunu vurgulamışlardır. Kayaçların orta derecede zenginleşmiş NTE yönsemeleri sunduklarını ve $(La/Lu)_N = 2-12$ arasında değiştiğini ifade etmişlerdir. Jeokimyasal veriler ışığında volkanitlerin Paleosen-Eosen döneminde Pontid yayının kalınlaşmasından sonra, kısmi ergimeyle metazomatizmaya uğramış üst mantodan gelen magmaların sığ seviyede fraksiyonel kristallenme ve magma karışımı sonucunda geliştiklerini belirtmişlerdir. Ayrıca, farklılaşmanın ekstansiyonel tektonik rejim altında kalınlaşan yay kabuğu içindeki magma odalarında meydana geldiği sonucuna varmışlardır.

Arslan vd. (2002), Doğu Pontidler'de Avrasya ve Arap Plakalarının en son çarpışma aşamasından sonra, Senozoyik süresince meydana gelen yarı paralel derin fayların, açılmalı bir tektonik rejime ve bununla ilişkili magmatik olayların oluşmasına neden olduğunu belirtmişlerdir. Ayrıca Trabzon yöresi volkanitlerini oluşturan köken magma(lar)ın levha içi zenginleşmeye, Gümüşhane civarındaki volkanitleri oluşturan magma(lar)ın ise yitim zonu zenginleşmesine ya da kabuksal kirlenmeye uğradıklarını ifade etmişlerdir.

Temizel (2002), Doğu Pontidler'de İkizce (Ünye-Ordu) yöresinde yer alan Tersiyer yaşlı volkanik kayaçların petrografik, jeokimyasal ve petrolojik özelliklerini incelediği çalışmada; volkanik kayaçların; andezit, andezit porfir ve piroklastitlerinden daha az oranda ise bazalt ve bazaltik andezitten oluştuğunu, genel olarak kalkalkali ve toleyitikalkali geçişli, orta derecede K içerdiklerini, ana ve iz element değişimlerine göre kayaçların gelişiminde klinopiroksen, olivin, hornblend, plajiyoklas, magnetit ve apatit ayrımlaşmasının etkili olduğunu vurgulamıştır. Yüksek BİLE (Sr, K₂O, Rb, Ba) ve HNTE (La, Ce) ile düşük Nb, Zr, Y ve TiO₂ içerikleriyle volkanitlerin; yitim ve astenosferik ergiyiklerin karıştığı zenginleşmiş bir köken magmadan türediğini belirtmiştir. Koçevyanı Bazaltı'nın yüksek basınçta (~2 kbar) olivin + ojit kontrollü ayrımlaşmayla, andezitik kayaçların ise daha sığ derinliklerde düşük basınçta (~1 bar) ojit + hornblend \pm plajiyoklas kontrollü ayrımlaşma ve özümleme \pm magma karışımıyla oluştuğunu ifade etmiştir.

Temizel ve Arslan (2003), Doğu Pontidler'de İkizce (Ünye-Ordu) yöresi Tersiyer volkanitlerinin gelişiminde etkili olan magmatik olayların jeokimyasal modellenmesini yapmıştır. Buna göre volkanitlerin ana magmasının, manto kaynağından ~%20-30'luk bir kısmi ergimeyle türediğini, iz elementlere dayalı Rayleigh Fraksiyonlaşması'na göre gelişimlerinde klinopiroksen, plajiyoklas ve magnetit ayrımlaşmasının etkili olduğunu belirtmişlerdir. Ayrıca, ayrımlaşmanın yanı sıra özümleme ile birlikte gelişen ayrımlaşma olayının (AFC) etkisini modelleyerek, volkanitlerin gelişiminde AFC'nin çok etkili olmadığını (asimilasyon/fraksiyonel kristallenme oranı r ≤ 0.2), fraksiyonel kristallenmenin daha baskın olduğunu ileri sürmüşlerdir.

Arslan vd. (2004), Doğu Pontidler'in kuzeyinde Güre (Giresun) yöresinde yaptıkları çalışmada; Güre Granitoyidi'nin genellikle özşekilsiz taneli, ince taneli porfirik, yer yer yazı ve mikropegmatitik dokulu olup, kuvars, ortoklas, plajiyoklas, hornblend, biyotit, apatit ve sfen minerallerinden oluştuğunu ifade etmişlerdir. Güre Granitoyidi'nin jeokimyasal olarak, I-tipi, kalkalkalin, metalümin-peralümin (A/CNK=0.9-1.2) karakterli, fraksiyonlaşmış ve alümino-kafemik (ALCAF) özellikte olduğunu, ana ve iz element değişimlerinin, kayaçların gelişiminde ayrımlaşmanın önemli olduğunu vurgulamışlardır. İlave olarak, Güre Granitoyidi'nin hibrid bir ana magmadan itibaren gelişmiş olduğunu, bu ana magmanın da muhtemelen kabuğu ve manto kaynaklarını kapsadığını belirtmişlerdir. Granitik magma kristallenmesinin, kabuğunun nispeten derin kesimlerinde (~6 km) başlamış olduğunu ve kristallenmenin magma yükselimi ile sığ derinliklerde (~3 km) tamamlanmış olduğunu söylemişlerdir.

Aydın (2004), Doğu Pontidler'in kuzeyinde Değirmendere Vadisi (Trabzon) boyunca yüzeylenen volkanitlerinin mineralojik, kimyasal ve petrolojik özelliklerini ortaya koyarak, volkanitlerin gelişim süreçlerinde etkili olan magmatik olayları modellemiş ve kökenlerini tartışmıştır. Mineral ve kayaç kimyası verilerine göre, Üst Kretase yaşlı toleyitik-kalkalkali volkanitlerin ada yayı ürünleri olup, bazaltik ve andezitik kayaçlardan oluştuğu, buna karşın Neojen yaşlı alkali-şoşonitik Trabzon volkanitlerinin çarpışma sonrası yay özelliği gösteren bazanit, tefrit ve tefritik fonolitlerden (I. grup) ve alkali bazalt, trakibazalt, trakiandezit, trakit ve riyolitten (II. grup) oluşan iki farklılaşmış seriden meydana geldiğini belirtmiştir. Farklılaşma modellemelerine göre, Üst Kretase volkanitlerinin gelişiminde Kpir + Pl ± Fe-Ti oksit ayrımlaşmasının baskın olduğu, buna karşın Neojen volkanitlerinin I. grup serisinde Kpir + Foid + Fe-Ti oksit + Ap, II. grubun ise K-Feld + Kpir + Pl + Bt + Fe-Ti oksit ayrımlaşmalarının etkili olduğunu söylemiştir. Ayrıca jeokimyasal verilerin, Üst Kretase volkanitlerinin ana magmasının yitim ilişkili zenginleşmiş litosferik bir kaynaktan itibaren orta derecedeki (% 15-20) kısmi ergimeyle, Neojen volkanitlerinin ise ana magma kaynağının muhtemelen metazomatize olmuş bir manto kaynağından düşük dereceli (<%15) kısmi ergimeyle oluştuğunu ileri sürmüştür.

Topuz vd. (2005), çarpışma sonrası karakterli Saraycık plütonunun sokulum derinliğini hornblend jeobarometresi ve kontak metamorfizma birlikteliklerinden yaralanarak 5-8 km arasında değişen sığ bir derinlik olarak tahmin etmişlerdir. Sokulumun yaşını biyotitten elde edilen Ar-Ar plato ve toplam füzyon yaşlarına göre 52 milyon yıl olarak belirlemişlerdir. Plütonun ana kütlesinin metalüminden peralümine kadar değişen biyotit granodiyorit, hornblend-biyotit granodiyoritlerden oluştuğunu ve bunlara ek olarak 10 m kalınlığa sahip dasitik ve <25cm kalınlıktaki aplit dayklarının da varlığını belirtmişlerdir. Granodiyoritlerin ve dasitlerin yüksek-silis yitim zonu üzerinde gelişen

adakitlere kadar değişen birçok bileşimsel benzerlik gösterdiklerini ve bunların daha felsik ve yüksek alüminyum doygunluk indeksine sahip olduklarını belirtmişlerdir. Kondrite normalize NTE desenlerini, yüksek (La/Yb)_N oranı ile ANTE'lerde konkav şekil ve Eu anomalisinin gözlenmemesiyle karakterize etmişlerdir. Yüksek Ba ve Sr değerleri ve düşük Y, ANTE ve Sc içerikleri nedeniyle feldispatça fakir, garnet ve amfibol bakımından zengin mineral birlikteliklerinin varlığını işaret etmişlerdir. Kayaç tipine bakılmaksızın bütün örneklerin Sr-Nd izotopik karakteristiklerinin benzer olduğunu ve -0.3 ile -1.2 arasında değişen eNd_i ve 0.70491 ve 0.70529 arasında değişen (⁸⁷Sr/⁸⁶Sr)_i oranlarına sahip olduklarını ifade etmişler ve buradan yola çıkarak bu kayaçları oluşturan magmaların yüksek basınç altında mafik alt kabuğun ergimesi sonucu oluştuğu sonucuna varmışlardır.

Arslan vd. (2006), Doğu Pontidler'in kuzeyinde Trabzon çevresinde yüzeyleme veren Neojen alkalen volkanitlerinin kimyasal ayrışmasının, kırmızımsı-kahverengi saprolitlerin oluşumuna imkân verdiğini söylemişlerdir. Bu saprolitlerin başkın mineralinin kaolen olduğunu, bunların yanı sıra az miktarda halloysit, profillit, simektit, klorit, hematit ve illitlerinde bulunduğunu ifade etmişlerdir. Diğer minerallerin ise opal-CT, kuvars ve nadiren feldispat, klinopiroksen, hematit ve Fe-Mn-Ti oksitler olduğunu vurgulamışlardır. Piroklastik kayaçların kırılma ve parçalanmaları ve sonrasında aktif akışkanların kayaçlara nüfuzu ile klinopiroksenlerde kloritleşmeye, plajiyoklaslarda albitleşmeye, Fe-Mn-Ti oksitlerin ise çökelmesine olanak sağladığını belirtmişlerdir. Kaolin mineralinin kısmen çözünmüş camın etrafında süngerimsi-lifler halinde bulunduğunu ve kalıntı allofan olması muhtemel yarı yuvarlak tanelere devitrifiye olduğunu söylemişlerdir. Arazi gözlemleri ve mineralojik-kimyasal karakteristikler, Neojen volkanitlerinin alterasyonunun meteorik veya meteorik ve deniz suyu karısımının çevrimi sırasındaki kimyasal bozunmayla kontrol edildiğini belirtmişlerdir. Piroklastik kayaçlardaki yoğun kırılma ve parçalanma asidik ve oksidasyon koşulları altında üst saprolit seviyede kil minerallerinin oluşmasına neden olduğunu ifade etmişlerdir. Ayrıca, allofandan halloysitin erken çökeliminin muhtemel olduğunu ve ilerleyen alterasyon sonucunda kaolinite dönüştüğüne işaret etmişlerdir.

Arslan ve Aslan (2006), Doğu Pontidler'in kuzeyindeki ve güneyindeki Eosen yaşlı granitik sokulumları mineralojik-petrografik ve petrokimyasal özellikleri bakımından karşılaştırmışlardır. Petrografik olarak sokulumların, kuzeyde monzonit, kuvars monzonit, monzodiyorit ve kuvars monzodiyorit, güneyde ise monzogranit ve granodiyoritten ibaret olduklarını belirtmişlerdir. Genellikle kalkalkali-hafif alkali geçişli ve metalumin karaktere sahip bu kayaçların kafemik yönseme gösterdiğini söylemişlerdir. Kuzeydeki sokulumların

çarpışma sonrası, A-tipi, alkalen monzonitik birlikteliğinden, güneydeki sokulumların ise çarpışma sonrası, I-tipi, granodiyoritik kalkalkali-alkali geçiş birlikteliğinden oluştuğunu, jeokimyasal verilerin, farklılaşmanın ayrımlaşma ve/veya magma karışımı ile olduğunu gösterdiklerini ifade etmişlerdir. Uyumsuz ve nadir toprak element dağılımlarının, kuzey ve güney sokulumlarının her ikisinin de yitimle ilişkili akışkanlarca zenginleşmiş köken magmadan oluştuğunu fakat yükselme ve yerleşme esnasında farklı bir şekilde geliştiklerini ifade etmişlerdir. Güneydeki sokumlara ait U-Pb zirkon yaşlandırmasına göre yerleşme yaşının 44.4±0.3 milyon yıl olduğunu söylemişlerdir. Jeodinamik gelişimde çarpışma sonrası ekstansiyonel tektoniğin varlığını ve özellikle yitimin sonu çarpışmanın ve bunu takip eden kabuk incelmesinden sonra, kabuk kirlenmesinin ve yerleşim seviyesinin magmatik gelişim için önemli olduğunu vurgulamışlardır.

Boztuğ vd. (2006) yaptıkları çalışmada Kretase'den Geç-Eosene kadar değişen yaş aralıkları sergileyen kompozit Kaçkar batolitinin erkenden olgunlaşmış yay ortamına kadar sıralanmış farklı jeodinamik ortamlardan türemiş farklı sokulumlardan meydana geldiğini ifade etmişlerdir. Jeolojik yerleşimi ve jeokimyasal karakteristikleri göz önünde bulundurarak on farklı litolojik birimi beş jeodinamik birliktelikte gruplamışlardır: (1) erken yay; Erken Kretase yaşlı orta-K' lu kalk-alkalen Çamlıkaya granitoyidiyle, (2) olgunlaşmış yay; Geç Kretase-Erken Paleosen yaşlı orta-yüksek K' lu kalk-alkalen Sırtyayla ve Marselevat graniyotileriyle temsil edilirken, (3) Çarpışma Plütonları; Paleosen yaşlı peralümin Asniyor lokogranitleriyle, (4) çarpışma sonrası Plütonları; Orta-Geç Eosen yaşlı yüksek-K' lu kalk-alkalen Ayder K-feldispat megakrislalli granitoyidi ve Sasmistal mikrogranitiyle, (5) ekstansiyonla ilişkili olanlar; Geç Eosen yaşlı düşük derecede alkalen Güllübağ monzoniti, orta-K' lu kalk-alkalen-hafifçe toleyitik Halkalıtaş kuvars diyoriti ve düşük-K' lu toleyitik Ardeşen gabrosu ve İsina diyabazıyla, başlıca küçük, sığ stoklar ve K-G, KD-GB, KB-GD ve D-B doğrultulu damarlarla temsil edildiklerini belirtmişlerdir.

Arslan vd. (2007a), Gümüşhane-Bayburt ve Alucra-Şiran yöresi Eosen volkanitlerinin, bazaltik ve andezitik kayaçlar ve bunlara eşlik eden sığ havzada oluşan sedimanter birimlerle temsil edildiklerini söylemişlerdir. Bazaltik kayaçların plajiyoklas, klinopiroksen, hornblend fenokristalleri ve magnetit mikrokristalleri içerirken, andezitik kayaçların plajiyoklas, klinopiroksen, hornblend, biyotit fenokristalleri ve titanomagnetit ile apatit mikrokristalleri içerdiklerini vurgulamışlardır. Kayaçların, toleyitik-alkalen geçişliden kalk-alkalen karaktere kadar değişen bileşimli ve düşük-orta potasyum içeriğine sahip olduklarını ifade etmişlerdir. Özelikle, BİLE ve daha az oranda HNTE bakımından

zenginleşme ve yüksek çekim alanlı elementler (YÇAE) bakımından tüketilmenin, volkanitlerin yitim ve astenosferik ergiyiklerin karıştığı zenginleşmiş bir köken magmadan türeyebileceklerini ifade ettiğini vurgulamışlardır. Kondrite normalize edilmiş nadir toprak element (NTE) dağılımlarının, düşük-orta derecede zenginleşmeyle [(La_N/Lu_N) =2-12] birbirlerine benzer olduğunu, köken olarak Gümüşhane ve Alucra yöresi volkanitlerinin benzer kaynaklardan itibaren oluştuğunu ifade etmişlerdir. İncelenen volkanitlerin ⁴⁰Ar-³⁹Ar yaşlandırmasının 44.5±0.2 ile 37.7±0.2 arasında değiştiğini söylemişlerdir. Pb ve Sr izotop bileşimlerinin, kayaçların manto-kabuk sınırında bir bölgeden türediğine işaret etmekle birlikte özellikle (⁸⁷Sr/⁸⁶Sr)_i < 0.705 olan örneklerin tipik olarak manto karakterini yansıttıklarını belirtmişlerdir. Gümüşhane ve Alucra yörelerindeki doğu-batı doğrultulu Eosen volkano-sedimanter havzaların, gerilme rejimine bağlı olarak meydana gelen transtansiyonel (gerilme sırasında aynı zamanda doğrultu atımlı faylanmanın da etkin olması nedeniyle oluşan havza tipi) havza olduklarını vurgulamışlardır.

Karslı vd. (2007), Doğu Pontidler'de Gümüşhane yöresindeki Eosen yaşlı Dölek ve Sarıçiçek sokulumlarının jeokimyasal ve petrolojik özelliklerini ortaya koydukları çalışmada, sokulumların diyoritten granite kadar değişen kayaç türlerinden oluştuğunu ve mafik mikrogranüler anklav (MME) içerdiğini, sığ derinliklerde (~5-9km) yerleştiğini işaret etmişlerdir. Kayaçların kondrite normalize edilmiş NTE dağılımlarının düzgün bir yönseme sunduğunu ve az da olsa negatif Eu anomalisi gösterdiğini belirtmişlerdir. Ana kayaç için ilksel Nd-Sr izotopik bileşimlerinin ɛNd_(43My)=-0.6-0.8, I_{Sr}=0.70482-0.70548, Pb izotopik oranlarının ise $({}^{206}Pb/{}^{204}Pb)=18.60-18.65$, $({}^{207}Pb/{}^{204}Pb)=15.61-15.66$ ve (²⁰⁸Pb/²⁰⁴Pb)= 38.69-38.85 olduğunu ifade etmişlerdir. Ana kayaç ile karşılaştırıldığında, MME'lerin izotopik bileşimlerinde göreceli bir homojenlik olduğunu ve Nd-Sr izotopik bileşimlerin ɛNd_(43My)=-0.1-0.8, I_{Sr}=0.70485-0.70517, Pb izotopik oranlarının ise $(^{206}\text{Pb}/^{204}\text{Pb})=18.58-18.64, (^{207}\text{Pb}/^{204}\text{Pb})=15.60-15.66 \text{ ve} (^{208}\text{Pb}/^{204}\text{Pb})=38.64-38.77$ arasında değiştiğini belirtmişlerdir. MME'ler ile içerisinde bulunduğu ana kayaçlar arasındaki jeokimyasal ve izotopik benzerliklerin, anklavların büyük olasılıkla alt kabuk ve mantodan türemiş magmalar arasındaki etkileşimle oluşmuş karışık bir kökene işaret ettiğini söylemişlerdir.

Keskin (2007) Doğu Pontidler'in kuzeyinde Trabzon sahilinde yer alan yedi farklı denizel taraçanın arazi etüdünü, fotojeolojik yorumlamalarını ve jeokronolojik yaşlandırmasını gerçekleştirmiştir. Elde edilen verilere göre, yükseklikleri 1-3m ile 4-300 m arasında değişen Holosen ve Kuvaterner yaşlı denizel taraçaların oluşumunda bölgesel ölçekli yükselme ve çökme, deniz seviyesi değişiklikleri ve yersel fay hareketleri etkili olduğunu vurgulamıştır. Yükseklikleri 1-3m (H), 4-14m (T-1), 22-34m (T-2), 60-80m (T-3) arasında değişen denizel taraçalardan toplanan mollusk fosillerinden faydalanarak, Elektron Spin Rezonans (ESR) yöntemi ile taraçaları yaşlandırmıştır. ESR sonuçları, H, T-1, T-2 ve T-3 taraçalarının yaşlarını sırasıyla, 5.141 ± 0.294 , 124.8 ± 26.0 , 292.5 ± 49.8 ve 407.998 \pm 67.475 bin yıl olarak göstermiştir. Bu taraçaları sırasıyla eski deniz seviyesi kayıtlarını veren denizel izotop evrelerinden (MIS) 1, 5e, 9 ve 11 ile korele edilmektedir. Yeni ESR sonuçları, Doğu Karadeniz havzasının yıllık sübsidans miktarı ve Karadeniz'de son 7150 yıl önce meydana gelen ani sel olayı düşünüldüğünde, Holosen ve Pleistosen yaşlı denizel taraçaların ana yükselme oranlarının 0.5 ile 1.4 mm/yıl arasında değiştiğini ifade etmiştir. Kuzey Anadolu Fayı (KAF)'nın hareket miktarı 16-25 mm/yıl, Doğu Aanadolu Fayı (DAF)'nın hareket miktarı 9 mm/yıl iken Trabzon sahil kesiminin fay sistemi'ni oluşturan fayların hareket miktarı 0.5-1.4 mm/yıl'dır. Bu ana yükselme oranlarının bir sonucu olarak, M=7 büyüklüğündeki bir depremin tekrarlanma süresinin birkaç bin yıl olabileceği tahminine varmıştır.

Şen (2007), Doğu Pontidler'de Jura volkanitlerinin toleyit ile kalk-alkalen arasında geçiş karaterli olduklarını ve çoğunlukla bazalt, bazaltik-andezit ve andezit bileşiminde olduklarını ifade etmiştir. Kayaçların, jeokimyasal özellikleri bakımından, okyanus ortası sırtı bazaltlarına göre büyük iyon çaplı ve hafif nadir toprak elementlerce zenginleştiklerini ve yüksek çekim alanlı elementlerce fakirleştiklerini $[(La/Yb)_N=2.2-8.5; (Nb/La)_N=0.1-0.77)]$ ve $\varepsilon Nd_{(210 My)}=-0.72$ ile 3.24 arasında değiştiğini belirtmiştir. İz element ve izotop verilerine göre bu kayaçların, yitim ilişkili sıvılarca metazomatizmaya uğratılmış spinel lerzolitin düşük dereceli bölümsel ergimesi sonucu oluştuğunu ve yüzeye akmadan önce bir magma odasında ayrımlaşmaya uğradıklarını belirtmiştir.

Aydın vd. (2008a), Doğu Pontidler kuzeyindeki Neojen alkalen volkanitlerini üç gruba ayırmış, silisçe fakirden silisçe doyguna kadar değişen bileşimsel değişimlerini vurgulamış, hepsinin alkalen karakterli olduklarını vurgulamıştır. Bu kayaçların HNTE ve BİLE'ce zenginleşme, YÇAE elementlerce de fakirleşme gösterdiklerini, klinopiroksen barometresine göre 9-14 km derinlikte sığ magma odalarında 3-4.5 kbar basınç altında kristallendiklerini belirtmişlerdir. Volkanitlerin, ⁸⁷Sr/⁸⁶Sr (0.705018-0.705643) ve ¹⁴³Nd/¹⁴⁴Nd (0.512662- 0.512714), (²⁰⁶Pb/²⁰⁴Pb=18.85–18.95; ²⁰⁷Pb/²⁰⁴Pb=15.60–15.74; ²⁰⁸Pb/²⁰⁴Pb=38.82–39.25) izotopik oranlarını ve Nd model yaşlarını (0.51–059 Ga) ortaya koymuşlardır. Tüm bu veriler ışığında volkanitlerin, delaminasyon sonucu litosferdeki

incelme ve astenosfer yükselimiyle kimyasal olarak zenginleşmiş genç litosferik mantonun kısmi ergimesiyle oluştuğu fikrini ortaya atmışlardır.

Aydın vd. (2008b), Doğu Pontidler'in kuzeyinde Neojen yaşlı alkalin volkanitlerin farklı kayaç serileri içerisindeki klinopiroksen kristallerinin, kristallenme koşullarını irdelemişlerdir. Klinopiroksenlerin göreceli olarak yüksek Mg numarasına (0.68–0.95), değişebilir Al₂O₃ (%1.3–9.6), düşük TiO₂ (<%2.7) ve Na₂O (<%0.9) içeriklerine ve düşük Al^[6]/Al^[4] oranına (çoğunlukla <0.25) sahip olduğunu, dolayısıyla, bu verilerin klinopiroksenlerin kristallendiği alkalen magmanın göreceli olarak düşük basınç kristallenme şartlarını ifade ettiğini vurgulamışlardır. Ayrıca, bu klinopiroksenler için hesaplanan basınc değerlerinin oldukca benzer olduğunu $(2.4-4.6 \pm 0.9 \text{ kbar})$ ve yaklaşık $7-14 \pm 3$ km'lik bir derinliğe karşılık geldiğini belirtmişlerdir. Klinopiroksenlerin bileşimlerinin üç farklı zonlanma türünü ortaya koyduğunu, ilksel mantoya ve kondrite göre normallestirilmis iz ve nadir toprak element değişimlerine göre, tüm klinopiroksenlerin yüksek oranda uyumsuz element (La, Ce vs) içeriğine sahip ve negatif yüksek çekim alanlı element (Zr, Ti vs) anomalisi sunduklarını, ayrıca düşük Nb/Y (0.1-0.2), Th/Y (<0.1) ve Rb/Y (<0.03) oranlarına sahip olmalarının da benzer bir manto kaynağından türemiş olduklarına işaret ettiğini vurgulamışlardır. Elde edilen dokusal ve mineral kimyası verileri, tüm kayaç bileşimleri ile birlikte değerlendirildiğinde, incelenen klinopiroksenlerin daha önceki bir yitimle zenginleşen homojen, litosferik bir mantodan türeyen alkalen bazaltik bir magmadan itibaren kristallenmeye başladıklarını ifade etmişlerdir. Bu süreçten sonra, erken kristallenen klinopiroksenlerin bulunduğu alkalen magma, kabuğun farklı seviyelerde oluşan kapalı magma odalarında (ya da etkileşim süreçlerinden uzak bir volkanik baca içinde) düşük basınç farklılaşmasına maruz kaldıklarını ifade etmişlerdir. Ayrıca, bu klinopiroksenlerin, magmanın hızlı yükselimine ve farklılaşmasına bağlı olarak, değişken sıvı rejimi altında farklı kristalizasyon evreleriyle de karşı karşıya kaldıklarını belirtmişlerdir. Magmanın hızla yükselmesine, muhtemelen Neojen sürecinde Doğu Pontidleri etkileyen çarpışma sonrası genişlemeye bağlı olarak oluşan tektonik rejimin neden olduğuna işaret etmişlerdir.

Boztuğ ve Harlavan (2008) yaptıkları çalışmada Doğu Pontidler ve Orta Anadolu'dan bir çok granitoyitten elde edilen K-Ar yaşlarının İzmir-Ankara-Erzincan sütur zonu boyunca Torit-Anatolit platformunun kuzeye doğu Avrasya plakası altına yitmesi sonucu gelişen Neo-Tetis konverjan sisteminin farklı evreleri hakkında bazı yeni bakış açıları sağladığını belirtmişlerdir. Yitim ilişkili granitoyitlerle sadece Doğu

Pontidler'de karşılaşıldığını ve hem Erken Kretase (138.5 \pm 2.2 My, erken ark) hem de Gec Kretase (75.7 \pm 0.0 ve 66.5 \pm 1.5 My arasında değişen, olgunlaşmış yay) K-Ar soğuma yaşları elde edildiğini belirtmişlerdir. Doğu Pontidler'deki manto bileşeni baskın birden çok kaynaklı garnitoyitlerin ve 40 ve 50 milyon yıl arasında değişen K-Ar yaşlarının Doğu Pontidler'deki 50-55 milyon yıl civarında meydana gelen Avrasya plakasının ve Torit-Anatolit platformunun kenetlenmesini takiben Erken-Geç Kretase yaşlı granitoyitlerinin tektonik aşınmasının da eşlik ettiği, çarpışma sonrası yiten plakanın kopmasıyla oluşan magmatizmanın bir parçası olduğunun vurgulamışlardır. Orta Anadolu'da yer alan çarpışmayla ilişkili S, I ve A tipi granitoyitlerin 80 ve 65 milyon yıl arasındaki K-Ar soğuma yaşlarının tek bir jeodinamik ortamda sadece kabuk, sadece manto ve/veya ikisinin karışımı olan eş yaşlı bir gelişimi işaret ettiğini ve S-I-A tipi intrüziflerde gözlenen bu tarz bir gelişimin çarpışma sonrası litosferik kopmayla alakalı bir jeodinamik ortamla uvumlu olduğunu söylemişlerdir. Orta Anadolu'da yer alan I tipi granodiyoritten tonalite kadar değişen bileşimdeki sokulumların 40 ile 48 milyon yıl arasındaki K-Ar soğuma yaşlarının Avrasya ve Torit-Anatolit platformlarının kenetlenmesinden sonra çarpışma sonrası, plaka içi ve ekstansiyonel jeodinamik ortamlardan kaynaklandığı yorumuna varmışlardır.

Temizel ve Arslan (2008), Doğu Pontidler'de İkizce (Ordu) yöresindeki Tersiyer volkanizmasının bazaltik ve andezitik kayaçlarla ilişkili olduklarını ortaya koymuşlardır. Bazaltik kayaçların plajiyoklas (An₅₈₋₈₀), olivin (Fo₈₂₋₈₄), klinopiroksen (Wo₄₄₋₄₈En₃₅₋₄₂Fs₇₋ 17), hornblend (Mg#=0.68-0.76) ve magnetit minerallerinden, andezitik kayaçların ise plajiyoklas (An₂₅₋₆₁), klinopiroksen (Wo₄₆₋₄₉En₃₈₋₄₃Fs₁₁₋₁₃), hornblend (Mg#=0.48-0.81), biyotit (Mg#=0.48- 0.60), titanomagnetit, apatit ve zirkon minerallarinden oluştuğunu, jeokimyasal verilere göre orta-K içeren bu kayaçların toleyitik-alkalen geçişliden kalkalkalen karaktere kadar değişen afiniteye sahip olduklarını, ana ve iz elementlerdeki jeokimyasal değişimlerin ise kayaçların gelişiminde klinopiroksen, olivin, hornblend, plajiyoklas, magnetit ve apatit ayrımlaşmasının önemini işaret ettiğini ifade etmişlerdir. Volkanitlerin E-tipi OOSB'ye göre normalize edilmiş iz element dağılımları; özellikle büyük iyon yarıçaplı litofil element ve daha az oranda hafif nadir toprak element konsantrasyonları bakımından zenginleşme ve yüksek çekim alanlı element konsantrasyonları bakımından tüketilme ile tipik olarak yitim ile iliskili tektonik ortamları temsil eden kayaçlarınkine benzer jeokimyasal özellikler sunduklarını belirtmişlerdir.

Aydın vd. (2009), Doğu Pontidler kuzeyinde Neojen alkalin volkanitleri olarak tanımlanan birim içerisindeki üç farklı potasik serideki (Grup A, B, C) c2/c piroksen fenokristallerinin kimyasal ve yapısal verilerini irdelemişlerdir. Klinopiroksen jeotermobarometresine dayanarak, C grubu klinopiroksenlerinin 4.5 kbar basınçta kristallenirken A ve B grubu klinopiroksenlerinin daha yüksek basınç altında (5.6-10.6 kbar) kristallendiklerinin belirtmişlerdir. A ve B grubu klinopiroksenlerinin yüksek kristallenme sıcaklıkları yüksek soğuma oranlarına işaret ettiğini bildirmişlerdir. P ve T tahminlerini Neojen alkalen volkanitlerindeki klinopiroksenlerin kaynak alanlarının orta ve düşük basınç rejimi altında kapalı magma pompalama (plumbing) sistemindeki kabuksal bir magma odası olduklarını önermişlerdir.

Temizel ve Arslan (2009), Doğu Pontidler'in kuzey batı kısmında yer alan Ulubey (Ordu) yöresindeki çarpışma sonrası Tersiyer yaşlı volkanik kayaçları dört takım altında incelemişlerdir. Yenisayaca bazaltının plajiyoklas (An₆₁₋₈₃), klinopiroksen (Wo₄₂₋₄₄En₃₉₋ $_{41}Fs_{15-18}$) ve olivin fenokristalleri ve titanomagnetit içerirken, Çatal Tepe ve Elekçioğlu Tepe takımı (ÇES), Işık Tepe takımı ve andezit/trakiandezit takımını oluşturan kayaçların ise plajiyoklas (An₂₃₋₇₈), klinopiroksen (Wo₂₇₋₄₈En₃₇₋₅₅Fs₁₁₋₂₆), hornblend (Mg#= 0.63-0.76), biyotit (Mg#=0.63-0.82), sanidin fenokristalleriyle, titanomagnetit ve apatit içerdiklerini belirtmişlerdir. Jeokimyasal verilere göre bu kayaçların orta-yüksek-K içeren toleyitik-kalkalkalenden hafif alkalene kadar değişen afiniteye sahip olduğunu, ana oksit ve iz element değişimleriyle bazik kayaçların gelişiminde klinopiroksen + plajiyoklas ± magnetit ayrımlaşmasının, ortaç-asidik kayaçların gelişiminde ise hornblend + biyotit + plajiyoklas \pm magnetit \pm sanidin \pm apatit ayrımlaşmasının önemli ölçüde rol oynadığını ifade etmişlerdir. N-tipi Okyanus Ortası Sırtı Bazaltı (N-tipi OOSB)'na normalize edilmiş iz element dağılımlarına göre volkanitlerin; özellikle büyük iyon yarıçaplı litofil element ve daha az oranda Th ve Ce konsantrasyonları bakımından zenginleştiği, fakat Zr, Y ve TiO₂ konsantrasyonları bakımından tüketilme gösterdiklerini; buna ilaveten, kayaçların büyük iyon yarıçaplı litofil elementlere kıyasla azalan Nb ve Ta içerikleri, orta derecede HNTE /ANTE (ağır nadir toprak element) oranları ve yüksek Th/Yb oranları; köken magmalarının muhtemelen daha önceden akışkanlar tarafından metazomatizmaya zenginleşmiş bir kaynak bölgeden (muhtemelen litosferik manto) uğratılmış türeyebileceklerini vurgulamışlardır.

Arslan vd. (2010), Doğu Pontidler Tersiyer Volkanik Provensi (DPTVP)'nin, kuzeyde ve güneyde stratigrafik, jeokimyasal, petrolojik ve jeodinamik özellikler

bakımından farklılıklar gösterdiğini vurgulayarak; DPTVP'yi, Güney Zonu Volkanitleri (GZV) ve Kuzey Zonu Volkanitleri (KZV) olarak iki alt provens altında tanımlamışlardır. GZV'nin, Bayburt-Gümüşhane-Şiran yöresinde, bazalt-bazaltik andezitten dasit-riyolit bileşimine kadar değişen subalkali karaktere sahipken, Alucra yöresinde, bazalttan trakiandezite kadar değişen bileşimde hafif alkali karakter gösterdiğini belirtmişlerdir. İz element dağılımlarına göre volkanitlerin yitim ve astenosferik ergiyiklerin karıştığı zenginleşmiş bir köken magmadan türeyebileceklerini; kondrite göre normalize edilmiş nadir toprak element dağılımlarının düşük-orta derecede zenginleşmeyle (La_N/Lu_N=2-35) birbirlerine benzer ve kaşık şekilli olup köken olarak volkanitlerin benzer kaynaklardan itibaren türediğini gösterdiğini vurgulamışlardır. KZV'nin, Trabzon yöresinde alkali bazalttan bazanit-tefrit bileşimine kadar değişen alkali karakterli, Tonya-Vakfikebir yöresinde ise bazalt-trakibazalt-bazaltik trakiandezitten, trakit-trakiandezite kadar değişen bileşimli hafif alkali-subalkali karakterli olduklarını ifade etmişlerdir. İz element dağılımlarının, yitim zonu zenginleşmesi ile birlikte levha içi zenginleşmesi izi taşıdığını; kondrite göre normalize edilmiş nadir toprak element dağılımlarının ise, düşük (La_N/Lu_N=2-8) ve yüksek (La_N/Lu_N=30-50) zenginleşme oranları ile iki farklı dağılım sergilediğini belirtmişlerdir. DPTVP'nin petrokimyasal, petrolojik ve gelişim özelliklerine dayanılarak Doğu Pontidlerin, kalınlaşan kıtasal kabuk bileşimine yakın bir özelliğe sahip olduğunu, çarpışma ve çarpışma sonrası ısısal yapının volkanizmanın gelişimi açısından çok önemli olduğunu söylemektedirler. Tersiyer döneminde yoğun jeodinamik rejimlerin etkisi altında çarpışmanın son aşamasında ve çarpışma sonrasında birbirine yarı paralel doğrultu atımlı fayların gelişmesinin mümkün olabileceğini ve bu yüzden ekstansiyonel rejimin Güney Zon'da yaklaşık D-B uzanımlı havzaların oluşumuna ve yaygın subalkali karakterli volkanizmaya neden olduğunu belirtmişlerdir. GZV'nin baskın kalkalkalin doğasının, litosferik dilim kopması (?) mekanizmasından sonra gerilme olaylarıyla ardalanan sıkışma jeodinamik rejiminin giderek artmasıyla, buna karşın KZV'nin baskın alkali doğasının ise gerilme rejiminde, kabuğun ısısal yapısı, kalınlığı ve manto-kabukkaynak bölgesindeki yerel değişimlerle ilişkilendirilebileceğini ifade etmişlerdir. Volkanik çeşitlilik ve dağılım petrolojik verilerle birlikte değerlendirildiğinde; DPTVP'nin Eosen-Pliyosen (?) zamanında çarpışma ve çarpışma sonrası transtansiyonel gerilme rejimiyle oluşan litosferin incelmeşiyle ilişkili olduğunu ileri sürmüşlerdir.

Aslan (2010) Gümüşhane yöresinde yüzeyleme veren Eosen yaşlı tüfleri konu alan çalışmasında petrografik olarak tüfleri vitrik tüf, kristal tüf, lapilli tüf ve yerel olarak

silisifik tüf olarak adlandırmıştır. Dolerit daykları tarafından kesilen bu tüflerin plajiyoklas, amfibol, cam kıymıkları, az miktarda piroksen, K-feldispat, opak oksitler, zirkon ve ikincil mineral olarak kil, serisit, kasit ve devitrifiye olmuş cam içerdiklerini belirtmiştir. U-Pb zirkon shrimp tekniği kullanarak tüflerin yaşını 45.8 ± 1.2 milyon yıl olarak belirlemiştir. Jeokimyasal olarak kalk-alkalen karaktere sahip olan tüflerin iz element bileşimleri yitim zonu volkanizmasının yansıttığını, N-OOSB bazaltına normalize iz element değişimlerine göre tüflerin yüksek BİLE ve düşük YÇAE element içerikleri sahip olduklarını söylemiştir. (La/Lu)_N (1.28–13.35) oranı ve konkav şekilli kondrite normalize NTE desenlerinin ergiyiğin gelişimi sırasında önemli miktarda fraksiyonel kristallenmeyi işaret ettiğini ve orta derecede negatif (Eu/Eu*)_N oranının plajiyoklas fraksiyonlaşmasını ifade etiğini vurgulamıştır. İz element verilerine dayanarak tüflerin türediği magmaların zenginleşmiş üst mantodan yay içi havzada meydana geldikleri sonucuna varmıştır.

Kaygusuz vd. (2010) Doğu Pontidler güneyinde Eosen yaşlı Torul volkanitlerinin, bazaltik andezit, andezit, trakiandezit ve az oranda da trakidasit ve bunların piroklastiklerinden oluştuğunu, mineralojik olarak plajiyoklas (An2-44), hornblend (Mg# 0.78-0.98), klinopiroksen (Wo43-46En41-43Fs10-15), biyotit, kuvars ve az oranda da sanidin fenokristalleri içerdiklerini belirmişlerdir. Kayaçların hornblend K-Ar yaşlandırmaları 43.99 ±2.59 ile 33.45 ±2.32 My aralığında olup, Orta-Geç Eosen zamanında oluştuklarını ortaya koymuşlardır. Volkanitlerin, orta-yüksek K'lu kalkalkalen karakterli, BİLE ve HNTE'lerce zenginleşmiş, YÇAE'ce tüketilmiş olduklarını belirtmişlerdir. Kondrite normalize edilmiş nadir toprak element dağılımlarının düşük-orta derecede zenginleşmeyle konkav şekilli olmasının (La_N/Lu_N= 4.0-9.8), volkanitleri oluşturan kayaçların benzer kaynaktan itibaren olustuğunu işaret ettiğini söylemişlerdir. ⁸⁷Sr/⁸⁶Sr_(i) değerlerinin $0.70457 \text{-} 0.70511 \quad arasında \quad ve \quad {}^{143} Nd / {}^{144} Nd_{(i)} \quad değerlerinin \quad 0.70457 \text{-} 0.70511 \quad arasında$ olduğunu, volkanitlerin gelişiminde başlıca fraksiyonel kristallenme, daha az oranda da kabuksal kirlenme ± magma karışımının rol oynadığını vurgulamışlardır. Tüm bu verilerin, volkanitlerin köken magma(lar)ının muhtemelen daha önceki yitim akışkanları tarafından metazomatizmaya uğratılmış zenginleşmiş bir üst manto kaynağından, çarpışma sonrası jeodinamik bir ortamda türediklerini ifade ettiğini söylemişlerdir.

Abdioğlu (2011), Doğu Pontidler kuzeyindeki Tersiyer volkanitleri içerisinde kırık ve boşluk dolgusu olarak gözlenen zeolitler ve ilişkili minerallerin mineralojilerini, kimyasal ve O-D izotop karakteristiklerini ortaya koymuştur. Zeolit minerali olarak natrolit, analsim, tomsonit, laumontit, filipsit, ve mesolit, diğer mineraller olarak ise

apofillit, kalsit, aragonit ve kloritin varlığını XRD, SEM ve kimyasal analizlerle tespit etmiştir. Kırık ve boşluklardaki ilk aşamada oluşan ikincil mineral birlikteliklerinin (natrolit, analsim) lavların soğumasının son safhasında Na ve K'ca zenginleşmiş magmatik su ve deniz suyu-meteorik su karışımı sonucu meydana gelen çözeltilerden kristallendiğini ifade etmiştir. Ca'ca zengin zeolitlerin ise natrolit ve analsimlerden sonra oluştuğunu ve en son aşamada ise kalsit ve aragonitin stratigrafik olarak daha altta bulunan karbonatlı kayaçlar ve volkanitlerden yıkanmış Ca, Na, K ve $(CO_3)^{2-}$ içeren akışkanlardan itibaren geliştiğini belirtmiştir.

Eyüboğlu vd. (2011), Doğu Pontidler'in güneyinde Pulur yöresindeki Eosen yaşlı ortaç ve felsik sokulumların bol plajiyoklas, amfibol ve biyotit fenokristalleriyle karakterize olduklarını, HNTE'lerde zenginleşme (La_N/Yb_N 13.69–51.08); yüksek Al₂O₃ (%15.46–17.47), Na₂O (%3.57–8.43), Sr (324.8–1468 ppm) ve La (13.9–55.8 ppm), yüksek Sr/Y (35–473), düşük Y (3–12.6 ppm) ve ANTE konsantrasyonları ile adakitlerin tipik özellikleriyle yakından ilişki sunduklarını belirtmişler ve bu sokulumlardan elde edilen U-Pb zirkon yaşlarının 55.21–53.07 My arasında değiştiğini vurgulamıştırlar. Doğu Pontid orojenik kuşağındaki Tersiyer adakitik ve adakitik olmayan magmatizmanın kökeni için güneye dalımlı yitim sırasındaki "roll-back" ve eş zamanlı "slab window" açılmasını içeren tektonik model önermişlerdir.

Kaygusuz vd. (2011) Torul (Gümüşhane) yöresinde yaptıkları çalışmada, yüzeyleme veren volkaitlerin bazaltik andezitik, andezitik, ve az oranda trakidasitik lavlardan ve bunların piroklastlarından meydana geldiklerini belirtmişlerdir. Bu kayaçların plajiyoklas (An₂₋₄₄), hornblend (Mg#= 0.78–0.98), klinopiroksen (Wo₄₃₋₄₆En₄₁₋₄₃Fs₁₀₋₁₅), biyotit, kuvars ve az miktarda sanidin fenokristali içerdiklerini ifade etmişlerdir. Hornblendler üzerinde yapılan K-Ar yaşları 43.99 (\pm 2.59) ve 33.45 (\pm 2.32) arasında değişerek Orta-Geç Eosen'e denk geldiklerini söylemişlerdir. Volkanitlerin orta-yüksek-K kalk-alkalen karakter sergilediklerini ve BİLE ve HNTE içerikleri bakımından zenginleştiklerini ve YÇAE bakımından tüketildiklerini, kondrite normalize NTE desenlerinin volkanik takımlar için benzer kaynağı ifade eden orta derecede zenginleşme ((La/Lu)_N= 4.0–9.8) gösterdiğini vurgulamışlardır. ⁸⁷Sr/⁸⁶Sr_(i) değerlerinin 0.70457-0.70511 arasında ve ¹⁴³Nd/¹⁴⁴Nd_(i) değerlerinin 0.51264-0.51278 arasında olduğunu, volkanitlerin gelişiminde başlıca fraksiyonel kristallenme, daha az oranda ise kabuksal kirlenme \pm magma karışımının rol oynadığını vurgulamışlardır. Tüm veriler ışığında; volkanik takımları

oluşturan magmaların çarpışma sonrası jeodinamik ortamda yitim metazomatizması sonucu zenginleşmiş bir üst mantodan türediği yargısına varmışlardır.

Topuz vd. (2011), kuzey doğu Türkiye'de yer alan Erken Eosen yaşlı sokulumları konu alan calısmasında kontak metamorfizmayı yansıtan mineral birliktelikleri, Alhornblend barometresi ve magmatik dokulardan yararlanarak, yerleşim derinliklerini kuvars diyoritler için \sim 14–16 km ve dasit porfirler için \leq 7 km olarak tahmin etmişlerdir. Biyotit ve hornblendlerden elde edilen Ar-Ar ve zirkonlardan elde edilen U-Pb yaşlarıyla bileşim ve dokusal olarak farklı sokulumların yaklaşık 51 milyon yıl sırasında yerleştiklerini ifade etmişlerdir. Sokulum kayaçlarının yüksek Al₂O₃, Sr, Ba, HNTE ve düsük Y, Sc ve ANTE içeriklerinin yitim zonu üzerinde oluşan yüksek-silis içerikli adakitlerle benzerlik sunduklarını söylemişlerdir. Bütün kayaç tiplerinin Sr-Nd izotop karakteristikleri bakımından benzerlik sergilediklerinin ve 1.0 ile -1.1 arasında değişen ϵNd_i ve 0.70421 ve 0.70494 arasında değisen (${}^{87}Sr/{}^{86}Sr)_i$ oranlarına sahip olduklarının vurgulamışlardır. Üç eş yaşlı kuvars diyorit, lökogranodiyorit ve dasit porfirlerin benzer bir kaynaktan farklı kısmi ergime derecesi ve fraksiyonlaşması sonucu türediklerini belirtmişlerdir. Literatürden derlenen diğer verilerle beraber bu veri, adakitik izin kuzeydoğu Türkiye'de İzmir-Ankara-İzmir sütur zonunun her iki tarafındaki Erken Eosen yaşlı magmatik kayaçlarda yaygın olarak gözlendiğini, fakat Orta Eosen'e doğru kaybolduğunu söylemişlerdir. Bölgesel jeolojik verilere göre; Pontid ve Torit-Anatolit blokları arasındaki çarpışmanın Paleosen ve transgresyonla karakterize olmuş ana ekstansiyon periyodunuyla temsil edilen Orta Eosen'de oluştuğunu ifade etmişlerdir.

Karslı vd. (2012), Doğu Pontidler kuzeyinde Sisdağı sokulumunun şoşonitik ve I-tipi karakterde olduğunu belirtmiştir. Monzonit, monzodiyorit ve az miktarda monzogabrodan oluşan sokulumda amfibol barometresine göre sığ derinliğe yerleştiğini, U-Pb zirkon yaşının 41.55±0.31 My olduğunu ve düşük zirkon doygunluk sıcaklıklarına (607 -769°C) sahip olduğunu vurgulamışlardır. Sokulum kayaçlarının yüksek K₂O+Na₂O (%5.3-7.7) ve K₂O/Na₂O (1.2 -1.7) oranları sergilediğini, düşük Mg# (<45), göreceli olarak daha yüksek fakat değişken Al₂O₃ içeriğine sahip olduklarını belirtmişlerdir. Ayrıca, bunlardaki HNTE'lerde ve BİLE'lerde zenginleşme YÇAE'lerde fakirleşmeye dikkat çekmiştirler. Kayaçlarda; I_{Sr}= 0.70376–0.70408, ε Nd_(42 Ma) = +1.3 ile 2.4 arasında ve model yaşlarının 0.70 ile 0.85 milyar yıl arasında, Pb izotop oranlarının ise (²⁰⁶Pb/²⁰⁴Pb) = 18.64–18.72, (²⁰⁷Pb/²⁰⁴Pb) = 15.51–15.58 ve (²⁰⁸Pb/²⁰⁴Pb) = 38.31–38.65 olduklarını belirtmişlerdir. Sokulumun zenginleşmiş manto kaynağının kısmi ergimesi sonucu oluştuğunu ve

astenosferik yükselimle tetiklenen litosferik ekstansiyonun etkili olduğu ortamda çarpışma sonrası yerleştiğini vurgulamışlardır. Tüm bu veriler ışığında Doğu Pontidler'in, Paleosen boyunca bölgesel sıkışmanın sonucu olan kabuk kalınlaşması, Erken Senozoyik boyunca (yaklaşık 42 My) litosferik ekstansiyon ve incelmeye dönüştüğü yargısına varmışlardır.

Aydınçakır (2012) Doğu Pontidler'in kuzey doğu ucunda yer alan Eosen yaşlı Borçka (Artvin) yöresi volkanitlerini; bazik dayk, Borçka Bazaltı ve Civanköy Üyesi olmak üzere üç birime ayırmıştır. Volkanitlerin plajiyoklas (An₁₁₋₉₃), klinopiroksen (Wo₄₃. 49En₃₈₋₅₄Fs₈₋₂₅), hornblend (Mg#=0.57-0.74) fenokristalleri ile magnetit/titanomagnetit ve apatit içerdiğini söylemiştir. Hornblendlerdeki 40Ar-39Ar yaşlarının 46.1±0.839.9±0.5 My aralığında, volkanitlerin düşük-orta K'lu kalk-alkali karakterli olduğunu, BİLE ve HNTE'lerce zenginleşmiş, YÇAE'ler bakımından da tüketilmiş olduğunu ifade etmiştir. Kondrite normalize edilmiş nadir toprak element dağılımlarının, düşük-orta derecede zenginlesmeyle konkav sekilli olup ($La_N/Lu_N=1-19$), volkanitleri olusturan kayaçların benzer kaynaktan itibaren oluştuklarını söylemiştir. (⁸⁷Sr/⁸⁶Sr)_i ve (¹⁴³Nd/¹⁴⁴Nd)_i değerlerinin sırasıyla 0.70423-0.70495 ve 0.51263-0.51285 arasında değiştiğini, volkanitlerin gelişiminde başlıca ayrımlaşma, daha az oranda da özümleme±magma karışımının rol oynadığını vurgulamıştır. Tüm bu verilerin, volkanitlerin köken magma(lar)ının muhtemelen daha önce yitim akışkanları tarafından metazomatize edilmiş zenginleşmiş bir manto kaynağından, çarpışma sonrası açılma ile ilişkili jeodinamik bir ortamdan türeyebileceklerine işaret ettiğini söylemiştir.

Eyüboğlu vd. (2012), Doğu Pontidler güneyinde Kale (Gümüşhane) yöresinde adakitik kayaçların porfirikler ve hyaloklastitlerden meydana geldiğini, porfirik olanların biyotli andezit, hornblendli andezit ve dasitle, hyaloklastitlerin ise adakitik aktivitenin son safhasını temsil ettiklerini ve adakitik magmanın karbonat çamuru içine sokulum yaparak oluştuğunu ifade etmişlerdir. Adakitik olmayan kayaçların ise bazaltik-andezitik volkanitler ve bunlarla ilişkili piroklastik kayaçları içerdiklerini belirtmişler, her iki kayaç grubunun da Senozoyik magmatizmasının son safhasını temsil eden bazaltik dayklar tarafından kesildiğini söylemişlerdir. U-Pb yaşlandırmalarına göre adakitik kayaçlardan elde edilen 48.71 ± 0.74 My ve adakitik olmayan kayaçlardan elde edilen 44.68 ± 0.84 My yaşları ile adakitten adakit olmayan magmatizmaya geçişte önemli bir zaman boşluğu bulunmadığını ifade etmişlerdir.

Temizel vd. (2012), Doğu Pontidler'in kuzeybatı kısmında yer alan Ulubey (Ordu) yöresindeki Tersiyer yaşlı volkanik kayaçların Orta Eosen (49.4-44.6 My) yaşlı Andezit-

Trakiandezit (AT), Trakiandezit-Trakidasit-Riyolit (TTR), Trakidasit-Dasit (TD) takımlarından ve Orta Miyosen (15.1 My) yaşlı Trakibazalt (TB) takımından oluştuklarını vurgulamışlardır. Volkanitlerin orta-K içeren toleyitik-alkalenden kalkalkalene kadar değişen afiniteye sahip olduklarını, E-Tipi OOSB'na kıyasla orta derecede HNTE/ANTE oranları gösterdiklerini ve Nb, Ta ve Ti konsantrasyonları bakımından tüketilme ile karakterize edildiklerini belirtmişlerdir. İlksel ⁸⁷Sr/⁸⁶Sr (0.7044 - 0.7050) ve ɛNd [(-0.3) – (+3.4)] oranları ile yüksek Th/Yb oranlarının volkanitlerin köken magmasının daha önceden akışkanlar ve sedimanlar tarafından metazomatizmaya uğratılmış yitim ve astenosferik ergiyiklerin karışımından oluşan zenginleşmiş bir kaynak bölgeden türediğini ortaya koymuşlardır. Tersiyer yaşlı volkanik kayaçların; Geç Mesozoyik'teki Avrasya plakası ile Torid-Anatolid platformu arasındaki kıta çarpışmasını takiben Eosen'den Miyosen'e kadar olan zaman aralığındaki çarpışma ve çarpışma sonrası açılmayla ilişkili jeodinamik bir ortamda yiten plakadan türeyen akışkanlar tarafından daha önceden metazomatizmaya uğratılmış zenginleşmiş bir mantodan türediklerini ifade etmişlerdir.

Arslan vd. (2013) Bayburt, Gümüşhane, Alucra, Şiran yörelerinde yaptıkları çalışmada yöredeki volkanitlerin baskın olarak kalk-alkalen ve toleyitik karakterde başlıca bazalt, andezit ve dasitten meydana geldiklerini belirtmişlerdir. Bu volkanitlerin Ar-Ar yaşlarının 37.7 ± 0.2 ve 44.5 ± 0.2 (Orta Eosen) arasında değiştiğini söylemişlerdir. Ana ve iz elementlerdeki değişimlerin bazaltik kayaçlarda klinopiroksen ± magnetit, andezitik kayaçlarda hornblend (?) ± plajiyoklas ± manyetit ± apatit ayrımlaşmasıyla açıklanabileceğini ifade etmişlerdir. İlksel mantoya normalize çoklu element değişimlerinin BİLE ve HNTE içerikleri bakımından zenginleşmiş, YÇAE element içerikleri bakımından tüketilmiş olduklarını söylemişler, bu volkanitleri oluşturan magmaların zenginleşmiş bir kaynaktan türediklerine işaret etmişlerdir. Kondrite normalize NTE diyagramlarında gözlemlenen düşük-orta dereceli zenginleşmeyle karakterize olmuş ($La_N/Lu_N = 2-14$) kaşık şekilli desenin spinel lerzolitik bir kaynağını ifade ettiğini söylemişlerdir. Sr-Nd-Pb izotopik sistematiğini kullanarak, volkanitleri oluşturan magmaların yitim tarafından değiştirilmiş, kıtasal kabuk altında yer alan litosferik mantodan türediğini vurgulamışlardır. Volkanik çeşitlilik ve dağılım ve petrolojik veriler ışığında, Doğu Pontidler'deki Tersiyer magmatik aktivitesinin Avrasya plakası ve Torid-Anatolid platformunun carpışmasından sonra ekstansiyon ve delaminasyon sonucunda genç litosferin incelmesiyle yakından alakalı olduğu sonucuna varmışlardır.

2. YAPILAN ÇALIŞMALAR

2.1. Giriş

Doğu Pontidler'in kuzeyinde Trabzon-Giresun yöreleri ve çevresinde yüzeyleme veren Tersiyer volkanitlerinin kökeni ve jeodinamik gelişimini ortaya koymaya yönelik bu çalışma; arazi, petrografik, mineral kimyası, tüm kayaç ve izotop jeokimyası ve jeokronolojik amaçlı laboratuar çalışmaları şeklinde yürütülmüştür. Arazi ve laboratuar çalışmaları sonucunda elde edilen veriler büro çalışmaları ile yorumlanmış ve tez yazımı gerçekleştirilmiştir.

2.2. Arazi Çalışmaları

Arazi çalışmaları, Trabzon İli merkezini, Akçaabat, Vakfikebir, Tonya, ve Giresun İli Görele ve Çanakçı yörelerini kapsayacak şekilde yaklaşık 1100 km²'lik bir alanda gerçekleştirilmiştir. Çalışmalar daha çok Tersiyer yaşlı olarak kabul edilen Kabaköy Formasyonu üzerinde yoğunlaştırılmıştır. Öncelikle arazinin morfolojisini ve coğrafik (yerleşim yeri, ulaşım, kayaç ve bitki örtüsü) durumunu incelemek için bölgenin 1/100.000 ve 1/25.000 ölçekli topografik haritaları derlenmiştir. Önceki çalışmalar da göz önünde tutularak, bölgenin jeolojik haritaları hazırlanmıştır. Tersiyer yaşlı Kabaköy Formasyonu ve bu birimin stratigrafik olarak altında bulunan Üst Kretase yaşlı Çağlayan Formasyonu ve Bakırköy Formasyonu ile Kabaköy Formasyonu'nu üstleyen Pliyosen yaşlı Beşirli Formasyonu arasındaki ilişkiler alınan kesitlerle saptanmaya çalışılmıştır. Arazi çalışmaları sırasında çoğunluğunu volkanik ve volkanoklastik kayaçların oluşturduğu 811 adet kayaç örneği alınmış, volkanik stratigrafi-fasiyes ayrımı yapılmış ve örnekleme çalışmaları tamamlanmıştır. Ayrıca, inceleme alanında yüzeylenen tortul birimlerden ve tüflerden tabaka ölçümleri alınarak, bölgedeki muhtemel kırık ve fay sistemleri belirlenmeye çalışılımıştır.

İnceleme alanındaki birimlerin yayılımını, yatay ve dikey yöndeki değişimlerini, oluşum ortamlarını dikkate alarak, içerdikleri kayaçların petrografik, mineralojik ve kimyasal özelliklerini belirlemek amacıyla mümkün olduğunca sistematik bir şekilde örnek alınmıştır. Volkanitlerin kökenlerini ve jeokronolojik yaşlarını belirlemeye yönelik izotop analizleri için ise belli lokasyonlardan yine sistematik örnek alınmıştır. Örnek alımında, sınırları belirlenen birimi tüm özellikleriyle en iyi şekilde yansıtacak taze örneklerin alınmasına özen gösterilmiştir. Özellikle volkanitlere ait kayaçlardan yaptırılacak kökensel (Sr, Nd, Pb) ve yaşlandırma (tüm kayaç veya mineral ayrımında ⁴⁰Ar-³⁹Ar) amaçlı izotop analizlerinde kullanılacak kayaç örneklerinin oldukça taze olmasına dikkat edilmiştir.

2.3. Mikroskopik Tayinler

Derlenen kayaç örnekleri mineralojik ve petrografik incelemeler için Karadeniz Teknik Üniversitesi, Jeoloji Mühendisliği Bölümü, İnce Kesit Hazırlama Laboratuarı'nda kayaç kesme makinesinde yaklaşık 0.5x2x3.5 cm boyutunda plakalar halinde kesilmiş ve bu plakalar 0.1x2.5x4.6 cm boyutundaki ince kesit camları üzerine Kanada Balzamı ile yapıştırılmıştır. Daha sonra ince kesitler 0.035 mm kalınlığa kadar aşındırılmıştır. Mineralojik ve petrografik incelemeler için 360 adet ince kesit hazırlanmıştır. Bu kesitler, mineralojik ve petrografik özelliklerinin belirlenmesi ve kayaç adlamasının yapılabilmesi için Karadeniz Teknik Üniversitesi, Jeoloji Mühendisliği Bölümü, Petrografik Araştırma Laboratuarı'ndaki Olympus ve Nikon marka polarizan mikroskopta ayrıntılı olarak incelenmiş ve önemli görülen dokusal-mineralojik özellikler mikro fotoğraflar ile belgelenmiştir.

2.4. Kimyasal Analizler

2.4.1. Elektron Mikroprob Analizleri

Ayrıntılı petrografik çalışmalar sonucunda volkanik fasiyesleri en iyi şekilde temsil eden örnekler belirlenmiş ve mineral kimyası incelemeleri için kullanılacak parlatılmış ince kesit hazırlamak üzere yaklaşık 0.5x2x3.5 cm boyutunda plakalar halinde Karadeniz Teknik Üniversitesi, Jeoloji Mühendisliği Bölümü, İnce Kesit Hazırlama Laboratuarı'nda kesilmiştir. 31 adet parlatılmış ince kesit, Karadeniz Teknik Üniversitesi, Jeoloji Mühendisliği Bölümü ve Rennes 1 Üniversitesi (Fransa) ince kesit hazırlama laboratuarlarında hazırlanmıştır. Bu işlem sırasında kesilen plakalar 0.1x2.5x4.6 cm boyutundaki ince kesit camları üzerine epoksi kullanılarak yapıştırılmıştır. Kesitler 0.035mm kalınlığa kadar aşındırılmış ve alüminyum toz kullanılarak parlatılmıştır. Hazırlanan parlatılmış ince kesitler polarizan mikroskopta detaylı bir şekilde incelenerek, elektron mikroprob analizi yapılacak mineraller belirlenmiştir. Saptanan mineraller, parlatılmış kesitin yüzeyinde kalemle daire içine alınarak işaretlenmiştir. İyice parlatılmış olan kesitler alkol veya asetonla temizlendikten sonra karbonla kaplanmıştır.

Karbon kaplı parlak kesitler üzerindeki mineral kimyası çalışmaları Cameca SX100 marka mikroprob cihazıyla Clermont-Ferrand Üniversitesi (Fransa), Magma ve Volkan Laboratuarında ve Cameca SX50 marka mikroprob cihazıyla Ruhr Üniversitesi (Bochum, Almanya), Mineral Kimyası Laboratuar'larında gerçekleştirilmiştir. Analizler, volkanik kayaçlar içerisinde yer alan klinopiroksen, plajiyoklas, sanidin, olivin, biyotit, hornblend, analsim, apatit ve Fe-Ti oksitler üzerinde yapılmış olup, yaklaşık 1000 noktanın ana oksit verileri elde edilmiştir. Kullanılan ışın şartları; amfibol, biyotit, piroksen, Fe-Ti oksit, olivin ve plajiyoklas mineralleri için hızlandırma voltajı 15kV ve ışın akımı 20nA olup sayma zamanı 20 sn'dir. Analizlerde kullanılan standartlar, doğal mineral standartları olup, analitik hata ana elementler için %1'den ve iz elementler için ise 200 ppm den daha azdır.

2.4.2. Tüm Kayaç Analizleri

Arazi çalışmalarından elde edilen ve petrografik incelemeler sonucunda taze olduğuna karar verilen örneklerden 117 tanesinde ana, iz ve nadir toprak analizleri gerçekleştirilmiştir. Tüm kayaç analizleri için Karadeniz Teknik Üniversitesi, Jeoloji Mühendisliği Bölümü, Örnek Öğütme Laboratuarı'nda 250-300 gr ağırlığındaki örnekler önce çeneli daha sonra halkalı öğütücüde yaklaşık 200 mesh boyutuna kadar öğütülerek ana, iz ve nadir toprak element analizleri için ACME (Kanada) Analiz Laboratuarı'na gönderilmiştir. Burada ana ve iz elementler için öğütülmüş kayaç örnekleri indüksiyonlu eşleşmiş plazma atomik emisyon spektrometresi (ICP-AES), nadir toprak elementler ise eşleşmiş plazma kütle spektrometresi (ICP-MS) tekniği ile analiz edilmişlerdir. Kayaç toz örneklerinden 0.2 gr alınarak 1.5 gr LiBO₂ ile karıştırılarak, % 5 HNO₃ içeren bir sıvı içinde çözündürülmüştür. Ana elementler % ağırlık, iz elementler ise ppm olarak ölçülmüştür. Nadir toprak elementler ise, kayaç toz örneklerinden 0.25 gr alınarak dört

farklı asit içerisinde çözündürülmüş ve ppm olarak tespit edilmiştir. Analizlerde saptama limiti; ana elementler için % 0.001-0.04, iz elementler için 0.1-1 ppm ve nadir toprak elementler için 0.01-0.1 ppm dir

2.4.3. Jeokronolojik Yaşlandırma ve Kökensel İzotop Analizleri

2.4.3.1. ⁴⁰Ar-³⁹Ar Yaşlandırması

İncelenen Tersiyer volkanitlerinde, ⁴⁰Ar-³⁹Ar yaşlandırması için her bir kayaç takımını ve/veya birimini temsil edecek, yüzeysel ve hidrotermal alterasyondan etkilenmemiş taze örnekler seçilmiştir. ⁴⁰Ar-³⁹Ar yaşlandırması için, bazaltik dayk ve siller, yastık lavlar, bazaltik lavlar ve volkanik breşlerden oluşan BTB takımı kayaçlarından 9, andezitik dayk ve domlar, trakitik dayklardan oluşan TT takımı kayaçlarından 9 ve foidli bazik breşik lavlardan oluşan BT takımından 4 olmak üzere toplam 22 örnek (16'sı tüm kayaç ve 6'sı flogopit mineral ayrımından olmak üzere) üzerinde ⁴⁰Ar-³⁹Ar yaşlandırması gerçekleştirilmiştir. BT ve TT takımlarından birer örnek üzerinde yapılan ölçümlerde düzgün plato yaşı elde edilemediğinden bu veriler kullanılmamıştır.

Analizlerde basamaklı ısıtma yöntemi Ruffet vd. (1995, 1997) tarafından detaylı olarak tanımlanan yönteme uygun olarak lazer prob (CO₂ Synrad[®]) ile yapılmıştır. Boş örnekler her ilk veya üçüncü analizde rutin olarak ölçülmüştür ve bir sonraki örneğe ait gaz fazından çıkartılmıştır. İzotop ölçümleri Map215[®] kütle spektrometresinde yapılmıştır.

Plato yaşını belirlemek için serbest kalan toplam ³⁹Ar_K'un asgari %70'ine karşılık gelen üç düzenli ardışık basamağa ihtiyaç vardır. Her bir fraksiyonun yaşı plato segmentlerini tamamlayan yaş ile 1 σ veya 2 σ arasında uyumlu olmalıdır. Ayrıca, serbest kalan toplam ³⁹Ar_K'un %70'inden azına karşılık gelen yalancı plato yaşları da saptanmıştır. Tüm ⁴⁰Ar-³⁹Ar sonuçları 1 σ seviyesinde gösterilmiştir.

2.4.3.1.1. ⁴⁰Ar-³⁹Ar Yaşlandırması İçin Örnek Hazırlama

Tersiyer yaşlı volkanitlerin ⁴⁰Ar-³⁹Ar yaşlandırmaları için örnek hazırlama işlemi aşağıda anlatılan şekilde gerçekleştirilmiştir.

2.4.3.1.1.1. Örnek Öğütme

Daha önce hazırlanan 5x5x5 (cm) boyutun kesilmiş örneklerden tabanı 2x2 (cm) olan prizmatik şekilli 5-6 adet dilim elde edilmiştir. Kesilen bu kayaç dilimleri kabaca öğütülüp seçilerek 250 mikron ve 1 mm olanlar ile 1 mm den büyük olanlar ayrılmıştır.

Öğütülmesi gereken örnek miktarı, kayacın mineralojik bileşimine göre belirlenmiştir. ⁴⁰Ar-³⁹Ar yaşlandırmasında kullanılacak örneklerde eğer K'ca zengin biyotit, hornblend ve sanidin gibi mineraller varsa, bu mineral tanelerinin ayrılabileceği miktarda yani daha fazla örnek öğütülmüştür. Bu mineralleri içermeyenlerde ise yaklaşık dörtte bir oranında örnek yeterli olmuştur.

2.4.3.1.1.2. Örneklerin Yıkanması

Öğütme işlemi sonrası elde edilen örnekler cam beher içerisine konularak yıkama işlemi gerçekleştirilmiştir. İçerisinde örnekler bulunan beher yarıdan fazla olacak şekilde saf suyla doldurumuştur ve ultrasonik banyo içerisine koyulmuştur. Burada 15-20 saniye kadar işleme tabi tutulan örneklerin daha sonra suyu süzdürülmüş ve aynı işlem ikinci defa tekrarlanmıştır. Bu işlem sırasında ultrasonik dalgalar örneklere zarar verebileceği için örneklerin çok fazla ultrasonik banyoda kalmamasına dikkat edilmiştir. Daha sonraki aşamalarda ultrasonik banyo olmadan yıkama işlemine temiz su elde edilinceye kadar devam edilmiştir. Süzdürme işlemi gerçekleştirilirken örnekler içerisinde bulunan küçük boyutlu mika minerallerinin süzülen suyla beraber ayrılmamasına dikkat edilmiştir. Tamamen temiz olduğu düşünülen örnekler son bir defa da alkolle yıkanarak 100°C'de 24 saat süreyle kurutma işlemine tabi tutulmuştur. Fırından çıkarılan örnekler mineral ayrımı için hazır hale gelmiştir.

2.4.3.1.1.3. Mineral ve Hamur Fazlarının Ayrımı

Mineral ayırma işlemi binoküler mikroskop altında gerçekleştirilmiştir. Mineral ayırma işlemi sırasında biyotit ve sanidin mineralleri ayrılmıştır. Yapılacak Ar-Ar yaşlandırmasında kullanılacak minerallerin şekli ve boyutları doğru sonuçlar elde edilebilmesi açısından oldukça önemlidir.

Mineral ayırma işlemi sırasında seçilen biyotit ve sanidinlerin (20 adet) orta boylu (yaklaşık 500 mikron), mümkün olduğunca öz şekilli ve orta kalınlıkta olmasına dikkat edilmiştir. Seçilen bu 20 mineral tanesinden sadece 1-2 tanesi analiz için kullanılıp gerisi ise yedek olarak saklanmıştır.

Yaşlandırmada kullanılacak hamur fazı örneklerinde 5-6 taneye ihtiyaç olup, bu örnekler K₂O içeriklerine göre ikiye ayrılmışlardır. Eğer K₂O içeriği %2 den fazla ise, hamur fazı örneklerinin yaklaşık 500 mikron boyutunda olmasına özen gösterilmiştir. Yine analizlerde doğru sonuçların elde edilmesinde hamur fazı örneklerinin de şekli ve boyutunun büyük önem arz etmesi dolayısıyla, örnek seçimi işlemi sırasında örneklerin ideal olarak tetragonal veya elipsoidal şekle yakın, mineralojik olarak homojen bir dağılıma sahip olmasına ve fenokristal içermemesine dikkat edilmiştir.

K₂O içeriği %2'nin altında olan örneklerde ise 1-1.3 mm arasında, yine ideal olarak tetragonal ya da elipsoidal şekle sahip, mineralojik olarak homojen ve mümkün olduğunca fenokristal içermeyen örnekler olmasına dikkat edilmiştir. Ayrılan bu hamur fazı örneklerinden yalnızca bir tanesi yaşlandırma işlemlerinde kullanılıp diğerleri ise yedek olarak saklanmıştır. Tüm bu işlemler tamamlanarak örneklerin, mineral ayırma işlemleri bitirilmiş, örnekler irradasyon kolonu hazırlamak için hazır hale getirilmiştir.

Seçilen kayaç parçaları ve mineraller 9 mm×13 mm×0.5 mm boyutunda olacak şekilde alüminyum folyo ile paketlenmiştir. Bu paketler bir kolon oluşturacak şekilde istiflenmiş ve her paketinin içine örneklerin özelliklerini belirten bilgiler eklenmiştir. İrradasyon kolonu her on örnekte bir monitör örnek yerleştirilmek koşuluyla hazır hale getirilmiştir. Işımaya maruz kalacak olan yığın McMaster reaktöründe (Hamilton, Kanada) 1.7×10^{18} n.cm⁻² toplam değişken ile 13 saat 33 dakika ışımaya maruz bırakılmıştır. Işıma standartı Renne vd. (1988)'e göre 28.34 milyon yıl yaşındaki sanidindir (TCR-2).

2.4.3.2. Sr-Nd-Pb İzotop Analizleri

İncelenen Tersiyer volkanitlerinin Sr-Nd-Pb izotop sistematiğini ortaya çıkarmak için her bir kayaç takımını ve/veya birimini temsil edecek, yüzeysel ve alterasyondan etkilenmemiş, aynı zamanda tüm-kayaç, ⁴⁰Ar-³⁹Ar yaşlandırması yapılmış taze 19 kayaç örneği seçilmiş ve izotop analizleri kayaç toz örneklerinden gerçekleştirilmiştir.

Sr ve Nd izotop analizleri, Rennes 1 Üniversitesi (Fransa), CNRS İzotop Jeokimyası Laboratuvarı'nda Finnigan MAT 262 kütle spektrometresi kullanılarak gerçekleştirilmiştir. Sr ve Nd izotop analizleri için ⁸⁵Rb-⁸⁴Sr ve ¹⁴⁹Sm-¹⁴⁶Nd karışımıyla "spike" hazırlanmış, kayaç toz örnekleri HF ve HNO₃ karışımıyla çözdürülmüştür. Rb ve Sr, Sm ve Nd izotopları konvansiyonel katyon değişim tekniğiyle ayrılmıştır. Boş örnekler, Rb=0.1 ng, Sr-Nd-Sm<0.05 ng'dir. Belirsizlikler ⁸⁷Rb/⁸⁶Sr oranları için %2, ¹⁴⁷Sm/¹⁴⁴Nd oranları için ise %0.2'dir.

Pb izotop analizleri Actlabs (Kanada) Laboratuarı'nda gerçekleştirilmiştir. Pb element ayrımı iyon-değişim tekniği kullanılarak Bio-Rad 1x8 ile gerçekleştirilmiştir. Pb izotop bileşimleri Finnigan MAT-261 multikollektör kütle spektrometresiyle analiz edilmiş, Pb izotop oranları, izotop bileşimlerinin NBS SRM-982 standartları kullanılarak tekrarlanmış ölçümlerle düzeltilmiştir. Pb izotop oranlarının ²⁰⁶Pb/²⁰⁴Pb=0.1%, ²⁰⁷Pb/²⁰⁴Pb=0.1%, ²⁰⁷Pb/²⁰⁴Pb=0.1%, ²⁰⁸Pb/²⁰⁴Pb=0.2% iki sigma seviyesindeki yeniden üretilebilirliği BCR-1 standardının tekrarlanan analizleri sonucunda tespit edilmiştir.

2.5. Büro Çalışmaları

Arazi ve laboratuar çalışmaları sonucunda elde edilen veriler büro çalışmaları ile değerlendirilmiştir. Büro çalışmalarının ilk kısmında çalışma alanında daha önce yapılmış çalışmalar derlenmiş ve incelenmiştir. Arazi çalışmalarıyla ve üzerinde değişikler yapılan 1/100000 ve 1/25000 ölçekli jeolojik haritalar ve kolon kesit farklı çizim programları yardımıyla büro çalışmaları sırasında yeniden hazırlanmıştır. Hazırlanan bu jeolojik haritalardan çalışma alanına ait jeolojik enine kesitler çıkarılmıştır.

Mineral kimyası ve tüm-kayaç kimyası analizleri sonucunda elde edilen veriler çeşitli paket programlar yardımıyla yorumlanmış, grafik, diyagram ve tablolar halinde sunulmuştur. Ayrıca, jeotermobarometre hesaplamaları için farklı araştırmacılar tarafından geliştirilen formüller, paket programlar ve Excell çalışma sayfaları kullanılmıştır.

Elde edilen tüm veriler ve büro çalışmaları sonucunda, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Tez Yazım Kılavuzu'na uygun olarak "Doktora Tezi" hazır hale getirilmiştir.

3. BULGULAR

3.1. Giriş

Doğu Pontidler'in kuzeyinde Karadeniz sahil boyunca Trabzon-Giresun arasında yer alan çalışma alanının en yaşlı kayaçlarını, Güven (1993) tarafından tanımlanan Üst Kretase yaşlı birimler oluşturur. En altta içerisinde yer yer kırmızı renkli çamurtaşı, kumtaşı marn seviyeleri bulunan Üst Kretase yaşlı bazalt-andezit ve piroklastitleri bulunmaktadır. Tabanda bulunan bu volkanik istif uyumlu olarak Üst Kretase yaşlı riyolit-riyodasit ve piroklastitleri tarafından örtülmektedir. Bu birim kumtaşı, marn, şeyl, killi kireçtaşı tüf ardalanmasından oluşmakta olup, Üst Kretase-Paleosen yaşlı tortul istif tarafından uyumlu olarak üzerlenir. Üst Kretase yaslı taban kayacları üzerine calışma konusunu oluşturan bazaltik, andezitik, trakitik dayk, sil, lav ve piroklastitlerinden oluşan Eosen yaşlı volkanitler uyumsuz olarak gelir. Birim içerisinde alttan üste doğru piroklastitler, yastık lavlar, bazaltik lav akmaları yer almaktadır. İçerisinde yer yer kireçtaşı marn merceklerine de rastlanan bu birim sırasıyla bazaltik, andezitik, trakitik dayk ve siller ve yine Eosen yaşlı granitik sokulumlar tarafından kesilmektedir. Trabzon İli ve çevresinde yüzeylenen Miyosen yaşlı volkanitler foidli tüf-breşler, foidli breşik lavlar ve bunları kesen foidli dayk ve sillerle temsil edilirler ve Eosen yaşlı volkanitleri uyumsuz olarak örtmektedirler. Bu birimler yine Miyosen yaşlı kumtaşı, kiltaşı ve silttaşından meydana gelen tortul istif tarafından uyumsuz olarak üzerlenirler. Daha üste doğru sırasıyla uyumsuz olarak, Pliyosen yaşlı kötü katmalı, gevşek çimentolu konglomera, breş ve kalın katmanlı kumlu kireçtaşlarından oluşan birim, Pliyo-Kuvaterner yaşlı kırmızı killer, Holosen ve Pleistosen yaşlı denizel taraçalar gelmektedir. Tüm bu birimler Kuvaterner yaşlı alüvyonlar tarafından uyumsuz olarak örtülmektedir (Şekil 3.1 ve 3.2).

Şekil 3.1. Trabzon-Giresun arasında yüzeyleme veren Tersiyer yaşlı volkanitler ve çevreleyen birimlere ait genel jeoloji haritası (Üst Kretase birimleri Güven (1993) ve Kurt vd., (2006)' dan değiştirilerek)

3.2. Stratigrafi

3.2.1. Üst Kretase Yaşlı Bazalt- Andezit ve Piroklastitleri

İnceleme alanının tabanında yer alan Üst Kretase yaşlı volkano-tortul birim Güven (1993) tarafından Çağlayan Formasyonu olarak adlandırılmıştır. Birim çalışma alanının güney kısmında stratigrafik olarak üzerinde bulunan Üst Kretase yaşlı riyolit-riyodasit ve piroklastitleri ve Üst Kretase yaşlı kireçtaşı-tüf ardalanmasından oluşan birimlerin bulunmadığı lokasyonlarda Eosen yaşlı volkanitlerin dokanağında gözlemlenmektedir (Şekil 3.3a, b). Kalınlığı 200-600 m olan birimin ana kayaç türü olan bazalt, andezit ve piroklastitlerinin ara seviyelerinde kumtaşı, marn ve kırmızı renkli killi kireçtaşı seviyeleri bulunur. Arazide bu kırmızı renkli kireçtaşlarının katman aralarına yerleşmiş bazaltik lavları gözlemlemek mümkündür (Şekil 3.3c, d).

Şekil 3.3. İnceleme alanında; (a, b) Trabzon İli şehir merkezi güneyinde Değirmendere Vadisi'nde yüzeyleme veren bazaltik proklastitler; (c, d) Akçaabat ilçesi güneyinde, Akpınar yöresinde yüzeyleme veren bazaltların yakından görünümü

Çalışma alanında birim oldukça ayrışmıştır. Yoğun olarak kırık ve çatlak içeren birimde kloritleşme ve epidotlaşma yaygın olarak gözlenen ayrışma türleridir. Gaz boşlukları genellikle kalsit ve zeolitler tarafından doldurulmuştur. Derin deniz ortamında kesikli volkanizma sonucu oluştuğu düşünülen birime, Güven (1998) tarafından yapılan çalışmada birim içerisinde yer alan kireçtaşlarının içerdiği *Globodruncana linneiana* (d'ORBIGNY), *Globodruncana carinata* (DALBINEZ), *Helvetoglobotruncana cf. Helvetica* (BOLLI), *Dicarinella concavata* (BROTZEN), *Globigerinelloides sp., Hedbergella sp., Ticinella sp.* formları nedeniyle Santoniyen-Kampaniyen yaşı verilmiştir.

3.2.2. Üst Kretase Yaşlı Riyolit, Riyodasit ve Piroklastitleri

Bazalt, andezit ve piroklastitlerinden oluşan birim üzerine uyumlu olarak Güven (1993) tarafından Çayırbağ Formasyonu olarak tanımlanmış riyolit-riyodasit ve piroklastitleri gelmektedir. Çalışma alanında Tonya ilçesinin güneyi ve güneybatısını çevreleyen alanlarda ve Trabzon-Yomra arasının güneyinde kalan alanlarda yüzeyleme vermektedir. Kalınlığı 100-200 m arasında değişen bu birim oldukça ayrışmış olarak gözlenmektedir. Ayrışma yüzeyleri beyazımsı pembe ve yeşilimsi gri renktedir (Şekil 3.4).

Şekil 3.4. Şalpazarı yöresi güneyinde yüzeyleme veren (a) riyolit ve (b) riyolitik piroklastitlerin görünümü.

Bu birim çalışma alanında genellikle domsu, kolonsu ve akma yapıları sergilerler. Üzerine uyumlu olarak Üst Kretase yaşlı kireçtaşı-tüf ardalanmasından oluşan birim gelir. Bu birimin bulunmadığı alanlarda Eosen yaşlı bazalt, andezit ve piroklastitlerinden oluşan birim tarafından uyumsuz olarak üzerlenir. Güven (1998) tarafından yapılan çalışmada Santoniyen-Kampaniyen yaşlı bazalt, andezit lav ve piroklastlarından oluşan birimlerin üzerinde, Üst Kretase yaşlı kireçtaşı-tüf ardalanmasından oluşan birimlerin altında yer almasından dolayı Kampaniyen-Maestirihtiyen olarak yaşlandırılmıştır.

3.2.3. Üst Kretase Yaşlı Kumtaşı, Marn, Şeyl, Killi Kireçtaşı Tüf Ardalanması

Kumtaşı, marn, şeyl ve killi kireçtaşı ve tüf ardalanmasından oluşan birim Güven (1993) tarafından Bakırköy Formasyonu olarak adlandırılmıştır. Volkano-tortul birimleri örten bu birimin kalınlığı 100-250 m arasında değişim göstermektedir. Çalışma alanı içersinde, Trabzon İli şehir merkezinin güneyi, Tonya, Düzköy ve çevresi, Giresun İli Çanakçı ilçesi güneyini içerisine alacak şekilde ve çalışmanın esas konusunu oluşturan bazaltik, andezitik, trakitik dayk, sil, lav ve piroklastlarından oluşan Tersiyer alkalen volkanitlerini çevreleyen alanlarda gözlenmektedir (Şekil 3.5).

Şekil 3.5. Çalışma alanında (a) Gürbulak beldesi civarında, (b,c) Şalpazarı yöresi güneyinde, (d) Düzköy ilçesi kuzey doğusunda yüzeyleme veren Üst Kretase yaşlı kireçtaşlarının görünümü

Genel olarak killi, kumlu kireçtaşı, şeyl ve az oranda kumtaşı ardalanmasından oluşan birim içerisinde kıvrımlı ve kırıklı yapılar gözlemlemek mümkündür. Bu birim, Güven (1998) tarafından yapılan çalışmada, Hacımehmet mevkiinde (Trabzon) yer alan yüzeylemelerde *Globogerina sp. Gümbelina sp. Siderolites sp.* Calcarinidae formları ve rudist kavkıları içermesinden dolayı Maestrihtiyen olarak yaşlandırılmıştır.

3.2.4. Eosen Yaşlı Bazaltik, Andezitik, Trakitik Lav, Dayk, Sil ve Piroklastitleri

İlk kez Güven (1993) tarafından Kabaköy Formasyonu olarak tanımlanan birim, inceleme alanında başlıca Trabzon İlini içine alan, doğuda Yomra ilçesi ve çevresi, batıda Görele (Giresun) ilçesinin batısına kadar uzanan kıyı şeridi boyunca ve güneyde Tonya ve Sisdağı yörelerini kapsayan alanda yüzeyleme vermektedir. Korkmaz (1993) tarafından aynı birim, içerisinde yer alan ve başlıca tortul ara katmanlar içeren andezit, bazalt ve piroklastitler Lütesiyen yaşlı Foldere Formasyonu, Karadağ çevresinde yüzeyleme veren olivin-ojitli bazalt ve piroklastik kayaçlardan oluşan Miyo-Pliyosen yaşlı birimler Karadağ Formasyonu olarak isimlendirilmiştir. Çalışmanın ana konusunu oluşturan birim, killi, kumlu kireçtaşı, şeyl ve az oranda kumtaşı ardalanmasından oluşan Maestrihtiyen yaşlı birim üzerine uyumsuz olarak gelmektedir. Beşirli Formasyonu tarafından ise uyumsuz olarak örtülmektedir.

Önceki çalışmalarda Kabaköy Formasyonu'na dâhil edilen volkanik kayaçlar, bu çalışmada volkanik fasiyes özelliklerine göre; (1) volkanik breş aglomera ve tüflerden oluşan piroklastitler, (2) bazaltik ve trakitik dayklar, andezitik dom ve dayklar, (3) yastık yapılı lavlar ve bazaltik lavlar (lav akması ve prizmatik yapılı lavlar) olmak üzere üç ana başlık altında incelenmiştir.

3.2.4.1. Piroklastitler

3.2.4.1.1. Volkanik Breşler

Çalışma alanı içerisinde geniş bir yayılıma sahip olup, genel olarak tüflerle ardalanmalı olarak bulunurlar (Şekil 3.6a). Düşme (fall out) breşleri şeklinde olan breşler genellikle bazaltik bileşimdedir. Trabzon'un Tonya, Vakfikebir ve Giresun'un Görele yörelerinde yüzeyleme verirler. Çapları, 2 cm'den blok boyutuna kadar değişen köşeli

kayaç parçalarından oluşmaktadır. Taze kırık yüzeyleri koyu gri-siyah renktedir. Bol miktarda iri piroksen fenokristalleri içerirler. Ayrıca, ikincil mineral olarak kırık ve çatlakları doldurmuş zeolitler yaygın olarak gözlenir. Kayaç çakıllarının bağlayıcısı genelde kırıntılı malzeme olup, çakıl oranı yaklaşık olarak % 70'e kadar ulaşmaktadır. Tonya yöresinde Bakırköy Formasyonu'yla olan sınıra yakın yerlerde, bu kayaçlar içerisinde kireçtaşı bloklarını da gözlemek mümkündür. Özellikle yüksek rakımlı yerlerdeki bloklarda soğan kabuğu şeklinde ayrışmalar gözlenmektedir (Şekil 3.6b).

Şekil 3.6. Çalışma alanında (a) Tonya yöresinde tüflerle ardalanmalı olarak bulunan volkanik breşler ve (b) bu kayaçlarda gözlemlenen eksfoliasyon yapıları

3.2.4.1.2. Tüfler

Tüfler, özellikle Karadağ-Akçaabat (Trabzon) arasında bulunan yaklaşık kuzeygüney doğrultulu hat boyunca geniş bir alanda yüzeyleme verirken, Tonya (Trabzon) yöresinde ise genel olarak breşlerle ardalanmalı olarak bulunurlar (Şekil 3.7a, b). Tabaka kalınlıkları 10-40 cm arasında değişim göstermektedir. Açık kahve-bej renkli görünüme sahiptirler. Ara seviye olarak kırmızı, yeşilimsi gri ve yeşilimsi marn seviyeleri mevcuttur (Şekil 3.7c, d). İçerisinde yer yer iri ojit kristalleri gözlenen tüfler, bileşenlerine göre genel olarak kristal litik tüf olarak adlandırılırken tane boyutuna göre tüf ve yer yer lapilli tüf karakterindedir. Yer yer kayaçların çatlakları boyunca gelişmiş zeolitleri gözlemlemek mümkündür. Tabaka eğimleri genel olarak KD ve KB yönünde olup, eğim açıları 20°-35° arasında değişmektedir.

Şekil 3.7. Çalışma alanında (a, b) yüzeyleme veren tüflerin yakından görünümü, (c) tüf-marn ardalanması, (d) tüfler içerisindeki marn ara seviyeleri

3.2.4.2. Lavlar

3.2.4.2.1. Yastık Lav

Çalışma alanında, Trabzon İli, Akçaabat ilçesinin iç kesimlerinden başlayarak, Salacık Beldesi'nden Beşikdüzü ilçesine kadar sahil boyunca ve Karşıyaka Mahallesinde (Trabzon) dar bir alanda yüzeyleme vermektedirler. Salacık ve Darıca beldesi güneyi hariç oldukça ayrışmış olarak gözlenmektedirler (Şekil 3.8a). Bazaltik bileşime sahip bu kayaçların ayrışmış yüzeyleri kahverengi-bej renkte, taze kırık yüzeyleri ise koyu gri-siyah renktedir. Yastık enine kesitlerinde çapları 20 cm'den başlayıp 2 m'ye kadar ulaşmaktadır. Walker (1992) tarafından yapılan sınıflamaya dayanarak çapları 1 m den küçük olan yastık lavlar normal yastık lavlar, çapları 1-3 m arasında olan yastık lavlar ise mega yastık lavlar olarak isimlendirilmiştir (Şekil 3.8b). Bazıları oldukça yuvarlaklaşmış ve ışınsal çatlaklara sahipken (Şekil 3.8c), bazıları da oldukça yassılaşmış olarak gözlenir (Şekil 3.8d). Yastık lavlar arasında kalan boşluklar (özellikle pedonkül kesimleri) genellikle tortullar tarafından (Şekil 3.8e) ve bazı yörelerde ise zeolitler tarafından doldurulmaktadır. Ayrıca yastık lavlar arasında volkanizmanın durakladığı dönemlere işaret eden tüf-marn seviyeleri bulunmaktadır (Şekil 3.8f).

Şekil 3.8. Çalışma alanında yüzeyleme veren (a) altere olmamış normal yastık yapılı lavlar, (b) mega yastık yapılı lavlar, (c) ışınsal çatlaklar gösteren yastık lavlar, (d) yassılaşmış yastık yapılı lavlar, (e) yastık lavlar arasında kalan boşlukları dolduran tortullar, (f) yastık lavlar arasında yer alan tortul seviyelerin görünümü

3.2.4.2.2. Bazaltik Lav

İnceleme alanında lav akmaları ve dar bir alanda yüzeyleme veren prizmatik yapılı lavlar halinde gözlenmektedir. Prizmatik yapılı lavlar, Tonya'nın kuzeybatısında, Ziyaret Tepe ve çevresinde yüzeyleme vermektedirler. Prizmatik yapıların enine kesiti 15-40 cm arasında değişmektedir (Şekil 3.9a). Ayrışmış yüzeyleri kahverengi-gri olup, taze kırık yüzeyi gri-siyah renktedir (Şekil 3.9b). İçerisinde bol miktarda iri ojit fenokristalleri bulunmaktadır. Prizmatik yapılı lavlar, üst kısımlara doğru gidildikçe oldukça gözenekli bir yapı kazanmakta olup, bu boşluklar zeolit ve kalsit tarafından doldurulmuştur. Lavların akış yönüne göre güneydeki muhtemel bir kaynaktan itibaren kuzey-kuzeydoğuya doğru aktıkları düşünülmektedir.

Şekil 3.9. Çalışma alanında yüzeyleme veren (a, b) prizmatik yapılı lavların görünümü, (c, d) bazaltik lav akmalarının görünümü

Lav akmaları ise genellikle Trabzon İli Hıdırnebi yöresi ve Giresun İli Eynesil yörelerinde yüzeyleme vermektedir. Taze kırık yüzeyi koyu gri-siyah renkte olup bazıları camsı bir dokuya sahiptir (Şekil 3.9c). Ayrışma yüzeyleri genellikle gri-kahve tonlarında olup oldukça kırıklı yapı sergilerler (Şekil 3.9d). İçerisinde makroskopik olarak oldukça bol piroksen fenokristalleri gözlenmektedir. İkincil mineral olarak ise zeolitler baskındır.

3.2.4.3. Dayklar ve Siller

3.2.4.3.1. Bazaltik Dayk ve Sil

Çalışma alanı içerisinde hemen hemen her yörede yüzeyleme vermektedirler. Konumları değişken olup, kalınlıkları 30 cm'den 2.5-3 m'ye kadar değişmektedir. Genellikle taze bir görünüme sahip olup, taze kırık yüzeyleri ise koyu gri- siyah ve ayrışma yüzeyleri açık kahve-bej renktedir. Baskın mineral olarak piroksen, boşluk dolgusu olarak ise kalsit ve zeolit içerirler. Genellikle iyi gelişmiş prizmatik yapı gösterirler (Şekil 3.10a, b). İnceleme alanında, yer yer masif olanlara da rastlamak mümkündür. Oluşumlarını sağlayan besleme kanallarının (fay, kırık) düzensiz olduğu durumlarda buket ve demet görünümlü soğuma yapıları kazanmışlardır (Şekil 3.10c).

Şekil 3.10. Çalışma alanında (a, b) yüzeyleme veren bazaltik daykların görünümü,
(c) buket/demet görünümlü soğuma yapısı sunan bazaltik dayk, (d)
Yoroz Burnu mevkiinde yüzeyleme veren bazaltik silin görünümü

Yastık yapılı bazaltlar ve üzerindeki volkanik breşlerin dokanağında uyumlu olarak yerleşmiş, prizmatik yapılı yataya yakın konumlu sil Yoroz Burnu taş ocağında gözlenmektedir. Kalınlığı yaklaşık 1.5-2 m olan sil iyi gelişmiş prizmatik yapı sergiler (Şekil 3.10d). Taze kırık yüzeyi koyu gri-siyah renktedir. Kayaç içerisinde fenokristal olarak piroksen gözlenirken, boşluk dolgusu olarak da bol miktarda zeolit ve kalsit tanımlanmaktadır.

3.2.4.3.2. Andezitik Dayk ve Dom

Çalışma alanı içerisinde genellikle Hıdırnebi yöresinde bazaltik breşleri ve tüfleri keserek yüzeyleme veren ve kalınlıları 1-3m arasında değişen andezitik daykların eğim yönleri ve eğim açıları değişkenlik göstermektedir. Ayrışma yüzeyleri bej, kahverengimsi sarı ve limonitleşmeden dolayı pas rengindedir. Taze kırık yüzeyleri krem renklidir. İçerisinde plajiyoklas ve biyotit çıplak gözle ayırt edilebilecek büyüklüktedir (Şekil 3.11a, b, c).

Şekil 3.11. Çalışma alanında (a, b) andezitik daykların görünümü, (c) trakitik dayk tarafından düşey yönde kesilen andezitik dayk, (d) andezitik domun yakından görünümü

Andezitik dom ise Trabzon İli merkez Kisarna Köyü'nde içerisindeki derenin her iki yamacında, dar bir alanda yüzeyleme vermektedir ve oldukça kırıklı bir yapıya sahiptir. Ayrışma yüzeyleri açık kahve-bej, taze kırık yüzeyleri ise gri renktedir. Kayaç içerisinde iri plajiyoklas, biyotit kristalleri çıplak gözle rahatça tanımlanabilmektedir. Kırık hattı boyunca yüzeylendikleri düşünülmektedir (Şekil 3.11d).

3.2.4.3.3. Trakitik Dayk

Çalışma alanında Trabzon İli, Hıdırnebi, Salacık, Tonya ve Sis Dağı yörelerinde yüzeyleme vermektedirler (Şekil 3.12a). Daykların kalınlığı 1-2m arasında değişim göstermekte olup, doğrultuları ise genellikle KD-GB olarak belirlenmiştir. Bazıları normal faylar tarafından kesilmektedir (Şekil 3.12b). Oldukça ayrışmış olan kısımlarda kahverengi-pembemsi görünüme sahiptir. İçerisinde makroskopik olarak tanınabilecek büyüklükte sanidin ve bazılarında biyotit kristalleri mevcuttur. Kayaçta yoğun bir karbonatlaşma göze çarpmaktadır.

Şekil 3.12. Çalışma alanında (a) trakitik daykın görünümü, (b) trakitik daykı kesen normal fay, (c) bazaltik ve andezitik daykları kesen trakitik dayk, (d) bozuşmuş yastık lavları kesen trakitik daykın görünümü

Genellikle bazaltik piroklastitleri keserek yerleşen trakitik dayklar bazaltik dayklarda görülen prizmatik yapıya sahip olmayıp masif bir yapı sunarlar. Özellikle, daykların yoğun olduğu Hıdırnebi-Karadağ yörelerinde bazaltik ve andezitik daykları kesmeleri trakitik daykların diğerlerine göre daha genç olduğuna işaret etmektedir (Şekil 3.12c). Trabzon İli Salacık Beldesi güneyinde ise ayrışmış yastık lavları keserek yerleşmişlerdir (Şekil 3.12d).

3.2.5. Miyosen Yaşlı Bazik Dayk, Sil, Lav ve Piroklastitleri

3.2.5.1. Piroklastitler

3.2.5.2.1. Foidli Volkanik Breş

Çalışma alanında Trabzon İli şehir merkezi ve çevresinde özellikle Çukurçayır yöresinde yüzeyleme veren foidli volkanik breşler açık gri renktedirler (Şekil 13a). Breş çakıllarının çapları yer yer 15 cm ye kadar ulaşmaktadır (Şekil 13b). Çakıllar % 65 olup, yer yer kırıntılı malzemeyle bağlanmıştır. Bazaltik ve tefritik bileşimde olan breşlerin içerisinde özellikle piroksen mineralleri makroskopik olarak ayırt edilebilmektedir. Kırık, çatlak ve gözenek dolgusu olarak yer yer klorit, zeolit ve kalsit gözlenmektedir. Yer yer ara seviye olarak tüf tabakaları gözlemlemek mümkündür.

Şekil 3.13. Çalışma alanında Trabzon şehir merkezi ve çevresinde yüzeyleme veren (a, b) Miyosen yaşlı breşlerin görünümü

3.2.5.2.2. Tüf

Miyosen yaşlı birimler içerisinde Trabzon İli şehir merkezinde Çukurçayır ve Boztepe'nin batısında breşik lavlarla ara katkılı olarak bulunurlar. Açık gri-bej renkli görünüme sahiptirler. İçerisinde yer yer iri piroksen kristalleri gözlenen tüfler, genel olarak kristal litik tüf ve yer yer lapilli tüf olarak adlandırılabilirler. Bazı lokasyonlarda çatlaklar boyunca gelişmiş zeolit ve kalsit göze çarpmaktadır. Tabaka kalınlıkları 10-25 cm arasında olup, genel olarak eğim yönleri kuzeye ve eğim açıları 20°-25° arasında değişmektedir.

3.2.5.2. Foidli Breşik Lav

Özellikle Trabzon şehir merkezi, Pelitli mevkii ve Trabzon-Yomra arasında yüzeyleme veren bu lav tipleri breşik bir yapı sunmaktadır. Koyu griden açık griye kadar değişen renklerde gözükürler (Şekil 3.14a). Köşeli çakıllar, 2-15 cm arasında değişen çaplarda olup, tamamen lavla bağlanmışlardır. Breşik lavlar içerisinde yer yer daha yaşlı birimlere ait parçalara rastlamak mümkündür. Tanelerin birçoğu ayrışmış halde gözlemlenip ayrışma yüzeylerinin rengi beyazımsı gridir. Lavlar, tek bir faz halinde değil birden fazla tekrarlanmalı lav katmanlarını oluşturmaktadır (Şekil 14b). Bazı katmanların arasında tortullar bulunmaktadır (Şekil 14c). Daha çok Trabzon çevresinde yayılım gösteren bu lavlar iri piroksen mineralleri içermektedirler. Çalışma alanı içerisinde lav kanalları içerisinde soğuyarak meydana gelmiş merceğimsi şekilli lav loblarına rastlamak mümkündür (Şekil 14d). Bunlar yine dış kısımlara doğru breşik yapı sunmakta, fakat iç kısımları masif bir görünüm sergilemektedir. Foidli breşik lavlar, yer yer aynı bileşimdeki dayklar ve siller tarafından kesilmekte olup, içlerinde çapları 15 cm'ye kadar varan çoğunlukla flogopit ve klinopiroksenden oluşan kümülofirik dokulu "cognate inklüzyonlar" da içermektedirler.

3.2.5.3. Foidli Dayk ve Sil

Çalışma alanı içerisinde dayklar özellikle Trabzon merkez Karşıyaka ve Erdoğdu Mahallesi ve civarında yüzeyleme vermektedir (Şekil 3.15a). Kalınlıkları 1-1.5 m ve yaklaşık doğu batı doğrultulu olup eğim açıları 70-85° dir. Yer yer gaz boşlukları içerirler.

Şekil 3.14. Çalışma alanında Trabzon şehir merkezi ve çevresinde yüzeyleme veren Miyosen yaşlı (a) breşik lavlar, (b) tekrarlanmalı lav akmaları (c) lav katmanları arasındaki tortular, (d) merceğimsi şekilli lav loblarının görünümü

Şekil 3.15. Çalışma alanında, Trabzon şehir merkezi içerisinde yer alan (a) foidli dayk, (b) Sarraf Tepe'de Üst Kretase yaşlı birimler içerisinde yüzeyleme veren foidli silin görünümü

Taze yüzeyinin rengi açık gri olup, içerisinde piroksen ve flogopitler makroskopik olarak ayırt edilebilir minerallerdir. Tefritik ve bazanitik bileşimli olan bu kayaçlar ayrışmadan oldukça etkilenmiştir ve ikincil mineral olarak kalsit ve zeolit içerirler.

Sil, Trabzon şehir merkezi güneyinde Sarraf Tepe civarında Üst Kretase yaşlı birimler içerisinde yüzeyleme vermektedir (Şekil 15b). Silin kalınlığı yaklaşık 4-4.5 m olup eğim yönü ise kuzey batıya doğrudur. Yer yer iyi gelişmiş kolon yapısı göstermekte olup, kırık yüzeyi koyu gri renktedir. Makroskopik olarak ayırt edilebilen piroksen ve flogopit mineralleri gözlenir. İkincil mineral olarak ise karbonat ve zeolit mineralleri içerir.

3.2.5.4. Kümülofirik Dokulu Klinopiroksen-Flogopit Nodülleri

Çalışma alanı içerisinde Karlık Tepe'de yüzeyleme veren foidli breşik lavlar içerisinde çapları birkaç cm'den başlayıp 10 cm'ye kadar değişen boyutlarda, koyu renkli kümülofirik dokulu nodüller gözlenmektedir. Şen (2000) tarafından "cognate ksenolit" bu çalışmada ise "cognate inklüzyon" olarak tanımlanan bu nodüller, çoğunlukla klinopiroksen ve flogopitten meydana gelmektedir (Şekil 3.16).

Şekil 3.16. Çalışma alanında foidli breşik lavlar içerisinde yer alan kümülofirik dokulu, klinopiroksen ve flogopit içeren "cognate inklüzyon"un görünümü

3.2.6. Miyosen Yaşlı Silttaşı, Marn, Kiltaşı Ardalanması

Sarı-gri renkli kumlu killi silttaşı, açık gri-yeşil renkli marn ve kiltaşı ardalanmasından oluşan birim ilk kez Özsayar (1971) tarafından Ponsiyen killeri olarak ve daha sonra Güven (1993) tarafından Kaymaklı Formasyonu olarak tanımlanmıştır. Birim

inceleme alanında Trabzon merkez Kaymaklı Mahallesi ve çevresinde yüzeyleme vermektedir (Şekil 17a). Altta bulunan Miyosen yaşlı foidli dayk, sil, lav ve piroklastitleri üzerine uyumsuz olarak gelmektedir. Sarımsı gri renkte olan birim arazide oldukça kolay ayırt edilebilmektedir. Marnlar gri-yeşil, kil taşları sarı-beyaz renkte ve yumrulu yapıda, silttaşları sarı-gri renkte ve yer yer tabakalı olarak gözlenmektedir. Silttaşları, ostracod fosillerinin yanı sıra bivalv parçaları da içermektedir. Özsayar (1971), birim içerisindeki makro fosillere dayanarak birimin yaşını Üst Miyosen (Ponsiyen) olarak belirlemiştir.

Şekil 3.17. Çalışma alanında, (a) Kaymaklı Mahallesi ve çevresinde yüzeyleme veren sarı-gri renkli kumlu killi silttaşı. Trabzon şehir merkezi ve çevresinde yer alan (b) Pliyosen yaşlı volkanoklastitler, (c) kırmızı killer, (d) Trabzon merkez ve çevresinde yüzeyleme veren denizel taraçalar

3.2.7. Pliyosen Yaşlı Volkanoklastitler

Güven (1993) tarafından ilk kez Beşirli Formasyonu olarak tanımlanan birim, çalışma alanında Beşirli Bahallesi ve Salacık Beldesi arasında kalan kıyı şeridi boyunca ve Trabzon İli Yomra İlçesi merkezinde yüzeyleme vermektedir. Birim, Miyosen yaşlı silttaşı, marn, kiltaşı ardalanmasından oluşan birim üzerine uyumsuz olarak oturmakta olup, başlıca tüf-marn ardalanması, iri taneli kumtaşı ve gevşek çimentolu volkanoklastitlerden oluşmaktadır (Şekil 3.17b). Birim, Akyazı Beldesi batısında kiltaşı, kumtaşı, marn ardalanması gevşek çimentolu ve kötü katmanlıdır. Tabakalar yaklaşık 20 cm kalınlıktadır. Volkanoklastitlerin taze kırık yüzeyleri koyu gri renkte olup, ayrışmış yüzeyleri bej ve kahverengidir. Oldukça ayrışmış olan bu birimde, killeşme ve kloritleşme yaygın olup, çatlaklar kalsitler tarafından doldurulmuştur. Tüfler ise açık kahve-sarı, yeşil-gri ve beyaz renktedir. Birim, alttan üste doğru kaba taneli volkanoklastitlerle başlayıp, üst kesimlere doğru daha ince taneli tüf-marn ardalanmasıyla devam etmektedir. Tekrarlanmalı olarak gelişim gösteren bu yapı havzanın derinleştiğine işaret etmektedir. Yörede özellikle Akçaabat-Trabzon arasında meydana gelen faylanma (çarpışma sonrası doğrultu atımlı faylanma) ve hızlı bir yükselim sonucu Üst Kretase ve Tersiyer birimlerinin erozyona uğrayarak paleotopografyadaki çukurluklarda depolanmasıyla meydana geldiği düşünülmektedir. Güven (1993), alttaki birimle olan konumuna göre birimin yaşını Pliyosen olarak kabul etmiştir. Keskin (2007) tarafından yaşlandırılan taraçalarla ilişkisi dikkate alındığında birimin yaşının Pliyosen'den daha genç en azından Pliyosen'in üst dönemlerine karşılık geldiği belirtilmiştir.

3.2.8. Kırmızı Killer

İnceleme alanında Bostancı ve Pelitli civarında, Boztepe ve Bengisu kuzeyinde yüzeyleme veren kırmızı killer, Arslan vd. (2006) tarafından kırmızı-kahverengi saprolitler olarak tanımlanmıştır (Şekil 3.17c). Ana volkanik kayadan itibaren yerli yerinde ayrışma sonucu oluşan saprolit, Fe-Mn oksitçe zengin zon, kırmızı kil zonu, kloritçe zengin zon ve en üstte toprak zonuna geçiş yapar. Kırmızı killerin herhangi bir tabakalanma göstermemesi ve içerisinde fosil tespit edilmemiş olması nedeniyle karasal kökenli olduğu düşünülmektedir.

3.2.9. Taraça

Keskin (2007) tarafından topografik yüksekliklerine göre yedi farklı seviyeye ayrılan denizel taraçalar inceleme alanında, Trabzon merkez ve çevresinde, Yıldızlı, Yalı Mahallesi, Havaalanı, Değirmendere, Fatih, Yenicuma, Ayasofya, Bahçecik Mahallesi kuzeyi, Erdoğdu, Bostancı, Boztepe, Atapark, Cezaevi civarlarında dar alanlarda yüzlek vermektedirler. Genellikle blok, çakıl, kum, silt, kil gibi malzemelerden oluşmaktadırlar (Şekil 3.17d). Volkanik ve sedimanter kayaç parçalarından oluşan blok ve çakılların boyutları 0.5 cm ile 40 cm arasında değişmektedir. İçerisinde fosil olarak mollusk kavkıları bulunmaktadır. Keskin (2007) tarafından mollusk kavkıları üzerinde yapılan elektron spin rezonans (ESR; Electron Spin Resonance) yaşlandırmasına göre taraçaların yaşının Holosen ve Pleistosen olduğu tespit edilmiştir.

3.2.10. Alüvyon

Çalışma alanı içerisinde başlıca Yomra Deresi, Değirmendere, Kalanima Deresi, Foldere, Çanakçı Deresi vadilerinde dar alanlarda gözlenmektedir. İnceleme alanının kuzeyinden akarsular yardımıyla taşınıp gelen malzemenin vadilerin genişlediği ve akarsu hızlarının düştüğü denize yakın yerlerde mil, kum ve çakıl şeklinde meydana gelen yığışımlardır.

3.3. Petrografi

İncelenen Tersiyer yaşlı volkanitler, Eosen ve Miyosen olmak üzere iki farklı yaş aralığı sunduğundan her bir yaş aralığında sergiledikleri volkanik fasiyes özellikleri dikkate alınarak ayrıntılı petrografik incelemeleri yapılmıştır. Yapılan incelemeler sonucunda Tersiyer yaşlı volkanitlerin petrografisi aşağıda verilmiş ve genel mineralojikdokusal özellikleri Tablo 3.1 de özetlenmiştir.

3.3.1. Eosen Yaşlı Volkanitlerin Petrografisi

3.3.1.1. Piroklastitler

Çalışma alanında yüzeyleme veren piroklastik kayaçlar Fisher (1966) tarafından yapılan sınıflamaya göre, tane boyutu 64 mm'den büyük olanlar piroklastik breş ya da aglomera olarak, 2-64 mm arasında olanlar lapilli tüf ve 2 mm'den küçük olanlar ise tüf olarak tanımlanmıştır.

Tablo 3.1. İncelenen Tersiyer volkanik kayaçlarının genel mineralojik ve dokusal özellikleri (Kpir, klinopiroksen; Ol, olivin; Ku, kuvars; Bt, biyotit; Hbl, hornblend; Pl, plajiyoklas; Sa, sanidin; Anl, analsim; Op, opak mineral; Ap, apatit).

Yaş	Fasiyes	Modal Mineraloji											Dolwlor
ve takım		Örnek No	Kpir	<i>0l</i>	Ku	Bt	Hbl	Pl	Sa	Anl	Ор	Ap	Dokular
Eosen Yaşlı BTB Takımı	Bazaltik dayk ve sil	121	+				+	+			+		mikrolitik porfirik,
		399	+			+		+			+		nyalo-mikrolitik porfirik, intersertal, glomeroporfirik
		642	+	+				+			+		
		801	+	+		+		+			+	+	
	Bazaltik lav	111	+			+		+			+		mikrogranuler porfirik, mikrolitik porfirik, glomeroporfirik
		260	+			+	+	+			+	+	
		331	+	+				+			+		
		511	+	+				+			+		0 1
	Yastık lav	301	+	+				+			+		intersertal- intergranular, mikrolitik porfirik, glomeroporfirik
		363	+	+				+			+		
		373	+	+				+			+		
		637	+	+				+			+		gioineroportitik
	Volkanik breş	114	+				+	+			+		mikrolitik porfirik,
		118	+	+				+			+		hyalo-mikrolitik porfirik, fluidal
		240	+	+				+			+		
		250	+					+			+		
	Andezitik dayk ve dom	232			+	+		+	+		+		mikrogranüler porfirik, hipokristalin,
		675	+				+	+			+		
aşlı ımı		683	+					+			+		polkilitik, glomeroporfirik
n Y Tak	Trakitik dayk	188	+			+		+	+		+		akma, trakitik, glomeroporfirik
Eose TT 1		318	+			+		+	+		+		
		625	+			+		+			+		
		700	+			+		+			+		
aşlı nı	Foidli breşik lav	Cy-17	+	+		·				+	+	+	mikrogranuler
		Cv-18	+	+						+	+	+	porfirik, hyalo- mikrolitik porfirik, glomeroporfirik
		220	+				+	+		+	+	+	
		721	+					+		+	+	+	vesiküler
n Y aku	Foidli dayk ve sil	238	+			+		+		+	+	+	
ose T T		603	+			+	+	-	+	+	+	+	mikrogranuler porfirik, hyalo- mikrolitik porfirik,
Miy B 1		805	+			+		+		+	+	+	
Ι	Foidli volkanik breş	601	+							+	+	+	
								+					glomeroporfirik

3.3.1.1.1. Volkanik Breş

Çalışma alanında yüzeyleme veren piroklastik kayaçların büyük çoğunluğu volkanik breş olmakla beraber yer yer dar alanlarda yüzeyleme veren breşlere göre daha yuvarlaklaşmış çakıllardan oluşan aglomeralar da gözlenmektedir. Volkanik breşler petrografik olarak genellikle bazaltik bileşimdedir. Breş çakıllarının modal mineralojisi kpir + pl \pm hbl \pm ol + op şeklinde olup, genellikle mikrolitik porfirik ve hyalo-mikrolitik porfirik dokular sergilerler.

Klinopiroksen baskın mineral olup, genelde öz şekilli ya da yarı özşekilli olarak görülür. Tek nikolde renksiz ya da çok açık yeşil renkte, çapraz nikolde ise II. sıranın canlı rengini gösterir. Ayrıca kenar kısımlarında kemirilme ve opak mineral kapanımları sıkça gözlenir. Bazı klinopiroksen kristallerinde zonlanma görülürken bazılarında ise kalıntı merkezler gözlenir (Şekil 3.18a, b, e, f, h).

Plajiyoklas, genellikle öz ve yarı özşekilli, tek nikolde renksiz, çapraz nikolde ise gri, beyaz renktedirler. Genellikle albit ikizi gösterirken, bazılarında elek dokusu ve zonlanmalar da gözlenmiştir (Şekil 3.18c, e, f, g, h). Elek dokusu gözlenen plajiyoklasların bazılarının kenar kısımlarında yeniden büyüme zarfları bulunmaktadır (Şekil 3.18g,). Bazı kayaçlarda plajiyoklas mikro- ve fenokristalleri kümelenme göstererek glomeroporfirik doku oluştururlar.

Olivin, genellikle yarı özşekilli ya da öz şekilsiz, tek nikolde rensiz, çapraz nikolde II. ve III. sıranın canlı renklerinde görülürler. Kırıkları ve kenarları boyunca iddingisitleşmişlerdir. Opak mineral, klinopiroksen ve plajiyoklaslarla birlikte kümelenerek glomeroporfirik doku oluştururlar (Şekil 3.18c).

Hornblend, genellikle öz ve yarı öz şekilli, tek nikolde kahve tonlarında pleokroizma gösterirler. Kenar kısımlarında opak mineral dizilimleri göze çarpar (Şekil 3.18d).

Opak mineraller, öz şekilsiz taneler halinde bulunur. Kapanım olarak ise klinopiroksenler içerisinde yer alırlar.

İkincil mineral olarak boşluk dolgusu olarak gelişen kalsit ve zeolit tanımlanmıştır.

3.3.1.1.2. Tüf

İnceleme alanı içerisinde yer alan tüfler, litik ve litik kristal tüfler olarak tanımlanmış olup, genellikle ayrışmış olarak görülmektedirler.

Kristal bileşeni olarak, yarı özşekilli ve özşekilsiz parçalanmış klinopiroksen ve plajiyoklas tanımlanmaktadır (Şekil 3.19a, b).

Litik bileşenler bazaltik bileşimli olup, öz ve yarı öz şekilli plajiyoklas, öz ve yarı özşekilli klinopiroksen içermektedirler (Şekil 3.19a, b).

Bağlayıcı kısımda ve litik bileşenler içerisinde özşekilsiz opak mineraller sıkça gözlemlenmektedir.

Şekil 3.18. Eosen yaşlı volkanik breşlerden alınan çakılların ince kesit görünümleri; (a) klinopiroksen (kpir) ve plajiyoklas (pl) mineralleri (TN, Örnek No:118), (b) klinopiroksen (kpir) minerali (TN, Örnek No:114), (c) olivin (ol) ve albit ikizi gösteren plajiyoklas (TN, Örnek No:118), (d) kenarları opaklaşmış hornblend (hbl) (TN, Örnek No:114), (e, f) plajiyoklas ve opak kapanımı içeren klinopiroksenler (TN ve ÇN, Örnek No:250), (g) elek dokusu ve kenarlarda yeniden büyüme zarfları gözlenen plajiyoklaslar (ÇN, Örnek No:240), (h) zonlu plajiyoklas ve öz şekilsiz klinopiroksen (ÇN, Örnek No:240)

Şekil 3.19. Eosen yaşlı tüflerin ince kesit görünümü; (a) litik tüf (ÇN, Örnek No:108),
(b) litik kristal tüf (TN, Örnek No:108) (lit: kayaç parçası, kpir: klinopiroksen)

3.3.1.2. Lavlar

3.3.1.2.1. Yastık Lav

Yastık yapılı kayaçlar genellikle intersertal, mikrolitik porfirik, yer yer kümülofrik ve amigdaloidal dokular sergilerler. Bu kayaçların ana modal mineralojisini kpir + ol + pl + op oluşturmaktadır. İkincil mineral olarak ise kalsit, klorit ve zeolit bulunmaktadır.

Klinopiroksen, genellikle özşekilli ve yarı özşekilli fenokristaller ve hamurda mikro kristaller halinde bulunur. Tek nikolde renksiz ve açık yeşil renkte, çapraz nikolde II. sıranın canlı renklerini gösterirler. Klinopiroksenlerde zonlanma ve h'(100) ikizlenmesi yaygın olarak gözlenir. Genellikle bol opak mineral kapanımı içermekle birlikte yer yer olivin ve plajiyoklas kapanımları da içerirler. Bazı klinopiroksenlerin merkezlerinde elek ve ergime dokusu gösteren kalıntı kısımlar gözlenmiştir. Yer yer kenar kısımları ve hamur arasında gelişen reaksiyon dokularını da görmek mümkündür (Şekil 3.20a, b, c, d, e, f).

Olivin fenokristalleri genellikle özşekilliden özşekilsize değişen şekillerde bulunur (Şekil 3.20a, b,c, d). Tek nikolde renksiz, çapraz nikolde II. ve III. sıranın canlı renklerini gösterirler. Kenar kısımları ve çatlakları boyunca iddingsitleşme baskın olmakla beraber bazı örneklerde serpantinleşme de tanımlanmıştır. Klinopiroksenlerle beraber kümülofrik doku oluştururlar.

Plajiyoklas, genellikle hamurda mikrolitler ve mikrofenokristaller halinde bulunur. Tek nikolde renksiz, çapraz nikolde gri ve beyaz renktedirler. Genellikle albit ikizi gösterirler ve alterasyondan etkilenmemişlerdir (Şekil 3.20a, b, e, f). Opak mineraller, hamurda köşeli taneler halinde bulunurken bazı klinopiroksen ve olivinler içerisinde de kapanım olarak bulunurlar.

Yastık lavlarda bulunan en yaygın ikincil mineraller genellikle ferromagnezyen minerallerden itibaren gelişen klorit, boşluk ve çatlak dolgusu olarak gelişmiş kalsit ve zeolittir. Ayrıca, olivinlerden itibaren oluşan iddingsiti ve serpantini de görmek mümkündür.

Şekil 3.20. Eosen yaşlı yastık lavların mikroskopik görünümü; (a, b) mikrolitik pofirik doku içerisinde özşekilli olivin kapanımları içeren klinopiroksen (kpir), özşekilsiz olivin (ol) fenokristalleri ve plajiyoklas (pl) mikrofenokristalleri (ÇN ve TN, Örnek No:301), (c, d) zonlu klinopiroksenlerde gözlenen elek dokusu, opak ve olivin kapanımları (ÇN ve TN, Örnek No:301), (e, f) özşekilli klinopiroksenlerde gözlenen hamur tarafından yenmeler ve igdingsitleşmiş olivinler (ÇN ve TN, Örnek No:373)

3.3.1.2.2. Bazaltik Lav

Bazaltik lavlar, mikrolitik porfirik, hyalo-mikrolitik porfirik, mikrogranü-porfirik, hyalo-porfirik ve yer yer kümülofirik dokular gösterirler. Bu kayaçların ana modal mineralojisini kpir + pl + ol + bt +hbl+ op oluşturmaktadır. Ayrıca, ikincil mineral olarak zeolit, kalsit, klorit, kil mineralleri ve epidot bulunmaktadır.

Klinopiroksen, genellikle yarı özşekilli ve özşekilsiz fenokristaller ve mega kristaller olarak gözlenir. Hamurda ise mikro taneler halinde kırılmış ve parçalanmış olarak bulunur. Tek nikolde renksiz, çapraz nikolde II. sıranın canlı renklerinde görülürler. Genellikle zonlanma göstermezken, zonlu olanlar ve ikizlenme gösterenler de tespit edilmiştir. Mega kristallerin kenar kesimlerinde yenmeler ve kemirilmeler yaygındır. Kristallerin merkez kısımlarında ise elek dokusu gözlemlenir. Kapanım olarak biyotit, olivin ve apatit tespit edilmiştir (Şekil 3.21a, b, c, f).

Plajiyoklas, bazı örneklerde özşekilli fenokristaller halinde bulunurken bazıları da hamur içerisinde mikrolit olarak gözlenir. Tek nikolde renksiz, çapraz nikolde geri-beyaz renktedirler. Hem albit hem de zonlu karmaşık ikiz gösterirler. Bazı zonlu plajiyoklaslarda süngerimsi doku gelişirken, bazıları ise kısmen killeşmiştir (Şekil 3.21a,c, d, f).

Olivin, genellikle özşekilli olup fenokristaller halinde bulunur. Tek nikolde renksiz, çapraz nikolde II. ve III. sıranın canlı renklerini sergiler. Karakteristik olarak kırıklar içeren bu minerallerin kenarları ve kırıkları boyunca iddingsitleşmeler yaygın olarak tanımlanır (Şekil 3.21a, b, e).

Biyotit, bazı örneklerde öz ve yarı özşekilli kristaller halindeyken bazılarında da özşekilsiz kristaller halinde bulunur. Tek nikolde kahverenginin tonlarında pleokroizma, çapraz nikolde koyu kahve renklerde gözlenir. Tek yönde mükemmel dilinime sahiplerdir. Bazılarında kıvrımlı ve opaklaşmış kenar kısımlar görülür (Şekil 3.21d, f).

Hornblend, genellikle altere ve öz şekilsiz mikro taneler halinde gözlenir. Tek nikolde yeşil renktedir ve yeşilin tonlarında pleokroizma gösterirler.

Opak mineraller, genellikle özşekilli ve yarı özşekilli kristaller halinde bulunurken, hamurda ise özşekilsiz taneler halinde gözlemlenir. Bazen de klinopiroksen ve plajiyoklaslar içerisinde kapanım olarak bulunur.

Kayaçlarda plajiyoklaslardan itibaren gelişen kil mineralleri ve epidot, ferromagnezyen minerallerden itibaren gelişen klorit en yaygın ikincil minerallerdir.

Şekil 3.21. Eosen yaşlı bazaltik lavların mikroskopik görünümü; (a, b) özşekilli klinopiroksen (kpir), öz şekilsiz olivin (ol) ve plajiyoklas (pl) mikrolitleri (ÇN ve TN, Örnek No:331), (c) hamur tarafından kemirilmiş, korrede olmuş klinopiroksen ve plajiyoklas (ÇN, Örnek No:511), (d) zonlu plajiyoklas, öz şekilsiz biyotit (bt), klinopiroksen (ÇN, Örnek No:111), (e) hyaloporfirik doku içerisinde opak kapanımlar içeren özşekilli, kırıkları boyunca iddingsitleşmiş olivin ve plajiyoklas fenokristalleri (TN, Örnek No:511), (f) öz şekilsiz klinopiroksen, biyotit ve plajiyoklas (ÇN, Örnek No:111)

3.3.1.3. Dayklar ve Siler

3.3.1.3.1. Bazaltik Dayk ve Sil

Bazaltik dayk ve siller, genellikle intersertal, mikrolitik porfirik, hyalo-mikrolitik porfirik, amigdaloidal ve kümülofirik doku gösterirler. Modal mineralojide fenokristal olarak kpir + pl \pm ol \pm hbl + op birlikteliği, mikrolit olarak ise kpir + pl + op + bt yer almaktadır. Klorit, kalsit ve zeolit ikincil minerallerdir.

Klinopiroksen, genellikle yarı öz şekilliden öz şekilsize kadar değişen ve yer yer kırıklı fenokristaller halinde, hamurda ise mikro taneler halinde gözlenir. İntersertal doku içerisinde ise ince uzun kristaller olarak bulunurlar (Şekil 3.22a, b, e, h). Tek nikolde açık yeşil renklerde gözlemlenen klinopiroksenler, çapraz nikolde II. sıranın canlı renklerini gösterirler. Bazı kayaçlarda plajiyoklas ve olivinle beraber kümülofirik doku oluştururlar. Fenokristal olarak yer alan bazı klinopiroksenler içinde apatit kapanımlarına da rastlamak mümkündür. Zonlanma klinopiroksenlerin sıkça rastlanılan özellikleri arasında olup, genellikle opak mineral kapanımları içerirler. Bu klinopiroksenlerin bazılarının merkez kısımlarında kalıntı kısım olarak yorumlanan yapılara da rastlanılır (Şekil 3.22b).

Plajiyoklas, genellikle öz şekilliden öz şekilsize kadar değişen mega-fenokristaller ve hamurda mikrolitler halinde gözlenmektedir. Tek nikolde renksiz olan plajiyoklaslar çapraz nikolde gri beyaz renktedir. Genellikle albit ikizi gösterirler. Yine bu kristallerin kenar kısımlarında yenme göze çarparken hafifçe zonlanma gözlemlenmektedir. Megakristal olarak bulunan plajiyoklaslarda dengesiz kristallenmeye (magma karışımı; Shelley, 1993; Vernon, 2004) işaret eden zonlanma, elek dokusu ve karmaşık ikizlenme gözlenmektedir (Şekil 3.22c, d).

Olivin, genellikle özşekilli ve yarı özşekilli olarak bulunur. Tek nikolde renksiz, çapraz nikolde II. ve III. serinin canlı renklerini gösterirler. Kısmen ve tamamen kırık ve kenarları boyunca iddingsitleşmişlerdir. Bazen klinopiroksenler içerisinde kapanım olarak bulunan olivinler bazen de klinopiroksenlerle beraber kümülofirik doku oluştururlar (Şekil 3.22e, f).

Hornblend, genellikle mega kristaller halinde öz ve yarı özşekilli olarak bulunur. Açık kahveden koyu kahveye değişen renk pleokroizmasına sahip hornblendler yer yer klinopiroksenler içerisinde kapanım olarak yer alırlar. Kenar kısımlarında klinopiroksen ve opak mineral yığışımları mevcut olup, iyi dilinim gösterirler (Şekil 3.22g).

Şekil 3.22. Eosen yaşlı bazaltik dayk ve sillerin mikroskopik görünümü; (a) kenarları hamur tarafından kemirilmiş, olivin kapanımları içeren klinopiroksen (kpir), (ÇN, Örnek No:801), (b) kenarları hamur tarafından kemirilmiş, kalıntı merkez içeren klinopiroksen (ÇN, Örnek No:801), (c) elek dokusu ve kenarlarda yeniden büyüme zarfı içeren plajiyoklas (pl) opaklaşmış biyotit (bt), (TN, Örnek No:399), (d) elek dokusu gösteren plajiyoklas (ÇN, Örnek No:399) (e) özşekilli ve klinopiroksen icerisinde kapanım olarak bulunan olivinler (ol, CN, Örnek No:801), (f) kümülofirik olarak bulunan öz şekilsiz olivin taneleri (CN, Örnek No:399), (g) öz şekilli hornblend (hbl), (TN, Örnek No:121), (h) biyotit mikrolitleri ve kenarları kemirilmiş klinopiroksenler (TN, Örnek No:121)

Biyotit, genellikle intersertal doku içerisinde öz şekilli fenokristaller halinde bulunurken, bazen de yarı öz şekilli ve öz şekilsiz kalıntı kristaller olarak gözlemlenir. Tek yönlü dilinimleri karakteristiktir. Açık kahveden koyu kahveye kadar değişen renk pleokroizması gösterirler. Kenar kısımlarında yer yer opaklaşma ve kloritleşme vardır. Bazen sadece hamurda, plajiyoklaslarla beraber ince uzun kristaller halinde intersertal doku oluştururlar (Şekil 3.22h).

Opak mineraller, genellikle hamurda yarı özşekilli ve özşekilsiz mikro taneler halinde, ferromagnezyen minerallerin çevresinde ve özellikle klinopiroksenler içerisinde kapanım olarak bulunurlar.

İkincil mineral olarak, genellikle boşluk dolgusu olarak zeolit, hamur ve plajiyoklaslardan itibaren gelişen kil mineralleri, ferromagnezyen minerallerden ve yine hamurdan itibaren gelişen klorit gözlenmektedir.

3.3.1.3.2. Andezitik Dayk ve Dom

Andezitik dayk ve domlar, mikrogranü-porfirik, hipokristalen, mikro taneli doku ve yer yer poikilitik ve kümülofirik dokular sergilerler. Modal mineralojik bileşimlerini pl + sa \pm bt \pm hbl + kpir + op + ku (<% 5) oluşturur. İkincil mineral olarak ise klorit, serisit, kalsit ve kil mineralleri bulunur.

Plajiyoklas, genellikle öz ve yarı özşekilli mikro- ve feno- kristaller ve hamurda mikrolitler halinde gözlenmektedir (Şekil 3.23a, b, c). Tek nikolde renksiz, çapraz nikolde gri beyaz renktedirler. Çoğunlukla albit ikizi gösteren plajiyoklaslarda zonlanma yaygın gözlenen özelliklerdendir. Özellikle andezitik domlar içerisinde yer alan plajiyoklasların merkez kısımları kil mineralleri + kuvars + kalsit + albite dönüşmüş kenar kesimleri ise yeniden büyüme zarfıyla çevrelenmiştir. Yer yer elek dokusu gösterirler ve elek dokusu içerisinde yer alan camlar kalsite dönüşmüştür.

Sanidin, yalnız andezitik domlar içerisinde bulunmaktadır. Genellikle iri fenokristaller halinde bulunur. Tek nikolde renksiz, çapraz nikolde gri-beyaz renktedirler. Karakteristik olarak karlsbad ikizli ve enine çatlaklıdır. Alterasyondan fazla etkilenmemişlerdir. Yer yer poikilitik olarak biyotit kapanımları ve plajiyoklas mikrolitleri içerirler (Şekil 3.23d, e).

Biyotit, genellikle öz ve yarı özşekilli fenokristaller halinde bulunur. İki oluşum halinde gözlemlenirler. İlki alterasyondan etkilenmemiş, iyi dilinime sahip ve

kahverenginin tonlarında pleokroizma gösterir. İkincisi ise dilinimler boyunca opaklaşmış, kısmen bükülmüş ve dalgalı sönme sergiler. Biyotitler, sanidin ve plajiyoklaslar tarafından poikilitik olarak içerilmektedirler (Şekil 3.23d, e).

Şekil 3.23. Eosen yaşlı andezitik dayk ve domların mikroskop görünümü; (a, b) süngerimsi doku gösteren plajiyoklaslar (pl) ve süngerimsi doku içerisindeki camdan itibaren türemiş kloritler (ÇN, TN, Örnek No:683), (c) tamamen killeşmiş plajiyoklasın çevresinde gelişen yeniden büyüme zarfi (ÇN, Örnek No:232) (d) Karlsbad ikizi gösteren öz şekilli sanidin (sa), bozuşmuş biyotit (bt) ve kuvars (ku) kristalleri (ÇN, Örnek No:232), (e) mikrogranüler doku içerisinde yer alan biyotit, sanidin ve plajiyoklas (ÇN, Örnek No:233), (f) kenar kısmı opaklaşmış ve bozuşmuş hornblend (hbl), (TN, Örnek No:675) Hornblend, oldukça bozuşmuş, tek nikolde yeşilimsi ve kahverengimsi olarak gözlemlenir. Etrafi opak mikro taneler tarafından çevrelenmiştir. Bazıları ise tamamen opaklaşmış ve kloritleşmiştir (Şekil 3.23f).

Klinopiroksen, genellikle öz ve yarı özşekilli olarak, tek nikolde genellikle renksiz, çapraz nikolde II. sıranın canlı renklerine sahiptir. Bazıları kırıklı ve parçalanmış olarak kümülofirik doku içerisinde bulunurlar. Herhangi bir zonlanma veya ikizlenme göstermezler. Bazılarının kenarlarında reaksiyonel kısımlar gözlenmektedir.

Opak mineraller, genellikle yarı özşekilli, daha az oranda özşekilli kristaller halinde gözlenmektedir. Hamurda ise ince öz şekilsiz mikro taneler halinde bulunurlar.

İkincil mineral olarak, kil mineralleri, kalsit, ferromagnezyen minerallerden itibaren gelişen klorit, bunlara ilaveten serisit ve kuvars gözlenmektedir.

3.3.1.3.3. Trakitik Dayk

Trakitik dayklarda genellikle akıntı ve trakitik yer yer ise kümülofirik dokular gözlenir. Modal mineralojilerini $pl \pm sa + bt + kpir + op$ oluşturur.

Plajiyoklas, genellikle özşekilli ve yarı özşekilli fenokristaller ve hamurda mikrolitler halinde bulunur (Şekil 3.24a, b, c, d). Tek nikolde renksiz, çapraz nikolde ise gri-beyaz renktedir. Çoğunlukla albit ikizi, bazen de buna ilaveten karlsbad ikizi gösterenlere de rastlamak mümkündür. Plajiyoklas fenokristallerinde süngerimsi doku yaygın olup, bazı plajiyoklas mikrolitlerinde zonlanma görülür.

Sanidin, fenokristal ve mikro taneler halinde yer alır (Şekil 3.24a, b). Genellikle özşekilli ve yarı özşekillidirler. Enine çatlaklar ve karlsbad ikizi karakteristiktir. Yer yer bir araya gelerek glomeraporfirik doku oluştururlar.

Biyotit, öz ve yarı özşekilli fenokristaller halinde alterasyondan etkilenmemiş olarak bulunurken yer yer de oldukça alteredir. Hamurda ise mikro taneler halinde bulunur. Tek yönde iyi dilinim gösterirler. Tek nikolde kahverengi tonlarında plaeokroizma gösterirken, çapraz nikolde koyu kahverengi ve bazen de kısmen opaklaşmışlardır (Şekil 3.24c).

Klinopiroksen, özşekilsiz ve yer yer yarı özşekilli fenokristaller halinde ve bazen ksenokristal olarak bulunur. Yer yer plajiyoklas ve biyotitle bir araya gelerek glomeraporfirik doku oluştururlar. Tek nikolde renksiz ve açık yeşil, çapraz nikolde ise II. sıranın canlı renklerini gösterirler (Şekil 3.24a, d).

Opak mineraller bazen büyük fenokristaller halinde veya hamurda özşekilsiz taneler halinde bulunurlar. Klinopiroksenlerin içinde kapanımlar halinde içerilenlere de rastlamak olasıdır.

Şekil 3.24. Eosen yaşlı trakitik daykların mikroskopik görünümü; (a, b) trakitik doku içerisinde sanidin (sa) fenokristali ve özşekilsiz klinopiroksen (kpir) (ÇN ve TN, Örnek No:188), (c) trakitik doku içerisinde biyotit (bt) fenokristali, (d) trakitik doku içerisindeki özşekilsiz klinopiroksen (ÇN, Örnek No:188)

3.3.2. Miyosen Yaşlı Volkanitlerin Petrografisi

3.3.2.1. Piroklastitler

3.3.2.1.1. Foidli Volkanik Breş

Breş çakıllarının modal mineralojik bileşimini kpir + pl + an + op oluşturmakta olup, genellikle mikrolitik porfirik, hyalo mikrolitik porfirik ve yer yer kümülofirik dokular gösterirler.

Klinopiroksen, genellikle öz ve yarı özşekilli fenokristaller ve hamurda mikro taneler halinde bulunur. Tek nikolde açık yeşil, çapraz nikolde II. sıranın canlı renklerinde görülür.

Merkez kısımlarında elek dokusu bulunurken, halkalı zonlanma, kum saati ikizi sıkça gözlenen özelliklerindendir. En dış kısımlarda ise yeniden büyüme zarfları bulunur. Opak mineral kapanımları genellikle merkeze yakın kısımlarda yer alır (Şekil 3.25a, b, c, d, e, f).

Plajiyoklas, genellikle özşekilli mikro fenokristaller halinde görülür. Tek nikolde renksiz, çapraz nikolde gri-beyaz renktedirler ve genellikle albit ikizi gösterirler. Nadiren gözlenen fenokristallerin merkez kısımları süngerimsi dokudadır. Bazı plajiyoklaslarda klinopiroksen kapanımları mevcuttur (Şekil 3.25a, b, c, d, e, f).

Şekil 3.25. Miyosen yaşlı foidli volkanik breşlerin mikroskopik görünümü; (a, b) zonlu ve ergime dokusu gösteren klinopiroksen (kpir) fenokristalleri, plajiyoklas (pl) ve analsim (an) (ÇN, TN, Örnek No:601), (c, d) kum saati ikizi gösteren klinopiroksen fenokristalleri, analsim ve plajiyoklas (ÇN, TN, Örnek No:601), (e, f) kum saati ikizi gösteren klinopiroksen fenokristali ve plajiyoklas (ÇN, TN, Örnek No:601) Analsim, genellikle mikro fenokristaller halinde yuvarlağımsı ve altıgenimsi yarı özşekilli taneler halinde bulunur. Tek nikolde kahverengimsi, çapraz nikolde izotrop karakterinden dolayı karanlık ya da çok düşük çift kırıcılık gösterir (Şekil 3.25b, d).

Opak mineraller kısmen yuvarlağımsı bazen köşeli mikro taneler ve fenokristaller halinde görülür.

İkincil mineral olarak nadiren hamurdaki camdan itibaren gelişmiş klorit ve kalsit gözlenir.

3.3.2.1.2. Tüf

Tüfler, litik kristal ve kristal litik tüfler olarak tanımlanmış olup, genellikle ayrışmış olarak görülmektedir.

Kristal bileşen olarak yarı özşekilli ve özşekilsiz parçalanmış klinopiroksenler yaygındır. Diğer bir kristal bileşen ise plajiyoklasdır. Bu minerallerin kenar kısımlarında opaklaşmalar görülmektedir.

Litik bileşenler, bazaltik ve andezitik bileşimlidir. Bazaltik bileşimde olanları genel olarak öz şekilli plajiyoklas lataları ve öz, yarı özşekilli klinopiroksenler içermektedirler. Andezitik bileşimde olanlar ise fenokristal ve mikrolitler plajiyoklas ile temsil edilmektedir.

Bağlayıcı kısımda ve litik bileşenler içerisinde özşekilsiz opak mineraller sıkça gözlemlenmektedir (Şekil 3.26a, b).

Şekil 3.26. Miyosen yaşlı tüflerin mikroskop görünümü; (a) kristal tüf (ÇN, Örnek No:98), (b) litik kristal tüf (TN, Örnek No:217) (lit: kayaç parçası, kpir: klinopiroksen, bt: biyotit)

3.3.2.2. Foidli Breşik Lav

Foidli breşik lavlar, genellikle hyalo-mikrolitik porfirik, mikrolitik porfirik yer yer amigdaloidal ve kümülofrik dokular sergilerler. Bu kayaçların modal mineralojik bileşimi kpir + ol \pm hbl + an + pl + ap + op şeklinde olup, ikincil mineral olarak genellikle zeolit, kalsit ve klorit bulunur.

Klinopiroksen, genellikle öz ve yarı özşekilli fenokristaller halinde bulunurken hamurda özşekilsiz mikro taneler halinde gözlemlenir. Tek nikolde açık yeşil, bazılarının merkez kısımları daha açık beyaza yakın, çapraz nikolde ise II. sıranın canlı renklerinde tanımlanırlar. Genellikle h'(100) ikizi ve zonlanma gösterirler. Kemirilme, elek dokusu ve kalıntı merkez kısımları gözlemlenen diğer özelliklerindendir. Apatit ve opak mineral kapanımlarına sıkça rastlanır (Şekil 3.27a, b, c, d, g, h).

Olivin, genellikle özşekilsiz fenokristaller halindedir. Tek nikolde renksiz, çapraz nikolde II. ve III. sıranın canlı renklerindedir. Kırıkları boyunca iddingsitleşmelere rastlanır (Şekil 3.27c, d).

Hornblend, genellikle yarı öz şekilli veya öz şekilsiz fenokristaller ya da özşekilsiz kalıntılar halinde gözlemlenir. Kahverenginin tonlarında pleokroizma gösteren bu mineraller genellikle iyi dilinim gösterirler. Bazı fenokristallerde ikizlenmelere rastlamak mümkündür. Genellikle kenarlardan itibaren gelişmiş opaklaşmalar mevcuttur (Şekil 3.27e, f).

Analsim, genellikle yarı öz şekilli mikro fenokristaller olarak gözlemlenirler. Tek nikolde grimsi renklerde gözlemlenen analsimler, çapraz nikolde ise izotrop özelliktedir. Yer yer çatlaklara sahip olan bu mineraller içerisinde opak mineral kapanımlarını da tanımlamak mümkündür (Şekil 3.27c, d, g, h).

Plajiyoklas, genellikle mikrolitler halinde bulunur. Tek nikolde renksiz, çapraz nikolde gri, beyaz renklerdedir ve çoğunlukla albit ikiz gösterirler (Şekil 3.27b).

Apatit, öz şekilli fenokristaller halinde bulunurlar. Tek nikolde renksiz çapraz nikollerde gri renktedir. Dik sönme gösterirler (Şekil 3.27a).

Opak mineraller, genellikle hamurda mikro taneler halinde bazen de klinopiroksenler içerisinde kapanım olarak bulunurlar.

Şekil 3.27. Miyosen yaşlı foidli breşik lavların mikroskopik görünümü; (a) klinopiroksen (kpir) ve apatit (ap) mikro fenokristalleri (ÇN, Örnek No:220), (b) zonlu klinopiroksen ve plajiyoklas (pl) mikrolitleri (ÇN, Örnek No:721), (c) klinopiroksen ve olivin (ol) (ÇN, Örnek No:CY-18), (d) olivin, klinopiroksen ve analsim (an) (TN, Örnek No:CY-18), (e, f) kenar kısımları opaklaşmış hornblendler (hbl), (ÇN, TN, Örnek No:220), (g, h) klinopiroksen (kpir) ve analsim (TN ve ÇN, Örnek No:CY-17)

3.3.2.3. Foidli Dayk ve Sil

Foidli dayk ve sillerin, modal mineralojik bileşimi kpir + bt + hbl + an + pl + op şeklinde olup, genellikle mikrolitik porfirik, yer yer vesiküler ve kümülofirik dokular sergilerler.

Klinopiroksen, genellikle öz ve yarı özşekilli feno ve megakristaller olarak bulunur. Bazı piroksenler kırılmış ve parçalanmış olarak gözlenirken bazıları da ise hamurda mikrolitler halinde yer alırlar. Tek nikolde renksiz ya da açık yeşil, çapraz nikollerde II. sıranın canlı renklerine sahiptirler. Yer yer ikizlenme ve zonlanma gösterirler. Kenarları boyunca hamur tarafından kemirilmeler gözlenir. Bazı klinopiroksenler opak mineral kapanımları içerirken, bazı klinopiroksenler ise hornblendler içerisinde kapanım olarak saptanmıştır (Şekil 3.28a, b, g, h).

Biyotit, genellikle alterasyondan etkilenmemiş, öz ve yarı özşekilli fenokristaller ve altere olmuş özşekilsiz kristaller olarak iki farklı halde bulunur. Hamurda ise mikrolit olarak yer alır. Tek nikolde kahverenginin tonlarında kuvvetli pleokroizma gösterirler. Çapraz nikolde genellikle koyu kahve renklerdedirler. Alterasyondan etkilenmeyenlerde tek yönde dilinim gözlenirken, altere olanlarda dilinim nadiren tanımlanabilmektedir (Şekil 3.28c, d).

Hornblend, genellikle öz ve yarı öz şekilli olarak mega ve fenokristaller halinde bulunur. Tek nikolde kahverenginin tonlarında kuvvetli pleokroizmaya sahiptir. Klinopiroksen ve apatit kapanımları içerirler. Bazılarında optik zonlanma göze çarpmaktadır (Şekil 3.28e, f).

Analsim, genellikle özşekilsiz mikro fenokristaller olarak gözlemlenir. Tek nikolde grimsi renklerde, çapraz nikolde ise izotrop özelliktedir. Yer yer çatlaklara sahip olan analsimler ayrışmış olarak belirlenmiştir (Şekil 3.28g, h).

Plajiyoklas, mikrolitler halinde bulunur. Tek nikolde renksiz, çapraz nikolde gribeyaz tonlarında görülürler.

Apatit, öz şekilli ya da yarı öz şekilli fenokristaller olarak bulunur. Tek nikolde renksiz, çapraz nikolde gri renktedir ve dik sönme gösterir (Şekil 3.28c, d, g, h).

Opak mineraller, genellikle hamurda mikro taneler halinde, bazen klinopiroksenler ve hornblenlerde kapanım veya hornblendlerin etrafında yerleşmiş olarak bulunurlar.

İkincil mineral olarak genellikle zeolit, kalsit ve klorit bulunmaktadır.

Şekil 3.28. Miyosen yaşlı foidli dayk ve sillerin mikroskop görünümü; (a, b) zonlu ve ergime dokusu gösteren klinopiroksen fenokristalleri (kpir) (ÇN, TN, Örnek No:603), (c, d) biyotit (bt), apatit (ap) ve analsim (an) (ÇN, TN, Örnek No:603), (e, f) hornblend fenokristalleri (hbl) (TN ve ÇN), (g, h) klinopiroksen, apatit, analsim (TN ve ÇN, Örnek No:603)

3.3.3. İncelenen Volkanitlerdeki Dengesizlik Dokuları

Volkanik kayaçlarda gözlenen dengesizlik dokuları, genellikle magmanın kristallenmesi ve gelişimi sırasında meydana gelen farklı türdeki magmatik olaylarla ilişkilidir. Söz konusu dokular, basınç ve sıcaklık değişimi sonucu meydana gelen dengesizlikler ve magmanın bileşiminde meydana gelen değişimler sonucu oluşan dengesizlikler şeklinde sınıflandırılabilir (Nixon, 1988; Ortoleva, 1990; Dobosi ve Fodor, 1992, Rutherford ve Hill, 1993; L'Heureux ve Flower, 1994; Simonetti vd., 1996).

İncelenen Eosen yaşlı volkanitlerde gözlenen ve dengesiz kristallenmeyi işaret eden dokusal özellikler şunlardır;

- *i*) Klinopiroksenlerdeki zonlanmalar (Şekil 3.29a, d).
- *ii)* Klinopiroksenlerin kenarlarında kemirilmeler (Şekil 3.29c, h).
- *iii)* Klinopiroksenlerin iç kısımlarında ve zonlanmaları boyunca meydana gelen ergimeler (Şekil 3.29b, d).
- *iv*) Plajiyoklaslarda zonlanma, elek dokusu ve yeniden büyüme zarfları (Şekil 3.29e, g).
- *v*) Plajiyoklasların kenarlarında kemirilmeler (Şekil 3.29f, h).
- *vi*) Klinopiroksenlerin kenar kısımlarında apatit ve opak mineral kapanımları.

İncelenen Miyosen yaşlı volkanitlerde gözlenen ve dengesiz kristallenmeyi işaret eden dokusal özellikler ise şunlardır;

i) Klinopiroksenlerdeki zonlanmalar (Şekil 3.30a, b).

ii) Klinopiroksenlerin merkez ve orta kısımlarında meydana gelen ergimeler (Şekil 3.30b, c).

iii) Klinopiroksenlerin kenar kısımlarında apatit ve opak mineral kapanımları (Şekil 3.30a, d).

Şekil 3.29. İncelenen Eosen yaşlı volkanitlerde dengesiz kristallenmeye işaret eden dokular; (a) klinopiroksenlerde (kpir) zonlanma (Örnek No:331), (b) klinopiroksenlerin kenar ve iç kısımlarında kemirilmeler (Örnek No:642), (c) klinopiroksenin kenarlarının hamur tarafından kemirilmesi (Örnek No:373), (d) klinopiroksenlerin zonları boyunca meydana gelen ergimeler (Örnek No:373), (e) zonlu, elek dokulu ve yeniden büyüme zarfı gösteren plajiyoklaslar (pl), (Örnek No:250) (f) plajiyoklasın kenar ve iç kısımlarında kemirilmeler (Örnek No:511), (g) elek dokusu ve yeniden büyüme zarfları gösteren plajiyoklaslar (Örnek No:250), (h) kenarları hamur tarafından kemirilmiş plajiyoklası ve klinopiroksen (Örnek No:511)

Şekil 3.30. İncelenen Miyosen yaşlı volkanitlerde dengesiz kristallenmeye işaret eden dokular; (a) klinopiroksenlerde (kpir) zonlanma ve opak mineral kapanımları (Örnek No:721), (b) klinopiroksenlerin iç kısımlarında ergimeler (Örnek No:CY-17), (c) klinopiroksenin manto kısmında meydana gelen ergimeler (Örnek No:601), (d) klinopiroksenlerde opak mineral kapanımları (Örnek No:721)

3.4. Mineral Kimyası

Mineral kimyası analizleri, Eosen ve Miyosen yaşlı volkanik fasiyeslerdeki farklı kayaçlar içerisinde yer alan fenokristal ve mikrolitler üzerinde gerçekleştirilmiştir. Analizler genellikle fenokristallerin merkez, orta ve kenar kesimlerinde, mikrolitlerin ise orta kesimlerinden yapılmıştır. Ayrıca, bazı fenokristaller için merkezden kenara doğru profiller boyunca yapılan analizlerle kimyasal değişimler irdelenmiştir.

Elde edilen analiz sonuçları kullanılarak minerallerin uç üyeleri hesaplanmış ve kimyasal sınıflamaları yapılmış, mineral içi kimyasal değişimler belirlenerek kristallenme koşulları hakkında bilgi edinilmiştir.

3.4.1. Eosen Yaşlı Volkanitlerin Mineral Kimyası

3.4.1.1. Volkanik Breş

3.4.1.1.1. Klinopiroksen

Volkanik breşler içerisinde bulunan klinopiroksenlerin elektron mikroprob analiz sonuçları Ek Tablo A1 de verilmiştir. Klinopiroksenler, Morimoto vd. (1988)'in sınıflama diyagramında genellikle salit ve ojit alanına düşmektedir. Salit bileşimindeki bir klinopiroksenin merkez kısmı ise diyopsit alanında yer almaktadır (Şekil 3.31a). Ayrıca Papike vd. (1974) tarafından önerilen Ti-Na-Al^[IV] sınıflama diyagramında klinopiroksenler tamamen Ca-çermakit alanına düşmektedir (Şekil 3.31b).

Diyopsit alanında yer alan klinopiroksenlerin bileşimi, $Wo_{48}En_{42}Fs_9$ ile $Wo_{49}En_{43}Fs_9$ arasında olup, Mg/(Mg+Fe⁺²) oranları ise 0.83 tür. Bu klinopiroksenler yüksek Cr₂O₃ (% 0.21-0.23) ve MgO (% 14.68-14.93) içeriklerine ve düşük Al₂O₃ (% 4.50-5.05), TiO₂ (% 0.95-1.03) ve FeO (% 5.45-5.54) içeriklerine sahip olup, Mg-Cr diyopsit olarak adlandırılmıştır. Salit alanında yer alan klinopiroksenlerin bileşimi, Wo₄₅En₃₄Fs₁₁ ile Wo₄₉En₄₂Fs₁₈ arasında olup, Mg/(Mg+Fe⁺²) oranları 0.65-0.79 arasındadır. Bunlar düşük Cr₂O₃ (% 0.00-0.07) ve MgO (% 11.27-15.11) ve nispeten yüksek Al₂O₃ (%3.31-8.32), TiO₂ (%0.87-3.35) ve FeO (%6.80-10.59) içeriklerine sahiptir. Ojitlerin bileşimi Wo₄₂En₄₀Fs₁₃ ile Wo₄₄En₄₃Fs₁₅ arasında, (Mg/(Mg+Fe²⁺) oranları ise 0.73-0.77 arasında değişiklik sunmaktadır. Bu mineraller, % 0.00-0.03 Cr₂O₃, % 13.94-15.14 MgO, % 1.20-4.09 Al₂O₃, % 0.27-0.84 TiO₂ ve % 7.96-9.21 FeO içeriklerine sahiptir.

Klinopiroksenler normal ve hafifçe ters zonlanma gösterirler. Normal zonlanma gösteren klinopiroksenler merkezde 0.73-0.83, kenarda 0.65-0.76 arasında değişen Mg numarasına sahipken, ters zonlanma gösteren klinopiroksenler merkezde 0.73-0.75 arasında, kenarda ise 0.74-0.77 arasında değişen Mg numarasına sahiptir.

Şekil 3.31. Eosen yaşlı volkanik breşler içerisinde yer alan klinopiroksenlerin; (a) Ca-Mg-Fe üçgen sınıflama diyagramı (Morimoto vd. 1988), (b) Ti-Na-Al^[IV] üçgen sınıflama diyagramı (Papike vd. 1974)

Klinopiroksenler Ti'ye karşı Al^[T] değişim diyagramında (Mitchel ve Bergman, 1991; Conticelli, 1998; Perini vd. 2000; Perini ve Conticelli, 2000) Roman Provensi ve geçiş karakterli klinopiroksenler alanına düşmektedir (Şekil 3.32).

Şekil 3.32. Eosen yaşlı volkanik breşler içerisinde yer alan klinopiroksenlerin Ti'ye karşı Al^[T] diyagramı (Mitchel ve Bergman, 1991; Conticelli, 1998; Perini vd., 2000; Perini ve Conticelli, 2000)

3.4.1.1.2. Feldispat

Volkanik breşler içerisinde bulunan feldispatların elektron mikroprob analiz sonuçları Ek Tablo B1'de verilmiştir. Plajiyoklasların bileşimleri genelde labrador, bitovnit, anortit ve az oranda ise andezindir. Plajiyoklas fenokristallerinin çoğunluğunda normal zonlanma gözlenirken, nadiren ters zonlanma tanımlanmıştır. Normal zonlu plajiyoklasların bazılarının kenar bileşimi ise sanidindir. Mikrolitlerin bileşimi andezinden anortite kadar değişmektedir (Şekil 3.33).

Plajiyoklas fenokristallerinden andezin olanların bileşimi An₄₉Ab₄₅₋₄₆Or₅₋₆, labrador olanlarının bileşimi An₅₀₋₆₉Ab₂₅₋₄₆Or₂₋₅, bitovnit olanların An₇₁₋₈₉Ab₁₁₋₂₈Or₀₋₂ ve anortit olanların bileşimi ise An₉₁₋₉₃Ab₇₋₉Or₀ arasında değişmektedir. Normal zonlanma gösteren plajiyoklas fenokristallerinin merkezleri An₅₃₋₉₃Ab₇₋₄₃Or₀₋₄ arasında kenarları ise An₄₋₈₈Ab₁₂₋₄₆Or₀₋₆₃ arasındadır. Ters zonlanma gösteren plajiyoklasların bileşimi merkezde An₅₄₋₆₃Ab₃₃₋₄₂Or₃₋₄ arasında, kenarda ise An₇₀₋₈₅Ab₁₅₋₂₇Or₀₋₅ bileşimi sunmaktadır. Andezin mikrolitlerinin bileşimi An₄₂₋₄₆Ab₄₅₋₅₄Or₄₋₉ arasında, labrador mikrolitlerinin bileşimi An₅₀₋₆₇Ab₂₉₋₄₂Or₀₋₈ arasındadır. Bitovnit mikrolitinin bileşimi An₇₃Ab₂₅Or₂ iken, anortit mikrolitinin bileşimi ise An₉₇Ab₃Or₀'dır. Ayrıca, merkezle kenar arasındaki maksimum An değişimi % 29 olarak belirlenmiştir.

Şekil 3.33. Eosen yaşlı volkanik breşler içerisinde yer alan feldispatların Or-Ab-An diyagramında sınıflandırılması (Deer vd. 1966)

3.4.1.1.3. Olivin

Olivinlerin mikroprob analiz sonuçları Ek Tablo C1'de verilmiştir. Olivinler, Thompson ve Gibson (2000)'in ayrımına göre magmatik kökenli olivinler alanında yer almaktadır. Olivinler, Fo₆₉ içeriğine sahip hyalosiderit ve Fo₇₀₋₇₇ içerikli krizolit olarak tanımlanmıştır (Şekil 3.34). Olivin fenokristallerinde merkezden kenara doğru Fo içeriğinde %3-4'lük bir azalma gözlenmiştir.

Şekil 3.34. Eosen yaşlı volkanik breşler içerisinde yer alan olivinlerin Mg/(Fe⁺²+Mg)'e karşı CaO sınıflama diyagramı. Ayrım çizgileri Thompson ve Gibson (2000)'den alınmıştır

3.4.1.1.4. Hornblend

Hornblendler üzerinde yapılan mikroprop analizleri sonuçları Ek Tablo D1'de verilmiştir. Hornblendlerin Si değerleri 5.71-5.86 arasında, $Al^{[T]}$ 2.47-2.64 arasında, $(Na+K)_A$ değerleri 0.75-0.84 arasında, $(Ca + Na)_B$ değerleri 1.75-2 arasında, $Al^{[VI]}$ +Fe^[T]+Mg değerleri 6.44-6.60 arasında ve Mg numarası 0.71-0.79 arasında değişmektedir. $(Ca + Na)_B$ değerinin 1'den büyük olması nedeniyle kalsik bileşimlidirler. Leake vd. (1997)'in sınıflamasına göre, hornblendlerden iki tanesinde $Al^{[VI]}$ >Fe⁺³ olduğundan pargasit, diğerlerinde $Al^{[VI]}$ <Fe⁺³ olduğundan magnezyo-hastingsit olarak adlandırılmıştır (Şekil 3.35).

Şekil 3.35. Eosen yaşlı volkanik breşler içerisinde bulunan hornblendlerin sınıflama diyagramı (Leake vd., 1997)

3.4.1.1.5. Fe-Ti Oksit

Volkanik breşler içerisinde hamurda ve klinopiroksenler içerisinde kapanım olarak bulunan Fe-Ti oksit mineralleri manyetit ve titano-manyetit olup, bileşimleri Usp_{0.02} ile Usp_{0.49} (Lindsley ve Spencer, 1982) arasında değişmektedir (Şekil 3.36, Ek Tablo H1).

Şekil 3.36. Eosen yaşlı volkanik breşler içerisinde yer alan Fe-Ti oksitlerin bileşimini gösteren üçgen diyagram

3.4.1.2. Lavlar

3.4.1.2.1. Yastık Lav

3.4.1.2.1.1. Klinopiroksen

Yastık lavlar içerisinde bulunan klinopiroksenlerin elektron mikroprob analiz sonuçları Ek Tablo A2'de verilmiştir Klinopiroksen fenokristalleri, Morimoto vd. (1988)'in sınıflamasına göre diyopsit, salit ve ojit alanında yer almaktadırlar (Şekil 3.37a). Mikrolitler ise genellikle ojit bileşiminde olup, sadece bir mikrolit salit bileşimindedir. Papike vd. (1974) tarafından önerilen Ti-Na-Al^[IV] sınıflama diyagramında ise klinopiroksenler tamamen Ca-çermakit alanda yer almaktadır (Şekil 3.37b).

Diyopsit alanına düşenlerin bileşimi, $Wo_{46}En_{43}Fs_5$ ile $Wo_{47}En_{48}Fs_9$ arasında olup, Mg/(Mg+Fe²⁺) oranları 0.82-0.91 arasındadır. Bu klinopiroksenler, yüksek Cr₂O₃ (% 0.22-0.68), MgO (% 15.15-17.54) ve düşük Al₂O₃ (% 1.05-3.77), TiO₂ (% 0.06-0.47) ve FeO (% 3.02-6.11) içeriklerine sahip olup, Mg-Cr diyopsit olarak adlandırılmışlardır. Salit olanların bileşimi, $Wo_{45}En_{31}Fs_{10}$ ile $Wo_{48}En_{46}Fs_{23}$ arasında olup, Mg/(Mg+Fe⁺²) oranları 0.57-0.82 arasındadır. Bunlar, düşük Cr₂O₃ (% 0.00-0.66), MgO (% 9.98-16.42) ve nispeten yüksek Al₂O₃ (% 1.57-6.68), TiO₂ (% 0.09-1.90) ve FeO (% 4.40-13.43) içeriklerine sahip olup, Fe-Al salit olarak tanımlanmışlardır. Ojitlerin bileşimi, $Wo_{40}En_{32}Fs_{13}$ ile $Wo_{44}En_{44}Fs_{26}$ arasında olup, (Mg/(Mg+Fe²⁺) oranları 0.59-0.78 arasında değişmektedir. Bunlar % 0.00-0.04 arasında Cr₂O₃, % 10.46-15.25 MgO, % 3.41-8.80 Al₂O₃, % 0.20-1.34 TiO₂ ve % 7.88-13.05 FeO içeriklerine sahiptir.

Klinopiroksen fenokristallerin büyük çoğunluğu normal zonlanma gösterirken nadiren hafifçe ters zonlanma gösterirler. Normal zonlanma gösteren klinopiroksenler merkezde 0.62- 0.91, kenarda 0.59- 0.87 arasında değişen Mg numarasına sahipken, ters zonlanma gösteren klinopiroksenler merkezde 0.75-0.79 arasında, kenarda ise 0.77-0.80 arasında değişen Mg numarasına sahiptirler. Ayrıca, ters ve normal zonlanma gösteren bazı klinopiroksenlerin orta kısımlarının Mg numarası merkez ve kenara göre daha yüksek değerlere sahiptir ve bu değer 0.75-0.86 arasında değişmektedir.

Klinopiroksenler, Ti'ye karşı Al^[T] değişim diyagramında (Mitchel ve Bergman, 1991; Conticelli, 1998; Perini vd., 2000; Perini ve Conticelli, 2000) Roman Provensi ve geçiş karakterli klinopiroksenler alanında yer almaktadır (Şekil 3.38).

Şekil 3.37. Eosen yaşlı yastık lavlar içerisinde yer alan klinopiroksenlerin; (a) Ca-Mg-Fe üçgen sınıflama diyagramı (Morimoto vd., 1988), (b) Ti-Na-Al^[IV] üçgen sınıflama diyagramı (Papike vd., 1974)

Şekil 3.38. Eosen yaşlı yastık lavlar içerisinde yer alan klinopiroksenlerin Ti'ye karşı Al^[T] diyagramı (Mitchel ve Bergman, 1991; Conticelli, 1998; Perini vd., 2000; Perini ve Conticelli, 2000)

3.4.1.2.1.2. Feldispat

Plajiyoklasların elektron mikroprob analiz sonuçları Ek Tablo B2'de verilmiştir. Plajiyoklas fenokristallerinin bileşimi, labrador, bitovnit ve anortittir. Sadece ters zonlanma gösteren bir plajiyoklas fenokristalinin merkezi andezin bileşimli olarak saptanmıştır. Mikrolitlerin bileşimi ise labrador ve sanidindir (Şekil 3.39). Fenokristallerden labrador olanların bileşimleri An₅₆₋₆₇Ab₂₉₋₃₈Or₄₋₆ arasında, bitovnit olanların bileşimi An₇₀₋₇₉Ab₁₉₋₂₇Or₀₋₃ arasında, anortit olanların bileşimi ise An₉₁₋₉₇Ab₂₋₈Or₀₋₁ arasında değişmektedir. Normal zonlanma gösteren plajiyoklasların bileşimleri merkezde An₆₄₋₇₉Ab₁₉₋₃₂Or₁₋₄ ve kenarda An₅₆₋₇₀Ab₂₇₋₃₈Or₃₋₆ arasındadır. Ters zonlanma gösterenlerin bileşimi ise, merkezde An₄₇₋₇₃Ab₂₄₋₄₅Or₃₋₈ ve kenarda An₆₃₋₇₆Ab₂₁₋₃₃Or₃₋₄ arasında değişiklik sunmaktadır. Labrador mikrolitlerinin bileşimi An₅₅₋₇₀Ab₂₇₋₄₀Or₃₋₆ arasındayken, sanidin mikrolitinin bileşimi An₈Ab₃₀Or₆₂'dir. Ayrıca plajiyoklasların merkezle kenar arasındaki maksimum An değişimi % 15 olarak belirlenmiştir.

Şekil 3.39. Eosen yaşlı yastık lavlar içerisinde yer alan feldispatların Or-Ab-An diyagramında sınıflandırılması (Deer ve diğ., 1966)

3.4.1.2.1.3. Olivin

Olivinlerin mikroprob analiz sonuçları Ek Tablo C2'de verilmiştir. Olivinler, Thompson ve Gibson (2000)'in ayrım diyagramına göre magmatik kökenli olivinler alanında yer almaktadır. Olivinler Fo₇₇₋₈₉ içeriğiyle krizolit ve Fo₉₂ içeriğiyle forsterit olarak isimlendirilmiştir (Şekil 3.40). Olivinlerde merkezden kenara doğru Fo içeriğinde % 1-8 arasında değişen bir azalma tespit edilmiştir.

Şekil 3.40. Yastık lavlar içerisinde yer alan olivinlerin Mg/(Fe⁺² + Mg)'ye karşı CaO diyagramı. Ayrım çizgileri Thompson ve Gibson (2000)'den alınmıştır

3.4.1.2.1.4. Fe-Ti Oksit

Fe-Ti oksitlerin mikroprob analiz sonuçları Ek-H2'de verilmiştir. Hamurda ve klinopiroksenler içerisinde kapanım olarak gözlenen Fe-Ti oksit mineralleri manyetit ve titano-manyetit olup, bileşimleri Usp_{0.01} ile Usp_{0.37} (Lindsley ve Spencer, 1982) arasında değişmektedir (Şekil 3.41).

Şekil 3.41. Yastık lavlar içerisinde yer alan Fe-Ti oksitlerin bileşimini gösteren üçgen diyagram

3.4.1.2.2. Bazaltik Lav

3.4.1.2.2.1. Klinopiroksen

Bazaltik lavlar içerisindeki klinopiroksenlerin elektron mikroprob analiz sonuçları Ek Tablo A3'de verilmiştir. Klinopiroksenler, Morimoto vd. (1988)'in sınıflama diyagramında genellikle diyopsit, salit ve ojit alanına düşmektedir. Bazı klinopiroksenlerin merkez kısımlarının diyopsit bileşiminde olduğu tespit edilmiştir (Şekil 3.42a). Papike vd. (1974) tarafından önerilen Ti-Na-Al^[IV] sınıflama diyagramında klinopiroksenler tamamen Ca-çermakit alanında yer almaktadır (Şekil 3.42b).

Diyopsit olanların bileşimi, Wo₄₆En₄₂Fs₈ ile Wo₄₈En₄₄Fs₉ arasında olup Mg/(Mg+Fe²⁺) oranları ise 0.81-0.85 arasında değişmektedir. Bunlar, yüksek Cr₂O₃ (% 0.26-0.79), MgO (% 14.76-15.92) ve düşük Al₂O₃ (% 2.13-3.73), TiO₂ (% 0.31-0.52) ve FeO (%5.07-6.14) içeriklerine sahip olup, Mg-Cr diyopsit olarak adlandırılmıştır. Salit olanların bileşimi, Wo₄₅En₃₅Fs₁₀ ile Wo₄₈En₄₃Fs₁₆ arasında olup, Mg/(Mg+Fe²⁺) oranları 0.69-0.81 arasındadır. Bunlar, diyopsitlere kıyasla daha düşük Cr₂O₃ (% 0.00-0.59), MgO (% 13.45-15.30) ve nispeten yüksek Al₂O₃ (% 2.26-7.25), TiO₂ (% 0.44-1.87) ve FeO (% 6.24-9.45) içeriklerine sahip olup, Fe-Al salit olarak isimlendirilmiştir. Ojitlerin bileşimi, Wo₄₀En₄₂Fs₁₅ ile Wo₄₄En₄₃Fs₁₈ arasında olup, Mg/(Mg+Fe⁺²) oranları 0.71-0.75 arasında değişmektedir ve % 0.00-0.08 Cr₂O₃, % 14.53-14.95 MgO, % 1.86-3.27 Al₂O₃, % 0.40-0.63 TiO₂ ve % 8.83-10.80 FeO içeriklerine sahiptirler.

Klinopiroksenler normal ve ters zonlanma gösterirler. Mg numarası, normal zonlularda merkezde 0.75-0.82, kenarda 0.74- 0.79 arasında, ters zonlularda ise merkezde 0.71-0.72, kenarda 0.73-0.75 arasındadır. Ayrıca, normal zonlu klinopiroksenlerin orta kısımlarında, merkez ve kenar kısımlarına göre daha yüksek Mg numaraları (0.77-0.84) tespit edilmiştir. Klinopiroksenler Ti'ye karşı Al^[T] değişim diyagramında (Mitchel ve Bergman, 1991; Conticelli, 1998; Perini vd., 2000; Perini ve Conticelli, 2000) Roman Provensi ve geçiş karakterli klinopiroksenler alanında yer almaktadır (Şekil 3.43).

Şekil 3.42. Eosen yaşlı bazaltik lavlar içerisinde yer alan klinopiroksenlerin; (a) Ca-Mg-Fe üçgen sınıflama diyagramı (Morimoto vd., 1988), (b) Ti-Na-Al^[IV] üçgen sınıflama diyagramı (Papike vd., 1974)

Şekil 3.43. Eosen yaşlı bazaltik lavlar içerisinde yer alan klinopiroksenlerin Ti'ye karşı Al^[T] diyagramı (Mitchel ve Bergman, 1991; Conticelli, 1998; Perini vd., 2000; Perini ve Conticelli, 2000)

3.4.1.2.2.2. Feldispat

Plajiyoklasların elektron mikroprob analiz sonuçları Ek Tablo B3'de verilmiştir. Plajiyoklas feonokristallerinin bileşimi labrador, bitovnit ve anortit, mikrolitlerin bileşimi ise labrador ve sanidindir (Şekil 3.44). Plajiyoklas fenokristallerinden labrador olanın bileşimi An₅₀Ab₄₇Or₃, bitovnit olanların bileşimi An₇₀₋₈₉Ab₁₀₋₂₈Or₀₋₂ arasında, anortit olanların bileşimi ise An₉₀₋₉₇Ab₃₋₁₀Or₀ arasında değişmektedir Normal zonlu plajiyoklasların bileşimleri merkezde An₇₆₋₉₀Ab₅₋₂₃Or₀₋₁ ve kenarda ise An₅₀₋₈₄Ab₁₆₋₄₇Or₀₋₄ arasındadır. Normal zonlu fenokristallerden birinin kenarı ise An₇Ab₃₀Or₆₇ bileşimi ile sanidin olarak belirlenmiştir. Ters zonlu olanların bileşimi, merkezde An₇₉₋₈₂Ab₁₇₋₂₀Or₁ ve kenarda ise An₈₁₋₈₄Ab₁₅₋₁₈Or₀ arasında değişiklik sunmaktadır. Labrador mikrolitinin bileşimi An₆₀Ab₃₄Or₆, sanidinlerin bileşimi An₁₋₉Ab₂₋₄₆Or₄₅₋₉₆'dır. Ayrıca, plajiyoklaslar için merkezle kenar arasındaki maksimum An değişimi % 39 olarak saptanmıştır.

Şekil 3.44. Eosen yaşlı bazaltik lavlar içerisinde yer alan feldispatların Or-Ab-An diyagramında sınıflandırılması (Deer vd., 1966)

3.4.1.2.2.3. Olivin

Olivinlerin mikroprob analiz sonuçları Ek Tablo C3'de verilmiştir. Olivinler Thompson ve Gibson (2000)'e göre magmatik kökenli olivinler alanında yer almaktadır. Olivinler, Fo₆₀₋₆₈ içerikli hyalosiderit ve Fo₇₂₋₈₉ içerikli krizolit olarak tanımlanmıştır (Şekil 3.45). Bazı olivin fenokristallerinde, merkezden kenara doğru Fo içeriğinde % 8-12 arasında değişen azalma gözlenmiştir.

Şekil 3.45. Eosen yaşlı bazaltik lavlar içerisinde yer alan olivinlerin Mg/(Fe⁺² + Mg) diyagramı. Ayrım çizgisi Thompson ve Gibson (2000)'den alınmıştır

3.4.1.2.2.4. Biyotit

Biyotitlerin mikroprob analiz sonuçları Ek Tablo E1 içerisinde verilmiştir. Biyotitlerin Mg/Fe⁺² oranları 4.05–12.14 arasında ve 2'den büyük olduğundan flogopit olarak tanımlanmaları daha uygundur. Biyotitlerin MgO içeriği % 14.64 ile 15.53 arasında, FeO içeriği %12.61 ile 15.58 arasında değişirken, Mg numaraları 0.80 ile 0.92 arasında değişmektedir. Tichendorf vd (1997) tarafından önerilen sınıflama diyagramında biyotitler Mg-biyotit alanında (Şekil 3.46a), Foster (1960) tarafından önerilen sınıflama diyagramında ise yine Mg-biyotit alanının çevresinde (Şekil 3.46b) yerleşirken, Speer (1984) tarafından tanımlanan sınıflama diyagramında ise flogopit alanında yer almaktadırlar (Şekil 3.46c). Biyotitler, Speer (1987)'nin MgO-FeO^[T]-Al₂O₃ ayırtman diyagramında "kalkalkalin orojenik bölgelerdeki biyotitler" alanında (Şekil 3.47a), Nachit vd. (2005)'in 10*TiO₂ – FeO^[T] + MnO – MgO ayırtman üçgen diyagramında ise birincil biyotitler alanında yer almaktadır (Şekil 3.47b).

3.4.1.2.2.5. Fe-Ti Oksit

Fe-Ti oksitlerin mikroprob analiz sonuçları Ek-H3'de verilmiştir. Hamurda ve klinopiroksenler içerisinde kapanım olarak gözlenen Fe-Ti oksitler, Cr-spinel, manyetit ve titano-manyetit olup, bileşimleri Usp_{0.01} ile Usp_{0.46} (Lindsley ve Spencer, 1982) arasında değişmektedir (Şekil 3.48).

Şekil 3.46. Eosen yaşlı bazaltik lavlar içerisinde yer alan biyotitlerin; (a) Fe^[T] + Mn + Ti (apfu)'ya karşı Mg – Li (apfu) sınıflama diyagramı (Tischendorf vd., 1997), (b) Mg – Al^[IV] + Fe⁺² + Ti – Fe⁺² + Mn⁺² üçgen sınıflama diyagramı (Foster, 1960), (c) Al^[T] (apfu)'ya karşı Fe/(Fe+Mg) sınıflama diyagramı (Speer, 1984)

Şekil 3.47. Eosen yaşlı bazaltik lavlar içerisinde yer alan biyotitlerin; (a) orojenik bölge ayırtman diyagramı (Speer, 1987) (A: Anorojenik alkalen bölgelerdeki biyotit, C: Kalkalkalin orojenik bölgelerdeki biyotit, P: Peralümin (S tipi) bölgelerdeki biyotit), (b) 10*TiO₂ – FeO^[T] + MnO – MgO ayırtman üçgen diyagramı (Nachit vd., 2005)

Şekil 3.48. Eosen yaşlı bazaltik lavlar içerisinde yer alan Fe-Ti oksitlerin bileşimini gösteren üçgen diyagram

3.4.1.3. Dayklar ve Siller

3.4.1.3.1. Bazaltik Dayk ve Sil

3.4.1.3.1.1. Klinopiroksenler

Bazaltik dayk ve siller içerisinde bulunan klinopiroksenlerin elektron mikroprob analiz sonuçları Ek Tablo A4'de verilmiştir. Klinopiroksenler Morimoto vd. (1988)'in sınıflama diyagramında, genellikle diyopsit, salit ve ojit alanına düşmektedir. Diyopsit bileşimi genellikle kristallerin merkez ve orta kesiminde gözlemlenmiştir (Şekil 3.49a). Ayrıca Papike vd. (1974) tarafından önerilen Ti-Na- Al^[IV] sınıflama diyagramında klinopiroksenler genellikle Ca-çermakit alanına düşmektedir (Şekil 3.49b).

Diyopsit olanların bileşimi, $Wo_{46}En_{41}Fs_8$ ile $Wo_{48}En_{45}Fs_9$ arasında olup, $Mg/(Mg+Fe^{+2})$ oranları 0.81-0.84 arasında değişmektedir. Bunlar, yüksek Cr_2O_3 (% 0.14-0.51), MgO (% 14.24-16.03) ve düşük Al_2O_3 (% 2.96-5.02), TiO₂ (% 0.42-0.90) ve FeO (% 5.25-5.93) içerikleriyle Mg-Cr diyopsit olarak adlandırılmıştır. Salit olanların bileşimi, $Wo_{46}En_{34}Fs_{10}$ ile $Wo_{49}En_{42}Fs_{17}$ arasındadır ve $Mg/(Mg+Fe^{+2})$ oranları 0.67-0.80'dir. Bunlar, diyopsitlere kıyasla daha düşük Cr_2O_3 (% 0.00-0.36), MgO (% 11.03-14.64) ve nispeten yüksek Al_2O_3 (% 3.34-8.87), TiO₂ (% 0.65-2.28) ve FeO (% 6.15-10.63) içeriklerine sahiptir ve Fe-Al salit olarak adlandırılmıştırlar. Ojitlerin bileşimi

 $Wo_{44}En_{39}Fs_{15}$ ile $Wo_{45}En_{40}Fs_{16}$ arasında, Mg/(Mg+Fe⁺²) oranları ise 0.71- 0.73 arasında değişmektedir. Bu klinopiroksenler, % 0.00-0.05 Cr₂O₃, % 11.04-13.72 MgO, % 3.23-3.74 Al₂O₃, % 0.86-2.04 TiO₂ ve % 9.03-12.48 FeO içeriklerine sahiptir.

Şekil 3.49. Eosen yaşlı bazaltik dayk ve siller içerisinde yer alan klinopiroksenlerin; (a) Ca-Mg-Fe üçgen sınıflama diyagramı (Morimoto vd., 1988). (b) Ti-Na-Al^[IV] üçgen sınıflama diyagramı (Papike vd., 1974)

Klinopiroksenlerin normal zonlularında Mg numarası merkezde 0.72-0.83, kenarda 0.69- 0.76 arasında, ters zonlularında ise Mg numarası merkezde 0.71-0.75 arasında, kenarda ise 0.76'dir. Ayrıca, normal ve ters zonlanma gösteren bazı klinopiroksenlerin orta kısmında merkez ve kenarlara göre 0.79-0.83 arasında değişen daha yüksek Mg numaraları tespit edilmiştir.

Klinopiroksenlerin Ti'ye karşı Al^[T] değişim diyagramında (Mitchel ve Bergman, 1991; Conticelli, 1998; Perini vd., 2000; Perini ve Conticelli, 2000) bileşimleri Roman Provensi ve geçiş karakterli klinopiroksenler alanında yer almaktadır (Şekil 3.50.).

Şekil 3.50. Eosen yaşlı bazaltik dayk ve siller içerisinde yer alan klinopiroksenlerin Ti'ye karşı Al^[T] diyagramı (Mitchel ve Bergman, 1991; Conticelli, 1998; Perini vd., 2000; Perini ve Conticelli, 2000)

3.4.1.3.1.2. Feldispat

Plajiyoklasların elektron mikroprob analiz sonuçları Ek Tablo B42de verilmiştir. Plajiyoklas fenokristalleri labrador ve bitovnit, mikrolitler ise bitovnit ve sanidin bileşimindedir (Şekil 3.51).

Şekil 3.51. Eosen yaşlı bazaltik dayk ve siller içerisinde yer alan feldispatların Or-Ab-An diyagramında sınıflandırılması (Deer vd., 1966).

Plajiyoklas fenokristallerinden labrador olanların bileşimi $An_{54-69}Ab_{29-40}Or_{2-6}$, bitovnit olanların bileşimi ise $An_{71-89}Ab_{10-27}Or_{0-3}$ arasında değişmektedir. Normal zonlanma gösteren plajiyoklasların bileşimleri merkezde $An_{78-90}Ab_{10-21}Or_{1-2}$ ve kenarda ise $An_{56-75}Ab_{23-39}Or_{2-5}$ arasındadır. Ters zonlanma gösterenlerin bileşimi, merkezde $An_{59-78}Ab_{21-35}Or_{1-5}$ ve kenarda $An_{75-83}Ab_{15-23}Or_{0-2}$ arasında değişiklik sunmaktadır. Bitovnit mikrolitlerinin bileşimi $An_{73-81}Ab_{18-25}Or_{1-2}$ iken, sanidin mikrolitlerinin bileşimi $An_{3-4}Ab_{32-35}Or_{61-65}$ 'dır. Ayrıca, plajiyoklasların merkezle kenar arasındaki maksimum An değişimi % 24 olarak saptanmıştır.

3.4.1.3.1.3. Olivin

Olivinlerin mikroprob analiz sonuçları Ek Tablo C4'de verilmiştir. Olivinler, Thompson ve Gibson (2000)'nin ayrım diyagramında magmatik kökenli olivinler alanına düşmektedir. Olivinler Fo₇₀₋₈₁ içerikleri ile krizolit olarak isimlendirilmiştir (Şekil 3.52). Bazı olivin fenokristallerinin Fo içeriğinde merkezden kenara doğru %2-5 arasında değişen azalma tanımlanmıştır.

Şekil 3.52. Bazaltik dayk ve siller içerisinde yer alan olivinlerin Mg/(Fe⁺² + Mg)'e karşı CaO diyagramı. Ayrım çizgisi Thompson ve Gibson (2000)'den alınmıştır

3.4.1.3.1.4. Hornblend

Hornblendlerin mikroprob analizleri Ek Tablo D2'de verilmiştir. Hornblendlerin Si değerleri 5.76-5.92 arasında, Al^[T] değerleri 2.43-2.56 arasında, (Na+K)_A değerleri 0.82-

0.88 arasında, (Ca + Na)_B değerleri 1.75-2 arasında, Al^[VI] +Fe^[T]+Mg değerleri 6.39-6.57 arasında ve Mg numarası 0.67-0.82 arasında değişmektedir. (Ca + Na)_B değerlerinin 1'den büyük olması nedeniyle kalsik bileşimli olarak tanımlanmaktadırlar. Leake vd (1997)'nin sınıflamasına göre bir tanesinde Al^[IV] > Fe⁺³ olduğundan pargasit, diğerlerinde ise Al^[VI] < Fe⁺³ olduğundan magnezyo-hastingsit olarak adlandırılmıştır (Şekil 3.53).

Şekil 3.53. Bazaltik dayk ve siller içerisinde bulunan hornblendlerin sınıflama diyagramı (Leake vd., 1997)

3.4.1.3.1.5. Biyotit

Biyotitlerin mikroprob analiz sonuçları Ek Tablo E2'de verilmiştir. Biyotitlerin Mg/Fe⁺² oranları 1.25–3.51 arasında olup, biyotit ve flogopit bileşimindedir. Biyotitler %10.18-14.05 MgO, %16.19-20.19 FeO içermekte ve Mg numaraları 0.56 ile 0.78 arasında değişmektedir. Tichendorf vd. (1997) tarafından önerilen sınıflama diyagramında Mgbiyotit ve Fe-biyotit alanında yer alırlar (Şekil 3.54a). Foster (1960) tarafından önerilen sınıflama diyagramında yine bileşimleri Mg-biyotit alanı ve çevresine (Şekil 3.54b) düşerken, Speer (1984)'in sınıflama diyagramında bir örnek annit alanında, diğer örnekler flogopit alanında yer almaktadır (Şekil 3.54c).

Şekil 3.54. Bazaltik dayk ve siller içerisinde yer alan biyotitlerin; (a) Fe^[T] + Mn + Ti (apfu)'ya karşı Mg – Li (apfu) sınıflama diyagramı (Tischendorf vd., 1997), (b) Mg – Al^[VI] + Fe⁺² + Ti – Fe⁺² + Mn⁺² üçgen sınıflama diyagramı (Foster, 1960), (c) Al^[T] (apfu) ya karşı Fe/(Fe+Mg) sınıflama diyagramı (Speer, 1984)

Biyotitler, Speer (1987)'in MgO-FeO^[T]-Al₂O₃ ayırtman diyagramında "kalkalkalin orojenik bölgelerdeki biyotitler" alanında (Şekil 3.55a), Nachit vd. (2005)'in $10*TiO_2 - FeO^{[T]} + MnO - MgO$ üçgen ayırtman diyagramında ise birincil biyotitler alanında yer almaktadır (Şekil 3.55b).

3.4.1.3.1.6. Fe-Ti Oksit

Fe-Ti oksitlerin mikroprob analiz sonuçları Ek-H4'de verilmiştir. Hamurda ve klinopiroksenler içerisinde kapanım olarak gözlenen Fe-Ti oksitler manyetit ve titanomanyetit olup, bileşimleri Usp_{0.01} ile Usp_{0.52} (Lindsley ve Spencer, 1982) arasında değişmektedir (Şekil 3.56).

Şekil 3.55. Bazaltik dayk ve siller içerisinde yer alan biyotitlerin; (a) orojenik bölge ayırtman diyagramı (Speer, 1987) (A: Anorojenik alkalen bölgelerdeki biyotit, C: Kalkalkalin orojenik bölgelerdeki biyotit, P: Peralümin (S tipi) bölgelerdeki biyotit), (b) 10*TiO₂ – FeO^[T] + MnO – MgO üçgen ayırtman diyagramı (Nachit vd., 2005)

Şekil 3.56. Bazaltik dayk ve siller içerisinde yer alan Fe-Ti oksitlerin bileşimini gösteren üçgen diyagram

3.4.1.3.2. Andezitik Dayk ve Dom

3.4.1.3.2.1. Klinopiroksen

Andezitik dayk ve domlar içerisinde yer alan klinopiroksenlerin elektron mikroprob analiz sonuçları Ek Tablo A5'de verilmiştir. Klinopiroksenler, Morimoto vd. (1988)'in sınıflama diyagramında genellikle diyopsit, salit ve ojit bileşimindedir (Şekil 3.57a). Papike vd. (1974) tarafından önerilen Ti-Na-Al^[IV] sınıflama diyagramında ise klinopiroksenler tamamen Ca-çermakit alanına düşmektedir (Şekil 3.57b).

Şekil 3.57. Eosen yaşlı andezitik dayk ve domlar içerisinde yer alan klinopiroksenlerin; (a) Ca-Mg-Fe üçgen sınıflama diyagramı (Morimoto vd., 1988), (b) Ti-Na-Al^[IV] üçgen sınıflama diyagramı (Papike vd., 1974)

Diyopsit olanların bileşimi, Wo₄₆En₄₃Fs₉ ile Wo₄₈En₄₅Fs₉ arasında olup Mg/(Mg+Fe⁺²) oranları 0.83-0.84 arasında değişim sunar. Bunlar, yüksek Cr₂O₃ (% 0.29-0.40), MgO (% 15.14-16.06) ve düşük Al₂O₃ (% 2.35-3.22), TiO₂ (% 0.28-0.43) ve FeO (% 5.55-5.58) içeriklerine sahiptirler ve Mg-Cr diyopsit olarak adlandırılmıştırlar. Salit olanlar, Wo₄₅En₄₁Fs₁₃ bileşiminde ve Mg/(Mg+Fe⁺²) oranları 0.77 olarak belirlenmiştir. Bunlar diyopsitlere kıyasla daha düşük MgO (% 14.53-14.63), Al₂O₃ (% 1.93-1.95), TiO₂ (% 0.30-0.35) ve FeO (% 7.87) içeriklerine sahiptir. Ojitlerin bileşimi, Wo₄₃En₄₁Fs₁₄ ile Wo₄₅En₄₂Fs₁₅ arasında, Mg/(Mg+Fe⁺²) oranı ise 0.75-0.76 arasında değişmektedir. Bu klinopiroksenler, % 14.39-14.67 MgO, % 1.44-1.75 Al₂O₃, % 0.31-0.36 TiO₂ ve % 8.15-8.93 FeO içerirler.

Klinopiroksenler, bir tane merkezde Mg numarası 0.84, kenarda 0.80 olan normal zonlu dışında diğerleri genellikle zonlanma göstermezler.

Klinopiroksenler Ti'ye karşı Al^[T] değişim diyagramında (Mitchel ve Bergman, 1991; Conticelli, 1998; Perini vd., 2000; Perini ve Conticelli, 2000) Roman Provensi ve geçiş karakterli klinopiroksenler alanında bulunurlar (Şekil 3.58).

Şekil 3.58. Eosen yaşlı andezitik dayk ve domlar içerisinde yer alan klinopiroksenlerin Ti'ye karşı Al^[T] diyagramı (Mitchel ve Bergman, 1991; Conticelli, 1998; Perini vd., 2000; Perini ve Conticelli, 2000)

3.4.1.3.2.2. Feldispat

Feldispatların elektron mikroprob analiz sonuçları Ek Tablo B5'de verilmiştir. Plajiyoklas fenokristalleri, oligoklas, andezin, labrador, bitovnit bileşimindedir. Alkali feldispat olarak ise sanidin bulunmaktadır. Mikrolitlerin bileşimi ilabrador ve sanidindir (Şekil 3.59).

Plajiyoklas fenokristallerinden oligoklas olanların bileşimi An₂₃Ab₇₇Or₀, andezin olanların bileşimi An₄₃₋₄₉Ab₄₄₋₅₁Or₂₋₅, labrador olanların bileşimi An₅₀₋₆₉Ab₂₇₋₄₇Or₂₋₅, bitovnit olanların bileşimi ise An₇₀₋₈₄Ab₁₆₋₂₆Or₀₋₄ arasında değişmektedir. Sanidinlerin bileşimi An₂₋₅Ab₄₁₋₄₆Or₄₉₋₅₇ arasındadır. Normal zonlu plajiyoklasların bileşimleri merkezde An₂₃₋₈₃Ab₁₆₋₇₇Or₀₋₅ ve kenarda An₂₋₇₁Ab₂₆₋₄₉Or₃₋₅₇'dir. Ters zonlanma sunanların bileşimi ise merkezde An₃₋₇₀Ab₂₇₋₄₉Or₃₋₅₂ ve kenarda An₅₀₋₈₄Ab₁₆₋₄₇Or₀₋₃ arasında değişmektedir. Labradorun mikrolitinin bileşimi An₅₆Ab₄₂Or₂ iken, sanidin mikrolitinin bileşimi An₆Ab₃₇Or₅₈ arasındadır. Plajiyoklasların merkezle kenar arasındaki maksimum An değişimi ise % 32 olarak belirlenmiştir.

Şekil 3.59. Eosen yaşlı andezitik dayk ve domlar içerisinde yer alan feldispatların Or-Ab-An diyagramında sınıflandırılması (Deer vd., 1966)

3.4.1.3.2.3. Biyotit

Biyotitlerin mikroprob analiz sonuçları Ek Tablo E3'de verilmiştir. Biyotitlerin Mg/Fe⁺² oranları 3.00–4.07 arasında olup, biyotit ve flogopit özelliğindedirler. Biyotitler, %14.35-15.70 MgO, % 13.32-15.41 FeO içerirken, Mg numaraları 0.75 ile 0.80 arasında değişmektedir. Tichendorf vd. (1997) tarafından önerilen sınıflama diyagramında Mg-biyotit alanında (Şekil 3.60a), Foster (1960)'nın diyagramında yine Mg-biyotit alanı ve çevresinde (Şekil 3.60b), Speer (1984) tarafından hazırlanan sınıflama diyagramında ise flogopit alanında yer almaktadırlar (Şekil 3.60c).

Biyotitler, Speer (1987) tarafından önerilen MgO-FeO^[T]-Al₂O₃ ayırtman diyagramında "kalkalkalin orojenik bölgelerdeki biyotitler" alanına (Şekil 3.61a), Nachit vd. (2005)'in $10*TiO_2 - FeO^{[T]} + MnO - MgO$ üçgen ayırtman diyagramında ise birincil biyotitler alanına düşmektedirler (Şekil 3.61b).

Şekil 3.60. Eosen yaşlı andezitik dayk ve domlar içerisinde yer alan biyotitlerin; (a) Fe^[T] + Mn + Ti (apfu)'ya karşı Mg – Li (apfu) sınıflama diyagramı (Tischendorf vd., 1997), (b) Mg – Al^[IV] + Fe⁺² + Ti – Fe⁺² + Mn⁺² üçgen sınıflama diyagramı (Foster, 1960), (c) Al^[T] (apfu)'ya karşı Fe/(Fe+Mg) sınıflama diyagramı (Speer, 1984)

Şekil 3.61. Eosen yaşlı andezitik dayk ve domlar içerisinde yer alan biyotitlerin; (a) orojenik bölge ayırtman diyagramı (Speer, 1987) (A: Anorojenik alkalen bölgelerdeki biyotit, C: kalkalkalin orojenik bölgelerdeki biyotit, P: peralümin (S tipi) bölgelerdeki biyotit), (b) 10*TiO₂ – FeO^[T] + MnO – MgO üçgen ayırtman diyagramı (Nachit vd., 2005)

3.4.1.3.2.4. Fe-Ti Oksit

Fe-Ti oksitlerin mikroprob analiz sonuçları Ek-H5'de verilmiştir. Hamurda ve klinopiroksenler içerisinde kapanım olarak gözlenen Fe-Ti oksitler, manyetit ve titanomanyetit olup, bileşimleri Usp_{0.01} ile Usp_{0.39} (Lindsley ve Spencer, 1982) arasında değişmektedir (Şekil 3.62).

Şekil 3.62. Eosen yaşlı andezitik dayk ve domlar içerisinde yer alan Fe-Ti oksitlerin bileşimini gösteren üçgen diyagram

3.4.1.3.3. Trakitik Dayk

3.4.1.3.3.1. Klinopiroksen

Trakitik dayklar içerisinde bulunan klinopiroksenlerin elektron mikroprob analiz sonuçları Ek Tablo A6'da verilmiştir. Klinopiroksenler, Morimoto vd. (1988)'in sınıflama diyagramında genellikle salit ve ojit bileşimindedir (Şekil 3.63a). Ayrıca Papike vd. (1974) tarafından önerilen Ti-Na-Al^[IV] sınıflama diyagramında genellikle Ca-çermakit olarak tanımlanmaktadırlar (Şekil 3.63b).

Salit olanların bileşimi, $Wo_{45-47}En_{35-41}Fs_{13-17}$ olup, Mg/(Mg+Fe⁺²) oranı 0.68 ile 0.76 arasında değişmektedir. Bunlar, düşük Cr₂O₃ (% 0.00-0.06), MgO (% 12.02-14.25), nispeten yüksek Al₂O₃ (% 1.82-4.90), TiO₂ (% 0.32-1.15) ve FeO (% 7.79-9.98) içeriklerine sahip olup Fe-Al salit olarak adlandırılmıştır. Ojitlerin bileşimi Wo₄₁En₂₉Fs₁₅ ile Wo₄₃En₄₂Fs₂₇ arasında, Mg numaraları ise 0.53- 0.75 arasında değişmektedir ve % 0.00- 0.01 Cr₂O₃, % 9.32-14.76 MgO, % 0.70-3.69 Al₂O₃, % 0.28-0.94 TiO₂ ve % 8.60-14.71 FeO içeriklerine sahiptirler.

Klinopiroksenlerden hafifçe normal zonlanma gösterenler merkezde 0.60-0.76 ve kenarda 0.60-0.74 arasında değişen Mg numarasına sahiptirler. Ters zonlanma gösterenler ise merkezde 0.53-0.73 ve kenarda 0.59 -0.75 arasında değişen Mg numarası sergilerler.

Şekil 3.63. Eosen yaşlı trakitik dayklar içerisinde yer alan klinopiroksenlerin; (a) Ca-Mg-Fe üçgen sınıflama diyagramı (Morimoto vd., 1988), (b) Ti-Na-Al^[IV] üçgen sınıflama diyagramı (Papike vd., 1974)

Klinopiroksenlerin Ti'ye karşı Al^[T] değişim diyagramları daha çok (Mitchel ve Bergman, 1991; Conticelli 1998; Perini vd. 2000; Perini ve Conticelli 2000) Roman Provensi ve geçiş karakterli klinopiroksenler olarak tanımlanmaları gerektiğine işaret eder (Şekil 3.64).

Şekil 3.64. Eosen yaşlı trakitik dayklar içerisinde yer alan klinopiroksenlerin Ti'ye karşı Al^[T] diyagramı (Mitchel ve Bergman, 1991; Conticelli, 1998; Perini vd., 2000; Perini ve Conticelli, 2000)

3.4.1.3.3.2. Feldispat

Feldispatların elektron mikroprob analiz sonuçları Ek Tablo B6'da verilmiştir. Plajiyoklas fenokristalleri, albit, andezin, labrador ve anortit bileşimlidir. Alkali feldispat olarak sanidin ile temsil edilir. Mikrolitlerin bileşimi ise albit ve sanidindir (Şekil 3.65).

Şekil 3.65. Eosen yaşlı trakitik dayklar içerisinde yer alan feldispatların Or-Ab-An diyagramında sınıflandırılması (Deer vd., 1966)

Albitlerin bileşimi An₀₋₄Ab₉₆₋₉₉Or₀₋₁, andezinlerin bileşimi An₃₆₋₄₉Ab₄₇₋₅₇Or₄₋₇, labradorların bileşimi An₅₁₋₅₆Ab₄₁₋₄₅Or₃₋₄, anortitlerin bileşimi An₉₈₋₉₉Ab₁₋₂Or₀ arasında değişiklik sergilemektedir. Sanidinlerin bileşimi ise An₀Ab₂₋₃Or₉₇₋₉₈ arasındadır. Plajiyoklaslar tespit edilen iki tane normal zonlu ve bir tane ters zonlu kristal hariç genellikle zonlanma göstermezler. Normal zonlu olanların bileşimi merkezde An₅₁₋₅₅Ab₄₂₋₄₅Or₃₋₄ ve kenarda An₃₆₋₄₉Ab₄₇₋₅₇Or₅₋₇ arasında değişmektedir. Ters zonlu olanın bileşimi ise merkezde An₄₂Ab₅₂Or₆ ve kenarda An₄₉Ab₄₇Or₄ olarak belirlenmiştir. Albit mikrolitlerinin bileşimi An₀₋₅Ab₉₆₋₁₀₀Or₀₋₁, sanidin mikrolitlerinin bileşimi ise An₉Ab₄₄Or₄₇'dır. Plajiyoklasların merkezle kenar arasındaki maksimum An değişimi % 19 olarak belirlenmiştir.

3.4.1.3.3.3. Biyotit

Biyotitlerin mikroprob analiz sonuçları Ek Tablo E4' da verilmiştir. Biyotitler, 1.41– 5.35 arasında değişen Mg/Fe⁺² oranları ile biyotit ve flogopit özelliğindedirler. Biyotitler, % 9.91-16.07 MgO, % 12.35-20.60 FeO içeriğine sahipken Mg numaraları 0.59 ile 0.84 arasında değişmektedir. Tichendorf vd (1997) tarafından önerilen sınıflama diyagramında Mg-biyotit ve Fe-biyotit alanında (Şekil 3.66a), Foster (1960)'ın sınıflama diyagramında Mg-biyotit alanının çevresinde ve Fe-biyotit ve Mg-biyotit arasındaki bölgede (Şekil 3.66b) bulunurken, Speer (1984)'nin sınıflama diyagramında bir örnek annit alanında yer alırken diğer örnekler annit ve flogopit alanında bulunmaktadır (Şekil 3.66c).

Biyotitler, Speer (1987) tarafından önerilen MgO-FeO^[T]-Al₂O₃ ayırtman diyagramında "kalkalkalin orojenik bölgelerdeki biyotitler" alanında (Şekil 3.67a), Nachit vd. (2005)'in $10*TiO_2 - FeO^{[T]} + MnO - MgO$ üçgen ayırtman diyagramında ise birincil biyotitler alanında yer almaktadır (Şekil 3.67b).

3.4.1.3.3.4. Fe-Ti Oksit

Fe-Ti oksitlerin mikroprop analiz sonuçları Ek-H6'da verilmiştir. Hamurda ve klinopiroksenler içerisinde kapanım olarak gözlenen Fe-Ti oksitler, manyetit ve titanomanyetit olup, bileşimleri Usp_{0.03} ile Usp_{0.32} (Lindsley ve Spencer, 1982) arasındadır (Şekil 3.68).

Şekil 3.66. Eosen yaşlı trakitik dayklar içerisinde yer alan biyotitlerin; (a) $Fe^{[T]} + Mn + Ti$ (apfu)'ya karşı Mg – Li (apfu) sınıflama diyagramı (Tischendorf vd., 1997), (b) Mg – $Al^{[IV]} + Fe^{+2} + Ti - Fe^{+2} + Mn^{+2}$ üçgen sınıflama diyagramı (Foster, 1960), (c) $Al^{[T]}$ (apfu)'ya karşı Fe/(Fe+Mg) sınıflama diyagramı (Speer, 1984)

Şekil 3.67. Eosen yaşlı trakitik dayklar içerisinde yer alan biyotitlerin; (a) orojenik bölge ayırtman diyagramı (Speer, 1987) (A: Anorojenik alkalen bölgelerdeki biyotit, C: kalkalkalin orojenik bölgelerdeki biyotit, P: peralümin (S tipi) bölgelerdeki biyotit), (b) 10*TiO₂ – FeO^[T] + MnO – MgO üçgen ayırtman diyagramı (Nachit vd., 2005)

Şekil 3.68. Eosen yaşlı trakitik dayklar içerisinde yer alan Fe-Ti oksitlerin bileşimini gösteren üçgen diyagram

3.4.2. Miyosen Yaşlı Volkanitlerin Mineral Kimyası

3.4.2.1. Foidli Volkanik Breş

3.4.2.1.1. Klinopiroksen

Foidli volkanik breşler içerisinde bulunan klinopiroksenlerin elektron mikroprob analiz sonuçları Ek Tablo A7'de verilmiştir. Klinopiroksenlerin tamamı, Morimoto vd. (1988)'in sınıflama diyagramında salit alanına düşmektedir (Şekil 3.69a). Ayrıca, Papike vd. (1974) tarafından önerilen Ti-Na-Al^[IV] sınıflama diyagramında bileşimleri tamamen Ca-çermakit alanına yerleşir (Şekil 3.69b).

Salitlerin bileşimi, $Wo_{47}En_{36}Fs_{10}$ ile $Wo_{49}En_{43}Fs_{14}$ arasında değişmekte olup Mg/(Mg+Fe⁺²) oranları 0.72- 0.81 arasındadır. Düşük Cr₂O₃ (% 0.00-0.32), MgO (% 12.16-15.15) içeriklerine ve nispeten yüksek Al₂O₃ (% 3.78-7.99), TiO₂ (% 0.59-1.87) ve FeO (% 6.16-8.40) içerikleri ile karakterize edilip, Fe-Al salit olarak adlandırılmıştırlar. Normal zonlu klinopiroksenler merkezde 0.75-0.81 ve kenarda 0.73-0.76 arasında değişen Mg numarasına, ters zonlular merkezde 0.72-0.76 ve kenarda 0.78-0.80 arasında değişen Mg numarasına sahiptirler.

106

Klinopiroksenler Ti'ye karşı Al^[T] değişim diyagramında (Mitchel ve Bergman, 1991; Conticelli 1998; Perini vd. 2000; Perini ve Conticelli 2000) Roman Provensi ve geçiş karakterli klinopiroksenler alanında bulunmaktadır (Şekil 3.70).

Şekil 3.69. Miyosen yaşlı foidli volkanik breşler içerisinde yer alan klinopiroksenlerin;
 (a) Ca-Mg-Fe üçgen sınıflama diyagramı (Morimoto ve diğ., 1988), (b) Ti-Na-Al^[IV] üçgen sınıflama diyagramı (Papike vd., 1974)

Şekil 3.70. Miyosen yaşlı foidli volkanik breşler içerisinde yer alan klinopiroksenlerin Ti-Al^[T] diyagramı (Mitchel ve Bergman, 1991; Conticelli, 1998; Perini vd., 2000; Perini ve Conticelli, 2000)

3.4.2.1.2. Feldispat

Plajiyoklasların elektron mikroprob analiz sonuçları Ek Tablo B7'de verilmiştir. Plajiyoklas fenokristalleri, andezin ve labrador bileşimindedir (Şekil 3.71).

Andezinlerin bileşimi An₄₉Ab₄₉Or₃ iken labradorların bileşimi An₅₀₋₆₉Ab₃₀₋₄₇Or_{1-3,} arasındadır. Fenokristallerinden saptanabilen iki tanesi normal zonlanma ve bir tanesi de ters zonlanma göstermektedir. Normal zonlu olanlar merkezde An₅₆₋₆₄Ab₃₄₋₄₁Or₂₋₃ ve kenarda An₅₀₋₆₁Ab₃₇₋₄₇Or₁₋₂ bileşimindedir. Ters zonlu olan ise, merkezde An₆₃Ab₃₅Or₂ ve kenarda An₆₉Ab₃₀Or₁ bileşimindedir. Ayrıca, plajiyoklasların merkezle kenar arasındaki maksimum An değişimi % 6 olarak belirlenmiştir.

Şekil 3.71. Miyosen yaşlı foidli volkanik breşler içerisinde yer alan feldispatların Or-Ab-An diyagramında sınıflandırılması (Deer vd., 1966)

3.4.2.1.3. Analsim

Foidli volkanik breşler içerisinde bulunan analsimlerin elektron mikroprob analiz sonuçları Ek Tablo F1'de verilmiştir.

3.4.2.1.4. Fe-Ti Oksit

Fe-Ti oksitlerin mikroprop analiz sonuçları Ek-H7'de verilmiştir. Hamurda ve klinopiroksenler içerisinde kapanım olarak gözlenen Fe-Ti oksitler, manyetit ve titanomanyetit olup, bileşimleri Usp_{0.01} ile Usp_{0.03} (Lindsley ve Spencer, 1982) arasında değişiklik göstermektedir (Şekil 3.72).

Şekil 3.72. Miyosen yaşlı foidli volkanik breşler içerisinde yer alan Fe-Ti oksitlerin bileşimini gösteren üçgen diyagram

3.4.2.2. Foidli Breşik Lav

3.4.2.2.1. Klinopiroksen

Foidli breşik lavlar içerisinde klinopiroksenlerin elektron mikroprob analiz sonuçları Ek Tablo A8'de verilmiştir. Klinopiroksenler, Morimoto vd. (1988)'in sınıflama diyagramında genellikle diyopsit, salit ve fasait alanına yerleşmektedir (Şekil 3.73a). Diyopsit bileşimi genellikle fenokristallerin merkez kısmında yer almaktadır. Ayrıca Papike vd. (1974) tarafından önerilen Ti-Na-Al^[IV] sınıflama diyagramında Ca-çermakit bileşimi gösterirler (Şekil 3.73b).

Diyopsitlerin bileşimi Wo₄₈En₃₆Fs₅ ile Wo₄₉En₄₅Fs₉ arasında olup Mg/(Mg+Fe⁺²) oranları ise 0.78 ile 0.90 arasında değişmektedir. Yüksek Cr₂O₃ (% 0.00-1.32), MgO (% 12.87-16.38) ve düşük Al₂O₃ (% 2.78-6.52), TiO₂ (% 0.49-1.45) ve FeO (% 3.07-6.43)

içerikleri ile tanımlanmış ve Mg-Cr diyopsit olarak adlandırılmıştırlar. Salitlerin bileşimi $Wo_{48}En_{36}Fs_{10}$ ile $Wo_{49}En_{40}Fs_{15}$ arasında olup, Mg/(Mg+Fe⁺²) oranları 0.68- 0.80 arasındadır. Bunlar, düşük Cr₂O₃ (% 0.00-0.10), MgO (% 10.83-14.40) ve nispeten yüksek Al₂O₃ (% 1.06-10.01), TiO₂ (% 0.05-2.43) ve FeO (% 6.41-10.94) içeriklerine sahip olup Fe-Al salit olarak isimlendirilmiştir. Fasaitlerin bileşimi $Wo_{50}En_{33}Fs_{10}$ ile $Wo_{54}En_{39}Fs_{15}$ arasında, Mg Mg/(Mg+Fe⁺²) oranları ise 0.38- 0.80 arasında değişmekte olup % 0.00-0.21 Cr₂O₃, % 11.03-13.72 MgO, % 5.68-9.92 Al₂O₃, % 1.25-2.36 TiO₂ ve % 6.21-9.22 FeO içeriklerine sahiptirler. Klinopiroksenler normal ve ters zonlanma gösterirler. Bazı normal ve ters zonlanma gösteren fenokristallerde kristalin merkez kısmında daha yüksek Mg numarasına sahip zonlar gtanımlanmıştır. Normal zonluların merkezlerinde 0.75- 0.89, orta kısımlarında 0.76-0.90, kenarlarında ise 0.67- 0.76 arasında değişen Mg numarasına saptanmıştır.

Şekil 3.73. Miyosen yaşlı foidli breşik lavlar içerisinde yer alan klinopiroksenlerin; (a) Ca-Mg-Fe üçgen sınıflama diyagramı (Morimoto vd., 1988), (b) Ti-Na-Al^[IV] üçgen sınıflama diyagramı (Papike vd., 1974)

Klinopiroksenlerin Ti'ye karşı Al^[T] değişim diyagramınları (Mitchel ve Bergman, 1991; Conticelli 1998; Perini vd. 2000; Perini ve Conticelli 2000) Roman Provensi ve geçiş karakterli klinopiroksenler olarak tanımlanmaları gerektiğini ifade etmektedir (Şekil 3.74).

Şekil 3.74. Miyosen yaşlı foidli breşik lavlar içerisinde yer alan klinopiroksenlerin Ti'ye karşı Al^[T] diyagramı (Mitchel ve Bergman, 1991; Conticelli, 1998; Perini vd., 2000; Perini ve Conticelli, 2000)

3.4.2.2.2. Feldispat

Feldispatların elektron mikroprob analiz sonuçları Ek Tablo B7'de verilmiştir ve An₆Ab₆₅Or₂₈ bileşimleri ile anortoklas olarak tanımlanmışlardır.

3.4.2.2.3. Olivin

Olivinlerin mikroprob analiz sonuçları Ek Tablo C5'de verilmiştir. Olivinler, Thompson ve Gibson (2000)'nin ayrımına göre magmatik kökenli olivinler olarak tanımlanmakta olup Fo₈₅₋₈₉ içerikleri ile krizolit olarak isimlendirilmiştirler (Şekil 3.75). Olivinlerde merkezden kenara doğru Fo içeriğinde önemli bir değişime rastlanılmamıştır.

Şekil 3.75. Miyosen yaşlı foidli breşik lavlar içerisinde yer alan olivinlerin Mg/(Fe⁺² + Mg)'e karşı CaO diyagramı. Ayrım çizgisi Thompson ve Gibson (2000)'den alınmıştır

3.4.2.2.4. Hornblend

Hornblendlerin mikroprob analizleri Ek Tablo D3'de verilmiştir. Hornblendlerin Si değerleri 5.84-5.95, Al^[T] 2.36-2.48, (Na+K)_A değerleri 0.87-0.91, (Ca + Na)_B değerleri 1.75-2, Al^[IV]+Fe^[T]+Mg değerleri 6.37-6.58 ve Mg numaraları 0.74-0.80 arasında değişmektedir. (Ca + Na)_B değerinin 1'den büyük olması nedeniyle kalsik bileşimli olarak tanımlanmaktadırlar. Leake vd (1997)'nin sınıflamasına göre hornblendlerden dört tanesi Al^[VI] > Fe⁺³ olduğundan pargasit, diğer hornblendler Al^[VI] < Fe⁺³ olduğundan magnezyo-hastingsit olarak adlandırılmıştır (Şekil 3.76).

3.4.2.2.5. Analsim

Foidli breşik lavlar içerisinde yer alan analsimlerin elektron mikroprob analiz sonuçları Ek F2'de verilmiştir. Analsimlerin Al içerikleri 0.99-1.20, Na içerikleri 0.71-0.89, K içerikleri 0.01-0.19 ve Ca içerikleri 0.00-0.10 arasında değişim göstermektedir.

Şekil 3.76. Miyosen yaşlı foidli breşik lavlar içerisinde bulunan hornblendlerin sınıflama diyagramı (Leake vd., 1997)

3.4.2.2.6. Fe-Ti oksit

Fe-Ti oksitlerin mikroprob analiz sonuçları Ek- Tablo H7'de verilmiştir. Hamurda ve klinopiroksenler içerisinde kapanım olarak gözlenen Fe-Ti oksitler, manyetit ve titanomanyetit olup, bileşimleri Usp_{0.02} ile Usp_{0.30} (Lindsley ve Spencer, 1982) arasında değişmektedir (Şekil 3.77).

Şekil 3.77. Miyosen yaşlı foidli breşik lavlar içerisinde yer alan Fe-Ti oksitlerin bileşimini gösteren üçgen diyagram

3.4.2.3. Foidli Dayk ve Sil

3.4.2.3.1. Klinopiroksen

Foidli dayk ve siller içerisinde bulunan klinopiroksenlerin elektron mikroprob analiz sonuçları Ek Tablo A9'da verilmiştir. Klinopiroksenler, Morimoto vd. (1988)'in sınıflama diyagramında genellikle diyopsit ve salit alanında bulunmaktadır. Diyopsit bileşimleri genellikle fenokristallerin merkez kısımlarını meydana getirmektedir (Şekil 3.78a). Ayrıca Papike vd. (1974) tarafından önerilen Ti-Na-Al^[IV] sınıflama diyagramında Ca-çermakit olarak tanımlanmaktadırlar (Şekil 3.78b).

Diyopsitlerin bileşimi Wo₄₈En₄₁Fs₆ ile Wo₄₉En₄₄Fs₉ arasında olup Mg/(Mg+Fe⁺²) oranları ise 0.82-0.87 arasındadır. Yüksek Cr₂O₃ (% 0.06-0.65), MgO (% 13.93-15.58) ve düşük Al₂O₃ (% 3.95-6.74), TiO₂ (% 0.11-1.13) ve FeO (% 4.02-5.61) içerikleri ile Mg-Cr diyopsit olarak tanımlanmıştırlar. Salitlerin bileşimi Wo₄₈En₃₄Fs₁₁ ile Wo₄₉En₄₁Fs₁₈ arasında olup Mg/(Mg+Fe⁺²) oranları 0.65-0.79'dir. Bunlar, düşük Cr₂O₃ (% 0.00-0.07), MgO (% 11.07-14.15) ve nispeten yüksek Al₂O₃ (% 3.95-9.54), TiO₂ (% 0.00-2.06) ve FeO (% 6.31-10.66) içeriklerine sahip olup Fe-Al salit olarak adlandırılmıştır.

Şekil 3.78. Miyosen yaşlı foidli breşik lavlar içerisinde yer alan klinopiroksenlerin; (a) Ca-Mg-Fe üçgen sınıflama diyagramı (Morimoto vd., 1988), (b) Ti-Na-Al^[IV] üçgen sınıflama diyagramı (Papike vd., 1974)

Klinopiroksenler normal ve hafifçe ters zonlanma gösterirler. Ayrıca, normal zonlanma gösterenlerin orta kısımları merkez ve kenarlarına göre daha yüksek Mg numarasına sahiptir. Normal zonlanma gösteren klinopiroksenler merkezde 0.74-0.87, ortada 0.77-0.83, kenarda ise 0.72- 0.79 arasında değişen Mg numarasına sahipken ters zonlanma gösteren klinopiroksenler merkezde 0.70-0.71 arasında, kenarda ise 0.70-0.73 arasında değişen Mg numarasına sahiptir.

Klinopiroksenler, Ti'ye karşı Al^[T] değişim diyagramında (Mitchel ve Bergman, 1991; Conticelli, 1998; Perini vd., 2000; Perini ve Conticelli, 2000) Roman Provensi ve geçiş karakterli klinopiroksenler alanına düşmektedir (Şekil 3.79).

3.4.2.3.2. Feldispat

Plajiyoklasların elektron mikroprob analiz sonuçları Ek Tablo B7'de verilmiştir. Plajiyoklas mikrolitleri An₅₋₆Ab₂₉₋₅₇Or₃₇₋₆₆ bileşimleri ile sanidin olarak sınıflandırılmıştır.

Şekil 3.79. Miyosen yaşlı foidli dayk ve siller içerisinde yer alan klinopiroksenlerin Ti-Al^[T] diyagramı (Mitchel ve Bergman, 1991; Conticelli, 1998; Perini vd., 2000; Perini ve Conticelli, 2000)

3.4.2.3.3. Hornblend

Hornblendlerin mikroprob analizleri Ek Tablo D4'de verilmiştir. Hornblendlerin Si değerleri 5.85-5.89 arasında, $Al^{[T]}$ değerleri 2.35-2.50 arasında, $(Na+K)_A$ değerleri 0.86-0.91 arasında, $(Ca + Na)_B$ değerleri 1.75-2 arasında, $Al^{[IV]}+Fe^{[T]}+Mg$ değerleri 6.43-6.47

arasında ve Mg numaraları 0.92-0.96 arasında değişmektedir. $(Ca + Na)_B$ değerlerinin 1'den büyük olması nedeniyle kalsik bileşimlidirler. Leake vd (1997)'in sınıflamasına göre hornblendlerin tamamı Al^[VI]<Fe⁺³ olduğundan magnezyo-hastingsit olarak adlandırılmıştır (Şekil 3.80).

Şekil 3.80. Miyosen yaşlı foidli dayk ve siller içerisinde bulunan hornblendlerin sınıflama diyagramı (Leake vd., 1997)

3.4.2.3.4. Biyotit

Biyotitlerin mikroprob analiz sonuçları Ek Tablo E5'de verilmiştir. Biyotitlerin Mg/Fe⁺² oranları 1.41 – 5.35 arasında olup, biyotit ve flogopit özelliğindedirler. Bunların MgO içerikleri % 9.91 ile 16.07, FeO içerikleri % 12.35 ile 20.60, Mg numaraları ise 0.59 ile 0.84 arasında değişmektedir. Tichendorf vd. (1997) tarafından önerilen sınıflama diyagramında flogopit ve Mg-biyotit alanında (Şekil 3.81a), Foster (1960)'in sınıflama diyagramında genellikle flogopit alanı ve çevresinde (Şekil 3.81b), Speer (1984)'in sınıflama diyagramında ise tamamı ile flogopit alanında yer almaktadırlar (Şekil 3.81c).

Biyotitler, Speer (1987) tarafından önerilen MgO-FeO^[T]-Al₂O₃ ayırtman diyagramında "kalkalkalin orojenik bölgelerdeki biyotitler" alanında (Şekil 3.82a), Nachit vd. (2005)'in $10*TiO_2 - FeO^{[T]} + MnO - MgO$ üçgen ayırtman diyagramında ise yeniden dengelenmiş biyotitler alanında yer almaktadır (Şekil 3.82b).

Şekil 3.81. Miyosen yaşlı foidli dayk ve siller içerisinde yer alan biyotitlerin; (a) Fe^[T]
+ Mn + Ti (apfu)'ya karşı Mg – Li (apfu) sınıflama diyagramı (Tischendorf vd., 1997), (b) Mg – Al^[IV] + Fe⁺² + Ti – Fe⁺² + Mn⁺² üçgen sınıflama diyagramı (Foster, 1960), (c) Al^[T] (apfu)'ya karşı Fe/(Fe+Mg) sınıflama diyagramı (Speer, 1984)

3.4.2.3.5. Analsim

Foidli dayk ve siller içerisinde bulunan analsimlerin elektron mikroprob analiz sonuçları Ek Tablo F3'de verilmiştir. Analsimlerin Al içerikleri 1.04-1.18, Na içerikleri 0.40-0.86, K içerikleri 0.00-0.02 ve Ca içerikleri 0.00-0.02 arasında değişim göstermektedir.

3.4.2.3.6. Apatit

Foidli dayk ve siller içerisinde bulunan apatitlerin elektron mikroprop analiz sonuçları Ek Tablo G1'de verilmiştir ve flor apatit olarak tanımlanmıştırlar.

Şekil 3.82. Miyosen yaşlı foidli dayk ve siller içerisinde yer alan biyotitlerin;
(a) orojenik bölge ayırtman diyagramı (Speer, 1987) (A: Anorojenik alkalen bölgelerdeki biyotit, C: kalkalkalin orojenik bölgelerdeki biyotit, P: peralümin (S tipi) bölgelerdeki biyotit), (b) 10*TiO₂ - FeO^[T] + MnO - MgO üçgen ayırtman diyagramı (Nachit vd., 2005)

3.4.2.3.7. Fe-Ti Oksit

Fe-Ti oksitlerin mikroprob analiz sonuçları Ek-H7'de sunulmuştur. Hamurda ve klinopiroksenler içerisinde kapanım olarak gözlenen Fe-Ti oksitler, manyetit ve titanomanyetit olup, bileşimleri Usp_{0.08} ile Usp_{0.17} (Lindsley ve Spencer, 1982) arasında değişmektedir (Şekil 3.83).

Şekil 3.83. Miyosen yaşlı foidli dayk ve siller içerisinde yer alan Fe-Ti oksitlerin bileşimini gösteren üçgen diyagram

3.5. Jeotermobarometre Hesaplamaları

Bu bölümde, incelenen Tersiyer yaşlı volkanik kayaçların tüm-kayaç kimyası ve mineral kimyası analizlerinden hareketle farklı araştırmacılar tarafından oluşturulan ampirik formül, diyagram ve paket programlar kullanılarak volkanitlerin püskürme öncesi termodinamik koşulları (kristallenme sıcaklığı, basıncı, su içeriği ve oksijen fugasitesi) irdelenmeye çalışılmıştır. Bu hesaplamalar, mineral, mineral-mineral, mineral-ergiyik (volkan camı veya tüm-kayaç bileşimi) birliktelikleri kullanılarak gerçekleştirilmiştir.

3.5.1. Jeotermometre, Hidrometre ve Oksijen Fugasitesi Hesaplamaları

3.5.1.1. Olivin-Ergiyik Termometresi

İlk olarak Hakli ve Wright (1967) tarafından ortaya atılan olivin-ergiyik termometresi, birçok araştırmacı tarafından yapılan çalışmalarla geliştirilmiştir. Son olarak Putirka (2007), olivin ve ergiyik arasında Mg'nin paylaşımını temel alan yeni bir yaklaşımda bulunmuştur. Bu yaklaşımda, hesaplamanın anlamlı olabilmesi için olivin ile ergiyiğin denge durumunda olması gerekmektedir. Olivin ve ergiyik arasındaki denge durumunu test etmek için ilk defa Roeder ve Emslie (1970) tarafından önerilen denge sabiti $(K_D(\text{Fe-Mg})^{\text{ol-erg}})$ hesaplanmıştır. $K_D(\text{Fe-Mg})^{\text{ol-erg}} = 0.299 \pm 0.053$ ve P < 2-3 GPa koşullarında olması durumunda, termometre hesaplamalarında kullanılan olivin ve ergiyiğin dengede olduğu sonucuna varılmıştır. Putirka (2008), olivin-ergiyik termometresi için daha hassas olduğu düşünülen iki farklı formül önermiştir. Putirka (2008) tarafından vapılan calısmada, ilk defa Beattie (1993) tarafından önerilen ve tamamlayıcı ifadelerle yeniden yazılan formül daha çok su içermeyen sistemler için geçerli iken, diğer formülün ise daha çok su içeren sistemler için daha doğru sonuçlar verdiği belirtilmiştir. İki yaklaşım da farklı deneysel veriler kullanılarak dizayn edilmesine rağmen benzer kalibrasyon hataları göstermektedir. Bu durumda, iki formülün de kullanılarak ortalamalarının alınmasında herhangi bir dezavantaj öngörülmemiştir.

Olivin-ergiyik termometresi kullanılarak yapılan hesaplamalar sonucunda elde edilen K_D (Fe-Mg)^{ol-erg} değerinin çoğunlukla istenilen aralıkta olmadığı yani olivin ile ergiyin dengede olmadığı saptanmıştır (Tablo 3.2). Buna rağmen, incelenen volkanitlerde ergiyikle dengede olan olivinler kullanılarak Eosen yaşlı volkanik breşler için ortalama 1159°C,

yastık lavlar için 1358°C, bazaltik lavlar için 996°C, bazaltik dayk ve siller için 1236°C ve Miyosen yaşlı foidli breşik lavlar için 1277°C'lik sıcaklık değerleri elde edilmiştir (Tablo 3.2).

Olivin-e	rgiyik termometresi (Pu	tirka, 2008)			
		Beattie (1993) (T°C)	Putirka vd., (2007) (T°C)	Ortalama (T°C)	Ortalama (T°C)
		Olivin-er	rgiyik dengede	değil	Olivin-ergiyik dengede
	Volkanik breş	K _D (Fe-M	g) = 0.29-0.44	(n=6)	$K_D(\text{Fe-Mg}) = 0.27-0.33$ (n=1)
	Ortalama	1156	1179 ± 12	1167 ± 6	1159
11	Maksimum		1191	1173	
kın	Minimum		1162	1159	
Ta	Yastık lav	K _D (Fe-Mg	g) = 0.18-0.63 (n=18)	(n=1)
lı BTB	Ortalama	1350 ± 17	1367 ± 30	1359 ± 23	1358
	Maksimum	1360	1395	1378	
Yaş	Minimum	1319	1303	1311	
en j	Bazaltik lav	K _D (Fe-M	g) = 0.29-0.78	(n=9)	(n=1)
Eos	Ortalama	1207 ± 121	1224 ± 122	1216 ± 121	996
	Maksimum	1268	1315	1292	
	Minimum	994	998	996	
	Bazaltik dayk ve sil	K _D (Fe-Mg	g) = 0.32-0.55 (n=10)	(n=2)
	Ortalama	1239 ± 12	1258 ± 13	1248 ± 10	1236
	Maksimum	1261	1276	1267	
	Minimum	1233	1238	1236	
1	Foidli breşik lav	K_D (Fe-Mg	g) = 0.25-0.36 (n=12)	(n=5)
osel lı B'	Ortalama	1276	1279 ± 5	1277 ± 3	1277
Miy Yaşı	B Maksimum		1288	1282	
7.7	Minimum		1272	1274	

Tablo	3.2.	İncelenen	Tersiyer	volkanitlerindeki	olivin	ve	tüm-kayaç	bileşimleri
		kullanılara	k elde edil	en olivin-ergiyik ter	rmometi	esi (Putirka, 2008	3) değerleri

3.5.1.2. Plajiyoklas Termometresi ve Hidrometresi

Plajiyoklas ile ergiyik arasındaki denge durumunu göz önünde bulundurarak volkanik kayaçların kristallenme sıcaklık ve basıncını hesaplamak üzere Putirka (2003, 2005 ve 2008) tarafından bir model önerilmiştir. Bu modelde plajiyoklasların sıcaklık ve basıncının hesaplanması için plajiyoklasla dengede olan ergiyik bileşiminin bilinmesi gerekmektedir. Denge durumunu ortaya koymak için, plajiyoklas ve ergiyik arasındaki An-Ab değişimine dayanan bir denge testi tasarlanmıştır. Bu teste göre, $K_D(An-Ab)^{pl-erg} = 0.10$

 \pm 0.5, T < 1050°C ve 0.27 \pm 0.11, T > 1050°C arasında değişim gösterdiği durumlarda plajiyoklas ile ergiyiğin dengede olduğu söylenebilir. Plajiyoklas bileşimi için bu mineraller üzerinde yapılan elektron mikroprop analiz sonuçları kullanılırken, ergiyiğin bileşimi için mikroprop analizlerinden elde edilen camın bileşimi ya da örneğin tüm kayaç analizlerinden elde edilen veriler kullanılabilmektedir. Bunun sonucu olarak, sıcaklık Kelvin cinsinden hesaplanacaktır. Putirka (2008), hesaplanan basınç değerlerinde de görüldüğü üzere, plajiyoklas-ergiyik barometresinden elde edilen sonuçların şüpheli olmasına rağmen, özellikle sıcaklık değerinin bilinmesi durumunda hidrometreden elde edilen sonuçların daha güvenilir olabileceğini ifade etmiştir. Hesaplamada kullanılan Putirka (2008)'in önerdiği sıcaklık denklemi formül 3.1'de verilmiştir.

Formül 3.1'de kullanılan An ve Ab değerleri, plajiyoklas minerallerinin elektron mikroprop analizlerinden elde edilen veriler kullanılarak (3.2) ve (3.3) numaralı formüllerle hesaplanmıştır. Ergiyiğe ait değerler ise volkanik camdan mikroprop yapılmadığı için tüm kayaç analizlerinden elde edilmiştir. İncelenen Tersiyer yaşlı volkanitler için plajiyoklas-ergiyik jeotermometresine göre hesaplanan ortalama sıcaklıklar, Eosen yaşlı volkanik breşler için 1167 \pm 4°C, yastık lavlar için 1178 \pm 10°C, bazaltik lavlar için 1200 \pm 1°C, bazaltik dayk ve siller için 1161 \pm 19°C ve andezitik dayk ve domlar için 1116 \pm 5°C'dir. Miyosen yaşlı foidli volkanik breşler için hesaplanan ortalama sıcaklık değeri ise 1202 \pm 2°C dir (Tablo 3.3).

$$10^{4}/T(K) = 6.4706 + 0.3128 \ln \left[\frac{X_{An}^{pl}}{X_{CaO}^{erg} \left(X_{AlO_{1.5}}^{erg} \right)^{2} \left(X_{SiO_{2}}^{erg} \right)^{2}} \right] - 8.103 \left(X_{SiO_{2}}^{erg} \right) + 4.872$$
$$\left(X_{KO_{0.5}}^{erg} \right) + 1.5346 \left(X_{Ab}^{pl} \right)^{2} + 8.661 \left(X_{SiO_{2}}^{erg} \right)^{2} - 3.341 \times 10^{-2} (P(kbar)) + 1.5346 \left(X_{Ab}^{pl} \right)^{2} + 8.661 \left(X_{SiO_{2}}^{erg} \right)^{2} - 3.341 \times 10^{-2} (P(kbar)) + 1.5346 \left(X_{Ab}^{pl} \right)^{2} + 8.661 \left(X_{SiO_{2}}^{erg} \right)^{2} - 3.341 \times 10^{-2} (P(kbar)) + 1.5346 \left(X_{Ab}^{pl} \right)^{2} + 8.661 \left(X_{SiO_{2}}^{erg} \right)^{2} - 3.341 \times 10^{-2} (P(kbar)) + 1.5346 \left(X_{Ab}^{pl} \right)^{2} + 8.661 \left(X_{Ab}^{erg} \right)^{2} - 3.341 \times 10^{-2} (P(kbar)) + 1.5346 \left(X_{Ab}^{pl} \right)^{2} + 1.5346 \left(X_{Ab}$$

$$0.18047 (H_2 O^{erg})$$
(3.1)

$$An = \frac{CaO}{CaO + Na_2O + K_2O}$$
(3.2)

$$Ab = \frac{Na_2O}{CaO + Na_2O + K_2O}$$
(3.3)

İncelenen Tersiyer yaşlı volkanitlerin plajiyoklas-ergiyik arasındaki denge durumuna göre kalibre edilen hidrometre formülü 3.4.'de verilmiştir. Çalışılan volkanitlerde hesaplanan su içerikleri, Eosen yaşlı volkanik breşler için 0.53 ± 0.05 (%), yastık lavlar için -0.96 ± 0.16 (%), bazaltik lavlar için 1.06 ± 0.05 (%), bazaltik dayk ve siller için -0.08 ± 0.72 (%) ve andezitik dayk ve domlar için 0.78 ± 0.13 (%) arasında değişmektedir. Miyosen yaşlı foidli breşik lavlar için hesaplanan ortalama su içerikleri ise -0.25 ± 0.02 (%)'dir (Tablo 3.3).

$$H_{2}O(\%) = 25.95 - 0.00327(°C) \ln \left[\frac{X_{An}^{pl}}{X_{CaO}^{erg} \left(X_{AlO_{1.5}}^{erg} \right)^{2} \left(X_{SiO_{2}}^{erg} \right)} \right] - 18.9 \left(X_{KO_{0.5}}^{erg} \right) + 14.5 \left(X_{MgO}^{erg} \right) - 40.3 \left(X_{CaO}^{erg} \right) + 5.7 \left(X_{An}^{pl} \right)^{2} + 0.108P(kbar)$$
(3.4)

Termometre hesaplamaları için Fuhrman ve Lindsley (1988), Ab-An-Or üçgen diyagramı üzerinde sıcaklık değerlerini gösteren izoterm eğrilerinin olduğu üçgen abağı oluşturmuştur. İncelenen volkanitlerdeki feldispatların Ab-An-Or bileşimlerinin bu abağın üzerine düşürülmesi sonucunda sıcaklık değerleri; Eosen yaşlı volkanitler içerisinde yer alan volkanik breşler için 650-1000°C, yastık lavlar için 650-1000°C, bazaltik lavlar için 650-1000°C, andezitik dayk ve domlar için 650-900°C, trakitik dayklar için ise 650-1000°C arasında değişmektedir. Miyosen yaşlı volkanitler içerisinde yer alan foidli volkanik breşler için ise 650-800°C, foidli breşik lavlar için 800-900°C, foidli dayk ve siller için ise 800-900°C arasında değişmektedir (Şekil 3.84).

3.5.1.3. Klinopiroksen Termometresi

Klinopiroksen ve ergiyik arasındaki denge ile ilişkili olarak, volkanik kayaçların kristallenme sıcaklık ve basıncını hesaplamak üzere Putirka vd. (1996, 2003) ve Putirka (1999, 2005, 2008) tarafından yapılan çalışmalarda değişik yaklaşımlar ortaya konulmuştur. Putirka (2008), klinopiroksen ve ergiyik arasında olması gereken denge durumunu test etmek için deneysel gözlemlerden yararlanılarak bir Fe-Mg değişim sabiti K_D (Fe–Mg)^{kpir-erg} = 0.28 ± 0.08 hesaplamıştır. Hesaplanan bu sabitin K_D (Fe–Mg)^{kpir-erg} =

 0.28 ± 0.08 aralığında olması, klinopiroksen ve ergiyiğin dengede olduğu anlamına gelir. Klinopiroksen kristallenme sıcaklığının hesaplanması için klinopiroksen ile dengede olan ergiyik bileşiminin bilinmesi gerekmektedir. Klinopiroksen bileşimi için bu mineraller üzerinde yapılan elektron mikroprop analiz sonuçları kullanılırken, ergiyik bileşimi için mikroprop analizlerinden elde edilen camın bileşimi ya da tüm kayaç analizlerinden elde edilen veriler kullanılabilmektedir. Bunun sonucu olarak sıcaklık Kelvin cinsinden hesaplanacaktır.

Plajiyokl	as-ergiyik termobarometre ve	hidrometresi (Putir	ka, 2008)		
	Volkanik breş (n=4)	T (°C)	H ₂ O (%)	P (kbar)	K _D (Ab-An)
	Ortalama	1167 ± 4	0.53 ± 0.05	11.05 ± 0.9	. ,
	Maksimum	1172	0.6	12.24	0.34
	Minimum	1161	0.49	10.12	0.19
ımı	Yastık lav ($n=7$)	T (°C)	H ₂ O (%)	P (kbar)	$K_D(Ab-An)$
Tak	Ortalama	1178 ± 10	$\textbf{-0.96} \pm 0.16$	5.49 ± 1.3	
B	Maksimum	1200	-0.66	8.17	0.36
BT	Minimum	1176	-1.19	4.43	0.19
Eosen Yaşlı	Bazaltik lav $(n=3)$	T (°C)	H ₂ O (%)	P (kbar)	$K_D(Ab-An)$
	Ortalama	1200 ± 1	1.06 ± 0.05	12.93 ± 0.23	
	Maksimum	1201	1.11	13.17	0.21
	Minimum	1200	1.01	12.71	0.18
	Bazaltik dayk ve sil ($n=15$)	T (°C)	H ₂ O (%)	P (kbar)	$K_D(Ab-An)$
	Ortalama	1161 ± 19	$\textbf{-0.08} \pm 0.72$	12.60 ± 3.02	
	Maksimum	1184	0.66	17.95	0.37
	Minimum	1139	-1.13	9.97	0.16
ım Ilşt	Andezitik dayk ve dom (n=13)	T (°C)	H ₂ O (%)	P (kbar)	$K_D(Ab-An)$
n Y. Takı	Ortalama	1116 ± 5	0.78 ± 0.13	10.72 ± 1.16	
ose LT 1	Maksimum	1126	0.94	12.53	0.35
E	Minimum	1108	0.59	8.47	0.17
11	Foidli volkanik breş (n=3)	T (°C)	H ₂ O (%)	P (kbar)	K _D (Ab-An)
slı şlı tkın	Ortalama	1202 ± 2	$\textbf{-}0.25\pm0.02$	11.24 ± 0.63	
Miya Ya T Ta	Maksimum	1204	-0.23	11.73	0.36
B	Minimum	1201	-0.26	10.53	0.29

Tablo 3.3. İncelenen Tersiyer volkanitlerindeki plajiyoklaslardan elde edilen sıcaklık, basınç ve hidrometre (Putirka, 2008) değerleri (n, örnek sayısı)

İncelenen volkanitler için, $K_D(Fe-Mg)^{kpir-erg}$ değeri istenilen aralıkta olsa da, petrografik olarak gözlemlenen dengesizlikler ve hesaplanan sıcaklık ve basınç değerlerindeki değişimler göz önünde bulundurularak Putirka (2008) tarafından önerilen ve yalnızca klinopiroksen bileşimine dayanarak kalibre edilmiş termometrenin kullanılması daha uygun görülmüştür (Formül 3.5, 3.6, 3.7).

Şekil 3.84. İncelenen Tersiyer volkanitlerindeki feldispatlara ait Ab-An-Or üçgen diyagramı. İzoterm eğrilerine ait değerler Fuhrman ve Lindsley (1988)'e göredir

$$T(K) = \frac{93100 + 544P(kbar)}{61.1 + 36.6(X_{T_i}^{kpir}) + 10.9(X_{F_e}^{kpir}) - 0.95((X_{Al}^{kpir}) + (X_{C_r}^{kpir}) - (X_{N_a}^{kpir}) - (X_K^{kpir})) + 0.395\left[\ln\left(a_{E_n}^{kpir}\right)\right]^2$$
(3.5)

$$X_{Al}^{cpx} = X_{Al}^{cpx} + X_{Al}^{cpx}$$
(3.6)

$$a_{En}^{cpx} = \left(1 - X_{Ca}^{cpx} - X_{Na}^{cpx} - X_{K}^{cpx}\right) \cdot \left(1 - 0.5\left(X_{Al}^{cpx} + X_{Cr}^{cpx} + X_{Na}^{cpx} + X_{K}^{cpx}\right)\right)$$
(3.7)

Sonuç olarak, Eosen yaşlı volkanik breşlerde 1099.77 \pm 19.67°C, yastık lavlarda 1243.92 \pm 11.11°C, bazaltik lavlarda 1128.27 \pm 21.01°C, bazaltik dayk ve sillerde 1147.17 \pm 34.73°C ve trakitik dayklarda 1181.04 \pm 8.53°C ortalama sıcaklıkları elde edilmiştir. Andezitik dayk ve domlarda yer alan klinopiroksenler için ise geçerli sıcaklık değerleri elde edilememiştir. Miyosen yaşlı foidli volkanik breşler için 1119.98 \pm 29.46°C, foidli

breşik lavlar için 1145.97 \pm 59.71°C ve foidli dayk ve siller için ise 1118.67 \pm 22.54°C'lik değerler hesaplanmıştır (Tablo 3.4).

	Klinopiroksen termometresi (Puti	rka 2008)		
	$K_D(Fe-Mg)^{kpir-erg} = 0.28 \pm 0.08$	k	<u>bar</u>	<u>°C</u>
	Volkanik breş (n=14)	Mer ve ken	<u>Yanlız ken</u>	Mer ve ken
	Ortalama	3.73 ± 0.68	3.10 ± 0.17	1099.77 ± 19.67
	Maksimum	5.04	3.30	1125.60
	Minimum	2.36	2.98	1062.79
ıu	Yastık lav (n=7)	k	<u>bar</u>	<u>°C</u>
akır	Ortalama	5.39 ± 0.92	5.84 ± 0.73	1243.92 ± 11.11
TB 1	Maksimum	6.53	6.53	1262.92
şlı B	Minimum	4.10	5.14	1233.62
n Ya	Bazaltik lav ($n=23$)	k	<u>bar</u>	<u>°C</u>
iosei	Ortalama	1.84 ± 0.82	2.13 ± 0.40	1128.27 ± 21.01
P	Maksimum	4.28	2.69	1163.18
	Minimum	n termometresi (Putirka 2008) $\frac{e^{erg} = 0.28 \pm 0.08}{(n = 14)} \frac{\text{Mer ve ken}}{3.73 \pm 0.68} \frac{\text{Yanlız ken}}{3.10 \pm 0.17} \frac{\text{Mer ve ken}}{1099.77 \pm 19.67}$ $5.04 3.30 1125.60$ $2.36 2.98 1062.79$ $=7) \frac{\text{kbar}}{5.39 \pm 0.92} 5.84 \pm 0.73 1243.92 \pm 11.11$ $6.53 6.53 1262.92$ $4.10 5.14 1233.62$ $n = 23) \frac{\text{kbar}}{1.84 \pm 0.82} 2.13 \pm 0.40 1128.27 \pm 21.01$ $4.28 2.69 1163.18$ $0.53 1.63 1088.43$ $(ve sil (n = 31)) \frac{\text{kbar}}{1.83} \frac{\circ C}{1.63} 1088.43$ $(ve sil (n = 31)) \frac{\text{kbar}}{1.83} \frac{\circ C}{1.83} 1.83 1057.06$ $(n = 9) \frac{\text{kbar}}{1.83} \frac{\circ C}{1.84 \pm 0.98} 3.30 \pm 1.07 1147.17 \pm 34.73$ $5.32 4.88 1199.71$ $1.83 1.83 1057.06$ $(n = 9) \frac{\text{kbar}}{2.06 1172.89} \frac{\circ C}{1.466} 3.59 1193.73$ $2.08 2.06 1172.89$ $(ik breş (n = 9) \frac{\text{kbar}}{2.93 \pm 0.89} 5.87 \pm 0.04 1119.98 \pm 29.46$ $5.90 5.90 1141.51$ $3.35 5.84 1085.76$ $lav (n = 47) \frac{\text{kbar}}{4.23 \pm 1.00} 4.85 \pm 0.83 1145.97 \pm 59.71$ $6.41 6.29 1202.47$ $2.06 4.21 911.08$ $e sil (n = 8) \frac{\text{kbar}}{2.64} \frac{\circ C}{2.54}$ $4.82 \pm 0.89 4.32 1118.67 \pm 22.54$ $6.64 1148.85$ $3.41 1090.63$		
Maksinu <u>Minimun</u> Bazaltik d Ortalama Maksimu Minimun ¹ ² ⁵ ² _L _v _v _v Ortalama	Bazaltik dayk ve sil $(n=31)$	k	bar	<u>°C</u>
	Ortalama	3.34 ± 0.98	3.30 ± 1.07	1147.17 ± 34.73
	Maksimum	5.32	4.88	$\frac{\ }{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } 1099.77 \pm 19.67 \\ 1125.60 \\ 1125.60 \\ 1125.60 \\ 1125.60 \\ 1125.60 \\ 1125.27 \\ \underline{\ } 1125.27 \\ \underline{\ } 11243.92 \pm 11.11 \\ 1262.92 \\ 1233.62 \\ \underline{\ } \underline{\ } \underline{\ } 1243.92 \\ \underline{\ } \underline{\ } 1128.27 \pm 21.01 \\ 1163.18 \\ 1088.43 \\ \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } 1128.27 \pm 21.01 \\ 1163.18 \\ 1088.43 \\ \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } 1147.17 \pm 34.73 \\ 1199.71 \\ 1057.06 \\ \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } 1181.04 \pm 8.53 \\ 1193.73 \\ 1172.89 \\ \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } 1119.98 \pm 29.46 \\ 1141.51 \\ 1085.76 \\ \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } \underline{\ } 1145.97 \pm 59.71 \\ 1202.47 \\ \underline{\ } 1145.97 \pm 59.71 \\ 1202.47 \\ \underline{\ } nderline{\ } \underline{\ } $
	Minimum	1.83	1.83	1057.06
ın Şlı	Trakitik dayk (n=9)	<u>k</u>	<u>bar</u>	<u>°C</u>
n Ya akın	Ortalama	3.47 ± 1.00	3.05 ± 0.86	1181.04 ± 8.53
Gosei TT T	Maksimum	4.66	3.59	1193.73
I	Minimum	2.08	2.06	1172.89
	Foidli volkanik breş (n=9)	<u>k</u>	<u>bar</u>	<u>°C</u>
	Ortalama	4.93 ± 0.89	1.63 1088.43 kbar $^{\circ}C$ 3.30 ± 1.07 1147.17 ± 34.73 4.88 1199.71 4.88 1057.06 kbar $^{\circ}C$ 3.05 ± 0.86 1181.04 ± 8.53 3.59 1193.73 2.06 1172.89 kbar $^{\circ}C$ 5.87 ± 0.04 1119.98 ± 29.46 5.90 1141.51 5.84 1085.76 kbar $^{\circ}C$ 4.85 ± 0.83 1145.97 ± 59.71	
2	Maksimum	5.90	5.90	1141.51
ıkım	Minimum	3.35	5.84	1085.76
$T T_{c}$	Foidli breşik lav (n=47)	<u>k</u>]	<u>bar</u>	<u>°C</u>
şlı B	Ortalama	4.23 ± 1.00	4.85 ± 0.83	1145.97 ± 59.71
n Ya	Maksimum	6.41	6.29	1202.47
lason	Minimum	2.06	4.21	911.08
Иij	Foidli dayk ve sil (n=8)	<u>k</u>	<u>bar</u>	<u>°C</u>
	Ortalama	4.82 ± 0.89	4.32	1118.67 ± 22.54
	Maksimum	6.64		1148.85
	Minimum	3.41		1090.63

Tablo 3.4. İncelenen volkanitlerdeki klinopiroksenlerden elde edilen sıcaklık ve basınç (Putirka, 2008) değerleri

(mer, merkez; ken, kenar; n, örnek sayısı)

3.5.1.4. Hornblend Termometresi, Hidrometresi ve Oksijen Fugasitesi

Holland ve Blundy (1994) ve Blundy ve Holland (1990) tarafından önerilen formüller kullanılarak hornblend-plajiyoklas termometresi hesaplanmıştır. Eosen yaşlı volkanik breşlerdeki hornblendlerden hesaplanan ortalama sıcaklık değerleri 964.63 \pm 9.10°C, bazaltik dayk ve siller içindeki hornblendlerden hesaplanan ortalama sıcaklık değerleri 928.61 \pm 21.93°C arasındadır. Miyosen yaşlı foidli breşik lavlar için hesaplanan sıcaklık değerleri ise 945.44 \pm 11.33°C ve foidli dayk ve siller içerisindeki hornblendlerden hesaplanan ortalama sıcaklık değeri 943.81 \pm 6.83°C arasında değişmektedir (Tablo 3.5).

İncelenen volkanitlerdeki hornblendler kullanılarak, Ridolfi ve Renzulli (2011) tarafından önerilen formüller yardımıyla termometre, oksijen fugasitesi ve hidrometre hesaplamaları yapılmış ve elde edilen sonuçlar Tablo 3.5'de verilmiştir. Eosen yaşlı volkanik breşlerdeki hornblendlerden hesaplanan ortalama sıcaklık değerleri 959.22 \pm 10.74°C, bazaltik dayk ve siller içindeki hornblendlerden hesaplanan ortalama sıcaklık değerleri 956.21 \pm 13.81°C'dir. Miyosen yaşlı foidli breşik lavlar için hesaplanan sıcaklık değerleri 970.32 \pm 9.07°C ve foidli dayk ve siller içerisindeki hornblendlerden hesaplanan ortalama sıcaklık değerleri 984.16 \pm 10.61°C'dir.

Ridolfi ve Renzulli (2011) tarafından önerilen eşitlikler kullanılarak hesaplanan hornblend oksijen fugasitesi (Δ NNO) değerleri; Eosen yaşlı volkanik breşlerde 0.53 ± 0.07, bazaltik dayk ve sillerde 0.59 ± 0.14, Miyosen yaşlı foidli breşik lavlarda 0.73 ± 0.03 ve foidli dayk ve sillerde ise 0.79 ± 0.05'dir. Elde edilen sıcaklık ve basınç değerleri kullanılarak Wones (1989)'un önerdiği yaklaşımla hesaplanan oksijen fugasitesi (fO_2) değerleri ise; Eosen yaşlı volkanik breşler için 10^{-9.36}, bazaltik dayk ve siller için 10^{-9.46}, Miyosen yaşlı foidli breşik lavlar için 10^{-8.56} ve foidli dayklar ve siller için ise 10^{-8.87}, dır. Bu oksijen fugasitesi değerleri aynı zamanda Δ NNO – Δ NNO + 4 buffer aralı ğıyla da uygunluk göstermektedir (Şekil 3.85).

İncelenen volkanitlerdeki hornblend bileşimi kullanılarak hesaplanan ortalama su içerikleri, volkanik breşler için %8.57 \pm 0.29, bazaltik dayk ve siller için %7.83 \pm 0.81, foidli breşik lavlar için %8.64 \pm 0.24 ve foidli dayklar için ise %8.37 \pm 0.89'dur (Tablo 3.5).

Şekil 3.85. İncelenen Tersiyer volkanitlerindeki hornblendlerin log (fO₂) ye karşı T(°C) diyagramı (Ridolfi vd., 2010) (Semboller Şekil 3.84'deki gibidir)

3.5.1.5. Biyotit Termometresi ve Oksijen Fugasitesi

İncelenen volkanitlerdeki biyotitlerin kristallenme sıcaklıkları bu minerallerdeki Ti ve Fe⁺² değişimine bağlı olarak Luhr vd. (1984) tarafından önerilen formül kullanılarak hesaplanmıştır. Eosen yaşlı bazaltik dayk ve siller için 953.14 \pm 71.97°C, andezitik dayk ve domlar için 858.44 \pm 33.44°C, trakitik dayklar için 914.43 \pm 72.48°C ortalama kristallenme sıcaklıkları saptanmıştır. Miyosen yaşlı foidli dayk ve siller için ortalama kristallenme sıcaklığı ise 874.78 \pm 42.84°C olarak belirlenmiştir (Tablo 3.6).

Volkanitlerin oksijen fugasitelerine ilişkin bilgiler biyotitlerdeki Fe^{+3} içeriği ve $Fe^{(T)}/(Fe^{(T)}+Mg)$ oranları kullanılarak elde edilebilir (Wones ve Eugster, 1965; Dodge vd., 1969; Albuquerque, 1973; Barriere ve Cotton, 1979; Neiva, 1981). Mikroprob analizlerinden elde edilen verilere göre Wones ve Eugster (1965) tarafından önerilen Fe^{+3} - Fe^{+2} - Mg diyagramındaki buffer alanları kullanılarak incelenen volkanitlerin oksijen fugasitesi belirlenmiştir. Buna göre; Eosen yaşlı bazaltik dayk ve sillerde NNO (nikel-nikel oksit) alanına düşen bir biyotit dışında diğer Eosen ve Miyosen yaşlı volkanik kayaçlardaki bütün biyotitler MH (manyetit-hematit) buffer alanında yer almaktadır (Şekil 3.86).

Tabl	o 3.5. İncelenen Tersi	iyer volkani	itlerindeki hor	nblendlerde	n elde edilen	sıcaklık, basır	ıç, hidrometre	s ve oksijen fu	ıgasitesi değer	leri
Horn	blend termometre, barometre	e, hidrometre ve	e oksijen fugasitesi							
11W	Volkanik breş (n=10)		Ridolfî ve Re	nzulli (2011)		Holland ve Blundy (1994)	Hammarstrom ve Zen (1986)	Hollsiter vd. (1987)	Johnson ve Rutherford (1989)	Wones (1989)
מצוי		P (kbar)	T (°C)	H2O (%)	<u>ANNO</u>	()°C) T	<u>P (kbar)</u>	<u>P (kbar)</u>	<u>P (kbar)</u>	fO_2
La	Ortalama	6.49 ± 0.46	959.22 ± 10.74	8.57 ± 0.29	0.53 ± 0.07	964.63 ± 9.10	8.91 ± 0.21	9.63 ± 0.24	7.33 ± 0.18	-9.36±0.29
BT	Maksimum	7.31	979.42	8.96	0.61	979.96	9.36	10.14	7.71	-8.92
1]\$	Minimum	6.00	945.47	8.05	0.44	952.05	8.52	9.19	7.00	-9.69
Β Λ Ι	Bazaltik dayk ve sil $(n=8)$									
uəs	Ortalama	6.52 ± 0.38	956.21 ± 13.81	7.83 ± 0.81	0.59 ± 0.14	928.61 ± 21.93	8.62 ± 0.28	9.30 ± 0.32	7.08 ± 0.24	-9.46 ± 0.29
од	Maksimum	6.72	975.64	8.76	0.71	957.19	8.97	9.69	7.38	-9.08
	Minimum	5.83	936.45	6.36	0.38	905.11	8.30	8.94	6.81	-9.89
	Foidli breşik lav (n=10)									
BT	Ortalama	9.00 ± 0.53	970.32 ± 9.07	8.64 ± 0.24	0.73 ± 0.03	945.44 ± 11.33	8.22 ± 0.16	8.85 ± 0.20	6.75 ± 0.15	-8.87 ± 0.22
י זן ז	Maksimum	9.87	981.03	9.00	0.76	960.71	8.55	9.23	7.03	-8.59
р _Х	Minimum	8.16	951.63	8.28	0.68	922.68	7.93	8.52	6.50	-9.28
uəs	Foidli dayk ve sil (n=5)									
εολι	Ortalama	9.43 ± 1.31	984.16 ± 10.61	8.37 ± 0.89	0.79 ± 0.05	943.81 ± 6.83	8.30 ± 0.27	8.94 ± 0.30	6.82 ± 0.23	-8.56 ± 0.30
W	Maksimum	10.68	1000.94	8.98	0.77	955.14	8.64	9.93	7.11	-8.10
	Minimum	7.36	971.73	6.81	0.64	938.26	7.89	8.48	6.47	-8.85
(n, ċ	irnek sayısı)									

128

Şekil 3.86. İncelenen Tersiyer volkanitlerindeki biyotitlerin bileşimine göre çizilen Fe⁺³ - Fe⁺² - Mg diyagramı (Wones ve Eugster, 1965) (Semboller Şekil 3.84'deki gibidir)

Ayrıca, biyotitlerden hesaplanan sıcaklık (Luhr vd., 1984) ve basınç (Uchida vd., 2007) değerleri Wones ve Eugster (1965) tarafından önerilen formülde kullanılarak oksijen fugasitesi hesaplamaları yapılmıştır. Eosen yaşlı bazaltik dayk ve siller için $10^{-10.32}$, andezitik dayk ve domlar için $10^{-12.37}$, trakitik dayklar için $10^{-11.15}$ oksijen fugasitesi değerleri elde edilirken, Miyosen yaşlı foidli dayk ve siller için $10^{-12.00}$ değeri elde edilmiştir (Tablo 3.6).

Tablo 3.6. İ	ncelenen T	ersiyer vo	olkanitleri	ndeki b	iyotitlerden	elde edilen	sıcaklık,	basınç ve
(oksijen fuga	asitesi değ	gerleri (n,	örnek s	ayısı)			

			Luhr vd., 1984 (T°C)	Uchida vd. (2007) (P kbar)	Wones ve Eugster (1965) (<i>f</i> O ₂)
	п	Bazaltik dayk ve sil (n	=23)		
	Takın	Ortalama	953.14 ± 71.97	1.41 ± 0.28	-10.32 ± 1.45
	BTB	Maksimum	1159.37	2.38	-6.61
		Minimum	813.47	1.11	-13.48
		Andezitik dayk ve dom	(n=7)		
Eosen		Ortalama	858.44 ± 33.44	1.08 ± 0.30	-12.37 ± 0.8
	1	Maksimum	909.8	1.59	-11.17
	akım	Minimum	822.44	0.74	-13.25
	TTT	Trakitik dayk (n=34)			
		Ortalama	914.43 ± 72.48	1.24 ± 0.16	-11.15 ± 1.43
		Maksimum	1148.98	1.47	-6.77
		Minimum	824.99	0.74	-13.18
	1	Foidli dayk ve sil (n=1	5)		
nosen	Takım	Ortalama	874.78 ± 42.84	2.09 ± 0.22	-12.0 ± 0.97
μij	BT	Maksimum	977.48	2.56	-9.75
		Minimum	823.91	1.77	-13.21

3.5.2. Jeobarometre Hesaplamaları

3.5.2.1. Klinopiroksen Barometresi

Putirka (2008), yalnız klinopiroksen bileşiminden ve klinopiroksenle tüm-kayaç arasındaki Al paylaşımından yola çıkarak termodinamik koşulları belirlemek için farklı yaklaşımlar ortaya koymuştur. Klinopiroksen ve ergiyik arasındaki Al paylaşımından yola çıkılarak kalibre edilen klinopiroksen-ergiyik barometresinin kullanılması için bu iki fazın kayaç içersinde dengede olması koşulu aranmaktadır. Klinopiroksen ile ergiyiğin denge olup olmadığını belirlemek için denge sabitinin hesaplanması gerekmektedir. Klinopiroksen ve ergiyik arasındaki denge durumunda, denge sabitinin K_D (Fe–Mg)^{kpir-erg} = 0.28 ± 0.08 aralığında olması beklenir. Hesaplanan denge sabiti incelenen Tersiyer volkanitleri için arzu edilen aralıkta olmasına rağmen petrografik ve mineral kimyası çalışmaları sonucunda tanımlanan dengesizliklerde göz önünde bulundurularak klinopiroksen ve ergiyiğin dengede olmadığı kanaatine varılmıştır. Bu durumda, Putirka (2008) tarafından önerilen klinopiroksen-ergiyik barometresi yerine sadece klinopiroksen bilesiminden yararlanılarak Nimis (1995) tarafından önerilen yaklaşımın daha hassas olarak yeniden kalibre edilmesi ile elde edilen formülün, barometre hesapları için kullanılmasının daha uygun olacağı düşünülmüştür. Buna göre, Nimis (1995)'in denklemi (Formül 3.8) kullanılarak basınç hesaplamaları yapılmıştır.

$$P(kbar) = 3205 + 0.384T(K) - 518 \ln T(K) - 5.62(X_{Mg}^{kpir}) + 83.2(X_{Na}^{kpir}) + 68.2(X_{DiHd}^{kpir}) + 2.52 \ln(X_{Al}^{kpir}) - 51.1(X_{DiHd}^{kpir})^2 + 34.8(X_{EnFs}^{kpir})^2$$
(3.8)

Bu yaklaşıma dayanarak; incelenen volkanitlerdeki klinopiroksenlerin hem merkez bileşimleri hem de diğer kısımlarının bileşimleri kullanılarak kristallenme basınçları hesaplanmıştır. Yapılan hesaplamalar sonucunda; merkez ve diğer kısımlardan elde edilen ortalama basınç değerlerinin benzerlik gösterdiği görülmüştür (Şekil 3.87). Buna göre, Eosen yaşlı volkanik breşler için 3.73 ± 0.68 kbar, yastık lavlar için 5.39 ± 0.92 kbar, bazaltik lavlar için 1.84 ± 0.82 kbar, bazaltik dayk ve siller için 3.34 ± 0.98 kbar ve trakitik dayklar için 3.47 ± 1.00 kbar ortalama basınçlar elde edilmiştir. Miyosen yaşlı volkanitlerden elde edilen ortalama basınçlar ise foidli volkanik breşler için 4.93 ± 0.89

kbar, foidli breşik lavlar için 4.23 ± 1.00 kbar ve foidli dayk ve siller için 4.82 ± 0.89 kbar'dır (Tablo 3.4).

Şekil 3.87. İncelenen Tersiyer volkanitlerindeki klinopiroksen bileşimine göre hesaplanan basınç (Putirka, 2008) değerleri histogramları (mer: merkez, ken: kenar)

3.5.2.2. Hornblend Barometresi

Hornblendlerin kristallenme basınçlarını belirlemek için değişik araştırmacılar tarafından yapılan birçok çalışma bulunmaktadır. Johnson ve Rutherford (1989), kristallenme basıncı değerini hesaplamak için hornblendin toplam alüminyum (Al^(T)) içeriğini bir formül önermiştir (Formül 3.9).

$$P(+/-0.5kbar) = -3.46 + 4.23 * A1^{(T)}$$
(3.9)

Yapılan hesaplamalara göre; Eosen yaşlı volkanik breşlerde 7.33 ± 0.18 kbar ve bazaltik dayk ve sillerde 7.08 ± 0.24 kbar'lık ortalama basınç değerleri elde edilirken, Miyosen yaşlı foidli breşik lavlar için 6.75 ± 0.15 kbar ve foidli dayk ve siller için 6.82 ± 0.23 kbar'lık sonuçlar hesaplanmıştır (Tablo 3.5).

Hollister vd. (1987) yine hornblend içerisindeki Al^(T) miktarını dikkate alarak bir formül tanımlamıştır (Formül 3.10)

$$P(+/-1kbar) = -4.76 + 5.64 \text{Al}^{(T)}$$
(3.10)

Bu formül kullanılarak yapılan hesaplamalara göre; Eosen yaşlı volkanik breşler içerisindeki hornblendlerin ortalama kristallenme basınçları 9.63 ± 0.24 kbar, bazaltik dayk ve sillerin ise 9.30 ± 0.32 kbar'dır. Miyosen yaşlı foidli breşik lavlardaki hornblendlerin kristallenme basınçları 8.85 ± 0.20 kbar, foidli dayk ve sillerin ise 8.94 ± 0.30 kbar olarak hesaplanmıştır (Tablo 3.5).

Hammarstrom ve Zen (1986), yine hornblendin toplam alüminyum (Al^(T)) miktarını göre bir formül tanımlamıştır (Formül 3.11).

$$P(+/-1kbar) = -3.92 + 5.03 \text{Al}^{(T)}$$
(3.11)

Buna göre; Eosen yaşlı volkanik kayaç breşler için 8.91 ± 0.21 kbar, bazaltik dayk ve sillerin ise 8.62 ± 0.28 kbar'lık ortalama kristallenme basınçları elde edilmiştir. Miyosen yaşlı foidli breşik lavlardaki hornblendlerin ortalama kristallenme basınçları 8.22 ± 0.16 kbar, foidli dayk ve sillerin ise 8.30 ± 0.27 kbar olarak belirlenmiştir (Tablo 3.5).

Yukarıda yapılan hesaplamalarda kullanılan yaklaşımların dışında, son yıllarda yapılan çalışmalarda, alkalen sistemler için yeni termobarometreler önerilmiştir (Ridolfi vd., 2010). Ridolfi ve Renzulli (2011) tarafından yapılan çalışmada diğer çalışmalardaki basınç hesaplamalarında dikkate alınan Al miktarının yanı sıra diğer katyonların da dikkate alındığı, alkalen ve kalk-alkalen sistemler için daha hassas bir termobarometre önerilmiştir ($P \pm 11.5\%$; 2.2 GPa ve 1130°C'ye kadar olan koşullarda geçerli). Ridolfi ve Renzulli (2011) tarafından önerilen formül kullanılarak elde edilen hornblend ortalama kristallenme basınçları; Eosen yaşlı volkanik breşler için 6.49 ± 0.46 kbar, bazaltik dayk ve siller için ise 6.52 ± 0.38 kbar, Miyosen yaşlı foidli breşik lavlar için 9.00 ± 0.53 kbar, foidli dayk ve siler için ise 9.43 ± 1.31 kbar olarak hesaplanmıştır (Tablo 3.5).

3.5.2.3. Biyotit Barometresi

Uchida vd. (2007), biyotitlerin kristallenme basınçlarını belirlemek için ampirik bir eşitlik önermiştir. Bu eşitlik, biyotitlerden elde edilen mikroprob analizleri sonuçları kullanılarak 11 oksijene göre hesaplanan $Al^{(T)}$ miktarına göre kalibre edilmiştir. Uchida vd. (2007) tarafından önerilen bu formül kullanılarak hesaplanan ortalama basınçlar; Eosen yaşlı bazaltik dayk ve siller için 1.41 ± 0.28 kbar, andezitik dayk ve domlar için 1.08 ± 0.30 kbar, trakitik dayklar için 1.24 ± 0.16 kbar, Miyosen yaşlı foidli dayk ve siller için 2.09 ± 0.22 kbar'dır (Tablo 3.6).

3.6. ⁴⁰Ar-³⁹Ar Termokronolojisi

İncelenen Tersiyer volkanitlerinin jeokronolojik yaşlarını belirlemek için yapılan ⁴⁰Ar-³⁹Ar yaşlandırma analizleri, mineral ayrımı ve tüm kayaç hamuru üzerinde basamaklı ısıtma (incremental step heating) yöntemi ile gerçekleştirilmiştir (Tablo 3.7). ⁴⁰Ar-³⁹Ar yaşlandırması için örnekler, volkanik breşler ve foidli volkanik breşler olarak adlandırılan fasiyes kayaçları hariç, diğer volkanik fasiyeslerden (yastık lavlar, bazaltik lavlar, bazaltik dayk ve siller, andezitik dayk ve domlar, trakitik dayklar, foidli breşik lavlar ve foidli dayk ve siller) örnekler seçilmiştir. Yaşlandırma analizlerinde kullanılmak üzere seçilen örneklerin her bir kayaç takımını ve volkanik fasiyesi temsil edecek şekilde, yüzeysel ve hidrotermal alterasyondan etkilenmemiş olmasına dikkat edilmiştir.

3.6.1. Yastık Lav

Yastık lavlarda iki örnekten (301 ve 363 nolu) seçilen tüm kayaç hamuru kullanılarak ⁴⁰Ar-³⁹Ar yaşlandırma analizleri yapılmıştır (Tablo 3.8 ve 3.9). Yaşlandırma analizleri, 301 numaralı örnek için 21 ve 363 numaralı örnek için ise 19 basamakta gerçekleştirilmiştir. Tüm kayaç hamuru üzerinde yapılan yaşlandırma analizlerinde 301 numaralı örnek için 43.5 \pm 0.1 My, 363 numaralı örnek için 43.3 \pm 0.1 My arasında değişen plato yaşları elde edilmiştir (Şekil 3.88). Elde edilen bu yaş aralıkları ise Orta Eosen, Lütesiyen'e karşılık gelmektedir.

Şekil 3. 88. İncelenen Eosen yaşlı yastık lavlarda (301 ve 363) tüm kayaç hamuruna ait ⁴⁰Ar-³⁹Ar yaş spektrumları ve plato yaşları.

3.6.2. Bazaltik Lav

Bazaltik lavlar içerisinde yer alan üç farklı bazaltik trakiandezit örneğinin (141, 260 ve 511 nolu) 40 Ar- 39 Ar yaşlandırma analizleri tüm kayaç hamuru üzerinde yapılmıştır (Tablo 3.10, 3.11 ve 3.12). Yaşlandırma analizleri, 141 numaralı örnek için 15 basamakta, 260 numaralı örnek için 24 basamakta, 511 numaralı örnek için ise 19 basamakta gerçekleştirilmiştir. Tüm kayaç hamuru üzerinde yapılan yaşlandırma analizlerinde 141 numaralı örnek için 43.6 ± 0.1 My, 260 numaralı örnek için 43.4 ± 0.1 My ve 511 numaralı örnek için ise 44.0 ± 0.1 My arasında değişen plato yaşları elde edilmiştir (Şekil 3.89). Elde edilen bu yaş aralıkları ise Orta Eosen, Lütesiyen'e karşılık gelmektedir.

Şekil 3. 89. Eosen yaşlı bazaltik lavlardaki (141, 260 ve 511 nolu) tüm kayaç hamuruna ait ⁴⁰Ar-³⁹Ar yaş spektrumları ve plato yaşları

	Örnek No	Volkanik Fasiyes	Kayaç Adı (TAS'a göre)	K ₂ O (% ağ.)	Örnek Türü	Plato Yaşı (My) (±σ)
	301	Yastık lav	Bazalt	2.18	Tüm kayaç	43.5±0.1
	363	Yastık lav	Bazalt	1.87	Tüm kayaç	43.3±0.1
	141	Bazaltik lav	Bazaltik trakiandezit	3.23	Tüm kayaç	43.6±0.1
IMI	260	Bazaltik lav	Bazaltik trakiandezit	4.31	Tüm kayaç	43.4±0.1
B Tak	511	Bazaltik lav	Bazaltik trakiandezit	2.82	Tüm kayaç	44.0±0.1
BT	399	Bazaltik dayk ve sil	Bazaltik trakiandezit	4.25	Tüm kayaç	43.2±0.1
	508	Bazaltik dayk ve sil	Trakiandezit	5.76	Tüm kayaç	44.7±0.1
	642	Bazaltik dayk ve sil	Bazalt	1.94	Tüm kayaç	43.7±0.2
	801	Bazaltik dayk ve sil	Trakibazalt	4.06	Tüm kayaç	44.2±0.1
	232	Andezitik dayk ve dom	Trakit	5.76	Tüm kayaç	43.5±0.1
m	232	Andezitik dayk ve dom	Trakit	5.76	Flogopit	43.39±0.1
	233	Andezitik dayk ve dom	Trakit	6.15	Tüm kayaç	42.4±0.1
	233	Andezitik dayk ve dom	Trakit	6.15	Flogopit	42.5±0.1
	777	Andezitik dayk ve dom	Trakiandezit	5.77	Tüm kayaç	43.4±0.1
Takı	188	Trakitik dayk	Trakit	6.63	Flogopit	44.3±0.1
LL	188	Trakitik dayk	Trakit	6.63	Sanidin	41.9±0.1
	318	Trakitik dayk	Trakiandezit	5.61	Flogopit	43.8±0.1
	318	Trakitik dayk	Trakiandezit	5.61	Tüm kayaç	43.3±0.1
	625	Trakitik dayk	Trakit	9.53	Tüm kayaç	43.2±0.1
	625	Trakitik dayk	Trakit	9.53	Flogopit	44.0±0.1
	603	Foidli dayk ve sil	Tefrit	2.46	Tüm kayaç	5.77±0.1
ıkımı	603	Foidli dayk ve sil	Tefrit	2.46	Flogopit	5.83±0.1
BT T ²	721	Foidli Breşik Lav	Tefrit	1.86	Tüm kayaç	5.96±0.1
. *	802	"Cognate" İnklüzyon	-	-	Flogopit	5.57±0.1

Tablo 3.7. İncelenen Tersiyer yaşlı volkanitlerin fasiyes ve kayaç türüne göre ⁴⁰Ar-³⁹Ar yaşlandırma verileri

			Yastık lav (301) tüm kayaç hamu	ru			
Basamak	Sıcaklık (°C)	⁴⁰ Ar _{Atm} (%)	³⁹ Ar _K (%)	${}^{37}{\rm Ar_{Ca}}/{}^{39}{\rm Ar_{K}}$	⁴⁰ Ar*/ ³⁹ Ar _K	Yaş (I	Milyo	n yıl)
1	250	99.48	0.03	0.903	0.98	8.64	\pm	28.07
2	300	98.48	0.09	0.903	0.90	7.96	\pm	7.18
3	340	96.04	0.15	0.856	1.05	9.30	\pm	3.71
4	380	90.28	0.21	1.017	1.74	15.37	\pm	3.52
5	420	86.66	0.56	0.824	3.06	26.97	\pm	1.73
6	450	65.77	0.99	0.566	4.67	40.94	\pm	0.68
7	480	37.68	1.68	0.434	5.27	46.15	\pm	0.59
8	510	25.59	1.87	0.368	5.16	45.21	±	0.36
9	540	21.49	1.51	0.337	5.23	45.83	\pm	0.43
10	570	22.83	1.70	0.376	5.17	45.27	\pm	0.49
11	600	24.05	8.87	0.333	5.15	45.18	±	0.17
12	620	20.44	5.89	0.325	5.21	45.70	\pm	0.23
13	640	19.61	6.05	0.372	5.18	45.43	±	0.24
14	660	13.26	7.93	0.430	5.17	45.32	\pm	0.15
15	680	6.54	3.91	0.385	5.17	45.32	±	0.20
16	720	5.43	5.58	0.438	5.16	45.18	\pm	0.13
17	800	5.18	7.80	0.377	5.08	44.49	±	0.10
18	900	5.20	8.71	0.307	4.99	43.75	\pm	0.13
19	1000	6.86	7.16	0.349	4.93	43.26	\pm	0.11
20	1100	13.64	2.93	0.610	5.08	44.50	\pm	0.30
21	Füzyon	5.36	26.40	2.530	4.96	43.48	±	0.10

Tablo 3.8. Eosen yaşlı yastık lavlarda 301 numaralı örnekten seçilen tüm kayaç hamurunda basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰Ar-³⁹Ar yaşlandırma verileri

Tablo 3.9. Eosen yaşlı yastık lavlarda 363 numaralı örnekten seçilen tüm kayaç hamurunda basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰Ar-³⁹Ar yaşlandırma verileri

		Ţ	Yastık lav (363) tüm kayaç hamu	ru			
Basamak	Sıcaklık (°C)	⁴⁰ Ar _{Atm} (%)	³⁹ Ar _K (%)	$^{37}\mathrm{Ar_{Ca}}/^{39}\mathrm{Ar_{K}}$	$^{40}{\rm Ar}^{*/}^{39}{\rm Ar}_{\rm K}$	Yaş (N	Milyo	n yıl)
1	370	97.86	0.12	1.572	3.26	28.57	±	15.00
2	400	97.65	0.77	1.304	2.76	24.25	±	7.14
3	420	82.83	0.40	0.695	4.46	39.02	±	2.79
4	450	72.20	0.57	0.513	5.02	43.90	±	2.15
5	480	69.82	2.16	0.445	4.96	43.33	±	0.78
6	510	62.14	2.09	0.380	5.00	43.68	±	0.69
7	540	78.70	3.12	0.707	4.87	42.55	±	1.34
8	560	71.48	4.12	0.746	5.02	43.87	±	0.91
9	580	59.49	4.16	0.532	5.14	44.89	±	0.90
10	610	55.78	8.31	0.584	5.14	44.87	±	0.47
11	630	44.15	7.14	0.501	5.12	44.74	±	0.38
12	660	31.06	11.94	0.529	5.08	44.39	±	0.25
13	680	17.04	6.36	0.473	5.04	44.01	±	0.18
14	710	13.79	5.57	0.521	5.04	44.07	±	0.18
15	780	11.88	6.70	0.536	5.03	43.94	±	0.19
16	900	8.62	17.28	0.456	4.99	43.64	±	0.11
17	1000	10.74	7.73	0.511	4.95	43.31	\pm	0.22
18	1150	26.82	1.39	1.366	4.94	43.17	±	0.73
19	Füzyon	5.61	10.08	3.816	4.96	43.32	±	0.19

		В	azaltik lav (14	1) tüm kayaç hamı	uru			
Basamak	Sıcaklık (°C)	⁴⁰ Ar _{Atm} (%)	³⁹ Ar _K (%)	$^{37}\mathrm{Ar_{Ca}}/^{39}\mathrm{Ar_{K}}$	⁴⁰ Ar*/ ³⁹ Ar _K	Yaş (N	Milyo	n yıl)
1	250	101.36	0.06	2.013	-0.75	0.00	±	0.00
2	320	98.70	0.38	2.345	0.57	5.07	±	7.27
3	400	81.52	3.43	1.213	4.48	39.58	±	1.30
4	450	59.89	4.94	0.826	4.83	42.63	±	0.61
5	490	21.12	3.62	0.763	5.07	44.72	±	0.45
6	550	26.67	5.92	0.705	5.03	44.31	±	0.31
7	620	9.22	5.64	0.444	5.09	44.84	±	0.38
8	690	11.02	5.59	0.395	5.07	44.65	±	0.26
9	730	16.98	5.93	0.469	5.02	44.22	\pm	0.30
10	790	19.85	11.30	0.629	5.00	44.09	±	0.28
11	850	13.71	11.73	0.531	4.98	43.89	\pm	0.22
12	920	13.07	7.66	0.424	4.94	43.57	±	0.36
13	1150	21.73	12.13	0.587	4.94	43.60	±	0.21
14	1300	43.93	6.72	0.518	4.75	41.94	±	0.39
15	Füzyon	11.34	14.96	1.056	4.92	43.42	±	0.15

Tablo 3.10. Eosen yaşlı bazaltik lavlardan 141 numaralı örnekten seçilen tüm kayaç hamurunda basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰Ar-³⁹Ar yaşlandırma verileri

Tablo 3.11. Eosen yaşlı bazaltik lavlarda 260 numaralı örnekten seçilen tüm kayaç hamurunda basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰Ar-³⁹Ar yaşlandırma verileri

Bazaltik lav (260) tüm kayaç hamuru									
Basamak	Sıcaklık (°C)	⁴⁰ Ar _{Atm} (%)	³⁹ Ar _K (%)	$^{37}\mathrm{Ar_{Ca}}/^{39}\mathrm{Ar_{K}}$	⁴⁰ Ar*/ ³⁹ Ar _K	Yaş (Milyon yıl)			
1	250	98.70	0.13	1.190	3.31	29.24	±	14.00	
2	300	95.53	0.27	1.142	4.07	35.87	±	5.27	
3	330	89.52	0.60	1.036	4.05	35.64	±	2.12	
4	360	71.94	1.75	0.610	4.26	37.48	±	1.17	
5	390	58.47	2.58	0.744	4.77	41.93	±	0.58	
6	420	27.77	1.57	0.781	4.94	43.43	±	0.43	
7	450	21.63	2.49	0.544	4.89	42.99	±	0.34	
8	480	12.00	4.96	0.340	4.93	43.32	±	0.25	
9	510	6.05	5.96	0.185	4.98	43.72	±	0.16	
10	540	5.51	6.26	0.153	5.00	43.93	±	0.13	
11	570	7.09	3.96	0.157	4.99	43.82	\pm	0.17	
12	600	10.85	3.36	0.208	4.99	43.88	±	0.19	
13	630	15.01	2.93	0.248	4.96	43.63	\pm	0.26	
14	670	16.52	4.87	0.258	4.99	43.84	\pm	0.29	
15	710	17.41	4.13	0.239	4.98	43.76	\pm	0.23	
16	740	18.57	7.34	0.220	4.95	43.47	±	0.21	
17	780	19.11	6.62	0.197	4.94	43.40	±	0.17	
18	810	19.13	5.62	0.180	4.95	43.51	±	0.18	
19	840	19.95	6.68	0.209	4.92	43.21	±	0.21	
20	870	20.09	5.47	0.204	4.96	43.55	±	0.19	
21	920	21.17	5.14	0.201	4.91	43.17	\pm	0.24	
22	1000	21.38	5.92	0.269	4.90	43.08	±	0.21	
23	1150	24.13	7.01	0.675	4.91	43.12	±	0.20	
24	Füzyon	16.10	4.38	0.996	4.93	43.31	±	0.21	

Bazaltik lav (511) tüm kayaç hamuru									
Basamak	Sıcaklık (°C)	⁴⁰ Ar _{Atm} (%)	³⁹ Ar _K (%)	${}^{37}\mathrm{Ar_{Ca}}/{}^{39}\mathrm{Ar_{K}}$	⁴⁰ Ar*/ ³⁹ Ar _K	Yaş (Milyon yıl)			
1	250	102.99	0.00	0.000	-57.50	0.00	±	0.00	
2	300	96.84	0.06	0.374	4.60	40.57	\pm	19.88	
3	340	96.70	0.74	0.404	2.56	22.72	±	7.19	
4	380	94.01	5.57	0.266	3.36	29.74	\pm	3.45	
5	400	95.55	2.23	0.311	3.04	26.92	±	4.59	
6	430	93.54	6.16	0.517	4.17	36.80	±	3.10	
7	450	85.16	3.40	0.640	5.30	46.73	±	2.03	
8	480	75.54	4.76	0.757	4.98	43.91	±	0.97	
9	510	64.16	4.74	0.743	5.10	44.93	±	0.72	
10	540	55.27	6.97	0.816	5.11	44.99	±	0.76	
11	570	47.96	6.95	0.767	5.06	44.61	±	0.64	
12	600	39.78	10.39	0.791	5.10	44.92	±	0.37	
13	620	30.94	9.27	0.806	5.08	44.81	±	0.35	
14	650	27.15	8.79	0.842	5.01	44.16	±	0.26	
15	680	22.24	7.95	0.905	5.03	44.33	±	0.31	
16	730	17.37	6.55	1.056	5.07	44.67	\pm	0.40	
17	800	16.29	4.19	1.233	4.97	43.85	±	0.42	
18	900	14.41	2.66	1.534	4.97	43.82	\pm	0.82	
19	Füzyon	26.59	8.60	3.782	4.85	42.74	±	0.40	

Tablo 3.12. Eosen yaşlı bazaltik lavlarda 511 numaralı örnekten seçilen tüm kayaç hamurunda basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰Ar-³⁹Ar yaşlandırma verileri

3.6.3. Bazaltik Dayk ve Siler

Bazaltik dayklardan 399, 508, 642 numaralı örneklerden ve Yoroz Burnu civarında yüzeyleme veren bazaltik silden 801 numaralı örnekten seçilen tüm kayaç hamuru üzerinde 40 Ar- 39 Ar yaşlandırma analizleri yapılmıştır (Tablo 3.13, 3.14, 3.15 ve 3.16). Yaşlandırma analizleri sırasında ölçümler 399 numaralı örnek için 16 basamakta, 508 numaralı örnek için 20 basamakta, 642 numaralı örnek için ise 16 basamakta, 801 numaralı örnek için 23 basamakta gerçekleştirilmiştir. Tüm kayaç hamuru üzerinde yapılan yaşlandırmalarda, 399 numaralı örnek için 43.2 ± 0.1 My, 508 numaralı örnek için 44.7 ± 0.1 My, 642 numaralı örnek için 43.7 ± 0.2 My ve 801 numaralı örnek için ise 44.2 ± 0.1 My plato yaşları elde edilmiştir (Şekil 3.90). Elde edilen bu yaş aralıkları ise diğer bazik bileşimli fasiyes kayaçları gibi Orta Eosen, Lütesiyen'e karşılık gelmektedir.

% ³⁹Ar % ³⁹Ar Şekil 3.90. Eosen yaşlı bazaltik dayk ve sillerde (399, 508, 642 ve 801) tüm kayaç hamuruna ait ⁴⁰Ar-³⁹Ar yaş spektrumları ve plato yaşları

Tablo 3.13. Eosen yaşlı bazaltik dayklarda 399 numaralı örnekten seçilen tüm kayaç hamurunda basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰Ar-³⁹Ar yaşlandırma verileri

Bazaltik dayk (399) tüm kayaç hamuru								
Basamak	Sıcaklık (°C)	$^{40}Ar_{Atm}(\%)$ $^{39}Ar_{K}(\%)$ $^{37}Ar_{Ca}/^{39}Ar_{K}$ $^{40}Ar^{*}/^{39}Ar_{K}$ Yaş (Mil						
1	250	84.05	0.01	4.996	18.45	157.27	±	144.48
2	300	96.75	0.14	4.219	3.30	29.18	\pm	14.69
3	350	80.00	3.25	0.757	3.43	30.25	\pm	1.46
4	380	48.00	1.51	0.308	3.86	34.01	±	1.52
5	410	31.50	3.39	0.227	4.68	41.22	\pm	1.13
6	430	24.35	4.02	0.225	4.83	42.53	\pm	0.70
7	450	15.97	2.26	0.210	4.83	42.54	\pm	0.84
8	490	21.22	3.38	0.256	4.96	43.63	±	0.60
9	540	16.38	3.36	0.207	5.03	44.26	\pm	0.55
10	620	17.49	4.09	0.229	5.05	44.44	±	0.58
11	740	23.78	8.22	0.315	5.12	45.04	\pm	0.37
12	850	17.18	10.72	0.292	4.98	43.77	±	0.39
13	950	15.95	15.40	0.240	4.94	43.50	\pm	0.18
14	1030	17.13	13.24	0.204	4.84	42.55	±	0.25
15	1130	16.34	9.26	0.237	4.86	42.77	\pm	0.29
16	Füzyon	16.91	17.75	0.673	4.90	43.09	±	0.20

Bazaltik dayk (508) yüm kayaç hamuru									
Basamak	Sıcaklık (°C)	⁴⁰ Ar _{Atm} (%)	³⁹ Ar _K (%)	${}^{37}{\rm Ar_{Ca}}/{}^{39}{\rm Ar_{K}}$	⁴⁰ Ar*/ ³⁹ Ar _K	Yaş (Milyon yıl)			
1	250	141.46	0.00	7.084	-88.64	0.00	±	0.00	
2	320	101.61	0.10	0.146	-0.94	0.00	\pm	0.00	
3	380	94.03	0.17	0.394	1.76	15.60	\pm	3.99	
4	420	89.23	0.25	0.341	2.52	22.38	±	3.27	
5	460	94.75	2.16	0.339	2.84	25.20	\pm	2.54	
6	490	77.63	0.83	0.195	4.00	35.38	±	1.38	
7	520	63.11	1.77	0.197	4.92	43.38	±	0.67	
8	550	54.34	2.02	0.166	4.87	42.99	±	0.64	
9	590	44.33	3.44	0.169	5.11	45.03	±	0.63	
10	630	35.94	5.18	0.163	5.03	44.34	±	0.33	
11	670	28.11	7.96	0.159	5.10	45.00	±	0.28	
12	700	23.13	7.63	0.168	5.06	44.67	±	0.24	
13	730	18.91	5.04	0.166	5.04	44.44	±	0.24	
14	760	17.45	5.85	0.170	5.03	44.37	±	0.24	
15	810	15.80	5.53	0.173	5.01	44.23	±	0.27	
16	860	13.42	5.46	0.175	5.07	44.67	±	0.18	
17	940	12.19	6.35	0.191	5.03	44.40	±	0.30	
18	1100	15.65	3.81	0.249	5.02	44.29	\pm	0.36	
19	1400	23.85	24.09	0.362	4.99	43.98	\pm	0.16	
20	Füzyon	19.09	12.35	0.458	5.03	44.40	±	0.19	

Tablo 3.14. Eosen yaşlı bazaltik dayklarda 508 numaralı örnekten seçilen tüm kayaç hamurunda basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰Ar-³⁹Ar yaşlandırma verileri

Tablo 3.15. Eosen yaşlı bazaltik dayklarda 642 numaralı örnekten seçilen tüm kayaç hamurunda basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰Ar-³⁹Ar yaşlandırma verileri

Bazaltik dayk (642) tüm kayaç hamuru								
Basamak	Sıcaklık (°C)	⁴⁰ Ar _{Atm} (%)	Milyo	n yıl)				
1	250	96.73	0.04	17.357	14.33	123.46	±	61.81
2	300	99.71	0.39	22.404	0.95	8.41	\pm	20.46
3	350	96.56	1.85	9.007	2.27	20.14	±	4.73
4	390	81.65	2.41	2.126	3.56	31.44	\pm	1.35
5	440	40.80	5.85	0.856	5.13	45.20	±	0.49
6	480	22.44	7.35	0.658	5.25	46.26	±	0.35
7	510	16.18	5.75	0.650	5.17	45.54	±	0.54
8	540	17.10	9.14	0.542	5.18	45.61	\pm	0.36
9	560	17.88	7.90	0.471	5.15	45.33	±	0.19
10	580	17.92	4.70	0.524	5.13	45.21	±	0.40
11	620	20.03	3.63	0.605	5.13	45.22	±	0.46
12	700	24.25	8.95	0.659	5.16	45.42	±	0.24
13	800	16.66	10.65	0.385	5.11	45.04	±	0.20
14	900	12.72	12.76	0.388	5.06	44.58	±	0.18
15	980	10.71	10.33	0.502	4.99	43.93	±	0.20
16	Füzyon	11.53	8.30	0.914	4.96	43.72	±	0.24

Bazaltik sil (801) tüm kayaç hamuru								
Basamak	Sıcaklık (°C)	⁴⁰ Ar _{Atm} (%)	³⁹ Ar _K (%)	$^{37}\mathrm{Ar_{Ca}}/^{39}\mathrm{Ar_{K}}$	⁴⁰ Ar*/ ³⁹ Ar _K	Yaş (Milyon yıl)		
1	250	99.05	0.03	1.967	4.53	39.65	±	39.08
2	300	99.80	0.05	1.460	0.47	4.14	±	26.81
3	350	92.22	0.62	0.831	3.00	26.35	±	4.03
4	380	85.72	0.54	0.767	3.23	28.34	±	2.47
5	420	75.43	0.76	0.682	4.50	39.44	±	2.07
6	460	42.80	1.43	0.563	5.23	45.72	±	0.90
7	490	21.59	2.88	0.525	5.20	45.42	±	0.49
8	520	36.16	4.68	0.389	5.08	44.40	±	0.31
9	540	24.63	2.55	0.264	5.15	44.99	±	0.36
10	560	25.14	4.43	0.236	5.10	44.58	±	0.42
11	580	21.23	3.72	0.199	5.10	44.62	±	0.33
12	610	24.86	5.97	0.216	5.08	44.41	±	0.32
13	640	16.97	6.97	0.219	5.08	44.44	±	0.21
14	670	13.36	5.95	0.215	5.04	44.12	±	0.19
15	710	11.91	5.87	0.208	5.08	44.41	±	0.16
16	770	13.62	6.25	0.217	5.03	44.03	\pm	0.22
17	870	13.36	10.07	0.245	5.05	44.18	±	0.15
18	900	14.21	6.55	0.263	5.05	44.19	±	0.21
19	940	14.87	5.71	0.272	5.00	43.77	±	0.19
20	1040	18.82	6.74	0.335	5.01	43.84	±	0.19
21	1140	17.90	7.04	0.618	5.03	44.02	\pm	0.19
22	1300	19.74	5.90	1.423	5.04	44.07	\pm	0.28
23	Füzyon	6.53	5.28	3.587	5.04	44.04	±	0.24

Tablo 3.16. Eosen yaşlı bazaltik sillerde 801 numaralı örnekten seçilen tüm kayaç hamurunda basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰Ar-³⁹Ar yaslandırma verileri

3.6.4. Andezitik Dayk ve Dom

Andezitik dayklardan 777 numaralı örnekte tüm kayaç hamuru üzerinde ve domlardan 232 ve 233 numaralı örneklerde hem tüm kayaç hamuru hem de flogopit ayrımı üzerinde ⁴⁰Ar-³⁹Ar yaşlandırma analizleri yapılmıştır (Tablo 3.17, 3.18, 3.19, 3.20 ve 3.21). Yaşlandırma analizleri sırasında ölçümler 777 numaralı örnek içerisindeki tüm kayaç hamurunda 18 basamak, 232 numaralı örnek içerisindeki flogopit için 16 basamak ve tüm kayaç hamurunda ise 24 basamak, 233 numaralı örnek içerisindeki flogopit için 22 basamak ve tüm kayaç hamurunda ise 24 basamak, 233 numaralı örnek içerisindeki flogopit ve tüm kayaç hamuru üzerinde yapılan yaşlandırma analizlerinde, 232 numaralı örnek için sırasıyla 43.5 ± 0.1 My ve 43.39 ± 0.1 My, 233 numaralı örnek için 42.4 ± 0.1 My ve 42.5 ± 0.1 My, 777 numaralı örnek için ise tüm kayaç hamuru üzerinde yapılan analizde 43.4 ± 0.1 My plato yaşları elde edilmiştir (Şekil 3.91). Elde edilen bu yaş aralıkları Orta Eosen, Lütesiyen'e karşılık gelmektedir.

Şekil 3. 91. Eosen yaşlı andezitik dayk ve domlarda (232, 233 ve 777) tüm kayaç hamuru ve flogopite ait ⁴⁰Ar-³⁹Ar yaş spektrumları ve plato yaşları

	Andezitik dom (232) tüm kayaç hamuru								
Basamak	Sıcaklık (°C)	⁴⁰ Ar _{Atm} (%)	³⁹ Ar _K (%)	$^{37}\mathrm{Ar_{Ca}}/^{39}\mathrm{Ar_{K}}$	⁴⁰ Ar*/ ³⁹ Ar _K	Yaş (Yaş (Milyon yıl)		
1	250	100.96	0.03	1.150	-3.35	0.00	±	0.00	
2	300	101.29	0.02	0.429	-5.86	0.00	±	0.00	
3	350	100.17	0.38	1.060	-0.39	0.00	±	0.00	
4	390	91.79	0.66	0.232	3.34	29.18	±	2.88	
5	430	72.97	0.95	0.212	3.76	32.88	±	1.25	
6	480	52.35	1.94	0.285	4.20	36.68	±	0.80	
7	540	28.33	3.04	0.322	4.72	41.13	±	0.40	
8	600	17.08	4.28	0.325	4.76	41.51	±	0.23	
9	650	12.66	5.22	0.246	4.83	42.09	±	0.24	
10	690	7.02	4.53	0.170	4.92	42.91	±	0.21	
11	730	7.12	5.09	0.147	4.84	42.22	±	0.16	
12	770	5.54	5.19	0.116	4.90	42.71	±	0.18	
13	810	4.18	5.18	0.104	4.89	42.59	±	0.22	
14	860	2.78	5.96	0.105	4.91	42.82	±	0.14	
15	910	3.02	6.85	0.115	4.96	43.23	±	0.15	
16	960	3.95	5.56	0.107	4.97	43.29	±	0.17	
17	1010	5.37	7.20	0.111	4.94	43.07	±	0.17	
18	1060	14.11	7.58	0.096	4.98	43.37	±	0.20	
19	1110	5.96	7.35	0.090	4.96	43.22	±	0.19	
20	1160	6.42	6.10	0.095	4.99	43.46	±	0.22	
21	1210	8.23	5.80	0.097	5.00	43.60	\pm	0.12	
22	1280	11.04	5.24	0.118	4.97	43.31	±	0.16	
23	1350	8.70	2.80	0.121	4.96	43.20	\pm	0.26	
24	Füzyon	14.55	3.05	0.444	4.96	43.24	±	0.33	

Tablo 3.17. Eosen yaşlı andezitik domlardan 232 numaralı örnekte seçilen tüm kayaç hamuru üzerinde basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰Ar-³⁹Ar yaşlandırma analiz sonuçları

Tablo 3.18. Eosen yaşlı andezitik domlardan 232 numaralı örnekte seçilen flogopit üzerinde basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰Ar-³⁹Ar yaşlandırma verileri

	Andezitik dom (232), flogopit									
Basamak	Sıcaklık (°C)	⁴⁰ Ar _{Atm} (%)	³⁹ Ar _K (%)	³⁷ Ar _{Ca} / ³⁹ Ar _K	⁴⁰ Ar*/ ³⁹ Ar _K	Yaş (N	Yaş (Milyon yıl)			
1	250	92.21	0.00	0.000	49.19	388.42	±	573.14		
2	300	107.17	0.01	0.444	-12.68	0.00	±	0.00		
3	350	83.29	0.02	0.056	8.58	74.05	±	102.89		
4	400	72.22	0.02	0.000	12.52	107.03	±	75.84		
5	500	49.50	0.18	0.024	4.71	41.05	±	6.16		
6	600	9.12	1.59	0.011	5.07	44.14	±	0.96		
7	650	9.25	1.02	0.006	4.83	42.06	±	1.56		
8	700	7.24	2.29	0.003	4.95	43.07	±	0.87		
9	730	2.36	1.81	0.000	4.98	43.37	±	0.85		
10	770	4.02	3.47	0.002	4.87	42.42	±	0.43		
11	810	2.49	4.77	0.003	4.91	42.72	±	0.22		
12	840	2.39	7.47	0.005	4.91	42.76	±	0.19		
13	870	1.48	7.29	0.005	4.97	43.30	±	0.22		
14	910	1.23	4.60	0.007	5.00	43.48	±	0.28		
15	960	2.18	4.21	0.007	4.92	42.86	±	0.35		
16	1030	1.27	9.93	0.004	4.98	43.30	±	0.13		
17	1100	1.04	12.77	0.004	4.98	43.35	±	0.10		
18	1200	0.63	15.66	0.001	5.01	43.57	±	0.11		
19	1350	5.10	13.91	0.001	4.98	43.39	±	0.14		
20	Füzyon	0.74	8.98	0.000	5.00	43.53	±	0.13		

	Andezitik dom (233) tüm kayaç hamuru									
Basamak	Sıcaklık (°C)	⁴⁰ Ar _{Atm} (%)	³⁹ Ar _K (%)	$^{37}\mathrm{Ar_{Ca}}/^{39}\mathrm{Ar_{K}}$	⁴⁰ Ar*/ ³⁹ Ar _K	Yaş (Yaş (Milyon yıl)			
1	250	87.56	0.00	0.001	129.94	888.39	±	1015.10		
2	300	100.73	0.10	0.175	-2.04	0.00	\pm	0.00		
3	340	96.99	0.28	0.232	2.35	20.68	\pm	4.70		
4	370	70.15	1.12	0.136	3.98	34.84	\pm	0.72		
5	400	36.48	0.82	0.150	4.08	35.66	\pm	1.27		
6	450	27.21	4.25	0.163	4.50	39.33	\pm	0.22		
7	475	7.28	3.33	0.168	4.71	41.13	\pm	0.24		
8	510	11.97	4.70	0.190	4.78	41.77	\pm	0.23		
9	550	8.15	6.06	0.166	4.82	42.09	\pm	0.22		
10	580	6.49	3.31	0.135	4.78	41.74	\pm	0.44		
11	610	11.31	4.58	0.116	4.80	41.91	\pm	0.24		
12	640	10.69	4.98	0.097	4.85	42.36	\pm	0.23		
13	670	8.75	4.26	0.086	4.82	42.11	\pm	0.28		
14	700	5.19	3.58	0.088	4.81	42.03	\pm	0.33		
15	740	5.25	4.45	0.085	4.86	42.40	\pm	0.20		
16	780	4.51	5.00	0.093	4.85	42.38	\pm	0.17		
17	820	7.24	4.60	0.083	4.85	42.33	\pm	0.20		
18	860	5.12	9.27	0.097	4.87	42.51	\pm	0.14		
19	900	7.43	11.12	0.087	4.86	42.45	\pm	0.13		
20	930	11.68	8.59	0.110	4.80	41.91	\pm	0.21		
21	970	13.49	5.91	0.088	4.78	41.70	±	0.24		
22	1100	12.38	6.51	0.063	4.82	42.12	\pm	0.28		
23	Füzyon	19.44	3.18	0.248	4.89	42.71	±	0.29		

Tablo 3.19. Eosen yaşlı andezitik domlardan 233 numaralı örnekte seçilen tüm kayaç hamuru üzerinde basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰Ar-³⁹Ar yaşlandırma verileri

Tablo 3.20. Eosen yaşlı andezitik domlarda 233 numaralı örnekte seçilen flogopit üzerinde basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰Ar-³⁹Ar yaşlandırma verileri

Andezitik dom (233), flogopit									
Basamak	Sıcaklık (°C)	⁴⁰ Ar _{Atm} (%)	³⁹ Ar _K (%)	³⁷ Ar _{Ca} / ³⁹ Ar _K	⁴⁰ Ar*/ ³⁹ Ar _K	Yaş (Yaş (Milyon yıl)		
1	370	95.60	0.32	0.000	1.19	10.48	±	6.32	
2	400	89.52	0.62	0.077	2.98	26.12	±	3.84	
3	430	78.02	1.67	0.039	3.98	34.81	±	1.54	
4	450	68.27	1.09	0.053	4.31	37.62	±	2.42	
5	480	57.04	1.79	0.000	4.68	40.80	±	0.63	
6	510	46.09	1.81	0.023	4.62	40.33	±	0.57	
7	550	44.57	4.59	0.019	4.89	42.64	±	0.63	
8	580	23.23	2.82	0.009	4.88	42.60	±	0.56	
9	610	25.06	3.16	0.017	4.70	41.04	±	0.68	
10	650	24.41	5.92	0.013	4.77	41.66	±	0.43	
11	680	23.30	5.81	0.021	4.79	41.82	±	0.33	
12	710	21.55	4.45	0.032	4.80	41.87	±	0.38	
13	740	18.30	3.52	0.034	4.92	42.87	±	0.34	
14	780	20.80	6.31	0.032	4.82	42.08	±	0.34	
15	810	19.55	4.54	0.044	4.82	42.05	±	0.33	
16	850	20.31	8.52	0.052	4.82	42.07	±	0.28	
17	880	20.14	6.07	0.096	4.80	41.87	±	0.34	
18	920	18.54	5.36	0.080	4.82	42.01	±	0.41	
19	1000	15.81	11.22	0.106	4.84	42.22	±	0.18	
20	1100	10.68	10.58	0.142	4.89	42.64	±	0.17	
21	1250	7.78	5.94	0.275	4.92	42.93	±	0.27	
22	Füzyon	7.43	3.90	0.322	4.85	42.35	±	0.42	

	Andezitik dayk (777) tüm kayaç hamuru								
Basamak	Sıcaklık	⁴⁰ Ar _{Atm} (%)	³⁹ Ar _K (%)	${}^{37}{\rm Ar_{Ca}}/{}^{39}{\rm Ar_{K}}$	⁴⁰ Ar*/ ³⁹ Ar _K	Yaş (N	Ailyo	n yıl)	
1	250	92.08	0.44	0.115	2.08	18.45	±	4.70	
2	300	78.96	0.55	0.106	3.96	35.04	\pm	3.17	
3	350	27.53	3.37	0.137	6.78	59.60	\pm	0.55	
4	380	11.15	1.92	0.119	6.10	53.70	±	0.95	
5	420	10.60	5.13	0.128	5.71	50.32	\pm	0.35	
6	450	6.56	9.30	0.221	5.50	48.50	±	0.24	
7	480	7.81	7.19	0.449	5.00	44.10	±	0.33	
8	510	7.58	7.77	0.813	4.87	42.96	±	0.21	
9	540	4.41	4.54	0.436	4.86	42.93	±	0.31	
10	580	2.21	3.16	0.153	4.86	42.93	±	0.37	
11	640	3.08	4.97	0.143	4.90	43.26	±	0.33	
12	710	2.83	3.61	0.161	4.93	43.52	±	0.36	
13	800	4.98	4.84	0.151	5.00	44.12	±	0.45	
14	900	4.42	12.77	0.097	4.93	43.48	±	0.20	
15	980	5.24	11.65	0.096	4.90	43.23	±	0.22	
16	1060	5.96	7.61	0.097	4.92	43.44	±	0.27	
17	1160	6.98	3.58	0.096	4.87	42.97	\pm	0.44	
18	Füzyon	8.21	7.59	0.169	4.90	43.28	±	0.25	

Tablo 3.21. Eosen yaşlı andezitik dayklarda 777 numaralı örnekte seçilen tüm kayaç hamuru üzerinde basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰Ar-³⁹Ar yaşlandırma verileri

3.6.5. Trakitik Dayk

Trakitik dayklardan 318 ve 625 numaralı örneklerde hem tüm kayaç hamuru hem de flogopit mineral ayrımı, 188 numaralı örnekte ise flogopit ve sanidin mineralleri üzerinde ⁴⁰Ar-³⁹Ar yaşlandırma analizleri yapılmıştır (Tablo 3.22-27). Yaşlandırma analizleri sırasında ölçümler 188 numaralı örnek içerisindeki flogopit için 17 basamak ve sanidin için 13 basamak, 318 numaralı örnek içerisindeki tüm kayaç hamuru için 22 basamak ve flogopit için 14 basamak, 625 numaralı örnek içerisindeki tüm kayaç hamuru için 26 basamak ve flogopit için ise 22 basamakta gerçekleştirilmiştir. Tüm kayaç hamuru, flogopit ve sanidin üzerinde yapılan yaşlandırma analizlerinde, 188 numaralı örnek için sırasıyla 44.3 ± 0.1 My ve 41.9 ± 0.1 My, 318 numaralı örnek için 43.3 ± 0.1 My ve 43.8 ± 0.1 My, 625 numaralı örnek için ise tüm kayaç hamuru üzerinde yapılan 43.2 ± 0.1 My ve 44.0 ± 0.1 My plato yaşları elde edilmiştir (Şekil 3.92). Elde edilen bu yaş aralıkları Orta Eosen, Lütesiyen'e karşılık gelmektedir.

Şekil 3.92. Eosen yaşlı trakitik dayklarda (188, 318 ve 625) tüm kayaç hamuru, sanidin ve flogopite ait ⁴⁰Ar-³⁹Ar yaş spektrumları ve plato yaşları

Trakitik dayk (188), flogopit									
Basamak	Sıcaklık (°C)	⁴⁰ Ar _{Atm} (%)	³⁹ Ar _K (%)	³⁷ Ar _{Ca} / ³⁹ Ar _K	⁴⁰ Ar*/ ³⁹ Ar _K	Yaş (N	Yaş (Milyon yıl)		
1	250	105.90	0.06	0.000	-10.55	0.00	±	0.00	
2	300	108.30	0.08	0.000	-5.26	0.00	±	0.00	
3	370	99.54	1.61	0.350	0.03	0.30	±	2.19	
4	440	87.95	1.00	0.040	1.73	15.38	±	4.52	
5	510	45.19	3.14	0.025	4.12	36.41	\pm	0.88	
6	560	17.78	3.87	0.000	4.93	43.47	\pm	1.09	
7	610	11.63	6.00	0.019	5.00	44.10	±	0.48	
8	650	10.83	6.46	0.009	4.93	43.51	\pm	0.68	
9	690	10.11	8.64	0.073	4.95	43.68	±	0.57	
10	730	8.89	8.42	0.091	5.00	44.07	\pm	0.51	
11	770	10.19	7.55	0.110	4.97	43.82	±	0.50	
12	830	9.97	7.44	0.155	5.00	44.10	\pm	0.47	
13	890	7.85	5.46	0.178	5.03	44.33	±	0.79	
14	970	7.80	5.78	0.175	4.93	43.53	\pm	0.69	
15	1100	1.75	9.09	0.065	5.04	44.47	±	0.52	
16	1250	1.13	12.54	0.059	5.04	44.46	\pm	0.39	
17	Füzyon	2.31	12.85	0.033	5.03	44.38	±	0.35	

Tablo 3.22. Eosen yaşlı trakitik dayklardan 188 numaralı örnekte seçilen flogopit üzerinde basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰Ar-³⁹Ar yaşlandırma verileri

Tablo 3.23. Eosen yaşlı trakitik dayklardan 188 numaralı örnekte seçilen sanidin üzerinde basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰Ar-³⁹Ar yaşlandırma verileri

Trakitik dayk (188), sanidin									
Basamak	Sıcaklık (°C)	⁴⁰ Ar _{Atm} (%)	³⁹ Ar _K (%)	${}^{37}\mathrm{Ar_{Ca}}/{}^{39}\mathrm{Ar_{K}}$	⁴⁰ Ar*/ ³⁹ Ar _K	Yaş (Milyon yıl)			
1	250	113.04	0.01	0.000	-15.65	0.00	±	0.00	
2	300	83.12	0.46	0.030	1.99	17.67	\pm	1.57	
3	330	38.48	0.67	0.015	3.52	31.15	±	0.81	
4	360	5.45	3.05	0.014	4.04	35.76	\pm	0.27	
5	390	1.97	2.76	0.014	4.46	39.45	±	0.23	
6	420	1.32	4.29	0.014	4.65	41.08	±	0.16	
7	450	0.83	2.60	0.012	4.75	42.02	±	0.29	
8	480	0.98	2.26	0.016	4.77	42.14	±	0.28	
9	520	1.92	2.02	0.015	4.76	42.05	±	0.39	
10	580	2.58	1.67	0.014	4.72	41.73	±	0.42	
11	700	3.80	1.92	0.035	4.68	41.40	±	0.26	
12	900	3.16	3.95	0.023	4.71	41.60	±	0.16	
13	Füzyon	6.47	74.34	0.004	4.75	41.94	±	0.11	

Trakitik dayk (318) tüm kayaç hamuru									
Basamak	Sıcaklık (°C)	⁴⁰ Ar _{Atm} (%)	³⁹ Ar _K (%)	$^{37}\mathrm{Ar_{Ca}}/^{39}\mathrm{Ar_{K}}$	⁴⁰ Ar*/ ³⁹ Ar _K	Yaş (N	Ailyo	n yıl)	
1	250	100.77	0.13	0.298	-0.92	0.00	±	0.00	
2	300	101.74	0.06	0.042	-1.44	0.00	\pm	0.00	
3	350	79.43	0.66	0.216	4.26	37.35	\pm	1.61	
4	390	31.60	1.70	0.177	4.79	42.00	\pm	0.76	
5	430	14.60	2.98	0.184	4.78	41.86	±	0.33	
6	460	11.78	1.84	0.188	4.70	41.18	±	0.47	
7	500	7.67	5.98	0.200	4.87	42.72	±	0.16	
8	530	5.40	6.43	0.210	4.88	42.76	±	0.12	
9	560	5.51	6.14	0.209	4.90	42.96	±	0.14	
10	590	5.53	6.91	0.208	4.89	42.84	±	0.12	
11	630	2.93	6.52	0.170	4.91	43.00	±	0.11	
12	670	2.67	6.75	0.138	4.93	43.19	±	0.13	
13	710	3.33	7.73	0.111	4.91	43.05	±	0.13	
14	740	3.13	7.30	0.091	4.93	43.22	±	0.10	
15	770	2.99	6.88	0.088	4.93	43.16	±	0.10	
16	800	3.09	6.65	0.091	4.92	43.09	±	0.15	
17	840	3.30	6.62	0.101	4.93	43.20	±	0.16	
18	880	4.72	5.57	0.118	4.89	42.88	±	0.22	
19	940	4.92	5.98	0.144	4.94	43.28	\pm	0.19	
20	1020	7.57	3.38	0.159	4.89	42.82	±	0.29	
21	1170	20.36	0.96	0.253	4.89	42.86	±	1.15	
22	Füzyon	6.86	2.83	0.327	4.93	43.17	±	0.43	

Tablo 3.24. Eosen yaşlı trakitik dayklardan 318 numaralı örnekte seçilen tüm kayaç hamuru üzerinde basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰Ar-³⁹Ar yaşlandırma verileri

Tablo 3.25. Eosen yaşlı trakitik dayklardan 318 numaralı örnekte seçilen flogopit üzerinde basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰Ar-³⁹Ar yaşlandırma verileri

Trakitik dayk (318), flogopit									
Basamak	Sıcaklık (°C)	⁴⁰ Ar _{Atm} (%)	³⁹ Ar _K (%)	${}^{37}\mathrm{Ar_{Ca}}/{}^{39}\mathrm{Ar_{K}}$	⁴⁰ Ar*/ ³⁹ Ar _K	Yaş (N	n yıl)		
1	300	84.76	0.03	0.136	10.19	88.10	±	62.96	
2	350	104.60	0.06	0.204	-0.88	0.00	\pm	0.00	
3	400	62.19	0.10	0.200	6.38	55.66	±	25.33	
4	450	46.48	0.25	0.124	5.64	49.33	\pm	13.61	
5	500	16.05	0.38	0.097	5.62	49.13	\pm	6.79	
6	550	26.84	0.88	0.052	4.92	43.08	\pm	3.17	
7	600	20.42	1.49	0.042	5.32	46.51	\pm	1.74	
8	650	11.05	2.22	0.037	5.27	46.14	\pm	1.18	
9	700	17.59	4.69	0.042	4.94	43.21	\pm	0.60	
10	740	16.61	5.21	0.052	5.08	44.47	\pm	0.52	
11	780	18.73	8.29	0.064	5.06	44.25	\pm	0.31	
12	810	33.89	4.76	0.098	4.84	42.40	±	1.06	
13	850	40.30	7.80	0.168	5.06	44.31	\pm	0.56	
14	Füzyon	9.44	63.83	0.182	5.03	44.04	±	0.12	

	Trakitik dayk (625) tüm kayaç hamuru									
Basamak	Sıcaklık (°C)	⁴⁰ Ar _{Atm} (%)	³⁹ Ar _K (%)	$^{37}\mathrm{Ar_{Ca}}/^{39}\mathrm{Ar_{K}}$	⁴⁰ Ar*/ ³⁹ Ar _K	Yaş (M	Milyo	n yıl)		
1	250	87.54	0.00	0.000	53.21	421.14	±	265.21		
2	300	101.03	0.11	0.129	-2.47	0.00	±	0.00		
3	350	94.05	0.87	0.074	3.63	32.05	±	2.93		
4	400	56.61	1.67	0.044	3.78	33.35	±	0.53		
5	440	24.19	2.85	0.024	4.32	38.12	±	0.19		
6	480	15.48	2.70	0.033	4.52	39.88	\pm	0.17		
7	520	14.48	3.90	0.038	4.65	40.97	±	0.15		
8	550	4.80	1.73	0.045	4.72	41.61	\pm	0.29		
9	580	9.48	3.14	0.023	4.77	42.05	\pm	0.16		
10	610	3.45	2.37	0.029	4.77	42.06	\pm	0.16		
11	650	8.81	4.79	0.033	4.84	42.62	\pm	0.12		
12	690	8.60	4.29	0.037	4.85	42.68	\pm	0.14		
13	730	8.50	3.46	0.030	4.88	42.96	\pm	0.14		
14	770	12.02	3.87	0.032	4.89	43.07	±	0.17		
15	820	13.37	4.38	0.032	4.89	43.04	\pm	0.14		
16	870	13.16	5.88	0.030	4.87	42.86	\pm	0.17		
17	910	12.68	6.42	0.026	4.90	43.16	\pm	0.12		
18	940	14.88	7.03	0.027	4.89	43.11	\pm	0.14		
19	970	16.55	6.93	0.031	4.88	42.98	±	0.17		
20	1000	18.46	7.11	0.032	4.86	42.81	\pm	0.15		
21	1030	19.10	6.33	0.032	4.87	42.93	\pm	0.15		
22	1060	22.59	4.63	0.037	4.82	42.47	\pm	0.18		
23	1100	19.39	5.00	0.033	4.89	43.04	\pm	0.17		
24	1170	19.15	5.40	0.032	4.86	42.85	±	0.22		
25	1270	20.01	3.25	0.035	4.84	42.68	±	0.21		
26	Füzyon	23.99	1.88	0.053	4.81	42.38	±	0.31		

Tablo 3.26. Eosen yaşlı trakitik dayklardan 625 numaralı örnekte seçilen tüm kayaç hamuru üzerinde basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰Ar-³⁹Ar yaşlandırma verileri

3.6.6. Foidli Breşik Lav

Foidli breşik lavlardan tefritik bileşimli 721 ve 726 numaralı kayaç örneklerinden seçilen tüm kayaç hamuru üzerinde 40 Ar- 39 Ar yaşlandırma analizleri yapılmış, fakat bunlardan yalnızca birinden plato yaşı elde edilmiştir. Yaşlandırma analizleri sırasında ölçümler, 721 numaralı örnek için 15 basamak, 726 numaralı örnek için 11 basamakta gerçekleştirilmiştir (Tablo 3.28 ve 3.29). 721 numaralı örnek için tüm kayaç hamuru üzerinde yapılan yaşlandırmada 5.96 ± 0.1 My plato yaşı elde edilmiştir (Şekil 3.93). 726 numaralı örnek üzerinde ise yaş alınamamıştır. Elde edilen bu yaş Üst Miyosen, Messiniyen'e karşılık gelmektedir.

Trakitik dayk (625), flogopit									
Basamak	Sıcaklık (°C)	⁴⁰ Ar _{Atm} (%)	³⁹ Ar _K (%)	³⁷ Ar _{Ca} / ³⁹ Ar _K	⁴⁰ Ar*/ ³⁹ Ar _K	Yaş (N	Yaş (Milyon yıl)		
1	250	100.33	0.06	0.251	-1.59	0.00	±	0.00	
2	300	105.83	0.01	0.000	-9.85	0.00	±	0.00	
3	350	98.72	0.07	0.204	1.70	15.04	±	17.24	
4	440	91.30	0.22	0.160	2.57	22.76	±	5.99	
5	500	78.32	0.18	0.036	3.60	31.79	±	7.49	
6	560	59.82	0.49	0.014	4.80	42.26	±	2.79	
7	690	23.91	5.22	0.012	4.85	42.74	±	0.30	
8	740	8.22	5.66	0.014	4.97	43.71	±	0.20	
9	780	9.25	8.00	0.009	5.04	44.33	±	0.19	
10	810	13.26	6.28	0.010	4.98	43.83	±	0.26	
11	850	13.95	9.25	0.017	4.95	43.53	±	0.23	
12	880	15.89	7.26	0.025	4.98	43.86	±	0.20	
13	910	21.71	7.04	0.067	4.98	43.80	±	0.29	
14	940	32.50	3.83	0.109	4.94	43.53	±	0.35	
15	990	39.30	4.90	0.169	4.91	43.26	±	0.48	
16	1100	37.83	11.89	0.174	5.00	43.99	±	0.29	
17	1180	43.71	9.78	0.111	4.92	43.30	±	0.39	
18	1210	57.31	4.17	0.155	4.96	43.64	±	0.53	
19	1300	45.99	7.15	0.129	4.91	43.23	±	0.35	
20	1400	53.47	4.04	0.097	4.81	42.34	\pm	0.58	
21	1600	64.13	2.21	0.086	4.59	40.43	±	0.92	
22	Füzyon	16.77	2.28	0.048	4.91	43.23	±	0.45	

Tablo 3.27. Eosen yaşlı trakitik dayklardan 625 numaralı örnekte seçilen flogopit üzerinde basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰Ar-³⁹Ar yaşlandırma verileri

Şekil 3. 93. Miyosen yaşlı foidli breşik lavlarda (721) tüm kayaç hamuruna ait ⁴⁰Ar-³⁹Ar yaş spektrumları ve plato yaşları

Foidli breşik lav (721) tüm kayaç hamuru									
Basamak	Sıcaklık (°C)	⁴⁰ Ar _{Atm} (%)	³⁹ Ar _K (%)	³⁷ Ar _{Ca} / ³⁹ Ar _K	⁴⁰ Ar*/ ³⁹ Ar _K	Yaş (1	Milyo	n yıl)	
1	250	101.14	0.24	0.991	-1.68	0.00	±	0.00	
2	300	100.20	1.76	0.776	-0.20	0.00	±	0.00	
3	320	100.50	1.74	0.434	-0.17	0.00	±	0.00	
4	360	91.54	1.29	0.596	0.73	6.38	±	1.65	
5	410	79.85	1.78	0.402	0.57	5.01	±	0.70	
6	470	24.32	11.78	0.227	0.71	6.23	±	0.20	
7	500	10.35	6.45	0.177	0.67	5.91	±	0.26	
8	550	6.27	18.77	0.188	0.67	5.92	±	0.08	
9	580	4.93	8.86	0.193	0.68	5.94	±	0.15	
10	620	4.22	9.24	0.222	0.68	6.01	±	0.18	
11	700	7.90	12.09	0.281	0.68	5.95	±	0.12	
12	800	10.62	7.00	0.436	0.69	6.08	±	0.28	
13	1000	21.31	7.96	0.697	0.67	5.85	±	0.16	
14	1300	50.59	7.16	2.632	0.65	5.70	±	0.18	
15	Füzyon	73.28	3.87	10.475	0.68	5.95	±	0.73	

Tablo 3.28. Miyosen yaşlı foidli breşik lavlarda 721 numaralı örnekten seçilen tüm kayaç hamurunda basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰Ar-³⁹Ar yaşlandırma verileri

Tablo 3.29. Miyosen yaşlı foidli breşik lavlarda 726 numaralı örnekten seçilen tüm kayaç hamurunda basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰Ar-³⁹Ar yaşlandırma verileri

		Foid	dli breşik lav (726) tüm kayaç ha	muru			
Basamak	Sıcaklık (°C)	⁴⁰ Ar _{Atm} (%)	³⁹ Ar _K (%)	${}^{37}{\rm Ar_{Ca}}/{}^{39}{\rm Ar_{K}}$	⁴⁰ Ar*/ ³⁹ Ar _K	Yaş (I	Milyo	n yıl)
1	250	98.74	5.45	2.774	0.50	4.38	±	6.37
2	300	103.64	5.72	2.598	-0.76	0.00	\pm	0.00
3	370	105.04	19.49	2.463	-0.77	0.00	\pm	0.00
4	440	103.02	17.46	2.916	-0.57	0.00	\pm	0.00
5	500	102.77	1.78	27.670	-2.86	0.00	\pm	0.00
6	580	97.59	1.55	34.405	7.49	64.71	\pm	37.54
7	650	98.07	1.91	12.092	5.73	49.72	±	32.68
8	720	98.13	2.76	5.955	2.75	24.07	\pm	17.61
9	850	92.37	10.09	6.839	1.65	14.41	\pm	3.33
10	1100	98.91	19.33	28.198	0.02	0.17	±	2.62
11	Füzyon	93.85	14.47	158.184	0.38	3.36	\pm	4.78

3.6.7. Foidli Dayk ve Sil

Foidli dayk ve sillerden Trabzon İli, Sarraf Tepe civarındaki tefritik silden alınan 603 numaralı örnekten seçilen tüm kayaç hamuru ve flogopit üzerinde ⁴⁰Ar-³⁹Ar yaşlandırma analizleri yapılmıştır. Yaşlandırma analizleri sırasında ölçümler, 603 numaralı örnekteki tüm kayaç hamuru için 14 basamak ve flogopit için 15 basamakta gerçekleştirilmiştir (Tablo 3.30 ve 3.31). Tüm kayaç hamuru üzerinde yapılan analizde 5.77 \pm 0.1 My ve flogopit üzerinde yapılan analizde ise 5.83 ± 0.1 My plato yaşları elde edilmiştir (Şekil 3.94). Elde edilen bu yaş aralıkları Üst Miyosen, Messiniyen'e karşılık gelmektedir.

Şekil 3. 94. Miyosen yaşlı foidli silde (603) tüm kayaç hamuru ve flogopite ait ⁴⁰Ar-³⁹Ar yaş spektrumları ve plato yaşları

Tablo 3.30. Miyosen yaşlı foidli silde 603 numaralı örnekten seçilen tüm kayaç hamurundan basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰Ar-³⁹Ar yaşlandırma verileri

		Fe	oidli sil (603)	tüm kayaç ham	uru			
Basamak	Sıcaklık (°C)	$^{40}\mathrm{Ar}_{\mathrm{Atm}}(\%)$	³⁹ Ar _K (%)	$^{37}\mathrm{Ar_{Ca}}/^{39}\mathrm{Ar_{K}}$	⁴⁰ Ar*/ ³⁹ Ar _K	Yaş (N	Ailyo	n yıl)
1	250	103.25	0.02	1.588	-10.37	0.00	±	0.00
2	300	100.78	0.42	2.105	-1.44	0.00	\pm	0.00
3	350	101.47	2.33	2.048	-1.96	0.00	\pm	0.00
4	380	100.96	2.64	0.853	-0.70	0.00	±	0.00
5	410	97.35	0.92	0.423	0.32	2.84	\pm	1.64
6	460	83.12	4.74	0.384	0.64	5.62	±	0.50
7	510	55.35	9.94	0.735	0.68	5.93	±	0.25
8	560	45.63	6.23	1.049	0.70	6.12	±	0.27
9	630	48.34	13.54	0.915	0.65	5.74	±	0.14
10	700	46.16	9.37	0.094	0.63	5.55	±	0.12
11	800	44.48	8.06	0.099	0.63	5.57	±	0.20
12	1000	41.03	14.44	0.173	0.65	5.69	±	0.12
13	1200	54.14	10.56	0.842	0.64	5.60	±	0.11
14	Füzyon	60.45	16.79	3.521	0.61	5.35	±	0.14

			Foidli sil	(603), flogopit				
Basamak	Sıcaklık (°C)	$^{40}\mathrm{Ar}_{\mathrm{Atm}}(\%)$	³⁹ Ar _K (%)	$^{37}\mathrm{Ar_{Ca}}/^{39}\mathrm{Ar_{K}}$	⁴⁰ Ar*/ ³⁹ Ar _K	Yaş (N	/ilyo	n yıl)
1	250	89.09	0.02	0.116	19.42	163.31	±	103.90
2	300	90.23	0.03	0.245	4.77	41.51	±	58.92
3	350	95.52	0.14	0.699	1.55	13.60	\pm	8.04
4	380	111.14	0.10	2.524	-0.92	0.00	\pm	0.00
5	420	86.55	0.17	1.664	1.08	9.48	±	10.88
6	470	61.64	0.76	0.159	1.01	8.87	\pm	2.88
7	510	54.16	1.15	0.024	0.73	6.44	±	1.82
8	570	39.14	3.12	0.004	0.61	5.38	±	0.48
9	620	23.18	4.16	0.002	0.64	5.58	±	0.33
10	660	11.35	13.86	0.003	0.66	5.82	±	0.11
11	690	4.59	9.17	0.003	0.68	5.99	\pm	0.18
12	730	9.90	8.60	0.005	0.67	5.87	±	0.22
13	800	12.93	12.75	0.007	0.67	5.90	±	0.18
14	880	25.51	13.79	0.005	0.66	5.78	\pm	0.15
15	Füzyon	4.45	32.18	0.002	0.66	5.81	±	0.06

Tablo 3.31. Miyosen yaşlı foidli silde 603 numaralı örnekten seçilen flogopit üzerinde basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰Ar-³⁹Ar yaşlandırma verileri

3.6.8. "Cognate" İnklüzyon

Foidli breşik lavlar içerisinde yer alan ve Trabzon İli, Karlık Tepe yöresinden alınan klinopiroksen ve flogopitlerden meydana gelen kümülofirik dokulu "cognate" inklüzyon örneğinden (802 numaralı) seçilen flogopit üzerinde ⁴⁰Ar-³⁹Ar yaşlandırma analizleri yapılmıştır. Yaşlandırma analizleri sırasında ölçümler, flogopit üzerinde 19 basamakta gerçekleştirilmiştir (Tablo 3.32). Flogopit üzerinde yapılan analizde 5.57 ± 0.1 My plato yaşı elde edilmiştir (Şekil 3.95). Elde edilen bu yaş Üst Miyosen, Messiniyen'e karşılık gelmektedir.

Şekil 3. 95. Miyosen yaşlı "cognate" inklüzyondaki (802) flogopite ait ⁴⁰Ar-³⁹Ar yaş spektrumu ve plato yaşı

		"C	ognate" inkli	izyon (802), flog	gopit			
Basamak	Sıcaklık (°C)	$^{40}\mathrm{Ar}_{\mathrm{Atm}}(\%)$	$^{39}\mathrm{Ar}_{\mathrm{K}}(\%)$	$^{37}\mathrm{Ar_{Ca}}/^{39}\mathrm{Ar_{K}}$	⁴⁰ Ar*/ ³⁹ Ar _K	Yaş (N	Ailyo	n yıl)
1	250	110.70	0.03	0.000	-45.69	0.00	±	0.00
2	280	109.64	0.06	0.394	-21.75	0.00	±	0.00
3	350	107.16	0.13	0.400	-10.71	0.00	±	0.00
4	400	130.31	0.04	0.014	-20.78	0.00	\pm	0.00
5	440	121.89	0.08	0.322	-3.84	0.00	±	0.00
6	490	101.63	0.28	0.011	-0.15	0.00	±	0.00
7	550	84.90	2.81	0.000	0.39	3.41	±	0.92
8	590	34.69	2.02	0.000	0.65	5.71	±	0.98
9	630	50.06	3.04	0.000	0.56	4.92	±	0.64
10	680	31.36	3.13	0.000	0.62	5.43	±	0.69
11	730	45.61	5.14	0.000	0.58	5.09	±	0.33
12	810	28.27	7.92	0.008	0.64	5.62	±	0.17
13	900	23.67	11.37	0.002	0.63	5.52	±	0.13
14	1000	23.62	10.01	0.007	0.61	5.41	±	0.20
15	1100	19.35	11.24	0.003	0.62	5.47	±	0.18
16	1250	17.10	17.85	0.007	0.63	5.54	±	0.11
17	1400	15.06	12.01	0.008	0.63	5.53	±	0.14
18	1600	22.47	11.63	0.004	0.64	5.65	±	0.15
19	Füzyon	0.00	1.20	0.000	0.79	7.01	±	1.61

Tablo 3.32. Miyosen yaşlı "cognate" inklüzyondan (802 numaralı örnek) seçilen flogopit üzerinde basamaklı ısıtma yöntemi uygulanarak elde edilen ⁴⁰Ar-³⁹Ar yaşlandırma verileri

3.7. Jeokimya

3.7.1. Tüm Kayaç Jeokimyası

3.7.1.1. Giriş

Bu bölümde, incelenen Tersiyer yaşlı volkanik kayaçların tüm kayaç ana oksit, iz ve nadir toprak element jeokimyası değerlendirilmiştir. Kayaçların kimyasal adlandırılması yapılmış, ana oksit ve iz element değişimleri, uyumsuz element ve nadir toprak element dağılımları irdelenmiş ve ayrıca volkanitlerin oluştuğu tektonik ortam irdelenmiştir. Bunun yanı sıra kayaçların oluşumunda etkili olan magmatik olaylar (fraksiyonel kristallenme, magma karışımı ve özümleme) ile kimyasal bileşimleri arasındaki ilişki belirlenmeye çalışılmıştır.

3.7.2. Volkanik Kayaçların Kimyasal Adlaması

İncelenen Tersiyer yaşlı volkanitlerin ana oksit, iz, nadir toprak element analizleri ve normatif mineralojileri Ek Tablo I ve J de verilmiştir. İncelenen volkanik kayaçlar, Le Maitre vd. (1989)'nin SiO₂'ye karşı Na₂O+K₂O (TAS) diyagramı dikkate alınarak üç farklı takıma ayrılmıştır (Şekil 3.96). Eosen yaşlı bazaltik dayk ve siller, prizmatik yapılı lavlar, yastık lavlar ve volkanik breşler, (1) bazalt, traki-bazalt, bazaltik-trakiandezit (BTB) takımı; andezitik dayk ve domlar, trakitik dayklar, (2) trakit ve trakiandezit (TT) takımı; Miyosen yaşlı foidli breşler, foidli breşik lavkar ve foidli dayk ve siler ise (3) bazanit, tefrit (BT) takımı olarak adlandırılmıştır. Bu takımlara ait örneklerin foidit alanından trakit alanına doğru dağılım gösterdiği TAS diyagramında görülmektedir (Şekil 3.96). TAS diyagramında, traki-bazalt, bazaltik traki-andezit ve traki-andezit alanına düşen kayaçlar (Şekil 3.96) Le Maitre vd. (1989)'nin Na₂O ve K₂O içeriklerine göre (Na₂O-2 \leq K₂O) ayrılarak traki-bazalt alanına düşen kayaçlar potasik traki-bazalt, bazaltik traki-andezit alanına düşen kayaçlar şoşonit, traki-andezit alanına düşen kayaçlar latit olarak adlandırılmışlardır.

Irvine ve Baragar (1971)'in alkali-subalkali ayrımına göre (Şekil 3.96) incelenen volkanitlerin tamamına yakını alkali karaktere sahiptir. BTB ve TT takımlarından bir kaç örnek subalkali alana düşmektedir. Örnek dağılımındaki sapmaların Na ve K'un hareketliliğinin yüksek olması dolayısıyla, toplam alkali (Na₂O+K₂O) miktarındaki azalmadan kaynaklandığı düşünülmektedir. Hastie vd. (2007) tarafından önerilen ve hareketliliği daha az olan Co'a karşı Th sınıflama diyagramında Eosen yaşlı BTB takımı kayaçları genellikle kalkalkalen - yüksek-K şoşonitik geçiş karakterli bazalt ve bazaltikandezit/andezit alanına düşerken, TT takımı kayaçları bir örnek hariç yüksek-K şoşonitik karakterli bazaltik andezit/andezit ve dasit/riyolit alanlarında yer almaktadır. Miyosen yaşlı BT takımı kayaçları ise yüksek-K şoşonitik karakterli bazalt ve bazaltik andezit/andezit alanlarında yayılım gösterirler (Şekil 3.97).

(Na₂O+K₂O)-FeO*-MgO üçgen (AFM) diyagramında incelenen volkanik kayaç örnekleri genellikle düşük FeO* içerikleriyle Wimmenauer (1985)'in ayırdığı kalk-alkali ve şoşonitik yönseme eğrileri üzerinde bulunmaktadır (Şekil 3.98).

Şekil 3.96. İncelen Tersiyer yaşlı volkanitlerin; (a) SiO₂'ye karşı Na₂O+K₂O (TAS) diyagramı (Le Maitre vd., 1989). Alkali-Subalkali ayrım eğrisi Irvine ve Baragar (1971)'e göredir

Şekil 3.97. İncelen Tersiyer yaşlı volkanitlerin, Th (ppm)'a karşı Co (ppm) diyagramı (Hastie vd., 2007; semboller Şekil 3.96'deki gibidir)

Şekil 3. 98. İncelen Tersiyer yaşlı volkanitlerin, (Na₂O+K₂O)-FeO*-MgO üçgen (AFM) diyagramı. Ayırım eğrileri Wimmenauer (1985)'e göredir (Semboller Şekil 3.96'deki gibidir)

Mckenzie ve Chappel (1972) ve Peccerillo ve Taylor (1976)'ın SiO₂'ye karşı K₂O diyagramında BTB takımı olarak adlandırılmış kayaçlar genel olarak absorokit ve şoşonit alanına düşerken, TT takımı olarak adlandırılan kayaçlar şoşonit ve banakit alanına düşmektedir. BT takımı olarak adlandırılan kayaçlar ise tamamen absorokit alanında yer almıştır (Şekil 3.99). Genel olarak kayaçlar, alkali, uyumsuz elementler bakımından zengin ve silisce doygun olmamaları nedeniyle absorokitten şoşonitik bileşime kadar değişen bir potasik bir yönseme sergilemektedirler.

Peccerillo (2002, 2003)'nin ΔQ ya karşı K₂O/Na₂O diyagramında genel olarak BTB ve TT yi oluşturan kayaçlar silisce az doygun, daha çok sodik-potasik karaktere sahipken BT içerisinde yer alan kayaçlar silisce çok fakir ve Na alkali karaktere sahiptir (Şekil 3.100).

Şekil 3.99. İncelenen Tersiyer yaşlı volkanitlerin SiO₂'ye karşı K₂O diyagramı (Mckenzie ve Chappel, 1972; Peccerillo ve Taylor ,1976; semboller Şekil 3.96'deki gibidir)

Şekil 3.100. İncelenen Tersiyer yaşlı volkanitlerin ΔQ 'ya karşı K₂O/Na₂O diyagramı (Peccerillo, 2002, 2003). ΔQ = [normatif kuvars - (normatif lösit+ normatif nefelin + normatif kalsilit + normatif olivin)]. (Semboller Şekil 3.96'deki gibidir)

3.7.3. Ana ve İz Element Jeokimyası

İncelenen Eosen yaşlı volkanitlerden BTB takımı kayaçlarının Fe₂O₃*, MgO, CaO ve TiO₂ içerikleri TT takımı kayaçlarından daha yüksek, SiO₂, Al₂O₃, K₂O ve bazı örneklerde Na₂O içerikleri ise daha düşüktür. BTB takımı kayaçlarının SiO₂ içerikleri % 42.72 ile % 58.54 arasında değişmektedir. Bu değerler BTB takımı kayaçlarının genel olarak bazik ve ortaç karakterde olduklarını ifade etmektedir. Kayaçların MgO içerikleri % 1.24-13.97 ve K_2O içerikleri %0.37-7.23 arasında olup, Mg numaraları (Mg#) 16.6-55.9 arasında değişmektedir. Kayaçların K_2O/Na_2O oranları düşük olup, 0.08-2.90'dır.

Eosen yaşlı TT takımı kayaçlarının SiO₂ içerikleri % 46.75 ile 64.75 arasındadır. Bu değerler TT takımı kayaçlarının genel olarak BTB takımı kayaçlarına göre daha çok ortaç karakterde olduklarını göstermektedir. Kayaçların MgO içerikleri % 0.18-3.99 ve K₂O içerikleri % 1.42-14.14 arasında olup, Mg# 5.4–37.0 arasında değişmektedir. Kayaçların K₂O/Na₂O oranları ise 0.46-17.68 arasındadır.

Miyosen yaşlı BT takımı kayaçlarının Fe₂O₃*, MgO, ve TiO₂ içerikleri, Eosen yaşlı BTB takımı içerisindeki özellikle bazik kayaçlarınkine benzer, CaO ve P₂O₅ içerikleri bu kayaçlardan yüksek ve SiO₂ içerikleri ise daha düşük olup % 36.75 ile 49.63 arasındadır. Bu değerler, BT takımı kayaçlarının daha çok bazik karakterde olduğuna işaret etmektedir. Kayaçların MgO içerikleri % 2.23-9.17 ve K₂O içerikleri % 0.57-3.27 arasında olup, Mg# 23.4-52.9 arasında değişmektedir. Kayaçların K₂O/Na₂O oranları düşük olup, 0.22-1.19'dur. Ayrıca, BT takımı kayaçlarının ateşte kayıp (AK) içeriği, kayaçlardaki muhtemelen alterasyon ve analsim mineralinin varlığı nedeniyle oldukça yüksektir.

İncelenen Eosen yaşlı BTB ve TT takımları ile Miyosen yaşlı BT takımı kayaçlarının düşük Mg# sahip olmaları, bu kayaçların bileşimlerinin, magmatik olaylar (fraksiyonel kristallenme, asimilasyon vb.) sonucunda ilksel bileşimlerine göre oldukça farklılaştığına işaret etmektedir.

İncelenen volkanitlerin SiO₂'ye karşı ana oksit ve iz element değişim diyagramları, Eosen yaşlı takımlar için Şekil 3.101 ve 3.102'de, Miyosen yaşlı takım için Şekil 3.103 ve 3.104'de sunulmuştur. Ana oksit ve iz elementlerde görülen değişimler, genel olarak fenokristal mineral fazlarının ayrımlaşmasıyla ilişkilidir.

Şekil 3.101. Eosen yaşlı BTB ve TT takımı kayaçlarının SiO₂'ye karşı ana oksit değişim diyagramları

Şekil 3.102. Eosen yaşlı BTB ve TT takımı kayaçlarının SiO₂'ye karşı iz element değişim diyagramları (Semboller Şekil 3.101'deki gibidir)

Şekil 3.103. Miyosen yaşlı BT takımı kayaçlarının SiO₂'ye karşı ana oksit değişim diyagramları

Şekil 3.104. Miyosen BT takımı kayaçlarının SiO₂'ye karşı iz element değişim diyagramları (Semboller Şekil 3.103'deki gibidir)

Eosen yaşlı BTB ve TT takımı kayaçlarının SiO₂'ye ana oksit ve iz element değişim diyagramlarında yönsemeler oldukça belirgin olup, TiO₂, Fe₂O₃*, CaO, MgO, Ni, Sr ve Co azalarak negatif bir ilişki gösterirken, K₂O, Na₂O, Th ve Rb artarak pozitif bir ilişki göstermektedir. SiO₂'ye karşı P₂O₅ ve Al₂O₃ diyagramlarında önce artış ve ardından eğimli bir azalış göze çarpmaktadır. SiO₂'ye karşı MnO diyagramında ise önce yatay, sonra azalan bir ilişki görülmektedir. SiO₂'ye karşı Hf, Zr, Nb ve Ta diyagramlarında ise önce hafif bir azalış sonra artan bir ilişki tespit edilmiştir. SiO₂'ye karşı Ba diyagramında ise önce hafif bir azalış sonra artış ve sonra tekrar azalış saptamıştır. Diyagramlarda gözlenen pozitif ilişki genellikle kabuksal kirlenme ve/veya magma karışımı olaylarıyla açıklanırken, negatif ilişki fraksiyonel kristallenmeyle açıklanabilir.

Miyosen yaşlı BT takımı kayaçları, SiO₂'ye karşı ana oksit ve iz element değişim diyagramlarında çok iyi korelasyon göstermezler. SiO₂'ye karşı P₂O₅, MnO, Fe₂O₃*, CaO, MgO, Sr, Ni ve Co diyagramlarında negatif bir ilişki belirlenmiştir. SiO₂'ye karşı TiO₂, Na₂O, K₂O, Ba, Hf, Rb Zr ve Th'da ise önce artış, sonra azalma tespit edilirken, Nb ve Ta tam tersi yönde korelasyon göstererek önce azalır sonra artar.

İncelenen volkanitlerde, MgO, Fe₂O₃*, Co ve Ni değişimlerindeki belirgin negatif yönsemeler, kayaçlarda olivin ayrımlaşmasının etkin olabileceğini gösterirken, CaO ve MgO diyagramlarındaki negatif yönsemeler klinopiroksen, Fe₂O₃*, TiO₂ ve MnO diyagramlarındaki negatif yönsemeler Fe-Ti oksitlerin ayrımlaşmasını işaret etmektedir. Sr'la paralel olarak negatif CaO yönsemeleri ve ayrıca artan SiO₂'ye karşılık Na₂O ve K₂O miktarlarındaki artma plajiyoklas, flogopit ve alkali feldispatların ayrımlaşmasına işaret etmektedir. Nb, Rb ve Ba'daki negatif yönsemeler yine kayaçlardaki flogopit mineralinin, P₂O₅ miktarındaki negatif yönseme ise apatitin ayrımlaşmasını ifade etmektedir.

İncelenen volkanitlerde, artan SiO₂'ye karşı uyumsuz element (Ba, Rb, Th) içeriklerindeki değişimler kayaçların gelişiminde bir ana magmadan itibaren fraksiyonel kristallenmeye ek olarak diğer magmatik olayların (magma karışımı, asimilasyon vb.) da etkili olabileceğine işaret etmektedir.

Ana oksit ve iz element değişim diyagramlarında gözlemlenen önemli özelliklerden birisi de, bazı ana oksit ve iz element değişimlerinde meydana gelen bükülmelerdir. Özellikle, Eosen yaşlı volkanitlerin değişimlerinde yaklaşık %52 SiO₂ içeriğinde gözlenen bu bükülme, TT takımı kayaçlarının BTB takımı kayaçlarının ayrımlaşması sonucu oluşan ürünler olduğuna işaret etmektedir. Öyle ki; TT takımı kayaçlarının önemli miktarda flogopit ve az miktarda hornblend içermeleri, BTB kayaçlarında ise baskın minerallerin klinopiroksen ve olivin olması, %52 $SiO_{2'}$ ye karşılık gelen noktadaki bükülme sulu ferromagnezyen fazların ayrımlaşmasıyla açıklanabilir.

3.7.4. Uyumsuz Element Değişimleri

İncelenen Tersiyer yaşlı volkanik kayaçların iz element içerikleri, tüketilmiş okyanus ortası sırtı bazaltına (N-Tipi OOSB; Sun ve McDonough, 1989) göre oranlanarak elde edilen dağılım diyagramlarıyla (Şekil 3.105 ve 3.106) köken magma özellikleri belirlenmeye çalışılmıştır.

Şekil 3.105. İncelenen Tersiyer volkanik kayaçlarının N-Tipi OOSB'ye göre normalize edilmiş iz element dağılımları. OOSB değerleri, Sun ve McDonough (1989)'dan alınmıştır

N-Tipi OOSB'ye göre oranlanmış iz element dağılım diyagramlarına bakıldığında incelenen volkanitler, genel olarak büyük iyon yarıçaplı litofil element (BİLE; Sr, K₂O, Rb ve Ba), Th ve Ce içerikleri bakımından zenginleşme, yüksek çekim alanlı elementlerden (YÇAE) olan Zr, TiO₂, Y ve Nb, Ta içerikleri bakımından fakirleşme ile karakterize edilirler. Eosen ve Miyosen yaşlı takım kayaçlarında gözlenen dağılımlar genel olarak birbirine benzemektedir (Şekil 3.105). Tüm örneklerde negatif Nb ve Ta anomalisi gözlenmekle birlikte, takımlara göre anomali farklılıkları görülmektedir (Şekil 3.106).

Şekil 3.106. Eosen yaşlı BTB ve TT takımı ve Miyosen yaşlı BT takımı kayaçlarının N-Tipi OOSB' ye göre normalize edilmiş iz element dağılımları. OOSB değerleri, Sun ve McDonough (1989)'dan alınmıştır

Özellikle, Miyosen yaşlı BT takımı kayaçlarında gözlenen bu durum farklı derecede yitim zonu zenginleşmesi (akışkan±ergiyik olarak) ve/veya kabuk asimilasyonun etkisi (Pearce vd., 1990) olarak yorumlanabilir. Ayrıca, BT takımını oluşturan kayaçlar diğer takımlara göre Sr, Ba, Th, Ce ve kısmen P_2O_5 bakımından zenginleşme, TT takımını oluşturan kayaçlardan özellikle trakitik olanlarda ise P_2O_5 ve TiO₂ bakımından fakirleşme diğer örneklere göre daha fazladır.

Volkanitlerdeki negatif Nb ve Ta anomalileri, yüksek Th/Yb oranları, muhtemelen akışkanlar ve sedimanlar tarafından metazomatizmaya uğratılmış yitim ve astenosferik ergiyiklerin karıştığı, zenginleşmiş bir köken magmadan türeyebileceklerini ifade etmektedir (Pearce, 1983).

Sonuç olarak; Eosen ve Miyosen volkanitlerinin, BİLE bakımından aşırı zenginleşmeleri ana magmalarında kabuk kirlenmesi ve/veya magma karışımının varlığına işaret ederken, negatif Nb ve Ta anomalileri gelişimlerinde yitim bileşenin etkisini ifade etmektedir. Eosen yaşlı volkanitlerde gözlenen benzer iz element davranışları, bu kayaçların; (1) aynı köken magmanın(ların) farklı derecedeki yitimle ilişkili akışkan±ergiyik zenginleşmesi, (2) aynı köken magmanın(ların) kabuk magma odalarındaki farklı ayrımlaşma±asimilasyon yollarıyla açıklanabilir. Miyosen yaşlı BT takımı kayaçlarında gözlenen farklı iz element değişimleri bu kayaçların köken olarak da farklı bir kaynaktan türediklerini göstermektedir.

3.7.5. Nadir Toprak Element Değişimleri

İncelenen Tersiyer volkanitlerinin kondrite (Taylor ve McLennan, 1985) normalize edilmiş nadir toprak element (NTE) dağılımları (Şekil 3.107) iki farklı gruba ayrılmıştır. Eosen yaşlı BTB ve TT takımı kayaçları orta derecede zenginleşmiş benzer NTE dağılımları gösterirken, Miyosen yaşlı BT takımı kayaçları diğerlerine göre daha zenginleşmiş dağılıma sahiptir.

BTB takımı kayaçlarında hafif nadir toprak elementlerde (HNTE) zenginleşme yaklaşık 21-91 kat, ağır nadir toprak elementlerde (ANTE) zenginleşme ise 3-10 kat arasında değişmektedir. Bu kayaçların (La/Lu)_N oranları 5.55-10.76 arasında değişim gösterir. TT takımı kayaçlarında hafif nadir toprak elementlerde (HNTE) zenginleşme yaklaşık 35-113 kat, ağır nadir toprak elementlerde (ANTE) zenginleşme ise 7-14 kat arasında değişirken, (La/Lu)_N oranları 4.65-11.64 arasındadır. BT takımı kayaçlarında hafif

nadir toprak elementlerde (HNTE) zenginleşme yaklaşık 220-452 kat, ağır nadir toprak elementlerde (ANTE) zenginleşme ise 5-9 kat arasında değişmekte olup (La/Lu)_N oranı ise 36-69 arasında değişim sergilemektedir. BTB ve TT takımlarına göre BT takımı kayaçlarında hafif nadir toprak elementlerdeki aşırı derecede zenginleşme BT takımı kayaçlarını oluşturan magmanın kökeninin, BTB ve TT takımlarını oluşturan magmanın kökeninin, BTB ve TT takımlarını oluşturan magmanın kökenine göre daha zenginleşmiş olduğunu işaret etmektedir (Şekil 3.107, Ek Tablo J).

Şekil 3.107. İncelenen Tersiyer volkanik kayaçlarının kondrite göre normalize edilmiş NTE diyagramları. Kondrit değerleri, Taylor ve McLennan (1985)'den alınmıştır (Semboller Şekil 3.105'deki gibidir)

İncelenen volkanitlerin kondrite normalize edilmiş NTE dağılımlarında BTB, TT ve BT takımlarını oluşturan kayaçlarda (TT takımındaki bazı trakit örnekleri hariç) önemli bir Eu anomalisinin bulunmaması (Şekil 3.108) plajiyoklas fraksiyonlaşmasının fazla etkili olmadığını vurgulamaktadır. BTB takımı kayaçlarının (Eu/Eu*)_N oranı 0.81-1.02 arasında, TT takımında (Eu/Eu*)_N oranı ise 0.47-1.00 arasında, BT takımı kayaçlarının (Eu/Eu*)_N oranı ise 0.87-0.96 arasıda değişmektedir. TT takımındaki bazı trakitik örneklerde gözlenen negatif Eu anomalilerin ise biyotit içermeyen trakitlerdeki plajiyoklas ayrımlaşması nedeniyle olduğu düşünülmektedir.

Eosen yaşlı BTB ve TT takımları ve Miyosen yaşlı BT takımı kayaçlarında gözlemlenen NTE dağılımlarındaki farklılıklar, ana magmalarının türedikleri kaynak alan bakımından da farklılık gösterdiklerini işaret etmektedir. HNTE'lerdeki zenginleşmenin orta nadir toprak elementlere (ONTE) ve ANTE'lere göre fazla olması volkanitlerin NTE dağılımlarında konkav şekil oluşmasına neden olmuştur. Ortaya çıkan bu dağılım,

volkanitlerin gelişiminde klinopiroksen ve hornblend ayrımlaşmasına işaret etmektedir (Gill, 1981; Thompson vd.,1984; Green ve Pearson, 1985; Romick, 1987; Thirlwall vd., 1994). Eosen yaşlı BTB ve Miyosen yaşlı BT takımı kayaçlarında Yb_N<10 olması, granatın manto kaynağında kalıntı faz olarak bulunduğunu ifade etmektedir.

Şekil 3.108. Eosen yaşlı BTB ve TT takımı ve Miyosen yaşlı BT takımı kayaçlarının kondrite göre normalize edilmiş NTE dağılımları. Kondrit değerleri, Taylor ve McLennan (1985)'den alınmıştır (Semboller Şekil 3.105'deki gibidir)

3.7.6. Tektonik Ortam

Hareketliliği az olan iz elementlere (Ti, Zr, Nb, La, Hf, Y) dayalı ayırtman diyagramlar kullanılarak volkanik kayaçların oluştuğu tektonik ortam hakkında fikir sahibi olunabilmektedir (Pearce ve Cann, 1973; Pearce ve Norry, 1979; Wood, 1980; Meschede, 1986) İncelenen Tersiyer volkanitleri, N-Tipi OOSB normalize diyagramlarında gözlenen negatif Nb, Ta, TiO₂ anomalileri, düşük Nb, Ta, Zr, ve TiO₂ içerikleri, BİLE içeriği bakımından zenginleşmiş ve HNTE içeriği bakımından orta ve yüksek derecede zenginleşmiş olmaları gibi özellikleri ada yayı ortamında oluşan kayaçlarla benzerlik sunarak, yitim ile ilişkili volkanizmanın ürünü olduklarını doğrular niteliktedir (Saunders vd., 1980; Gill, 1981; Ewart, 1982; Pearce, 1983; Thompson vd., 1984; White ve Patchett, 1984; Saunders vd., 1991).

İncelenen volkanik kayaçlar, Ta/Yb'a karşı Th/Yb tektonik ayırtman diyagramında (Şekil 3.109) genel olarak volkanik yay bazaltları alanına düşmektedirler. Eosen yaşlı BTB ve TT takımlarını oluşturan ana magma(lar)da yitim zonu zenginleşmesi yönsemesi gözlenirken, Miyosen yaşlı BT takımını oluşturan ana magmada kabuksal kirlenme ve/veya levha içi zenginleşmesi yönsemesi olası görülmektedir.

Th-Ta-Hf/3 tektonik ortam (Wood vd., 1979) ve ana magma tipleri (Pearce, 1996) ayırtman diyagramları üzerinde Eosen yaşlı TT takımı kayaçları tamamen volkanik yay bazaltları alanında kalırken, BTB takımı ve Miyosen yaşlı BT takımı kayaçları bu alanın dışına taşmıştır (Şekil 3.110a). İncelenen volkanitler, ana magma tiplerine göre volkanik yay bazaltları ve levha içi bazaltları ile temsil edilen çarpışma zonu volkanitleri alanında yer almaktadır. (Şekil 3.110b). Volkanitler, petrojenetik olarak ise manto kabuk etkileşimi yönsemesine yakın olup (Şekil 3.111), gelişimlerinde yitimin etkisinin yanı sıra üst kabuk asimilasyonu da gözlenmektedir.

Şekil 3.109. İncelenen Tersiyer volkanitlerinin Tb/Yb'a karşı Th/Yb değişim diyagramı. Merkezi Andlar ve kıtasal levha içi bazalt (LİB) alanları, Pearce (1982, 1983)'den; OÜKK: Ortalama Üst Kıtasal Kabuk bileşimi, Wedepohl (1995)'den, İM: İlksel Manto, OAB: Okyanus Adası Bazaltı, E- ve N–OOSB: Zenginleşmiş ve Tüketilmiş Okyanus Ortası Sırtı Bazaltı bileşimleri ise Sun ve McDonough (1989)'dan alınmıştır (Semboller Şekil 3.105'deki gibidir)

Şekil 3.110. İncelenen Tersiyer volkanitlerinin Th-Ta-Hf/3 tektonik ayırtman diyagramları (Wood vd., 1979). Üçgen diyagramlar üzerindeki elips alanlar Pearce (1996)'dan alınmıştır. (a) ana magma tiplerinin ve (b) geçişli magma tiplerinin görüldüğü diyagram. VAB: volkanik yay bazaltları, OOSB: okyanus ortası sırtı bazaltı, LİB: levha içi bazaltı (Semboller Şekil 3.105'deki gibidir)

Zr-Yx3-Ti/100 tektonik ortam (Pearce ve Can, 1973) ve ana magma tipleri (Pearce, 1996) ayırtman diyagramında incelenen volkanitlerden BTB ve BT takımı kayaçlarının büyük bölümü levha içi bazalt (LİB) alanında yer alırken, TT takımı örnekleri daha çok volkanik yay bazaltları (VAB) alanında yayılım göstermektedir (Şekil 3.112a ve b). Genel olarak Tersiyer volkanitlerinin büyük bir bölümü çarpışma zonu (VAB/LİB) alanına düşmektedir. Volkanitlerin ana magma tiplerinde yitim izi ile birlikte çarpışma veya çarpışma sonrası olayların etkisi açıkça görülmektedir. Ayrıca, petrojenetik olarak, TT takımı kayaçları magma-üst kabuk etkileşimine, özellikle BT takımı kayaçları ise zenginleşmiş bir manto kaynağından düşük ergime derecesine işaret etmektedir (Şekil 3.113).

Şekil 3.111. İncelenen Tersiyer volkanitlerinin Th-Ta-Hf/3 tektonik ayırtman diyagramı (Wood vd., 1979). Diyagram üzerindeki petrojenetik vektörler, Pearce (1996)'dan alınmıştır. YZ: yitim zonu bileşeni, ÜK: üst kabuk, AK: alt kabuk, MK: N-OOSB manto kaynağı (Semboller Şekil 3.105'deki gibidir)

Şekil 3.112. İncelenen Tersiyer volkanitlerinin Zr-Yx3-Ti/100 tektonik ayırtman diyagramları (Pearce ve Cann, 1973). Üçgen diyagramlar üzerindeki elips alanlar Pearce (1996)'dan alınmıştır. (a) ana magma tiplerinin ve (b) geçişli magma tiplerinin görüldüğü diyagram. VAB: volkanik yay bazaltları, OOSB: okyanus ortası sırtı bazaltı, LİB: levha içi bazaltı (Semboller Şekil 3.105'deki gibidir)

Şekil 3.113. İncelenen Tersiyer volkanitlerinin Zr-Yx3-Ti/100 tektonik ayırtman diyagramları (Pearce ve Cann, 1973). Diyagram üzerindeki petrojenetik vektörler, Pearce (1996)'dan alınmıştır. ÜK: üst kabuk, OM: ortalama N-tipi OOSB (Semboller Şekil 3.105'deki gibidir)

İncelenen volkanitler, Nb' karşı Zr ayırtman diyagramında (Pearce, 1982) Eosen takımlarından Miyosen takımına doğru pozitif korelasyon sergilememekle beraber, volkanitlerin yitim izi taşıyan çarpışma sonrası ortamlarla ilişkili oldukları söylenebilir.

Şekil 3.114. İncelenen Tersiyer volkanik kayaçların Nb'a karşı Zr tektonik ortam diyagramı (Pearce, 1982) (Semboller Şekil 3.105'deki gibidir)

3.8. Sr-Nd-Pb İzotop Jeokimyası

İncelenen Tersiyer volkanitlerinin Sr-Nd-Pb izotop sistematiğini ortaya çıkarmak için her bir volkanik takım kayaçlarını temsil edecek, yüzeysel ve hidrotermal alterasyondan etkilenmemiş, aynı zamanda tüm-kayaç ⁴⁰Ar-³⁹Ar yaşlandırması yapılmış taze örnekler seçilmiştir.

İncelenen Tersiyer volkanitlerinin ⁸⁷Sr/⁸⁶Sr ve ¹⁴³Nd/¹⁴⁴Nd izotop oranları ve hesaplanan bazı değerler ile birlikte sonuçlar Tablo 3.332de verilmiştir. Volkanitlerin Sr ve Nd izotopik oranları göz önüne alındığında bunların genel olarak dar bir aralıkta değiştiği gözlemlenmiştir. Bu oranlar tipik olarak manto-kabuk sınırındaki kaynağı göstermekte ve özellikle (⁸⁷Sr/⁸⁶Sr)_i=0.705 değerinden küçük olanlar ise tipik olarak manto kaynağını yansıtmaktadır. Genel olarak Sr ve Nd izotopik bileşimleri açısından Eosen yaşlı BTB ve TT takımı kayaçlarının, Miyosen yaşlı BT takımı kayaçlarından kısmen farklılıklar göstermesi kökensel farklılara işaret etmektedir.

Eosen yaşlı BTB takımı kayaçlarının $({}^{87}Sr/{}^{86}Sr)_i$ oranları 0.703893 ile 0.704479 arasında, $({}^{143}Nd/{}^{144}Nd)_i$ oranı 0.512680 ile 0.512794 arasında, ϵSr_i değerleri -7.34 ile +3.8 ve ϵNd_i değerleri +1.61 ile +3.75 arasında değişmektedir (Tablo 3.33).

TT takımı kayaçlarının (87 Sr/ 86 Sr)_i oranları 0.704069 ile 0.704238 arasında, (143 Nd/ 144 Nd)_i oranı 0.512695 ile 0.512748 arasında, ϵ Sr_i değerleri –1.46 ile +38.75 ve ϵ Nd_i değerleri +1.84 ile +2.81 arasındadır. TT takımındaki sadece 625 nolu trakiandezit örneğinde ϵ Sr_i değeri +38.75 değeri ile diğerlerinden çok yüksektir. Bu durum, örnekte biyotit mineralinin bol bulunması ve buna bağlı olarak tüm-kayaçta Rb/Sr=1.83 oranının çok yüksek olmasından kaynaklanmaktadır. Miyosen yaşlı BT takımı kayaçlarının (87 Sr/ 86 Sr)_i oranları 0.705178 ile 0.705362 arasında, (143 Nd/ 144 Nd)_i oranı 0.512666 ile 0.512689 arasında, ϵ Sr_i değerleri +9.68 ile +12.36 ve ϵ Nd_i değerleri +0.61 ile +1.08 arasında değişmektedir (Tablo 3.33).

İncelenen volkanitlerin tamamı pozitif ɛNd_i değerlerine sahipken, BTB takımı kayaçlarının tamamına yakını ve TT takımı kayaçlarından bazıları negatif ɛSr_i değerleri verirler. BT takımı kayaçlarının ise hepsi pozitif ɛSr_i değerleri gösterirler. Eosen yaşlı BTB ve TT takımı kayaçlarının ilksel izotop oranları benzer aralıklarda homojen değişim sunarken, Miyosen yaşlı BT takımı kayaçlarının ilksel izotop oranları Eosen takımları kayaçlarının izotop oranlarından daha farklı bir aralıkta değişim göstermektedir. Bu da; BTB ve TT takımı kayaçlarıyla BT takımı kayaçlarının yaşları dikkate alındığında farklı kaynak alanlardan türeyebileceğini göstermektedir.

Eosen yaşlı BTB takımı kayaçlarının model yaşları T_{DM} = 505 ile 791 My arasında değişirken, TT takımı kayaçlarının model yaşları ise T_{DM} = 533 ile 675 My arasındadır. Miyosen yaşlı BT takımı kayaçlarının model yaşları ise T_{DM} = 549 ile 577 My'dır. T_{DM} model yaşları BTB ve TT takımları arasında homojenlik gösterirken, BT takımında ise kendi içerisinde homojenlik göstermektedir (nispeten daha genç yaşlar) ki bu durum volkanitlerin ⁴⁰Ar-³⁹Ar yaşlarıyla uyumlu olarak manto kaynak alanlarında zamana göre farklı türde ve derecedeki zenginleşmeye işaret edebilir.

İncelenen volkanitlerin düşük (87 Sr/ 86 Sr)_i oranlarına, negatif (-) ϵ Sr_i ve pozitif (+) ϵ Nd_i değerlerine sahip olmaları, ana magmalarının tüketilmiş bir manto kaynağından türediğine ve/veya tüketilmiş bir mantodan türeyen en son üye olduklarına işaret etmektedir. Nispeten yüksek (87 Sr/ 86 Sr)_i oranları, pozitif (+) ϵ Sr_i ve pozitif (+) ϵ Nd_i değerleri ise yiten kabuk malzemesinin karışımı ile zenginleşmiş bir manto kaynağından türediklerini, bir başka deyimle manto kaynağındaki kabuk bileşeni katkısını (kabuk katkısıyla zenginleşmiş bir manto kaynağını (Faure ve Mensing, 2005) işaret etmektedir.

						Sr İzotop V	/erileri					Ŋ	İzotop Verile	eri		
		Örnek No	SiO ₂ (% ağ.)	Rb (ppm)	Sr (ppm)	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	$(^{87}\mathrm{Sr}/^{86}\mathrm{Sr})_\mathrm{i}$	εSr _i	Sm (ppm)	(mqq)	147 Sm/ 144 Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	$(^{143}Nd/^{144}Nd)_i$	εNdi	T _{DM} (My)
	<u> </u>	141	51.09	79.60	670.80	0.3432	0.704479	0.704260	-0.54	4.27	21.30	0.1212	0.512738	0.512703	2.00	678.99
		260	51.03	96.00	935.60	0.2968	0.704330	0.704140	-2.61	5.61	26.00	0.1305	0.512764	0.512725	2.49	707.66
		511	53.53	81.40	665.50	0.3538	0.704705	0.704479	2.66	3.91	18.10	0.1306	0.512719	0.512680	1.61	791.67
	ıwı	301	46.26	43.70	675.00	0.1872	0.704130	0.704010	-5.35	4.21	19.70	0.1292	0.512772	0.512733	2.64	683.36
	ArT 8	363	46.99	45.80	465.40	0.2846	0.704112	0.703930	-5.69	3.54	14.40	0.1486	0.512813	0.512770	3.45	789.10
	BTB	801	47.86	93.80	634.90	0.4273	0.704587	0.704314	0.92	4.68	24.30	0.1164	0.512828	0.512794	3.75	505.57
		399	50.30	110.10	1190.60	0.2675	0.704294	0.704123	-3.09	5.42	25.10	0.1306	0.512764	0.512726	2.50	708.27
uəs		642	43.88	39.30	776.40	0.1464	0.703987	0.703893	-7.34	4.75	24.10	0.1192	0.512821	0.512785	3.61	531.92
юд		508	58.54	141.10	494.90	0.8247	0.704818	0.704291	3.84	5.79	29.90	0.1171	0.512731	0.512696	1.85	662.34
•		232	61.19	170.80	510.00	0.9687	0.704857	0.704238	4.26	4.65	26.10	0.1077	0.512780	0.512748	2.81	533.57
		233	63.00	172.00	464.80	1.0704	0.704901	0.704217	4.79	4.22	22.20	0.1149	0.512734	0.512700	1.92	642.45
	ıw	LTT	59.42	181.70	574.80	0.9143	0.704768	0.704184	3.05	4.80	24.40	0.1189	0.512730	0.512695	1.84	675.80
	ıyrT	675	55.66	126.90	639.50	0.5740	0.704578	0.704211	0.66	4.59	22.60	0.1228	0.512749	0.512713	2.22	672.28
	TT	188	63.76	189.80	261.10	2.1027	0.705440	0.704096	11.51	5.74	28.70	0.1209	0.512771	0.512735	2.64	623.51
		318	58.88	126.40	650.50	0.5620	0.704428	0.704069	-1.46	5.93	29.60	0.1211	0.512753	0.512717	2.28	654.61
		625	61.74	284.00	154.70	5.3115	0.707564	0.704169	38.75	5.16	27.20	0.1147	0.512743	0.512709	2.09	627.77
uə	ıwı	603	43.14	25.00	2272.10	0.0318	0.705309	0.705306	11.49	12.30	93.00	0.0800	0.512669	0.512666	0.61	549.05
sovi	ART	721	46.62	78.90	2271.80	0.1005	0.705371	0.705362	12.36	13.42	87.40	0.0928	0.512693	0.512689	1.08	577.41
M	ЪТ	726	37.46	52.20	3158.50	0.0478	0.705182	0.705178	9.68	11.32	76.50	0.0895	0.512682	0.512678	0.86	575.34

-
Ц
÷.
Ъ,
5
ğ
õ
Ξ
0
ž
Ч
le le
E.
ы С
<u>e</u>
.0
Ъ.
S
Ť
1
ar
Ï
la
đ
Sa
ð
Ч
· É
er
-
Ξ
a
g
~
g
Ĕ
-
OZ
izo
d izo
Nd izo
e Nd izo
ve Nd izo
sr ve Nd izo
Sr ve Nd izo
in Sr ve Nd izo
nin Sr ve Nd izo
rinin Sr ve Nd izo
lerinin Sr ve Nd izo
itlerinin Sr ve Nd izo
unitlerinin Sr ve Nd izo
kanitlerinin Sr ve Nd izo
olkanitlerinin Sr ve Nd izo
volkanitlerinin Sr ve Nd izo
r volkanitlerinin Sr ve Nd izo
er volkanitlerinin Sr ve Nd izo
iyer volkanitlerinin Sr ve Nd izo
rsiyer volkanitlerinin Sr ve Nd izo
ersiyer volkanitlerinin Sr ve Nd izo
Tersiyer volkanitlerinin Sr ve Nd izo
n Tersiyer volkanitlerinin Sr ve Nd izo
en Tersiyer volkanitlerinin Sr ve Nd izo
enen Tersiyer volkanitlerinin Sr ve Nd izo
elenen Tersiyer volkanitlerinin Sr ve Nd izo
celenen Tersiyer volkanitlerinin Sr ve Nd izo
ncelenen Tersiyer volkanitlerinin Sr ve Nd izo
. Incelenen Tersiyer volkanitlerinin Sr ve Nd izo
3. Incelenen Tersiyer volkanitlerinin Sr ve Nd izo
.33. İncelenen Tersiyer volkanitlerinin Sr ve Nd izo
3.33. Incelenen Tersiyer volkanitlerinin Sr ve Nd izo
lo 3.33. Incelenen Tersiyer volkanitlerinin Sr ve Nd izo
blo 3.33. İncelenen Tersiyer volkanitlerinin Sr ve Nd izo
ablo 3.33. Incelenen Tersiyer volkanitlerinin Sr ve Nd izo

176

 $\frac{1}{\ln(1)} \frac{1}{\ln(1)} - \frac{1}{\ln(1)} \frac{1}{\ln(1)} \frac{1}{\ln(1)} - \frac{1}{\ln(1)} \frac{1}{\ln(1)} \frac{1}{\ln(1)} \frac{1}{\ln(1)} - \frac{1}{\ln(1)} \frac{1}{\ln(1)} \frac{1}{\ln(1)} - \frac{1}{\ln(1)} \frac{1}{\ln(1)} \frac{1}{\ln(1)} \frac{1}{\ln(1)} \frac{1}{\ln(1)} \frac{1}{\ln(1)} - \frac{1}{\ln(1)} \frac{1}{\ln(1)$

İncelenen Tersiyer volkanitleri, (⁸⁷Sr/⁸⁶Sr)_i ve (¹⁴³Nd/¹⁴⁴Nd)_i oranlarıyla manto aralığı içerisinde yer almaktadırlar (Şekil 3.115). Türkiye'deki diğer Tersiyer yaşlı bazı alkali ve kalk-alkali kayaçlarla karşılaştırıldığında, Eosen yaşlı BTB ve TT takımları kayaçlarının Denizli ve Gölcük (Isparta) yöresi alkali volkanitleriyle benzer (⁸⁷Sr/⁸⁶Sr)_i ve (¹⁴³Nd/¹⁴⁴Nd)_i izotopik oranlarına sahip oldukları söylenebilir (Şekil 3.116). Miyosen yaşlı BT takımı kayaçlarının ise diğer takımlara göre yüksek (⁸⁷Sr/⁸⁶Sr)_i oranlarıyla daha zenginleşmiş bir kaynaktan türedikleri ileri sürülebilir.

Şekil 3.115. İncelenen Tersiyer volkanitlerinin (⁸⁷Sr/⁸⁶Sr)_i'ye karşı (¹⁴³Nd/¹⁴⁴Nd)_i korelasyon diyagramındaki konumları. EMI ve EMII (Zenginleşmiş Manto I ve II), HIMU (²³⁸U/²⁰⁴Pb oranı yüksek manto), DM (Tüketilmiş Manto), BSE (Toplam Silikat Yerküre), PREMA (ortalama manto) alanları Zindler ve Hart (1986), Hart vd. (1992)'ye göredir

Şekil 3.116. İncelenen Tersiyer volkanitlerin (⁸⁷Sr/⁸⁶Sr)_i'ye karşı (¹⁴³Nd/¹⁴⁴Nd)_i diyagramında Türkiye'deki bazı Tersiyer alkali volkanitleri ile karşılaştırılması. Alanlar; Polatlı alkali volkanitleri (Temel vd., 2010), Çanakkale alkali volkanitleri (Aldanmaz vd., 2006); Kula alkali volkanitleri (Alıcı vd., 2002), Gölcük (Isparta) alkali volkanitleri (Alıcı vd., 1998), Denizli alkali volkanitleri (Yılmaz, 2010), Ulubey (Ordu) kalk-alkali volkanitleri (Temizel, 2008), Torul (Gümüşhane) kalk-alkali volkanitleri (Kaygusuz vd., 2011), Doğu Pontid Güney Zonu Eosen volkanitleri (Arslan vd., 2013). (Semboller Şekil 3.115'deki gibidir)

İncelenen Tersiyer volkanitleri, Dünya genelindeki Tersiyer yaşlı bazı alkali volkanitlerle karşılaştırıldıklarında (Şekil 3.117), Eosen yaşlı BTB ve TT takımları kayaçları daha çok Aolian adası volkanitleri, Doğu Sırbistan alkali kayaçları ile benzer (⁸⁷Sr/⁸⁶Sr)_i ve (¹⁴³Nd/¹⁴⁴Nd)_i izotop oranlarına, Miyosen yaşlı BT takımı kayaçları ise daha çok Vulture volkanitleriyle benzer (⁸⁷Sr/⁸⁶Sr)_i ve (¹⁴³Nd/¹⁴⁴Nd)_i izotopik oranlara sahiptir.

Şekil 3.117. İncelenen Tersiyer volkanitlerinin (⁸⁷Sr/⁸⁶Sr)_i'ye karşı (¹⁴³Nd/¹⁴⁴Nd)_i diyagramında Dünya genelinde diğer bazı alkali kayaçlarla karşılaştırmaları. Alanlar; Doğu Sırbistan alkali bazaltları ve Sırbistan (yüksek YPKA-S. potasyum kalkalkali-şoşonitik) bazaltları (Cvetkovic' vd., 2004); Sırbistan granitleri (Karamata vd., 1990); Gaussberg (Murphy vd., 2002); Leucite Hills lamproitleri (Nelson vd., 1986); Italya lamproitleri ve kamafujitleri (Conticelli vd., 2002); Tibet ultrapotasik kayaçları (Turner vd., 1996; Miller vd., 1999); İspanya lamproitleri (Benito vd., 1999; Turner vd., 1999); Batı Avustralya lamproitleri (Fraser vd., 1985); Vulture manto ksenolitleri ve volkanitleri (Downes vd., 2002); Pannonian havzası alkali mafik volkanitleri ve manto ksenolitleri (Vaselli vd., 1995; Harangi, 2001); Makedonya lamproitleri (Altherr vd., 2004). OOSB (Zindler ve Hart, 1986); Avrupa astenosferik rezervuarı (EAR) (Cebria ve Wilson, 1995) (Sembolleri Sekil 3.115'deki gibidir)

İncelenen Eosen yaşlı BTB takımı kayaçlarının ²⁰⁶Pb/²⁰⁴Pb izotop oranları 18.722-18.786 arasında, ²⁰⁷Pb/²⁰⁴Pb izotop oranları 15.630-15.669 arasında ve ²⁰⁸Pb/²⁰⁴Pb izotop oranları ise 38.786-38.923 arasındadır (Tablo 3.34). TT takımı kayaçlarının ²⁰⁶Pb/²⁰⁴Pb izotop oranları 18.776-18.797, ²⁰⁷Pb/²⁰⁴Pb izotop oranları 15.639-15.671 ve ²⁰⁸Pb/²⁰⁴Pb izotop oranları ise 38.867-38.968 arasında değişiklik sunmaktadır (Tablo 3.34). Miyosen yaşlı BT takımı kayaçlarının ²⁰⁶Pb/²⁰⁴Pb izotop oranları 18.893-18.946, ²⁰⁷Pb/²⁰⁴Pb izotop oranları 15.661-15.680 ve ²⁰⁸Pb/²⁰⁴Pb izotop oranları ise 38.938-39.058 arasında değişmektedir (Tablo 3.34).

			Pb İzotopik Verileri								
		Örnek No	Pb (ppm)	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	Δ7/4Pb *	Δ8/4Pb **			
		141	5.9	18.745	15.647	38.863	12.40	57.33			
		260	4.6	18.775	15.633	38.854	10.68	52.80			
	_	511	3.3	18.722	15.630	38.786	10.95	52.41			
	am	301	5.7	18.752	15.632	38.837	10.83	53.88			
	Tal	363	3.4	18.724	15.638	38.827	11.73	56.27			
	3TB	801	11.8	18.773	15.641	38.868	11.50	54.44			
	ł	399	13.7	18.786	15.658	38.923	13.06	58.37			
sen		642	3.5	18.756	15.641	38.878	11.68	57.50			
Eos		508	9.2	18.737	15.669	38.913	14.69	63.30			
		232	2.9	18.795	15.639	38.882	11.06	53.18			
		233	3.9	18.819	15.658	38.968	12.70	58.88			
	IMI	777	31.3	18.788	15.638	38.867	11.04	52.53			
	Tak	675	26.3	18.797	15.648	38.904	11.94	55.14			
	TT	188	29.3	18.776	15.644	38.872	11.77	54.48			
		318	8.4	18.778	15.671	38.951	14.45	62.14			
		625	17.4	18.780	15.643	38.891	11.62	55.90			
en	IMI	603	30.7	18.893	15.669	38.938	13.00	46.94			
iyos	Tak	721	17.1	18.946	15.680	39.058	13.53	52.53			
M	BT .	726	20.1	18.929	15.661	39.025	11.81	51.28			

Tablo 3.34. İncelenen Tersiyer volkanitlerinin Pb izotop analizleri, hesaplanan $\Delta 7/4$ Pb ve $\Delta 8/4$ Pb değerleri

 $*\Delta7/4Pb = 100 \text{ x} [(207Pb/204Pb) - 0.1084 \text{ x} (206Pb/204Pb) - 13.491]$

** $\Delta 8/4Pb = 100 \text{ x} [(208Pb/204Pb) - 1.209 \text{ x} (206Pb/204Pb) - 15.627] (Hart, 1984)$

Eosen ve Miyosen yaşlı volkanitlere ait ²⁰⁶Pb/²⁰⁴Pb'e karşı ²⁰⁷Pb/²⁰⁴Pb ve ²⁰⁸Pb/²⁰⁴Pb izotop korelasyon diyagramlarında pozitif ilişki açıkça görülmektedir (Şekil 3.118 ve 3.119). Miyosen yaşlı BT takımı kayaçlarının Eosen yaşlı BTB ve TT takımları kayaçlarına göre daha yüksek ²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb ve ²⁰⁸Pb/²⁰⁴Pb oranlarına sahip olduğu saptanmıştır.

İncelenen volkanitler; ²⁰⁷Pb/²⁰⁴Pb oranları bakımından, özellikle OOSB'larından daha yüksek bir orana sahip olup, diğer deniz sedimanları, Sunda ve Güney Sandwich adaları volkanitlerinin (OAB-Okyanus Adası Bazaltı) çakıştığı alanda (Şekil 3.118); ²⁰⁸Pb/²⁰⁴Pb oranları dikkate alındığında ise, Hint Okyanusu OOSB'larından yüksek bir orana sahip olup, kısmen DUPAL grubu kısmen de MP (Marion-Pr. Edward volkanitleri) alanlarında ve yakın çevresinde yer almaktadırlar. İncelenen volkanitler, ²⁰⁶Pb/²⁰⁴Pb'ye karşı ²⁰⁷Pb/²⁰⁴Pb ve ²⁰⁸Pb/²⁰⁴Pb izotop diyagramlarında çok açık bir şekilde Kuzey Yarımküre Referans Çizgisi (NHRL)'nin üst kısmında yer almaktadır (Şekil 3.118 ve 3.119).

Şekil 3.118. İncelenen Tersiyer volkanitlerinin ²⁰⁶Pb/²⁰⁴Pb'ye karşı ²⁰⁷Pb/²⁰⁴Pb korelasyon diyagramı. NHRL (Kuzey Yarımküre Referans Çizgisi; Hart, 1984); EMI ve EMII (Zenginleşmiş Manto I ve II), HIMU (μ-değeri veya (U-Th)/Pb oranı yüksek olan manto kaynağı), DM (Tüketilmiş Manto), BSE (Yer yuvarının silikatlı kesiminin toplam bileşimi), PREMA (Genel Manto) alanları, White (1985), Zindler ve Hart (1986), Hart vd. (1992)'den alınmıştır (Semboller Şekil 3.115'deki gibidir)

Şekil 3.119. İncelenen Tersiyer volkanitlerinin ²⁰⁶Pb/²⁰⁴Pb'ye karşı ²⁰⁸Pb/²⁰⁴Pb korelasyon diyagramı. NHRL (Kuzey Yarımküre Referans Çizgisi; Hart, 1984); EMI ve EMII (Zenginleşmiş Manto I ve II), HIMU (μ-değeri veya (U-Th)/Pb oranı yüksek olan manto kaynağı), DM (Tüketilmiş Manto), BSE (Yer gezegeninin silikatlı kesiminin toplam bileşimi), PREMA (Genel Manto) alanları, White (1985), Zindler ve Hart (1986), Hart vd. (1992)'den alınmıştır (Semboller Şekil 3.115'deki gibidir)

3.9. Tersiyer Yaşlı Volkanitlerin Petrojenezi

İncelenen Tersiyer yaşlı volkanitlerde gerçekleştirilen jeolojik, petrografik, mineralojik ve jeokimyasal çalışmalar sonucunda söz konusu volkanitleri oluşturan magma ve/veya magmaların kökeni ve oluşumları sırasında etkili olan magmatik olaylar (kısmi ergime, fraksiyonel kristallenme, asimilayon ve magma karışımı) irdelenmiştir. Bu veriler ışığında; çalışma konusunu oluşturan volkanitlerin petrojenezinde etkili olan magmatik süreçlerin önemi ve gelişimi ortaya konulmaya çalışılmıştır.

3.9.1. Ana Magmanın Kökeni

Üst manto genellikle granat içeren veya içermeyen, az oranda piroksenitin eşlik ettiği peridotitten meydana gelmektedir (Jung vd., 2012). Bazanit gibi alkali kayaçları oluşturan silisce doygun olmayan magmalar ise genellikle granat piroksenitin yanı sıra, granat içeren peridotitik bir kaynaktan türeyebilmektedirler (Rapp vd., 1991; Kushiro, 1996). Jeokimyasal veriler bu kayaçların türediği üst mantonun heterojen yapıda olduğunu ve bu heterojen yapının okyanusal litosferin manto içerisine yitimi sonucu meydana geldiğini göstermektedir (Hofman vd., 1997).

İncelenen volkanitlerin kaynak alan karakteristiklerini belirlemek için yapılan çalışmalarda sadece bazik bileşimli kayaçların (SiO₂ < 52) analiz sonuçları kullanılmıştır. Doğu Pontidler'in eski bir yayını temsil etmesi nedeniyle manto kaynağının ne derece zenginleşmiş olduğu bilinmemektedir. Ancak; incelenen volkanitlerin N-OOSB'na normalize edilmiş iz element değişim diyagramlarında gözlemlenen negatif Nb, Ta ve Ti anomalileri zenginleşmenin yitimle ilişkili olabileceğini göstermektedir. Bu nedenle, volkanitlerin ana magması yitim ve/veya astenosferik ergiyiklerin karıştığı zenginleşmiş bir kökenden türemiş olabilir (Arslan vd., 2002).

Ta/Yb karşı Th/Yb diyagramında (Şekil 3.120) incelenen volkanitlerin yüksek Th/Yb oranlarıyla manto dizini üzerinde yer alması bu kayaçların yitimce zenginleşmeye uğramış bir kaynaktan türediğini ifade etmektedir. Ayrıca (¹⁴³Nd/¹⁴⁴Nd)_i'ye karşı Dy/Yb diyagramı (Şekil 3.121) incelenen volkanitlerin ana magmasının sığ derinlikli zenginleşmiş bir manto kaynağından türediğini desteklemektedir. Bu diyagramda Eosen yaşlı BTB ve TT takımlarında gözlenen pozitif ilişki ve buna karşın Miyosen yaşlı BT takımındaki dar

aralıklı negatif ilişki izotopik olarak farklı olan manto kaynak alanlarından türeyen ergiyiklerin karışmasına işaret etmektedir.

Şekil 3.120. İncelenen Tersiyer volkanitlerinin Ta/Yb'a karşı Th/Yb diyagramı. FC: Ayrımlaşma, AFC: Asimilasyon + ayrımlaşma yönsemeleri (Pearce, 1983)

Şekil 3.121. İncelenen Tersiyer volkanitlerinin (¹⁴³Nd/¹⁴⁴Nd)_i karşı Dy/Yb diyagramı (Semboller Şekil 3.115'deki gibidir)

183

3.9.1.1. Kaynak Alanda Granat ve Spinelin Varlığı

Granat, ağır nadir toprak elementleri (ANTE) yüksek oranda yapısında barındırma eğilimindedir. Bu yüzden granat içeren köken magmalar yüksek hafif nadir toprak element (HNTE)/ANTE oranlarına sahiptir (Blundy vd., 1998). İncelenen Eosen yaşlı BTB takımı kayaçlarında HNTE'ler ANTE'lere göre orta derecede zenginleşme gösterirken, Miyosen yaşlı BT takımı kayaçlarında gözlenen bu zenginleşme daha yüksektir. (La/Yb)_N oranları Eosen yaşlı BTB takımı kayaçları için 5.54 ile 10.87 arasında değişirken, Miyosen yaşlı BT takımı kayaçları için ise 36.36 ile 62.22 arasında değişim göstermektedir.

Yüksek oranda amfibolün yapısında da yer alan HNTE'ler kaynaktaki granat için güçlü veri olmayıp, ONTE/ANTE oranı daha iyi bir veri oluşturmaktadır. Öyle ki, (Dy/Yb)_N oranı 1.06'nın üzerinde ise granat lerzolitik bir ergiyiği, (Dy/Yb)_N oranı 1.06'nın altında ise spinel lerzolitik kaynaktan türeyen ergiyiği ifade etmektedir (Blundy vd., 1996). Eosen yaşlı BTB takımı içerisinde yer alan kayaçların (Dy/Yb)_N oranı 1.01 ile 1.53 arasında değişim gösterirken (Şekil 3.122a), Miyosen yaşlı BT takımı içerisinde yer alan kayaçların (Dy/Yb)_N oranı 1.02). Bu durumda; Eosen yaşlı volkanitlere göre Miyosen yaşlı volkanitleri oluşturan magmanın kaynağında granatın varlığından söz edilebilir.

Şekil 3.122. İncelenen Eosen (a) ve Miyosen (b) yaşlı volkanitlerin (Dy/Yb)_N'ye karşı SiO₂ diyagramları. Kondrit normalize değerleri Sun ve McDonough (1995)'e göredir (Semboller Şekil 3.120'deki gibidir)

İncelenen volkanitler için (SiO₂ <52 içeriğine sahip örnekler) farklı kısmi ergime derecelerine sahip değişik manto kaynaklarına farklı ergime modelleri uygulanmıştır. Bu modellerden ilkinde Sm/Yb'ye karşı La/Sm diyagramında, incelenen volkanitler, granat-

peridotit ve spinel peridotit kaynaklarının Shaw (1970) tarafından önerilen modal fraksiyonel ve modal batch (yığın/küme) ergimesi modelleri kullanılarak elde edilen eğrilerle karşılaştırılmıştır. Bu manto kaynaklarına ait modal bileşimler ve ergime oranları ile hesaplamalarda kullanılan mineral/ergiyik dağılım katsayıları Tablo 3.35'de ayrıntılı olarak verilmiştir. Buna göre; Eosen yaşlı volkanitlerin ana magmasının düşük-orta derecede (yaklaşık % 1-7) kısmi ergimeye uğramış spinel içeren peridotitik bir manto kaynağıyla, Miyosen yaşlı volkanitlerin ana magmasının düşük derecede (yaklaşık % 0.5-5) kısmi ergimeye uğramış granat içeren peridotitik bir manto kaynağıyla benzerlik gösterdiği söylenebilir (Şekil 3.123).

Sekil 3.123. İncelenen Tersiyer volkanitlerinin Sm/Yb'ye karşı La/Sm diyagramı (Modellemede, Eosen ve Miyosen yaşlı volkanitlerin SiO₂ <52 içeriğine sahip örnekler alınmıştır.). Modal fraksiyonel ve modal batch (yığın/küme) ergimesi modellemelerinde kullanılan değişik manto kaynakları, modal bileşimleri ve mineral/ergiyik dağılım katsayıları ve diğer açıklamalar Tablo 3.35'de verilmiştir. Yüzdeler (%) kısmi ergime derecelerini göstermektedir (Semboller Sekil 3.120'deki gibidir)

Tablo 3.35. Modal fraksiyonel ve modal batch (yığın/küme) ergimesi modellemelerinde kullanılan değişik manto kaynakları, modal bileşimleri ve mineral/ergiyik dağılım katsayıları.

Manto Kaynakları Modal Bileşimleri					
Granat peridotit	Ol _{0.63} Opir _{0.30} Kpir ₀	$Pl_{0.63}Opir_{0.30}Kpir_{0.02}SGrt_{0.05}$			
Spinel peridotit	Ol _{0.66} Opir _{0.24} Kpir ₀				
Dağılım Katsayıları :	D _{La}	D _{Sm}	$D_{ m Yb}$		
Olivin	0.0004	0.0013	0.0015		
Ortopiroksen	0.002	0.01	0.042		
Klinopiroksen	0.0435	0.26	0.313		
Granat	0.01	0.217	4.3		
Spinel	0.01	0.01	0.01		

* Dağılım katsayıları Keskin (1994), Foley vd. (1996), Rollinson (1993), McKenzie ve O'Nions (1991) ve URL-1'den alınmıştır.

* Kaynak bileşimleri: Spinel peridotit için Istranca bölgesindeki Miyosen yaşlı alkali bazaltlar içerisindeki spinel peridotit ksenolitlerinin ortalama bileşimi (Esenli ve Genç, 2005); Granat peridotit için ise Frey (1980)'den alınmıştır.

* Ol: Olivin, Opir: Ortopiroksen, Kpir: Klinopiroksen, Grt: Granat, Spl: Spinel

Kullanılan bir diğer modelde değişik manto kaynaklarına modal olmayan fraksiyonel kısmi ergime modeli uygulanarak elde edilen ergiyiklerin oluşturdukları yönsemeler Dy/Yb'ye karşı La/Yb diyagramında açıkça görülmektedir. Bu manto kaynaklarına ait modal bileşimler ve ergime oranları ile hesaplamalarda kullanılan mineral/ergiyik dağılım katsayıları Tablo 3.36'da verilmiştir. Buna göre, Eosen yaşlı volkanitlerin ana magmasının daha düşük-orta derecede (yaklaşık % 1-7) kısmi ergimeye uğramış spinel ve granat içeren peridotitik bir manto kaynağından, Miyosen yaşlı volkanitlerin ana magmasının ise çok düşük derecede (yaklaşık % 0.01-0.5) kısmi ergimeye uğramış granat içeren peridotitik bir manto kaynağından türeyebileceği söylenebilir (Şekil 3.124).

Şekil 3.124. İncelenen Tersiyer volkanitlerinin Dy/Yb'ye karşı La/Yb diyagramı (Modellemede, Eosen ve Miyosen yaşlı volkanitlerin SiO₂ <52 içeriğine sahip örnekler alınmıştır.). Modal olmayan fraksiyonel ergime modellemelerinde kullanılan değişik manto kaynakları, modal bileşimleri ve mineral/ergiyik dağılım katsayıları ve diğer açıklamalar Tablo 3.36'de verilmiştir. Yüzdeler (%) kısmi ergime derecelerini göstermektedir (Semboller Şekil 3.120'deki gibidir)

Tablo	3.36.	Modal	olmayan frak	siyonel	kısmi ergime	e modell	emelering	le ki	ullanılan değişik
		manto	kaynakları,	modal	bileşimleri,	ergime	oranları	ve	mineral/ergiyik
		dağılın	n katsayıları						

Manto Kaynakları	Modal Bileşimleri		Ergime Oranları	
Granat lerzolit	Ol _{0.5} Opir _{0.3} Kpir _{0.15} Grt _{0.05}	Ol _{0.5} Opir _{0.3} Kpir _{0.15} Grt _{0.05}		
Spinel lerzolit	$Ol_{0.5}Opir_{0.35}Kpir_{0.1}Spl_{0.05}$	$Ol_{0.5}Opir_{0.35}Kpir_{0.1}Spl_{0.05}$		
Dağılım Katsayıları :	D _{La}	D _{Dy}	D _{Yb}	
Olivin	0.0028	0.007	0.0015	
Ortopiroksen	0.008	0.022	0.042	
Klinopiroksen	0.002	0.33	0.28	
Granat	0.0014	1.06	4.01	
Spinel	0.01	0.01	0.01	

* Dağılım katsayıları Keskin (1994), Foley vd. (1996), Rollinson (1993), McKenzie ve O'Nions (1991) ve URL-1'den alınmıştır.

* Kaynak bileşimleri: Primitif manto (PM) nadir toprak element bileşimi Sun ve McDonough (1989)'a göredir.

* Ol: Olivin, Opir: Ortopiroksen, Kpir: Klinopiroksen, Grt: Granat, Spl: Spinel

İncelenen volkanitlerin kaynak bileşimini elde etmek için Yb/Rb'ye karşı La/Rb diyagramı üzerinde modal olmayan fraksiyonel kısmi ergime modeli uygulanmıştır. Bu manto kaynaklarına ait modal bileşimler ve ergime oranları ile hesaplamalarda kullanılan mineral/ergiyik dağılım katsayıları Tablo 3.37'de görülmektedir. Buna göre, Eosen yaşlı volkanitlerin ana magmasının düşük derecede (yaklaşık % 0.01-3) kısmi ergimeye uğramış spinel içeren lerzolit bir manto kaynağıyla, Miyosen yaşlı volkanitlerin ana magması yine düşük derecede (yaklaşık % 0.01-3) kısmi ergimeye uğramış manto kaynağıyla benzerlik sunduğu söylenebilir (Şekil 3.125).

Şekil 3.125. İncelenen Tersiyer volkanitlerinin Yb/Rb'ye karşı La/Rb diyagramı (Modellemede Eosen ve Miyosen yaşlı volkanitlerin SiO₂ <52 içeriğine sahip örnekler alınmıştır.). Modal olmayan fraksiyonel ergime modellemelerinde kullanılan değişik manto kaynakları, modal bileşimleri ve mineral/ergiyik dağılım katsayıları ve diğer açıklamalar Tablo 3.37'de verilmiştir. Yüzdeler (%) kısmi ergime derecelerini göstermektedir. İlksel manto (İM) nadir toprak element bileşimi Sun ve McDonough (1989)'a göredir (Semboller Şekil 3.120'deki gibidir)

Ergime modellemelerinde ve (Dy/Yb)_N oranında da görüldüğü üzere Eosen ve Miyosen yaşlı volkanitlerin köken magmalarının sadece spinel ya da sadece granat içeren peridotitik kayaçlar olmadığı anlaşılmaktadır. İncelenen volkanitlerin kaynak bileşimini elde etmek için Yb'ye karşı La/Yb oranı kullanılarak da modelleme yapılmıştır. Yapılan modellemede kullanılan manto kaynaklarına ait modal bileşimler ve ergime oranları ile hesaplamalarda kullanılan mineral/ergiyik dağılım katsayıları Tablo 3.38'de verilmiştir. Bu modellemede incelenen volkanitlerin spinel lerzolit ve granat lerzolit eğrileri arasında yer aldığı görülmektedir. Buradan yola çıkarak granat ve spinel içeren lerzolitik kaynak bileşimleri arasında karışım modellemesi yapılmıştır. Yapılan bu modellemede, Eosen yaşlı volanitler ise %10 ergimeye uğramış spinel lerzolit ile %3 ergimeye uğraşım granat lerzolit arasındaki karışım eğrisi üzerinde, Miyosen yaşlı volkanitler ise %1 ergimeye uğramış spinel lerzolit arasındaki karışım eğrisi üzerinde, Miyosen yaşlı volkanitler ise %1 ergimeye uğramış spinel lerzolit arasındaki karışım eğrisi üzerinde, Miyosen yaşlı volkanitler ise %1 ergimeye uğramış spinel lerzolit arasındaki karışım eğrisi üzerinde, Miyosen yaşlı volkanitler ise %1 ergimeye uğramış spinel lerzolit arasındaki karışım eğrisi üzerinde, Miyosen yaşlı volkanitler ise %1 ergimeye uğramış spinel lerzolit arasındaki karışım eğrisi üzerinde, Miyosen yaşlı volkanitler ise %1 ergimeye uğramış spinel lerzolit arasındaki karışım eğrisi

Tablo 3.37. Modal olmayan fraksiyonel kısmi ergime modellemelerinde kullanılan değişik manto kaynakları, modal bileşimleri, ergime oranları ve mineral/ergiyik dağılım katsayıları

Manto Kaynakları	Modal Bileşimleri			ne Oranları		
Granat lerzolit	Ol _{0.6} Opir _{0.2} Kpir _{0.1} Grt _{0.1}			Opir _{0.16} Kpir _{0.88} Grt _{0.09}		
Spinel lerzolit	Ol _{0.53} Opir _{0.27} Kpir _{0.17} Spl _{0.03}			Ol _{0.06} Opir _{0.28} Kpir _{0.67} Spl _{0.11}		
Amfibol-flogopit granat lerzolit	Ol _{0.55} Opir _{0.2} Kpir _{0.15} Grt _{0.5} Amf _{0.04} Flg _{0.01}			$Opir_{0.05}Kpir_{0.2}Grt_{0.2}Amf_{0.4}Flg_{0.1}$		
Dağılım Katsayıları :	$D_{ m Rb}$	D _{La}	$D_{\rm Yb}$			
Olivin	0.002	0.0004	0.0015			
Ortopiroksen	0.003	0.002	0.049			
Klinopiroksen	0.0047	0.0435	0.313			
Granat	0.001	0.01	4.3			
Spinel	0	0.01	0.01			
Amfibol	0.1	0.2	0.8			
Flogopit	5.18	0.35	0.04			

* Dağılım katsayıları Keskin (1994), Foley vd. (1996), Rollinson (1993), McKenzie ve O'Nions (1991) ve URL-1'den alınmıştır.

* Kaynak bileşimleri: İlksel manto (İM) nadir toprak element bileşimi Sun ve McDonough (1989)'a göredir.

* Ol: Olivin, Opir: Ortopiroksen, Kpir: Klinopiroksen, Grt: Granat, Spl: Spinel, Flg: Flogopit, Amf: Amfibol

Granat lerzolit bileşimi Walter (1998), spinel lerzolit bileşimi Kinzler (1997) ve amfibol-flogopit granat lerzolit bileşimi Barry vd. (2003)'den alınmıştır.

- Şekil 3.126. İncelenen Tersiyer volkanitlerinin La/Rb'ye karşı Yb diyagramı (Modellemede Eosen ve Miyosen yaşlı volkanitlerin SiO₂ <52 içeriğine sahip örnekler alınmıştır.) ve iki farklı kaynak arasındaki karışım modellemesi. Modal olmayan fraksiyonel ergime modellemelerinde kullanılan değişik manto kaynakları, modal bileşimleri ve mineral/ergiyik dağılım katsayıları ve diğer açıklamalar Tablo 3.38'de verilmiştir. Yüzdeler (%) kısmi ergime derecelerini göstermektedir (Semboller Şekil 3.120'deki gibidir)
- Tablo 3.38. Modal olmayan fraksiyonel kısmi ergime modellemelerinde kullanılan değişik manto kaynakları, modal bileşimleri, ergime oranları ve mineral/ergiyik dağılım katsayıları

Manto Kaynakları Modal Bileşimleri			Ergime Oranları
Granat lerzolit	Ol _{0.598} Opir _{0.211} Kpir _{0.076} Grt).115	Ol _{0.05} Opir _{0.2} Kpir _{0.3} Grt _{0.45}
Spinel lerzolit	Ol _{0.578} Opir _{0.27} Kpir _{0.119} Spl _{0.}	033	$Ol_{0.1}Opir_{0.27}Kpir_{0.5}Spl_{0.13}$
Dağılım Katsayıları :	D _{La}	D _{Yb}	
Olivin	0.0004	0.0015	
Ortopiroksen	0.002	0.049	
Klinopiroksen	0.0435	0.313	
Granat	0.01	4.3	
Spinel	0.01	0.01	

* Dağılım katsayıları Keskin (1994), Foley vd. (1996), Rollinson (1993), McKenzie ve O'Nions (1991) ve URL-1'den alınmıştır.

* Kaynak bileşimleri: Primitif manto (PM) nadir toprak element bileşimi Sun ve McDonough (1989)'a göredir.

* Ol: Olivin, Opir: Ortopiroksen, Kpir: Klinopiroksen, Grt: Granat, Spl: Spinel

Granat ve spinel lerzolit bileşimleri Thirlwall vd. (1994)'den alınmıştır.

Volkanitlerin kaynak alan karakteristiklerinin belirlemek amacıyla yapılan ilk deneysel çalışmalarda, piroksenit ve eklojitin 2.5 GPa'dan daha yüksek basınçlarda ergitilmesi andezitik ergiyikleri üretirken alkali ergiyikleri üretemediği belirtilmiştir (Yaxley ve Gren, 1998). Fakat daha sonraki deneysel çalışmalar, 2.5GPa'a kadar olan basınçlarda alkali bazaltik ergiyiklerin üretilebildiğini göstermiştir (Keshav vd., 2004). Ayrıca, SiO₂'ce zengin andezitik ergiyiklerin peridotitik kaynağa göçü heterojen, zenginlestirilmis ve farklı oranlarda olivin, ortopiroksen ve klinopiroksen bilesimine sahip peridotitleri meydana getirebilmektedir. Bu peridotitlerin ergimesiyle nefelin normatif mafik ergiyikler oluşturabilmektedir. Nefelin normatif nefelinit ve bazanitler CO2'nin varlığında 2 GPa ve 1360°C den daha yüksek basınç ve sıcaklık altında (Mysen ve Kushiro, 1977; Hirose, 1997) veya daha düşük sıcaklık (1200-1250°C) ve basınç (2.8-3.0 GPa) şartlarında (Mengel ve Green, 1986; Thibault vd., 1992) amfibol ve/veya flogopit içeren granat ya da spinel peridotitlerin ergimesi sonucunda oluşturabilmektedir. Bunlara ek olarak, amfibolce zengin olan kaynakların ergimesi nefelin normatif alkali ergiyikleri meydan getirilebilmektedir (Pilet vd., 2008). Genel olarak silisce fakir ergiviklerin üretilmesi H₂O ve CO₂'nin varlığı durumunda mümkündür (Brey ve Green, 1977; Mengel ve Green, 1986; Thibault vd., 1992; Hirose, 1997).

Normatif nefelin içeren incelenen Tersiyer yaşlı volkanitlerin kaynak alanında sulu fazların varlığını irdelemek için (Ce/Yb)_N'a karşı K/La ve Ce/Pb'ye karşı K/La diyagramları çizilmiştir (Şekil 3.127). Eosen yaşlı kayaçların (Ce/Yb)_N'a karşı K/La diyagramında yaklaşık pozitif ve Ce/Pb'ye karşı K/La diyagramında negatif ilişki gözlenirken, Miyosen yaşlı kayaçların (Ce/Yb)_N'a karşı K/La ve Ce/Pb'ye karşı K/La diyagramlarında negatif ilişki gözlenmektedir. (Ce/Yb)_N ve K/La arasındaki negatif ilişki muhtemelen peridotitik kaynaktaki amfibol veya flogopit gibi sulu mineral fazlarını işaret etmektedir. Ce/Pb'ye karşı K/La diyagramında yer alan negatif ilişki ise kalıntı potasyumlu mineraller içeren granat ve spinel peridotitin değişken dereceli kısmi ergimesini göstermektedir. Bu yaklaşım ayrıca mantodaki Pb'nin amfibol ve flogopit tarafından tutulduğunu gösteren Rosenbaum (1993) tarafından elde edilen verilerle desteklenmektedir.

Dy'ye karşı Dy/Yb diyagramında (Şekil 3.128a), Eosen yaşlı volkanitler flogopit içeren spinel lerzolit, Miyosen yaşlı volkanitler ise granat lerzolit kaynak bileşimini yansıtmaktadır. Ayrıca, Ba/Rb'ye karşı Rb/Sr diyagramında (Şekil 3.128b), Eosen yaşlı volkanitlerin kaynak alanında flogopit daha baskınken, Miyosen yaşlı volkanitlerin kaynak alanında ise daha çok amfibol baskın olarak gözükmektedir.

Şekil 3.127. İncelenen Tersiyer volkanitlerinin (a ve c, Eosen; b ve d, Miyosen) K/La ya karşı kondrite normalize Ce/Yb ve K/La ya karşı Ce/Pb diyagramları. Kondrit değerleri Taylor ve McLennan (1985)'den alınmıştır (Semboller Şekil 3.120'deki gibidir)

Şekil 3.128. İncelenen Tersiyer yaşlı volkanitlerin, (a) Dy/Yb ye karşı Dy diyagramı. Kısmi ergime eğrileri garnet lerzolit ve flogopit spinel lerzolitin batch (yığın, küme) ergimesine göre hesaplanmıştır. (b) Rb/Sr ye karşı Ba/Rb diyagramı (Semboller Şekil 3.120'deki gibidir)

Sonuç olarak; Eosen yaşlı volkanitler flogopit içeren ve spinelin daha baskın olduğu *flogopit-spinel-granat(?) lerzolitik* bir kaynaktan, Miyosen yaşlı volkanitler amfibol içeren ve daha çok granatın baskın olduğu *amfibol-granat(?)-spinel lerzolitik* bir kaynaktan türedikleri ileri sürülebilir.

3.9.2. Kısmi Ergime

Yitim zonlarında gelişen volkanizma, izotopik olaran değişkenlik gösteren ve akışkanlar tarafından farklı miktarda zenginleşmeye uğratılmış manto peridotinin farklı miktarda kısmi ergimesiyle oluşmaktadır (ör. Green, 1982; Thirwall vd. 1996; Borg vd. 1997; Elburg vd., 2002; Bindeman vd., 2005). Yitim zonlarındaki kısmi ergimeyi açıklayabilmek için Mg numarası (Mg#) 68'den büyük olan ilksel bileşime yakın bazaltik kayaçlar kullanılmaktadır. İncelenen volkanitlerin Mg# ise Eosen yaşlı bazik kayaçlar için (BTB takımı kayaçları) 16.6 ile 55.9 arasında değişirken Miyosen yaşlı volkanitler için 23.4 ile 52.9 arasında değişmektedir. Bu durumda incelenen volkanitlerin kısmi ergime olaylarının irdelenmesi için uygun ilksel bileşime sahip olmadığı görülmektedir. Ancak, bu tür kayaçların kısmi ergime süreçlerini açıklamaya çalışan farklı yaklaşımlarda bulunmaktadır.

İncelenen volkanitlerin gelişiminde etkili olan kısmi ergimenin etkisini diğer magmatik olaylardan ayırt etmek için La'ya karşı La/Yb diyagramı çizilmiştir (Şekil 3.129). Bu diyagramda meydana gelen pozitif yönsemeler ve geniş aralıkta değişen La/Yb oranı kayaçların gelişiminde kısmi ergimenin etkili olduğunu göstermektedir. Buna göre; Miyosen yaşlı volkanitlerin gelişiminde kısmi ergime daha etkin bir rol oynarken, Eosen yaşlı kayaçların gelişiminde kısmi ergimenin yanında fraksiyonel kristallenmenin de etkisi görülmektedir.

İncelenen volkanitlerin ana magması(ları) için, yitimle ilişkili zenginleşmiş bir manto kaynağı olası görünmesine rağmen, muhtemel kaynağın kısmi ergime miktarı da petrokimyasal değişimler için önemlidir. Volkanik kayaçlarda, yüksek Zr/Y ve düşük Zr/Nb oranları genel olarak düşük derecedeki kısmi ergime sonucu, düşük Zr/Y ve yüksek Zr/Nb değerleri ise yüksek derecedeki kısmi ergime sonucu ortaya çıktığı bilinmektedir (Menzies ve Kyle, 1990). Zr/Nb'a karşı Zr/Y diyagramında (Şekil 3.130), incelenen Tersiyer yaşlı volkanitler, yüksek ergime derecesine sahip bir magmayla düşük ergime derecesine sahip bir magma arasındaki karışım eğrisi üzerinde yer almaktadırlar. Eosen yaşlı volkanitler orta-düşük Zr/Y, düşük Zr/Nb oranıyla karakterize orta dereceli bir kısmi ergime miktarına, Miyosen yaşlı volkanitler ise yüksek Zr/Y ve düşük Zr/Nb oranlarıyla karakterize olan düşük bir kısmi ergime derecesine işaret etmektedir.

Şekil 3.129. İncelenen (a) Eosen ve (b) Miyosen yaşlı volkanitlerin La/Yb'ye karşı La diyagramı (Semboller Şekil 3.120'deki gibidir)

Şekil 3.130. İncelenen Tersiyer yaşlı volkanitlerin Zr/Nb'a karşı Zr/Y diyagramı (Menzies ve Kyle, 1990) P: Plume, N: Normal ve T: Geçiş Okyanus Ortası Sırtı Bazaltı alanları Le Roex (1987)'den alınmıştır (Sembolleri Şekil 3.120'deki gibidir)

İncelenen volkanitlerin ana magmasının ne kadar ergimeye uğradığının belirlenmesi manto kaynağının bileşiminin belirlenmesi açısından oldukça önemlidir. Bu manto kaynağının yüzde kaçlık bir kısmi ergimeye uğradığını belirlemek için ise bir yaklaşımda bulunmak gerekmektedir. Miyosen yaşlı volkanitlerin kısmi ergime deresini belirlemek için manto kaynağı olarak Frey (1984) tarafından belirlenen granat lerzolitin modal bileşimi (Ol: %55; Opir: %25; Kpir: %10; Grt: %10) ve ergime oranları (Ol: %40; Opir: %40; Kpir: %10; Grt: %10) kullanılmıştır. Eosen yaşlı volkanitlerin kısmi ergime derecesini belirlemek için ise Thirlwall vd. (1994) tarafından verilen spinel lerzolitin modal bileşimi (Ol: %57.8; Opir: %27; Kpir: %11.9; Spl: %3.3) ve ergime oranları (Ol: %10; Opir: %27; Kpir: %13) kullanılmıştır. Ayrımlaşma katsayıları, Keskin (1994), Foley vd. (1996), Rollinsone (1993), McKenzie ve O'Nions (1991) ve URL-1'den, kondrit normalize değerleri Taylor ve McLennan (1985)'den alınmıştır.

Şekil 3.131. İncelenen Miyosen yaşlı volkanitlerin kısmi ergime derecesinin belirlenmesinde kullanılan modal olmayan fraksiyonel ergime modeli. Granat lerzolitin farklı yüzdelerde kısmi ergimeye uğratılmasıyla oluşturulan nadir toprak element dağılımları mavi çizgilerle gösterilmiştir. (İlksel kaynak alan olarak alınan ilksel manto (PM) değeri Sun ve McDonough (1989), mantonunun modal bileşimi ve ergime oranları Frey (1984)'den; Dağılım katsayıları Keskin (1994), Foley vd. (1996), Rollinson (1993), McKenzie ve O'Nions (1991) ve URL-1'den, kondrit normalize değerleri Taylor ve McLennan (1985)'den alınmıştır)

Şekil 3.132. İncelenen Eosen yaşlı volkanitlerin kısmi ergime derecesinin belirlenmesinde kullanılan modal olmayan fraksiyonel ergime modeli. Spinel-lerzolitin farklı yüzdelerde kısmi egimeye uğratılmasıyla oluşturulan nadir toprak element dağılımları kırmızı çizgilerle gösterilmiştir (İlksek kaynak alan olarak alınan ilksel manto (PM) değeri Sun ve McDonough (1989)'dan; mantonun modal bileşimi ve ergime oranları Frey (1984)'den; Dağılım katsayıları Keskin (1994), Foley vd. (1996), Rollinsone (1993), McKenzie ve O'Nions (1991) URL-1'den; kondrit normalize değerleri Taylor ve McLennan (1985)'den alınmıştır)

Farklı kısmi ergime derecelerine sahip ilksel magmaya modal olmayan fraksiyonel ergime modeli uygulanarak elde edilen nadir toprak element değişimleri Eosen ve Miyosen yaşlı volkanitlerin NTE değişimleriyle karşılaştırılmıştır (Şekil 3.131 ve 3.132; Tablo 3.39). Buna göre Eosen yaşlı volkanitlerin ana magmaya göre kısmi ergime miktarı ağır nadir toprak elementler dikkate alındığında yaklaşık %10 ile 40 arasında değişirken, hafif nadir toprak elementler dikkate alındığında ise yaklaşık %1 ile 7 arasındadır. Miyosen yaşlı volkanitlerin ana magmaya göre kısmi ergime miktarı ise ağır nadir toprak elementler dikkate alındığında ise yaklaşık %1 ile 7 arasındadır. Miyosen yaşlı volkanitlerin ana magmaya göre kısmi ergime miktarı ise ağır nadir toprak elementler dikkate alındığında ise yaklaşık %1 ile 7 arasındadır. Miyosen yaşlı volkanitlerin ana magmaya göre kısmi ergime miktarı ise ağır nadir toprak elementler dikkate alındığında ise yaklaşık %1 ile 7 arasındadır. Miyosen yaşlı volkanitlerin ana magmaya göre kısmi ergime miktarı ise ağır nadir toprak elementler dikkate alındığında ise yaklaşık %1 ile 7 arasındadır. Miyosen yaşlı volkanitlerin ana magmaya göre kısmi ergime miktarı ise ağır nadir toprak elementler dikkate alındığında yaklaşık %10 ile 40 arasında, hafif nadir toprak elementler dikkate alındığında ise %1'in altında olarak söylenebilir.

Manto Kaynakları	Modal Bileş	imleri	Ergime	Oranları		
Granat lerzolit	Ol _{0.6} Opir _{0.2}	Kpir _{0.1} Grt _{0.1}	Ol _{0.03} Op	rt _{0.09}		
Spinel lerzolit	Ol _{0.53} Opir _{0.27} Kpir _{0.17} Spl _{0.03}		Ol _{0.06} Op	pl _{0.11}		
Dağılım Katsayıları :	Olivin	Ortopiroksen	Klinopiroksen	Granat	Spinel	
$D_{L_{\alpha}}$	0.0004	0.002	0.0435	0.01	0.01	
$D_{C_{2}}$	0.0005	0.003	0.098	0.021	0.01	
D_{Nd}	0.001	0.0068	0.21	0.087	0.01	
	0.0013	0.01	0.26	0.217	0.01	
D_{Sm}	0.0016	0.013	0.31	0.32	0.01	
D_{Eu}	0.0015	0.016	0.3	0.498	0.01	
D_{Gd}	0.0017	0.022	0.33	1.06	0.01	
D_{Dy}	0.0015	0.03	0.3	2	0.01	
D_{Er}	0.0015	0.049	0.313	4.3	0.01	
D_{Yb} D_{Lu}	0.0015	0.06	0.28	5.5	0.01	

Tablo 3.39. Modal olmayan fraksiyonel kısmi ergime modellemelerinde granat ve spinel lerzolitik manto kaynakları, modal bileşimleri, ergime oranları ve mineral/ergiyik dağılım katsayıları

* Dağılım katsayıları Keskin (1994), Foley vd. (1996), Rollinsone (1993), McKenzie ve O'Nions (1991) ve URL-1'den alınmıştır.

* Kaynak bileşimleri: Primitif manto (PM) nadir toprak element bileşimi Sun ve McDonough (1989)'a göredir.

* Ol: Olivin, Opir: Ortopiroksen, Kpir: Klinopiroksen, Grt: Granat, Spl: Spinel, Flg: Flogopit, Amf: Amfibol

Granat lerzolit bileşimi Frey (1984), spinel lerzolit bileşimi Thirlwall vd. (1994)'den alınmıştır.

3.9.2. Ayrımlaşma (Fraksiyonel Kristallenme-FC)

Mantodan türeyen ilksel magmaların genellikle 68 ile 72 arasında değişen Mg numarasına (Green vd., 1974; Frey vd., 1978; Baker vd., 1997) ve düşük BİLE/YÇAE oranına sahip olmaları beklenir (Weaver, 1991). İncelenen volkanitler, düşük MgO, Ni ve Cr içerikleriyle ilksel magmalara göre oldukça farklılaşmış bileşime sahiptirler. Ayrıca, incelenen volkanitlerde ana ve iz elementlerde gözlenen değişimler, olivin, klinopiroksen, hornblend, plajiyoklas, Fe-Ti oksit ve apatit mineral fazlarının ayrımlaşmasına işaret etmektedir.

İncelenen volkanitlerin ana ve iz element değişim diyagramlarındaki düzenli ilişkiler, kayaçların gelişiminde ayrımlaşmanın etkili olduğunu ortaya koymaktadır. Fraksiyonel kristallenmede etkili olan mineral fazlarını belirlemek için uyumlu-uyumsuz element çiftleri kullanılarak ikili diyagramlar hazırlanmıştır. Eosen yaşlı volkanitler için çizilen bu diyagramlarda gözlenen artan Zr'ye karşı TiO₂ içeriğindeki negatif yönseme, Fe-Ti oksit, hornblend ayrımlaşmasını işaret ederken, pozitif yönseme ise klinopiroksen, olivin, plajiyoklas, flogopit ve apatit ayrımlaşmasını işaret etmektedir (Şekil 3.133a). Artan Zr'a karşı pozitif Y değişimleri olivin, klinopiroksen, Fe-Ti oksit, plajiyoklas ve apatit ayrımlaşmasını (Şekil 3.133b) ifade etmektedir. Rb'a karşı K/Rb oranı diyagramında (Şekil 3.133c) azalan Rb'a karşı artan K/Rb oranı flogopit ayrımlaşmasına, aynı diyagramdaki yataya yakın negatif ilişki özellikle Eosen yaşlı ortaç kayaçlarda plajiyoklas ayrımlaşmasına işaret etmektedir. SiO₂'e karşı Dy/Yb diyagramındaki negatif ilişki ise hornblendin ayrımlaşması göstermektedir (Şekil 3.133d). Azalan MgO'e karşı azalan CaO/Al₂O₃ oranı ve artan Sr içeriği klinopiroksen ayrımlaşmasını gösterirken, MgO'e karşı azalan Sr plajiyoklas ayrımlaşmasına işaret etmektedir (Şekil 3.133e). CaO/Al₂O₃ oranına karşı Fe₂O₃/MgO oranına göre çizilen diyagramdaki düşeye yakın negatif yönsemeler klinopiroksen ayrımlaşmasını sergilemektedir. Al₂O₃'e karşı CaO/Na₂O oranına çizilen diyagramdaki azalan CaO/Na₂O oranına karşı azalan Al₂O₃ içeriği plajiyoklas ayrımlaşmasına ifade ederken, artan Al₂O₃ içeriği klinopiroksen ayrımlaşmasını göstermektedir (Şekil 3.133f, g).

İncelenen Miyosen yaşlı volkanitlerde gözlenen artan Zr'a karşı TiO₂ içeriğindeki negatif yönseme, Fe-Ti oksit, hornblend, pozitif yönseme ise klinopiroksen, olivin, plajiyoklas, flogopit ve apatit ayrımlaşmasını işaret etmektedir (Şekil 3.134a). Zr'a karşı Y değişim diyagramında gözlenen pozitif ilişki olivin, klinopiroksen, Fe-Ti oksit, plajiyoklas ve apatit ayrımlaşmasını (Şekil 3.134b) göstermektedir. Rb'a karşı K/Rb oranı diyagramında (Şekil 3.134c) azalan Rb'a karşı artan K/Rb oranı flogopit ayrımlaşmasına, aynı diyagramdaki yataya yakın negatif ilişki hornblend ayrımlaşmasını vurgulamaktadır. SiO₂'e karşı Dy/Yb diyagramındaki negatif ilişki ise hornblend ayrımlaşmasını göstermektedir (Şekil 3.134d). Azalan MgO'e karşı azalan CaO/Al₂O₃ oranı ve artan Sr içeriği klinopiroksen ayrımlaşmasının varlığını sergilemektedir (Şekil 3.134e). CaO/Al₂O₃ oranına karşı Fe₂O₃/MgO oranına göre çizilen diyagramdaki negatif yönsemeler klinopiroksen ayrımlaşmasını ifade etmektedir. Al₂O₃'e karşı CaO/Na₂O oranına çizilen diyagramdaki azalan CaO/Na₂O oranına karşı artan Al₂O₃ içeriği klinopiroksen ayrımlaşmasını ifade etmektedir.

Volkanitlerin gelişiminde fraksiyonel kristallenme esas magmatik olay olarak değerlendirildiğinde; Eosen yaşlı BTB takımında klinopiroksen, olivin ve Fe-Ti oksit fraksiyonlaşması diğer fazlara göre daha etkinken, TT takımında plajiyoklas, biyotit,

sanidin ve Fe-Ti oksit, Miyosen yaşlı BT takımında ise klinopiroksen ve Fe-Ti oksit ayrımlaşmasının diğer fazlara göre daha etkin olduğu söylenebilir.

Şekil 3.133. İncelenen Eosen yaşlı volkanitlerin ana oksit ve iz element çiftlerinden yararlanılarak çizilen diyagramlar; (a) Zr (ppm)- TiO₂ (%), (b) Zr (ppm)- Y (ppm), (c) K/Rb- Rb (ppm), (d) Dy/Yb- SiO₂ (%), (e) CaO/Al₂O₃- MgO (%), (f) Sr (ppm)- MgO (%), (g) CaO/Al₂O₃- Fe₂O₃/MgO, (h) Al₂O₃ (%)- CaO/Na₂O (Vektörler minerallerin ayrımlaşma yönlerini göstermektedir. Semboller 3.118'deki gibidir)

Şekil 3.134. İncelenen Miyosen yaşlı volkanitlerin ana oksit ve iz element çiftlerinden yararlanılarak çizilen diyagramlar; (a) Zr (ppm)- TiO₂ (%), (b) Zr (ppm)- Y(ppm), (c) K/Rb- Rb (ppm), (d) Dy/Yb- SiO₂ (%), (e) CaO/Al₂O₃- MgO (%), (f) Sr (ppm)- MgO (%), (g) CaO/Al₂O₃- Fe₂O₃/MgO, (h) Al₂O₃ (%)- CaO/Na₂O (Vektörler minerallerin ayrımlaşma yönlerini göstermektedir. Semboller 3.118'deki gibidir)

3.9.2.1. Tersiyer Volkanitlerinin Gelişimde Etkili Olan Ayrımlaşmanın Jeokimyasal Modellemesi

Tersiyer yaşlı volkanitlerin gelişiminde ayrımlaşmanın rolünü ortaya koyabilmek için iz element çiftlerinden veya oranlarından yararlanarak ayrımlaşma yönlerini gösteren vektörler oluşturulmuştur. Teorik olarak oluşturulan Rayleigh ayrımlaşma vektörleri hazırlanırken Keskin (2002) tarafından geliştirilen FC-Modelleme programından faydalanılmıştır. Modellemede kullanılan mineral-ergiyik paylaşım katsayıları Rollinson (1993), Keskin (2002), McKenzie ve O'Nions (1991) ve URL-1'den alınmıştır. Volkanitlerin gelişiminde hangi minerallerin hangi oranlarda ayrımlaşmaya uğradıkları Eosen yaşlı kayaçlar'da bazik ve ortaç, Miyosen yaşlı kayaçlarda ise yalnızca bazik karakterli kayaçlar için ayrı ayrı ele alınmıştır.

Ayrımlaşmanın volkanitler üzerindeki etkisini irdelemek için uyumlu uyumsuz element faktörü göz önünde bulundurularak element çiftleri ve oranları kullanılarak diyagramlar çizilebilmektedir. Çizilen diyagramlarda hangi mineral fazının hangi oranda ayrımlaşmaya katıldığı Şekil 3.135, 3.136 ve 3.137'de ve ayrımlaşma vektörlerinin değerleri Tablo 3.40, 3.41 ve 3.42'de verilmiştir.

Eosen yaşlı bazik (BTB takımı) volkanitlerin gelişiminde etkili olan fraksiyonel kristallenmede, Sr/Y-Y/Rb, Sr – Rb/Sr, La – Sc/Y, Sr-Sc, Ni-Rb ve Sc-Rb diyagramlarına (Şekil 3.135) göre yaklaşık olarak %20-50 plajiyoklas, %42-60 klinopiroksen ve %5-20 arasında değişen olivin ayrımlaşmasının etkili olduğu söylenebilir. Eosen yaşlı ortaç volkanitlerin (TT takımı) gelişiminde etkili olan fraksiyonel kristallenme Zr-Dy, Sr-Dy, La/Yb-Th, Sr/Y-Rb, Ba/Zr-Y/Zr ve Th-Sm diyagramlarına (Şekil 3.136) göre yaklaşık %52-78 plajiyoklas, %7-45 hornblend, %5-10 klinopiroksen, %5 biyotit ve %5 sanidin ayrımlaşması ile temsil edilmektedir.

Miyosen yaşlı bazik volkanitlerin (BT takımı) gelişiminde etkili olan fraksiyonel kristallenme Ni/Zr-Sc, Sc/Y-Y, Rb/Yb-Yb/Sr, Rb/Sr-Y/Rb, Sc-Nb ve La-Sc/Y diyagramlarına (Şekil 3.137) göre yaklaşık %45-80 klinopiroksen, %10-40 plajiyoklas, %10-15 hornblend, %10-40 olivin ayrımlaşmasından meydana gelmektedir.

Şekil 3.135. İncelenen Eosen yaşlı bazik volkanitlerin (BTB takımı) gelişiminde etkili olan minerallerin ayrımlaşma yönlerini ve oranlarını gösteren değişim diyagramları (Semboller Şekil 3.120'deki gibidir)

Şekil 3.136. İncelenen Eosen yaşlı ortaç volkanitlerin (TT takımı) gelişiminde etkili olan minerallerin ayrımlaşma yönlerini ve oranlarını gösteren değişim diyagramları (Semboller Şekil 3.115'deki gibidir)

204

Şekil 3.137. İncelenen Miyosen yaşlı bazik volkanitlerin (BT takımı) gelişiminde etkili olan minerallerin ayrımlaşma yönlerini ve oranlarını gösteren değişim diyagramları (Semboller Şekil 3.120'deki gibidir)

Yapılan modellemeler sonucunda; diyagramlarda da görüldüğü üzere (Şekil 3.135, 3.136, 3.137), Eosen yaşlı bazik kayaçların gelişiminde klinopiroksen, plajiyoklas, olivin ve Fe-Ti oksit ayrımlaşması etkiliyken, ortaç karakterli volkanitlerin gelişiminde plajiyoklas, hornblend, klinopiroksen, biyotit, sanidin ve Fe-Ti oksit ayrımlaşması etkilidir. Miyosen yaşlı volkanitlerin gelişiminde ise klinopiroksen, plajiyoklas, olivin, hornblend ve Fe-Ti oksit ayrımlaşmasının daha baskın olduğu söylenebilir.

İncelen Tersiyer yaşlı volkanitlerin hem $({}^{87}\text{Sr}/{}^{86}\text{Sr})_i$ hem de $({}^{143}\text{Nd}/{}^{144}\text{Nd})_i$ ye karşı bazı ana oksit (farklılaşma indisi olarak), uyumsuz iz element ve iz element oran değişim diyagramları çizilmiştir (Şekil 3.138 ve 3.139).

Eosen yaşlı bazik volkanitlerin (BTB takımı) artan SiO₂, Th ve Rb/Sr'a karşılık (⁸⁷Sr/⁸⁶Sr)_i diyagramlarında pozitif bir ilişki gözlenirken, azalan MgO, Zr/Nb, Sr ve Sr/Y'a karşı (⁸⁷Sr/⁸⁶Sr)_i diyagramlarında yine pozitif bir ilişki gözlenmektedir. TT takımında ise hemen hemen yatay bir ilişki vardır. Miyosen yaşlı bazik volkanitler (BT takımı) için ise artan SiO₂, Th ve Rb/Sr, Ba/La, Zr/Nb, 1/Sr*1000 ve Nb/Ta'a karşı (⁸⁷Sr/⁸⁶Sr)_i diyagramlarında pozitif ilişki, azalan MgO, Sr ve Sr/Y'a karşılık (⁸⁷Sr/⁸⁶Sr)_i diyagramında da pozitif bir ilişki tanımlanır (Şekil 3.138).

Eosen yaşlı BTB takımı kayaçlarında artan SiO₂, Ba/La, Nb/Ta, La/Yb, Sm/Nd, Sr/Y, ¹⁴⁷Sm/¹⁴⁴Nd ve Nb'a karşı (¹⁴³Nd/¹⁴⁴Nd)_i diyagramlarının tamamında negatif ilişki gözlenmiştir. TT takımında artan SiO₂, Nb/Ta, Ba/La ve Sr/Y'a karşı (¹⁴³Nd/¹⁴⁴Nd)_i diyagramında yatay bir ilişki gözlenirken, artan La/Yb, Sm/Nd ve ¹⁴⁷Sm/¹⁴⁴Nd'e karşı (¹⁴³Nd/¹⁴⁴Nd)_i diyagramında BTB takımı örnekleriyle uyumlu olarak negatif bir ilişki görülür. Miyosen yaşlı BT takımında artan SiO₂, Nb/Ta, Ba/La, Sr/Y'a karşı (¹⁴³Nd/¹⁴⁴Nd)_i diyagramları yatay, artan La/Yb'a karşı (¹⁴³Nd/¹⁴⁴Nd)_i diyagramı negatif, azalan Sm/Nd, ¹⁴⁷Sm/¹⁴⁴Nd ve Nb'a karşı (¹⁴³Nd/¹⁴⁴Nd)_i diyagramlarında ise negatif ilişki gözlenmektedir (Şekil 3.139).

(⁸⁷Sr/⁸⁶Sr)_i ve (¹⁴³Nd/¹⁴⁴Nd)_i oranlarına karşı bazı ana oksit, iz element ve iz element oranlarındaki değişimler ilksel kaynak alandaki değişimler ile birlikte volkanitlerin gelişimindeki fraksiyonel kristallenme (FC) ve/veya asimilasyonla birlikte gelişen fraksiyonel kristallenmeye (AFC) işaret etmektedir. Şekil 3.138 ve 3.139'deki yatay ve yataya yakın yönde meydana gelen değişimler FC'yi, pozitif veya negatif yönsemeler ise AFC'nin varlığını göstermektedir. Düşey yönde meydana gelen değişimler ise kaynak farklılaşmasını vurgulamaktadır. Hem Eosen yaşlı BTB ve TT takımları arasında hem de bunlarla Miyosen yaşlı BT takımı arasında kaynak farklılaşması olduğu gözlenmektedir.

Şekil 3.138. İncelenen Tersiyer yaşlı volkanitlerin (⁸⁷Sr/⁸⁶Sr)_i karşı bazı ana oksit, iz element ve iz element oranları değişim diyagramları (Semboller Şekil 3.115'deki gibidir)

Şekil 3.139. İncelenen Tersiyer yaşlı volkanitlerin (¹⁴³Nd/¹⁴⁴Nd)_i karşı bazı ana oksit, iz element ve nadir toprak element oranları değişim diyagramları (Semboller Şekil 3.115'deki gibidir)

Aynı zamanda, BTB ve BT takımları kayaçlarının oluşumunda genellikle AFC'nin daha etkin rol oynarken, TT takımı kayaçlarının oluşumunda FC'nin rolünün daha etkin olduğu söylenebilir. Hem BTB hem de BT takımlarının oluşumunda AFC'nin rolünün etkin olmasına rağmen, farklı yönsemeler göstermeleri, BT takımının BTB takımına göre daha farklılaşmış bir kaynaktan türediğine işaret edebilir.

İncelenen volkanitlerin SiO₂'e (%) karşı ²⁰⁶Pb/²⁰⁴Pb ve ²⁰⁷Pb/²⁰⁴Pb, (⁸⁷Sr/⁸⁶Sr)_i karşı ²⁰⁷Pb/²⁰⁴Pb ve ²⁰⁸Pb/²⁰⁴Pb, (¹⁴³Nd/¹⁴⁴Nd)_i karşı ²⁰⁷Pb/²⁰⁴Pb ve ²⁰⁸Pb/²⁰⁴Pb diyagramları Şekil 3.140'de gösterilmiştir. Bu diyagramlardan da görülebileceği gibi Miyosen ve Eosen yaşlı volkanitlere ait dağılımların hem AFC hem de fraksiyonel kristallenme (FC) yönsemelerine paralellik göstermesi, bu kayaçların gelişiminde hem fraksiyonel kristallenme (FC) hem de asimilasyonun (AFC) etkili olabileceği şeklinde yorumlanabilir (Şekil 3.140).

Şekil 3.140. İncelenen Tersiyer volkanitlerinin $\mathop{\rm SiO}_2(\%)$ karşı $^{206}\text{Pb}/^{204}\text{Pb}$ ve $^{207}\text{Pb}/^{204}\text{Pb}$, $(^{87}\text{Sr}/^{86}\text{Sr})_i$ karşı $^{207}\text{Pb}/^{204}\text{Pb}$ ve $^{208}\text{Pb}/^{204}\text{Pb}$, $(^{143}\text{Nd}/^{144}\text{Nd})_i$ karşı $^{207}\text{Pb}/^{204}\text{Pb}$ ve $^{208}\text{Pb}/^{204}\text{Pb}$ diyagramları (Semboller Şekil 3.115'deki gibidir)

Vektör No	Element veya	E-0/100	E = 0/90	$\frac{1}{E^{-0}}$	a göre hesapl	$\frac{\text{anan } C_L \text{ değe}}{E = 0.20}$	rieri		
	V/D1	F=%100	F = %80	F=%60	F=%40	F = % 20	F=%1		
Vektör 1	Y/KD Sr/V	1.03	1.02 26.10	1.02	1.01	1.00 6.30	1.57		
	V/Rh	1.63	20.19	19.48	12.84	1 47	1 22		
Vektör 2	Sr/Y	32.94	27.18	21.21	14 95	8 23	0.62		
	Y/Rb	1.63	1.58	1.53	1.46	1.35	0.96		
Vektör 3	Sr/Y	32.94	28.20	23.09	17.41	10.75	1.34		
¥7-1 (2 - 4	Y/Rb	1.63	1.55	1.45	1.32	1.13	0.58		
vektor 4	Sr/Y	32.94	30.77	28.19	24.91	20.16	8.08		
Veltör 5	Y/Rb	1.63	1.52	1.39	1.23	0.99	0.40		
VERIOI 5	Sr/Y	32.94	33.40	34.00	34.86	36.38	43.77		
Vektör 1	Sc	60.00	42.19	26.80	14.13	4.73	0.04		
, entor r	Sr	341.00	410.55	521.55	730.77	1300.75	15720.07		
Vektör 2	Sc	60.00	54.14	47.42	39.34	28.59	7.19		
	Sr	341.00	375.58	425.38	506.99	684.39	2502.96		
Vektör 3	Sc Sr	60.00	61.53	63.57	66.55	/1.9/	100.96		
	Sr	541.00	397.25	485.08	038.33	1025.71	7900.20		
Vektör 4	Sc Sr	341.00	/2.21	91.08 567.00	851.33	1700.80	2742.33		
	Sc	60.00	420.11	91 / 2	127.69	226.11	2671.48		
Vektör 5	Sr	341.00	334 74	326.83	316.01	298 32	232.60		
	Rh/Sr	0.01	0.01	0.02	0.03	0.06	1 99		
Vektör 1	Sr	1020.00	975.48	920.94	849.20	739.28	406.07		
	Rb/Sr	0.01	0.01	0.02	0.02	0.04	0.70		
Vektör 2	Sr	1020.00	1027.06	1036.24	1049.32	1072.05	1176.12		
17.1	Rb/Sr	0.01	0.01	0.02	0.02	0.04	0.42		
vektor 3	Sr	1020.00	1053.53	1098.38	1164.85	1287.95	1988.15		
Valtör 1	Rb/Sr	0.01	0.01	0.01	0.02	0.02	0.11		
VEKIOI 4	Sr	1020.00	1123.43	1272.41	1516.52	2047.15	7486.87		
Vektör 5	Rb/Sr	0.01	0.01	0.01	0.01	0.02	0.04		
Vertor 5	Sr	1020.00	1188.26	1446.77	1909.37	3068.11	23828.69		
Vektör 6	Rb/Sr	0.01	0.01	0.01	0.01	0.01	0.02		
v entor o	Sr Sr	1020.00	1228.05	1560.07	2185.88	3890.80	47021.90		
Vektör 7	Rb/Sr	0.01	0.01	0.01	0.01	0.01	0.01		
	Sr	1020.00	12/4.5/	1698.70	2546.50	5087.70	101297.84		
Vektör 1	Rb	21.00	26.24	34.96	52.40	104.66	2080.75		
	N1	265.00	88.79	21.69	2.97	0.10	0.00		
Vektör 2	KD N:	21.00	20.12	34.00	51.44 21.49	101.31	1895.48		
	INI Dh	203.00	137.74	00.01 24.41	50.03	0.28	1802.27		
Vektör 3	Ni	21.00	20.00	177.00	128.49	99.34 74.31	6.97		
	Rh	203.00	26.03	34 32	50.68	98 70	1759.22		
Vektör 4	Ni	265.00	249.78	231.45	207.87	172.99	78.21		
	Rb	21.00	25.99	34.22	50.43	97.85	1716.01		
Vektör 5	Ni	265.00	285.25	313.66	358.56	450.72	1211.28		
Valaria	Rb	21.00	25.98	34.17	50.29	97.37	1692.46		
Vektor 6	Ni	265.00	305.00	365.60	472.01	730.46	4822.21		
Valtär 1	Rb	7.00	8.69	11.49	17.03	33.36	609.96		
VEKIOF I	Sc	74.00	55.68	38.59	23.01	9.51	0.21		
Veltör 7	Rb	7.00	8.67	11.42	16.83	32.69	575.57		
VENIOI 2	Sc	74.00	64.67	54.35	42.55	27.99	4.58		
Vektör 3	Rb	7.00	8.67	11.44	16.89	32.88	585.19		
V CRIOI J	Sc	74.00	68.21	61.42	52.97	41.14	13.79		
Vektör 4	Rb	7.00	8.66	11.38	16.73	32.36	559.11		
	Sc	74.00	79.47	87.13	99.19	123.79	322.58		
Vektör 5	Rb	7.00	8.67	11.43	16.88	32.84	583.17		
	Sc	74.00	88.46	111.36	154.02	268.17	2945.99		

Tablo 3.40. Eosen yaşlı bazik (BTB takımı) volkanitlerin gelişiminde etkili olan minerallerin ayrımlaşma yönlerini belirlemek için hesaplanan C_L (elementin ergiyikteki konsantrasyonu) değerleri. FC-Modelleme Programı'nda (Keskin, 2002) kullanılan dağılım katsayıları Keskin vd. (1998)'den alınmıştır

Valtör No	Element veya	El	ement ve eler	nent oranların	a göre hesapl	anan C _L değe	rleri
VERIOI INO	element oranı	F=%100	F=%80	F=%60	F=%40	F=%20	F=%1
Valetän 1	Sc/Y	5.56	5.10	4.56	3.89	2.98	0.93
Vektor 1	La	10.00	12.17	15.67	22.39	41.19	574.12
Valtör 2	Sc/Y	5.56	4.80	3.98	3.05	1.94	0.27
VERIOI 2	La	10.00	12.16	15.65	22.33	40.99	566.24
Valtör 2	Sc/Y	5.56	4.25	3.01	1.85	0.81	0.02
VERIOI 5	La	10.00	12.15	15.63	22.28	40.86	561.05
Valztör 1	Sc/Y	5.56	3.45	1.87	0.79	0.18	0.00
VERIOI 4	La	10.00	12.13	15.55	22.07	40.17	534.56
Valtör 5	Sc/Y	5.56	3.08	1.44	0.49	0.08	0.00
VERIOI 5	La	10.00	12.09	15.44	21.79	39.28	501.19

Tablo 3.40'ın devamı

Tablo 3.41. Eosen yaşlı ortaç (TT takımı) volkanitlerin gelişiminde etkili olan minerallerin ayrımlaşma yönlerini belirlemek için hesaplanan C_L (elementin ergiyikteki konsantrasyonu) değerleri. FC-Modelleme Programı'nda (Keskin, 2002) kullanılan dağılım katsayıları Keskin vd. (1998)'den alınmıştır

Valtör Na	Element veya	Ele	ement ve elem	ent oranlarına	a göre hesapla	anan C _L değer	leri
vektor No	element orani	F=%100	F=%80	F=%60	F=%40	F=%20	F=%1
Volttör 1	Dy	2.00	1.72	1.41	1.08	0.67	0.09
VERIOI I	Zr	37.00	39.73	43.56	49.58	61.88	161.14
Valtör 🤉	Dy	2.00	1.84	1.65	1.41	1.08	0.35
VERIOI 2	Zr	37.00	40.65	45.90	54.47	72.97	258.35
Valtör 2	Dy	2.00	1.94	1.87	1.78	1.63	1.11
VERIOI 5	Zr	37.00	41.70	48.65	60.46	87.67	436.72
Valtör 1	Dy	2.00	2.16	2.39	2.76	3.53	10.14
VERIOI 4	Zr	37.00	43.66	54.04	72.99	122.04	1125.13
Vektör 5	Dy	2.00	2.44	3.17	4.56	8.51	126.19
VERIOI 5	Zr	37.00	45.94	60.73	89.99	176.28	3222.57
Volttör 1	Dy	3.00	2.39	1.78	1.18	0.58	0.03
VERIOI I	Sr	2832.00	2590.18	2308.63	1962.99	1487.67	448.84
Vektör 2	Dy	3.00	2.76	2.47	2.12	1.63	0.52
VERIOI 2	Sr	2832.00	2369.00	1881.98	1360.63	781.48	71.14
Valtör 3	Dy	3.00	2.92	2.81	2.67	2.44	1.67
VERIOI 5	Sr	2832.00	2440.36	2014.28	1536.98	968.01	131.25
Vaktör 1	Dy	3.00	3.07	3.15	3.28	3.50	4.68
VERIOI 4	Sr	2832.00	2365.30	1875.26	1351.93	772.72	68.88
Vektör 5	Dy	3.00	3.67	4.75	6.84	12.77	189.29
VERIOI 5	Sr	2832.00	1981.70	1250.65	653.72	215.65	1.79
Volttör 1	Th	3.00	3.74	4.96	7.40	14.64	279.98
Vektor I	La/Yb	8.64	8.34	7.96	7.46	6.68	4.14
Valtär 2	Th	3.00	3.71	4.88	7.19	13.93	242.84
Vektor 2	La/Yb	8.64	9.10	9.74	10.70	12.58	25.29
Valtör 2	Th	3.00	3.70	4.83	7.06	13.49	221.22
Vektor 5	La/Yb	8.64	9.79	11.49	14.40	21.19	112.45
Valtör 1	Th	3.00	3.69	4.83	7.04	13.42	218.33
Vektor 4	La/Yb	8.64	10.11	12.38	16.47	26.84	221.13
Valstär 5	Th	3.00	3.67	4.77	6.90	12.96	197.62
vektor 3	La/Yb	8.64	10.65	13.93	20.34	38.87	638.20
Valstär 6	Th	3.00	3.67	4.76	6.87	12.85	192.81
vektor o	La/Yb	8.64	11.14	15.44	24.47	53.79	1616.80

Valstän Na	Element veya	Ele	ement ve elem	ent oranlarına	a göre hesapla	ınan C _L değer	leri
vektor No	element orani	F=%100	F=%80	F=%60	F=%40	F=%20	F=%1
37.1	Rb	25.00	30.36	38.99	55.48	101.40	1373.85
Vektor I	Sr/Y	118.33	67.14	32.33	11.54	1.98	0.00
V-1 (*** 2	Rb	25.00	29.34	36.07	48.25	79.33	680.68
vektor 2	Sr/Y	118.33	86.73	58.10	33.04	12.58	0.19
Valetin 2	Rb	25.00	29.34	36.07	48.25	79.33	680.68
Vektor 5	Sr/Y	118.33	102.32	84.83	65.14	41.47	5.89
Valtör 1	Rb	25.00	30.40	39.13	55.84	102.55	1418.86
VERIOI 4	Sr/Y	118.33	113.19	106.90	98.61	85.90	47.33
Walter 5	Rb	25.00	30.36	38.99	55.48	101.40	1373.85
VERIOI 5	Sr/Y	118.33	130.08	146.95	174.52	234.14	833.89
Valtör 6	Rb	25.00	30.36	38.99	55.48	101.40	1373.85
VERIOI 0	Sr/Y	118.33	202.16	403.22	1067.00	5631.64	833.89
Valstär 1	Y/Zr	0.25	0.25	0.25	0.24	0.24	0.22
Vektor I	Ba/Zr	10.67	9.60	8.39	6.93	5.01	1.22
Valtör 2	Y/Zr	0.25	0.24	0.23	0.21	0.18	0.10
VERIOI 2	Ba/Zr	10.67	9.31	7.82	6.11	4.01	0.65
Vektör 3	Y/Zr	0.25	0.22	0.19	0.15	0.10	0.02
Vertor 5	Ba/Zr	10.67	9.99	9.18	8.15	6.65	2.76
Vektör 1	Y/Zr	0.25	0.21	0.16	0.12	0.07	0.01
VCRIOI 4	Ba/Zr	10.67	10.53	10.35	10.10	9.69	8.11
Vektör 5	Y/Zr	0.25	0.22	0.18	0.14	0.09	0.01
Vertor 5	Ba/Zr	10.67	10.85	11.10	11.46	12.09	15.28
Vektör 6	Y/Zr	0.25	0.20	0.15	0.10	0.05	0.00
V CRIOI O	Ba/Zr	10.67	11.54	12.77	14.73	18.80	53.95
Vektör 1	Th	3.00	3.63	4.63	6.54	11.78	150.36
V CRIOI I	Sm	4.00	4.98	6.62	9.86	19.52	373.30
Vektör 2	Th	3.00	3.34	3.84	4.67	6.52	27.61
Vertor 2	Sm	4.00	4.95	6.51	9.59	18.58	323.79
Vektör 3	Th	3.00	3.11	3.25	3.47	3.88	6.25
Vertor 5	Sm	4.00	4.93	6.45	9.41	17.98	294.96
Vektör 4	Th	3.00	2.99	2.98	2.97	2.95	2.86
V CRIOI +	Sm	4.00	4.92	6.44	9.39	17.90	291.11
Vektör 5	Th	3.00	2.86	2.69	2.46	2.12	1.11
, extor 5	Sm	4.00	4.90	6.36	9.20	17.28	263.49
Vektör 6	Th	3.00	2.72	2.40	2.00	1.48	0.40
Vektör 6	Sm	4.00	4.89	6.35	9.16	17.14	257.08

Tablo 3.41'ın devamı

Tablo 3.42. Miyosen yaşlı bazik (BT takımı) volkanitlerin gelişiminde etkili olan minerallerin ayrımlaşma yönlerini belirlemek için hesaplanan C_L (Elementin ergiyikteki konsantrasyonu) değerleri. FC-Modelleme Programı (Keskin, 2002)'nda kullanılan dağılım katsayıları, Keskin vd. (1998)'den alınmıştır

Valtör No	Element veya	Ele	Element ve element oranlarına göre hesaplanan C _L değerleri							
VERIOI INO	element oranı	F=%100	F=%80	F=%60	F=%40	F=%20	F=%1			
Valtör 1	Sc	53.00	66.13	87.97	131.53	261.61	5108.29			
Vektor I	Ni/Zr	2.00	2.00	2.01	2.02	2.03	2.09			
Vektör 2	Sc	53.00	44.44	35.41	25.71	14.88	1.40			
VERIOI 2	Ni/Zr	2.00	1.23	0.66	0.27	0.06	0.00			
Valtör 2	Sc	53.00	37.97	24.71	13.48	4.79	0.05			
VERIOI 5	Ni/Zr	2.00	1.07	0.48	0.15	0.02	0.00			
Valtör 1	Sc	53.00	37.27	23.67	12.49	4.18	0.04			
Vektor 4	Ni/Zr	2.00	1.37	0.84	0.42	0.13	0.00			
Valtör 5	Sc	53.00	32.44	17.23	7.06	1.54	0.00			
VERIOI 5	Ni/Zr	2.00	1.46	0.98	0.55	0.21	0.00			

Val-4" N	Element veya	Element ve element oranlarına göre hesaplanan C _L değerleri					
vektor No	element oranı	F=%100	F=%80	F=%60	F=%40	F=%20	F=%1
Vektör 1	Y	9.00	11.17	14.77	21.89	42.88	783.87
	Sc/Y	5.24	5.26	5.30	5.34	5.43	5.79
Vektör 2	Y	9.00	10.61	13.12	17.70	29.52	269.30
	Sc/Y	5.24	4.01	2.84	1.75	0.76	0.02
	Y	9.00	10.24	12.09	15.28	22.80	128.60
Vektor 3	Sc/Y	5.24	3.86	2.60	1.50	0.58	0.01
Vektör 4	Y	9.00	10.32	12.30	15.77	24.10	150.74
	Sc/Y	5.24	3.42	1.98	0.92	0.24	0.00
Vektör 5	Y	9.00	10.19	11.96	14.98	22.02	116.48
	Sc/Y	5.24	3.25	1.76	0.74	0.17	0.00
Vektör 6	Y	9.00	9.95	11.33	13.59	18.57	71.49
	Sc/Y	5.24	2.90	1.35	0.46	0.07	0.00
Vektör 1	Yb/Sr	0.00	0.00	0.00	0.00	0.00	0.09
	Rb/Yb	17.86	17.84	17.81	17.78	17.71	17.45
Vektör 2	Yb/Sr	0.00	0.00	0.00	0.00	0.00	0.00
	Rb/Yb	17.86	19.02	20.63	23.14	28.15	65.68
Vektör 3	Yb/Sr	0.00	0.00	0.00	0.00	0.00	0.00
	Rb/Yb	17.86	19.35	21.46	24.84	31.88	93.74
Vektör 4	Yb/Sr	0.00	0.00	0.00	0.00	0.00	0.00
	Rb/Yb	17.86	19.76	22.52	27.06	37.07	144.35
Vektör 5	Yb/Sr	0.00	0.00	0.00	0.00	0.00	0.00
	Rb/Yb	17.86	19.53	21.93	25.82	34.13	113.92
Vektör 1	Y/Rb	1.00	1.00	1.01	1.02	1.03	1.10
	Rb/Sr	0.01	0.01	0.01	0.02	0.05	1.66
Vektör 2	Y/Rb	1.00	0.95	0.89	0.81	0.70	0.36
	Rb/Sr	0.01	0.01	0.01	0.01	0.02	0.09
Vektör 3	Y/Rb	1.00	0.92	0.83	0.71	0.55	0.18
	Rb/Sr	0.01	0.01	0.01	0.01	0.02	0.05
Vektör 4	Y/Rb	1.00	0.91	0.81	0.69	0.52	0.15
	Rb/Sr	0.01	0.01	0.01	0.01	0.01	0.02
Vektör 5	Y/Rb	1.00	0.92	0.83	0.72	0.56	0.19
	Rb/Sr	0.01	0.01	0.01	0.01	0.01	0.01
Vektör 1	Nb	11.00	13.72	18.24	27.25	54.12	1050.49
	Sc	51.00	63.64	84.65	126.57	251.74	4915.53
	Nb	11.00	13.68	18.11	26.91	52.96	987.17
Vektör 2	Sc	51.00	46.02	40.31	33.44	24.30	6.11
Vektör 3	Nb	11.00	13.55	17.72	25.86	49.38	807.97
	Sc	51.00	42.76	34.08	24.74	14.32	1.35
Vektör 4	Nb	11.00	13.66	18.05	26.73	52.32	953.66
	Sc	51.00	38.23	26.37	15.63	6.39	0.13
Vektör 5	Nb	11.00	13.65	18.02	26.66	52.07	940.57
	Sc	51.00	35.86	22.78	12.01	4.02	0.04
Vektör 6	Nb	11.00	13.63	17.96	26.51	51.57	914.94
	Sc	51.00	31.22	16.58	6.79	1.48	0.00
Vektör 1	Sc	48.00	43.31	37.94	31.47	22.87	5.75
	La	56.00	68.07	87.54	124.79	228.79	3141.87
Vektör 2	Sc	48.00	40.25	32.07	23.29	13.47	1.27
	La	56.00	67.88	87.00	123.43	224.41	2972.95
Vektör 3	Sc	48.00	35.99	24.82	14.71	6.01	0.13
	La	56.00	68.20	87.92	125.77	231.94	3267.29
Vektör 4	Sc	48.00	33.75	21.44	11.31	3.79	0.03
	La	56.00	67.91	87.07	123.60	224.96	2993.56
Vektör 5	Sc	48.00	29.38	15.60	6.39	1.39	0.00
	La	56.00	67.70	86.45	122.02	219.94	2806.65

Tablo 3.42' nin devamı

3.9.3. Asimilasyon ve Fraksiyonel Kristallenme (AFC)

Magmanın gelişiminde iki tür kontaminasyon olayından söz edilebilir; düşük basınç altında magmanın yükselimi sırasında mantodan türeyen magmayla kabuk malzemesi arasındaki kimyasal reaksiyon, diğeri ise kaynak kirlenmesidir (Hollanda vd., 2003). Mantodan türeyen magmaların kabuk içerisindeki hareketi boyunca magma odalarında değişen oranlarda kabuk asimilasyonuna maruz kaldıkları kabul edilir (Herg vd., 1991; McDonald vd., 2000). Kaynak kirlenmesi ise kısmi ergimeden önce manto kaynağının yiten plaka malzemesiyle (sedimanlar vs.) yeniden değiştirilmesiyle açıklanabilir.

İncelenen Tersiyer yaşlı volkanitlerde gözlenen büyük iyon yarıçaplı elementlerin (K, Ba, Rb) yüksek çekim alanlı elementlere (Nb, Ti) göre zenginleşmesi, yitim bileşeni ve/veya kabuksal kirlenmesi veya kristal ayrımlaşmasıyla ilişkilendirilebilir. İncelenen volkanitler için çizilen Nb/Y'a karşı Rb/Y diyagramında düşey yöndeki yönsemeler yitim zenginleşmesi ve/veya kabuk kirlenmesiyle meydana gelirken, Rb/Nb = 1 doğrusu etrafında yer alan pozitif yönsemeler ise yüksek Nb/Y oranıyla karakterize olan levha içi zenginleşmesini ifade etmektedir.

Eosen yaşlı BTB ve TT takımı kayaçlarında yitim zenginleşmesi veya kabuk asimilasyonu daha etkin iken, Miyosen yaşlı BT takımı kayaçlarının gelişiminde plaka içi zenginleşme daha etkin bir rol oynamış olabilir. Özellikle, TT takımı kayaçlarındaki yüksek Rb/Y oranları bu kayaçların gelişiminde asimilasyonun diğer takım kayaçlarına göre daha baskın olabileceğini düşündürmektedir (Şekil 3.141a).

Zr/Nb'a karşı Y/Nb diyagramındaki pozitif doğrusal yönseme (Şekil 3.141b, d) vokanitlerin gelişiminde kabuksal kirlenmeyi ifade etmektedir. Ayrıca, K₂O/MgO oranına karşı K₂O diyagramındaki parabolik artışlar (Şekil 3.141c, e) ayrımlaşmayı gösterirken yine pozitif doğrusal yönsemeler kabuksal kirlenmeye işaret etmektedir.

Ta/Yb'a karşı Th/Yb diyagramında (bknz Şekil 3.118), manto metazomatizmasına paralel olarak gelişen yönsemeler ayrımlaşmaya (FC) vurgularken, ortalama üst kabuk değerine doğru olan parabolik yönsemeler ise asimilasyonla beraber gelişen ayrımlaşmayı (AFC) yansıtırlar. Bu diyagramdan da görüldüğü üzere incelenen Tersiyer yaşlı volkanitlerin gelişiminde ayrımlaşmanın yanı sıra asimilasyonun da etkili olduğu söylenebilir.

Şekil 3.141. İncelenen Tersiyer yaşlı volkanitlerin (a) Nb/Y'a karşı Rb/Y diyagramı. Eosen yaşlı BTB ve TT takımları kayaçlarının (b, c) ve Miyosen yaşlı BT takımı kayaçlarının (d, e) Y/Nb'a karşı Y/Nb ve K₂O/MgO'a karşı K₂O (%) diyagramları (Semboller Şekil 3.113'deki gibidir)

3.9.3.1. Tersiyer Volkanitlerin Gelişiminde Etkili Olan Asimilasyon ve Fraksiyonel Kristallenmenin (AFC) Jeokimyasal Modellemesi

Asimilasyon ve fraksiyonel kristallenme (AFC), herhangi bir magmanın soğuması esnasında, etkileşime geçtiği kayaçları asimile ederek ilksel bileşimini değiştirmesi ve bu esnada katılaşmakta olan minerallerin magmadan ayrılması olayıdır. Yani, magmanın soğuması sırasında hem ayrımlaşma hem de asimilasyon aynı anda etkindir. İncelenen Tersiyer volkanitlerinin yüksek oranda Ta, La, Th içeriğine sahip olmaları, bu kayaçları

oluşturan ana magma(lar)ın kabuk malzemesiyle etkileşime uğradığını işaret etmektedir. Bu etkileşim sonucu meydana gelen zenginleşme muhtemelen magmanın kıtasal kabuk içerisinde hareketi sonucu kıtasal kabuğu asimile etmesiyle gelişen ayrımlaşma olayı (AFC; De Paolo, 1981; Powel, 1984) ile acıklanmaktadır. AFC olayının modellenmesi araştırmacılar tarafından hem izotop hem de iz element verileri kullanılarak ele alınmıştır (De Paolo, 1981; Powel, 1984; Taylor ve Sheppard, 1986; Hagen ve Neumann, 1990; Albarede, 1996). İncelenen Tersiyer yaşlı volkanitlerin iz element içeriklerinden ve/veya oranlarından yararlanarak, bu kayaçların gelişiminde etkili olan AFC, De Paolo (1981) tarafından önerilen formüller kullanılarak hesaplanmıştır. Modellemede hem alterasyondan fazla etkilenmemeleri hem de sulu ve susuz magma serilerindeki minerallerin geneli için uyumsuz davranış sergileyen ($D \le 1$) Ta, Nb, Zr ve La elementleri kullanılmıştır. İz element AFC modellemesinde ilksel magma bileşimi (Co) için Eosen yaşlı BTB takımı kayaçlarından bazalt (363 numaralı örnek) ve kabuk bileşimi (CA) için ise Taylor ve McLennan (1985) tarafından belirlenen üst kıtasal kabuk bileşimi alınmıştır. Dağılım katsayıları olarak Keskin (2013)'ün değerleri kullanılmıştır. Modelleme sırasında r (özümlemenin ayrımlaşmaya oranı) değerleri 0-0.5 arasında değişen 7-9 farklı teorik eğri elde edilmiştir. F (ayrımlaşma miktarı) değerleri bu eğriler üzerinde 0.1 aralıkla işaretlenmiş olup ve değerler soldan sağa doğru azalmaktadır. Farklı r değerleri için hipotetik olarak hesaplanan bu eğriler belirli bileşimlerdeki ilksel magmaları yansıtmaktadır. AFC modelleme diyagramlarında eğrilerin konumları modellemede kullanılan uç üyelerin bileşimiyle ve seçilen paylaşım katsayılarıyla yakından ilişkili olduğu için elde edilen sonuçların ancak yaklaşım olarak ele alınması daha uygun olacaktır (Keskin vd., 2008).

Genel olarak, Eosen yaşlı volkanitler için çizilen Nb-La, Nb/Zr-Nb, Ta/Zr-Ta ve La/Nb-La AFC diyagramlarında (Şekil 3.142), özellikle sulu fazları içeren volkanitler üst kabuk değerine yakın iken diğer volkanitler bazik ilksel bileşim ile üst kabuk değeri arasında dağılım göstermektedir. Eosen yaşlı BTB takımı kayaçları bazik ilksel bileşime daha yakın iken, ortaç bileşimdeki TT takımı kayaçları üst kabuk bileşimine yakın olup, daha fazla kabuk asimilasyonunu işaret ederler. Eosen yaşlı volkanitler için r değeri genellikle geniş bir aralıkta (r=0.05-0.5) değişmektedir (Tablo 3.43).

Şekil 3.142. Eosen yaşlı volkanitlerin AFC modellemesini gösterir diyagramlar. İlksel magma bileşimi (Co) 363 numaralı örneğe ait olup, üst kıtasal kabuk bileşimi (CA) Taylor ve McLennan (1985)'den, dağılım katsayıları Keskin (2013)'den alınmıştır (Semboller Şekil 3.113'deki gibidir)

Miyosen yaşlı volkanitler için çizilen Ta/Zr-Ta, La/Nb-La, Ta/La-Ta ve La/Nb-Zr AFC diyagramlarında (Şekil 3.143), özellikle sulu fazları içeren volkanitler üst kabuk bileşimine yakın, diğer volkanitler bazik ilksel bileşim ile üst kabuk bileşimi arasında dağılım sunmaktadır. Miyosen yaşlı volkanitler için r değeri genellikle geniş bir aralıkta (r=0.02-0.5) değişim sergilemektedir (Tablo 3.44). Söz konusu BT takımı kayaçları, göreceli olarak daha yüksek değerlere sahip olup, kabuk asimilasyonunun varlığını ifade ederler.

Şekil 3.143. Miyosen yaşlı volkanitlerin AFC modellemesini gösterir diyagramlar. İlksel magma bileşimi (C₀) 363 numaralı örneğe ait olup, üst kıtasal kabuk bileşimi (C_A) Taylor ve McLennan (1985)'den dağılım katsayıları Keskin (2013)'den alınmıştır (Semboller Şekil 3.115'deki gibidir)

İncelenen volkanitlerin gelişiminde AFC olayının etkisi, fraksiyonel kristallenme kısmında çizilen (⁸⁷Sr/⁸⁶Sr)_i, (¹⁴³Nd/¹⁴⁴Nd)_i ve ²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb, ²⁰⁸Pb/²⁰⁴Pb izotop oranları ve bazı ana oksit ve iz element diyagramlarında da gözlenmektedir. Buradan yola çıkarak volkanitlerin (⁸⁷Sr/⁸⁶Sr)_i oranlarına karşı iz element oran diyagramları üzerinde De Paolo (1981) ve Powel (1984) tarafından önerilen formüller dikkate alınarak AFC modellemeleri yapılmıştır. İncelenen volkanitlerde AFC'yi test etmek amacıyla (⁸⁷Sr/⁸⁶Sr)_i ile Rb/Sr (Şekil 3.144) ve Rb/Nb (Şekil 3.145) arasındaki ilişkiler göz önünde bulundurularak modellemeler yapılmıştır. Modellemede ilksel magma bileşimi (C_o) olarak yay bazaltı bileşimi (Aleutian ada yayı bazaltı (SH15); Jicha vd., 2004) alınırken üst kabuk izotop bileşimi Davies vd. (1985)'den, iz element değerleri ise Taylor ve McLennan

(1985)'den alınmıştır (Tablo 3.45). İlksel magmanın üst kıtasal kabuğu asimile ettiği varsayılarak, farklı r ve F değerleri için AFC eğrileri oluşturulmuştur. Hesaplamalarda kullanılan toplam dağılım katsayısı (D), Rb için 0, Sr için 1, Nb için 1 kabul edilmiştir (Tablo 3.45).

		C _L (Elementin Ergiyikteki Konsantrasyonu) Değerleri											
		F=1	F=0.9	F=0.8	F=0.7	F=0.6	F=0.5	F=0.4	F=0.3	F=0.2			
La	0.01	12.700	14.070	15.772	17.948	20.827	24.823	30.757	40.518	59.695			
Nb	r=0.01	1.700	1.915	2.183	2.528	2.987	3.628	4.588	6.183	9.363			
La	<i>r</i> =0.02	12.700	14.103	15.847	18.076	21.025	25.118	31.194	41.188	60.820			
Nb	r = 0.02	1.700	1.944	2.248	2.638	3.158	3.884	4.972	6.779	10.381			
La	n = 0.02	12.700	14.137	15.924	18.206	21.226	25.418	31.640	41.872	61.968			
Nb	r = 0.03	1.700	1.973	2.313	2.750	3.332	4.146	5.364	7.388	11.421			
La	w=0.04	12.700	14.172	16.002	18.339	21.432	25.725	32.095	42.570	63.139			
Nb	r = 0.04	1.700	2.002	2.380	2.865	3.511	4.413	5.764	8.008	12.482			
La	n = 0.05	12.700	14.208	16.082	18.475	21.643	26.037	32.559	43.282	64.332			
Nb	7-0.05	1.700	2.033	2.449	2.982	3.693	4.686	6.172	8.642	13.565			
La	n = 0.1	12.700	14.398	16.507	19.201	22.763	27.703	35.030	47.069	70.677			
Nb	r = 0.1	1.700	2.195	2.813	3.607	4.663	6.140	8.349	12.021	19.336			
La	n =0.2	12.700	14.849	17.517	20.920	25.416	31.645	40.870	55.998	85.595			
Nb	r = 0.2	1.700	2.580	3.679	5.090	6.968	9.591	13.515	20.035	33.017			
La	0.2	12.700	15.428	18.812	23.123	28.812	36.682	48.315	67.349	104.470			
Nb	r = 0.5	1.700	3.076	4.792	6.996	9.927	14.022	20.146	30.315	50.550			
La		12.700	17.279	22.939	30.124	39.568	52.568	71.674	102.706	162.617			
Nb	r = 0.3	1.700	4.660	8.351	13.085	19.379	28.161	41.280	63.033	106.231			

Tablo 3.43. Eosen yaşlı volkanitlerin AFC modellemesinde hesaplanan C_L (elementin ergiyikteki konsantrasyonu) değerleri.

			C	L (Elemen	tin Ergiyik	cteki Kons	antrasyon	ı) Değerle	ri	
		F=1	F=0.9	F=0.8	F=0.7	F=0.6	F=0.5	F=0.4	F=0.3	F=0.2
Nb	m = 0.01	1.700	1.915	2.183	2.528	2.987	3.628	4.588	6.183	9.363
Nb/Zr	r-0.01	0.041	0.041	0.042	0.042	0.043	0.043	0.043	0.044	0.044
Nb	<i>w</i> =0.02	1.700	1.944	2.248	2.638	3.158	3.884	4.972	6.779	10.381
Nb/Zr	r = 0.02	0.041	0.042	0.043	0.043	0.044	0.045	0.046	0.047	0.047
Nb	<i>w</i> =0.02	1.700	1.973	2.313	2.750	3.332	4.146	5.364	7.388	11.421
Nb/Zr	r = 0.03	0.041	0.042	0.043	0.045	0.046	0.047	0.048	0.049	0.050
Nb	w = 0.04	1.700	2.002	2.380	2.865	3.511	4.413	5.764	8.008	12.482
Nb/Zr	r-0.04	0.041	0.043	0.044	0.046	0.047	0.049	0.050	0.052	0.053
Nb	<i>w</i> =0.05	1.700	2.033	2.449	2.982	3.693	4.686	6.172	8.642	13.565
Nb/Zr	r = 0.03	0.041	0.043	0.045	0.047	0.049	0.051	0.052	0.054	0.056
Nb	0.1	1.700	2.195	2.813	3.607	4.663	6.140	8.349	12.021	19.336
Nb/Zr	r=0.1	0.041	0.045	0.049	0.053	0.056	0.059	0.062	0.065	0.067
Nb	<i>n</i> =0.2	1.700	2.580	3.679	5.090	6.968	9.591	13.515	20.035	33.017
Nb/Zr	r=0.2	0.041	0.050	0.058	0.064	0.069	0.074	0.078	0.081	0.084
Nb	<i>n</i> =0.2	1.700	3.076	4.792	6.996	9.927	14.022	20.146	30.315	50.550
Nb/Zr	r = 0.3	0.041	0.056	0.067	0.075	0.081	0.086	0.090	0.094	0.097
Nb		1.700	4.660	8.351	13.085	19.379	28.161	41.280	63.033	106.231
Nb/Zr	r=0.5	0.041	0.069	0.084	0.093	0.100	0.104	0.108	0.110	0.112

		C _L (Elementin Ergiyikteki Konsantrasyonu) Değerleri										
		F=1	F=0.9	F = 0.8	F=0.7	F=0.6	F=0.5	F = 0.4	F=0.3	F=0.2		
Та		0.100	0.113	0.130	0.151	0.180	0.220	0.279	0.377	0.573		
Ta/Zr	r=0.01	0.002	0.002	0.002	0.003	0.003	0.003	0.003	0.003	0.003		
Та	n = 0.02	0.100	0.116	0.136	0.161	0.195	0.242	0.313	0.429	0.662		
Ta/Zr	<i>r</i> =0.02	0.002	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.003		
Та		0.100	0.118	0.141	0.171	0.210	0.265	0.347	0.483	0.752		
Ta/Zr	r = 0.05	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003		
Та	n = 0.04	0.100	0.121	0.147	0.181	0.226	0.288	0.382	0.537	0.845		
Ta/Zr	r=0.04	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.004		
Та	n = 0.05	0.100	0.124	0.153	0.191	0.242	0.312	0.418	0.592	0.939		
Ta/Zr	<i>r</i> =0.05	0.002	0.003	0.003	0.003	0.003	0.003	0.004	0.004	0.004		
Та	<i>w</i> =0.1	0.100	0.138	0.185	0.246	0.327	0.440	0.608	0.888	1.442		
Ta/Zr	r = 0.1	0.002	0.003	0.003	0.004	0.004	0.004	0.005	0.005	0.005		
Та	m = 0.2	0.100	0.172	0.262	0.376	0.529	0.742	1.060	1.587	2.633		
Ta/Zr	r = 0.2	0.002	0.003	0.004	0.005	0.005	0.006	0.006	0.006	0.007		
Та	n = 0.2	0.100	0.215	0.359	0.544	0.789	1.130	1.639	2.483	4.155		
Ta/Zr	7-0.5	0.002	0.004	0.005	0.006	0.006	0.007	0.007	0.008	0.008		
Та		0.100	0.355	0.672	1.078	1.616	2.365	3.480	5.322	8.958		
Ta/Zr	r = 0.3	0.002	0.005	0.007	0.008	0.008	0.009	0.009	0.009	0.009		

			C _L (Elementin Ergiyikteki Konsantrasyonu) Değerleri									
		F=1	F=0.9	F = 0.8	F=0.7	F=0.6	F=0.5	F=0.4	F=0.3	F=0.2		
La	<i>u</i> =0.01	12.700	14.070	15.772	17.948	20.827	24.823	30.757	40.518			
La/Nb	r-0.01	7.471	7.347	7.224	7.100	6.973	6.843	6.704	6.553			
La		12.700	14.103	15.847	18.076	21.025	25.118	31.194	41.188			
La/Nb	r = 0.02	7.471	7.257	7.051	6.852	6.658	6.467	6.274	6.076			
La	m = 0.02	12.700	14.137	15.924	18.206	21.226	25.418	31.640	41.872			
La/Nb	r = 0.05	7.471	7.167	6.884	6.619	6.370	6.131	5.899	5.668			
La	n = 0.04	12.700	14.172	16.002	18.339	21.432	25.725	32.095	42.570			
La/Nb	<i>r</i> =0.04	7.471	7.077	6.723	6.401	6.105	5.829	5.569	5.316			
La	···0.05	12.700	14.208	16.082	18.475	21.643	26.037	32.559	43.282			
La/Nb	r = 0.03	7.471	6.989	6.568	6.195	5.861	5.557	5.275	5.008			
La	n = 0.1	12.700	14.398	16.507	19.201	22.763	27.703	35.030	47.069			
La/Nb	r = 0.1	7.471	6.559	5.868	5.323	4.881	4.512	4.196	3.915			
La	<i>n</i> =0.2	12.700	14.849	17.517	20.920	25.416	31.645	40.870	55.998			
La/Nb	r = 0.2	7.471	5.755	4.761	4.110	3.648	3.300	3.024	2.795			
La	<i>u</i> =0.2	12.700	15.428	18.812	23.123	28.812	36.682	48.315	67.349			
La/Nb	r = 0.5	7.471	5.016	3.925	3.305	2.902	2.616	2.398	2.222			
La	<i>n</i> =0.5	12.700	17.279	22.939	30.124	39.568	52.568	71.674	102.706			
La/Nb	r=0.3	7.471	3.708	2.747	2.302	2.042	1.867	1.736	1.629			

		C _L (Elementin Ergiyikteki Konsantrasyonu) Değerleri										
		F=1	F=0.9	F=0.8	F=0.7	F=0.6	F = 0.5	F=0.4	F=0.3	F=0.2		
Та	m = 0.00	0.100	0.111	0.124	0.142	0.165	0.198	0.246	0.326	0.486		
Ta/Zr	7-0.00	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002		
Та	<u>-002</u>	0.100	0.116	0.136	0.161	0.195	0.242	0.313	0.429	0.662		
Ta/Zr	r = 0.02	0.002	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.003		
Та	<i>u</i> =0.02	0.100	0.118	0.141	0.171	0.210	0.265	0.347	0.483	0.752		
Ta/Zr	r = 0.03	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003		
Та	n = 0.04	0.100	0.121	0.147	0.181	0.226	0.288	0.382	0.537	0.845		
Ta/Zr	<i>r</i> -0.04	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.004		
Та	<i>n</i> =0.05	0.100	0.124	0.153	0.191	0.242	0.312	0.418	0.592	0.939		
Ta/Zr	r = 0.03	0.002	0.003	0.003	0.003	0.003	0.003	0.004	0.004	0.004		
Та		0.100	0.138	0.185	0.246	0.327	0.440	0.608	0.888	1.442		
Ta/Zr	r = 0.1	0.002	0.003	0.003	0.004	0.004	0.004	0.005	0.005	0.005		
Та	<i>n</i> =0.2	0.100	0.172	0.262	0.376	0.529	0.742	1.060	1.587	2.633		
Ta/Zr	<i>r=</i> 0.2	0.002	0.003	0.004	0.005	0.005	0.006	0.006	0.006	0.007		
Та	n = 0.2	0.100	0.273	0.490	0.766	1.134	1.646	2.409	3.671	6.168		
Ta/Zr	r = 0.5	0.002	0.005	0.006	0.007	0.007	0.008	0.008	0.009	0.009		

Tablo 3.44. Miyosen yaşlı volkanitlerin AFC modellemesinde hesaplanan C_L (elementin ergiyikteki konsantrasyonu) değerleri

			C	C _L (Elemer	ntin Ergiyil	kteki Kons	antrasyon	u) Değerle	ri	
		F=1	F=0.9	F=0.8	F=0.7	F=0.6	F=0.5	F=0.4	F=0.3	F=0.2
La	m = 0.01	12.700	14.037	15.699	17.822	20.633	24.535	30.328	39.860	58.590
La/Nb	7-0.01	7.471	7.439	7.404	7.365	7.319	7.266	7.202	7.119	7.005
La		12.700	14.103	15.847	18.076	21.025	25.118	31.194	41.188	60.820
La/Nb	r = 0.02	7.471	7.257	7.051	6.852	6.658	6.467	6.274	6.076	5.859
La	····-0.05	12.700	14.208	16.082	18.475	21.643	26.037	32.559	43.282	64.332
La/Nb	r=0.03	7.471	6.989	6.568	6.195	5.861	5.557	5.275	5.008	4.743
La	<i>w</i> =0.1	12.700	14.398	16.507	19.201	22.763	27.703	35.030	47.069	70.677
La/Nb	r = 0.1	7.471	6.559	5.868	5.323	4.881	4.512	4.196	3.915	3.655
La	<i>n</i> =0.15	12.700	14.610	16.983	20.010	24.013	29.561	37.784	51.282	77.724
La/Nb	r = 0.13	7.471	6.148	5.273	4.648	4.178	3.807	3.505	3.247	3.015
La	··0.25	12.700	15.119	18.121	21.949	27.003	34.000	44.353	61.314	94.446
La/Nb	r = 0.23	7.471	5.378	4.316	3.671	3.234	2.916	2.670	2.469	2.292
La	···0.25	12.700	15.785	19.608	24.475	30.894	39.764	52.862	74.262	115.917
La/Nb	r = 0.55	7.471	4.670	3.580	2.997	2.630	2.375	2.183	2.028	1.891
La	0.5	12.700	17.279	22.939	30.124	39.568	52.568	71.674	102.706	162.617
La/Nb	r=0.3	7.471	3.708	2.747	2.302	2.042	1.867	1.736	1.629	1.531

	C _L (Elementin Ergiyikteki Konsantrasyonu) Değerleri											
		F=1	F=0.9	F = 0.8	F=0.7	F=0.6	F = 0.5	F = 0.4	F=0.3	F=0.2		
Zr	n = 0.01	41.500	46.063	51.759	59.075	68.814	82.427	102.804	136.678	204.187		
La/Nb	r=0.01	7.471	7.439	7.404	7.365	7.319	7.266	7.202	7.119	7.005		
Zr	<i>n</i> =0.02	41.500	46.492	52.725	60.729	71.385	86.277	108.570	145.626	219.471		
La/Nb	r = 0.02	7.471	7.257	7.051	6.852	6.658	6.467	6.274	6.076	5.859		
Zr	<i>n</i> =0.05	41.500	47.170	54.250	63.341	75.443	92.356	117.671	159.749	243.591		
La/Nb	r = 0.03	7.471	6.989	6.568	6.195	5.861	5.557	5.275	5.008	4.743		
Zr	n = 0.1	41.500	48.401	57.018	68.080	82.806	103.384	134.181	185.362	287.324		
La/Nb	r = 0.1	7.471	6.559	5.868	5.323	4.881	4.512	4.196	3.915	3.655		
Zr	n = 0.15	41.500	49.777	60.110	73.375	91.032	115.703	152.621	213.964	336.140		
La/Nb	r = 0.13	7.471	6.148	5.273	4.648	4.178	3.807	3.505	3.247	3.015		
Zr		41.500	53.078	67.530	86.079	110.764	145.245	196.825	282.498	453.038		
La/Nb	r=0.23	7.471	5.378	4.316	3.671	3.234	2.916	2.670	2.469	2.292		
Zr	<i>n</i> =0.25	41.500	57.395	77.229	102.680	136.540	183.822	254.521	371.886	605.344		
La/Nb	r = 0.55	7.471	4.670	3.580	2.997	2.630	2.375	2.183	2.028	1.891		
Zr	<i>n</i> =0.5	41.500	67.103	99.034	139.986	194.431	270.397	383.881	572.047	945.731		
La/Nb	r = 0.3	7.471	3.708	2.747	2.302	2.042	1.867	1.736	1.629	1.531		

	_
Tablo 3.44'	ün devamı

		C _L (Elementin Ergiyikteki Konsantrasyonu) Değerleri										
		F=1	F=0.9	F=0.8	F=0.7	F=0.6	F=0.5	F=0.4	F=0.3	F=0.2		
Та	r = 0.01	0.100	0.111	0.124	0.142	0.165	0.198	0.246	0.326	0.486		
Ta/La	7-0.01	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008		
Та	m = 0.02	0.100	0.116	0.136	0.161	0.195	0.242	0.313	0.429	0.662		
Ta/La	7-0.02	0.008	0.008	0.009	0.009	0.009	0.010	0.010	0.010	0.011		
Та	m = 0.05	0.100	0.124	0.153	0.191	0.242	0.312	0.418	0.592	0.939		
Ta/La	7-0.05	0.008	0.009	0.010	0.010	0.011	0.012	0.013	0.014	0.015		
Та	r = 0.1	0.100	0.138	0.185	0.246	0.327	0.440	0.608	0.888	1.442		
Ta/La	7-0.1	0.008	0.010	0.011	0.013	0.014	0.016	0.017	0.019	0.020		
Та	r = 0.15	0.100	0.154	0.221	0.308	0.422	0.582	0.821	1.217	2.003		
Ta/La	7-0.15	0.008	0.011	0.013	0.015	0.018	0.020	0.022	0.024	0.026		
Та	m = 0.25	0.100	0.192	0.307	0.455	0.650	0.923	1.331	2.006	3.344		
Ta/La	7-0.25	0.008	0.013	0.017	0.021	0.024	0.027	0.030	0.033	0.035		
Та	r = 0.35	0.100	0.242	0.419	0.646	0.948	1.368	1.995	3.032	5.086		
Ta/La	7-0.55	0.008	0.015	0.021	0.026	0.031	0.034	0.038	0.041	0.044		
Та	r=0.5	0.100	0.355	0.672	1.078	1.616	2.365	3.480	5.322	8.958		
Ta/La	7-0.5	0.008	0.021	0.029	0.036	0.041	0.045	0.049	0.052	0.055		

 $({}^{87}\text{Sr}/{}^{86}\text{Sr})_i$ 'ye karşı Rb/Sr ve Rb/Nb oranları (Şekil 3.144 ve 3.145) diyagramlarında, Eosen yaşlı (BTB ve TT takımları) volkanitler r = 0.02 eğrisi altında kalırken, Miyosen yaşlı BT takımı örnekleri ise bu eğrinin üstünde (r=0.2) veya dışında kalmaktadır. Buna göre; r değerinin Eosen yaşlı BTB ve TT takımı kayaçları için ≤ 0.2 ve aynı zamanda "kritik değer" olan r =0.25'den daha düşük (Albarede, 1996) olması; bu volkanitlerin gelişiminde AFC olayının, bir başka deyişle kabuk asimilasyonunun fazla etkili olmadığını göstermektedir. Miyosen yaşlı BT takımı kayaçları için r=0.2 üzerindeki değerler, bu kayaçlarda AFC olayının Eosen yaşlı volkanitlere göre daha etkin olduğuna işaret etmektedir.

Şekil 3.144. İncelenen Tersiyer yaşlı volkanitlerin AFC modellemesini gösterir (⁸⁷Sr/⁸⁶Sr)_i ye karşı Rb/Sr diyagramı (İlksel magma bileşimi (C_o) Aleutian yay bazaltı-SH15, Jicha vd. (2004)'den; üst kabuk (C_A) izotopik bileşimi, Davies vd. (1985)'den; iz element içerikleri ise Taylor ve McLennan (1985)'den alınmıştır. Semboller Şekil 3.115'deki gibidir)

Şekil 3.145. İncelenen Tersiyer yaşlı volkanitlerin AFC modellemesini gösteren (⁸⁷Sr/⁸⁶Sr)_i'ye karşı Rb/Nb diyagramı (İlksel magma bileşimi (C_o) Aleutian yay bazaltı-SH15 Jicha vd. (2004)'den; üst kıtasal kabuk (C_A) izotopik bileşimi Davies vd. (1985)'den; iz element içerikleri ise Taylor ve McLennan (1985)'dan alınmıştır. Semboller Şekil 3.115'deki gibidir)

İncelenen Tersiyer volkanitlerinin (⁸⁷Sr/⁸⁶Sr)_i ve iz element oranları kullanılarak yapılan modellemelerin yanı sıra, (⁸⁷Sr/⁸⁶Sr)_i ve (¹⁴³Nd/¹⁴⁴Nd)_i bileşimlerinden yararlanarak da izotopik AFC modellemesi yapılmıştır. De Paolo (1981) tarafından önerilen formüller kullanılarak Sr ve Nd izotopları AFC modellemesi gerçekleştirilmiştir. İzotopik AFC

modellenmesinde ilksel magma olarak yay bazalt bileşimi (Aleutian ada yayı bazaltı-SH15; Jicha vd., 2004) ve üst kıtasal kabuk bileşimi (Davies vd., 1985) kullanılmıştır (Tablo 3.46). İlksel magmanın üst kabuğu asimile ettiği varsayılarak; r=0.2 için, farklı dağılım katsayıları (D₁, ...D₅) ve *F* değerleri kullanılarak, AFC eğrileri oluşturulmuştur (Şekil 3.146). AFC modellemesinden hesaplanan IC_L (gelişen magmanın izotop bileşimi) değerleri Tablo 3.47'de verilmiştir.

Şekil 3.146'da görüldüğü gibi, genel olarak Eosen yaşlı BTB ve TT takımları örneklerinin tümü; r=2 için çizilen ve $D_{Sr}=0.15$; $D_{Nd}=0.35$ ve $D_{Sr}=0.25$; $D_{Nd}=0.3$ dağılım katsayılarına göre hesaplanan eğriler boyunca dağılım gösterirken, Miyosen yaşlı BT takımı örnekleri ise $D_{Sr}=0.5$; $D_{Nd}=0.25$ ve $D_{Sr}=1$; $D_{Nd}=0.2$ dağılım katsayılarına göre hesaplanan eğriler arasında yer almaktadır. Buna göre; r değerinin incelenen BTB, TT ve BT takımları için "kritik değer" olan r=0.25'den daha düşük (Albarede, 1996) olan eğriler boyunca yer alması; volkanitlerin gelişiminde AFC olayının, bir başka deyişle kabuk asimilasyonunun fazla etkili olmadığını göstermektedir. Ayrıca, Miyosen yaşlı BT takımının yaklaşık %20, Eosen yaşlı BTB ve TT takımlarının ise yaklaşık %20-40 oranlarına sahip F (ayrımlaşma miktarı) değerlerine sahip olduğunu söylemek mümkündür (Şekil 3.146).

Şekil 3.146. İncelenen Tersiyer yaşlı volkanitlerin izotopik AFC modellemesini gösterir (⁸⁷Sr/⁸⁶Sr)_i'ye karşı (¹⁴³Nd/¹⁴⁴Nd)_i diyagramı (İlksel magma bileşimi (IC₀) ve üst kıtasal kabuk (IC_A)'a ait bileşimler Tablo 3.46'de verilmiştir. Semboller Şekil 3.115'deki gibidir)

Tablo 3.45. İncelenen Tersiyer yaşlı volkanitlerin izotopik ve iz element oranlarına göre yapılan AFC modellemesinde, IC_L ve C_L değerlerinin hesaplanmasında kullanılan toplam dağılım katsayıları (D) ile IC_o, IC_A ve X_A bileşimsel değerleri

	Co (Aleutian yay bazaltı-SH15)	C _A (üst kıtasal kabuk)	Toplam Dağılım Katsayısı (D)
Sr (ppm)	493	350	D = 1 kabul edilmiştir
Rb (ppm)	13	112	D = 0 kabul edilmiştir
Nb (ppm)	3.3	25	D = 1 kabul edilmiştir
	IC _o (Aleutian yay bazaltı-SH15)	IC_{A} (üst kıtasal kabuk)	Toplam Dağılım Katsayısı (D)
⁸⁷ Sr/ ⁸⁶ Sr	0.702955	0.71463	-

* ICo, ilksel magma Sr izotopik bileşimi (Aleutian yay bazaltı -SH-15; Jicha vd. 2004)

* CA, üst kıtasal kabuk iz element içeriği (Taylor ve McLennan 1985)

* ICA, üst kıtasal kabuk Sr izotopik bileşimi (Davies vd. 1985)

Tablo 3.46. İncelenen Tersiyer yaşlı volkanitlerin izotopik bileşimlerinden yararlanılarak yapılan AFC modellemesinde, IC_L değerlerinin hesaplanmasında kullanılan toplam dağılım katsayıları (D) ile IC₀, IC_A, X₀ ve X_A bileşimsel değerleri

	X _o (Aleutian yay bazaltı-	V ("st bstagel behalt)	Т	oplam D	ağılım K	Catsayıla	rı (D)	
	SH15)	$\mathbf{A}_{\mathbf{A}}$ (ust kitasai kaduk)	D ₁	D_2	D ₃	D_4	D_5	
Sr	493 ppm	350 ppm	1.0	0.5	0.25	2.0	0.15	
Nd	14.2 ppm	26 ppm	0.2	0.25	0.30	0.1	0.35	
	IC _o (Aleutian yay bazaltı- SH15)	IC _A (üst kıtasal kabuk)	Not:	Formü	ilde ku	llanılan	dağılım	
⁸⁷ Sr/ ⁸⁶ Sr	0.702955	0.71463	 katsayıları yukarıda verilen şek kabul edilmiştir 					
¹⁴³ Nd/ ¹⁴⁴ Nd	0.513046	0.511843	nuou	, canniş	tii.			

* Co, ilksel magma iz element içeriği (Aleutian yay bazaltı -SH-15; Jicha vd. 2004)

* IC₀, ilksel magma Sr ve Nd izotopik bileşimi (Aleutian yay bazaltı -SH-15; Jicha vd. 2004)

* CA, üst kıtasal kabuk iz element içeriği (Taylor ve McLennan 1985)

* IC_A, üst kıtasal kabuk Sr ve Nd izotopik bileşimi (Davies vd. 1985)

r = 2 için hesaplanan ⁸⁷ Sr / ⁸⁶ Sr _L değerleri							
F	$D1_{Sr} = 1.0$	$D2_{Sr} = 0.5$	$D3_{Sr} = 0.25$	$D4_{Sr} = 2.0$	$D5_{Sr} = 0.15$		
0.05	0.708113	0.705781	0.705101	0.713612	0.704895		
0.10	0.707110	0.705464	0.704942	0.712105	0.704776		
0.20	0.705993	0.705017	0.704675	0.709334	0.704560		
0.30	0.705285	0.704668	0.704436	0.707341	0.704356		
0.40	0.704759	0.704367	0.704212	0.705978	0.704156		
0.50	0.704338	0.704096	0.703996	0.705032	0.703959		
0.60	0.703984	0.703845	0.703784	0.704355	0.703761		
0.70	0.703680	0.703608	0.703576	0.703857	0.703563		
0.80	0.703412	0.703382	0.703368	0.703480	0.703363		
0.90	0.703172	0.703165	0.703162	0.703187	0.703161		
0.95	0.703061	0.703059	0.703059	0.703064	0.703058		
1.00	0.702955	0.702955	0.702955	0.702955	0.702955		
		r = 2 için he	esaplanan ¹⁴³ Nd / ¹⁴⁴ N	d _L değerleri			
F	$D1_{Nd} = 0.2$	$D2_{Nd} = 0.25$	$D3_{Nd} = 0.3$	$D4_{Nd} = 0.1$	$D5_{Nd} = 0.35$		
0.05	0.512621	0.512604	0.512586	0.512653	0.512566		
0.10	0.512644	0.512630	0.512615	0.512671	0.512599		
0.20	0.512686	0.512675	0.512664	0.512705	0.512653		
0.30	0.512726	0.512718	0.512710	0.512740	0.512702		
0.40	0.512766	0.512760	0.512755	0.512777	0.512749		
0.50	0.512807	0.512804	0.512800	0.512815	0.512796		
0.60	0.512850	0.512848	0.512845	0.512855	0.512843		
0.70	0.512895	0.512894	0.512892	0.512898	0.512891		
0.80	0.512943	0.512942	0.512941	0.512944	0.512941		
0.90	0.512993	0.512993	0.512992	0.512993	0.512992		
0.95	0.513019	0.513019	0.513019	0.513019	0.513019		
1.00	0.513046	0.513046	0.513046	0.513046	0.513046		

Tablo 3.47. İncelenen Tersiyer yaşlı volkanitlerin, izotopik AFC modellemesiyle hesaplanan (r=2 için; D_1 , D_2 , D_3 , D_4 ve D_5 'e göre) Sr ve Nd izotoplarına ait IC_L değerleri

3.9.4. Magma Karışımı

Magmanın gelişimi sırasında kayaç ve minerallerde ortaya çıkan dokusal özellikler ve zonlanmayı konu alan çalışmalar, petrolojik araştırmalar açısından oldukça önemlidir ve bu çalışmalar magma karışımı için önemli ipuçları sunmaktadır (Milch 1905; Kuno 1936; Eichelberger 1975; Sato 1975; Anderson 1976). İncelenen Tersiyer yaşlı volkanitler petrografi bölümünde de anlatıldığı üzere dengesiz kristallenmeyi işaret eden birçok dokusal özellikler sergilemektedir. Bunlar; klinopiroksenlerde farklı türdeki zonlanmalar, kemirilmeler, ergimeler, süngerimsi doku; plajiyoklaslardaki zonlanmalar, elek dokusu, yeniden büyüme zarfları, ergimeler; yine klinopiroksenler içerisindeki Fe-Ti oksit ve apatit kapanımları magma karışımını işaret eden önemli dokusal özellikler olarak sayılabilir. Volkanik kayaçlardaki ortaya çıkan izotopik ve jeokimyasal değişkenliklerin, kaynak kirlenmesi ve/veya magmanın çevre kayaçlarla etkileşimi sonucunda ortaya çıktığı düşünülmektedir. Özellikle yitim ile ilişkili magmatizmada, manto kaynağına değişken miktar ve tipteki akışkan, ergiyik ve yitim sedimanlarının ilavesi ve çeşitli tipteki manto kaynakları arasındaki karışım gibi sebeplerle heterojen bir yapı ortaya çıkar (Gill, 1981).

Volkanitlerin türediği manto kaynağının; çeşitli ergiyikler, akışkanlar ve yitim sedimanlarıyla karışması (kaynak kirlenmesi) ve mantodan türeyen magmaların kabuk içerisinde hareketi esnasında içerisinde bulundukları yan kayaçları asimile etmeleri sonucunda benzer jeokimyasal özellikler oluşturmaktadır. Özellikle yitim zonlarında iç içe geçmiş bu iki magmatik olayı (kaynak kirlenmesi ve asimilasyon) jeokimyasal olarak bir birinden ayırt etmek oldukça zordur. (Chesley vd., 2002; Peccerillo vd., 2004). Bu nedenle, incelenen Tersiyer volkanitlerinde Langmuir vd. (1978), Depaolo ve Wasserburg (1979) tarafından önerilen denklemler kullanılarak Sr-Nd-Pb izotopik karışım modellemeleri yapılmıştır. İncelenen Tersiyer volkanitlerinin Sr- ve Nd izotopik bileşimleri, üst manto, üst kıtasal kabuk, alt kıtasal kabuk-ortalama kıtasal kabuk ve yitim sedimanları bileşimleri kullanılarak (Tablo 3.48) karışım modellemesi için değerler hesaplanmıştır (Tablo 3.49). Hesaplanan değerlere göre çizilen diyagramdaki karışım hiperbollerinin eğrilikleri K parametresi ile kontrol edilmektedir. İzotopik karışım modellemesinde, üst manto kavnağından (ÜM-N tipi OOSB) üst kıtasal kabuk (ÜKK)'a, farklı karışım oranlarında (f) ve farklı parametreler dikkate alınarak hesaplanan K değerlerine göre uygulanan karışım modeli oluşturulmaktadır.

Modellemede üst manto kaynağındaki hem Sr hem de Nd içerikleri değişken kabul edilerek hesaplanan K değerlerine göre karışım diyagramı çizilmiştir. (87 Sr/ 86 Sr)_i'ye karşı (143 Nd/ 144 Nd)_i karışım modellemesi diyagramına (Şekil 3.147) göre, incelenen volkanitlerin oluşumuna kaynaklık eden magmaya üst kıtasal kabuğun katkısının ($f_{UM}+f_{UKK} = 1$ denklemi alındığında) yaklaşık olarak; Eosen yaşlı BTB ve TT takımları için % 7-10 arasında, Miyosen yaşlı BT takımı için ise yaklaşık %15 oranındadır.

Şekil 3.147. İncelenen Tersiyer yaşlı volkanitlerin (⁸⁷Sr/⁸⁶Sr)_i'ye karşı (¹⁴³Nd/¹⁴⁴Nd)_i karışım modelleme (Depaolo ve Wasserburg, 1979) diyagramı. K değerleri, üst manto değerinin hem Sr hem de Nd içeriklerinin değişken (sabit değil) olduğu kabul edilerek hesaplanmıştır. CHUR-Nd ve CHUR-Sr: Nd ve Sr için kondritik tekdüze rezervuar. Modellemede kullanılan ÜM (Üst Manto), ÜKK-OKK-AKK (Üst-Orta-Alt Kıtasal Kabuk) ve YS (Yitim Sedimanları)'na ait Sr ve Nd iz element içerikleri ile izotopik bileşimleri, Tablo 3.48'de verilmiştir. OOSB, Okyanus Ortası Sırtı Bazaltı, Ada Yayı Volkanitleri, Okyanus Adası Bazaltları, Kıtasal Volkanitler alanları, Zindler ve Hart (1986) ve Hart vd. (1986)'ne göredir (Semboller Şekil 3.115'deki gibidir)

Langmuir vd. (1978), Depaolo ve Wasserburg (1979)'un formülleri dikkate alınarak Sr'a karşı Pb ve Nd'a karşı Pb izotopik karışım modellemeleri, tüketilmiş manto (TM), yitim sedimanları ve lokal alt kabuk (Paleozoyik graniti; Kaygusuz vd., 2012) Sr, Nd ve Pb izotop bileşimleri ve iz element içerikleri (Tablo 3.50) kullanılarak hesaplanmıştır (Tablo 3.51). ⁸⁷Sr/⁸⁶Sr ve ¹⁴³Nd/¹⁴⁴Nd'ye karşı ²⁰⁶Pb/²⁰⁴Pb modelleme diyagramlarına göre Eosen yaşlı volkanitler tüketilmiş manto ve yitim sedimanları arasındaki karışım eğrisi üzerinde yer alırken, Miyosen yaşlı volkanitler tüketilmiş manto ile lokal alt kabuk (Paleozoyik graniti) arasındaki karışım eğrisi üzerinde yer almaktadır. Eosen yaşlı bazik (BTB takımı) ve ortaç (TT takımı) volkanitlerin oluşumuna kaynaklık eden magmaya yitim sedimanlarının katkısı <%10 iken, Miyosen yaşlı bazik volkanitlerin (BT takımı) ana magmasına %10'dan daha az miktarda lokal alt kabuk (Paleozoyik graniti) katkısı olduğu söylenebilir (Şekil 3.148).

Şekil 3.148. İncelenen Tersiyer yaşlı volkanitlerin, (a) ⁸⁷Sr/⁸⁶Sr-²⁰⁶Pb/²⁰⁴Pb ve (b) ¹⁴³Nd/¹⁴⁴Nd-²⁰⁶Pb/²⁰⁴Pb karışım modellemesi diyagramları. Modellemede kullanılan TM (Tüketilmiş Manto), lokal alt kabuk (Paleozoyik Graniti) ve YS (Yitim Sedimanları)'na ait Sr, Nd ve Pb iz element içerikleri ile izotop bileşimleri, Tablo 3.50'de verilmiştir (Semboller Şekil 3.115'deki gibidir)

Tablo 3.48. İncelenen Tersiyer yaşlı volkanitlerde magma karışımı modellemesinde kullanılan üst manto (ÜM), üst ve alt-orta kıtasal kabuk (ÜKK, AKK-OKK) ve yitim sedimanları (YS)'na ait bileşimsel değerler

	Üst Manto (ÜM)	Üst Kıtasal Kabuk (ÜKK)	Alt-Orta Kıtasal Kabuk (AKK-OKK)	Yitim Sedimanları (YS)	
⁸⁷ Sr/ ⁸⁶ Sr	0.7029	0.71463	0.71014	0.7173	
Sr (ppm)	188	350	300	327	
¹⁴³ Nd/ ¹⁴⁴ Nd	0.51319	0.511843	0.5111	0.51218	
Nd (ppm)	9.62	26	24	27	
Sr/Nd 19.54		13.46	12.5	12.11	
Modellemede kullanılan bileşimler Üst Manto : Üst Kıtasal Kabuk : Alt-Orta Kıtasal Kabuk : Yitim Sedimanları :		Sr ve Nd iz element içerikleriSr ve Nd izotop bileşimlerKlein (2004)Klein (2004)Taylor ve McLennan (1985)Davies vd. (1985)Rudnick ve Fountain (1995)Ben Othman vd. (1984)Plank ve Langmuir (1998)Plank ve Langmuir (1998)		<u>ri</u> 3)	

	Sr ve Nd sabit değil iken, farklı K ve F değerlerinde hesaplanan ^{87/86} Sr izotopuna ait karışım						
F	K=0.69; ^{87/86} Sr _K	K=1.45; $^{87/86}$ Sr _K	K=3.27; $^{87/86}$ Sr _K	K=13.06; $^{87/86}$ Sr _K	K=52.26; $^{87/86}$ Sr _K		
0.00	0.715000	0.715000	0.715000	0.715000	0.715000		
0.10	0.714521	0.714319	0.714006	0.713163	0.711810		
0.20	0.713974	0.713568	0.712971	0.711525	0.709601		
0.30	0.713341	0.712736	0.711894	0.710057	0.707981		
0.40	0.712603	0.711810	0.710772	0.708733	0.706743		
0.50	0.711728	0.710772	0.709601	0.707533	0.705765		
0.60	0.710677	0.709601	0.708379	0.706441	0.704974		
0.70	0.709389	0.708270	0.707101	0.705442	0.704320		
0.75	0.708629	0.707533	0.706441	0.704974	0.704034		
0.80	0.707774	0.706743	0.705765	0.704525	0.703771		
0.85	0.706803	0.705892	0.705074	0.704094	0.703528		
0.90	0.705691	0.704974	0.704366	0.703681	0.703303		
0.95	0.704405	0.703980	0.703642	0.703283	0.703094		
1.00	0.702900	0.702900	0.702900	0.702900	0.702900		

Tablo 3.49. İncelenen Tersiyer yaşlı volkanitlerin izotopik karışım modellemesinde, hem Sr hem de Nd değişken (sabit değil) iken hesaplanan R_{karışım} değerleri

Sr ve Nd sabit değil iken, farklı K ve F değerlerinde hesaplanan

^{143/144}Nd izotopuna ait karışım

F	K=0.69; $^{143/144}$ Nd _K	K=1.45; $^{143/144}$ Nd _K	K=3.27; $^{143/144}$ Nd _K	K=13.06; $^{143/144}$ Nd _K	K=52.26; $^{143/144}$ Nd _K
0.00	0.511843	0.511843	0.511843	0.511843	0.511843
0.10	0.511919	0.511896	0.511879	0.511861	0.511852
0.20	0.512002	0.511957	0.511921	0.511883	0.511863
0.30	0.512095	0.512027	0.511972	0.511911	0.511878
0.40	0.512198	0.512110	0.512033	0.511945	0.511896
0.50	0.512313	0.512207	0.512110	0.511991	0.511921
0.60	0.512443	0.512324	0.512207	0.512053	0.511957
0.70	0.512592	0.512467	0.512335	0.512144	0.512012
0.75	0.512674	0.512552	0.512416	0.512207	0.512053
0.80	0.512762	0.512647	0.512512	0.512288	0.512110
0.85	0.512856	0.512755	0.512628	0.512397	0.512192
0.90	0.512959	0.512879	0.512772	0.512552	0.512324
0.95	0.513070	0.513022	0.512953	0.512787	0.512570
1.00	0.513190	0.513190	0.513190	0.513190	0.513190

	Tüketilmiş Manto (TM)	Yitim Sedimanları	(YS) Lokal Alt Kabuk (Paleozoyik Graniti)	
⁸⁷ Sr/ ⁸⁶ Sr	0.7025	0.7173	0.73166	
Sr (ppm)	11.3	327	59.1	
¹⁴³ Nd/ ¹⁴⁴ Nd	0.5132	0.51218	0.51216	
Nd (ppm)	1.12	27	23.1	
²⁰⁶ Pb/ ²⁰⁴ Pb	18	18.913	19.09	
Pb (ppm)	0.0489	19.9	7.3	
Modellemede kullanılar	n bileşimler Sr, Nd v	e Pb iz elementler içerikleri	Sr, Nd ve Pb izotop bileşimleri	
Tüketilmiş Manto	: Rehkam	per veHofmann (1997)	Rehkamper veHofmann (1997)	
Yitim Sedimanları	: Plank ve	Langmuir (1998)	Plank ve Langmuir (1998)	
Lokal Alt Kabuk	: Kaygusı	ız vd. (2012)	Kaygusuz vd. (2012)	

Tablo 3.50. İncelenen Tersiyer yaşlı volkanitlerin izotopik karışım modellemesinde kullanılan tüketilmiş manto (TM), yitim sedimanları (YS) ve lokal alt kabuk (Paleozoyik graniti) ait bileşimsel değerler

Tablo 3.51. İncelenen Tersiyer yaşlı volkanitlerin izotopik karışım modellemesinde hesaplanan Sr-Nd-Pb R_{karışım} değerleri

	Sr-Nd-Pb İzotopik Karışım Modellemesi						
	TM-Lok	al alt kabuk izotopik	TM-YS izotopik karışımı				
F	${}^{87}{ m Sr}/{}^{86}{ m Sr_R}$	$^{143}Nd/^{144}Nd_{R}$	206 Pb/ 204 Pb _R	$^{87}{\rm Sr}/^{86}{\rm Sr_R}$	$^{143}Nd/^{144}Nd_{R}$	206 Pb/ 204 Pb _R	
0.00	0.70250	0.51320	18.00	0.70250	0.51320	18.00	
0.10	0.71322	0.51247	19.03	0.71379	0.51246	18.89	
0.20	0.71902	0.51233	19.06	0.71550	0.51233	18.90	
0.30	0.72266	0.51226	19.07	0.71620	0.51227	18.91	
0.40	0.72516	0.51223	19.08	0.71657	0.51224	18.91	
0.50	0.72698	0.51221	19.08	0.71681	0.51222	18.91	
0.60	0.72836	0.51219	19.09	0.71697	0.51221	18.91	
0.70	0.72945	0.51218	19.09	0.71708	0.51220	18.91	
0.75	0.73033	0.51217	19.09	0.71717	0.51219	18.91	
0.80	0.73105	0.51216	19.09	0.71724	0.51218	18.91	
0.85	0.73166	0.51216	19.09	0.71730	0.51218	18.91	
0.90	0.70250	0.51320	18.00	0.70250	0.51320	18.00	
0.95	0.71322	0.51247	19.03	0.71379	0.51246	18.89	
1.00	0.71902	0.51233	19.06	0.71550	0.51233	18.90	

4. İRDELEME VE TARTIŞMA

Doğu Pontidler'de Tersiyer volkanizmasının jeodinamik gelişimi, eski yitim izi, metazomatizma, kabuk katkısı ve faklılaşma gibi parametreler nedeniyle oldukça karmaşık bir görüntü sunmaktadır. İncelenen volkanitlerin ana, iz, NTE ve izotop jeokimyası verilerindeki değişimler, bu kayaçların oluşumunu kontrol eden petrojenetik olayları yansıtmakta olup, bölgenin Tersiyer jeodinamik evriminin aydınlatılması açısından da oldukça büyük bir öneme sahiptir.

4.1. Volkanitlerin Yerleşim Ortamı ve Soğuma Koşulları

İncelenen Tersiyer volkanitleri Eosen ve Miyosen yaşlı olmak üzere volkanik fasiyes özelliklerine göre subvolkanik dom/dayktan, lav akmaları ve piroklastitlere kadar değişen sualtı ve karasal soğuma ve yerleşme ortamlarını karakterize eden ürünler sunmaktadır.

İncelenen volkanitlerin morfolojik ve stratigrafik özellikleri Orta Eosen'den Miyosen'e kadar sığlaşan bir paleo-ortamı işaret etmektedir. Volkanik stratigrafi özelliklerine dayanılarak lavlar; yastık lav, lav lobları ve plakamsı lavlar (sheet flows) olmak üzere üç farklı gruba ayrılabilir (Gregg ve Fink, 1995). Yastık lavlar denizaltı volkanizmasını gösteren önemli yapılardır. Yastık lavların içyapısı, volkanik patlama, volkanizmanın gelişimi ve yerleşim evrelerinin anlaşılması açısından oldukça önemlidir (Bear ve Cas, 2007). Yastık lavların boyutu, soğuma sırasındaki bileşim, viskozite, magmanın boşalma oranı (ikincil kontrolör olarak yamaç eğimiyle beraber), termal dayanıklılık ve kırılmaya karşı dirençle direk olarak ilişkilidir (Solomon, 1969; Moore, 1975; Walker, 1992). Yüksek yamaç eğimi yerleşim sırasında gravite etkisiyle yastık lavlarda erken ayrılmaya neden olurken düşük yamaç eğimi tersine yastık lavın parçalanmadan genişlemesi ve büyümesi için daha uzun yüzey alanı ve süre sağlar (Walker, 1992). İncelenen Eosen volkanik takımları içerisinde yer alan yastık lavların şekli başlıca sferoidal, ovalden uzamış ve yassılaşmışa kadar değişmektedir. Yastık lavlarda gözlemlenen bu farklı morfolojiler, önceki yastık lavlar arasındaki boşluklara yerleşimden kaynaklanabilir (Bear ve Cas, 2007). Yastık lavların morfolojisi, yastık lavlar arasındaki boşluklarda çökelmiş tortular, marn ve diğer tortul seviyeler sığ denizel ortam

karakteristiklerini yansıtmaktadır. Bazı yastık lavlarda gözlemlenen yassılaşmalar derin su ortamından kaynaklanan hidrostatik basınç sonucu ortaya çıkabilir. Tortul ara katkılı Miyosen yaşlı tüf ve breş fasiyesi, sığ denizel ortamı yansıtmaktadır. Miyosen yaşlı foidli breşik lavlar, bol miktarda klinopiroksen megakristalleri (2 cm'ye kadar) içermektedir. Bu kayaçlar içerisinde gözlemlenen klinopiroksen megakristalleri karasal ortamda soğuma hızını ve viskoziteyi arttırıcı yönde etki ederek breşik yapının oluşmasına neden olmuş olabilir. Eosen volkanik fasiyeslerinin tersine Miyosen volkanik fasiyes özellikleri, sığ denizelden karasala kadar değişen bir geçiş ortamı karakteristiklerini yansıtmaktadır. Buradan yola çıkarak, Eosenin sığ denizel volkanizmasının muhtemelen Doğu Pontidler'in kuzeyinde meydana gelen çarpışma sonrası bölgesel yükselim (Okay ve Şahintürk, 1997; Boztuğ vd., 2004) sebebiyle keskin bir şekilde Miyosen karasal volkanizmasına geçiş gösterdiği sonucuna varılabilir.

4.2. Ana Magmaların Gelişimi

İncelenen Eosen ve Miyosen yaşlı volkanitlerin türediği kaynak alan ve bu kaynaktan itibaren gelişen magma ya da magmaların oluşumunu belirlemek için önceki bölümlerde jeokimyasal ve izotopik modellemeler yapılmıştır. Böylece incelenen volkanitlerin, farklı manto kaynaklarından türemiş olabilecekleri ve oluştuktan sonra farklı oranlardaki mineral ayrımlaşmaları ± magma karışımı ± özümleme ile geliştikleri ileri sürülmüştür. Doğu Pontidler Tersiyer volkanizmasının; yitim sonunda üst manto ve/veya alt kabuğun kısmi ergimesi sonucu oluştuklarını, yitim zonu zenginleşmesine ya da kabuksal kirlenmeye uğradıklarını ve ayrıca gelişiminde daha çok ayrımlaşmanın ve magma karışımının etken magmatik olaylar olduğu ifade edilmiştir (Arslan vd., 1997, 2002; Temizel ve Arslan, 2003, 2008, 2009; Temizel vd., 2012, Arslan vd., 2013).

Petrokimyasal veriler ışığında, İncelenen Eosen volkanitleri hafifçe alkali karakter sergilerken, Miyosen volkanitleri orta derecede alkali afiniteye sahiptir. Bu kayaçlardan Eosen yaşlı bazik (BTB takımı) ve ortaç (TT takımı) takımlarını oluşturan kayaçlar silisce az doygun, daha çok sodik-potasik karaktere sahipken, Miyosen yaşlı BT takımı kayaçları silisce çok fakir ve Na-alkali karaktere sahiptir (bkz Şekil 3.100). Ayrıca, incelenen volkanitlerin düşük Mg# (Eosen için 5.4-55.9; Miyosen için 23.4-52.9) değerleri, düşük Cr ve Ni içerikleri mantodan türeyen kayaçlara göre oldukça farklılaştıklarını göstermektedir.

İncelenen volkanitlerin N-OOSB'na göre normalize edilmiş iz element değişimlerinde gözlenen özellikle BİLE, (Sr, K, Rb ve Ba), Th ve Ce içerikleri bakımından zenginleşme, yüksek çekim alanlı elementlerden (YÇAE) olan Zr, Ti, Y ve Nb, Ta icerikleri bakımından fakirleşmeyle özellikle yitim ile ilişkili ortamlarda oluşan volkanitlerin petrokimyasal özellikleriyle benzerlik sunduğunu söylenebilir (Pearce vd., 1990). Tüm örneklerde negatif Nb ve Ta anomalisi gözlenmekle birlikte takımlara göre anomali farklılıkları görülmektedir (bkz Şekil 3.106). Özellikle Miyosen yaşlı BT takımı kayaçlarında gözlenen bu durum farklı derecede yitim zonu zenginlesmesi (akışkan±ergiyik olarak) ve/veya kabuk asimilasyonun etkisi (Pearce vd., 1990) olarak yorumlanabilir. Bu kayaçlarda gözlenen belirgin Nb ve Ta anomalileri, kökensel olarak tüketilmiş kaynaktan ziyade zenginleşmiş bir kaynak alanına işaret etmektedir (Thrilwall vd., 1994; Hunter ve Blake, 1995; Pearce ve Peate, 1995; Rogers vd., 1995; Hochstaedter vd., 2000; Churikova vd., 2001; Condie vd., 2002; Elburg vd., 2002; George vd., 2004; Bindeman vd., 2005; Turner, 2005; Zhu vd., 2006). Ayrıca, Eosen ve Miyosen yaşlı kayaçlarda gözlenen farklı iz element değişimleri, kökensel olarak da farklı bir kaynaktan türediklerini ifade etmektedir. Ta/Yb'a karşı Th/Yb diyagramında (bkz Şekil 3.120), Eosen yaşlı BTB ve TT takımlarını oluşturan ana magma(lar)da yitim zonu zenginleşmesi yönsemesi gözlenirken, Miyosen yaşlı BT takımını oluşturan ana magma(lar)da kabuksal kirlenme ve/veya levha içi zenginleşmesi yönsemesi olası görülmektedir. Eosen yaşlı BTB $((La/Lu)_N = 5.55 - 10.76)$ ve TT $((La/Lu)_N = 4.65 - 11.64)$ takımları ve Miyosen yaşlı BT $((La/Lu)_N = 36.43 - 69)$ takımı kayaçlarında gözlemlenen farklı oranlardaki NTE zenginleşmeleri, bu kayaçların türedikleri kaynak bakımından da farklılık gösterdiklerini isaret etmektedir. HNTE'lerdeki zenginlesmenin orta nadir toprak elementlere (ONTE) ve ANTE'lere göre fazla olması, volkanitlerin NTE dağılımlarında konkav şekilli desen oluşmasına neden olmuştur. Ortaya çıkan bu desen, incelenen volkanitlerin gelişiminde klinopiroksen ve hornblend ayrımlaşmasına işaret etmektedir (Gill, 1981; Thompson vd.,1984; Green ve Pearson, 1985; Romick, 1987; Thirlwall vd., 1994).

Eosen yaşlı BTB takımı kayaçlarının (87 Sr/ 86 Sr)_i oranları 0.703893 ile 0.704479 arasında, (143 Nd/ 144 Nd)_i oranı 0.512680 ile 0.512794 arasında, ϵ Sr_i değerleri -7.34 ile +3.8 ve ϵ Nd_i değerleri +1.61 ile +3.75 arasında ve model yaşları T_{DM}= 505 ile 791 My değişmektedir. TT takımı kayaçlarının (87 Sr/ 86 Sr)_i oranları 0.704069 ile 0.704238 arasında, (143 Nd/ 144 Nd)_i oranı 0.512695 ile 0.512748 arasında, ϵ Sr_i değerleri -1.46 ile +38.75 ve ϵ Nd_i değerleri +1.84 ile +2.81 ve model yaşları ise T_{DM}= 533 ile 675 My arasındadır. Miyosen

yaşlı BT takımı kayaçlarının (87 Sr/ 86 Sr)_i oranları 0.705178 ile 0.705362, (143 Nd/ 144 Nd)_i oranı 0.512666 ile 0.512689, ϵ Sr_i değerleri +9.68 ile +12.36 ve ϵ Nd_i değerleri +0.61 ile +1.08 arasında, model yaşları ise T_{DM}= 549 ile 577 My arasındadır (bkz Tablo 3.33). Volkanitlerin düşük (87 Sr/ 86 Sr)_i oranlarına, negatif (-) ϵ Sr_i ve pozitif (+) ϵ Nd_i değerlerine sahip olmaları, ana magmalarının tüketilmiş bir manto kaynağından türediğine işaret etmektedir. Nispeten yüksek (87 Sr/ 86 Sr)_i oranları, pozitif (+) ϵ Sr_i ve negatif (-) ϵ Nd_i değerleri ise yiten kabuk malzemesinin karışımı ile zenginleşmiş bir manto kaynağının varlığını göstermektedir (Faure ve Mensing, 2005).

İncelenen Eosen yaşlı BTB takımı kayaçlarının ²⁰⁶Pb/²⁰⁴Pb izotop oranları 18.722-18.786 arasında, ²⁰⁷Pb/²⁰⁴Pb izotop oranları 15.630-15.669 arasında ve ²⁰⁸Pb/²⁰⁴Pb izotop oranları ise 38.786-38.923 arasında değişmektedir. TT takımı kayaçlarının ²⁰⁶Pb/²⁰⁴Pb izotop oranları 18.776-18.797 arasında, ²⁰⁷Pb/²⁰⁴Pb izotop oranları 15.639-15.671 arasında ve ²⁰⁸Pb/²⁰⁴Pb izotop oranları ise 38.867-38.968 arasında değişmektedir. Miyosen yaşlı BT takımı kayaçlarının ²⁰⁶Pb/²⁰⁴Pb izotop oranları 18.893-18.946 arasında, ²⁰⁷Pb/²⁰⁴Pb izotop oranları 15.661-15.680 arasında ve ²⁰⁸Pb/²⁰⁴Pb izotop oranları ise 38.938-39.058 arasındadır (bkz Tablo 3.34).

Gerek petrojenez kısmında ele alınan ergime modellemelerinde ve gerekse (Dy/Yb)_N oranından da anlaşılacağı üzere Eosen ve Miyosen yaşlı volkanitlerin köken magmalarının farklı miktarlarda spinel ve/veya granat içeren lerzolitten türediği anlaşılmaktadır. İncelenen Eosen ve Miyosen yaşlı volkanitlerin (¹⁴³Nd/¹⁴⁴Nd)_i'ye karşı Dy/Yb diyagramı (bkz Şekil 3.121), ana magmaların sığ derinlikli zenginleşmiş iki farklı manto kaynağından türediğini desteklemektedir. Ayrıca Ba/Rb'ye karşı Rb/Sr diyagramındaki (bkz Şekil 3.128b) değişimler, Eosen yaşlı volkanitlerin kaynak alanında flogopitin varlığına işaret ederken, Miyosen yaşlı volkanitlerin kaynak alanında ise daha çok amfibollün varlığından söz edilebilir.

La/Nb'a karşı ɛNd_i diyagramında da görüleceği üzere incelenen volkanitlerdeki yüksek La/Nb oranları ve orta-yüksek ɛNd_i değerleri; ana magmalarının kıtasal kabuk, okyanus adası bazaltı (OIB) ve astenosferik magma arasındaki basit bir karışımla türetilemeyeceklerini göstermektedir (Şekil 4.1). İzotopik bileşimler, büyük ölçüde manto kaynak bölgelerini yansıtmakla birlikte, incelenen volkanitlerin gelişimini açıklamak için üçlü bileşen karışım modeli daha uygun gözükmektedir. Bu model; tüketilmiş manto kökenli ada yayı bazaltının (IAB), yitim sediman ergiyikleri ve büyük iyon yarıçaplı litofil elementlerce zenginleşmiş yitim akışkanlarınca kontaminasyonunu içermektedir.

Şekil 4.1. İncelenen Tersiyer volkanitlerinin ɛNdi'ye karşı La/Nb diyagramı. Alanlar; OOSB (Okyanus ortası sırtı bazaltı), BSE (Toplam silikat yerküre), DM (Tüketilmiş manto) ve PREMA (ortalama manto) bileşimleri, Zindler ve Hart (1986)'a; OAB (Okyanus Adası Bazaltı), White ve Patchett (1984)'a; kıtasal kabuk bileşimi, Taylor ve McLennan (1985)'a göredir

Ba/Th oranı yitim kökenli akışkan bileşeni için çok iyi gösterge olarak kabul edilmektedir (Peate vd., 2001; Plank, 2005). İncelenen volkanitlerin (⁸⁷Sr/⁸⁶Sr)_i'ye karşı Ba/Th diyagramında; Miyosen yaşlı bazik (BT takımı) volkanitler için OOSB'ye göre giderek artan (⁸⁷Sr/⁸⁶Sr)_i değerleri sediman katkısını fakat Eosen yaşlı bazik (BTB takımı) ve ortaç (TT takımı) volkanitler için OOSB veya ortalama sediman bileşimden genelde yüksek ve değişken Ba/Th oranları ise Sr'ca zengin akışkanlara işaret etmektedir (Şekil 4.2).

İncelenen Eosen (BTB ve TT takımları) ve Miyosen (BT takımı) yaşlı volkanitler arasında hem ${}^{206}Pb/{}^{204}Pb$, ${}^{207}Pb/{}^{204}Pb$, ${}^{208}Pb/{}^{204}Pb$ izotopik oranları hem de bu oranlara paralellik gösterecek şekilde (${}^{87}Sr/{}^{86}Sr)_i$ oranları arasında da belirgin farklılıklar mevcuttur (bkz. Şekil 3.140). Eosen yaşlı volkanitlerin (${}^{87}Sr/{}^{86}Sr)_i$ oranları 0.70389-0.70448 arasında değişirken Miyosen yaşlı volkanitlerin (${}^{87}Sr/{}^{86}Sr)_i$ oranları ise 0.705178-0.705362 arasında

değişmektedir. Volkanitlere ait (⁸⁷Sr/⁸⁶Sr)_i izotop oranları, tipik olarak manto-kabuk sınırındaki malzemeyi göstermekte ve özellikle 0.705 değerinden küçük olanlar ise tipik olarak manto değerini yansıtmaktadır.

Şekil 4.2. İncelenen Tersiyer volkanitlerinin Ba/Th'a karşı (⁸⁷Sr/⁸⁶Sr)_i diyagramı. Üç bileşenli (OOSB, AKIŞKAN ve SED) karışım modeli ve eğrisi Turner vd. (1996)'ya göredir. Karşılaştırma için verilen alanlar, Lesser Antilles volkanitlerine (Davidson, 1997) aittir. Semboller Şekil 4.1'deki gibidir

İncelenen volkanitlere ait (⁸⁷Sr/⁸⁶Sr)_i karşı ²⁰⁶Pb/²⁰⁴Pb diyagramında (Şekil 4.3) tipik olarak üst kabuk bileşimini yansıtan, düşük ²⁰⁶Pb/²⁰⁴Pb ve yüksek ⁸⁷Sr/⁸⁶Sr oranlarına sahip HIMU (²³⁸U/²⁰⁴Pb oranı yüksek manto)- üst kabuk arasındaki manto-kabuk karışım eğrisi ve manto rezervuarı bileşimini yansıtan, düşük ²⁰⁶Pb/²⁰⁴Pb ve ⁸⁷Sr/⁸⁶Sr oranlarına sahip HIMU ve EMI (Zenginleşmiş Manto I) gibi farklı manto rezervuarları arasındaki etkileşimi gösteren manto-manto karışım eğrisi olmak üzere iki farklı karışım eğrisi görülmektedir. Eosen yaşlı volkanitler, genel olarak HIMU–EMI arasındaki manto-manto karışım eğrisi üzerinde yer alıp, Sardunya+Tiren deniz tabanı volkanitleri alanına düşmektedir. Miyosen yaşlı volkanitler, daha yüksek (⁸⁷Sr/⁸⁶Sr)_i oranlarıyla HIMU-üst kabuk arasındaki mantokabuk karışım eğrisine daha yakın bir yerde ve Vezüv-Phlegraean-Stromboli volkanitleri alanına yakın yerleşmektedir. İncelenen volkanitlerin karışım eğrileri arasındaki konumları dikkate alındığında (Şekil 4.3), manto kökenli olduklarını ve kabuk materyalleri ile yitim sırasında ya da daha sonra meydana gelen kabuk asimilasyonu sonucunda zenginleştikleri anlaşılmaktadır. Bu zenginleşmenin daha yüksek (⁸⁷Sr/⁸⁶Sr)_i oranıyla Miyosen yaşlı volkanitlerde Eosen yaşlı volkanitlere göre daha fazla olduğu açıkça görülmektedir.

Şekil 4.3. İncelenen Tersiyer volkanitlerinin (⁸⁷Sr/⁸⁶Sr)_i'ye karşı ²⁰⁶Pb/²⁰⁴Pb diyagramı. EMI (Zenginleşmiş Manto I), HIMU (²³⁸U/²⁰⁴Pb oranı yüksek manto) ve DMM (Tüketilmiş Manto) alanları, Zindler ve Hart (1986) ve Hart vd. (1992)'ye göredir. Tuscany Provensi, Roman Provensi, Vezüv-Stromboli-Phlegraean, Sardunya+Tiren deniz tabanı, Etna, Sicilya ve Batı-merkez Aeolian adası volkanitlerine ait alanlar, Peccerillo (1999, 2002, 2003)'den alınmıştır (Semboller Şekil 4.1'deki gibidir)

İncelenen volkanitlerin Sr, Nd ve Pb izotopik oranları, ana magmalarının ne tür bir manto kaynağından türemiş olabileceği hakkında ipuçları sunmaktadır. Şekil 4.4'de çeşitli manto kaynakları ve bu manto kaynakları arasında zenginleşme ve etkileşimi gösteren yönsemeler görülmektedir. İncelenen volkanitler (87 Sr/ 86 Sr)_i'ye karşı (143 Nd/ 144 Nd)_i (Şekil 4.4a) diyagramında kısmen tüketilmiş ve kısmen zenginleşmiş alana düşmekte olup, genellikle HIMU ve EMI arasındaki 1b ve 2 nolu ok yönünde değişim göstermektedirler. Bu değişim yiten deniz sedimanlarından türeyen kısmi ergiyikler ile manto arasındaki zenginleşmeyi göstermektedir. 206 Pb/ 204 Pb karşı $\Delta7/4$ Pb, (87 Sr/ 86 Sr)_i ve (143 Nd/ 144 Nd)_i diyagramlarında (Şekil 4.4b, c ve d) ise OOSB ve EMII arasındaki etkileşimi gösteren 1 nolu ok yönünde yer almaktadır. Burada, 1 nolu ok genellikle yitim süreçleri ile tüketilmiş bir OOSB manto kaynağının modifikasyonunu olarak yorumlanabilir.

(⁸⁷Sr/⁸⁶Sr)_i'ye karşı ²⁰⁶Pb/²⁰⁴Pb diyagramında zenginleşmiş ve tüketilmiş manto ile yitim bileşeni arasındaki karışım görülmektedir (Şekil 4.5). İncelenen volkanitlerin bu diyagramdaki konumlarına bakıldığında, iki farklı ana magmanın varlığı söz konusudur. Eosen yaşlı volkanitlerin karışım eğrilerinin orta noktasında yer alması, ana magmalarının çok az (%1-2) yitim bileşeni katkısı içeren tüketilmiş (%90 tüketilmiş / %10 zenginleşmiş) bir manto kaynağından türediği söylenebilir. Miyosen yaşlı volkanitlerinin ana magmasının ise zenginleşmiş manto ve yitim bileşeni arasında yer alarak bu iki kaynak alanın karışımından oluşan bir kaynak alandan türediği söylenebilir. Miyosen yaşlı volkanitlerin bu üçlü karışım eğrileri dışında yer alması, bu kayaçların ana magmasına kabuk katkısının da göz ardı edilmeyeceğini desteklemektedir.

Şekil 4.4. İncelenen Tersiyer volkanitlerinin; (a) (⁸⁷Sr/⁸⁶Sr)_i'ye karşı (¹⁴³Nd/¹⁴⁴Nd)_i, (b) ²⁰⁶Pb/²⁰⁴Pb'e karşı (⁸⁷Sr/⁸⁶Sr)_i, (c) ²⁰⁶Pb/²⁰⁴Pb'e karşı Δ7/4Pb, (d) ²⁰⁶Pb/²⁰⁴Pb'e karşı (¹⁴³Nd/¹⁴⁴Nd)_i diyagramları. 1 nolu ok, tüketilmiş bir OOSB manto ile yitim süreçlerinin karışımını; 1a ve 1b nolu oklar, sırasıyla yiten deniz sedimanlarından türeyen sulu akışkanlar ve kısmi ergiyikler ile manto arasındaki zenginleşmeyi; 2 nolu ok ise, kıtasal litosfer veya bundan türeyen ergiyikler ve litosfer altı ergiyikler arasındaki etkileşimi ifade etmektedir. EMI, EMII, HIMU ve DMM alanları, Zindler ve Hart (1986) veHoffman (1997)'ye göredir. NHRL (kuzey yarımküre referans çizgisi), Hart (1984)'den alınmıştır (Semboller Şekil 4.1'deki gibidir)

Şekil 4.5. İncelenen Tersiyer volkanitlerinin (⁸⁷Sr/⁸⁶Sr)_i karşı ²⁰⁶Pb/²⁰⁴Pb zenginleşmiş ve tüketilmiş manto uç üyeleri ile yitim bileşeni karışımını gösterir diyagram (Petrone vd., 2003'den değiştirilerek). Yitim bileşeni ile zenginleşmiş ve tüketilmiş mantolar arasındaki çizgiler karışım eğrilerini ifade etmektedir. Karışım eğrileri değişik akışkan/ergiyik oranları da dikkate alınarak sınırlandırılmıştır (Petrone vd., 2003) (Semboller Şekil 4.1'deki gibidir)

İncelenen volkanitlerin Pb izotopik oranlarından yararlanılarak, $\Delta 7/4$ Pb ve $\Delta 8/4$ Pb değerleri hesaplanmış (bkz. Tablo 3.34) ve $\Delta 8/4$ Pb karşı $\Delta 7/4$ Pb ve ²⁰⁶Pb/²⁰⁴Pb diyagramları çizilmiştir (Şekil 4.6a, b). Eosen yaşlı volkanitlerin $\Delta 8/4$ Pb oranları 52.41-63.30 arasında, $\Delta 7/4$ Pb oranları ise 10.68-14.69 arasında değim göstermektedir. Miyosen yaşlı volkanitler ise 46.94-52.53 arasında değişen $\Delta 8/4$ Pb, 11.81-13.53 arasında değişen $\Delta 7/4$ Pb değerlerine sahiptir. Eosen ve Miyosen yaşlı tüm volkanitler $\Delta 8/4$ Pb karşı $\Delta 7/4$ Pb (Şekil 4.6a) diyagramında pozitif $\Delta 7/4$ Pb ve $\Delta 8/4$ Pb değerlerine sahip olup, DUPAL anomalisinden ($\Delta 8/4$ Pb >100; Hart, 1984; Tatsumoto ve Nakamura, 1991; Escrig vd., 2004) daha düşük $\Delta 8/4$ Pb göstermektedir. Bu özellikleriyle aynı zamanda hem kabuk ve hem de mantodan türeyen kayaçların bulunduğu bölgede yer almaktadırlar. $\Delta 8/4$ Pb karşı ²⁰⁶Pb/²⁰⁴Pb (Şekil 4.6b) diyagramında, incelenen volkanitler yüksek Pb (>18.7) izotopik oranlarına ve yüksek $\Delta 8/4$ Pb (>47) değerlerine sahiptir. Ayrıca, volkanitlerde gözlenen pozitif $\Delta 8/4$ Pb değerleri, ²⁰⁸Pb zenginleşmesini (yüksek Th/U oranı) bir başka deyişle volkanitlerin ana magmalarına Pb'ca zengin orta ve/veya üst kabuk katkısının mümkün olabileceğini ifade etmektedir.

Şekil 4.6. İncelenen Tersiyer volkanitlerinin (a) $\Delta 8/4$ Pb karşı $\Delta 7/4$ Pb ve (b)²⁰⁶Pb/²⁰⁴Pb diyagramları. $\Delta 8/4$ Pb > 0 olması, volkanitlerdeki yüksek Th/Pb oranını ifade etmektedir ve bu durum radyojenik ²⁰⁸Pb zenginleşmesinin bir sonucu olarak açıklanabilir. DUPAL anomalisi Hart (1984), Tatsumoto ve Nakamura (1991) ve Escrig vd. (2004)'e göredir (Semboller Şekil 4.1'deki gibidir)

elementlerindeki zenginlesme genellikle sulu akışkanlarla Pb Sr Ba. ve ilişkilendirilmekte olup, yiten plaka kısmi ergiyiklerinin ise mantoda Nb, Th, La, Ce ve Nd elementleri bakımından zenginleşmeye neden olduğu ileri sürülmektedir (Kelemen vd., 2003; Castillo ve Newhall, 2004). İncelenen volkanitlerin La/Yb karşı Sr/La (Şekil 4.7a), Ba/La karşı Th/Yb (Şekil 4.7c) ve Ce/Pb karşı Th/La (Şekil 4.7e) diyagramlarına volkanitlerin bakıldığında, Eosen yaşlı ana magmasında vitim akışkanı metazomatizmasının izi görülürken, Miyosen yaşlı volkanitlerin ana magmasında ise yitim sediman katkısının etkisi belirgindir. Ayrıca, değişik manto kaynaklarının bulunduğu Şekil 4.7b, c ve d'deki diyagramlarda, Eosen yaşlı volkanitlerin ana magmasının tüketilmiş (OOSB) ve zenginleşmiş manto kaynaklarının karışımını gösterir bir manto kaynağından türediğini, Miyosen yaşlı volkanitlerin ana magmasının ise kabuk katkısı içeren zenginleşmiş manto kaynağından türediğini ifade etmektedir.

Tüm bu veriler birlikte yorumlandığında; incelenen Tersiyer volkanitlerinin ilksel ergiyiklerinin yitim akışkanlarınca metazomatizmaya uğratılmış ve kaynak kirlenmesine maruz kalmış tüketilmiş sığ manto kaynağından türediği söylenebilir. Volkanitlerin yaşları dikkate alındığında Eosen volkanitlerinin (BTB ve TT takımları) ana magmalarının gelişiminde yitim akışkanları, buna karşın Miyosen volkanitlerinin (BT takımı) ana magmasının gelişiminde ise sediman katkısı önemli olabilir.

Şekil 4.7. İncelenen Tersiyer volkanitlerinin (a) La/Yb karşı Sr/La, (b) ²⁰⁶Pb/²⁰⁴Pb karşı (⁸⁷Sr/⁸⁶Sr)_i, (c) Ba/La karşı Th/Yb, (d) ²⁰⁶Pb/²⁰⁴Pb karşı ɛNd_i, (e) Ce/Pb karşı Th/La ve (f) Nb/La karşı ɛNd_i diyagramları. OOSB, kabuk ve zenginleşmiş uç üye bileşimleri Hawkesworth vd. (1984)'den alınmıştır (Semboller Şekil 4.1'deki gibidir)

-4

. 0.0 Kabuk

0.4

Nb / La

0.6

0.8

1.0

0.2

4.3. Dengesizlik Parametreleri

10

Ce / Pb

0.0

Minerallerin bileşimi ve dokuları, magmanın gelişimi sırasında ortaya çıkan farklı türdeki dengesizliklerle yakından alakalıdır. Soğuma, dekompresyon veya magma karışımı gibi olaylar nedeniyle, dengede olan magmanın sıcaklık, basınç ve bileşiminin değişmesi sonucunda dengesiz hale gelir (Nixon, 1988; Ortoleva, 1990; Dobosi ve Fodor, 1992; Rutherford ve Hill, 1993; Simonetti vd., 1996; Perugini vd., 2003). Magma karışımı olayı; (1) petrografik ve dokusal ve (2) bileşimsel ölçütlerle tespit edilebilir. Plajiyoklaslardaki elek dokusu (Dungan ve Rhodes, 1978), klinopiroksenlerin kenarlarında gözlenen kemirilmeler ve çözünmeler, normal ve elek dokulu plajiyoklasların aynı kayaç içerisinde bulunması (Stimac ve Perace, 1992; Venezky ve Rutherford, 1997) ve yuvarlaklaşmış ve kemirilmiş mineraller (Stimac ve Pearce, 1992) petrografik ve dokusal ölçütler arasında sayılabilir. Kristallerde gözlenen normal zonlanma, ters zonlanma ve her iki tür zonlanmanın aynı kayaç içerisinde yer alması bileşimsel ölçüt olarak kabul edilebilir (Luhr ve Carmichael, 1980; Sakuyama, 1981; Holsor ve Rose, 1991).

İncelenen volkanitlerde gözlenen en önemli dokusal, petrografik ve bileşimsel özellikler, dengesizliği ifade eden plajiyoklas ve klinopiroksenlerde gözlenen bileşimsel zonlanmalardır. Plajiyoklaslardaki geniş aralıkta değişen bileşimler, elek dokusu ve karmaşık zonlanma genellikle oldukça dinamik bir tektonik ortam olan yitim zonlarında yer alan bazaltik ve andezitik kayaçlarda sıkça gözlenmektedir (Tepley vd., 1999; Troll vd., 2004). Eosen yaşlı bazik (BTB takımı) ve ortaç (TT takımı) karakterli kayaçlardaki plajiyoklaslardaki elek dokusu, kenarlarında kemirilmeler dengesizliği gösteren en önemli dokusal özellikler olup, magma karışımı (Tsuchiyama, 1985) veya magmanın kabuk içerisinde sığ derinliğe yükselmesiyle gelişen dekompresyon sonucunda meydana gelebilir (Nelson ve Montana, 1992).

İncelenen Eosen ve Miyosen yaşlı volkanitlerde gerçekleştirilen ayrıntılı merkez ve kenar mineral kimyası analizleri sonucunda normal zonlu, ters zonlu ve aynı kayaç içerisinde her iki zonlanmayı gösteren plajiyoklaslar tespit edilmiştir (Şekil 4.8a). Eosen yaşlı BTB takımı kayaçlarında yer alan normal zonlanma gösteren plajiyoklasların merkez bileşimi An₅₃ ve An₉₃, TT takımında An₄₈ ve An₈₃ ve Miyosen yaşlı BT takımında An₅₆ ve An₆₄ arasında değişirken, kenar bileşimleri sırasıyla An₅₀ ve An₉₁, An₃₆ ve An₇₈, An₅₀ ve An₆₁ arasında değişim göstermektedir. Ters zonlu plajiyoklaslar sodyumca daha zengin bir merkez bileşimiyle karakterize olup, BTB takımı için An₄₇ ve An₈₁, TT takımı için An₄₂ ve An₇₀ arasında, Miyosen yaşlı BT takımı için ise An₆₃ dür. Ayrıca, An içeriği kristalin kenarına doğru artış göstererek sırasıyla An₆₂ ve An₈₅, An₅₀ ve An₉₇, An₆₉ değerlerini alır. Merkez ve kenar arasındaki maksimum An değişimi Eosen yaşlı BTB takımı kayaçları için %32 iken Miyosen yaşlı BT takımı kayaçlarında %6 olarak belirlenmiştir.

Plajiyoklaslardaki normal zonlanmanın fraksiyonel kristallenme sonucunda gelişebileceği ifade edilirken, ters zonlanma farklı hipotezlerle açıklanabilmektedir; (i) suya doygun şartlar altında sıcaklık ve basıncın artması (Blundy ve Cashman, 2001), (ii) suya doygun magmaların yükselimi sırasında sıcaklıktaki artış (Blundy vd., 2006) ve (iii) magma odalarında meydana gelen tekrar karışım (back mixing) (Couch et al., 2001) ve magma odasının daha sıcak magmayla yenilenmesi (Streck, 2008) sonucunda sıcaklığın artması. İncelenen volkanitlerdeki plajiyoklasların kenar An bileşimleri geniş bir aralıkta değişim gösterirken (BTB takımı için An_{6–97}, TT takımı için An_{36–84}, ve BT takımı için An_{50–64}) bazı plajiyoklasların kenarları sanidin bileşimindedir. Tek bir kayaç içerisinde yer alan plajiyoklasların kenarlarında gözlenen bu tür değişimler magma karışımı sonucu ortaya çıkan karmaşık bir kökeni işaret etmektedir (Wallace ve Carmichael, 1994).

İncelenen volkanitlerdeki klinopiroksenler, merkez ve manto kısımlarında ergimeler, yuvarlaklaşmış kemirilmiş kristaller gibi farklı türde dengesizlik dokuları sergilerler (bkz Şekil 3.27, 3.28). Klinopiroksenler, magma karışımı (Hibbard, 1981; Simonetti vd., 1996; Streck, 2008) veya dekompresyon (Nelson ve Montana, 1992) işlemleri sonucunda plajiyoklaslarda da görülen yuvarklaşmış, kemirilmiş ve elek dokusuna benzer dengesizlik dokuları sergileyebilirler.

İncelenen volkanitlerde yer alan normal zonlu klinopiroksenler Mg ve Cr'ca yüksek, Ti, Mn ve Fe bakımından ise düşük değerlere sahipken ters zonlanma gösterenlerde tam tersi durum söz konusudur. Normal zonlanma gösteren klinopiroksenlerin merkezlerinin Mg# (magnezyum numarası) Eosen yaşlı BTB takımı kayaçlarında 0.62 ve 0.91, TT takımı kayaçlarında 0.60 ve 0.84 ve Miyosen yaşlı BT takımı kayaçlarında 0.70 ve 0.89 arasında değişim gösterirken, kenar bileşimleri ise sırasıyla 0.59 ve 0.87, 0.60 ve 0.80, 0.65 ve 0.79 arasında değişmektedir. Ters zonlanma gösteren klinopiroksenlerin merkezi ise BTB takımında 0.71 ve 0.79, TT takımında 0.53 ve 0.71 ve Miyosen yaşlı BT takımında 0.71 ve 0.77 arasında değişen Mg#'na sahipken, kenarda sırasıyla 0.73 ve 0.80, 0.59 ve 0.75, 0.73 ve 0.80 arasında değişen değerler gözlenir (Şekil 4.8b). Ayrıca bazı klinopiroksenlerin manto kesimlerinin merkez ve kenara göre daha yüksek Mg# numarasında sahip olduğu tespit edilmiştir. Ters zonlanma kristalin merkezi ve kenarı arasında herhangi bir yerde gözlenebilmektedir (Şekil 4.8c). Basamaklı zonlanma olarak yorumlanan bu durum, daha mafik bir magmadan itibaren gelisen birden fazla magmatik olayın etkin olduğu karmaşık bir kristallenme olayını ifade edebilir (Duda ve Schmincke, 1985; Streck vd., 2007; Streck, 2008). Bunlara ilaveten; incelenen volkanitler içerisinde magma karışımını ifade eden tek bir örnek içerisinde normal ve ters zonlanma gösteren klinopiroksenlerin birlikteliği tespit edilmiştir. Ayrıca alkali kayaçlar içerisindeki klinopiroksenlerde gözlenen ters zonlanma, magma karışımının veya sıcaklık ve Mg/Fe⁺² oranındaki artışın kanıtı olarak yorumlanabilir (Anderson, 1974; Pe-Piper, 1984).

Şekil 4.8. İncelenen Tersiyer yaşlı volkanitlerdeki; (a) plajiyoklaslarda merkez-kenar An değişimi, (b) klinopiroksenlerde merkez-kenar ve (c) merkez-manto Mg# (Mg/(Mg+Fe²⁺) değişimi (Semboller Şekil 4.1'deki gibidir)

İncelenen volkanitlerdeki klinopiroksenler, Mg#'na karşı Cr₂O₃ (Şekil 4.9a, b), Mg#'na karşı TiO₂ (Şekil 4.9c, d) ve Ti (apfu)'a karşı Al (apfu) (Şekil 4.9e, f) diyagramları kullanılarak üç gruba ayrılmıştır. Grup A klinopiroksenleri, yüksek Cr₂O₃ ve Mg#, düşük TiO₂ içerikleriyle karakterize olup, Eosen yaşlı BTB takımı yastık lavları ve Miyosen yaşlı foidli breşik lavlarındaki bazı klinopiroksenlere karşılık gelmektedir. Eosen ve Miyosen yaşlı takımlarda Grup A klinopiroksenleri benzer özellikler gösterse de Miyosen takımları içerisindeki klinopiroksenler nispeten daha yüksek Cr₂O₃ ve TiO₂ içeriğine sahiptir. Grup B klinopiroksenleri, Grup A'ya göre nispeten daha düşük Cr₂O₃ içeriğine sahip olup, Mg#'na karşı TiO₂ diyagramında negatif yönseme, Al^T'a karşı Ti (apfu) diyagramında ise pozitif ilişki gösterirler. Bu iki diyagramda gözlenen yönsemeler genellikle en ilksel bileşimde en gelişmiş olana doğrudur. Grup C klinopiroksenleri ise Grup A ve B den daha düşük TiO₂ ve Cr₂O₃ içeriğine sahip olup, genellikle benzer Mg# ve Al içeriklerine

sahiptir. Eosen yaşlı yastık lavlar ve Miyosen yaşlı foidli breşik lavlar içerisinde yer alan bazı klinopiroksenler bu grup içerisinde yer almaktadır.

Şekil 4.9. İncelenen Eosen ve Miyosen yaşlı volkanitlerdeki klinopiroksenlerin Mg# (Mg/Mg+Fe^{tot})'na karşı Cr₂O₃ (%) ve TiO₂ (%), Ti (apfu)' a karşı Al^T (apfu) diyagramları

Klinopiroksenlerin düşük Ti içeriği, sabit sıcaklık koşulları altında artan basınçta meydana gelen kristallenme ile açıklanabilir (Sepp ve Kunzmann, 2001). Yüksek Cr₂O₃ ve

Mg#, düşük Al ve Ti içeriklerine sahip olan Grup A klinopiroksenleri, diğer klinopiroksenlere göre en ilksel bileşim olarak kabul edilebilir. Bu tür klinopiroksenler ksenokrist olarak tanımlanır ve bunların manto ya da alt kabuğun derinlerinde kristallendiği ileri sürülmektedir (Barton ve Van Bergen, 1981; Zhu ve Ogasawara, 2004; Akinin vd., 2005; Zhang vd., 2007). Ancak bu durum, aynı magmatik periyotta yüksek basınç fraksiyonlaşması ve magma karışımının kanıtı olarak da yorumlanmaktadır (Wass 1979; Duda ve Schmicke, 1985). İncelenen volkanitler içerisindeki Grup B ve C klinopiroksenleri, Grup A klinopiroksenlerine göre daha fraksiyonlaşmış bileşimler sunarlar.

Eosen yaşlı BTB takımı içerisinde yer alan yastık lavlar ve Miyosen yaşlı foidli breşik lavlar içerisindeki yuvarlaklaşmış ve kemirilmiş eski merkezlere (old core) sahip klinopiroksen kristalleri üzerinde profiller boyunca analizler yapılmıştır (Şekil 4.10). Merkez ve kenar arasındaki MgO, Cr₂O₃, TiO₂, ve Al₂O₃ değişimlerinin irdelendiği bu profillerde, klinopiroksenlerin merkez kısmı nispeten yüksek MgO, Cr₂O₃ ve düşük Al₂O₃, TiO₂ içeriğine sahip olup, Mg-Cr diyopsit bileşimindedir (Grup A). Merkezden kenara doğru MgO ve Cr₂O₃ içeriği azalırken, Al₂O₃ ve TiO₂ içeriği ise artış gösterir. Kenar kısımlar genellikle Al-Fe salit bileşimindedir (Grup B).

Klinopiroksenlerde gözlemlenen ve yukarıda bahsedilen dengesizlik dokları, Perugini vd. (2003) tarafından beş farklı hipotezle açıklanmaktadır; (i) farklı basınçlarda meydana gelen kristallenme, (ii) merkez kısım mantoyu temsi eden ya da bileşim olarak farklı bir kayaçtan gelen ksenokrist olmaları, (iii) kristalin oluşumu düşük basınçta tek bir magmadan itibaren gelişen fraksiyonel kristallenme işlemiyle, (iv) kristaller zonlanma gösteren bir magma odasında tek bir magmadan itibaren kristallenen erken kümülatlar olabilir ve magma odasının tekrar karışması sonucu kümülatlar ve artık egiyiklerin karışmasıyla, (v) bileşimsel olarak iki faklı magmanın karışmasıyla. Dokusal, mineral kimyası ve termobarometrik veriler ışığında incelenen volkanitler içerisinde yer alan klinopiroksenlerin diğer mineraller ve ergiyiklerle dengede olmadıkları sonucuna varılmıştır. İncelenen Miyosen volkanitlerin gelişimi Aydın vd. (2008b, 2009) tarafından kapalı magmatik sistem koşulları altında kristallenmeyle açıklanmıştır. Ancak, dokusal, mineral kimyası ve termobarometrik veriler, daha önce Hoskin vd., (1998) tarafından da belirtilen polibarik basınç koşullarının egemen olduğu açık magmatik sistem davranışlarına işaret etmektedir. Sonuç olarak; incelenen Eosen ve Miyosen yaşlı volkanitlerin gelişimi daha önce bahsedilen petrojenetik olayların birden fazlasıyla alakalı olabilir.

Şekil 4.10. İncelenen (a) Eosen yaşlı BTB takımı içerisinde yer alan yastık lavlar içerisindeki, (b) Miyosen yaşlı BT takımı içerisinde yer alan foidli breşik lavlar içerisindeki klinopiroksenlerin BSE (back-scattered electron) fotoğrafları ve bileşimsel değişimleri

4.4. Magma Odası Olayları

Doğu Pontidler'deki Tersiyer volkanitlerinde son zamanlarda yapılan çalışmalar (Kaygusuz vd., 2011; Temizel vd., 2012, Arslan vd., 2013), ana magmaların çarpışma sonrası tektonik ortamlarda daha önce yitim akışkanları ve sedimanları tarafından modifiye edilmiş kıta altı litosferik mantodan türediğini ifade etmektedir. Bunu yanında, Doğu Pontidler'in kabuk yapısı homojen olmayıp kalınlığı 32-40 km (Çakır vd., 2000; Çakır ve Erduran, 2004) ile 29-47 km Maden vd. (2009) arasında değişkenlik göstermektedir. Bundan dolayı farklı seviyelerde meydana gelen magma odası olayları, incelenen Eosen ve Miyosen yaşlı volkanitlerde gözlenen dokusal, petrografik ve kimyasal dengesizliklerin oluşmasına sebep olmaktadır.

İncelenen Eosen ve Miyosen yaşlı volkanitler, petrografik olarak sulu ve susuz olmak üzere iki alt seriye ayrılabilir. Sulu seri kayaçları, su içeren bir magma kaynağından itibaren kristallenirler. Su içeriği ergiyik dinamiklerini etkileyerek magma karışımı, kontaminasyon ve farklılaşma gibi magmatik olayları kontrol eder (Gaetani vd., 1993; Sisson ve Grove, 1993; Hort, 1998; Barclay ve Carmichael, 2004). Amfibol içeren magmaların su içeriği tartışmalı olup, Luhr (1992)'a göre %2-3, Eggler (1972), Helz (1973) ve Naney (1983)'e göre ortalama %5, Merzbacher ve Eggler (1984)'e göre ise ortalama %6 arasında değişim göstermektedir. Ridolfi ve Renzulli (2011) tarafından önerilen hornblend hidrometresi kullanılarak Eosen yaşlı volkanitlerde ortalama su içeriği %7.83 ile %8.56 arasında, Miyosen yaşlı volkanitlerde su içeriğinin ise %8.37 ile %8.67 arasında hesaplanmıştır (bkz Tablo 3.5). Ayrıca, Miyosen yaşlı volkanitler içerisinde tespit edilen flor apatit fenokristallerinin varlığı, bu kayaçları oluşturan magmaların uçucu içeriği bakımından da zengin olduğunu göstermektedir.

Petrografik, mineral kimyası ve termobarometrik kanıtlar, Eosen yaşlı volkanitlerin oluşumunda polibarik kristallenme koşulları altında birden fazla petrojenetik olayın beraberce etkili olduğunu göstermektedir. Eosen volkanizmasında gözlemlenen polibarik kristallenme, farklı kristallenme basınçları ve fenokristallerin bileşiminde gözlemlenen değişimlerle ortaya konulmaktadır. Bu veriler ışığında; Eosen volkanizmasını besleyen üç seviyesinin farklı magma depolanma varlığı düsünülmektedir. Hornblend fenokristallerinden elde edilen nispeten yüksek basınçlar (6.52 kbar ile 6.55 kbar arasında) derin magma odalarındaki (~20-21 km) erken kristallenmeyi ifade etmektedir (Şekil 4.11a). Bu seviyede yer alan ana magma bileşimi, ergime, asimilasyon, depolanma ve homojenlesme (EADH) (Hildreth ve Moorbath, 1988) islemlerinin etkili olduğu açık magmatik sistem olaylarından etkilenmiştir. Yüksek An içerikli plajiyoklaslar, yüksek Fo içerikli olivinler ve yüksek Mg-Cr diyopsitler (Grup A), bu seviyede orta derecedeki oksidasyon koşulları altında horblendlere eşlik etmektedir. Magma azalan yoğunluk veya ekstansiyonel tektonik rejim altında uçucuların salıverilmesi ve sıcak ve mafik magmanın magma odasını tazelemesi sonucunda yükselme başlar ve yükselen magma orta seviyedeki magma odasında depolanır. Klinopiroksen barometresinde elde edilen basınçlar, orta seviyedeki magma odasının 8 km ile 16 km arasında yer aldığını göstermektedir (Şekil 4.11a). Al-Fe salit ve ojit cinsi klinopiroksenin kristallenmeye baslamasıyla karakterize olan bu magma odasında orta An içerikli plajiyoklaslar eşlik eder. Derin magma odasında kristallenen Mg-Cr diyopsitler, bu magma odasında kenarlardan itibaren çözünüp

yuvarlağımsı ve kemirilmiş kristaller halini alırlar. Mg-Cr diyopsit çekirdeğin etrafında büyüme devam ederek kenarlara doğru Fe-Al salit (Grup B) bileşimine geçiş yapar. Bu seviyede meydana gelen normal ve ters zonlu klinopiroksenler magma odasının sıcak ve daha mafik bir magmayla tazelenmesi sonucu meydana gelen magma karışımını işaret etmektedir. Bu olay ayrıca magma karışımına işaret eden yuvarlaklaşmış, elek dokulu, kemirilmiş plajiyoklasların oluşumuna da neden olur. Ayrıca, aynı kayaç içerisinde normal ve ters zonlu plajiyoklasların yer alması orta seviyedeki magma odalarında açık magmatik sistem koşulları altında gelişen magma karışımı için bir başka kanıttır. Magma yükselimi bir kez daha tekrarlanarak magma yaklaşık 3-5 km derinlikteki sığ magma odalarına yerleşir (Şekil 4.11a). Bu seviyede biyotitin varlığı yüksek oksidasyon koşullarını yansıtmaktadır. Magmanın enerjisinin düşük olması nedeniyle bu seviyede EADH oldukça sınırlıdır. Sanidin bu seviyede kristallenir ve magmalar son bileşimine ulaşır.

Petrografik ve mineral kimyası verileri, Eosen ve Miyosen yaşlı volkanitlerin kristallenme geçmişlerinin benzer olduğunu göstermektedir. Veriler ayrıca benzer şekilde polibarik kristallenme koşulları altında gelişen üç farklı seviyedeki magma odasının varlığını göstermektedir. Hornblend barometresi sonuçları (8.90-9.43 kbar), Eosen volkanitlerine göre Miyosen volkanitleri için yaklaşık 27- 30 km de daha derin magma odalarının varlığını göstermektedir (Şekil 4.11b). Bu derinlikte ana magmalar AFC veya magma karışımı olaylarının etkisi altındadırlar. Yüksek Mg-Cr diyopsitlerin (Grup A) ve yüksek Fo içerikli olivinlerin oluşumu orta dereceli oksidasyon koşulları altında bu seviyede başlar. Daha sonra magma yükselmeye başlar ve yaklaşık 14-16 km derinlikte yer alan orta seviyedeki farklı boyutlara sahip magma odalarında depolanır (Şekil 4.11b). Bu magma odalarında bol miktarda klinopiroksen ve az miktarda olivinin kristallenir. Al-Fe salit ve fassayit yuvarlaklaşmış ve kemirilmiş kalıntı merkezlerden (Mg-Cr diyopsit, Grup A) itibaren büyümeye devam eder. Ayrıca, orta Mg#'na sahip Fe-Al salitin çekirdeklenmesi bu seviyede gerçekleşir. Magma karışımı ve magma odasının sıcak ve daha mafik magma tarafından tazelenmesi klinopiroksenlerde süngerimsi merkez ve mantoların oluşmasına neden olur ve merkezle kenar arasında Mg'ca zengin bantlar meydana gelir. Basıncın düşmesi, ferromagnezyen minerallerde Mg numarasının ve plajiyoklaslarda An içeriğinin artmasına neden olsa da (Osborn, 1980; Panjasawatwong vd., 1995), Mg numarasını %3 arttırmak için en az 17 kbar basınç düşmesini gerektirmektedir (Hatton, 1984). Bu yüzden Miyosen volkanitlerindeki dokusal, normal ve ters zonlanmayı da içine alan bileşimsel değişimleri kapalı sistem olarak yorumlamak
oldukça güçtür. Ayrıca bu kayaçlar içerisinde "cognate" inklüzyonların varlığı orta seviyedeki ayrımlaşmış ve zonlanma gösteren magma odasının tekrar karışmasıyla açıklanabilir. Magma yükselimi tekrarlanır ve magma yaklaşık 5-6 km derinlikteki sığ magma odasında depolanır (Şekil 4.11b). Bu magma odasının baskın mineralleri olan biyotit, düşük An içerikli plajiyoklas ve son olarak da analsimler düşük sıcaklıkta kristallenir. Biyotit bileşimine dayanan oksijen fugasitesi tahminleri, bu sevide kristallenmenin oldukça yüksek oksidasyon koşulları altında gerçekleştiğini ifade eder.

4.5. Jeodinamik Gelişim Modeli

İyi korunmuş bir magmatik yay için iyi bir örnek teşkil eden Doğu Pontidler, Alpin orojenezinin en karmaşık jeodinamik ortamını oluşturmaktadır (Dewey vd., 1973; Şengör ve Yılmaz, 1981; Bektaş, 1987; Bektaş vd., 1999; Eyüboğlu vd., 2010). Tersiyer volkanitlerinin petrojenezi, Pontid'lerin jeodinamik gelişimi (Tokel, 1995; Robinson vd., 1995; Okay ve Şahintürk, 1997) ve Akdeniz tektonik sistemi (Şengör ve Yılmaz, 1981; Robinson ve Dixon, 1984) ile yakından ilişkilidir. Yitimin başlangıç zamanı, yönü ve Pontid yayı ve Torid-Anatolit platformu arasındaki çarpışmanın zamanı tartışma konusudur. Şengör ve Yılmaz (1981), Paleozoyik'ten Orta Jura'ya kadar güneye olan yitimin yön değiştirerek Üst Kretase'den ve Eosen'in sonuna kadar yitimin yönünün kuzeye doğru olduğunu öne sürmektedirler. Yapısal veriler ve magmatik aktivitenin zamanına göre bir çok araştırmacı (Şengör ve Yılmaz, 1981; Yılmaz vd., 1997; Okay ve Şahintürk, 1997; Boztuğ vd., 2004) Arap ve Anadolu plakaları arasındaki kabuk kalınlaşması ve bölgesel yükselime neden olan çarpışmanın Paleosen-Erken Eosen'de (~55 My) gerçekleştiğini belirtmektedir. Bu çarpışma; Orta Eosen zamanında, Doğu Anadolu Fay Zonu (DAFZ) boyunca sol yönlü doğrultu atımlı ve Kuzey Anadolu Fay Zonu (KAFZ) boyunca sağ yönlü doğrultu atımlı hareket ile Anadolu plakasının tektonik olarak uzaklaşmasına neden olmuştur (McKenzie, 1972; Dewey ve Şengör, 1979). Diğer bazı araştırmacılar ise (Tokel 1977; Robinson vd., 1995) Eosen volkanizmasının kuzey yönlü vitim sonucu olustuğunu ve çarpışmanın Oligosen'de (~30 My) meydana geldiğini ifade etmektedirler. Bunların tersine, Dewey vd. (1973), Chorowicz vd. (1998), Bektaş vd. (1999), Eyüboğlu (2010) ve Eyüboğlu vd. (2011a, b) Paleozoyik'ten Eosen'in sonuna kadar güneye yitim modelini savunmaktadır.

Şekil 4.11. (a) Eosen volkanitleri ve (b) Miyosen volkanitlerinin gelişimlerini şematize eden derin, orta ve sığ magma odalarında gerçekleşen kristallenme ortamları ve magmatik olaylar.

Doğu Pontidler, Geç Paleosen-Erken Eosen zamanından itibaren karmaşık bir tektonik rejimin etkisi altında kalmıştır (Okay ve Şahintürk, 1997; Arslan ve Aliyazıcıoğlu, 2001; Şengör vd., 2003; Boztuğ vd., 2004, 2005a, 2005b; Topuz vd., 2005; Arslan ve Aslan, 2006; Boztuğ vd., 2006; Boztuğ vd., 2007; Arslan vd., 2007a, b; Boztuğ ve

Harlavan, 2008; Temizel vd., 2012; Arslan vd., 2013). Üst Kretase volkanitlerini uyumsuz olarak üzerleyen, genelde volkanik nadiren volkanoklastik kayaçlardan oluşan Eosen-Miyosen yaşlı birimler, Doğu Pontidler'in Paleosen-Erken Eosen zaman aralığında deniz seviyesi üzerinde olduğunu ifade etmektedir (Okay ve Şahintürk, 1997). Kuzey-yönlü bindiren dilimlerinin yığışmasıyla birlikte kıta kenarının kısalmasıyla karakterize edilen Doğu Pontidler'in yükselmesi ve kabuksal kalınlaşma ile sonuçlanan çarpışma; İzmir-Ankara-Erzincan sütur zonunda, bazı araştırmacılara göre Erken Paleosen-Eosen (65 My; Okay vd., 1997; Okay ve Şahintürk, 1997) zamanında, bazılarına göre ise Paleosen-Erken Eosen (55 My; Şengör ve Yılmaz, 1981; Yılmaz vd., 1997; Boztuğ vd., 2006, 2007) zamanında gerçekleşmiştir. Eosen-Miyosen magmatizması, çarpışma sonrası ve ekstansiyonel tektonizmayla ilişkili olup, metazomatizmaya uğramış manto ve alt kabuk kökenli magmaların karışımının bu magmatizmayı oluşturduğu ileri sürülmektedir (Yılmaz ve Boztuğ, 1996; Arslan ve Aliyazıcıoğlu, 2001; Boztuğ vd., 2004; Topuz vd., 2005; Arslan ve Aslan, 2006; Arslan vd., 2007a, b; Boztuğ vd., 2006, 2007, Temizel ve Arslan, 2008, 2009; Temizel vd., 2012; Arslan vd., 2013).

İncelenen volkanitlerin petrojenetik özellikleri, ana magmalarının metazomatizmaya uğramış litosferik mantonun ergimesiyle oluşabileceğini göstermektedir. Buradan yola çıkarak, litosferik mantonun mümkün ergime modelini, çarpışma ve yükselmeden kaynaklanan litosferik ayrılmaya (delaminasyon) bağlı olarak meydana gelen astenosferik yükselme sonucu ısı transferiyle açıklamak mümkün olabilir. Yükselen sıcak astenosferik malzeme ısısal dengenin bozulmasını sağlar. Bu ısısal aktivite, daha önceki olaylarla metazomatizmaya uğratılmış olan litosferik mantonun ergimesine neden olur. Bu işlemler, jeodinamik modelde ekstansiyonel rejimin varlığını gerektirir. İncelenen volkanitlerin karakteristiği olan düşük-orta dereceli ergime, sıcak astenosferin direkt kontağından daha ziyade jeotermal dengenin bozulması olaylarının daha etkili olduğunu ifade eder. Bu arada, daha önceki yitimden kaynaklanan akışkanların sızması ve altlayan zenginleşmiş litosferik mantoyla temas etmesi söz konusudur. Bu da, ergime sıcaklığının düşmesine neden olur. Bununla birlikte, astenosferden kaynaklanan yüksek ısı akısı, büyük hacimdeki bazaltik magmanın oluşumunu sağlayan zenginleşmiş litosferik mantonun yoğun olarak ergimesini tetikler.

Litosferik ayrılma (delamination; Black ve Liegeois, 1993) ve dilim kopması (slab break-off; Davies ve Von Blanckenburg, 1995) çarpışma sonrası ve post-orojenik ortamlardaki magmatizmayı açıklamak için önerilen ana mekanizmalardır. Bu süreçler, astenosferin yükselmesine sebep olur ki, bu da kıta-altı manto litosferini ergitebilir ya da ergimesine neden olabilir.

Keskin vd. (2008), litosferik dilim kopması (slab break-off) modelinin kuzey-orta Türkiye genelinde Orta Eosen volkanizmasının oluşumunu en iyi şekilde açıkladığını belirtmişler ve bunun verilerini de; (1) Orta Eosen'deki volkanizmanın oldukça dar bir kuşakta sınırlı olması, (2) bunun kıtasal çarpışma olayından sonra bölgesel bir yükselme ile hemen hemen eşzamanlı olarak başlaması ve (3) volkanizma başlangıcında lavların kalkalkalen karakterli olduğu ve volkanizmanın en son aşamasında bu jeokimyasal karakterin alkaliden hafif alkaliye kadar değişmesi şeklinde vurgulamıştırlar. Bu verilere dayanarak "litosferik dilim kopması" modelinin Batı Pontidler'deki Orta Eosen volkanizmasının gelişimini açıklayabilecek en geçerli modellerden biri olduğunu ifade etmiştirler. Ancak, litosferik ayrılma (delamination) modelinin kuzey bloğu üzerindeki sütur zonundan uzağa yayılan çarpışma ile ilişkili formasyonların yer aldığı Doğu Pontidler genelindeki Orta Eosen volkanizmasının bazı bölümlerinin oluşumunu açıklayabileceğini ileri sürmüştürler.

Litosferik dilim kopması modeli, Doğu Anadolu çarpışmayla ilişkili Miyosen-Kuvaterner volkanizmasının (Keskin, 2003, 2005, 2007; Şengör vd., 2003; Keskin vd., 2006) ve batı Türkiye'deki Eosen magmatizmasının (Altunkaynak ve Dilek, 2006; Altunkaynak, 2007) gelişimini açıklamak için de öngörülmektedir. Arslan vd. (2007, 2009) ve Temizel ve Arslan (2008, 2009), çarpışma sonrası bir ekstansiyonel jeodinamik rejim içerisinde oluşan Doğu Pontidler'deki Eosen magmatik kayaçlarının gelişimini litosferik dilim kopması (slab break-off) ve/veya litosferik ayrılma (delamination) mekanizmalarıyla açıklanabileceğini belirtmişlerdir. Temizel vd. (2012) ve Arslan vd. (2013), Doğu Pontidler Tersiyer volkanizmasının gelişiminde, bölgesel ekstansiyonun magmaların üretimi için önemli bir rol oynayabileceğini vurgulamışlardır. Ayrıca, Tersiyer volkanizmasının genellikle çarpışmayla ilişkili olduğunu ve oluşumlarının litosferik ayrılma (delamination) modeli ile açıklanabileceğini belirtmişlerdir.

İncelenen Tersiyer volkanitlerinin jeodinamik gelişim modelinin (Temizel vd. 2012; Arslan vd. 2013) aşamaları; (1) kıta-kıta çarpışması ve lithosferik dilim kopması (slab break-off), (2) litosferin kalınlaşması, (3) litosferik ayrılmanın/delaminasyonun başlaması ve (4) delaminasyon ve litosferik incelmenin gelişmesi şeklinde açıklanabilir (Şekil 4.12). Tüm bu olaylar; Doğu Pontidler'de Geç Kretase-Geç Paleosen zaman aralığında Avrasya Levhası ile Torid-Anatolid Platformu arasındaki kıta-kıta çarpışmasını takiben lithosferik dilim kopması (slab break-off) ve çok kısa bir süre sonra çarpışma sonucu kalınlaşan litosferin yoğunluğundan dolayı astenosferin içerisine çökmesine bağlı olarak meydana gelen ayrılma/delaminayon sonucunda litosferin incelmesiyle başlamıştır. Delaminasyon sonucu ilk olarak eski yitim akışkanlarıyla zenginleşmiş kıta altı litosferik manto kökenli kaynak malzemelerin kısmi ergimesinden oluşan magmalardan türeyen hafif derecede alkali bazik-ortaç bileşimli volkanitlerin Orta Eosen (42-44 My) zamanında; daha sonra astenosferik yükselim (upwelling) sonucu zenginleşmiş litosferik manto kökenli ve kıtasal kabuk ergiyiklerinden oluşan magmalardan türeyen orta derecede alkali bazik volkanitlerin ise Üst Miyosen (5-6 My) zamanında oluşumuna olanak sağlamıştır (Şekil 4.12).

Şekil 4.12. Doğu Pontidler'de Tersiyer volkanitlerinin gelişimini gösteren jeodinamik model. (a) kıta-kıta çarpışması ve litosferik dilim kopması (slab break-off), (b) litosferik kalınlaşma, (c) litosferik ayrılmanın/delaminasyonun başlangıcı ve (d) delaminasyon ve litosferik incelmenin gelişimi (Temizel vd., 2012; Arslan vd. 2013) (EP, Avrasya Levhası; TAP, Torid-Anatolid Platformu)

5. SONUÇLAR

1. İncelenen Tersiyer volkanitlerinin morfolojik, volkanostratigrafik ve fasiyes özellikleri; Orta Eosen' den Miyosen'e kadar sığlaşan bir paleo-ortamı yansıtmaktadır. Eosen yaşlı yastık lavlar ve bunlar arasındaki boşluklarda çökelmiş tortular, marn ve tüflerle beraber ara katkılı olarak çökelen diğer sedimanter seviyeler sığ denizel ortam karakteristiklerini yansıtmaktadır. Miyosen volkanitlerinin fasiyes özellikleri ise sığ denizelden karasala kadar değişen bir geçiş ortamı karakteristiklerini yansıtmaktadır. Buradan yola çıkarak, Eosen dönemi sığ denizel volkanizmasının muhtemelen çarpışma sonrası bölgesel yükselim sebebiyle keskin bir şekilde Miyosen karasal volkanizmasına geçiş gösterdiği sonucuna varılabilir.

2. İncelenen volkanitler; stratigrafik, fasiyes, petrografik ve jeokimyasal özelliklerine göre farklı takımlara ayrılmıştır. Orta-yüksek-K'lu hafif alkali Eosen volkanitleri; (I) dayk ve siller, akma ve yastık lavları ve breşlerden meydana gelen bazalt, traki-bazalt ve bazaltik traki-andezit (BTB) takımı ve (II) dayk ve domlardan oluşan trakit ve traki-andezit (TT) takımından oluşur. Sodik-potasik, orta alkali Miyosen volkanitleri; foidli-breşik lavlar, dayk/sil ve breşlerden meydana gelen bazanit-tefrit (BT) takımı olarak tanımlanmıştır.

3. Petrografik ve mineral kimyası özelliklerine göre; Eosen yaşlı BTB takımı kayaçları başlıca klinopiroksen (Wo₄₀₋₅₀En₃₁₋₄₈Fs₅₋₂₆), plajiyoklas (An₄₇₋₉₇), olivin, biyotit (Mg# =0.56-0.92), hornblend (Mg# =0.67-0.82) ve Fe-Ti oksit minerallerinden oluşurken, TT takımı kayaçları plajiyoklas (An₀₋₅), sanidin, klinopiroksen (Wo₄₅₋₄₈En₃₅₋₄₅Fs₉₋₁₈), hornblend, biyotit (Mg# =0.59-0.84) ve Fe-Ti oksit minerallerinden oluşur. Miyosen yaşlı BT takımı kayaçları ise klinopiroksen (Wo₄₇₋₅₄En₃₂₋₄₆Fs₅₋₁₈), analsim, hornblend (Mg# =0.74-0.96), biyotit (Mg# =0.75-0.93), olivin, plajiyoklas (An₄₈₋₆₉), apatit ve Fe-Ti oksit mineralleri içermektedir.

4. İncelenen Eosen yaşlı volkanitlerde; klinopiroksenlerde farklı tiplerde zonlanmalar, merkez, kenar ve zonlanmalar boyunca ergimeler, kenarlarda kemirilmeler ve opak mineral kapanımları, plajiyoklaslarda ise elek dokusu, kemirilme ve yeniden büyüme zarfları gibi dengesiz kristallenmeyi işaret eden dokusal özellikler gözlenir. Miyosen yaşlı volkanitlerde ise yine dengesiz kristallenmeyi gösteren klinopiroksenlerde zonlanmalar, merkez orta ve kenarlarda ergimeler ve kemirilmeler, klinopiroksenler içerisinde opak

mineral ve apatit kapanımları gözlenir. Elde edilen dokusal ve mineral kimyası verileri ışığında volkanitlerinin gelişiminde magma karışımının önemli bir rol oynadığı ve polibarik kristallenme koşulları altında birden fazla petrojenetik olayın etkili olduğu söylenebilir.

5. Klinopiroksen-ergiyik termometresine göre hesaplanan ortalama sıcaklık değerleri; Eosen yaşlı BTB takımı kayaçlarında 1100-1244 °C, TT takımı kayaçlarında 1173-1194 °C, Miyosen yaşlı BT takımı kayaçlarında 1119-1146 °C arasında değismektedir. Klinopiroksenlerden hesaplanan kristallenme basınçları, Eosen yaşlı BTB takımı kayaçlarında 1.84-5.39 kbar, TT takımı kayaçlarında 2.08-4.66 kbar ve Miyosen yaşlı BT takımı kayaçlarında ise 4.23-4.93 kbar arasında değişmektedir. Hornblend termobarometre, oksijen fugasitesi ve hidrometre hesaplamalarına göre; Eosen volkanitlerinde kristallenme sıcaklığı, 956 - 959 °C, basıncı 6.49 - 6.52 kbar, su içeriği %7.83-8.57 ve oksijen fugasitesi değerleri $10^{-9.36}$ - $10^{-9.46}$ (Δ NNO + 4) arası nda, Miyosen volkanitlerinde kristallenme sıcaklığı 970 °C - 984 °C, basınç 9.00 - 9.43 kbar, su içeriği %8.3 -8.64 ve oksijen fugasitesi $10^{-8.56}$ - $10^{-8.87}$ ($\Delta NNO + 4$) arası ndadır. Biyotit termobarometresi verilerine göre; Eosen volkanitlerinde oksijen fugasitesi $10^{-10.32}$ - $10^{-12.37}$ (HM), sıcaklık 858 °C ve 953°C ve basınç 1.08 kbar ve 1.41 kbar arasında, Miyosen yaşlı volkanitlerde ise oksijen fugasitesi 10^{-12.0} (HM), sıcaklık 875 °C ve basınç 2.09 kbar olarak elde edilmiştir. Hesaplanan yüksek sıcaklık ve basınç değerlerinin, volkanitlerde gözlenen dengesizlik dokuları da dikkate alındığında dengesiz ve polibarik kristallenmeden kaynaklandığı söylenebilir.

6. Ana oksit ve iz element değişim diyagramlarında gözlenen düzgün yönsemeler incelenen volkanik kayaçların gelişiminde etkin olan ana magmatik olay fraksiyonel kristallenmeyle açıklanabilir. Eosen yaşlı volkanitlerin gelişiminde klinopiroksen + plajiyoklas \pm olivin \pm hornblend \pm biyotit + Fe-Ti oksit fraksiyonlaşması, Miyosen yaşlı volkanitlerin gelişiminde ise klinopiroksen \pm hornblend + biyotit \pm olivin + apatit + Fe-Ti oksit fraksiyonlaşması etkilidir.

7. İncelen volkanitlerin N-tipi OOSB'na normalize iz element dağılımları, yitim zonu zenginleşmesinin izlerini taşıyan büyük iyon yarıçaplı elementlerde (Sr, K₂O, Rb, Ba), Th ve Ce zenginleşme, Zr, Y, Nb, Ta ve TiO₂ içeriklerinde fakirleşmeyi işaret etmektedir. Kondrite normalize NTE değişimlerinde iki farklı dağılım tespit edilmiştir; (1) (BTB ve TT takımları) için hafif zenginleşmiş NTE dağılımı (La_N/Lu_N=4.65-11.64) ve (2) (BT takımı) için yüksek oranda zenginleşmiş NTE dağılımı (La_N/Lu_N=36.43-69.0). İncelenen

volkanitlerdeki BİLE bakımından zenginleşmeler, ana magmalarında kabuk kirlenmesi ve/veya magma karışımının varlığına işaret ederken, negatif Nb ve Ta anomalileri ise yitim bileşenin katkısını ifade etmektedir. Eosen yaşlı takımlarda gözlenen benzer iz ve NTE davranışları, (1) aynı köken magmanın (ların) farklı derecedeki yitimle ilişkili akışkan ± ergiyik zenginleşmesi, (2) aynı köken magmanın (ların) kabuk magma odalarındaki farklı ayrımlaşma±asimilasyon yollarıyla açıklanabilir. Ancak, Eosen ve Miyosen volkanitlerinin NTE dağılımlarındaki farklılıklar, türedikleri kaynak alan bakımından da farklılık gösterdiklerini işaret etmektedir.

8. ⁴⁰Ar-³⁹Ar yaşlandırma metodu Eosen ve Miyosen takımları kayaçlarında hamur ve mineral ayrımlarında (flogopit ve sanidin) gerçekleştirilmiştir. Hafif alkali BTB ve TT takımları, Orta Eosen-Lütesiyen'e karşılık gelen sırasıyla 43.2-44.7 My ve 42.4-44.3 My'lık yaşlar vermiştir. Orta alkali BT takımından ise Orta Miyosen-Mesiniyen'e denk gelen 5.77-5.96 My aralığında yaşlar elde edilmiştir.

9. Eosen yaşlı BTB takımı kayaçlarının (87 Sr/ 86 Sr)_i oranları 0.703893 ile 0.704479 arasında, (143 Nd/ 144 Nd)_i oranı 0.512680 ile 0.512794 arasında, ϵ Sr_i değerleri -7.34 ile +3.8, ϵ Nd_i değerleri +1.61 ile +3.75 ve model yaşları T_{DM}= 505 ile 791 My arasında; TT takımı kayaçlarının (87 Sr/ 86 Sr)_i oranları 0.704069 ile 0.704238 arasında, (143 Nd/ 144 Nd)_i oranı 0.512695 ile 0.512748 arasında, ϵ Sr_i değerleri -1.46 ile +38.75, ϵ Nd_i değerleri +1.84 ile +2.81 ve model yaşları T_{DM}= 533 ile 675 My arasında değişmektedir. Miyosen yaşlı BT takımı kayaçlarının (87 Sr/ 86 Sr)_i oranları ise 0.705178 ile 0.705362 arasında, (143 Nd/ 144 Nd)_i oranları 0.512666 ile 0.512689 arasında, ϵ Sr_i değerleri +9.68 ile +12.36, ϵ Nd_i değerleri +0.61 ile +1.08 ve model yaşları T_{DM}= 549 ile 577 My arasında değişmektedir. İncelenen volkanitlerde genel olarak düşük (87 Sr/ 86 Sr)_i oranları, negatif (-) ϵ Sr_i ve pozitif (+) ϵ Nd_i değerleri, ana magmalarının tüketilmiş bir manto kaynağından türediğine ve/veya tüketilmiş bir mantodan türeyen en son üye olduklarına işaret etmektedir. Nispeten yüksek (87 Sr/ 86 Sr)_i oranları, pozitif (+) ϵ Sr_i ve pozitif (+) ϵ Nd_i değerleri ise yiten kabuk malzemesinin karışımı ile zenginleşmiş bir manto kaynağından türediğine manto kaynağındaki kabuk bileşeninin de katkısına işaret etmektedir.

10. İncelenen Eosen yaşlı BTB takımı kayaçlarının 206 Pb/ 204 Pb oranları 18.722-18.786, 207 Pb/ 204 Pb oranları 15.630-15.669 ve 208 Pb/ 204 Pb oranları 38.786-38.923, TT takımı kayaçlarının 206 Pb/ 204 Pb oranları 18.776-18.797, 207 Pb/ 204 Pb oranları 15.639-15.671 ve 208 Pb/ 204 Pb oranları 38.867-38.968 arasında değişmektedir. Miyosen yaşlı BT takımı

kayaçlarının ise 206 Pb/ 204 Pb oranları 18.893-18.946, 207 Pb/ 204 Pb oranları 15.661-15.680 ve 208 Pb/ 204 Pb oranları 38.938-39.058 arasında değişmektedir.

11. İncelenen volkanitlerin tüm-kayaç ve Sr-Nd-Pb izotop jeokimyası verileri kullanılarak yapılan modellemeler sonucunda; Eosen volkanitlerinin flogopit(?)-spinel lerzolitin düşük dereceli kısmi ergimesiyle, Miyosen yaşlı volkanitlerin ise daha çok granatca zengin(?) amfibol(?)-spinel lerzolitin nispeten daha düşük kısmi ergimesiyle oluştuğu düşünülmektedir. Volkanitleri oluşturan ana magmaların; derin-, orta- ve sığ-seviyedeki kıtasal magma odalarında ayrımlaşma \pm magma karışımı \pm asimilasyon \pm magma odasının tazelenmesi ve tekrar karışması gibi olaylar sonucunda farklılaştığı ileri sürülebilir.

12. İncelenen volkanitlerin gelişimine ait jeodinamik modelin ana gelişim aşamaları; (1) kıta-kıta çarpışması ve litosferik dilim kopması (slab break-off), (2) litosferin kalınlaşması, (3) litosferik ayrılmanın/delaminasyonun başlaması ve (4) delaminasyon ve litosferik incelmenin gelişmesi şeklinde açıklanabilir. Tüm bu olaylar, Doğu Pontidler'de Geç Kretase-Geç Paleosen zaman aralığında Avrasya Levhası ile Torid-Anatolid Platformu arasındaki kıta-kıta çarpışmasını takiben lithosferik dilim kopması (slab break-off) ve çok kısa bir süre sonra çarpışma sonucu kalınlaşan litosferin yoğunluğundan dolayı astenosferin içerisine çökmesine bağlı olarak meydana gelen ayrılma/delaminayon sonucunda litosferin incelmesiyle başlamış olmalıdır. Delaminasyon sonucu ilk olarak eski yitim akışkanlarıyla zenginleşmiş kıta altı litosferik manto kökenli kaynak malzemelerin kısmi ergimesinden oluşan magmalardan türeyen hafif alkali bazik-ortaç bileşimli volkanitlerin Orta Eosen (42-44 My) zamanında; daha sonra astenosferik yükselim (upwelling) sonucu zenginleşmiş litosferik manto kökenli ve kıtasal kabuk ergiyiklerinden oluşan magmalardan türeyen orta alkali bazik volkanitlerin ise Üst Miyosen (5-6 My) zamanında oluşumuna olanak sağladığı düşünülmektedir.

6. ÖNERİLER

Doğu Pontidler'de geniş yayılım gösteren Tersiyer volkanitlerinde gerçekleştirilecek termokronolojik yaşlandırmalar (tüm kayaç ⁴⁰Ar-³⁹Ar, U-Pb zirkon ve sfen, apatit fizyon izi gibi) ve kökensel izotop verilerinin arttırılması, bölgesel jeodinamiğinin zamansal ve mekansal gelişiminin açıklanmasına daha fazla katkı sağlayacaktır. Ayrıca mineraller üzerinde LA-ICP MS ile yapılacak iz, NTE ve duraylı (oksijen) ve radyojenik (Sr ve Nd) izotop analizleri karmaşık olan magma odası olaylarının daha iyi irdelenmesine olanak sağlayacaktır.

7. KAYNAKLAR

- Ağar, Ü., 1977. Demirözü (Bayburt) Köse (Kelkit) Bölgesinin Jeolojisi, Doktora Tezi, İ.Ü. Fen Fakültesi, İstanbul.
- Akdeniz, N., 1988. Demirözü Karboniferi ve Bölgesel yapı İçindeki Yeri, Türkiye Jeoloji Bülteni, 31/1,70-80.
- Akinin, VV., Sobolev, AV., Ntaflos, T. ve Richter, W., 2005. Clinopyroxene megacrysts from Enmelen melanophelinitic volcanoes (Chukchi Peninsula, Russia): application to composition and evolution of mantle melts, <u>Contrib Mineral Petrol</u>, 150, 85–101.
- Albarède, F., 1996. Introduction to Geochemical Modelling. Cambridge University Press., UK.
- Albuquerque, CAR., 1973. Geochemistry of biotites from granitic rocks, Northern Portugal, <u>Geochim Cosmochim Acta</u>, 37, 1779–1802.
- Aldanmaz, E., Köprübaşı, N., Gürer, O.F., Kaymakçı, N. and Gourgaud, A., 2006. Geochemical constraints on the Cenozoic, OIB-type alkaline volcanic rocks of NW Turkey: Implications for mantle sources and melting processes, <u>Lithos</u>, 86, 50–76.
- Alici, P., Temel, A. ve Gourgaud, A., 2002. Pb-Nd-Sr isotope and trace element geochemistry of Quaternary extension-related alkaline volcanism: a case of study of Kula region (western Anatolia, Turkey), Journal of Volcanology and Geothermal <u>Research</u>, 115, 487-510.
- Alıcı, P., Temel, A., Gourgaud, A., Kieffer, G. ve Gündoğdu, MN., 1998. Petrology and geochemistry of potassic rocks in the Gölcük area (Isparta, SW Turkey): genesis of enriched alkaline magmas. <u>Journal of Volcanology and Geothermal Research</u>, 85, 423–446.
- Aliyazıcıoğlu, İ., 1999. Kale (Gümüşnhane) yöresi volkanik kayaçlarının petrografik, jeokimyasal ve petrolojik incelenmesi, Yüksek Lisan Tezi, KTÜ, Fen Bilimleri Enstitüsü, Trabzon.
- Alther, R., Meyer, HP., Holl, A., Volker, F., Alibert, C., McCulloch, MT. ve Majer, V., 2004. Geochemical and Sr-Nd- Pb isotopic characteristics of Late Cenozoic leucite lamproites from the East European Alpine belt (Macedonia and Yugoslavia), <u>Contributions to Mineralogy and Petrology</u>, 147, 58-73.
- Altunkaynak, Ş., 2007. Collision-driven slab breakoff magmatism in Northwestern Anatolia, Turkey. Journal of Geology 115, 63–82.

- Altunkaynak, Ş. ve Dilek, Y., 2006. Timing and nature of postcollisional volcanism in western Anatolia and geodynamic implications. In: Dilek, Y., Pavlides, S. (Eds.), Postcollisional Tectonics and Magmatism in the Mediterranean region and Asia, <u>Special paper, Geological Society of America</u>, 409, 321–351.
- Anderson, AT., 1974. Evidence for a picritic, volatile-rich magma beneath Mt. Shasta, California, <u>J Petrol</u>, 15, 243-267.
- Anderson, AT., 1976. Magma mixing: petrological process and volcanological tool, <u>J</u> <u>Volcanol Geotherm Res</u>, 1, 3-33.
- Arslan, M., Tüysüz, N., Korkmaz, S. ve Kurt, H., 1997. Geochemistry and Petrogenesis of the Eastern Pontide Volcanic Rocks, Northeast Turkey, <u>Chemie der Erde</u>, 57, 157-187.
- Arslan, M., Aslan, Z., Şen, C. ve Hoskin, P.W.O., 2000. Constraints on petrology and petrogenesis of Tertiary volcanism in the Eastern Pontide paleo-arc system, NE Turkey, 10th V.M. Goldschmidt Conference, Oxsford, UK, Journal of Conference Abstracts 5, 2, 157-158.
- Arslan, M. ve Aliyazıcıoğlu, İ., 2001. Geochemical and petrochemical characteristics of the Kale (Gümüşhane) volcanic rocks: Implications for the Eocene evolution of Eastern Pontide arc volcanism, Northeast Turkey, <u>International Geology Review</u>, 43, 7, 595-610.
- Arslan, M., Temizel, İ. ve Abdioğlu, E., 2002. Subduction input versus source enrichment and role of crustal thickening in the generation of Tertiary magmatism in the Pontid Paleo-Arc setting, NE Turkey, In: B. De Vivo, B., R.J. Bodgar, R.J. (Eds.) Workshop-Short Course on Volcanic Systems, Geochemical and Geophysical Monitoring, Melt inclusions: Methods, applications and problems, 13-16, Napoli, Italy.
- Arslan, M., Kolaylı, H. ve Temizel, İ., 2004. Güre (Giresun, KD Türkiye) granitoyidinin petrografik, jeokimyasal ve petrolojik özellikleri, <u>Yerbilimleri (Earth Sciences)</u>, 30, 1-21.
- Arslan, M., Kadir, S., Abdioğlu, E. ve Kolaylı, H., 2006. Origin and formation of kaolinite in saprolite of the Tertiary alkaline volcanic rocks, Eastern Pontides, NE Turkey. <u>Clay Minerals</u>, 41, 599-619.
- Arslan, M. ve Aslan, Z., 2006. Mineralogy, petrography and whole-rock geochemistry of the Tertiary granitic intrusions in the Eastern Pontides, Turkey, <u>Journal of Asian</u> <u>Earth Sciences</u>, 27, 177-193.
- Arslan, M., Boztuğ, D., Temizel, İ., Kolaylı, H., Şen, C., Abdioğlu, E., Ruffet, G. ve Harlavan, Y., 2007. 40Ar/39Ar geochronology and Sr-Pb isotopic evidence of postcollisional extensional volcanism of the eastern Pontide paleo-arc, NE Turkey. Special Supplement, 17th Annu. V.M. Goldschmidt Conference, Geochronology of Tectonic Processes. <u>Geochimica et Cosmochimica Acta</u> 71, 38, 15.

- Arslan, M., Boztuğ, D., Şen, C., Yılmaz Şahin, S., Kolaylı, H., Temizel, İ., Abdioğlu, E. ve Tatar, S., 2007a. Doğu Pontidler Güney Zonu Eosen Volkanizmasının Petrojenezi ve Jeodinamik Konumunun İncelenmesi, TÜBİTAK YDABAG, Projesi No: 103Y012.
- Arslan, M., Boztuğ, M., Temizel, İ., Kolaylı, H., Şen, C., Abdioğlu, E., Ruffet, G. ve Harlavan, Y., 2007b. 40Ar/39Ar geochronology and Sr-Pb isotopic evidence of post collisional extensional volcanism of the eastern Pontide paleo-arc, NE Turkey, 17th Annual V.M. Goldschmidt Conference Abstracts, Cologne, Germany, Geochimica et Cosmochimica Acta, 71, A38.
- Aslan, M., Temizel, İ., Abdioğlu, E., Kolaylı, H., Yücel, C., Boztuğ, D. ve Şen C., 2013. ⁴⁰Ar ³⁹Ar dating, whole-rock and Sr–Nd–Pb isotope geochemistry of post-collisional Eocene volcanic rocks in the southern part of the Eastern Pontides (NE Turkey): implications for magma evolution in extension-induced origin, <u>Contributions to</u> <u>Mineralogy and Petrology</u>, (İn pres).
- Aslan, Z., 2010. U-Pb zircon SHRIMP age, geochemical and petrographical characteristics of tuffs within calc-alkaline Eocene volcanics around Gümuüşhane (NE Turkey), Eastern Pontides. <u>Neues Jahr Mineral</u> 187, 3, 329–346.
- Aydın, F., 2004. Değirmendere vadisi (Trabzon-Esiroğlu, KD-Türkiye) volkanitlerinin mineral kimyası, petrolojisi ve petrojenezi, Doktora Tezi, KTÜ., Fen Bilimleri Enstitüsü, Trabzon.
- Aydın, F., Karsli, O. ve Chen, B., 2008a. Petrogenesis of the Neogene alkaline volcanics with implications for post-collisional lithospheric thinning of the Eastern Pontides, NE Turkey, <u>Lithos</u> 104, 249–266.
- Aydın, F., Karsli, O. ve Sadiklar, MB., 2008b. Compositional variations and zoning types of low-pressure clinopyroxenes in the Neogene alkaline volcanic rocks with petrogenetic implications, northeastern Turkey, <u>Turkish Journal of Earth Science</u>, 18, 1-24.
- Aydın, F., Thompson, R., Karsli, O., Uchida, H., Burt, J.B. ve Downs, R.T., 2009. C2/c pyroxene phenocrysts from there potassic series in Neogene alkaline volcanics, Ne Turkey: their crystal chemistry with petrogenetic significance as an indicator of P-T conditions, <u>Contributions to Mineralogy and Petrology</u> 158, 131–147.
- Aydınçakır, E., 2012. Borçka (Artvin, KD-Türkiye) Yöresi Tersiyer Volkanitlerinin Petrografisi, Jeokimyası ve Petrojenezi, Doktora Tezi, KTÜ., Fen Bilimleri Enstitüsü, Trabzon.
- Baker, JA., Menzies, MA., Thirlwall, MF. ve MacPherson, CG.,1997. Petrogenesis of Quaternary intraplate volcanism, Sana'a, Yemen: Implications for plume^lithosphere interaction and polybaric melt hybridization, Journal of Petrology, 38, 1359-1390.
- Barbieri, M., Conforto, L., Garbarino, C., Masi, U., Nicoletti, M. ve Akinci, O., 2000. Geochemistry of hydrothermally-altered volcanic rocks of the upper volcanic cycle from the Eastern Pontides (Northeastern Turkey), <u>Chemi Der Erde</u>, 60, 81–95.

- Barclay, J. ve Carmichael, ISE., 2004. A hornblende basalt from western Mexico: watersaturated phase relations constrain a pressure-temperature window of eruptibility, <u>J</u> <u>Petrol</u>, 45, 485–506.
- Barriere, M. ve Cotten, J., 1979. Biotites and associated minerals as markers of magmatic fractionation and deuteric equilibration in granites. <u>Contrib Mineral Petrol</u> 70, 183–192.
- Barry, TL., Saunders, AD., Kempton, PD., Windley, BF., Pringle, MS., Dorjnamjaa, D. ve Saandar, S., 2003. Petrogenesis of Cenozoic basalts from Mongolia: evidence for the role of asthenospheric versus metasomatized lithospheric mantle sources, <u>Journal of</u> <u>Petrology</u>, 44, 1, 55–91.
- Barton, M. ve van Bergen, MJ., 1981. Green clinopyroxenes and associated phases in a potassium-rich lava from the Leucite Hills, Wyoming, <u>Contrib Mineral Petrol</u>, 77, 101-114.
- Bear, AN. ve Cas. RAF., 2007. The complex facies architecture and emplacement sequence of a Miocene submarine mega-pillow lava flow system, Muriwai, North Island, New Zealand, <u>J Volcanol Geotherm Res</u>, 160,1-22.
- Beattie, P., 1999. Olivine-melt and orthopyroxene-melt equilibria, Contribution to Mineralogy and petrology, 115, (1993), 103-111Benito, R., Lopez-Ruiz, J., Cebria, J. M., Hertogen, J., Doblas, M., Oyarzun, R. and Demaiffe, D., Sr and O isotope constraints on source and crustal contamination in the high-K calc-alkaline and shoshonitic Neogene volcanic rocks of SE Spain, <u>Lithos</u>, 46, 773–802.
- Bektaş, O., Van, A. ve Boynukalın, S., 1987. Doğu Pontidler'de (Kd-Türkiye) Jura Volkanizması ve Jeotektoniği, TürkiyE Jeoloji Bülteni, 30, 9-18.
- Bektaş, O., Yılmaz, C., Taslı, K., Akdağ, K. ve Özgür, S., 1995. Cretaceous rifting of the Eastern Pontide carbonate platform, NE Turkey: The formation of carbonate breccias and turbitides as evidence of a drowned platform, <u>Geologia</u>, 57, 233-244.
- Bektaş, O., Şen, C., Atıcı, Y. ve Köprübaşı, N., 1999. Migration of the Upper Cretaceous subduction-related volcanism towards the back-arc basin of the Eastern Pontide magmatic arc (NE Turkey), <u>Geological Journal</u>, 34, 95-106.
- Bindeman, IN., Eiler, JM., Yogodzinski, G., Tatsumi, Y., Stern, C., Grove, T., Portnyagin, M., Hoernle, K. ve Danyushevsky, L., 2005. Oxygen isotope evidence for slab melting in modern and ancient subduction zones, <u>Earth and Planetary Science</u> <u>Letters</u>, 235, 436-480.
- Black, R. ve Liégeois, JP., 1993. Cratons, mobile belts, alkaline rocks and continental lithospheric mantle: the Pan-African testimony, <u>Journal of the Geological Society of London</u>, 150, 89–98.

- Blundy, JD. ve Holland, TJB., 1990. Calcic amphibole equilibria and a new amphiboleplagioclase geothermometer, <u>Contributions to Mineralogy and Petrology</u>, 104, 208-24.
- Blundy, JD., Robinson, JAC. ve Wood, BJ., 1998. Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus, <u>Earth and Planetary Science Letters</u>, 160, 493-504.
- Blundy, J. ve Cashman, K., 2001. Ascent driven crystallization of dacite magmas at Mount St. Helens, 1980-1986, <u>Contrib Mineral Petrol</u>, 140, 631-650.
- Borg, LE., Clynne, MA. ve Bullen, TD., 1997. The variable role of slab-derived fluids in the generation of a suite of primitive calc-alkaline lavas from the southernmost Cascades, California, <u>Canadian Mineralogist</u>, 35, 425-452.
- Boztuğ, D., Jonckheere, RC, Wagner, GA. ve Yeğingil, Z., 2004. Slow Senonian and fast Paleocene-early Eocene uplift of the granitoids in the Central Eastern Pontides, Turkey: Apatite fission-track results, <u>Tectonophysics</u>, 382, 3-4, 213-228.
- Boztuğ, D., Jonckheere, RC., Arslan, M., Şen, C., Karslı, O. ve Erçin, Aİ., 2005a. Eocene slab break-off revealed by the E-W distribution of the multi-sourced granitoids and tectonic denudation in the eastern Pontides, Turkey, Geophysical Research Abstracts, 7, 02129.
- Boztuğ, D., Jonckheere, R.C., Enkelmann, E., Ratschbacher, L. ve Wagner. G.A., 2005b. Geodynamic implications of rapid denudation of the granitoids at about 50 and 20 Ma in the eastern Pontides, Turkey: apatite fission-track results, Supplement 1, Goldschmidt Conference Abstract, Geochronology of Tectonic Processes, A 300. <u>Geochimica et Cosmochimica Acta</u>, 69, 10.
- Boztuğ, D., Erçin, Aİ., Kuruçelik, MK., Göç, D., Kömür, İ. ve İskenderoğlu, A., 2006. Geochemical characteristics of the composite Kaçkar batholith generated in a Neo-Tethyan convergence system, Eastern Pontides, Turkey. Journal of Asian Earth Science, 27, 286-302.
- Boztuğ, D., Jonckheere, RC., Wagner, GA., Erçin, Aİ. ve Yeğingil, Z., 2007. Titanite and zircon fission-track dating resolves successive igneous episodes in the formation of the composite Kaçkar batholith in the Turkish Eastern Pontides, <u>International Journal of Earth Sciences</u>, 96, 875-886.
- Boztuğ, D. ve Harlavan, Y., 2008. K-Ar ages of granitoids unravel the stages of Neo-Tethyan convergence in the eastern Pontides and central Anatolia, Turkey, <u>International Journal of Earth Science</u>, 97, 585-599.
- Brey, G. ve Green, DH., 1997. Systematic study of liquidus phase relations in olivine melilitite+H2O+CO₂ at high pressures and petrogenesis of an olivine melilitite magma, <u>Contributions to Mineralogy and Petrology</u>, 61, 141-162.

- Castillo, PR. ve Newhall, CG., 2004. Geochemical constraints on possible subduction components in lavas of Mayon and Taal volcanoes, southern Luzon, Philippines, Journal of Petrology, 45, 1089–1108.
- Cebria, J. M. ve Wilson, M., 1995. Cenozoic mafic magmatism in Western/Central Europe: a common European Asthenospheric Reservoir?, Terra Abstracts, EUG, . 8, 162.
- Chesley, J., Ruiz, J., Righter, K., Ferrari, L. ve Gomez-Tuena, A., 2002. Source contamination versus assimilation: an example from the Trans-Mexican Volcanic Arc, Earth and Planetary Science Letters, 195, 211-221.
- Churikova, T., 2001. Dorendorf, F. ve Worner, G., Sources and fluids in the mantle wedge below Kamchatka, Evidence from across-arc geochemical variation, Journal of <u>Petrology</u>, 42, 1567-1593.
- Chorowicz, J., Dhont, D. ve Adıyaman, Ö., 1998. Black Sea–Pontid relationship:interpretation in terms of subduction. Third International Turkish Geology Symposium, Ankara, Turkey, 258.
- Condie, KC., Frey, BA. ve Kerrich, R., 2002. The 1.75-Ga Iron King Volcanics in westcentral Arizona: a remnant of an accreted oceanic plateau derived from a mantle plume with a deep depleted component, <u>Lithos</u>, 64, 49-62.
- Conticelli, S., 1998. The effects of crustal contamination on ultrapotassic magmas with lamproitic affinity: mineralogical, geochemical and isotope data from Torre Alfina lavas and xenoliths, central Italy, <u>Chem. Geol.</u>, 149, 54-81.
- Conticelli, S., D'Antonio, M., Pinarelli, L. ve Civetta, L., 2002. Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks: Sr–Nd–Pb isotope data from Roman Province and Southern Tuscany. <u>Mineralogy and Petrology</u>, 74, 189–222.
- Couch, S., Sparks, RSJ. ve Carroll, MR., 2001. Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers, <u>Nature</u>, 411, 1037–1039.
- Cvetkovich, V., Prelević, D., Downes, H., Jovanović, M. Vaselli, O. ve Pécskay, Z., 2004. Origin and geodynamic significance of Tertiary post-collisional basaltic magmatism in Serbia (central Balkan Peninsula). <u>Lithos</u> 73, 161-186.
- Çakır, Ö., Erduran, M., Çınar, H. ve Yılmaztürk, A., 2000. Forward modelling receiver functions for crustal structure beneath station TBZ (Trabzon, Turkey), <u>Geophys J</u> <u>Intern</u>, 140, 341–356.
- Çakır, Ö. ve Erduran, M., 2004. Constraining crustal and uppermost mantle structure beneath station TBZ (Trabzon, Turkey) by receiver function and dispersion analyses, <u>Geophys J Intern</u>, 158, 955–971.

- Çamur, M.Z., Güven, İ.H. ve Er, M., 1996. Geochemical characteristics of the Eastern Pontide volcanics: An example of multiple volcanic cycles in arc evolution, <u>Turkish</u> <u>Journal of Earth Sciences</u>, 5, 123-144.
- Davidson, JP.,1987. Crustal contamination versus subduction zone enrichment: examples from the Lesser Antilles and implications for mantle source compositions of island arc volcanic rocks, <u>Geochimica et Cosmochimica Acta</u>, 51, 2185-2198.
- Davies, G., Gledhilla, A. ve Hawkesworth, C., 1985. Upper crustal recycling in southern Britain: evidence from Nd and Sr isotopes, Earth and Planetary Science Letters, 75, 1, 1-12.
- Davies, JH. ve von Blanckenburg, F., 1995. Slab breakoff: a model of lithospheric detachment and its test in the magmatism and deformation of collisional orogens, <u>Earth Planet Sci Lett</u>, 129, 85–102.
- DePaolo, DJ. ve Wasserburg, GJ., 1979. Petrogenetic mixing models and Nd-Sr isotopic patterns, <u>Geochimica et Cosmochimica Acta</u>, 43, 615-627.
- DePaolo, DJ., 1981. Trace element and isotopic effects of combined wall-rocks assimilation and fractional crystallization, Earth and Planetary Science Letters, 53, 189-202.
- Dewey, JF., Pitman, WC., Ryan, WBF. ve Bonnin, J., 1973. Plate tectonics and evolution of the Alpine system, <u>Geological Society of America Bulletin</u>, 84, 3137–3180.
- Dewey, JF. ve Şengör, AMC., 1979. Aegean and surrounding regions: Complexmultiplate and continuum tectonics in a convergent zone, <u>Geological Societyof America</u> <u>Bullettin</u>, 90, 84-92.
- Dobosi, G. ve Fodor, FV., 1992. Magma fractionation, replenishment, and mixing as inferred from green core clinopyroxenes in Pliocene basanite, Southern Slovakia, Lithos, 28, 133–150.
- Dodge, FCW., Smith, VC. ve Mays, RE., 1969. Biotites from granitic rocks of the Central Sierra Nevada Batholith, California, <u>J Petrol</u>, 10, 250–271.
- Dokuz, A., 2001. A slab detachment and delamination model for the generation of Carboniferous high-potassium I-type magmatism in the Eastern Pontides, NE Turkey: the Ko se composite pluton. <u>Gondwana Research</u>, 19, 926–944.
- Downes, H., Kostoula, T., Jones, A. P., Beard, A. D., Thirlwall, M. F. ve Bodinier, J. L., 2002. Geochemistry and Sr–Nd isotopic compositions of mantle xenoliths from the Monte Vulture carbonatite–melilitite volcano, central southern Italy. <u>Contributions</u> to <u>Mineralogy and Petrology</u>, 144, 78–92.
- Duda, A. ve Schmincke, HU., 1985. Polybaric differentiation of alkali basaltic magmas: evidence from green core clinopyroxenes (Eifel, FRG), <u>Contrib Mineral Petrol</u>, 91, 340-353.

- Dungan, MA. ve Rhodes, JM., 1978. Residual glasses and melt inclusions in basalts from DSDP Legs 45 and 46: evidence for magma mixing, <u>Contrib Mineral Petrol</u>, 67, 417–431.
- Eichelberger, JC., 1975. Origin of andesite and dacite: evidence of mixing at Glass Mountain in California and at other circum-Pacific volcanoes, <u>Geol Soc Am Bull</u>, 86, 1381-1391.
- Eggler, DH., 1972. Water-saturated and undersaturated melting relations in a Paricutin andesite and an estimate of water content in the natural magma, <u>Contrib Mineral Petrol</u>, 34, 261–271.
- Elburg, MA., Bergen, MV., Hoogewerff, J., Foden, J., Vroon, P., Zulkarnain, I. ve Nasution, A., 2002. Geochemical trends across an arc-continent collision zone: magma sources and slab-wedge transfer processes below the Pantar Strait volcanoes, Indonesia, <u>Geochimica et Cosmochimica Acta</u>, 66, 2771–2789.
- Eren, M., 1983. Gümüşhane-Kale arasının jeolojisi ve mikrofasiyes incelemesi, Yüksek Lisans Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon.
- Escrig, E., Capmas, F., Dupré, C. ve Allégre, C.J., 2004. Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts, <u>Nature</u>, 431, 59–63.
- Ewart, A., 1982. The mineralogy and petrology of Tertiary-Recent orogenic volcanic rocks: with special reference to the andesitic-basaltic compositional range. In R.S. Thorpe, (eds.) Andesites: Orogenic Andesites and Related Rocks. John Wiley, New York.
- Eyuboglu, Y., Bektas, O., Seren, A., Maden, N., Jacoby, W. R., ve Özer., R., 2006. Three axial extensional deformation and formation of the Liassic rift basins in the eastern Pontides (NE Turkey), <u>Geologica. Carpathica</u>, 57, 337–346.
- Eyuboglu, Y., Bektaş, O., ve Pul, D., 2007. Mid-Cretaceous olistostromal ophiolitic melange developed in the back-arc basin of the Eastern Pontide magmatic arc (NE Turkey). International Geology Reviev 49 (12), 1103–1126.
- Eyuboglu, Y., Dilek, Y., Bozkurt, E., Bektaş, O., Rojay, B. ve Şen, C., 2010. Geochemistry and geochronology of a reversely-zoned, Alaskan-type ultramafic–maficcomplex in the Eastern Pontides, NE Turkey. In: Santosh, M., Maruyama, S. (Eds.), A tribute to Akiho Miyashiro, <u>Gondwana Research</u>, 18, 230–252.
- Eyuboglu, Y., Chung, SL., Santosh, M., Dudas, FO. ve Akaryali, E., 2011a. Transition from shoshonitic to adakitic magmatism in the Eastern Pontides, NE Turkey: implications for slab window melting, <u>Gondwana Research</u>, 19, 413–429.
- Eyuboglu, Y., Santosh, M., Dudas, FO., Chung, SL. ve Akaryali, E., 2011b. Migrating magmatism in a continental arc: geodynamics of the Eastern Mediterranean revisited. Journal of Geodynamics 52, 2–15.

- Eyuboglu, Y., Santosh, M., Dudas, F.O., Akaryali, E., Chung, S.L., Akdag, K. ve Bektas, O., 2012b. The nature of transition from adakitic to non-adakitic magmatism in a slab-window setting: a synthesis from the eastern Pontides, NE Turkey. Geoscience Frontiers, (in pres).
- Faure, G., 2001. Origin of Igneous Rocks: The Isotopic Evidence. Springer, Germany.
- Faure, G. ve Mensing, T.M., 2005. Isotopes: Principles and Applications. John Wiley & Sons Hoboken.
- Fisher, RV., 1966. Rocks composed of volcanic fragments and their classification, <u>Earth-Science Review</u>, 1, 287-298.
- Foley, SF., Jackson, SE., Fryer, BJ., Greenough, JD. ve Jenner, GA., 1996. Trace element partition coefficients for clinopyroxene and phlogopite in an alkaline lamprophyre fromNewfoundland by LAM-ICP-MS, <u>Geochimica et Cosmochimica Acta</u>, 60, 629– 638.
- Foster, MD., 1960. Interpretation of the composition of trioctahedral micas. U S Geol Surv Prof Pap 354(B), 11-49.
- Fraser, K., Hawkesworth, C., Erlank, A., Mitchell, R. ve Scott-Smith, B., 1985. Sr, Nd and Pb isotope and minor element geochemistry of lamproites and kimberlites, <u>Earth and</u> <u>Planetary Science Letters</u>, 76, 57–70.
- Frey, FA., Green, D. ve Roy, S., 1978. Integrated models of basalt of petrogenesis, a study of quartz tholeiites to olivine melilitites from south Australia utilizing geochemical and experimental petrological data, Journal of Petrology, 19, 463-513.
- Frey, FA., 1980. The origin of pyroxenites and garnet pyroxenites from Salt Lake Crater, Oahu, Hawaii: trace element evidence, <u>Am. J. Sci.</u>, 280-A, 427-449.
- Frey, FA., 1984. Rare earth element abundances in upper mantle rocks. In: Rare earth element geochemistry, P. Henderson, (ed.) Development in geochemistry, Elseiver.
- Fuhrmann, ML. ve Lindsley, DH., 1988. Ternary-feldspar modelling and thermometry. American Mineralogist, 73, 201-215.
- Gaetani, GA., Grove, TL. ve Bryan, WB., 1993. The influence of water on the petrogenesis of subduction-related igneous rocks, <u>Nature</u>, 365, 332–334.
- George, R., Turner, S., Hawkesworth, C., Nye, C., Bacon, C., Stelling, P. ve Dreher, S.,2004. Chemical versus temporal controls on the evolution of tholeiitic and calcalkaline magmas at two volcanoes in the Aleutian arc, Journal of Petrology, 45, 203-219.
- Gill, J.B., 1981. Orogenic Andesites and Plate Tectonics, Springer, Berlin.

- Göksu, E., 1974. 1/500 000 ölçekli Türkiye Jeoloji Haritası Samsun Paftası açıklaması, MTA yayını, Ankara.
- Güven, İ.H., 1993. Doğu Karadeniz Bölgesi'nin 1/250000 ölçekli jeolojik ve metalojenik haritası., MTA, Ankara.
- Güven, İ.H., 1998. 1/100.000 ölçekli Türkiye Jeoloji Haritası, Doğu Karadeniz Bölgesi. MTA, 58-59, Ankara.
- Green, TH., 1982. Anatexis of mafic crust and high pressure crystallization of andesite. In: Thorpe RS (ed) Orogenic Andesites and related rocks. Wiley, New York.
- Green, TH. ve Pearson, NJ. 1985. Rare Earth element partitioning between clinopyroxene and silicate liquid at moderate to high pressure, <u>Contributions to Mineralogy and Petrology</u>, 91, 24-36.
- Gregg, KPG. ve Fink, JH., 1995. Quantification of submarine lava-flow morphology through analog experiments, <u>Geology</u>, 23, 73-76.
- Habiboğlu, Y.E., 1989. Doğu Pontid Güney Zonu'ndaki (Bayburt-Demirözü) Metamorfit-Ofiyolit Birliğinin (Pulur Masifi) Jeotektonik Anlamı, Yüksek Lisans Tezi, KTÜ, Fen Bilimleri Enstitüsü. Trabzon.
- Hagen, H. ve Neumann, ER., 1990. Modelling of trace element distribution in magma chambers using open-system models, <u>Computers and Geosciences</u>, 16, 549-56.
- Hakli, TA. ve Wright, TL., 1967. The fractionation of nickel between olivine and augite as a geothermometer, <u>Geochim Cosmochim Acta</u>, 31, 877-884.
- Halsor, SP. ve Rose, WI., 1991. Mineralogical relations and magma mixing in calcalkaline andesites from Lake Atitlan, Guatemala, <u>Miner Petrol</u>, 45, 47–67.
- Hammarstrom, JM. ve Zen, E., 1986. Aluminum in hornblende: An empirical igneous geobarometer. <u>American Mineralogist</u>, 71, 1297-1313.
- Harangi, S., 2001. Neogene magmatism in the Alpine–Pannonian Transition Zone—a model for melt generation in a complex geodynamic setting, <u>Acta Vulcanologica</u>, 13, 25–39.
- Hart, SR., 1984. A large-scale isotope anomaly in the southern hemisphere mantle. <u>Nature</u>, 309, 753–757.
- Hart, SR., Hauri, E., Oschmann, L. ve Whitehead, J., 1992. Mantle plumes and entrainment: isotopic evidence. Science, 256, 517-520.
- Hastie, T., Taylor, J., Tibshirani, R. ve Walther, G., 2007. Forward stagewise regression and the monotone lasso. <u>Electron. J. Statist</u>. 1, 1–29.

- Hatton, CJ., 1984. The effect of pressure, temperature and composition on the distribution of Fe and Mg between olivine, orthopyroxene and liquid: An appraisal of the reversal in the normal fractionation trend in the Bushveld Complex, <u>Contrib Mineral Petrol</u>, 86, 45-53.
- Hawkesworth, CJ., Rogers, NW., Van Calsteren, PWC. ve Menzies, MA., 1984. Mantle enrichment processes, <u>Nature</u>, 311, 27, 331-335.
- Helz, RT., 1973. Phase relations of basalts in their melting ranges at PH2O=5 kb as a function of oxygen fugacity, <u>J Petrol</u>, 14, 249-302.
- Hergt, JM., Peate, DW. ve Hawkesworth, CJ., 1991. The petrogenesis of Mesozoic Gondwana low-Ti food basalts, Earth Planet Sci Lett, 105, 134-148.
- Hibbard, MJ., 1981. The magma mixing origin of mantled feldspars, <u>Contrib Mineral</u> <u>Petrol</u>, 76, 158-170.
- Hildreth, W. ve Moorbath, S., 1988. Crustal contributions to arc magmatism in the Andes of central Chile, <u>Contrib Mineral Petrol</u>, 98, 455-489.
- Hirose, K., 1997. Partial melt compositions of carbonated peridotite at 3 GPa and role of CO₂ in alkali-basalt magma generation, <u>Geophysical Research Letters</u>, 24, 2837-2840.
- Hochstaedter, AG., Gill, JB., Taylor, B., Ishizuka, O., Yuasa, M. ve Morita, S., 2000. Across-arc geochemical trends in the Izu–Bonin arc: constraints on source composition and mantle melting, Journal of Geophysical Research, 105, 495–512.
- Hofmann, AW., 1997. Mantle geochemistry: The message from oceanic volcanism. <u>Nature</u>, 385, 219-229.
- Holland, T. ve Blundy, J., 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116, 433– 447.
- Hollanda, MHBM., Pimentel, MM. ve Sa, EFJ., 2003. Paleoprotorozoic subduction-related metasomatic signitures in the lithospheric mantle beneath NE Brasil: inferences from trace elements and Sr-Nd-Pb isotopic composition of Neoprotorozoic high-K igneous rocks, journal of South American Eatrh Science, 15, 885-900.
- Hollister, LS., Grisson, GC., Peters, EK., Stowell, HH. ve Sisson, VB., 1987. Confirmation of the empirical calibration of aluminum in hornblende with pressure of solidification of calc-alkaline plutons. <u>American Mineralogist</u>, 72, 231-239.
- Hort, M., 1998. Abrupt change in magma liquidus temperature because of volatile loss or magma mixing; effects on nucleation, crystal growth and thermal history of the magma, <u>J Petrol</u>, 39, 1063–1076.

- Hoskin, P.W.O. ve Wysoczanki, R.J., 1998. In situ accurate and precise lead 924 isotopic analyses of ultra-small analyte volumes (10 925 –16 m3) of solid inorganic samples by high mass resolution secondary ion mass spectrometry, Journal of Analytical Atomic Spectrometry 13, 597–601.
- Hunter, AG. ve Blake, S., 1995. Petrogenetic evolution of a transitional tholeiitic calcalkaline series, Towada volcano, Japan, Journal of Petrology, 36, 1579-1605.
- Irvine, TN. ve Baragar, WRA., 1971. A guide to the chemical classification of common volcanic rocks, <u>Canadian Journal of Earth Sciences</u>, 8, 523-548.
- Jicha, B.R., Singer, B.S., Brophy, J.G., Fournelle, J.H., Johnson, C.M., Beard, B.L., Lapen, T.J. ve Mahlen, N.J., 2004. Variable Impact of the Subducted Slab on Aleutian Island Arc Magma Sources: Evidence from Sr, Nd, Pb, and Hf Isotopes and Trace Element Abundances, Journal of Petrology, 45, 9, 1845–1875.
- Johnson, MC. ve Rutherford, MJ., 1989. Experimental calibration of the aluminiun inhornblende geobarometer with application to Long Valley Caldera (California) volcanic rocks, <u>Geology</u>, 17, 837-841.
- Jung, S., Vieten, K., Romer, RL., Mezger, K., Hoernes, S. ve Satır, M., 2012. Petrogenesis of TertiaryAlkaline Magmas in the Siebengebirge, Germany, Journal of Petrology, 1-29.
- Karamata, S., Steiger, R., Djordjevic, P. ve Knezevic, V., 1990. New data on the origin of granitic rocks from western Serbia. Bulletin de l'Academie des Serbe des Sciences et des Arts, Classe des Sciences Mathematiques et Naturelles, <u>Sciences Naturelles</u>, 32, 1–9.
- Karslı, O., Chen, B., Aydin, F. ve Şen, C., 2007. Geochemical and Sr–Nd–Pb isotopic compositions of the Eocene Dölek and Sariçiçek Plutons, Eastern Turkey: implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting, <u>Lithos</u>, 98, 67–96.
- Karslı, O., Dokuz, A., Uysal, İ., Ketenci, M., Chen, B. ve Kandemir, R., 2012. Deciphering the shoshonitic monzonites with I-type characteristic, the Sisdağı pluton, NE Turkey: magmatic response to continental lithospheric thinning, Journal of Aesian Earth Science, 51, 45-62.
- Kaygusuz, A., Siebel, W., İlbeyli, N., Arslan, M., Satır, M. ve Şen, C., 2010. Insight into magma genesis at convergent plate margins—a case study from the eastern Pontides (NE Turkey), <u>N Jb Miner Abh</u>, 187, 3, 265–287.
- Kaygusuz, A., Arslan, M., Siebel, W. ve Şen, C., 2011. Geochemical and Sr-Nd Isotopic Characteristics of Post-Collisional Calc-Alkaline Volcanics in the Eastern Pontides (NE Turkey), <u>Turkish Journal of Earth Sciences</u>, 20, 137–159.

- Kaygusuz, A., Arslan, M., Siebel, W., Sipahi, F. ve İlbeyli, N., 2012. Geochronological evidence and tectonic significance of Carboniferous magmatism in the southwest Trabzon area, eastern Pontides, Turkey, <u>International Geology Review</u>, 54, 15, 1776–1800.
- Kelemen, PB., Hanghøj, K. ve Greene, AR., 2003. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: The Crust (ed. R.L., Rudnick) vol. 3. Treatise on Geochemistry (eds. H.D., Holland and K.K., Turekian). Elsevier-Pergamon, Oxford.
- Keshav, S., Gudfinnsson, GH., Sen, G. ve Fei, Y., 2004. High-pressure melting experiments on garnet clinopyroxenite and the alkalic to tholeiitic transition in ocean-island basalts, <u>Earth and Planetary Science Letters</u>, 223, 365-379.
- Keskin, M., 1994. Genesis of collision-related volcanism on the Erzurum-Kars Plateau, Northeastern Turkey, Unpublished PhD thesis, Univ. Durham, U.K.
- Keskin, M., Pearce, JA. ve Mitchell, JG., 1998. Volcano-stratigraphy and geochemistry of collision-related volcanism on the Erzurum-Kars Plateau, North Eastern Turkey, Journal of Volcanology and Geothermal Research, 85, 1-4, 355-404.
- Keskin, M., 2002. FC-Modeler: a Microsoft® Excel© spreadsheet program for modeling Rayleigh fractionation vectors in closed magmatic systems, <u>Computers and</u> <u>Geosciences</u>, 28, 8, 919-928.
- Keskin, M., 2003. Magma generation by slab steepening and breakoff beneath a subduction–accretion complex: an alternative model for collision-related volcanism in Eastern Anatolia, Turkey. Geophysical Research Letters 30, 24, 8046.
- Keskin, M., Domal uplift and volcanism in a collision zone without a mantle plume: Evidence from Eastern Anatolia. <u>http://www.mantleplumes</u>. org/Anatolia.html 13 Mart 213.
- Keskin, M., Pearce, J.A., Kempton, P.D. ve Greenwood, P., 2006. Magma–crust interactions and magma plumbing in a postcollisional setting: geochemical evidence from the Erzurum-Kars volcanic plateau, eastern Turkey. In: Dilek, Y., Pavlides, S. (Eds.), Postcollisional tectonics and magmatism in the Mediterranean region and Asia. <u>Special Paper, Geological Society of America</u>, 409, 475–505.
- Keskin, M., 2007. Eastern Anatolia: a hotspot in a collision zone without a mantle plume. In: Foulger, G.R., Jurdy, D.M. (Eds.), Plates, Plumes, and Planetary Processes, <u>Geological Society of America Special Paper</u>, 430, 693–722.
- Keskin, M., Genç, ŞC. ve Tüysüz, O., 2008. Petrology and geochemistry of postcollisional Middle Eocene-Oligocene volcanic units in North-Central Turkey: evidence for magma generation by slab-breakoff following the closure of the northern Neotethys Ocean, <u>Lithos</u>, 104, 267-305.

- Keskin, M., 2013. AFC-Modeler: a Microsoft® Excel© workbook program for modelling assimilation combined with fractional crystallization (AFC) process in magmatic systems by using equations of DePaolo (1981), Turkish Journal of Earth Science, 22, 304-319.
- Keskin, S., 2007. Güney Doğu (GD) Karadeniz Sahil Kesminin (Trabzon Yöresi) Taraçaları ve Aktif Tektoniği, KTÜ., Fen Bilimleri Enstitüsü, Trabzon.
- Kinzler, RJ., 1997. Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis, <u>Journal of Geophysical Research-Solid Earth</u>, 102, 853–874.
- Klein, EM., 2004. Geochemistry of the Igneous Oceanic Crust. In: Treatise on Geochemistry. Holland, H.D. ve Turekian, K.K. (Editors), Elsevier, Amsterdam.
- Korkmaz, S. ve Baki, Z., 1984. Demirözü (Bayburt) güneyinin stratigrafisi, <u>Türkiye Jeoloji</u> <u>Kurultayı Bülteni</u>, 5, 107-115.
- Korkmaz, S., 1993. Stratigraphy of the Tonya-Düzköy (SW Trabzon) area, NE Turkey. <u>Geological Bulletin of Turkey</u>, 36, 151-158.
- Kuno, H., 1936. Petrological notes on some pyroxene-andesites from Hakone volcano, with special reference to some types of pigeonite phenocrysts. Jap J Geol Geograph 13, 107-140.
- Kurt, İ., Özkan, M., Karslı, Ş., Çolak, T. ve Topçu, T., 2006. Doğu Karadeniz Bölgesinin jeodinamik ve Metalojenik Evrimi (Keşap(Giresun)-Çarşıbaşı(Trabzon)-Torul(Gümüşhane) Arasının Jeolojisi), MTA, Ankara.
- Kushiro, I., 1996. Partial melting of a fertile mantle peridotite at high pressures: an experimental study using aggregates of diamond. In: Basu, A. & Hart, S. R. (eds) Earth Processes: Reading the Isotopic Code. Geophysical Monograph, <u>American</u> <u>Geophysical Union</u>, 95, 109-122.
- Langmuir, CH., Vocke, RD., Hanson, GN. ve Hart, SR., 1978. A general mixing equation with applications to Icelandic basalts, Earth and Planetary Science Letters, 37, 380-392.
- Leake, BE., Woolley, AR., Arps, CES., vd.,1997. Nomenclature of amphiboles: report of the subcomittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. <u>Am Mineral</u>, 82, 1019–1037.
- Le Maitre, RW., Bateman, P., Dudek, A., Keller, J., Lameyre Le Bas, M.J., Sabine, P.A., Schmid, R., Sorensen, H., Streckeisen, A., Woolley, A.R. ve Zanettin, B., 1989. A Classification of Igneous Rocks and Glossary of Terms, Blackwell, Oxford.
- Le Roex, AP., 1987. Source regions of mid-ocean ridge basalts; evidence for enrichmentprocesses. In: Menzies, A. M., Hawkesworth, C. J. (Eds.), Mantle Metasomatism, Academic Press, London.

- L'Heureux, I. ve Flower, AD., 1994. A non linear dynamical model of oscillatory zonning in plagioclase, <u>American Mineralogist</u>, 79, 885-891.
- Lindsley, DH., ve Spencer, KJ., 1982. (e-Ti oxide geothermemetry: Reducing analyses of coexisting Ti-Magnetite (Mt) and Ilmenite (Ilm). Transactions, <u>American</u> <u>Geophysical Union</u>, 63, 471.
- Luhr, JF., Carmichael, ISE. ve Varekamp, JC., 1984. The 1982 eruptions of El Chicón Volcano, Chiapas, Mexico: Mineralogy and petrology of the anhydrite-bearing pumices, <u>J Volcanol Geoth Res</u>, 23, 69–108.
- Luhr, JF., 1992. Slab-derived fluids and partial melting in subduction zones: insights from two contrasting Mexican volca noes _Colima and Ceboruco, <u>J Volcanol Geotherm</u> <u>Res.</u> 54, 1–18.
- Maden, N., Gelişli, K., Eyüboğlu, Y. ve Bektaş, O., 2009. Two-and-three-dimensional crustal thickness of the eastern Pontides (NE Turkey), <u>Turkish J Earth Sci.</u> 18, 2, 225–238.
- McDonald, R., Hawkesworth, CJ. ve Heath, E., 2000. The Lesser Antiles volcanic chain: a study in arc magmatism, Earth Science Review, 49, 1-76.
- McKenzie, D. ve O'Nions, RK., 1991. Partial melt distribution from inversion of rare earth element concentrations, Journal of Petrology, 32, 1021-1091.
- McKenzie, DE. ve Chappell, BW., 1972. Shoshonite and calcalkaline lavas from the highlands of. Papua New Guinea, <u>Contributions to Mineralogy and Petrology</u>, 35, 50–62.
- Mengel, K. ve Green, D. H., 1986. Stability of amphibole and phlogopite in metasomatized peridotite under water-saturated and water-undersaturated conditions. In: Ross, J., Jaques, A. L., Ferguson, J., Green, D. H., O'Reilly, S. Y., Danchin, R. V. & Janse, A. J. A. (eds) Kimberlites and Related Rocks, Blackwell Scientific, 1. Oxford.
- Menzies, M. ve Kyle, PR., 1990. Continental volcanism: a crust-mantle probe. In: Continental Mantle (M.A. Menzies ed.), Clarendon Press, Oxford.
- Merzbacher, C. ve Eggler, DH., 1984. A magmatic geohygrometer: application to Mount St. Helens and other dacitic magmas, <u>Geology</u>, 12, 587–590.
- Meschede, M., 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb–Zr–Y diagram, <u>Chemical Geology</u>, 56, 207–218.
- Milch, L., 1905. Über magmatische Resorption und porphyrische Struktur. <u>Neues Jb</u> <u>Mineral Geol Paläont</u>, 22, 1-32
- Miller, C., Schuster, R., Klo tzli, U., Frank, W. ve Purtscheller, F., 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-Nd-Pb-O

isotopic constraints for mantle source characteristics and petrogenesis, <u>Journal of</u> <u>Petrology</u>, 40, 1399–1424.

- Mitchell, R.H. ve Bergman, S.C., 1991. Petrology of Lamproites, Plenum Pres, New York-London.
- Moore, JG., 1975. Mechanisms of formation of pillow lava, Am Sci 63, 269-277.
- Morimoto, N., Fabries, J., Ferguson, AK., Ginzburg, IV., Ross, M., Seifert, FA., Zussman, J., Aoki, K. ve Gottardi, G., 1988. Nomenclature of pyroxenes. <u>Mineral Mag.</u> 52, 535–550.
- Murphy, DT., Collerson, KD. ve Kamber, BS., 2002. Lamproites from Gaussberg, Antarctica: possible transition zone melts of Archaean subducted sediments, <u>Journal</u> <u>of Petrology</u>, 43, 981–1001.
- Mysen, BO. ve Kushiro, I., 1977. Compositional variations of coexisting phases with degree of melting of peridotite in the upper mantle, <u>American Mineralogist</u>, 62, 843-865.
- Nachit, H., A. Ibhi, E.H. Abia ve M.B., 2005. Ohoud, Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. <u>Comptes Rendus</u> <u>Geosci.</u>, 337, 1415-1420.
- Naney, MT., 1983. Phase equilibria of rock-forming ferromagnesian silicates in granitic systems <u>Am J Sci</u>, 283, 993–1033.
- Neiva, AMR., 1981. Geochemistry of hybrid granitoid rocks and of their biotites from Central Northern Portugal and their petrogenesis, Lithos, 14,149–163.
- Nelson, DR., McCulloch, MT. ve Sun, SS., 1986. The origins of ultrapotassic rocks as inferred from Sr, Nd and Pb isotopes. <u>Geochimica et Cosmochimica Acta</u>, 50, 231–245.
- Nelson, ST. ve Montana, A., 1992. Sieve-textured plagioclase in volcanic rocks produced by rapid decompression, <u>Am Mineral</u>, 77, 1242–1249.
- Nimis, P., 1995. A clinopyroxene geobarometer for basaltic systems based on crystalsstructure modeling, <u>Contrib Mineral Petrol</u>, 121, 115-125.
- Nixon, GT., 1988. Petrology of the younger andesites and dacites of Iztaccihuatl volcano, Mexico: disequilibrium phenocryst assemblages as indicators of magma chamber processes. Journal of Petrology, 29, 213–264.
- Okay, Al. ve Şahintürk, Ö., 1997. Geology of the Eastern Pontides. In: Robinson, A.G. (ed.), Regional and Petroleum Geology of the Black Sea and Surrounding Region, American Association of Petroleum Geologists Memoir, 68, 291-311.

- Okay, A.İ. ve Tüysüz, O., 1999. Tethyan sutures of northern Turkey. <u>Geological Society of London</u>, Special Publications 156, 475–515.
- Ortoleva, P., 1990. The role of attachment kinetic in oscillatory zoning crystals growth from melt. Earth Science Review, 29, 3-8.
- Osborn, EF., 1980. On the cause of the reversal of the normal fractionation trend-an addendum to the paper by E. N. Cameron, 'Evolution of the lower critical zone, central sector, eastern Bushveld Complex, and its chromite deposits', <u>Econ Geol</u>, 75, 872-875.
- Özsayar, T., 1971. Palaontologie und Geologie des Gebietes Ostlich Trabzon (Anatolien), <u>Gieben, Geol. Schrift.</u>, Gieben, 1.
- Özer, E., 1984. Bayburt (Gümüshane) yöresinin jeolojisi, <u>Karadeniz Üniversitesi Dergisi</u>, 3, 77-89.
- Özsayar, T., Pelin, S. ve Gedikoğlu, A., 1981. Doğu Pontidlerde Kretase, <u>KTÜ.,</u> <u>Yerbilimleri Dergisi</u>, 2, 65-114.
- Panjasawatwong, Y., Danyushevsky, LV., Crawford, AJ. ve Haris, KL., 1995. An experimental study of the effects of melt composition on plagioclase^melt equilibria at 5 and 10 kbar: Implications for the origin of magmatic high-An plagioclase, <u>Contrib Mineral Petrol</u>, 118, 420-432.
- Papike, JJ., Cameron, KL. ve Baldwin, K.,1974. Amphiboles and pyroxenes: Characterization of other than quadrilateral components and estimates of ferric iron from microprobe data, <u>Geol Soc Am</u> 6, 1053–1054.
- Pe-Piper, G., 1984. zoned pyroxenes from shoshonite lavas of Lesbos, Greece: Inferences concerning shoshonite petrogenesis, <u>J Petrol</u>, 25, 453-472.
- Pearce. JA., 1982. Trace element characteristics of lavas from destructive plate margins,In: R. S. Thorpe (ed.), Andesites: Orogenic Andesites and Related Rocks.Wiley, New York.
- Pearce, JA., 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In C. J., Hawkesworth ve M. J. Norry, (eds.), Continental Basalts and Mantle Xenoliths, Shiva, Cheshire.
- Pearce, JA., 1996. A User's Guide to Basalt Discrimination Diagrams. In: Wyman. D.A., ed., Trace Element Geochemistry of Volcanic Rocks: Aplications for Massive Sulphide Exploration: Geological Association of Canada, Short Course Notes, 12, 79-113.
- Pearce, J.A. and Cann, J.R., 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses, Earth and Planetary Science Letters, 19, 290-300.
- Pearce, JA. ve Norry, MJ., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks, <u>Contributions to Mineralogy and Petrology</u>, 69, 33-47.

- Pearce, JA., Bender, JF., De Long, SE., Kidd, WSF., Low, PJ., Güner, Y., Şaroğlu, F., Yılmaz, Y., Moorbath, S. ve Mitchell, JJ., 1990. Genesis of collision volcanism in eastern Anatolia Turkey, Journal of Volcanology and Geothermal Research, 44, 189-229.
- Pearce, JA. ve Peate, DW., 1995. Tectonic implications of the composition of volcanic arc magmas, <u>Annual Review of Earth and Planetary Sciences</u>, 23, 251–285.
- Peate, DW., Kokfelt, TF., Hawkesworth, CJ., van Calsteren, PW., Hergt, JM. ve Pearce, JA., 2001. U-series isotope data on Lau Basin glasses: the role of subductionrelated fluids during melt generation in back-arc basins, <u>Journal of Petrology</u>, 42, 1449– 1470.
- Peccerillo, A. ve Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonon area, northern Turkey, <u>Contributions to Mineralogy and</u> <u>Petrology</u>, 58, 63–81.
- Peccerillo, A., 1999. Multiple mantle metasomatism in central-southern Italy: geochemical effects, timing and geodynamic implications. <u>Geology</u>, 27, 315-318.
- Peccerillo, A., 2002. Plio-Quaternary magmatism in central-southern Italy: a new classification scheme for volcanic provinces and its geodynamic implications. Bolletino della Società Geologica Italiana, 1, 113-115.
- Peccerillo, A., 2003. Plio-Quaternary magmatism in Italy, Episodes, 26, 222-226.
- Peccerillo, A., Dallai, L., Frezzotti, ML. ve Kempton PD., 2004. Sr-NdPb-O isotopic evidence for decreasing crustal contamination with ongoing magma evolution at Alicudi volcano (Aeolian arc, Italy): implications for style of magmacrust interaction and for mantle source compositions, <u>Lithos</u>, 78, 217-233.
- Pelin, S., 1977. Alucra (Giresun) Güneydoğu Yöresinin Petrol Olanakları Bakımından Jeolojik İncelenmesi, K.T.Ü. Yayınları, Trabzon.
- Perini, G., Conticelli, S., Francalanci, L. ve Davidson, JP., 2000. The relationship between potassic and calc-alkaline post orogenic Vico Volcano, Central Italy, <u>J Volcanol</u> <u>Geotherm Res</u>, 95, 247-272.
- Perini, G. ve Conticelli, S., 2002. Crystallization conditions of leucite-bearing magmas and their implications on the magmato-logical evolution of ultrapotassic magmas: the Vico volcano, central Italy, <u>Mineralogy and Petrology</u>, 74, 253-276.
- Perugini, D., Busa, T., Poli, G. ve Nazzareni, S., 2003. The role of chaotic dynamics and flow fields in the development of disequilibrium textures in volcanic rocks, <u>J Petrol</u>, 44, 733–756.
- Pilet, S., Baker, MB. ve Stolper, EM., 2008. Metasomatized lithosphere and the origin of alkaline lavas. Science 320, 916-919.

- Plank, T. ve Langmuir, CH., 1998. The geochemical composition of subducting sediment and its consequences for the crust and mantle, <u>Chemical Geology</u>, 145, 325–394.
- Plank, T., 2005. Constraints from Thorium/Lanthanum on sediment recycling at subduction zones and the evolution of the continents, <u>Journal of Petrology</u>, 46, 921– 944.
- Powell, R., 1984. Inversion of the assimilation and fractional crystallisation (AFC) equations: suites, Journal of the Geological Society of London, 141, 447-452.
- Putirka, KD., Johnson, M., Kinzler, R. ve Walker, D., 1996. Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0-30 kbar. <u>Contributions to</u> <u>Mineralogy and Petrology</u>, 123, 92-108.
- Putirka, KD., 1999. Clinopyroxene+liquid equilibrium to 100 kbar and 2450 K, Contributions to Mineralogy and Petrology, 135, 151-163.
- Putirka, K.D., Ryerson, F. J. ve Mikaelian, H., 2003. New igneous thermobarometers for mafic and evolved lava compositions, based on clinopyroxene + liquid equilibria, <u>American Mineralogist</u>, 88, 1542-1554.
- Putirka, K.D., 2005. Igneous thermometers and barometers based on plagioclase + liquid equilibria: Tests of some existing models and new calibrations, <u>American Mineralogist</u>, 90, 336-346.
- Putirka, KD., Perfit, M., Ryerson, FJ. ve Jackson, MG., 2007. Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. <u>Chem Geol</u> 241, 177-206.
- Putirka, KD., 2008. Thermometers and barometers for volcanic systems. In: Putirka KD and Tepley F (eds) <u>Rev Mineral</u> 69, 61–120.
- Rapp, RP., Watson, EB. ve Miller, CF., 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites, <u>Precambrian Research</u>, 51, 1-25.
- Renne, P.R., Swisher, C.C., Deino, A.L., Karner, D.B., Owens T.L. ve DePaolo, D.L., 1998. Intercalibration of Standards, Absolute Ages and Uncertainties in 40Ar/39Ar Dating. <u>Chemical Geology</u>, 145, 117-152.
- Ridolfi, F., Renzulli, A. ve Puerini, M., 2010. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction- related volcanoes, <u>Contr Mineral Petrol</u> 160, 45–66.
- Ridolfi F. ve Renzulli, A., 2011. Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130°C and 2.2 Gpa, <u>Contrib Mineral Petrol</u> 163, 877-895.

- Robertson, AHF. ve Dixon, JE., 1984. Introduction: Aspects of the geological evolution of the Eastern Mediterranean. In: Dixon, J.E., Robertson, A. H. F. (Eds.), The Geological Evolution of the Eastern Mediterranean, <u>Geological Society of London</u>, <u>Special Publication</u>, 17, 1-74.
- Robinson, AG., Banks, CJ., Rutherford, MM. ve Hirst, JPP., 1995. Stratigraphic andstructural development of the Eastern Pontides, Turkey, <u>Journal of theGeological</u> <u>Society of London</u>, 152, 861-872.
- Rogers, NW., Hawkesworth, CJ. ve Ormerod, DS., 1995. Late Cenozoic basaltic magmatism in the Western Great Basin, California and Nevada, Journal of <u>Geophysical Research</u>, 100, 10287-10301.
- Rollinson, HR., 1993. Using Geochemical Data: Evoluation. Presentation. Interpretation, John Wiley Sons. Inc.
- Romick, JD., 1987. Amphibole fractionation and magma mixing in andesites and dacites from the central Aleutians, Alaska, <u>Transactions American Geophysical Union</u> (EOS), 68, 461.
- Rosenbaum, JM., 1993. Mantle phlogopite: a significant lead repository, <u>Chemical</u> <u>Geology</u>, 106, 457-483.
- Rudnick, RL. ve Fountain, DM., 1995. Nature and composition of the continental-crust: a lower crustal perspective, <u>Reviews of Geophysics</u>, 33, 3, 267–309.
- Ruffet, G., Féraud, G., Ballèvre, M. ve Kiénast, J. R., 1995. Plateau ages and excess argon in phengites: an ⁴⁰Ar-³⁹Ar laser probe study of Alpine micas (Sesia Zone, Western Alps, northern Italy). <u>Chemical Geology (Isotopic Geoscience Section)</u>, 121, 327-343
- Ruffet, G., Gruau, G., Ballèvre, M., Féraud, G. ve Philippot P., 1997. Rb–Sr and ⁴⁰Ar–³⁹Ar laser probe dating of high-pressure phengites from the Sesia zone (western Alps): underscoring of excess argon and new age constraints on the high-pressure metamorphism. <u>Chemical Geology</u>, 141, 1–18.
- Rutherford, MJ. ve Hill, PM., 1993. Magma ascent rates from amphibole breakdown: an experimental study applied to the 1980–1986 Mount St. Helens eruptions, <u>Journal of Geophysical Resaurch</u>, 98, 19667–19685.
- Sakuyama, M., 1981. Petrological study of the Myoko and Kurohime Volcanoes, Japan: crystallization sequence and evidence magma mixing, <u>J Petrol</u>, 22, 553–583.
- Sato, H., 1975. Diffusion coronas around quartz xenocrysts in andesite and basalt from Tertiary volcanic region in north eastern Shikoku, Japan, <u>Contrib Mineral Petrol</u>, 50, 49-64.

- Saunders, AD., Tarney, J. ve Weaver, SD., 1980. Transverse geochemical variations across the Antarctic Peninsula: Implications for the genesis calcalkaline magmas, <u>Earth and</u> <u>Planetary Science Letters</u>, 46, 344-360.
- Saunders, AD., Norry, MJ. ve Tarney, J., 1991. Fluid influence on the trace element compositions of subduction zone magmas, <u>Philosophical Transactions of the Royal</u> <u>Society of London</u>, A335, 377-392.
- Sepp, B. ve Kunzmann, T., 2001. The stability of clinopyroxene in the system CaO-MgO-SiO₂-TiO₂ (CMST), <u>Am Mineral</u>, 86, 265–270.
- Shaw, DM., 1970. Trace element fractionation during anatexis, <u>Geochimica et</u> <u>Cosmochimica Acta</u>, 34, 237-243.
- Shelley, D., 1993. Igneous and metamorphic rocks under the microscobe, Chapman and Hall, London.
- Simonetti, A., Shore, M. ve Bell, K., 1996. Diopside phenocrysts from nephelinite lavas, Napak Volcano, Eastern Uganda: Evidence for magma mixing. Can Mineral 34, 411–42.
- Sisson, TW. ve Grove, TL., 1993. Experimental investigations of the role of H2O in calcalkaline differentiation and subduction zone magmatism, <u>Contrib Mineral Petrol</u>, 113, 143–166.
- Solomon, M., 1969. The nature and possible origin of the pillow lavas and hyaloclastite breccias of King Island, Australia, <u>Geol Soc London Quarterly Journal</u>, 124, 159-169.
- Speer, JA., 1984. Micas in igneous rocks, in Bailey, S.W., ed., Micas: Reviews in Mineralogy and Geochemistry, Washington, D.C., <u>Min Soc Am</u>, 13, 299–356.
- Speer, JA., 1987. Evolution of magmatic AFM mineral assemblages in granitoid rocks: the hornblende + melt = biotite reaction in the Liberty Hill pluton, South Carolina, <u>Am</u><u>Mineral</u>, 72, 863-878.
- Stimac, JA. ve Pearce, TH., 1992. Textural evidence of mafic-felsic magma interaction in dacite lavas, Clear Lake, California, <u>Am Mineral</u>, 77, 795–809.
- Streck, MJ., 2008. Mineral textures and zoning as evidence for open system processes. In: Putirka, K.D., Tepley III, F.J. (Eds.), Minerals, Inclusions and Volcanic Processes: <u>Miner Soc Am and Geochem Soc</u>, Rev Mineral, 595–622.
- Streck, MJ., Leeman, WP. ve Chesley, J., 2007. High-magnesian andesite from Mount Shasta: A product of magma mixing and contamination, not a primitive mantle melt, <u>Geology</u>, 35, 351-354.
- Sun, S. ve McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes, In: A.D. Saunders, M.J. Norry,

(eds.), Magmatism in the Ocean Basins. <u>Geological Society of London</u> Special Publication, 42, 313-345.

- Şen, C., Arslan, M. ve Van. A., 1998. Doğu Pontid (Kd Türkiye) Eosen (?) Alkalen Volkanik Provensinin Jeokimyasal ve Petrolojik Karakteristikleri, Tübitak Yayınları, Turkish Journal of Earth Sciences, 7, 231-239.
- Şen, C., 2000. Petrography, mineralogy and chemistry of ultramafic of nodules from volcanic rocks of Post Eocene age, Eastern Pontide alkaline province (NE, Turkey), Cumhuriyetin 75. Yıldönümü Yerbilimleri ve Madencilik Kongresi, Ankara, Bild. Kitabı, 1, 55-66.
- Şen, C., 2007. Jurassic Volcanism in the Eastern Pontides: Is it Rift Related or Subduction Related?, <u>Turkish Journal of Earth Sciences</u>, 16, 523-539.
- Şengör, AMC. ve Yılmaz, Y., 1981. Tethyan evolution of Turkey: A plate tectonic approach, <u>Tectonophysics</u>, 75, 181-241.
- Şengör, A.M.C., Özeren, S., Genç, T. ve Zor, E., 2003. East Anatolian high plateau as a mantle-supported, North–south shortened domal structure, <u>Geophysical Research</u> <u>Letters</u>, 30, 24, 8045.
- Tanyolu, E., 1988. Pulur Masifi (Bayburt) Doğu Kesiminin Jeolojisi, MTA Dergisi, 108, 1-17.
- Tatsumo, M. ve Nakamura, Y., 1991. DUPAL anomaly in the Sea of Japan: Pb, Nd, and Sr isotopic variations at the eastern Eurasian continental magrin, <u>Geochimica et Cosmochimica Acta</u>, 55, 3697–3708.
- Taylor, S.R. ve McLennan, S.M., 1985. The Continental Crust, Its Composition and Evolution. Blackwell, Oxford.
- Taylor, HP., Jr. ve Sheppard, SMF., 1986. Igneous Rocks: I. Processes of isotopic fractionation and isotope systematics. In Rev. Mineral. 16: Stable Isotope in High temerature Geological Processes. (ed.) J. W. Valley. H. P. Taylor. Jr. And JR. O'Neil., Washington, <u>Mineralogical Society of America</u>, 227-271.
- Temel, A., Yürür, T., Alıcı, P., Varol, E., Gougard, A., Bellon, H. ve Demirbağ, H., 2010. Alkaline series related to Early-Middle Miocene intra-continental rifting in a collision zone: An example from Polatlı, Central Anatolia, Turkey, <u>Journal of Asian</u> <u>Earth Sciences</u>, 38, 289–306.
- Temizel, İ. ve Arslan, M., 2002. Geochemical and petrological characteristics of İkizce (Ordu) area volcanic rocks: evidences on the evolution of eastern Pontides Tertiary Volcanism, NE Turkey, İstanbul, 1st International Symposium of the Faculty of Mines (İTÜ) on Earth Sciences and Engineering, İstanbul, Bildiriler Kitabı, 90.
- Temizel, İ. ve Arslan, M., 2003. Geochemical modelling of magmatic processes in the evolution of Tertiary volcanics in the İkizce (Ünye-Ordu) area, NE-Turkey,

Süleyman Demirel University, <u>Journal of Science Institute</u> Special Publication, 7/2, 161-177.

- Temizel, İ. ve Arslan, M., 2008. Petrology and geochemistry of Tertiary volcanic rocks from the İkizce (Ordu) area, NE Turkey: implications for the evolution of the eastern Pontide paleo-magmatic arc. Journal of Asian Earth Sciences, 31(4-6), 439-463.
- Temizel, İ. ve Arslan, M., 2009. Mineral Chemistry and Petrochemistry of Post-Collisional Tertiary Mafic to Felsic Cogenetic Volcanism in the Ulubey (Ordu) Area, Eastern Pontide, NE Turkey, Turkish Journal of Earth Science, 18, 29-53.
- Temizel, İ., Arslan, M., Ruffet, G. ve Peucat, J.J., 2012. Petrochemistry, geochronology and Sr–Nd isotopic systematics of the Tertiary collisional and post-collisional volcanic rocks from the Ulubey (Ordu) area, eastern Pontide, NE Turkey: Implications for extension-related origin and mantle source characteristics, <u>Lithos</u>, 128, 126-147.
- Tepley, FJ., Davidson, JP., Tilling, RI. ve Arth, JG., 2000. Magma mixing, recharge and eruption histories recorded in plagioclase phenocrysts from El Chichón Volcano, Mexico, <u>Contrib Mineral Petrol</u>, 41, 1397–1411.
- Terlemez, İ. ve Yılmaz, A., 1980. Ünye-Ordu-Koyulhisar-Reşadiye arasında kalan yörenin stratigrafisi, TJK Bülteni, 23, 2, 179-192.
- Thibault,Y., Edgar, AD. ve Lloyd, FE., 1992. Experimental investigation of melts from a carbonated phlogopite lherzolite: implications for metasomatism in the continental lithosphere, <u>American Mineralogist</u>, 77, 784-794.
- Thirlwall, MF., Smith, TE., Graham, AM., Theodorou, N., Hollings, P., Davidson, JP. ve Arculus, R.J., 1994. High field strength element anomalies in arc lavas; source or process? <u>Journal of Petrology</u>, 35/3, 819-838.
- Thirlwall, MF., Graham, AM., Arculus, RJ., Harmon, RS. ve Macpherson, CG., 1996. Resolution of the effects of crustal assimilation, sediment subduction, and fluid transport in island arc magmas: Pb-Sr-Nd-O isotope geochemistry of Grenada, Lesser Antilles, <u>Geochimica et Cosmochimica Acta</u>, 60, 23, 4785-4810.
- Thompson, RN., Morrison, MA., Hendry, GL. ve Parry, SJ., 1984. An assessment of the relative roles of crust and mantle in magma genesis: An elemental approach, <u>Philosophical Transactions of the Royal Society</u>, London, 310, 549-590.
- Thompson, R.N. ve Gibson, S.A., 2000. Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites, <u>Nature</u>, 407, 502–506.
- Tischendorf, G., Gottesmann, B., Förster, HJ. ve Trumbull, RB., 1997. On Li-bearing micas: estimating Li from electron microprobe analyses and improved diagram for graphical representation, <u>Mineral Mag</u>, 61, 809–834.

- Trol, VR. ve Schmincke, HU., 2002. Magma mixing and crustal recycling recorded in ternary feldspar from compositionally zoned peralkaline ignimbrite 'A', Gran Canaria, Canary Islands, <u>J Petrol</u>, 43, 243–270.
- Tokel, S., 1977. Doğu Karadeniz Bölgesi'nde Eosen Yaşlı Kalkalkalen Andezitler ve Jeotektonizma, <u>TJK Bülteni</u>, 20, 1, 49-54.
- Tokel, S., 1995. Magmatic and Geochemical Evolution of the Pontide Segment of the Northern Tethys Subduction System. In: Geology of the Black Sea Region, A. Erler vd. (Eds.), Proceedings of the Inter. Semp. on the Geology of the Black Sea Region, MTA, Ankara, 163-170.
- Topuz, G., Altherr, R., Satır, M. ve Schwarz, WH., 2004a. Low-grade metamorphic rocks from the Pulur complex, NE Turkey: implications for the pre-Liassic evolution of the Eastern Pontides. Int J Earth Sci 93, 72–91.
- Topuz, G., Altherr, R., Kalt, A., Satır, M., Werner, O. ve Schwartz, WH., 2004b. Aluminous granulites from the Pulur Complex, NE Turkey: a case of partial melting, efficient melt extraction and crystallisation. <u>Lithos</u>, 72, 183–207.
- Topuz, G., Altherr, R., Schwarz, W.H., Siebel, W., Satir, M. ve Dokuz, A., 2005. Postcollisional plutonism with adakite-like signatures: the Eocene Saraycik granodiorite (Eastern Pontides, Turkey). <u>Contributions to Mineralogy and Petrology</u>, 150, 441–455.
- Topuz, G., Altherr, R., Siebel, W., Schwarz, WH., Zack, T., Hasözbek, A., Barth, M., Satır, M. ve Şen, C., 2010. Carboniferous high-potassiumI-type granitoid magmatism in the Eastern Pontides: the Gu⁻mu⁻s,hane pluton (NE Turkey). <u>Lithos</u> 116, 92–110.
- Topuz, G., Okay, AI., Altherr, R., Schwarz, WH., Siebel, W., Zack, T., Satır, M. ve Şen, C.,2011. Post-collisional adakite-like magmatism in the Ag`vanis Massif and implications for the evolution of the Eocene magmatism in the Eastern Pontides (NE Turkey), <u>Lithos</u> 125,131–150.
- Tsuchiyama, A., 1985. Dissolution kinetics of plagioclase in the melt system diopsidealbite-anorthite, and origin of dusty plagioclase in andesites, <u>Contrib Mineral Petrol</u>, 89, 1–16.
- Turner, S., Hawkesworth, C., Gallagher, K., Stewart, K., Peate, D. ve Mantovani, M., 1996. Mantle plumes, flood basalts, and thermal models for melt generation beneath continents: assessment of a conductive heating model and application to the Paran. <u>Journal of Geophysical Research</u>, 101, 11503-11518.
- Turner, S., Platt, JP., George, RM. M., Kelley, SP., Pearson, DG. and Nowell, GM., 1999. Magmatism associated with orogenic collapse of the Betic–Alboran domain, SE Spain, Journal of Petrology, 40, 1011–1036.

- Turner, S., 2005. Some remarks on magmatic processes beneath island arc volcanoes. Advances in Science, Earth Sciences, Imperial College Press.
- Uchida, E., Endo, S. ve Makino, M., 2007. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits Resource Geology 57, 47–56.
- URL-1, http://earthref.org/databases. Paylaşım katsayısı. 21 Mayıs 2013.
- Vaselli, O., Downes, H., Thirlwall, MF., Dobosi, G., Coradossi, N., Seghedi, I., Szakacs, A. ve Vannucci, R., 1995. Ultramafic xenoliths in Plio-Pleistocene alkali basalts from the eastern Transylvanian Basin; depleted mantle enriched by vein metasomatism, Journal of Petrology, 36, 23–53.
- Venezky, DY. ve Rutherford, MJ., 1997. Preeruption conditions and timing of daciteandesite magma mixing in the 2.2 ka eruption at Mount Rainier, <u>J Geophys Res</u>, 102, 20069–20086.
- Vernon, H.R., 2004. A practical guide to rock microstructure, Cambridge University Press.
- Walker, GPL., 1992. Morphometric study of pillow size spectrum among pillow lavas. Bull Volcanol 54, 459-474.
- Wallace, PJ. ve Carmichael, ISE., 1994. Petrology of Volcan Tequila, Jalisco, Mexico: disequilibrium phenocryst assemblages and evolution of the subvolcanic magma system, <u>Contrib Mineral Petrol</u>, 117, 345–361.
- Walter, MJ., 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere, Journal of Petrology, 39, 29–60.
- Wass, SY., 1979. Multiple origins of clinopyroxenes in alkali basaltic rocks, <u>Lithos</u>, 12, 115-132.
- Weaver, BL., 1991. The origin of ocean island end-member compositions: trace element and isotopic constraints, <u>Earth Planet. Sci. Lett.</u>, 104, 381-397.
- White, WM. ve Patchett, J., 1984. Hf-Nd-Sr isotopes and incompatible element abundances in island arcs: implications for magma origins and crust mantle evolution, Earth and Planetary Science Letters, 67, 167-185.
- White, WM., 1985. Sources of oceanic basalts; radiogenic isotope evidence, <u>Geology</u>, 13, 115-118.
- Wimmenauer, W., 1985. Petrography of Magmatic and Metamorphic Rocks. Stuttgart, Germany.
- Wones, DR. ve Eugster, HP., 1965. Stability of biotite: experiment, theory, and application. <u>Am Mineral</u> 50, 1228–1272.

- Wones, DR., 1989. Significance of the assemblage titanite+magnetite+quartz in granitic rocks: <u>Am Mineral</u> 74, 744–749.
- Wood, DA., Joron, JL. ve Treuil, M., 1979. A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings, <u>Earth Planet. Sci. Letts</u>, 45, 326-336.
- Wood, DA., 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmaticclassification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province, Earth and Planetary Science Letters, 50, 11-30.
- Yaxley, GM. ve Green, DH., 1998. Reactions between eclogite and peridotite: Mantle refertilization by subducted oceanic crust, <u>Schweizerische Mineralogische und Petrographische Mitteilungen</u>, 78, 243-255.
- Yılmaz, S. ve Boztuğ, D., 1996. Space and time relations of three plutonic phases in the Eastern Pontides, Turkey, International Geology Review, 38, 935–956.
- Yılmaz, C., Şen, C. ve Özgür, S., 2001. Timing of the earliest andesitic volcanity activity in the Eastern Pontide volcanic arc, Inter. Earth Sci. Coll. On the Aegean Region, İzmir, 47-55.
- Yılmaz, K., 2010. Origin of anorogenic 'lamproite-like' potassic lavas from the Denizli region in Western Anatolia Extensional Province, Turkey. <u>Mineralogy and</u> <u>Petrology</u>, 99, 219-239.
- Zhang, HF., Ying, JF., Shimoda, G., Kita, TN., Morishita, Y., Shao, JA. ve Tang, YJ., 2007. Importance of melt circulation and crust mantle interaction in the lithospheric evolution beneath the North China Craton: Evidence from Mesozoic basalt-borne clinopyroxene xenocrysts and pyroxenite xenoliths, <u>Lithos</u>, 96, 67–89.
- Zhu, DC., Pan, GT., Mo, XX., Liao, ZL., Jiang, XS., Wang, LQ. ve Zhao, Z., 2006. Petrogenesis of volcanic rocks in the Sangxiu Formation, central segment of Tethyan Himalaya: A probable example of plume–lithosphere interaction, <u>Journal of Asian</u> <u>Earth Sciences</u>, 29, 2-3, 320-335.
- Zhu, Y. ve Ogasawara, Y., 2004. Clinopyroxene phenocrysts (with green salite cores) in trachybasalts: implications for two magma chambers under the Kokchetav UHP massif, North Kazakhstan, Journal of Asian Earth Sciences, 22, 517–527.
- Zindler, A. ve Hart, S., 1986. Chemical geodynamics. <u>Annual Review of Earth and</u> <u>Planetary Sciences</u>, 14, 493–571.
| | | • | | • | | - | | | - | | • | | | | | | | |
|--------------------|-------------------------|-----------|------------|----------|-----------|------------|-----------|-------------|----------|-----------|-----------|------------|------------|-----------|-----------|-----------|--------|--------|
| Örnek | 114 | 114 | 114 | 114 | 114 | 114 | 114 | 114 | 114 | 114 | 114 | 114 | <u>114</u> | 118 | 118 | 118 | 118 | 118 |
| Mineral | kpir-1 | kpir-1 | kpir-1 | kpir-1 | kpir-1 | kpir | kpir-2 | kpir-2 | kpir-2 | kpir-2 | kpir | kpir-4 | kpir-4 | kpir-2 | kpir-2 | kpir-2 | kpir-2 | kpir-2 |
| | feno | feno | feno | feno | feno | mik | feno | feno | feno | feno | ink | feno | feno | feno | feno | feno | feno | feno |
| | mer | mant1 | mant2 | ken1 | ken2 | mer | mer | mant | ken1 | ken2 | mer | mer | ken | mer | mant1 | mant2 | ken1 | ken2 |
| SiO_2 | 47.78 | 47.18 | 46.86 | 49.32 | 50.39 | 50.67 | 47.93 | 46.31 | 46.58 | 49.50 | 47.74 | 48.31 | 46.93 | 49.70 | 50.19 | 46.51 | 47.91 | 46.93 |
| TiO_2 | 1.20 | 1.45 | 1.19 | 0.91 | 06.0 | 0.87 | 1.26 | 1.35 | 1.36 | 0.91 | 1.34 | 0.89 | 1.42 | 1.03 | 0.95 | 1.86 | 1.42 | 1.88 |
| Al_2O_3 | 6.96 | 7.37 | 6.83 | 4.97 | 3.31 | 3.53 | 6.77 | 7.48 | 7.45 | 4.57 | 6.79 | 6.50 | 7.15 | 5.05 | 4.50 | 7.54 | 6.38 | 6.95 |
| FeO | 7.64 | 7.37 | 8.48 | 7.69 | 8.23 | 7.23 | 6.80 | 8.80 | 8.38 | 7.68 | 7.52 | 7.35 | 8.06 | 5.45 | 5.54 | 7.92 | 7.50 | 7.83 |
| MnO | 0.15 | 0.10 | 0.24 | 0.23 | 0.27 | 0.26 | 0.02 | 0.16 | 0.17 | 0.21 | 0.12 | 0.12 | 0.16 | 0.08 | 0.05 | 0.26 | 0.17 | 0.17 |
| MgO | 13.00 | 12.89 | 12.37 | 13.33 | 14.65 | 15.11 | 13.19 | 11.63 | 12.04 | 13.71 | 12.61 | 13.32 | 12.46 | 14.68 | 14.93 | 12.94 | 13.22 | 12.34 |
| CaO | 23.21 | 23.00 | 23.20 | 23.29 | 22.33 | 22.79 | 23.65 | 23.37 | 23.58 | 22.83 | 23.27 | 23.69 | 23.45 | 23.78 | 23.63 | 22.96 | 22.97 | 22.93 |
| Na_2O | 0.19 | 0.27 | 0.28 | 0.27 | 0.22 | 0.26 | 0.23 | 0.27 | 0.26 | 0.26 | 0.29 | 0.25 | 0.31 | 0.22 | 0.27 | 0.33 | 0.28 | 0.27 |
| K_2O | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 |
| Cr_2O_3 | 0.00 | 0.05 | 0.01 | 0.02 | 0.05 | 0.02 | 0.07 | 0.00 | 0.03 | 0.03 | 0.00 | 0.00 | 0.05 | 0.21 | 0.23 | 0.00 | 0.04 | 0.04 |
| Toplam | 100.13 | 99.68 | 99.46 | 100.03 | 100.35 | 100.74 | 99.92 | 99.38 | 99.87 | 99.72 | 99.68 | 100.43 | 100.00 | 100.20 | 100.29 | 100.32 | 99.89 | 99.36 |
| Si | 1.78 | 1.77 | 1.77 | 1.84 | 1.88 | 1.87 | 1.79 | 1.76 | 1.76 | 1.85 | 1.79 | 1.80 | 1.76 | 1.84 | 1.85 | 1.74 | 1.79 | 1.77 |
| Ti | 0.03 | 0.04 | 0.03 | 0.03 | 0.03 | 0.02 | 0.04 | 0.04 | 0.04 | 0.03 | 0.04 | 0.03 | 0.04 | 0.03 | 0.03 | 0.05 | 0.04 | 0.05 |
| AI | 0.31 | 0.33 | 0.30 | 0.22 | 0.15 | 0.15 | 0.30 | 0.33 | 0.33 | 0.20 | 0.30 | 0.29 | 0.32 | 0.22 | 0.20 | 0.33 | 0.28 | 0.31 |
| Fe^{+2} | 0.24 | 0.23 | 0.27 | 0.24 | 0.26 | 0.22 | 0.21 | 0.28 | 0.26 | 0.24 | 0.24 | 0.23 | 0.25 | 0.17 | 0.17 | 0.25 | 0.23 | 0.25 |
| Mn | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 |
| Mg | 0.72 | 0.72 | 0.70 | 0.74 | 0.81 | 0.83 | 0.73 | 0.66 | 0.68 | 0.77 | 0.71 | 0.74 | 0.70 | 0.81 | 0.82 | 0.72 | 0.74 | 0.69 |
| Ca | 0.93 | 0.92 | 0.94 | 0.93 | 0.89 | 0.90 | 0.95 | 0.95 | 0.95 | 0.92 | 0.94 | 0.94 | 0.94 | 0.94 | 0.93 | 0.92 | 0.92 | 0.93 |
| Na | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
| Cr | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 |
| Toplam | 4.02 | 4.03 | 4.04 | 4.03 | 4.05 | 4.02 | 4.04 | 4.05 | 4.05 | 4.04 | 4.04 | 4.05 | 4.04 | 4.04 | 4.03 | 4.04 | 4.03 | 4.03 |
| Mg # | 0.75 | 0.76 | 0.72 | 0.76 | 0.76 | 0.79 | 0.78 | 0.70 | 0.72 | 0.76 | 0.75 | 0.76 | 0.73 | 0.83 | 0.83 | 0.74 | 0.76 | 0.74 |
| Wo | 49.03 | 49.22 | 49.21 | 48.54 | 45.29 | 45.94 | 50.02 | 50.29 | 50.24 | 47.54 | 49.79 | 49.37 | 49.74 | 49.05 | 48.48 | 48.56 | 48.56 | 49.52 |
| En | 38.22 | 38.40 | 36.52 | 38.67 | 41.35 | 42.37 | 38.81 | 34.82 | 35.71 | 39.72 | 37.55 | 38.61 | 36.80 | 42.12 | 42.63 | 38.08 | 38.89 | 37.07 |
| Fs | 12.75 | 12.38 | 14.27 | 12.79 | 13.36 | 11.69 | 11.17 | 14.89 | 14.05 | 12.74 | 12.66 | 12.02 | 13.46 | 8.83 | 8.89 | 13.36 | 12.55 | 13.41 |
| Mg#=Mg/(Mg- | +Fe ⁺²). F(| ərmül 6 (| oksijen üz | zerinden | hesaplanı | mıştır. Kı | Isaltmala | r: kpir: kl | inopirok | sen; feno | :fenokris | stal; mik: | mikrolit | ; mant: n | nanto; in | k: inklüz | yon. | |

Ek Tablo A1. Eosen yaşlı volkanik breşlere ait klinopiroksenlerin mikroprob analiz sonuçları

8. EKLER

Örnek	118	118	118	118	118	118	118	240	240	240	240	240	250	250	250	250	250	250
Mineral	kpir-3	kpir-3	kpır-3	kpır-4	kpır-4	kpır-4	kpır	kpır-1	kpir-1	kpır-1	kpir-1	kpir-1	kpir-1	kpır-1	kpir-2	kpir-2	kpir-3	kpir-3
	feno	feno	feno	feno	feno	feno	mik	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno
	mer	mant	ken	mer	mant	ken	mer	mer	mant	ken	mer	ken	mer	ken	mer	ken	mer	ken
SiO_2	49.78	48.12	45.77	46.45	49.74	44.48	49.72	50.66	51.14	50.93	49.88	50.98	52.76	51.55	52.92	52.18	52.39	49.59
TiO_2	1.37	1.46	2.76	1.60	1.36	3.35	1.40	0.73	0.73	0.65	0.84	0.65	0.37	0.53	0.27	0.40	0.48	0.88
Al_2O_3	3.51	5.83	7.22	8.32	3.69	7.79	3.94	3.43	2.97	3.14	4.09	3.01	1.61	2.94	1.20	1.99	2.00	4.87
FeO	8.75	7.67	9.98	8.16	8.52	10.59	8.55	9.13	9.21	8.86	8.77	9.13	8.94	7.96	8.91	8.95	8.94	8.09
MnO	0.25	0.16	0.28	0.13	0.20	0.28	0.17	0.30	0.29	0.29	0.30	0.36	0.62	0.33	0.93	0.56	0.53	0.24
MgO	13.54	13.32	11.52	12.22	13.44	11.27	13.45	13.94	14.27	14.37	14.23	14.38	15.10	15.14	14.98	15.06	14.77	13.97
CaO	22.17	22.85	21.48	22.39	22.08	21.73	22.63	21.24	21.15	21.05	21.29	21.08	20.87	21.30	20.97	20.90	20.83	22.44
Na_2O	0.29	0.29	0.42	0.37	0.27	0.46	0.30	0.39	0.32	0.37	0.32	0.36	0.36	0.31	0.31	0.36	0.33	0.30
K_2O	0.02	0.02	0.03	0.03	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.03
Cr_2O_3	0.02	0.04	0.02	0.01	0.00	0.01	0.03	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.01	0.00	0.00	0.00
Toplam	99.70	99.76	99.48	99.68	99.30	96.66	100.19	99.82	100.09	99.67	99.75	96.66	100.63	100.06	100.50	100.40	100.27	100.41
Si	1.87	1.80	1.74	1.75	1.87	1.70	1.86	1.90	1.91	1.91	1.87	1.90	1.95	1.91	1.96	1.94	1.95	1.85
Ti	0.04	0.04	0.08	0.05	0.04	0.10	0.04	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.02
Al	0.16	0.26	0.32	0.37	0.16	0.35	0.17	0.15	0.13	0.14	0.18	0.13	0.07	0.13	0.05	0.09	0.09	0.21
Fe^{+2}	0.27	0.24	0.32	0.26	0.27	0.34	0.27	0.29	0.29	0.28	0.27	0.29	0.28	0.25	0.28	0.28	0.28	0.25
Mn	0.01	0.00	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.03	0.02	0.02	0.01
Mg	0.76	0.75	0.65	0.69	0.75	0.64	0.75	0.78	0.79	0.80	0.79	0.80	0.83	0.84	0.83	0.83	0.82	0.78
Ca	0.89	0.92	0.88	06.0	0.89	0.89	0.91	0.85	0.85	0.84	0.85	0.84	0.83	0.85	0.83	0.83	0.83	0.89
Na	0.02	0.02	0.03	0.03	0.02	0.03	0.02	0.03	0.02	0.03	0.02	0.03	0.03	0.02	0.02	0.03	0.02	0.02
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	4.02	4.03	4.03	4.05	4.01	4.06	4.03	4.03	4.02	4.03	4.01	4.02	4.02	4.02	4.01	4.03	4.02	4.03
Mg #	0.73	0.76	0.67	0.73	0.74	0.65	0.74	0.73	0.73	0.74	0.74	0.74	0.75	0.77	0.75	0.75	0.75	0.75
Wo	46.20	48.16	47.24	48.88	46.42	47.47	47.04	44.29	43.72	43.73	44.24	43.50	42.31	43.65	42.37	42.45	42.72	46.44
En	39.25	39.08	35.27	37.13	39.32	34.23	38.89	40.44	41.03	41.51	41.15	41.29	42.60	43.15	42.13	42.54	42.14	40.22
Fs	14.55	12.76	17.49	13.99	14.26	18.30	14.07	15.27	15.25	14.76	14.61	15.21	15.09	13.20	15.50	15.01	15.14	13.34
Mg#=Mg/(Mg	+Fe ⁺²). Fi	ormül 6 (oksijen ü.	zerinden	hesaplan	mıştır. Kı	saltmala	r: kpir: kl	linopirok	sen; feno	:fenokris	tal; mik:	mikrolit	; mant: n	nanto.			

ı devamı	
A1'ir	
Tablo	
Ek	

Örnek	301	301	301	301	301	301	301	301	301	301	301	301	301	301	301	363	363	363
Mineral	kpir-1	kpir-1	kpir-1	kpir-1	kpir-1	kpir-2	kpir-2	kpir-2	kpir-3	kpir-3	kpir-3	kpir-3	kpir-4	kpir-4	kpir-4	kpir-1	kpir-1	kpir-1
	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	prfl	prfl	prfl
	mer	mant1	mant2	ken1	ken2	mer	mant	ken	mer	mant	ken1	ken2	mer	mant	ken	ken		Ť
SiO_2	49.34	48.21	48.30	48.22	49.88	48.83	50.00	48.62	48.18	48.11	48.86	49.43	51.88	47.30	50.35	50.33	49.70	49.52
TiO ₂	0.20	0.17	0.16	0.15	0.14	0.12	0.13	0.17	0.15	0.17	0.16	0.21	0.12	0.18	0.20	0.57	0.64	0.68
Al_2O_3	4.73	5.75	5.72	5.58	4.20	4.90	4.50	5.19	5.81	5.74	5.49	4.68	2.70	6.19	4.23	4.20	4.69	5.05
FeO	7.32	8.12	8.09	7.83	7.22	7.28	7.40	7.87	7.93	7.67	8.09	7.69	4.94	8.38	7.66	69.9	6.67	6.96
MnO	0.65	0.70	0.80	0.93	0.64	0.66	0.68	0.70	0.76	0.84	0.75	0.72	0.39	0.92	0.64	0.09	0.14	0.11
MgO	14.12	13.45	13.32	13.19	14.38	14.10	14.25	13.61	13.23	13.36	13.47	14.27	15.50	13.15	14.19	14.75	14.57	14.46
CaO	22.21	22.54	22.57	22.68	22.54	22.47	22.63	22.59	22.95	22.67	22.92	22.36	23.86	22.59	22.34	22.35	22.56	22.30
Na_2O	0.29	0.33	0.32	0.34	0.31	0.34	0.29	0.39	0.35	0.35	0.34	0.31	0.24	0.33	0.33	0.28	0.27	0.26
K_2O	0.00	0.04	0.01	0.02	0.00	0.01	0.02	0.02	0.00	0.00	0.00	0.02	0.00	0.00	0.03	0.02	0.01	0.00
Cr_2O_3	0.20	0.12	0.11	0.07	0.09	0.23	0.19	0.16	0.14	0.12	0.15	0.06	0.48	0.15	0.08	0.40	0.52	0.47
Toplam	90.06	99.43	99.40	99.01	99.40	98.94	100.09	99.32	99.50	99.03	100.23	99.75	100.11	99.19	100.05	99.68	77.66	99.81
Si	1.86	1.82	1.82	1.83	1.87	1.84	1.86	1.84	1.82	1.82	1.83	1.85	1.91	1.80	1.88	1.87	1.85	1.84
Ti	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.02	0.02	0.02
Al	0.21	0.26	0.25	0.25	0.19	0.22	0.20	0.23	0.26	0.26	0.24	0.21	0.12	0.28	0.19	0.18	0.21	0.22
Fe^{+2}	0.23	0.26	0.26	0.25	0.23	0.23	0.23	0.25	0.25	0.24	0.25	0.24	0.15	0.27	0.24	0.21	0.21	0.22
Mn	0.02	0.02	0.03	0.03	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.02	0.01	0.03	0.02	00.00	0.00	0.00
Mg	0.79	0.76	0.75	0.75	0.80	0.79	0.79	0.77	0.74	0.75	0.75	0.80	0.85	0.74	0.79	0.82	0.81	0.80
Ca	06.0	0.91	0.91	0.92	0.91	0.91	06.0	0.91	0.93	0.92	0.92	0.90	0.94	0.92	0.89	0.89	06.00	0.89
Na	0.02	0.02	0.02	0.03	0.02	0.02	0.02	0.03	0.03	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00
Cr	0.01	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.02	0.01
Toplam	4.05	4.05	4.04	4.06	4.04	4.04	4.03	4.05	4.05	4.05	4.03	4.05	4.01	4.07	4.04	4.02	4.04	4.02
Mg #	0.77	0.75	0.75	0.75	0.78	0.78	0.77	0.76	0.75	0.76	0.75	0.77	0.85	0.74	0.77	0.80	0.80	0.79
Wo	46.24	46.90	47.05	47.45	46.35	46.60	46.44	46.93	47.75	47.40	47.27	45.90	48.13	47.01	46.04	46.45	46.89	46.56
En	40.91	38.95	38.65	38.41	41.14	40.70	40.72	39.34	38.30	38.87	38.66	40.76	43.53	38.09	40.70	42.63	42.14	42.01
Fs	12.85	14.15	14.30	14.14	12.51	12.70	12.84	13.73	13.95	13.73	14.07	13.34	8.34	14.90	13.26	10.92	10.97	11.43
Mg#=Mg/(Mg-	+Fe ⁺²). Fc	ormül 6 (oksijen ü:	zerinden	hesaplan	mıştır. K	usaltmala	ır: kpir: k	clinopirol	csen; fen	o:fenokri	istal; mar	nt: manto	; prfl: pr	ofil.			

nuçları
analiz sc
roprob
mikı
lerin
ksen
piro
kline
ait
lavlara
yastık
yaşlı
2. Eosen
0 A
Table
Ek

Örnek	363	363	363	363	363	<u>363</u>	<u>363</u>	363	363	<u>363</u>	<u>363</u>	363	<u>363</u>	363	<u>363</u>	<u>363</u>	363	363
Mineral	kpir-1	kpir-1	kpir-1	kpir-1	kpir-1	kpir-1	kpir-1	kpir-1	kpir-1	kpir-1	kpir-1	kpir-1	kpir-1	kpir-1	kpir-1	kpir-1	kpir-1	kpir-1
	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl
																		♠
SiO_2	49.64	49.86	48.66	48.86	49.89	50.32	50.83	50.55	50.29	50.26	51.16	50.48	50.87	51.53	51.69	50.23	50.32	49.81
TiO ₂	0.60	0.57	0.82	0.70	0.62	0.64	0.39	0.51	0.44	0.53	0.51	0.51	0.47	0.45	0.36	0.58	0.56	0.70
Al_2O_3	4.69	4.72	5.43	5.44	4.62	4.56	3.47	4.21	4.20	4.33	3.70	4.15	3.77	3.16	3.21	4.42	4.39	4.57
FeO	7.04	6.91	7.58	7.80	7.24	6.98	6.26	6.60	6.62	6.64	6.08	6.50	6.11	6.30	6.02	6.97	7.06	7.04
MnO	0.12	0.14	0.15	0.13	0.19	0.10	0.11	0.12	0.09	0.11	0.12	0.06	0.14	0.17	0.20	0.14	0.14	0.10
MgO	14.41	14.28	13.30	13.86	14.67	14.74	15.34	14.59	14.80	14.70	14.87	14.95	15.15	15.54	15.17	14.51	14.45	14.35
CaO	22.52	22.48	22.29	22.39	22.60	22.39	22.70	22.83	22.57	22.24	22.50	22.14	22.96	22.78	22.28	22.43	22.62	22.41
Na_2O	0.22	0.27	0.30	0.26	0.26	0.26	0.25	0.21	0.24	0.26	0.26	0.24	0.23	0.24	0.21	0.27	0.27	0.23
K_2O	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.01	0.00	0.00	0.01	0.00	0.00	0.03
Cr_2O_3	0.19	0.51	0.13	0.26	0.24	0.24	0.50	0.31	0.26	0.42	0.53	0.45	0.46	0.23	0.39	0.42	0.37	0.20
Toplam	99.44	99.75	98.66	99.71	100.33	100.23	99.85	99.93	99.51	99.51	99.75	99.49	100.16	100.40	99.54	76.66	100.18	99.44
Si	1.86	1.86	1.84	1.83	1.85	1.86	1.89	1.88	1.87	1.87	1.89	1.88	1.88	1.90	1.91	1.87	1.87	1.86
Ti	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02
AI	0.21	0.21	0.24	0.24	0.20	0.20	0.15	0.18	0.18	0.19	0.16	0.18	0.16	0.14	0.14	0.19	0.19	0.20
Fe^{+2}	0.22	0.22	0.24	0.24	0.22	0.22	0.19	0.20	0.21	0.21	0.19	0.20	0.19	0.19	0.19	0.22	0.22	0.22
Mn	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00
Mg	0.80	0.79	0.75	0.77	0.81	0.81	0.85	0.81	0.82	0.82	0.82	0.83	0.83	0.85	0.84	0.80	0.80	0.80
Са	06.0	06.0	06.0	06.0	06.0	0.89	06.0	0.91	0.90	0.89	0.89	0.88	0.91	06.0	0.88	0.89	0.90	06.0
Na	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
К	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Toplam	4.04	4.03	4.01	4.03	4.04	4.03	4.02	4.02	4.02	4.02	4.00	4.01	4.01	4.03	4.01	4.02	4.03	4.03
Mg #	0.78	0.79	0.76	0.76	0.78	0.79	0.81	0.80	0.80	0.80	0.81	0.80	0.82	0.81	0.82	0.79	0.79	0.78
Wo	46.79	47.01	47.64	46.83	46.35	46.28	46.34	47.22	46.68	46.4	46.85	46.09	46.97	46.09	46.19	46.6	46.82	46.78
En	41.68	41.55	39.54	40.34	41.86	42.37	43.58	41.99	42.57	42.67	43.09	43.30	43.11	43.76	43.75	41.94	41.63	41.66
Fs	11.53	11.44	12.82	12.83	11.79	11.35	10.08	10.79	10.75	10.93	10.06	10.61	9.92	10.15	10.06	11.46	11.55	11.56
Mg#=Mg/(Mg	+Fe ⁺²). Fα	ormül 6 (oksijen üz	zerinden	hesaplan	mıştır. K	Isaltmala	r: kpir: k	linopirok	sen; prfl:	: profil.							

Ek Tablo A2'nin devamı

	136	636	150	120	636	150	676	150	150	151	151	151	136	151	1.71	676	676	1.76
Umek	202	505	<u>505</u>	205	505	202	202	<u>505</u>	505	<u>505</u>	505	205	505	205	202	505	202	505
Mineral	kpir-1	kpir-1	kpir-1	kpir-1	kpir-1	kpir-2	kpir-2	kpir-2	kpir-3	kpir-3	kpir-3	kpir-3	kpir	kpir	kpir-5	kpir-5	kpir-5	kpir-5
	prfl	prfl	prfl	prfl	prfl	feno	feno	feno	feno	feno	feno	feno	mik-1	mik-2	prfl	prfl	prfl	prfl
					ken	mer	mant	ken	mer	mant	kenl	ken2	mer	mer	mer			♠
SiO ₂	49.79	50.02	50.71	50.52	47.54	53.67	53.05	47.98	50.29	53.44	53.15	50.39	50.90	47.33	52.82	48.67	50.70	49.67
TiO ₂	0.53	0.62	0.55	0.54	1.02	0.19	0.39	1.01	0.58	0.18	0.24	0.50	0.58	0.86	0.29	0.78	0.49	0.66
Al_2O_3	4.41	4.74	3.78	4.03	6.51	1.42	2.02	6.58	4.20	1.85	1.78	3.88	3.41	6.10	2.29	5.40	3.82	4.65
FeO	6.72	6.62	6.31	6.52	8.76	5.06	5.29	8.41	6.84	5.16	4.52	6.73	7.88	9.44	5.39	7.71	6.51	7.43
MnO	0.10	0.11	0.10	0.19	0.20	0.06	0.11	0.15	0.17	0.14	0.13	0.17	0.21	0.12	0.05	0.16	0.07	0.15
MgO	14.54	14.40	14.81	14.88	13.07	16.50	16.05	13.31	14.63	16.18	16.36	15.12	15.25	13.57	15.85	13.93	15.08	14.26
CaO	22.50	22.20	22.84	22.75	21.58	23.47	23.36	22.16	22.61	23.11	23.43	22.54	21.16	21.19	23.40	22.27	22.79	22.36
Na_2O	0.25	0.29	0.22	0.24	0.29	0.18	0.18	0.23	0.32	0.24	0.16	0.23	0.24	0.33	0.19	0.35	0.26	0.38
K_2O	0.00	0.00	0.01	0.00	0.00	0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.03	0.04	0.00	0.00	0.00	0.02
Cr_2O_3	0.44	0.52	0.32	0.59	0.11	0.39	0.27	0.09	0.43	0.57	0.58	0.66	0.02	0.03	0.22	0.20	0.22	0.37
Toplam	99.28	99.52	99.65	100.26	90.08	100.96	100.72	99.92	100.07	100.88	100.35	100.22	89.68	99.01	100.50	99.47	99.94	99.95
Si	1.86	1.86	1.88	1.87	1.80	1.95	1.94	1.80	1.87	1.95	1.94	1.87	1.90	1.80	1.93	1.83	1.88	1.85
Ti	0.01	0.02	0.02	0.01	0.03	0.01	0.01	0.03	0.02	0.00	0.01	0.01	0.02	0.02	0.01	0.02	0.01	0.02
Al	0.19	0.21	0.17	0.18	0.29	0.06	0.09	0.29	0.18	0.08	0.08	0.17	0.15	0.27	0.10	0.24	0.17	0.20
Fe^{+2}	0.21	0.21	0.20	0.20	0.28	0.15	0.16	0.26	0.21	0.16	0.14	0.21	0.25	0.30	0.17	0.24	0.20	0.23
Mn	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.01	0.00	0.00	0.01	0.00	0.00
Mg	0.81	0.80	0.82	0.82	0.74	0.90	0.87	0.74	0.81	0.88	0.89	0.84	0.85	0.77	0.87	0.78	0.83	0.79
Са	06.00	0.89	0.91	0.90	0.87	0.92	0.91	0.89	06.0	06.0	0.92	0.90	0.84	0.86	0.92	06.0	0.91	0.89
Na	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.01	0.03	0.02	0.03
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr	0.01	0.02	0.01	0.02	0.00	0.01	0.01	0.00	0.01	0.02	0.02	0.02	0.00	0.00	0.01	0.01	0.01	0.01
Toplam	4.01	4.03	4.03	4.03	4.04	4.01	4.00	4.03	4.03	4.01	4.01	4.05	4.04	4.04	4.02	4.06	4.03	4.02
Mg #	0.79	0.80	0.81	0.80	0.73	0.85	0.84	0.74	0.79	0.85	0.87	0.80	0.78	0.72	0.84	0.76	0.81	0.77
Wo	46.85	46.78	47.15	46.74	46.21	46.54	46.82	46.84	46.71	46.44	47.03	46.06	43.49	44.68	47.09	46.66	46.64	46.53
En	42.13	42.20	42.56	42.56	38.95	45.54	44.75	39.16	42.07	45.26	45.70	43.01	43.60	39.80	44.38	40.60	42.93	41.28
$\mathbf{F}_{\mathbf{S}}$	11.02	11.02	10.29	10.70	14.84	7.92	8.43	14.00	11.22	8.30	7.27	10.93	12.91	15.52	8.53	12.74	10.43	12.19
Mg#=Mg/(Mg	+Fe ⁺²). Fc	ormül 6 c	oksijen üz	zerinden l	nesaplan	mıştır. Kı	saltmala	:: kpir: k	linopirok	sen; feno	:fenokris	stal; mik:	mikrolit	; mant: n	nanto; pr.	fl: profil.		

Ek Tablo A2'nin devamı

Örnek	<u>363</u>	363	373	373	373	373	373	<u>373</u>	373	373	373	373	373	373	373	373	<u>373</u>	373
Mineral	kpir-5	kpir-5	kpir-1	kpir-1	kpir-1	kpir-1	kpir-1	kpir-1	kpir-2	kpir-2	kpir-2	kpir-3	kpir-3	kpir	kpir-4	kpir-4	kpir-4	kpir
	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	feno	feno	feno	feno	feno	mik	feno	feno	feno	mik
							♠	ken	mer	mant	ken	mer	ken	mer	mer	mant	ken	mer
SiO ₂	50.33	48.68	51.43	51.23	48.23	50.75	49.30	48.56	51.34	52.44	48.42	51.38	47.90	45.58	50.49	50.14	48.77	46.32
TiO ₂	0.53	0.73	0.46	0.43	0.80	0.46	0.75	0.76	0.44	0.38	0.84	0.33	0.98	1.90	0.48	0.57	0.85	1.34
Al_2O_3	4.33	5.57	2.74	2.93	5.67	3.76	4.92	6.01	3.18	2.66	5.61	3.10	5.70	6.32	3.83	4.15	5.22	6.28
FeO	6.68	8.33	5.91	5.66	8.46	6.26	8.05	8.18	5.58	4.82	8.65	5.70	9.40	13.43	6.22	6.47	8.77	11.64
MnO	0.09	0.13	0.18	0.17	0.22	0.15	0.15	0.17	0.12	0.15	0.14	0.16	0.17	0.34	0.15	0.15	0.17	0.28
MgO	14.70	13.93	15.38	15.21	13.88	15.06	14.27	13.79	15.79	16.14	13.52	15.58	13.21	9.98	14.77	14.48	13.50	12.04
CaO	22.90	21.98	23.50	23.10	22.04	22.41	22.45	22.22	23.27	23.67	22.13	23.13	21.88	20.95	23.12	23.24	21.93	20.76
Na_2O	0.33	0.29	0.28	0.27	0.31	0.29	0.30	0.28	0.21	0.22	0.28	0.25	0.32	0.46	0.22	0.25	0.32	0.36
K_2O	0.00	0.01	0.01	0.00	0.01	0.02	0.02	0.01	0.00	0.00	0.00	0.01	0.00	0.01	0.03	0.01	0.00	0.04
Cr_2O_3	0.63	0.13	0.24	0.40	0.22	0.53	0.08	0.34	0.48	0.59	0.00	0.45	0.04	0.07	0.33	0.41	0.00	0.04
Toplam	100.52	99.78	100.13	99.40	99.84	69.66	100.29	100.32	100.41	101.07	99.59	100.09	09.60	99.04	99.64	99.87	99.53	99.10
Si	1.86	1.82	1.90	1.91	1.81	1.88	1.84	1.81	1.89	1.91	1.82	1.90	1.81	1.77	1.88	1.87	1.84	1.78
Ti	0.01	0.02	0.01	0.01	0.02	0.01	0.02	0.02	0.01	0.01	0.02	0.01	0.03	0.06	0.01	0.02	0.02	0.04
AI	0.19	0.25	0.12	0.13	0.25	0.16	0.22	0.26	0.14	0.11	0.25	0.13	0.25	0.29	0.17	0.18	0.23	0.28
Fe^{+2}	0.21	0.26	0.18	0.18	0.27	0.19	0.25	0.26	0.17	0.15	0.27	0.18	0.30	0.44	0.19	0.20	0.28	0.37
Mn	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.01	0.01
Mg	0.81	0.78	0.85	0.84	0.78	0.83	0.79	0.77	0.87	0.88	0.76	0.86	0.74	0.58	0.82	0.80	0.76	0.69
Ca	0.91	0.88	0.93	0.92	0.89	0.89	06.0	0.89	0.92	0.92	0.89	0.92	0.89	0.87	0.92	0.93	0.88	0.85
Na	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.02	0.02	0.03
K	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr	0.02	0.00	0.01	0.01	0.01	0.02	0.00	0.01	0.01	0.02	0.00	0.01	0.00	0.00	0.01	0.01	0.00	0.00
Toplam	4.03	4.03	4.03	4.03	4.06	4.00	4.04	4.05	4.03	4.02	4.03	4.03	4.05	4.05	4.02	4.03	4.04	4.05
Mg #	0.80	0.75	0.82	0.83	0.75	0.81	0.76	0.75	0.83	0.86	0.74	0.83	0.71	0.57	0.81	0.80	0.73	0.65
Wo	47.12	45.89	47.36	47.33	45.86	46.34	46.15	46.42	46.85	47.35	46.36	46.86	45.91	46.08	47.56	47.9	46.04	44.45
En	42.09	40.47	43.13	43.38	40.20	43.36	40.83	40.09	44.25	44.93	39.41	43.94	38.58	30.54	42.28	41.52	39.45	35.88
Fs	10.79	13.64	9.51	9.29	13.94	10.30	13.02	13.49	8.90	7.72	14.23	9.20	15.51	23.38	10.16	10.58	14.51	19.67
Mg#=Mg/(Mg	;+Fe ⁺²). Fc	rmül 6 c	sksijen üz	zerinden l	hesaplan	mıştır. Kı	Isaltmala	r: kpir: k	linopirok	sen; fenc	:fenokris	stal; mik:	mikrolit	;; mant: n	nanto; pr	fl: profil.		

Ek Tablo A2'nin devam

Ek Tablo A2'nin devamı

Örnek	<u>637</u>	637	<u>637</u>	<u>637</u>	637	<u>637</u>	<u>637</u>	637	637	<u>637</u>	<u>637</u>	637	637	<u>637</u>	<u>637</u>	637
Mineral	kpir-1	kpir-1	kpir-1	kpir-2	kpir-2	Kpir-2	kpir-2	kpir-4	kpir-4	kpir-4	kpir-3	kpir-3	Kpir-3	kpir-3	kpir-5	kpir-5
	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno
	mer	mant	ken	mer	mant	ken1	ken2	mer	mant	ken	mer	mant	kenl	ken2	mer	ken
SiO_2	53.53	53.46	53.13	53.81	53.56	53.88	49.74	48.43	48.31	46.53	51.42	50.37	50.25	49.82	44.26	44.13
TiO_2	0.14	0.09	0.09	0.09	0.06	0.08	0.13	0.12	0.15	0.30	0.09	0.14	0.17	0.17	0.20	0.21
Al_2O_3	1.07	1.18	1.57	1.05	1.14	1.09	4.62	5.17	5.76	6.93	2.95	4.19	4.31	4.07	8.62	8.80
FeO	4.06	4.05	4.40	3.02	3.60	3.13	7.61	7.43	8.24	13.05	5.38	6.73	6.88	8.35	11.87	12.92
MnO	0.17	0.09	0.23	0.12	0.21	0.13	0.55	0.76	0.63	1.47	0.40	0.48	0.42	0.60	1.55	1.69
MgO	16.86	16.64	16.42	17.54	17.48	17.26	14.54	13.91	13.84	10.46	15.58	14.77	14.82	14.47	10.74	10.70
CaO	23.58	23.26	23.31	23.88	23.91	23.86	22.22	22.29	21.70	17.52	23.00	22.57	22.83	22.16	20.47	20.67
Na_2O	0.16	0.21	0.21	0.20	0.12	0.17	0.32	0.27	0.37	0.53	0.26	0.34	0.29	0.26	0.37	0.45
K_2O	0.00	0.02	0.00	00.00	0.00	0.00	0.02	0.00	0.02	0.22	0.02	0.01	0.00	0.00	0.06	0.01
Cr_2O_3	0.38	0.43	0.52	0.54	0.37	0.68	0.13	0.53	0.29	0.01	0.63	0.30	0.42	0.00	0.00	0.02
Toplam	99.95	99.43	99.88	100.25	100.45	100.28	99.88	98.91	99.31	97.02	99.73	06.66	100.39	06.66	98.14	<u>99.60</u>
Si	1.96	1.97	1.95	1.96	1.95	1.96	1.86	1.83	1.82	1.83	1.91	1.87	1.86	1.87	1.73	1.71
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.01
Al	0.05	0.05	0.07	0.05	0.05	0.05	0.20	0.23	0.26	0.32	0.13	0.18	0.19	0.18	0.40	0.40
Fe^{+2}	0.12	0.12	0.14	0.09	0.11	0.10	0.24	0.24	0.26	0.43	0.17	0.21	0.21	0.26	0.39	0.42
Mn	0.01	0.00	0.01	0.00	0.01	0.00	0.02	0.02	0.02	0.05	0.01	0.02	0.01	0.02	0.05	0.06
Mg	0.92	0.91	0.90	0.95	0.95	0.94	0.81	0.78	0.78	0.61	0.86	0.82	0.82	0.81	0.63	0.62
Ca	0.93	0.92	0.92	0.93	0.93	0.93	0.89	06.00	0.88	0.74	0.91	06.0	0.91	0.89	0.86	0.86
Na	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.03	0.04	0.02	0.02	0.02	0.02	0.03	0.03
К	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	00.00	0.00
Cr	0.01	0.01	0.02	0.02	0.01	0.02	0.00	0.02	0.01	0.00	0.02	0.01	0.01	0.00	0.00	0.00
Toplam	4.01	3.99	4.02	4.01	4.02	4.01	4.04	4.04	4.06	4.04	4.03	4.03	4.03	4.05	4.10	4.11
Mg #	0.88	0.88	0.87	0.91	06.0	0.91	0.77	0.77	0.75	0.59	0.84	0.80	0.79	0.76	0.62	0.60
Wo	46.83	46.86	46.85	47.06	46.69	47.32	45.57	46.47	45.39	40.42	46.77	46.33	46.49	45.04	44.76	44.24
En	46.62	46.64	45.91	48.12	47.52	47.63	41.51	40.35	40.29	33.58	44.11	42.21	42.00	40.92	32.70	31.86
Fs	6.55	6.50	7.24	4.82	5.79	5.05	12.92	13.18	14.32	26.00	9.12	11.46	11.51	14.04	22.54	23.90
Mg#=Mg/(Mg	+Fe ⁺²). Fo	ərmül 6 c	iksijen üz	zerinden l	hesaplani	mıştır. K	ısaltmala	r: kpir: k	dinopirok	csen; fen	o:fenokri	stal; mar	it: manto.			

Örnek	111	111	111	111	260	260	260	260	260	260	260	260	260	260	331	331	331	331
Mineral	kpir-1	kpir-1	kpir-1	kpir	kpir-1	kpir-1	kpir-1	kpir-2	kpir-2	kpir-2	kpir-3	kpir-3	kpir-4	kpir-4	kpir-1	kpir-1	kpir-1	kpir-2
	feno	feno	feno	mik	feno	feno	prfl	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno
	mer	mant	ken	mer	mer	mant	ken	mer	mant	ken	mer	ken	mer	ken	mer	mant	ken	mer
SiO_2	48.68	50.07	51.84	45.88	51.43	50.93	51.17	51.23	50.72	50.51	49.87	50.50	50.67	51.18	52.13	50.76	52.06	51.19
TiO ₂	1.61	1.16	0.59	1.87	09.0	0.74	0.68	0.77	0.78	0.76	0.88	0.82	0.75	0.77	0.41	0.52	0.31	0.44
Al_2O_3	5.20	3.61	2.26	7.25	2.62	3.13	2.74	3.09	3.55	3.64	3.95	3.94	3.70	3.35	2.47	3.73	2.44	3.22
FeO	7.82	7.54	8.12	9.45	8.16	8.34	7.97	8.28	8.45	7.73	8.61	8.00	7.94	7.98	5.07	6.13	4.89	6.14
MnO	0.26	0.32	0.56	0.25	0.49	0.41	0.42	0.43	0.37	0.28	0.41	0.29	0.31	0.40	0.12	0.06	0.07	0.10
MgO	13.41	14.00	14.02	11.66	14.17	14.00	14.29	13.98	13.72	14.18	13.38	13.98	14.13	14.12	15.59	14.76	15.92	15.25
CaO	22.77	22.67	22.19	22.14	21.74	22.03	21.70	22.09	21.82	22.60	21.94	22.25	22.35	22.19	23.32	23.03	23.25	23.22
Na_2O	0.40	0.36	0.42	0.27	0.47	0.40	0.44	0.41	0.39	0.43	0.40	0.36	0.39	0.42	0.24	0.29	0.21	0.19
K_2O	0.01	0.05	0.00	0.05	0.02	0.00	0.02	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.01
Cr_2O_3	0.00	0.00	0.05	0.04	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.50	0.26	0.79	0.31
Toplam	100.16	99.78	100.05	98.86	99.70	96.66	99.46	100.28	99.82	100.13	99.44	100.18	100.24	100.41	99.85	99.56	99.94	100.07
Si	1.82	1.87	1.93	1.75	1.92	1.90	1.92	1.91	1.90	1.88	1.88	1.88	1.88	1.90	1.92	1.89	1.92	1.89
Ti	0.05	0.03	0.02	0.05	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01
AI	0.23	0.16	0.10	0.33	0.12	0.14	0.12	0.14	0.16	0.16	0.18	0.17	0.16	0.15	0.11	0.16	0.11	0.14
Fe^{+2}	0.24	0.24	0.25	0.30	0.26	0.26	0.25	0.26	0.26	0.24	0.27	0.25	0.25	0.25	0.16	0.19	0.15	0.19
Mn	0.01	0.01	0.02	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00
Mg	0.75	0.78	0.78	0.66	0.79	0.78	0.80	0.78	0.76	0.79	0.75	0.78	0.78	0.78	0.86	0.82	0.87	0.84
Ca	0.91	0.91	0.89	0.91	0.87	0.88	0.87	0.88	0.87	06.0	0.88	0.89	0.89	0.88	0.92	0.92	0.92	0.92
Na	0.03	0.03	0.03	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.02	0.02	0.01	0.01
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.02	0.01
Toplam	4.04	4.03	4.02	4.03	4.03	4.02	4.02	4.03	4.01	4.03	4.02	4.03	4.02	4.02	4.01	4.02	4.01	4.01
Mg #	0.75	0.77	0.75	0.69	0.76	0.75	0.76	0.75	0.74	0.77	0.73	0.76	0.76	0.76	0.85	0.81	0.85	0.82
Wo	47.75	46.99	45.79	48.26	45.12	45.61	45.12	45.73	45.68	46.56	46.13	46.22	46.17	45.9	47.54	47.61	47.20	47.11
En	39.13	40.37	40.27	35.38	40.93	40.33	41.33	40.26	39.96	40.65	39.14	40.42	40.62	40.65	44.23	42.46	44.96	43.07
Fs	13.12	12.64	13.94	16.36	13.95	14.06	13.55	14.01	14.36	12.79	14.73	13.36	13.21	13.45	8.23	9.93	7.84	9.82
Mg#=Mg/(Mg-	+Fe ⁺²). Fc	ormül 6 c	oksijen üz	zerinden .	hesaplan	mıştır. Kı	isaltmala	r: kpir: kl	linopirok	sen: fenc	:fenokri	stal: mik:	mikrolit	: mant: r	nanto; pi	fl: profil		

Ek Tablo A3. Eosen yaşlı bazaltik lavlara ait klinopiroksenlerin mikroprob analiz sonuçları

Örnek	<u>331</u>	331	331	331	331	331	331	331	331	<u>511</u>	<u>511</u>	511	511	511	<u>511</u>	<u>511</u>	511	<u>511</u>
Mineral	kpir-2	kpir-2	kpir-3	kpir-3	kpir-3	kpir-3	kpir-4	kpir-4	kpir-4	kpir-1	kpir-1	kpir-1	kpir-2	kpir-2	kpir-3	kpir-3	kpir-4	kpir-4
	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno
	mant	ken	mer	mant	ken1	ken2	mer	mant	ken	mer	mant	ken	mer	ken	mer	ken	mer	ken
SiO ₂	51.96	49.95	50.71	50.94	51.31	49.33	50.54	49.79	49.28	50.79	50.37	50.91	50.60	50.78	51.19	51.71	51.69	51.02
TiO ₂	0.31	0.56	0.47	0.44	0.33	0.72	0.59	0.56	0.62	0.57	0.49	0.61	0.63	0.55	0.47	0.40	0.51	0.49
Al_2O_3	2.13	4.24	3.39	3.33	2.97	4.90	3.74	4.39	5.01	3.27	4.84	2.90	2.93	2.55	2.54	1.87	1.86	2.43
FeO	5.40	7.07	6.24	6.39	5.64	7.28	7.09	7.16	7.29	8.83	6.43	9.17	10.20	9.31	10.20	9.72	10.80	9.00
MnO	0.13	0.14	0.11	0.12	0.04	0.14	0.23	0.14	0.21	0.38	0.12	0.31	0.36	0.35	0.38	0.47	0.52	0.45
MgO	15.75	14.49	15.11	15.30	15.53	14.15	14.53	14.54	14.24	14.48	14.69	14.53	14.67	14.71	14.67	14.95	14.53	14.87
CaO	23.12	22.45	23.12	22.82	23.15	22.41	22.76	22.75	22.61	21.13	23.10	20.89	20.19	20.53	19.57	19.84	19.09	20.84
Na_2O	0.26	0.28	0.20	0.23	0.26	0.27	0.36	0.32	0.28	0.29	0.19	0.29	0.34	0.25	0.29	0.27	0.32	0.34
K_2O	0.00	0.02	0.00	0.01	00.0	0.01	0.02	0.02	0.00	0.00	0.00	0.00	0.03	0.01	0.00	0.01	0.03	0.01
Cr_2O_3	0.42	0.21	0.32	0.35	0.56	0.38	0.29	0.59	0.49	0.08	0.27	0.00	0.00	0.04	0.00	0.00	0.00	0.01
Toplam	99.48	99.41	99.67	99.93	99.79	99.59	100.15	100.26	100.03	99.82	100.50	99.61	99.95	99.08	99.31	99.24	99.35	99.46
Si	1.93	1.87	1.89	1.89	1.90	1.84	1.88	1.85	1.84	1.90	1.86	1.91	1.90	1.91	1.92	1.94	1.95	1.92
Ti	0.01	0.02	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.01	0.01	0.01	0.01
AI	0.09	0.19	0.15	0.15	0.13	0.22	0.16	0.19	0.22	0.14	0.21	0.13	0.13	0.11	0.11	0.08	0.08	0.11
Fe^{+2}	0.17	0.22	0.19	0.20	0.17	0.23	0.22	0.22	0.23	0.28	0.20	0.29	0.32	0.29	0.32	0.31	0.34	0.28
Mn	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.01
Mg	0.87	0.81	0.84	0.85	0.86	0.79	0.81	0.81	0.79	0.81	0.81	0.81	0.82	0.83	0.82	0.84	0.82	0.83
Ca	0.92	06.0	0.92	0.91	0.92	06.0	0.91	0.91	0.90	0.85	0.91	0.84	0.81	0.83	0.79	0.80	0.77	0.84
Na	0.02	0.02	0.01	0.02	0.02	0.02	0.03	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02
K	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.02	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	4.02	4.04	4.02	4.04	4.03	4.03	4.05	4.04	4.04	4.03	4.02	4.03	4.03	4.02	4.00	4.01	4.01	4.02
Mg #	0.84	0.79	0.81	0.81	0.83	0.78	0.79	0.78	0.78	0.75	0.80	0.74	0.72	0.74	0.72	0.73	0.71	0.75
Wo	46.88	46.59	47.12	46.42	47.09	46.84	46.76	46.78	46.88	43.64	47.5	43.1	41.4	42.32	40.58	40.83	39.67	42.65
En	44.42	41.83	42.86	43.31	43.96	41.14	41.57	41.61	41.09	41.60	42.05	41.72	41.84	42.21	42.35	42.84	42.02	42.36
Fs	8.70	11.58	10.02	10.27	8.95	12.02	11.66	11.61	12.03	14.76	10.45	15.18	16.76	15.47	17.07	16.33	18.31	14.99
Mg#=Mg/(Mg	+Fe ⁺²). Fα	ormül 6 (oksijen üz	serinden l	hesaplan	mıştır. Ki	saltmala	r: kpir: k	linopirok	sen; fenc	:fenokris	tal; mant	t: manto.					

Ek Tablo A3'ün devamı

294

,																		
Ornek	121	121	121	121	121	121	121	121	399	399	399	399	399	399	399	399	399	642
Mineral	kpir-1	kpir-1	kpir-2	kpir-2	kpir-2	kpir-3	kpir-3	kpir	kpir-1	kpir-2	kpir-2	kpir-3	kpir-3	kpir-4	kpir-4	kpir-5	kpir-5	kpir-1
	feno	feno	feno	feno	feno	feno	feno	mik	feno	feno	feno	feno	feno	feno	feno	feno	feno	Feno
	mer	mant	ken	mer	ken	mer	ken	mer	mer	mer	ken	mer	ken	mer	ken	mer	ken	Mer
SiO ₂	46.81	45.94	48.66	46.64	44.90	45.77	47.87	48.46	47.02	50.58	49.89	50.06	48.53	50.43	48.36	50.48	48.56	47.59
TiO_2	1.56	1.81	1.35	2.03	2.12	2.00	1.44	2.04	1.73	0.82	0.86	06.0	1.21	0.88	1.48	0.81	1.34	1.10
Al_2O_3	7.06	7.89	6.20	6.55	8.84	8.01	6.27	3.74	5.49	3.23	3.47	4.13	4.80	3.24	5.12	3.34	5.10	6.93
FeO	7.95	8.68	6.34	8.30	9.04	8.42	7.30	12.48	10.63	9.03	9.84	8.34	9.85	9.53	9.65	9.47	9.74	7.90
MnO	0.12	0.20	0.07	0.24	0.24	0.12	0.08	0.67	0.34	0.41	0.30	0.32	0.32	0.35	0.36	0.31	0.37	0.12
MgO	12.33	11.44	13.89	12.70	11.03	11.82	13.32	11.04	12.09	13.72	13.58	13.87	12.99	13.67	12.67	13.52	12.47	12.84
CaO	22.88	22.55	23.33	22.64	22.59	23.52	23.60	19.96	21.62	21.61	21.04	22.12	21.92	21.12	21.68	21.69	21.82	22.41
Na_2O	0.32	0.37	0.25	0.33	0.46	0.39	0.28	0.85	0.38	0.39	0.49	0.38	0.41	0.43	0.41	0.46	0.42	0.42
$\mathrm{K}_{2}\mathrm{O}$	0.01	0.00	0.01	0.01	0.01	0.03	0.02	0.05	0.00	0.04	0.00	0.00	0.01	0.00	0.02	0.00	0.01	00.00
Cr_2O_3	0.06	0.00	0.10	0.01	0.01	0.00	0.01	0.00	0.00	0.02	0.00	0.03	0.00	0.05	0.00	0.00	0.00	0.00
Toplam	99.10	98.88	100.20	99.45	99.24	100.08	100.19	99.29	99.30	99.85	99.47	100.15	100.04	99.70	99.75	100.08	99.83	99.31
Si	1.77	1.75	1.81	1.76	1.71	1.73	1.79	1.86	1.80	1.90	1.88	1.87	1.83	1.90	1.83	1.89	1.83	1.79
Ti	0.04	0.05	0.04	0.06	0.06	0.06	0.04	0.06	0.05	0.02	0.02	0.03	0.03	0.02	0.04	0.02	0.04	0.03
AI	0.32	0.35	0.27	0.29	0.40	0.36	0.28	0.17	0.25	0.14	0.15	0.18	0.21	0.14	0.23	0.15	0.23	0.31
Fe^{+2}	0.25	0.28	0.20	0.26	0.29	0.27	0.23	0.40	0.34	0.28	0.31	0.26	0.31	0.30	0.30	0.30	0.31	0.25
Mn	0.00	0.01	0.00	0.01	0.01	0.00	00.00	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	00.00
Mg	0.70	0.65	0.77	0.72	0.63	0.66	0.74	0.63	0.69	0.77	0.76	0.77	0.73	0.77	0.71	0.76	0.70	0.72
Ca	0.93	0.92	0.93	0.92	0.92	0.95	0.94	0.82	0.88	0.87	0.85	0.88	0.89	0.85	0.88	0.87	0.88	06.0
Na	0.02	0.03	0.02	0.02	0.03	0.03	0.02	0.06	0.03	0.03	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.03
K	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	00.00	0.00	00.00
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00
Toplam	4.03	4.04	4.04	4.04	4.05	4.06	4.04	4.02	4.05	4.02	4.02	4.03	4.04	4.02	4.03	4.03	4.03	4.03
Mg #	0.73	0.70	0.80	0.73	0.69	0.71	0.76	0.61	0.67	0.73	0.71	0.75	0.70	0.72	0.70	0.72	0.70	0.74
Wo	49.43	49.73	48.98	48.27	50.09	50.53	49.33	43.85	46.08	45.00	44.01	45.95	45.8	44.17	46.06	45.11	46.42	48.21
En	37.07	35.12	40.59	37.67	34.03	35.34	38.75	33.74	35.86	39.74	39.55	40.10	37.77	39.78	37.46	39.12	36.91	38.45
\mathbf{Fs}	13.50	15.15	10.43	14.06	15.88	14.13	11.92	22.41	18.06	15.26	16.44	13.95	16.43	16.05	16.48	15.77	16.67	13.34
Mg#=Mg/(Mg-	+Fe ⁺²). Fι	ormül 6 (oksijen üz	cerinden	hesaplan	ımıştır. K	ısaltmala	r: kpir: k	linopirok	sen; fenc	:fenokri	stal; mik	: mikrolit	t; mant: 1	nanto.			

Ek Tablo A4. Eosen yaşlı bazaltik dayk ve sile ait klinopiroksenlerin mikroprob analiz sonuçları

Örnek	<u>642</u>	<u>642</u>	<u>642</u>	<u>642</u>	<u>642</u>	<u>642</u>	642	801	801	<u>801</u>	801	<u>801</u>	<u>801</u>	<u>801</u>	801	<u>801</u>	<u>801</u>	<u>801</u>
Mineral	kpir-1	kpir-2	kpir-3	kpir-3	kpir-3	kpir-3	kpir	kpir-1	kpir-1	kpir-1	kpir-2	kpir-2	kpir-3	kpir-3	kpir-3	kpir-4	kpir-4	kpir-4
	feno	feno	feno	feno	feno	feno	mik	feno	feno	feno	feno	feno	feno	mik	feno	feno	feno	Feno
	ken2	mer	mer	mantl	mant2	ken	mer	mer	mant	ken	mer	ken	mer	mant	ken	mer	mant	Ken
SiO_2	45.12	49.15	49.64	50.33	50.03	49.59	46.70	48.08	49.95	50.21	49.48	48.55	51.81	48.40	48.55	49.34	49.58	50.18
TiO_2	2.28	0.95	0.82	0.79	0.86	1.13	2.09	1.05	0.65	0.84	0.71	1.16	0.42	1.00	1.31	0.75	0.65	0.77
Al_2O_3	8.87	5.04	4.39	3.97	4.21	4.27	6.27	6.40	4.20	3.94	4.89	5.22	2.96	6.01	5.34	4.88	4.58	3.73
FeO	8.74	6.38	6.15	5.47	5.62	7.59	8.87	8.04	6.85	7.74	7.06	8.73	5.62	8.08	8.66	6.98	6.97	7.89
MnO	0.10	0.07	0.09	0.10	0.10	0.11	0.17	0.16	0.11	0.19	0.16	0.20	0.05	0.15	0.18	0.17	0.13	0.19
MgO	11.77	14.27	13.71	14.92	14.97	13.98	12.06	13.42	14.64	14.07	13.64	12.75	15.39	13.33	12.96	14.11	14.21	13.93
CaO	23.09	23.68	23.35	23.17	23.30	22.39	22.49	22.67	22.85	22.37	22.74	22.28	23.14	22.58	22.75	22.49	22.75	22.91
Na_2O	0.22	0.27	0.20	0.23	0.24	0.24	0.38	0.27	0.27	0.31	0.33	0.47	0.24	0.36	0.44	0.33	0.25	0.41
K_2O	0.04	0.01	0.01	0.00	0.00	0.01	0.01	0.02	0.00	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.01
Cr_2O_3	0.00	0.08	0.15	0.49	0.20	0.00	0.03	0.07	0.11	0.04	0.17	0.04	0.51	0.16	0.00	0.36	0.27	0.06
Toplam	100.23	06.66	98.51	99.47	99.53	99.31	99.07	100.18	99.63	99.72	99.19	99.41	100.14	100.07	100.19	99.41	99.39	100.08
Si	1.70	1.83	1.87	1.87	1.86	1.86	1.78	1.80	1.86	1.88	1.86	1.83	1.91	1.81	1.82	1.85	1.86	1.87
Ti	0.06	0.03	0.02	0.02	0.02	0.03	0.06	0.03	0.02	0.02	0.02	0.03	0.01	0.03	0.04	0.02	0.02	0.02
Al	0.39	0.22	0.19	0.17	0.18	0.19	0.28	0.28	0.18	0.17	0.22	0.23	0.13	0.26	0.24	0.22	0.20	0.16
Fe^{+2}	0.28	0.20	0.19	0.17	0.17	0.24	0.28	0.25	0.21	0.24	0.22	0.28	0.17	0.25	0.27	0.22	0.22	0.25
Mn	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0.01	0.01	0.00	0.00	0.01	0.01	0.00	0.01
Mg	0.66	0.79	0.77	0.83	0.83	0.78	0.68	0.75	0.81	0.78	0.76	0.72	0.85	0.74	0.72	0.79	0.79	0.78
Са	0.93	0.95	0.94	0.92	0.93	06.0	0.92	0.91	0.91	06.0	0.91	0.90	0.91	06.0	0.91	06.0	0.91	0.92
Na	0.02	0.02	0.01	0.02	0.02	0.02	0.03	0.02	0.02	0.02	0.02	0.03	0.02	0.03	0.03	0.02	0.02	0.03
К	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.01	0.01	0.00
Toplam	4.04	4.04	3.99	4.01	4.02	4.02	4.04	4.05	4.01	4.02	4.03	4.03	4.01	4.02	4.04	4.04	4.03	4.04
Mg #	0.71	0.80	0.80	0.83	0.83	0.77	0.71	0.75	0.79	0.76	0.78	0.72	0.83	0.75	0.73	0.78	0.78	0.76
Wo	49.88	48.80	49.38	48.00	47.98	46.82	48.59	47.53	47.00	46.5	48.05	47.46	47.25	47.54	47.77	47.19	47.37	47.19
En	35.39	40.92	40.36	43.04	42.90	40.67	36.28	39.17	41.92	40.71	40.11	37.80	43.74	39.06	37.88	41.19	41.16	39.93
Fs	14.73	10.28	10.26	8.96	9.12	12.51	15.13	13.30	11.08	12.79	11.84	14.74	9.01	13.40	14.35	11.62	11.47	12.88
Mg#=Mg/(Mg	;+Fe ⁺²). Fα	ərmül 6 (oksijen üz	zerinden	hesaplan	umıştır. F	Visaltmal	ar: kpir: k	klinopirol	ksen; fen	o:fenokri	stal; mik	: mikroli	t; mant: 1	manto.			

Ek Tablo A4'ündevamı

jrnak	575	675	675	575	575	675	575
Aineral	knir_1	knir_1	Luir_7	Luir_7	knir_3	knir_3	bnir_4
Vineral	kpır-l	kpır-l	kpir-2	kpır-2	kpir-3	kpir-3	kpır-4
	feno	feno	feno	feno	feno	feno	feno
	mer	mant	ken	mer	ken	mer	ken
iO_2	52.21	51.67	51.73	52.59	51.89	52.32	52.24
$^{1}iO_{2}$	0.28	0.43	0.34	0.36	0.31	0.35	0.30
M_2O_3	2.35	3.22	2.54	1.44	1.75	1.95	1.93
^r eO	5.55	5.58	6.46	8.93	8.15	7.87	7.87
AnO	0.07	0.11	0.33	0.64	0.59	0.52	0.50
AgO	16.08	15.14	14.85	14.67	14.39	14.63	14.53
CaO	22.83	23.40	22.72	21.04	21.91	22.18	22.15
Va_2O	0.22	0.22	0.28	0.40	0.43	0.37	0.36
$\zeta_2 O$	0.00	0.00	0.00	0.00	0.00	0.02	0.01
Cr_2O_3	0.29	0.40	0.62	0.00	0.00	0.00	0.00
Coplam	99.88	100.17	99.87	100.07	99.42	100.21	<u>99.89</u>
1	1.93	1.91	1.92	1.96	1.95	1.94	1.95
	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Ν	0.10	0.14	0.11	0.06	0.08	0.09	0.08
e ⁺²	0.17	0.17	0.20	0.28	0.26	0.24	0.25
Лп	0.00	0.00	0.01	0.02	0.02	0.02	0.02
Ag	0.88	0.83	0.82	0.81	0.80	0.81	0.81
Ja	06.0	0.92	06.0	0.84	0.88	0.88	0.88
Va	0.02	0.02	0.02	0.03	0.03	0.03	0.03
	0.00	0.00	0.00	0.00	0.00	0.00	0.00
L	0.01	0.01	0.02	0.00	0.00	0.00	0.00
Coplam	4.02	4.01	4.01	4.01	4.03	4.02	4.03
Ag #	0.84	0.83	0.80	0.75	0.76	0.77	0.77
٧o	46.06	47.85	46.68	43.01	44.96	45.21	45.31
ĩn	45.14	43.09	42.46	41.74	41.10	41.49	41.36
o,	8.80	9.06	10.86	15.25	13.94	13.30	13.33

	ıuçıarı
	analiz sor
4000	prop
- Li	IIIIKI
	CIII
	sent
-	K
)IIdc
11:	KIII
	H
	ਹ ਜ
Jours L	aunut
	2
÷	¥
5	Ę,
_	¥
÷	2ZIU
7	IC
ð	đ
1001	yaşıı
į	Ģ
с (Г`	LOS
4	I.
ć	2
4	30
[-
ŗ	ΓK

Ornek	188	188	188	188	188	188	318	318	318	318	318	318	318	318	625	625	625	625
Mineral	kpir-1	kpir-1	kpir-2	kpir-2	kpir-3	kpir-3	kpir-1	kpir-1	kpir-2	kpir-2	kpir-3	kpir-3	kpir-4	kpir-4	kpir-1	kpir-1	kpir-2	kpir-2
	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	Feno
	mer	ken	mer	ken	mer	ken	mer	ken	mer	ken	mer	ken	mer	ken	mer	ken	mer	ken
SiO_2	50.79	51.51	51.73	51.02	46.88	51.64	52.34	51.49	52.18	51.84	51.85	51.67	51.10	50.09	49.97	51.78	51.90	51.88
TiO ₂	0.44	0.45	0.28	0.54	0.34	0.39	0.42	0.56	0.42	0.52	0.56	0.66	0.64	0.94	0.62	0.45	0.34	0.32
Al_2O_3	1.28	1.21	0.70	1.48	0.98	0.99	1.56	2.09	1.84	2.02	2.06	2.24	2.31	3.69	3.72	2.57	2.13	2.05
FeO	13.80	13.24	13.97	13.28	14.71	13.68	9.01	8.62	8.65	8.60	8.83	9.26	8.83	9.12	9.98	8.23	7.79	8.04
MnO	1.16	1.04	1.35	1.15	1.30	1.15	0.70	0.68	0.71	0.78	0.72	0.82	0.68	0.57	0.72	0.61	0.63	0.76
MgO	11.57	11.55	11.70	11.33	9.32	11.16	14.00	14.55	14.42	14.50	14.76	14.12	14.22	13.43	12.02	13.83	13.80	14.05
CaO	20.24	20.41	19.71	20.30	19.85	20.27	21.86	21.29	20.97	20.94	21.37	20.60	21.43	21.39	22.30	22.36	23.08	22.31
Na_2O	0.40	0.38	0.38	0.37	0.26	0.34	0.37	0.40	0.38	0.44	0.41	0.40	0.40	0.49	0.52	0.39	0.43	0.37
K_2O	0.00	0.10	0.00	0.03	0.00	0.01	0.03	0.02	0.00	0.02	0.00	0.01	0.00	0.00	0.00	0.04	0.01	0.00
Cr_2O_3	0.01	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.04	0.00
Toplam	69.66	99.89	99.84	99.5	93.64	99.63	100.29	7.66	99.57	79.67	100.57	99.78	99.61	99.72	99.85	100.26	100.15	99.78
Si	1.95	1.96	1.98	1.96	1.94	1.98	1.95	1.93	1.95	1.94	1.93	1.93	1.92	1.88	1.89	1.93	1.94	1.94
Ti	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.02	0.01	0.01	0.02	0.02	0.02	0.03	0.02	0.01	0.01	0.01
Al	0.06	0.05	0.03	0.07	0.05	0.04	0.07	0.09	0.08	0.09	0.09	0.10	0.10	0.16	0.17	0.11	0.09	0.09
${\rm Fe}^{+2}$	0.44	0.42	0.45	0.43	0.51	0.44	0.28	0.27	0.27	0.27	0.27	0.29	0.28	0.29	0.32	0.26	0.24	0.25
Mn	0.04	0.03	0.04	0.04	0.05	0.04	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.02	0.02	0.02	0.02	0.02
Mg	0.66	0.66	0.67	0.65	0.58	0.64	0.78	0.81	0.80	0.81	0.82	0.79	0.80	0.75	0.68	0.77	0.77	0.78
Ca	0.83	0.83	0.81	0.83	0.88	0.83	0.87	0.85	0.84	0.84	0.85	0.83	0.86	0.86	0.90	0.89	0.92	0.89
Na	0.03	0.03	0.03	0.03	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.03	0.03	0.03
K	0.00	0.01	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	4.02	4.00	4.02	4.03	4.04	4.01	4.01	4.02	4.00	4.01	4.03	4.02	4.03	4.03	4.04	4.02	4.02	4.01
Mg #	09.0	0.61	0.60	0.60	0.53	0.59	0.73	0.75	0.75	0.75	0.75	0.73	0.74	0.72	0.68	0.75	0.76	0.76
Wo	42.20	42.86	41.12	42.91	43.88	42.78	44.69	43.66	43.40	43.25	43.31	42.83	44.09	44.94	47.11	46.12	47.28	45.81
En	33.57	33.77	33.97	33.32	28.68	32.77	39.84	41.52	41.51	41.67	41.65	40.84	40.71	39.26	35.35	39.70	39.32	40.14
Fs	24.23	23.37	24.91	23.77	27.44	24.45	15.47	14.82	15.09	15.08	15.04	16.33	15.20	15.80	17.54	14.18	13.40	14.05
Mg#=Mg/(Mg	+Fe ⁺²). F(ərmül 6 (oksijen ü:	zerinden	hesaplan	mıştır. K	ısaltmala	r: kpir: k	linopirok	sen; fenc): fenokri	istal; mai	nt: manto	÷				

Ek Tablo A6. Eosen yaşlı trakitik dayklara ait klinopiroksenlerin mikroprob analiz sonuçları

Ek Tablo A6'nın devamı

nt: manto	istal; mar	o:fenokr	ksen; fen	klinopirol	ar: kpir: l	usaltmal	ımıştır. K	hesaplan	zerinden	<u>əksijen</u> ü	ormül 6 (g+Fe ⁺²). F	Mg#=Mg/(M
16.08	15.70	17.02	16.11	15.78	14.61	14.95	14.08	16.41	13.89	16.79	14.16	14.01	Fs
37.66	37.97	36.45	37.21	37.79	38.82	39.24	38.80	36.50	40.12	37.39	39.61	40.65	En
46.26	46.33	46.53	46.68	46.43	46.57	45.81	47.12	47.09	45.99	45.82	46.23	45.34	Wo
0.71	0.72	0.69	0.71	0.72	0.74	0.74	0.74	0.70	0.75	0.71	0.75	0.76	Mg#
4.02	4.02	4.03	4.02	4.03	4.03	4.01	4.02	4.03	4.01	4.01	4.03	4.01	Toplam
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Cr
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	К
0.03	0.03	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	Na
0.89	06.0	0.88	0.89	06.0	0.90	0.89	0.91	06.0	0.89	0.89	06.0	0.88	Са
0.72	0.74	0.69	0.71	0.73	0.75	0.76	0.75	0.69	0.78	0.72	0.77	0.79	Mg
0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.03	0.02	0.02	Mn
0.29	0.29	0.31	0.29	0.29	0.27	0.27	0.26	0.30	0.25	0.30	0.26	0.25	Fe^{+2}
0.15	0.08	0.22	0.18	0.15	0.12	0.10	0.13	0.19	0.10	0.08	0.12	0.09	Al
0.02	0.01	0.03	0.02	0.02	0.02	0.01	0.02	0.03	0.01	0.01	0.01	0.01	Ti
1.90	1.95	1.84	1.88	1.89	1.92	1.93	1.91	1.87	1.93	1.95	1.92	1.94	Si
99.55	99.93	99.20	100.22	100.41	100.56	100.48	100.17	100.14	100.45	100.09	99.58	99.91	Toplam
0.03	0.02	0.00	0.03	0.00	0.00	0.06	0.01	0.00	0.01	0.00	0.00	0.00	Cr_2O_3
0.00	0.00	0.01	0.00	0.00	0.00	0.03	0.00	0.01	0.02	0.01	0.03	0.01	K_2O
0.42	0.36	0.48	0.43	0.43	0.37	0.36	0.42	0.39	0.37	0.46	0.35	0.42	Na_2O
21.94	22.36	21.72	22.20	22.42	22.60	22.30	22.67	22.27	22.46	22.07	22.28	22.12	CaO
12.83	13.17	12.22	12.72	13.11	13.54	13.73	13.41	12.41	14.07	12.94	13.72	14.25	MgO
0.55	0.59	0.51	0.52	0.64	0.50	0.58	0.46	0.48	0.58	0.97	0.64	0.64	MnO
9.25	9.14	9.74	9.35	9.18	8.62	8.78	8.25	9.51	8.14	9.42	8.14	8.16	FeO
3.32	1.92	4.90	4.07	3.32	2.80	2.21	3.06	4.32	2.36	1.82	2.81	2.13	Al_2O_3
0.72	0.43	1.15	0.85	0.75	0.60	0.48	0.72	0.92	0.43	0.33	0.45	0.37	TiO_2
50.49	51.94	48.47	50.05	50.56	51.53	51.95	51.17	49.83	52.01	52.07	51.16	51.81	SiO_2
ken	mer	ken	mer	ken	mer	mant	ken	mer	ken	mer	ken	mer	
feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	
kpir-5	kpir-5	kpir-4	kpir-4	kpir-3	kpir-3	kpir-2	kpir-1	kpir-1	kpir-4	kpir-4	kpir-3	kpir-3	Mineral
700	700	700	$\overline{700}$	700	$\overline{700}$	700	$\overline{700}$	700	625	625	625	625	Örnek

Örnek	601	601	601	<u>601</u>	<u>601</u>	<u>601</u>	<u>601</u>	<u>601</u>	<u>601</u>	601	601	<u>601</u>	<u>601</u>	<u>601</u>	601
Mineral	kpirl	kpirl	kpir2	kpir2	kpir2	kpir2	kpir3	kpir3	kpir3	kpir3	kpir4	kpir4	kpir4	kpir5	kpir5
	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno
	mer	ken	mer	mant1	mant2	ken	mer	mant1	mant2	ken	mer	mant	ken	mer	ken
SiO ₂	48.29	49.75	46.20	46.81	50.82	49.05	47.66	48.61	46.11	47.03	50.41	47.88	48.14	50.53	46.30
TiO_2	1.37	0.97	1.36	1.15	0.59	0.84	1.21	1.22	1.87	1.61	0.79	0.97	1.20	1.00	1.86
Al_2O_3	5.48	4.11	7.99	7.57	4.20	4.74	6.61	5.62	7.68	6.49	4.18	6.20	5.57	3.78	6.97
FeO	7.46	6.55	8.27	7.66	6.16	6.99	7.85	6.86	8.40	8.03	6.54	7.35	7.60	6.41	8.09
MnO	0.01	0.00	0.06	0.08	0.00	0.02	0.20	0.32	0.00	0.02	0.00	0.00	0.00	0.00	0.00
MgO	13.46	14.39	12.16	12.63	14.81	14.18	12.96	13.61	12.17	12.97	15.15	13.23	13.56	14.66	12.53
CaO	22.47	22.51	23.11	23.22	22.74	22.68	22.47	22.82	22.42	22.23	23.05	23.13	22.65	22.77	22.24
Na_2O	0.66	0.62	0.39	0.44	0.41	0.44	0.66	0.59	0.56	0.69	0.33	0.47	0.68	0.62	0.64
K_2O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.02	0.02	0.02	0.00
Cr_2O_3	0.01	0.00	0.06	0.08	0.00	0.02	0.20	0.32	0.00	0.02	0.00	0.00	0.00	0.00	0.00
Toplam	99.21	98.90	09.66	99.64	99.73	98.96	99.82	76.96	99.21	99.11	100.45	99.25	99.42	99.79	98.63
Si	1.82	1.87	1.74	1.76	1.88	1.85	1.79	1.82	1.75	1.78	1.86	1.80	1.81	1.88	1.76
Ti	0.04	0.03	0.04	0.03	0.02	0.02	0.03	0.03	0.05	0.05	0.02	0.03	0.03	0.03	0.05
AI	0.24	0.18	0.36	0.34	0.18	0.21	0.29	0.25	0.34	0.29	0.18	0.28	0.25	0.17	0.31
Fe^{+2}	0.23	0.21	0.26	0.24	0.19	0.22	0.25	0.21	0.27	0.25	0.20	0.23	0.24	0.20	0.26
Mn	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	00.00	0.00	0.00	0.00	0.00	0.00
Mg	0.76	0.81	0.68	0.71	0.82	0.80	0.73	0.76	0.69	0.73	0.83	0.74	0.76	0.81	0.71
Са	0.91	06.0	0.94	0.94	06.0	0.91	06.0	0.91	0.91	06.0	0.91	0.93	0.91	0.91	0.91
Na	0.05	0.04	0.03	0.03	0.03	0.03	0.05	0.04	0.04	0.05	0.02	0.03	0.05	0.04	0.05
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	00.00	0.00	0.00	0.00	0.00	0.00
Toplam	4.05	4.04	4.05	4.05	4.02	4.04	4.06	4.04	4.05	4.05	4.02	4.04	4.05	4.04	4.05
Mg #	0.76	0.80	0.72	0.75	0.81	0.78	0.75	0.78	0.72	0.74	0.81	0.76	0.76	0.80	0.73
Wo	47.84	47.28	49.75	49.65	47.25	47.42	48.11	48.24	48.92	47.84	46.87	48.99	47.81	47.3	48.45
En	39.89	42.08	36.43	37.59	42.82	41.26	38.61	40.04	36.95	38.83	42.86	39.00	39.84	42.39	37.97
Fs	12.27	10.64	13.82	12.76	9.93	11.32	13.28	11.72	14.13	13.33	10.27	12.01	12.35	10.31	13.58
Mg#=Mg/(M	3+Fe ⁺²). F	ormül 6	oksijen ü	zerinden	hesaplan	ımıştır. K	usaltmal	ar: kpir: l	klinopirol	ksen; fen	o: fenokı	ristal; ma	int: mant	0.	

Ek Tablo A7. Miyosen yaşlı foidli volkanik breşlere ait klinopiroksenlerin mikroprob analiz sonuçları

Örnek	CY-17	CY-17	CY-17	CY-17	CY-17	CY-17	CY-17	CY-17	CY-17	CY-17	CY-17	CY-17	<u>CY-17</u>	CY-17	CY-17	CY-17	CY-17	CY-17
Mineral	kpir-1	kpir-1	kpir-1	kpir-2	kpir-2	kpir-2	kpir-3	kpir-3	kpir-3	kpir-3	kpir-3	kpir-3	kpir-3	kpir-3	kpir-3	kpir-3	kpir-3	kpir-3
	feno	feno	feno	feno	feno	feno	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl
	mer	mant	ken	mer	mant	ken	mer											•
SiO ₂	50.10	52.24	42.18	45.90	47.80	43.97	51.58	51.70	52.19	51.94	51.50	51.74	52.05	52.43	52.15	51.96	52.15	51.75
TiO ₂	0.89	0.55	2.43	1.58	1.21	2.02	0.66	09.0	0.64	0.50	0.55	0.63	0.52	0.54	0.52	0.52	0.49	0.64
Al_2O_3	5.24	3.10	10.01	7.85	6.06	8.71	3.71	3.23	2.87	2.96	3.19	3.03	2.82	2.91	2.86	2.79	2.82	3.55
FeO	5.04	4.33	9.35	7.49	6.89	8.56	3.61	3.59	3.26	3.31	3.25	3.34	3.07	3.26	3.35	3.18	3.17	4.48
MnO	0.10	0.07	0.08	0.06	0.05	0.08	0.05	00.00	0.02	0.05	0.01	0.10	0.11	0.07	0.09	0.07	0.09	0.09
MgO	14.89	16.14	10.83	12.54	13.50	11.88	15.68	15.70	16.25	15.94	15.97	15.83	15.99	16.11	16.14	16.25	16.28	15.53
CaO	24.17	24.17	24.11	24.20	24.09	24.00	24.14	24.30	24.38	24.15	24.27	24.04	24.43	24.40	24.03	24.31	24.16	24.38
Na_2O	0.29	0.21	0.31	0.32	0.28	0.28	0.24	0.23	0.22	0.21	0.22	0.24	0.21	0.23	0.21	0.16	0.19	0.21
K_2O	0.00	0.01	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.02	0.01	0.01	0.01	0.02	0.00	0.00	0.00
Cr_2O_3	0.05	0.03	0.00	0.05	0.02	0.03	0.81	0.80	0.79	0.78	1.00	06.0	0.82	0.82	0.73	0.79	0.81	0.04
Toplam	100.77	100.85	99.30	66.66	96.66	99.53	100.50	100.15	100.62	99.84	99.98	99.86	100.03	100.78	100.10	100.03	100.16	100.67
Si	1.84	1.90	1.62	1.73	1.79	1.68	1.88	1.90	1.90	1.91	1.89	1.90	1.91	1.91	1.91	1.90	1.91	1.89
Ti	0.02	0.02	0.07	0.04	0.03	0.06	0.02	0.02	0.02	0.01	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.02
AI	0.23	0.13	0.45	0.35	0.27	0.39	0.16	0.14	0.12	0.13	0.14	0.13	0.12	0.12	0.12	0.12	0.12	0.15
Fe^{+2}	0.15	0.13	0.30	0.24	0.22	0.27	0.11	0.11	0.10	0.10	0.10	0.10	0.09	0.10	0.10	0.10	0.10	0.14
Mn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00
Mg	0.81	0.88	0.62	0.70	0.75	0.68	0.85	0.86	0.88	0.87	0.87	0.87	0.87	0.87	0.88	0.89	0.89	0.85
Ca	0.95	0.94	0.99	0.98	0.97	0.98	0.94	0.95	0.95	0.95	0.95	0.95	96.0	0.95	0.94	0.95	0.95	0.96
Na	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.01	0.02	0.01	0.01	0.01	0.01
K	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00
Cr	0.00	0.00	0.00	0.00	0.00	00.00	0.02	0.02	0.02	0.02	0.03	0.03	0.02	0.02	0.02	0.02	0.02	0.00
Toplam	4.02	4.01	4.07	4.06	4.05	4.08	4.00	4.02	4.01	4.00	4.02	4.02	3.99	4.00	3.99	4.00	4.01	4.02
Mg #	0.84	0.87	0.67	0.75	0.78	0.71	0.89	0.89	0.90	06.0	06.0	0.89	06.0	0.90	0.90	06.0	0.90	0.86
Wo	49.47	48.30	51.98	50.99	49.94	50.91	49.47	49.65	49.22	49.34	49.5	49.32	49.69	49.39	48.87	49.16	48.95	49.22
En	42.39	44.87	32.50	36.78	38.96	35.06	44.70	44.64	45.64	45.32	45.34	45.20	45.27	45.37	45.69	45.74	45.91	43.63
Fs	8.14	6.83	15.52	12.23	11.10	14.03	5.83	5.71	5.14	5.34	5.16	5.48	5.04	5.24	5.44	5.10	5.14	7.15
Mg#=Mg/(Mg-	+Fe ⁺²). F	ormül 6 (oksijen ü.	zerinden	hesaplan	umistur. K	isaltmala	vr: kpir: k	dinopirok	csen; fend	o:fenokri	stal; mik	: mikroli	t; mant: 1	nanto; pi	rfl: profil		

Ek Tablo A8. Miyosen yaşlı foidli breşik lavlara ait klinopiroksenlerin mikroprob analiz sonuçları

Mineral kpir-3 prfl prfl SiO2 51.81 TiO2 51.81 TiO2 0.72 Al ₂ O ₃ 3.43 FeO 4.24 MnO 0.08	kpir-3 prfl 51.42 0.69	kpir-3	knir-3	1 min 2	L'nir_3		ر <u>ا</u>										
prfl SiO ₂ 51.81 TiO ₂ 0.72 Al ₂ O ₃ 3.43 FeO 4.24 MnO 0.08	prfl 51.42 0.69		,	c-11dy	<i>د</i> -1114	kpir-3 r-3	kpir-3	kpir-3	kpir-3								
SiO ₂ 51.81 TiO ₂ 0.72 Al ₂ O ₃ 3.43 FeO 4.24 MnO 0.08	51.42 0.69	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl
TiO ₂ 0.72 Al ₂ O ₃ 3.43 FeO 4.24 MnO 0.08	0.69 2 0.7	51.59	51.65	52.27	52.02	50.17	49.36	50.56	49.75	50.05	43.16	42.78	42.66	44.82	43.64	51.92	50.05
Al ₂ O ₃ 3.43 FeO 4.24 MnO 0.08	L0 C	0.67	0.62	0.58	0.64	0.97	1.08	0.87	1.13	0.95	2.36	2.31	2.35	1.83	2.20	0.56	0.95
FeO 4.24 MnO 0.08	17.0	3.53	3.21	3.22	3.10	5.44	5.58	5.14	5.60	4.73	9.73	9.92	9.88	8.06	9.10	2.78	4.73
MnO 0.08	4.11	4.28	4.44	4.13	4.31	4.79	5.00	4.63	5.18	4.19	9.22	9.04	60.6	8.09	8.72	4.02	4.19
15 T	0.06	0.06	0.08	0.03	0.06	0.08	00.00	0.14	0.06	0.00	0.13	0.07	0.05	0.07	0.06	0.08	0.00
ci Ogm	15.54	15.65	15.95	15.75	15.99	14.68	14.47	15.01	14.38	14.79	11.23	11.06	11.03	12.09	11.43	16.08	14.79
CaO 24.45	24.27	24.01	23.75	24.14	23.60	24.21	23.99	23.76	23.95	24.00	23.71	23.92	23.54	24.00	23.57	24.20	24.00
Na ₂ O 0.25	0.25	0.20	0.26	0.21	0.22	0.27	0.30	0.26	0.30	0.31	0.33	0.29	0.27	0.25	0.32	0.20	0.31
K ₂ O 0.01	0.01	0.00	0.03	0.00	0.00	0.01	0.01	0.00	00.00	0.00	0.00	0.00	0.02	0.02	0.00	0.03	0.00
Cr ₂ O ₃ 0.00	0.00	0.06	0.08	0.03	0.07	0.06	0.04	0.06	0.08	1.32	0.00	0.00	0.00	0.04	0.01	0.23	1.32
Toplam 100.72	100.32	100.05	100.07	100.36	100.01	100.68	99.83	100.43	100.43	100.34	99.87	99.39	98.89	99.27	99.05	100.10	100.34
Si 1.89	1.88	1.89	1.90	1.91	1.91	1.84	1.83	1.85	1.83	1.84	1.65	1.64	1.64	1.71	1.67	1.91	1.84
Ti 0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.03	0.02	0.03	0.03	0.07	0.07	0.07	0.05	0.06	0.02	0.03
Al 0.15	0.17	0.15	0.14	0.14	0.13	0.23	0.24	0.22	0.24	0.21	0.44	0.45	0.45	0.36	0.41	0.12	0.21
${\rm Fe}^{+2}$ 0.13	0.13	0.13	0.14	0.13	0.13	0.15	0.15	0.14	0.16	0.13	0.29	0.29	0.29	0.26	0.28	0.12	0.13
Mn 0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mg 0.86	0.85	0.86	0.87	0.86	0.87	0.80	0.80	0.82	0.79	0.81	0.64	0.63	0.63	0.69	0.65	0.88	0.81
Ca 0.96	0.95	0.94	0.94	0.95	0.93	0.95	0.95	0.93	0.94	0.95	0.97	0.98	0.97	0.98	0.97	0.95	0.95
Na 0.02	0.02	0.01	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02
K 0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr 0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.01	0.04
Toplam 4.03	4.02	4.00	4.03	4.02	4.01	4.02	4.02	4.00	4.01	4.03	4.08	4.08	4.07	4.07	4.06	4.02	4.03
Mg # 0.87	0.87	0.87	0.86	0.87	0.87	0.85	0.84	0.85	0.83	0.86	0.68	0.69	0.68	0.73	0.70	0.88	0.86
Wo 49.20	49.39	48.83	48.03	48.98	47.93	50.01	49.98	49.13	49.87	50.17	50.89	51.68	51.3	50.97	50.98	48.63	50.17
En 44.05	44.01	44.30	44.88	44.46	45.17	42.18	41.95	43.21	41.67	43.02	33.72	33.25	33.44	35.73	34.45	44.97	43.02
Fs 6.75	6.60	6.87	7.09	6.56	6.90	7.81	8.07	7.66	8.46	6.81	15.39	15.07	15.26	13.30	14.57	6.40	6.81

Ek Tablo A8' in devami

devamı
A8'in
Tablo
Ek

Örnek	<u>CY-17</u>	<u>CY-17</u>	CY-17	CY-17	CY-17	<u>CY-17</u>	<u>CY-18</u>	<u>CY-18</u>	CY-18	CY-18	<u>CY-18</u>	<u>CY-18</u>	<u>CY-18</u>	CY-18	<u>CY-18</u>	<u>CY-18</u>	CY-18	CY-18
Mineral	kpir-3	kpir-3	kpir-3	kpir-3	kpir-3	kpir-4	kpir-1	kpir-1	kpir-2	kpir-2	kpir-2	kpir-2	kpir-2	kpir-2	kpir-3	kpir-2	kpir-2	kpir
	prfl	prfl	prfl	prfl	prfl	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	mik-1
				Ť	ken	mer	mant	ken	mer	mantl	mant2	kenl	ken2	ken3	mer	mant	ken	mant
SiO_2	43.16	42.78	42.66	44.82	43.64	51.92	44.22	47.76	47.70	50.55	47.92	47.74	47.63	47.77	48.67	48.19	45.20	51.48
TiO_2	2.36	2.31	2.35	1.83	2.20	0.56	2.18	1.41	1.39	0.91	1.31	1.45	1.45	1.47	1.25	1.45	1.81	0.05
Al_2O_3	9.73	9.92	9.88	8.06	9.10	2.78	8.66	6.52	5.93	4.10	5.68	5.77	5.93	6.00	5.78	6.08	7.89	1.06
FeO	9.22	9.04	9.09	8.09	8.72	4.02	8.40	6.11	7.34	4.99	6.97	6.94	7.01	6.76	6.21	5.95	8.06	10.94
MnO	0.13	0.07	0.05	0.07	0.06	0.08	0.05	0.04	0.10	0.03	0.08	0.13	0.13	0.08	0.09	0.06	0.06	0.64
MgO	11.23	11.06	11.03	12.09	11.43	16.08	12.03	13.65	13.19	14.94	13.61	13.32	13.14	13.56	13.72	13.77	11.88	11.47
CaO	23.71	23.92	23.54	24.00	23.57	24.20	24.03	24.02	24.04	24.28	24.41	24.54	24.25	24.13	24.51	23.95	24.11	23.76
Na_2O	0.33	0.29	0.27	0.25	0.32	0.20	0.31	0.31	0.34	0.26	0.24	0.26	0.32	0.32	0.28	0.24	0.32	0.16
K_2O	0.00	0.00	0.02	0.02	00.00	0.03	0.03	0.00	0.00	0.03	0.01	0.00	0.01	0.00	0.01	0.00	0.00	0.01
Cr_2O_3	0.00	0.00	0.00	0.04	0.01	0.23	0.00	0.20	0.00	0.22	0.02	0.00	0.02	0.03	0.07	0.14	0.00	0.00
Toplam	99.87	99.39	98.89	99.27	99.05	100.10	99.91	100.02	100.03	100.31	100.25	100.15	99.89	100.12	100.59	99.83	99.33	99.57
Si	1.65	1.64	1.64	1.71	1.67	1.91	1.68	1.78	1.79	1.86	1.79	1.79	1.79	1.79	1.81	1.80	1.72	1.96
Ti	0.07	0.07	0.07	0.05	0.06	0.02	0.06	0.04	0.04	0.03	0.04	0.04	0.04	0.04	0.03	0.04	0.05	0.00
AI	0.44	0.45	0.45	0.36	0.41	0.12	0.39	0.29	0.26	0.18	0.25	0.25	0.26	0.26	0.25	0.27	0.35	0.05
Fe^{+2}	0.29	0.29	0.29	0.26	0.28	0.12	0.27	0.19	0.23	0.15	0.22	0.22	0.22	0.21	0.19	0.19	0.26	0.35
Mn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
Mg	0.64	0.63	0.63	0.69	0.65	0.88	0.68	0.76	0.74	0.82	0.76	0.74	0.74	0.76	0.76	0.77	0.67	0.65
Са	0.97	0.98	0.97	0.98	0.97	0.95	0.98	0.96	0.97	0.96	96.0	0.98	0.98	0.97	0.97	0.96	0.98	0.97
Na	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	4.08	4.08	4.07	4.07	4.06	4.02	4.08	4.05	4.06	4.03	4.06	4.04	4.05	4.05	4.03	4.05	4.05	4.01
Mg #	0.68	0.69	0.68	0.73	0.70	0.88	0.72	0.80	0.76	0.84	0.78	0.77	0.77	0.78	0.80	0.80	0.72	0.65
Wo	50.98	51.68	51.3	50.97	50.89	48.63	50.86	50.28	49.96	49.59	50.05	50.57	50.49	49.99	50.56	50.14	51.44	48.76
En	33.63	33.25	33.44	35.73	34.54	44.97	35.44	39.78	38.13	42.46	38.83	38.20	38.05	39.10	39.39	40.12	35.26	32.76
Fs	15.39	15.07	15.26	13.30	14.57	6.40	13.70	9.94	11.91	7.95	11.12	11.23	11.46	10.91	10.05	9.74	13.30	18.48
Mg#=Mg/(Mg	1,15 (1) F	ormül 6 (<u>oksijen</u> üz	cerinden	hesaplan	mıştır. K	Isaltmala	ır: kpir: k	linopirol	ksen; fen	p:fenokri	stal; mik	: mikroli	t; mant: 1	manto; pr	fl: profil.		

devamı	
A8'in	
Tablo	
Ek	

Ek Tablo A	\8 'in dev	/amı																
Örnek	<u>CY-18</u>	220	220	220	220	220	<u>220</u>	220	<u>220</u>	220	220	721	721	721	721	721	721	721
Mineral	kpir	kpir-2	kpir-2	kpir-2	kpir-3	kpir-3	kpir-3	kpir-4	kpir-4	kpir-4	kpir-4	kpir-1	kpir-1	kpir-2	kpir-2	kpir-2	kpir-3	kpir-3
	mik-2	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno
	mant	mer	mant	ken	mer	mant	ken	mer	mant	kenl	ken2	mer	ken	mer	mant	ken	mer	mant1
SiO_2	48.66	47.81	47.83	47.54	49.23	49.80	49.09	49.56	49.92	50.47	47.47	48.93	46.90	50.23	50.59	48.65	49.20	50.40
TiO ₂	1.17	1.19	1.18	1.24	0.84	0.86	06.0	0.84	0.91	0.75	1.34	1.23	1.68	0.99	0.81	1.24	1.05	0.93
Al_2O_3	5.70	6.77	6.16	6.52	5.73	5.49	5.16	5.88	5.58	4.93	6.91	5.20	6.74	4.12	3.51	5.30	5.14	3.98
FeO	6.53	6.79	7.25	7.71	4.91	4.83	7.57	5.62	5.67	5.29	8.39	7.59	8.47	6.67	6.84	7.59	7.18	6.74
MnO	0.11	0.11	0.13	0.16	0.07	0.10	0.15	0.10	0.18	0.11	0.16	0.00	0.02	0.01	0.01	0.00	0.05	0.00
MgO	13.64	13.13	13.13	12.76	14.23	14.76	13.33	14.43	14.22	14.79	12.34	13.15	12.02	13.98	14.38	13.05	13.29	14.29
CaO	23.98	23.37	23.84	23.17	24.05	23.48	23.32	23.38	23.71	23.44	22.99	22.92	22.98	23.39	23.03	23.45	23.23	23.43
Na_2O	0.35	0.47	0.41	0.38	0.31	0.41	0.45	0.44	0.44	0.39	0.45	0.53	0.54	0.44	0.39	0.57	0.58	0.46
K_2O	0.01	0.01	0.02	0.00	0.01	0.02	0.02	0.04	0.01	0.00	0.01	0.00	0.01	0.02	0.02	0.02	0.00	0.01
Cr_2O_3	0.00	0.00	0.00	0.00	0.54	0.47	0.02	0.00	0.01	0.04	0.04	0.00	0.02	0.01	0.01	0.00	0.05	0.00
Toplam	100.15	99.65	99.95	99.48	99.92	100.22	100.01	100.29	100.65	100.21	100.10	99.55	99.38	99.86	99.59	99.87	77.66	100.24
Si	1.81	1.79	1.79	1.79	1.82	1.84	1.84	1.83	1.84	1.86	1.78	1.84	1.78	1.87	1.89	1.82	1.84	1.87
Ti	0.03	0.03	0.03	0.04	0.02	0.02	0.03	0.02	0.03	0.02	0.04	0.03	0.05	0.03	0.02	0.03	0.03	0.03
Al	0.25	0.30	0.27	0.29	0.25	0.24	0.23	0.26	0.24	0.21	0.31	0.23	0.30	0.18	0.15	0.23	0.23	0.17
Fe^{+2}	0.20	0.21	0.23	0.24	0.15	0.15	0.24	0.17	0.17	0.16	0.26	0.24	0.27	0.21	0.21	0.24	0.22	0.21
Mn	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mg	0.76	0.73	0.73	0.72	0.79	0.81	0.74	0.79	0.78	0.81	0.69	0.74	0.68	0.78	0.80	0.73	0.74	0.79
Ca	0.96	0.94	0.96	0.94	0.95	0.93	0.93	0.92	0.93	0.92	0.92	0.92	0.93	0.93	0.92	0.94	0.93	0.93
Na	0.03	0.03	0.03	0.03	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.03	0.03	0.04	0.04	0.03
К	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr	0.00	0.00	0.00	0.00	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	4.04	4.03	4.04	4.06	4.02	4.03	4.04	4.02	4.03	4.01	4.04	4.04	4.05	4.03	4.02	4.03	4.03	4.03
Mg #	0.79	0.78	0.76	0.75	0.84	0.85	0.76	0.82	0.82	0.83	0.72	0.76	0.72	0.79	0.79	0.75	0.77	0.79
Wo	49.87	49.75	49.88	49.30	50.41	49.08	48.76	48.83	49.35	48.62	49.16	48.67	49.68	48.70	47.64	49.40	49.10	48.28
En	39.47	38.90	38.23	37.76	41.50	42.94	38.77	41.93	41.21	42.69	36.72	38.85	36.15	40.51	41.39	38.25	39.08	40.97
Fs	10.66	11.35	11.89	12.94	8.09	7.98	12.47	9.24	9.44	8.69	14.12	12.48	14.17	10.79	10.97	12.35	11.82	10.75
Mg#=Mg/(M£	ş+Fe ⁺²). Fı	ormül 6 (oksijen üz	cerinden	hesaplanı	mıştır. Kı	isaltmala	r: kpir: k	linopirok	sen; fenc	o:fenokris	stal; mik:	mikrolit	; mant: r	nanto.			

Ek Tablo A8'in devamı

analiz sonuçları
mikroprob a
ksenlerin 1
klinopirol
sillere ait
li dayk ve
yaşlı foid
Miyosen
Tablo A9.
E

Ek Tablo A	9. Miyo	sen yaş	lı foidli	dayk v	e sillere	e ait klii	nopirok	senlerii	n mikro	prob an	aliz sor	ıuçları					
Örnek	238	238	238	238	603	<u>603</u>	<u>603</u>	603	<u>603</u>	<u>603</u>	<u>603</u>	603	603	<u>603</u>	603	<u>603</u>	603
Mineral	kpir-1	kpir-1	kpir-2	kpir-2	kpir-1	kpir-1	kpir-1	kpir-2	kpir-2	kpir-2	kpir-2	kpir-3	kpir-3	kpir-3	kpir-5	kpir-5	kpir-5
	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno
	mer	ken	mer	ken	mer	mant	ken	mer	mant	ken1	ken2	mer	mant	ken	mer	mant	ken
SiO_2	47.81	47.39	49.86	49.05	48.14	48.16	47.74	47.19	50.95	46.18	45.86	48.50	48.02	50.73	48.54	49.02	49.28
TiO ₂	0.98	1.76	1.06	1.03	0.02	0.28	0.07	0.06	0.11	0.00	0.01	0.06	0.03	0.00	0.03	0.00	0.06
Al_2O_3	5.99	7.37	3.95	5.22	7.11	6.74	6.29	7.33	4.59	7.50	8.31	6.78	7.19	3.99	6.11	5.06	5.65
FeO	8.85	8.35	8.10	6.98	6.91	5.61	7.98	7.78	5.37	8.47	8.25	6.31	6.83	6.62	6.70	6.84	6.73
MnO	0.22	0.20	0.19	0.15	0.09	0.09	0.14	0.08	0.05	0.11	0.26	0.06	0.09	0.15	0.12	0.07	0.11
MgO	12.27	12.42	13.61	12.91	12.83	13.93	13.11	12.49	14.78	12.14	11.62	13.29	13.13	14.15	13.45	14.14	13.78
CaO	24.07	23.53	24.11	23.78	23.58	23.62	23.32	23.10	23.50	22.74	23.07	22.98	23.24	23.27	23.66	23.52	23.29
Na_2O	0.53	0.59	0.37	0.57	0.53	0.35	0.47	0.46	0.45	0.48	0.47	0.49	0.46	0.36	0.36	0.42	0.49
K_2O	0.00	0.03	0.05	0.03	00.00	0.00	0.03	0.01	0.03	0.03	0.02	0.00	0.01	0.00	0.02	0.01	0.00
Cr_2O_3	0.03	0.04	0.00	0.02	0.02	0.28	0.07	0.06	0.11	0.00	0.01	0.06	0.03	0.00	0.03	0.00	0.06
Toplam	100.75	101.68	101.30	99.74	99.23	90.06	99.22	98.56	99.94	97.65	97.88	98.53	99.03	99.27	99.02	90.08	99.45
Si	1.79	1.76	1.85	1.84	1.81	1.80	1.81	1.79	1.88	1.78	1.76	1.83	1.81	1.90	1.83	1.84	1.84
Ti	0.03	0.05	0.03	0.03	00.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00
Al	0.26	0.32	0.17	0.23	0.32	0.30	0.28	0.33	0.20	0.34	0.38	0.30	0.32	0.18	0.27	0.22	0.25
${\rm Fe}^{+2}$	0.28	0.26	0.25	0.22	0.22	0.18	0.25	0.25	0.17	0.27	0.27	0.20	0.21	0.21	0.21	0.22	0.21
Mn	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
Mg	0.69	0.69	0.75	0.72	0.72	0.78	0.74	0.71	0.81	0.70	0.67	0.75	0.74	0.79	0.75	0.79	0.77
Ca	0.97	0.93	96.0	0.95	0.95	0.95	0.95	0.94	0.93	0.94	0.95	0.93	0.94	0.93	0.95	0.95	0.93
Na	0.04	0.04	0.03	0.04	0.04	0.03	0.03	0.03	0.03	0.04	0.03	0.04	0.03	0.03	0.03	0.03	0.04
K	0.00	0.00	00.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00
Cr	0.00	0.00	00.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	4.07	4.06	4.05	4.03	4.06	4.06	4.06	4.05	4.02	4.07	4.07	4.05	4.05	4.04	4.04	4.05	4.04
Mg#	0.71	0.73	0.75	0.77	0.77	0.82	0.75	0.74	0.83	0.72	0.72	0.79	0.77	0.79	0.78	0.79	0.78
Wo	50.02	49.64	48.76	50.32	50.36	49.83	48.78	49.65	48.69	49.21	50.39	49.53	49.6	48.26	49.67	48.47	48.78
En	35.49	36.47	38.30	38.02	38.12	40.89	38.17	37.36	42.62	36.56	35.32	39.85	39.01	40.85	39.28	40.57	40.16
Fs	14.49	13.89	12.94	11.66	11.52	9.28	13.05	12.99	8.69	14.23	14.29	10.62	11.39	10.89	11.05	10.96	11.06
Mg#=Mg/(Mg	$+\overline{F}e^{+2}$). F(ərmül 6 c	ksijen üz	cerinden l	hesaplan	miştır. Ki	isaltmala	r:kpir: kl	inopirok	sen; Fene	o:fenokri	stal; mik	mikrolit	t; mant: 1	manto; pi	fl: profil	_

Ek Tablo A9'un devamı

Örnek	<u>805</u>	<u>805</u>	<u>805</u>	805	805	<u>805</u>	805	<u>805</u>
Mineral	kpir-1	kpir-1	kpir-2	kpir-2	kpir-3	kpir-3	kpir-4	kpir-4
	feno	feno	feno	feno	feno	feno	feno	feno
	mer	ken	mer	ken	mer	ken	mer	ken
SiO_2	46.65	44.71	46.10	47.36	51.56	45.88	48.82	47.56
TiO_2	1.54	2.06	1.71	1.29	0.73	1.59	0.96	1.19
Al_2O_3	7.67	9.54	7.59	7.20	3.95	8.33	5.55	7.49
FeO	9.25	10.66	9.36	9.16	4.02	9.55	7.49	8.13
MnO	0.20	0.30	0.19	0.17	0.09	0.13	0.15	0.14
MgO	12.34	11.07	12.00	12.26	15.53	11.54	13.85	12.91
CaO	23.93	23.02	23.73	23.64	24.95	23.66	23.66	23.49
Na_2O	0.50	0.54	0.41	0.54	0.29	0.56	0.43	0.44
K_2O	0.00	0.04	0.03	0.03	0.02	0.01	0.00	0.02
Cr_2O_3	0.00	0.04	0.00	0.05	0.65	0.00	0.00	0.01
Toplam	102.08	101.98	101.12	101.70	101.79	101.25	100.91	101.38
Si	1.73	1.67	1.73	1.76	1.87	1.72	1.81	1.76
Ti	0.04	0.06	0.05	0.04	0.02	0.04	0.03	0.03
AI	0.34	0.42	0.34	0.32	0.17	0.37	0.24	0.33
Fe^{+2}	0.29	0.33	0.29	0.28	0.12	0.30	0.23	0.25
Mn	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00
Mg	0.68	0.62	0.67	0.68	0.84	0.65	0.77	0.71
Са	0.95	0.92	0.95	0.94	0.97	0.95	0.94	0.93
Na	0.04	0.04	0.03	0.04	0.02	0.04	0.03	0.03
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00
Toplam	4.08	4.07	4.07	4.07	4.03	4.07	4.05	4.04
Mg #	0.70	0.65	0.70	0.70	0.87	0.68	0.77	0.74
Wo	49.50	49.17	49.69	49.39	50.17	50.18	48.48	49.11
En	35.51	32.89	34.96	35.63	43.43	34.07	39.47	37.58
Fs	14.99	17.94	15.35	14.98	6.40	15.75	12.05	13.31
Mg#=Mg/(Mg ⁺	-Fe ⁺²). Fo	ərmül 6 c	oksijen ü	zerinden	hesaplan	mıştır. K	usaltmal	ar: kpir:kl

opiroksen; feno:fenokristal.

Örnek	114	114	114	114	114	114	114	118	118	118	118	118	118	118	118	118	118	118
Mineral	pl-1	pl-1	pl-1	pl-1	pl-1	pl-1	pl-2	pl-1	pl-1	pl-1	pl-2	pl-2	pl-2	pl-2	pl-3	pl-3	pl-3	pl-4
	feno	feno	feno	feno	feno	mik	mik	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	mik
	mer	mant	ken1	ken2	ken3	mer	mer	mer	ken	mant	mer	mantl	mant2	ken	mer	mant	ken	mer
SiO_2	43.74	44.33	45.44	46.74	50.04	41.79	46.57	51.98	51.07	49.95	45.07	45.37	46.29	51.80	45.28	45.08	45.50	51.20
TiO_2	0.02	0.00	0.05	0.01	0.04	0.00	2.01	0.12	0.15	0.12	0.03	0.06	0.05	0.18	0.02	0.05	0.01	0.07
Al_2O_3	36.88	35.14	34.43	33.34	31.83	29.66	6.90	28.80	29.75	29.96	33.66	33.78	33.43	29.48	34.24	34.21	33.72	29.44
FeO	0.51	0.58	0.53	0.65	0.73	0.07	9.10	09.0	0.72	0.65	0.61	0.62	0.78	0.73	0.64	0.66	0.64	0.88
MnO	0.00	0.00	0.00	0.00	0.00	0.00	0.26	0.00	0.00	0.00	00.00	0.00	0.00	0.04	0.00	0.00	0.00	0.04
MgO	0.05	0.05	0.03	0.06	0.16	0.00	12.54	0.10	0.10	0.13	0.03	0.03	0.09	0.09	0.08	0.05	0.08	0.09
CaO	17.74	18.72	17.98	17.21	12.60	10.83	22.21	12.96	13.42	14.12	18.19	18.38	17.71	12.73	18.27	18.60	18.08	13.68
Na_2O	0.77	0.75	1.21	1.69	3.58	3.20	0.41	3.70	3.39	2.76	0.91	0.94	1.24	3.67	0.97	06.0	1.19	3.32
K_2O	0.02	0.04	0.06	0.08	0.37	0.03	0.01	0.68	0.59	0.84	0.05	0.08	0.12	0.79	0.06	0.08	0.09	0.66
Cr_2O_3	0.00	0.00	0.01	0.01	0.00	0.00	0.01	0.01	0.00	0.00	0.05	0.01	0.00	0.00	0.03	0.00	0.02	0.00
P_2O_5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	99.73	99.61	99.74	99.79	99.35	85.58	100.02	98.95	99.19	98.53	98.60	99.27	99.71	99.51	99.59	99.63	99.33	99.38
Si	8.09	8.24	8.42	8.64	9.18	8.87	9.37	9.58	9.41	9.29	8.45	8.45	8.57	9.50	8.41	8.38	8.47	9.43
Ti	0.00	0.00	0.01	0.00	0.01	0.00	0.30	0.02	0.02	0.02	00.00	0.01	0.01	0.03	0.00	0.01	0.00	0.01
Al	8.04	7.70	7.51	7.26	6.88	7.42	1.64	6.26	6.46	6.56	7.44	7.42	7.30	6.37	7.49	7.49	7.40	6.39
Fe^{+2}	0.08	0.09	0.08	0.10	0.11	0.01	1.53	0.09	0.11	0.10	0.10	0.10	0.12	0.11	0.10	0.10	0.10	0.14
Mn	0.00	0.00	0.00	0.00	0.00	0.00	0.04	00.00	00.00	0.00	00.00	00.00	0.00	0.01	0.00	0.00	0.00	0.01
Mg	0.01	0.01	0.01	0.02	0.04	0.00	3.76	0.03	0.03	0.03	0.01	0.01	0.02	0.02	0.02	0.01	0.02	0.03
Са	3.52	3.73	3.57	3.41	2.48	2.46	4.79	2.56	2.65	2.81	3.65	3.67	3.51	2.50	3.63	3.70	3.61	2.70
Na	0.27	0.27	0.44	0.61	1.27	1.32	0.16	1.32	1.21	0.99	0.33	0.34	0.44	1.30	0.35	0.32	0.43	1.18
K	0.01	0.01	0.01	0.02	0.09	0.01	00.00	0.16	0.14	0.20	0.01	0.02	0.03	0.18	0.01	0.02	0.02	0.15
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Р	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	00.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	20.02	20.05	20.05	20.06	20.06	20.09	21.59	20.02	20.03	20.00	20.00	20.02	20.00	20.02	20.01	20.03	20.05	20.04
An	92.62	92.98	88.82	84.51	64.54	64.97	96.73	63.30	66.24	70.20	91.42	91.10	88.17	62.68	90.91	91.55	88.92	66.84
Ab	7.23	6.78	10.84	15.05	33.22	34.78	3.21	32.73	30.29	24.82	8.26	8.42	11.15	32.69	8.74	8.00	10.56	29.33
Or	0.15	0.24	0.34	0.44	2.24	0.25	0.06	3.97	3.47	4.98	0.32	0.48	0.68	4.63	0.35	0.45	0.52	3.83
Formül 32 c	ksijen üz	crinden l	hesaplanı	mıştır. Kı	saltmala	r: pl: plaj	iyoklas; 1	feno:feno	okristal; r	nik: mikr	olit; ma	nt: manto						

Ek Tablo B1. Eosen yaşlı volkanik breşlere ait plajiyoklasların mikroprob analiz sonuçları

devamı	
$\mathbf{B1}$ 'in	
Tablo	
K	

Örnek	118	118	<u>240</u>	240	<u>240</u>	240	240	240	240	<u>240</u>	240	<u>240</u>	<u>240</u>	<u>240</u>	240	240	<u>240</u>	240
Mineral	pl-5	pl-6	pl-1	pl-1	pl-1	pl-1	pl-1	pl-2	pl-2	pl-2	pl-2	pl-3	pl-3	pl-4	pl-4	pl-4	pl-2	pl-5
	mik	mik	feno	feno	feno	feno	mik	mik	mik	feno	feno	feno	feno	feno	feno	feno	feno	feno
	mer	mer	mer	mant1	mant2	ken	mer	mer	mer	mant	ken	mer	ken	mer	mant	ken1	ken2	mer
SiO_2	54.82	52.39	46.99	47.67	46.74	52.13	56.32	49.57	47.63	53.63	51.61	53.52	56.02	50.75	52.19	53.35	54.06	49.32
TiO_2	0.14	0.09	0.03	0.05	0.01	0.02	0.09	0.00	0.02	0.05	0.05	0.02	0.08	0.00	0.02	0.06	0.09	0.00
Al_2O_3	26.86	28.55	31.97	32.04	31.88	28.87	26.15	30.60	32.05	27.60	28.78	28.43	26.70	29.59	28.98	28.04	28.02	30.57
FeO	0.93	0.71	0.64	0.73	0.65	0.67	0.68	0.66	0.75	0.68	0.61	0.63	0.49	0.67	0.63	0.53	0.59	0.62
MnO	0.05	0.02	0.00	0.00	0.03	0.01	0.00	0.00	0.03	0.00	0.01	0.00	0.00	0.00	0.06	0.00	0.00	0.04
MgO	0.05	0.12	0.02	0.06	0.06	0.07	0.08	0.06	0.04	0.10	0.10	0.08	0.07	0.08	0.09	0.06	0.06	0.09
CaO	10.11	12.40	16.70	16.69	16.74	12.71	9.24	14.86	16.59	12.09	12.77	11.96	9.87	14.22	13.16	11.69	11.93	14.89
Na_2O	4.69	3.96	1.81	2.02	1.82	3.94	5.10	2.78	1.90	4.30	3.61	4.28	4.90	3.18	3.75	4.27	4.34	2.71
K_2O	1.33	0.80	0.15	0.21	0.16	0.60	1.53	0.38	0.20	0.70	0.48	09.0	0.95	0.40	0.47	0.66	0.61	0.36
Cr_2O_3	0.06	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.04	0.03	0.00	0.01
P_2O_5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	99.04	99.05	98.32	99.47	98.09	99.02	99.19	98.91	99.22	99.15	98.02	99.52	99.10	98.89	99.39	98.69	99.70	98.61
Si	10.05	9.65	8.80	8.83	8.78	9.60	10.27	9.18	8.84	9.84	9.58	9.77	10.20	9.38	9.57	9.81	9.84	9.17
Ti	0.02	0.01	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.01	0.01	0.00	0.01	0.00	0.00	0.01	0.01	0.00
Al	5.80	6.19	7.06	7.00	7.06	6.26	5.62	6.68	7.01	5.97	6.30	6.11	5.73	6.45	6.26	6.08	6.01	6.70
Fe^{+2}	0.14	0.11	0.10	0.11	0.10	0.10	0.10	0.10	0.12	0.10	0.10	0.10	0.07	0.10	0.10	0.08	0.09	0.10
Mn	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	00.00	0.01	0.00	0.00	0.01
Mg	0.01	0.03	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.03	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Са	1.99	2.45	3.35	3.31	3.37	2.51	1.81	2.95	3.30	2.38	2.54	2.34	1.92	2.82	2.59	2.30	2.33	2.96
Na	1.67	1.41	0.66	0.72	0.66	1.41	1.80	1.00	0.68	1.53	1.30	1.51	1.73	1.14	1.34	1.52	1.53	0.98
К	0.31	0.19	0.04	0.05	0.04	0.14	0.36	0.09	0.05	0.16	0.11	0.14	0.22	0.09	0.11	0.16	0.14	0.09
Cr	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00
Р	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	20.01	20.04	20.02	20.05	20.04	20.04	19.99	20.02	20.01	20.02	19.97	19.99	19.90	20.00	20.01	19.98	19.97	20.03
An	50.12	60.45	82.86	81.06	82.75	61.82	45.54	73.04	81.87	58.39	64.24	58.58	49.70	69.54	64.15	57.86	58.15	73.59
$\mathbf{A}\mathbf{b}$	42.06	34.92	16.23	17.72	16.29	34.72	45.47	24.72	16.94	37.57	32.89	37.94	44.63	28.16	33.13	38.23	38.30	24.29
Or	7.82	4.63	0.91	1.22	0.96	3.46	8.99	2.24	1.19	4.04	2.87	3.48	5.67	2.30	2.72	3.91	3.55	2.12
Formül 32 ol	ksijen üz	erinden ł	ıesaplanı	mıştır. Kı	saltmala	r: pl: pla	ijiyoklas;	feno:fen	okristal;	mik: mik	rolit; ma	nt: mante	э.					

devamı	
$\mathbf{B1}$ 'in	
Tablo	
K	

Ornek	240	240	240	240	250	250	250	250	250	250	250	250	250	250	250	250	250	250
Mineral	pl-5	pl-5	pl-5	pl-5	pl-1	pl-1	pl-1	pl-1	pl-1	pl-1	pl-2	pl-2	pl-2	pl-2	pl-3	pl-3	pl-3	pl-4
	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno
	mantl	mant2	kenl	ken2	mer	mantl	mant2	kenl	ken2	ken3	mer	mantl	mant2	ken	mer	mant	ken	mer
SiO_2	49.18	50.65	49.93	52.68	50.99	49.55	55.05	54.21	51.20	64.93	45.67	46.88	56.18	52.71	54.26	55.46	50.82	54.75
TiO_2	0.03	0.03	0.00	0.03	0.00	0.02	0.03	0.00	0.04	0.08	0.01	0.01	0.05	0.05	0.05	0.04	0.04	0.05
Al_2O_3	30.22	29.43	30.33	28.13	30.57	31.33	27.52	28.19	29.53	18.88	34.02	32.58	26.92	28.74	27.34	27.20	29.89	27.65
FeO	0.80	0.68	0.78	0.74	0.51	0.51	0.48	0.46	0.75	0.39	0.46	0.48	0.44	0.72	0.55	0.52	0.86	0.47
MnO	0.00	0.00	0.00	0.02	0.00	0.04	0.00	0.00	0.02	0.00	0.01	0.00	0.01	0.01	0.01	0.00	0.04	0.01
MgO	0.09	0.08	0.10	0.08	0.02	0.04	0.06	0.05	0.06	0.02	0.01	0.01	0.05	0.06	0.03	0.08	0.14	0.08
CaO	14.56	13.88	14.51	12.37	14.58	15.25	10.88	11.34	13.71	0.80	17.98	16.94	10.43	12.66	11.20	10.50	14.39	11.16
Na_2O	2.80	3.19	3.07	4.07	3.18	2.67	5.06	4.86	3.32	3.65	1.31	1.69	5.25	4.07	4.88	4.95	2.98	4.99
K_2O	0.29	0.39	0.38	0.70	0.29	0.26	0.65	0.59	0.40	10.68	0.07	0.10	0.67	0.47	0.65	0.76	0.24	0.68
Cr_2O_3	0.00	0.02	0.00	0.01	0.02	0.00	0.00	0.00	0.00	0.06	0.02	0.00	0.00	0.04	0.00	0.01	0.01	0.03
P_2O_5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	76.76	98.35	99.10	98.83	100.16	99.67	99.73	99.70	99.03	99.49	99.56	98.69	100.00	99.53	98.97	99.52	99.41	99.87
Si	9.20	9.41	9.23	9.71	9.30	9.11	9.99	9.86	9.44	11.87	8.47	8.74	10.15	9.65	9.94	10.07	9.35	9.94
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
Al	99.9	6.44	6.61	6.11	6.57	6.78	5.89	6.04	6.42	4.07	7.44	7.16	5.73	6.20	5.91	5.82	6.48	5.92
Fe^{+2}	0.13	0.11	0.12	0.11	0.08	0.08	0.07	0.07	0.12	0.06	0.07	0.07	0.07	0.11	0.08	0.08	0.13	0.07
Mn	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.01	0.00
Mg	0.02	0.02	0.03	0.02	0.01	0.01	0.02	0.01	0.02	0.00	0.00	0.00	0.01	0.02	0.01	0.02	0.04	0.02
Ca	2.92	2.76	2.88	2.44	2.85	3.00	2.12	2.21	2.71	0.16	3.57	3.38	2.02	2.48	2.20	2.04	2.84	2.17
Na	1.02	1.15	1.10	1.46	1.12	0.95	1.78	1.72	1.19	1.30	0.47	0.61	1.84	1.45	1.73	1.74	1.06	1.76
K	0.07	0.09	0.09	0.16	0.07	0.06	0.15	0.14	0.09	2.49	0.02	0.02	0.15	0.11	0.15	0.18	0.06	0.16
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	00.00	0.01	0.00	0.00	0.00	0.00
Р	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	00.00
Toplam	20.02	19.98	20.06	20.01	20.00	20.00	20.02	20.05	20.00	19.97	20.04	19.98	19.98	20.04	20.03	19.96	19.98	20.05
An	72.88	69.00	70.74	60.16	70.54	74.76	52.28	54.39	67.90	3.97	87.97	84.18	50.31	61.48	53.84	51.55	71.75	53.13
Ab	25.39	28.67	27.05	35.82	27.81	23.73	44.01	42.22	29.76	32.85	11.63	15.22	45.85	35.81	42.44	44.01	26.85	43.04
Or	1.73	2.33	2.21	4.02	1.65	1.51	3.71	3.39	2.34	63.18	0.40	0.60	3.84	2.71	3.72	4.44	1.40	3.83

Ek Tablo B1'in devamı

Örnek	250	250	250	250	250	250
Mineral	pl-4	pl-4	pl-5	pl-6	pl-6	pl-6
	feno	feno	mik	feno	feno	feno
	mant	ken	mer	mer	mant	ken
SiO_2	55.73	63.77	57.65	54.28	53.83	52.80
TiO_2	0.03	0.11	0.04	0.02	0.03	0.02
Al_2O_3	27.01	20.06	25.86	28.12	28.24	28.68
FeO	0.54	0.44	0.66	0.52	0.66	0.86
MnO	0.00	0.00	0.01	0.03	0.00	0.01
MgO	0.04	0.03	0.06	0.04	0.07	0.21
CaO	10.26	1.77	8.64	11.57	11.95	12.60
Na_2O	5.16	5.25	6.14	4.74	4.53	4.08
K_2O	0.78	7.77	0.71	0.56	0.55	0.41
Cr_2O_3	0.00	0.00	0.01	0.01	0.00	0.00
P_2O_5	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	99.55	99.20	99.78	<u>99.89</u>	98.66	99.67
Si	10.12	11.63	10.40	9.86	9.80	9.65
Ti	0.00	0.02	0.01	0.00	0.00	0.00
AI	5.78	4.31	5.50	6.02	6.06	6.18
Fe^{+2}	0.08	0.07	0.10	0.08	0.10	0.13
Mn	0.00	0.00	0.00	0.00	0.00	0.00
Mg	0.01	0.01	0.02	0.01	0.02	0.06
Са	1.99	0.34	1.67	2.25	2.33	2.47
Na	1.82	1.86	2.15	1.67	1.60	1.45
K	0.18	1.81	0.16	0.13	0.13	0.09
Cr	0.00	0.00	0.00	0.00	0.00	0.00
Р	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	19.98	20.05	20.01	20.02	20.04	20.03
An	49.96	8.61	41.91	55.56	57.46	61.55
Ab	45.52	46.29	53.96	41.23	39.39	36.09
Or	4.52	45.10	4.13	3.21	3.15	2.36
Formül 32 c	oksijen ü	zerinden]	hesaplan	miştir. Kı	saltmala	r: pl: plaji

iyoklas; feno:fenokristal; mik: mikrolit; mant: manto.

arı
ŋçl
oni
N N
ali
an
do
br
krc
mi
II
lar
las
'ok
ijiy
pla
ait
ra
vla
la
tık
yas
12
ya
en
COS
$\mathbf{B2}$
olo
[at
k]
Ξ

| <u>8 373 373</u>
2 pl-2 pl-3 | o feno feno | r mer mer | 3 50.38 48.00 | | 0.07 0.06 | 0.07 0.06
8 30.18 32.28 | 0 0.07 0.06
8 30.18 32.28
6 1.22 0.57 | 0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 | 0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.18 0.03 | 0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.18 0.03 1 14.52 16.29 | 0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.18 0.03 1 14.52 16.29 5 3.03 2.08 | 0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.18 0.03 1 14.52 16.29 5 3.03 2.08 5 0.50 0.18 | 0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.18 0.03 1 14.52 16.29 5 3.03 2.08 5 0.50 0.18 6 0.18 0.03 7 14.52 16.29 5 0.50 0.18 5 0.50 0.18 | 0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.18 0.03 1 14.52 16.29 5 3.03 2.08 5 0.50 0.18 6 0.18 0.03 7 14.52 16.29 7 0.03 2.08 6 0.50 0.18 7 0.00 0.00
 | 0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.18 0.03 1 14.52 16.29 5 3.03 2.08 5 3.03 2.08 6 0.00 0.00 7 0.00 0.00 9 0.00 0.00 100.08 99.50 | 0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.18 0.03 1 14.52 16.29 5 3.03 2.08 5 0.50 0.18 6 0.50 0.18 7 14.52 16.29 7 0.50 0.18 6 0.50 0.18 7 0.50 0.18 9 0.00 0.00 0 0.00 0.00 0 100.08 99.50 0 9.25 8.86 | 0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.18 0.03 1
14.52 16.29 5 0.18 0.03 1 14.52 16.29 5 0.50 0.18 6 0.50 0.18 7 0.60 0.00 0 0.00 0.00 0 0.00 0.00 0 9.25 8.86 0 9.25 8.86 0 0.01 0.01 | 0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.18 0.03 1 14.52 16.29 5 3.03 2.08 5 3.03 2.08 6 0.00 0.00 7 0.00 0.00 0 0.00 0.00 0 100.08 99.50 0 9.25 8.86 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 | 0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.18 0.03 1 14.52 16.29 5 0.18 0.03 1 14.52 16.29 5 0.50 0.18 6 0.50 0.18 7 0.00 0.00 0 100.08 99.50 0 9.25 8.86 0 0.01 0.01 0 9.25 8.86 0 0.01 0.01 0 9.25 8.86 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.19 0.09 | 0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.18 0.03 1 14.52 16.29 5 0.18 0.03 1 14.52 16.29 5 0.50 0.18 6 0.50 0.18 7 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.01 0.01 0 9.25 8.86 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.00 0.00 | 0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.18 0.03 1 14.52 16.29 5 0.18 0.03 1 14.52 16.29 5 3.03 2.08 6 0.18 0.00 7 0.00 0.00 0 0.00 0.00 0 100.08 95.50 0 9.25 8.86 0 0.01 0.01 0 9.25 8.86 0 0.01 0.01 0 0.01 0.01 0 0.01 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 | 0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.18 0.03 1 1.452 16.29 5 0.18 0.03 1 14.52 16.29 5 0.50 0.18 6 0.00 0.00 0 0.00 0.00 0 100.08 99.50 0 9.25 8.86 0 9.25 8.86 0 0.01 0.01 0 9.25 8.86 0 9.25 8.86 0 0.01 0.01 0 0.01 0.01 0 0.02 0.00 0 0.00 0.00 1 0.05 0.01 1 0.05 0.01 1 0.05 0.01 | 0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.18 0.03 1 14.52 16.29 5 0.50 0.18 6 0.18 0.03 7 0.50 0.18 6 0.50 0.18 7 0.50 0.18 9 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.01 0.01 0 0.01 0.01 0 0.00 0.00 0 0.01 0.01 0 0.00 0.00 0 2.86 3.22 1 1.08 3.22 | 0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1
 0.00 0.01 5 0.18 0.03 1 14.52 16.29 5 0.18 0.03 1 14.52 16.29 5 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 9.25 8.86 0 9.25 8.86 0 0.01 0.01 0 9.25 8.86 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 2.86 3.22 1 1.08 3.22 1 0.05 0.01 0 2.86 3.22 1 0.02 0.04 0 0.12 0.04 <th>0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.18 0.03 1 14.52 16.29 5 0.18 0.03 1 14.52 16.29 5 3.03 2.08 6 0.10 0.00 0 0.00 0.00 0 0.00 0.00 0 100.08 99.50 0 9.25 8.86 0 0.01 0.01 0 0.010 0.00 0 0.01 0.01 0 0.01 0.01 0 2.86 3.22 1 1.08 3.22 1 0.02 0.01 0 0.01 0.01 1 0.02 0.01 1 0.00 0.00 1 0.00 0.04</th> <th>0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.13 32.28 6 0.18 0.03 1 14.52 16.29 5 0.50 0.18 6 0.18 0.03 7 14.52 16.29 7 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.00 0.00 0 0.01 0.01 0 2.86 3.22 1 0.05 0.01 0 2.86 3.22 1 0.05 0.01 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00<th>0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.18 0.03 1 14.52 16.29 5 0.16 0.01 6 0.18 0.03 7 14.52 16.29 7 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 2.86 3.22 1 1.08 3.22 1 0.05 0.01 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00<th>0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.18 0.03 1 14.52 16.29 5 0.18 0.03 6 0.18 0.03 7 14.52 16.29 6 0.50 0.18 7 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.010 0.01 0 9.25 8.86 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.02 0.01 0 0.02 0.03 1 0.03 0.04 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00<th>0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.13 32.28 6 0.18 0.03 1 14.52 16.29 5 0.00 0.00 6 0.50 0.18 7 14.52 16.29 9 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.02 0.01 0 0.02 0.01 0 2.86 3.22 1 0.02 0.01 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00</th></th></th></th> | 0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.18 0.03 1 14.52 16.29 5 0.18 0.03 1 14.52 16.29 5 3.03 2.08 6 0.10 0.00 0 0.00 0.00 0 0.00 0.00 0 100.08 99.50 0 9.25 8.86 0 0.01 0.01 0 0.010 0.00 0 0.01 0.01 0 0.01 0.01 0 2.86 3.22 1 1.08 3.22 1 0.02 0.01 0 0.01 0.01 1 0.02 0.01 1 0.00 0.00 1 0.00 0.04 | 0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.13 32.28 6 0.18 0.03 1 14.52 16.29 5 0.50 0.18 6 0.18 0.03 7 14.52 16.29 7 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.00 0.00 0 0.01 0.01 0 2.86 3.22 1 0.05 0.01 0 2.86 3.22 1 0.05 0.01 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 <th>0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.18 0.03 1 14.52 16.29 5 0.16 0.01 6 0.18 0.03 7 14.52 16.29 7 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.01 0.01 0 0.01 0.01 0
 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 2.86 3.22 1 1.08 3.22 1 0.05 0.01 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00<th>0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.18 0.03 1 14.52 16.29 5 0.18 0.03 6 0.18 0.03 7 14.52 16.29 6 0.50 0.18 7 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.010 0.01 0 9.25 8.86 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.02 0.01 0 0.02 0.03 1 0.03 0.04 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00<th>0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.13 32.28 6 0.18 0.03 1 14.52 16.29 5 0.00 0.00 6 0.50 0.18 7 14.52 16.29 9 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.02 0.01 0 0.02 0.01 0 2.86 3.22 1 0.02 0.01 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00</th></th></th> | 0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.18 0.03 1 14.52 16.29 5 0.16 0.01 6 0.18 0.03 7 14.52 16.29 7 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 2.86 3.22 1 1.08 3.22 1 0.05 0.01 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 <th>0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.18 0.03 1 14.52 16.29 5 0.18 0.03 6 0.18 0.03 7 14.52 16.29 6 0.50 0.18 7 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.010 0.01 0 9.25 8.86 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.02 0.01 0 0.02 0.03 1 0.03 0.04 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00<th>0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.13 32.28 6 0.18 0.03 1 14.52 16.29 5 0.00 0.00 6 0.50 0.18 7 14.52 16.29 9 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.02 0.01 0 0.02 0.01 0 2.86 3.22 1 0.02 0.01 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00</th></th> | 0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.18 0.03 1 14.52 16.29 5 0.18 0.03 6 0.18 0.03 7 14.52 16.29 6 0.50 0.18 7 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.010 0.01 0 9.25 8.86 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.02 0.01 0 0.02 0.03 1 0.03 0.04 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 <th>0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.13 32.28 6 0.18 0.03 1 14.52 16.29 5 0.00 0.00 6 0.50 0.18 7 14.52 16.29 9 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.02 0.01 0 0.02 0.01 0 2.86 3.22 1 0.02 0.01 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00</th> | 0 0.07 0.06 8 30.18 32.28 5 1.22 0.57 1 0.00 0.01 5 0.13 32.28 6 0.18 0.03 1 14.52 16.29 5 0.00 0.00 6 0.50 0.18 7 14.52 16.29 9 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0 0.02 0.01 0 0.02 0.01 0 2.86 3.22 1 0.02 0.01 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
 |
|------------------------------------|-------------|-----------|---------------|-----------------------|---|--|--|--|---|--|--|--|--
--
--|---|---|--|--|--
---|---|--|---
--	--
--	--
<u>373</u> 373 pl-1 pl-2	feno fenc
0.00 0.03 0.00 0.04 0.04 0.05 0.16 0.06 0.06 0.07 0.06 0.08 0.06 0.09 0.06 0.04 0.04 0.04 0.04</td> <td>49.20 48.0 0.05 0.00 31.29 31.60 0.99 1.06 0.915 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 15.75 16.1 15.75 16.1 2.28 2.15 0.37 0.25 0.00 0.05 0.00 0.06 0.01 0.00 0.15 0.16 0.01 0.00 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.16 0.00 0.04 0.04 0.081 0.07 0.81 0.77</td> <td>49.20 48.0 0.05 0.00 31.29 31.60 31.29 31.61 0.99 1.06 0.01 0.01 0.15 0.16 0.15 0.16 0.15 0.16 15.75 16.1 15.75 16.1 2.28 2.15 0.00 0.05 0.00 0.00 0.00 0.00 0.01 0.00 0.015 0.16 0.15 0.16 0.16 0.00 0.01 0.00 0.15 0.16 0.15 0.16 0.04 0.04 0.04 0.04 0.09 0.06 0.09 0.06</td> <td>49.20 48.0 0.05 0.00 0.12 0.10 0.19 1.06 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 15.75 16.1 15.75 16.1 2.28 2.15 0.00 0.05 0.00 0.05 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.03 0.00 0.04 0.04 0.05 0.06 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01</td> <td>49.20 49.20 48.0 0.05 0.00 0.16 0.19 1.06 0.01 0.15 0.16 0.16 0.15 0.15 0.16 0.15 16.1 2.15 0.37 0.25 0.00 0.37 0.25 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.15 0.15 0.16 0.01 0.00 0.00 0.15 0.15 0.16 0.15 0.16 0.00 0.15 0.16 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td> <td>49.20 48.02 0.05 0.005 0.15 0.101 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.25 0.37 0.25 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.15 0.16 0.16 0.01 0.15 0.16 0.16 0.01 0.15 0.16 0.15 0.16 0.15 0.16 0.04 0.04 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td> <td>49.20 48.00 0.05 0.00 31.29 31.60 0.99 1.06 0.01 0.01 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 15.75 16.1 15.75 16.1 2.28 2.15 0.00 0.00 0.00 0.00 9.04 8.90 9.04 8.90 0.15 0.16 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.02 0.01 0.03 0.00 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0</td> <td>$\begin{array}{rrrrr} 49.20 & 48.0'\\ 0.05 & 0.00\\ 31.29 & 31.6'\\ 0.99 & 1.06\\ 0.01 & 0.01\\ 0.15 & 10.1\\ 15.75 & 16.1\\ 15.75 & 16.1\\ 2.28 & 2.15\\ 0.37 & 0.25\\ 0.00 & 0.00\\ 0.00 & 0.00\\ 0.01 & 0.00\\ 0.01 & 0.00\\ 0.01 & 0.00\\ 0.01 & 0.00\\ 0.01 & 0.00\\ 0.01 & 0.00\\ 0.01 & 0.00\\ 0.01 & 0.00\\ 0.00 & 0.00\\ 0$</td> | 49.20 48.02 0.05 0.00 31.29 31.61 31.29 31.61 0.99 1.06 0.01 0.01 0.15 0.16 0.15 0.16 0.15 0.16 15.75 16.1 15.75 16.1 2.28 2.15 0.37 0.25 0.37 0.25 0.00 0.05 0.00 0.05 0.00 99.5 | 49.20 48.02 0.05 0.00 31.29 31.61 0.99 1.06 0.01 0.01 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.37 0.25 0.37 0.25 0.37 0.25 0.00 0.05 0.00 0.06 9.04 8.96 | 49.20 48.02 0.05 0.00 31.29 31.66 0.99 1.06 0.91 1.06 0.91 0.01 0.15 0.16 0.15 0.16
0.15 0.16 15.75 16.1 15.75 16.1 2.28 2.15 0.37 0.25 0.37 0.25 0.00 0.05 9.04 8.96 9.04 8.97 9.01 0.00 | 49.20 48.02 0.05 0.00 31.29 31.66 0.99 1.06 0.01 0.01 0.015 0.16 0.15 0.16 0.15 0.16 0.15 0.16 15.75 16.1 15.75 16.1 2.28 2.15 0.00 0.05 0.00 0.05 0.00 0.05 0.00 90.55 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 | 49.20 48.0 0.05 0.00 0.15 0.00 31.29 31.61 0.99 1.06 0.01 0.01 0.15 0.16 0.15 0.16 0.15 0.16 15.75 16.1 2.28 2.15 0.37 0.25 0.37 0.25 0.00 0.05 0.00 0.05 9.04 8.96 9.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.15 0.16 0.15 0.16 | 49.20 48.0 0.05 0.00 31.29 31.60 31.29 31.61 0.99 1.06 0.91 0.01 0.15 0.16 0.15 0.16 0.15 0.16 15.75 16.1 15.75 16.1 2.28 2.15 0.37 0.25 0.00 0.05 0.00 0.06 0.01 0.00 0.01 0.00 0.15 0.16 0.16 8.90 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 | 49.20 48.0 0.05 0.00 31.29 31.60 0.99 1.06 0.01 0.01 0.015 0.16 0.15 0.16 0.15 0.16 15.75 16.1 15.75 16.1 2.28 2.15 0.00 0.05 0.00 0.05 0.00 0.06 0.01 0.00 9.04 8.96 0.01 0.00 0.01 0.00 0.01 0.00 0.15 0.16 0.15 0.16 0.15 0.16 0.06 0.00 0.07 0.04 0.04 0.04 | 49.20 48.0 0.05 0.00 31.29 31.6 0.99 1.06 0.01 0.01 0.15 0.16 0.15 0.16 0.15 0.16 15.75 16.1 15.75 16.1 2.28 2.15 0.00 0.05 0.00 0.06 100.09 99.5 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.03 0.00 0.04 0.04 0.05 0.16 0.06 0.06 0.07 0.06 0.08 0.06 0.09 0.06 0.04 0.04 0.04 0.04 | 49.20 48.0 0.05 0.00 31.29 31.60 0.99 1.06 0.915 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 15.75 16.1 15.75 16.1 2.28 2.15 0.37 0.25 0.00 0.05 0.00 0.06 0.01 0.00 0.15 0.16 0.01 0.00 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.16 0.00 0.04 0.04 0.081 0.07 0.81 0.77 | 49.20 48.0 0.05 0.00 31.29 31.60 31.29 31.61 0.99 1.06
0.01 0.01 0.15 0.16 0.15 0.16 0.15 0.16 15.75 16.1 15.75 16.1 2.28 2.15 0.00 0.05 0.00 0.00 0.00 0.00 0.01 0.00 0.015 0.16 0.15 0.16 0.16 0.00 0.01 0.00 0.15 0.16 0.15 0.16 0.04 0.04 0.04 0.04 0.09 0.06 0.09 0.06 | 49.20 48.0 0.05 0.00 0.12 0.10 0.19 1.06 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 15.75 16.1 15.75 16.1 2.28 2.15 0.00 0.05 0.00 0.05 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.03 0.00 0.04 0.04 0.05 0.06 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 | 49.20 49.20 48.0 0.05 0.00 0.16 0.19 1.06 0.01 0.15 0.16 0.16 0.15 0.15 0.16 0.15 16.1 2.15 0.37 0.25 0.00 0.37 0.25 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.15 0.15 0.16 0.01 0.00 0.00 0.15 0.15 0.16 0.15 0.16 0.00 0.15 0.16 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 | 49.20 48.02 0.05 0.005 0.15 0.101 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.25 0.37 0.25 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.15 0.16 0.16 0.01 0.15 0.16 0.16 0.01 0.15 0.16 0.15 0.16 0.15 0.16 0.04 0.04 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 49.20 48.00 0.05 0.00 31.29 31.60 0.99 1.06 0.01 0.01 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 15.75 16.1 15.75 16.1 2.28 2.15 0.00 0.00 0.00 0.00 9.04 8.90 9.04 8.90 0.15 0.16 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.02 0.01 0.03 0.00 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 | $\begin{array}{rrrrr} 49.20 & 48.0'\\ 0.05 & 0.00\\ 31.29 & 31.6'\\ 0.99 & 1.06\\ 0.01 & 0.01\\ 0.15 & 10.1\\ 15.75 & 16.1\\ 15.75 & 16.1\\ 2.28 & 2.15\\ 0.37 & 0.25\\ 0.00 & 0.00\\ 0.00 & 0.00\\ 0.01 & 0.00\\ 0.01 & 0.00\\ 0.01 & 0.00\\ 0.01 & 0.00\\ 0.01 & 0.00\\ 0.01 & 0.00\\ 0.01 & 0.00\\ 0.01 & 0.00\\ 0.00 &
0.00\\ 0.00 & 0.00\\ 0$ |
| <u>373</u>
pl-1 | feno | mer | | 2 48.47 | 2 48.47
0.06 | 2 48.47
0.06
2 31.85 | 2 48.47
0.06
2 31.85
0.89 | 2 48.47
0.06
2 31.85
0.89
0.01 | 2 48.47
0.06
31.85
0.89
0.01
0.12 | 2 48.47
0.06
31.85
0.89
0.01
0.12
0.12 | 2 48.47
0.06
0.89
0.89
0.01
0.01
0.12
0.12
0.12
0.12 | 2 48.47
0.06
0.185
0.89
0.01
0.12
0.12
0.12
0.12
0.12 | 2 48.47
0.06
31.85
0.89
0.01
0.12
0.12
15.79
0.24
0.24 | 2 48.47
0.06
0.185
0.89
0.01
0.12
0.12
0.12
0.24
0.02
 | 2 48.47
0.06
0.89
0.89
0.01
0.12
0.12
0.12
0.12
0.24
0.00 | 2 48.47
0.06
31.85
0.89
0.01
0.12
0.12
0.12
0.12
0.24
0.24
0.24
0.00
8.94
8.94 | 2 48.47
0.06
31.85
0.89
0.12
0.12
0.12
0.12
0.12
0.01
8.94
8.94
 | 2 48.47 0.06 0.05 0.89 0.01 0.12 0.12 0.24 0.24 0.02 0.00 8.94 0.01 6.92 | 2 48.47
0.06
0.06
0.89
0.01
0.12
0.12
0.12
0.24
0.24
0.24
0.00
8.94
8.94
0.01
6.92 | 2 48.47
0.06
0.06
0.89
0.01
0.12
0.12
0.12
0.24
0.00
8.94
0.00
6.92
0.01
0.01
0.01 | 2 48.47 0.06 0.05 0.89 0.01 0.12 0.12 0.24 0.02 0.02 0.01 6.92 0.14 0.01 0.14 0.01 0.14 0.01 0.14 0.01 0.01 | 2 48.47
0.06
0.89
0.89
0.12
0.12
0.12
0.12
0.24
0.00
0.00
0.01
6.92
0.01
6.92
0.01
0.03
3.12 | 48.47 9.06 0.06 0.89 0.01 0.12 0.12 0.12 0.24 0.24 0.00 99.67 8.94 0.14 0.14 0.14 0.14 0.14 0.14 0.01 0.03 3.12 0.80 | 2
48.47
0.06
0.08
0.89
0.12
0.12
0.12
0.12
0.12
0.00
8.94
0.00
0.01
6.92
0.01
0.01
0.01
0.00
0.03
0.00
0.00 | 2 48.47 0.06 0.089 0.89 0.12 0.12 0.24 0.24 0.00 99.67 8.94 0.00 0.01 6.92 0.03 3.12 0.06 0.00 | 2 48.47
0.06
0.08
0.89
0.12
0.12
0.12
0.12
0.24
0.00
8.94
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0
 | 48.47 0.06 0.12 0.01 0.12 0.12 0.12 0.24 0.24 0.02 0.01 0.01 0.03 0.00 | 48.47 9.06 31.85 0.01 0.024 0.12 0.12 0.24 0.02 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 2 48.47 0.06 0.06 0.89 0.01 0.12 0.12 0.12 0.12 0.15.79 2.22 0.00 0.00 0.014 0.00 0.014 0.00 0.014 0.00 0.013 99.67 8.94 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00
 |
| <u>373</u> <u>373</u>
Pl-1 pl-2 | mik mik | mer mer | | 4.12 49.42 | 4.12 49.42 0.07 0.06 | 4.12 49.42 0.07 0.06 17.60 29.82 | 4.12 49.42 3.07 0.06 7.60 29.82 1.11 1.47 | 4.12 49.42 3.07 0.06 7.60 29.82 1.11 1.47 0.00 0.00 | 4.12 49.42 0.07 0.06 0.7.60 29.82 1.11 1.47 1.11 1.47 0.00 0.00 0.12 0.064 | 4.12 49.42 0.07 0.06 7.60 29.82 1.11 1.47 0.00 0.00 0.12 0.64 1.22 13.72 | 4.12 49.42 0.07 0.06 7.60 29.82 1.11 1.47 1.12 1.47 2.00 0.00 0.12 0.64 1.22 13.72 4.47 2.89 | 4.12 49.42 0.07 0.06 7.60 29.82 1.11 1.47 1.11 1.47 0.00 0.00 0.12 0.64 1.22 13.73 4.47 2.89 0.96 0.50 | 4.12 49.42 1.07 0.06 7.60 29.82 1.11 1.47 0.00 0.00 0.12 0.64 1.22 13.72 1.22 13.72 0.96 0.50 0.96 0.50 0.96 0.50 | 4.12 49.42 0.07 0.06 7.60 29.82 1.11 1.47 1.11 1.47 0.00 0.00 0.12 0.64 1.22 13.73 1.26 0.50 0.96 0.50 0.01 0.00 0.01 0.00 0.00 0.00
 | 4.12 49.42 0.07 0.06 7.60 29.82 1.11 1.47 1.11 1.47 0.00 0.00 0.12 0.64 1.22 13.73 4.47 2.89 0.96 0.50 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.968 98.55 | 4.12 49.42 0.07 0.06 7.60 29.82 1.11 1.47 1.11 1.47 0.00 0.00 0.12 0.64 0.12 13.73 4.47 2.89 0.96 0.50 0.01 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.03 0.00 0.04 0.00 0.05 0.85.5 9.88 92.1 | 4.12 49.42 1.07 0.06 7.60 29.82 1.11 1.47 1.12 1.47 0.00 0.00 0.12 0.50 0.12 0.50 0.01 0.00 0.01 0.00 0.02
 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.01 0.03 0.00 0.01 0.00 0.02 0.01 0.03 0.01 0.04 0.01 | 4.12 49.42 0.07 0.06 7.60 29.82 1.11 1.47 1.11 1.47 0.00 0.00 0.12 0.64 1.22 13.73 4.47 2.89 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00 9.68 98.53 9.88 9.21 9.88 9.21 9.96 9.68 9.88 9.21 0.01 0.01 0.02 0.01 0.01 0.01 9.88 9.21 9.84 9.21 9.94 6.55 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 4.12 49.42 7.60 29.82 7.60 29.82 1.11 1.47 1.12 1.23 1.22 13.73 4.47 2.89 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.00 0.02 0.00 0.01 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 4.12 49.42 1.07 0.06 7.60 29.82 1.11 1.47 1.11 1.47 1.00 0.00 1.22 13.73 1.22 13.73 1.22 13.73 2.96 0.50 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.03 | 4.12 49.42 1.07 0.06 7.60 29.82 1.11 1.47 1.11 1.47 1.12 0.64 1.22 13.73 4.47 2.89 2.96 0.50 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 5.94 6.55 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 | 4.12 49.42 1.07 0.06 7.60 29.82 1.11 1.47 1.11 1.47 1.12 0.64 1.22 13.73 1.22 13.73 1.447
2.89 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.00 0.03 0.03 0.03 0.18 0.12 0.10 0.03 0.18 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 | 4.12 49.42 1.07 0.06 1.07 0.06 1.11 1.47 1.11 1.47 1.12 0.64 1.22 13.73 1.22 13.73 4.47 2.89 0.01 0.00 0.00 0.00 0.00 0.00 0.017 0.01 0.02 0.00 0.03 0.18 0.03 0.18 0.03 0.10 0.03 0.10 0.03 0.12 0.03 0.12 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 4.12 49.42 1.07 0.06 7.60 29.82 1.11 1.47 1.11 1.47 1.12 0.64 1.22 13.73 1.22 13.73 4.47 2.89 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.03 0.18 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 | 4.12 49.42 1.07 0.06 7.60 29.82 1.11 1.47 1.11 1.47 1.12 0.64 1.22 13.73 1.22 13.73 1.447 2.89 2.00 0.00 0.00 0.00 0.00 0.00 0.017 0.00 0.022 0.12 0.03 0.18 0.03 0.10 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 4.12 49.42 7.60 29.82 1.11 1.47 1.11 1.47 1.11 1.47 1.12 0.64 1.12 0.50 0.00 0.00 0.12 0.51 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.022 0.13 0.022 0.12 0.022 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 4.12 49.42 7.60 29.82 1.11 1.47 1.11 1.47 1.11 1.47 1.12 0.64 1.12 0.64 1.12 0.64 1.12 0.64 1.22 13.73 4.47 2.89 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.02 0.00 0.03 0.03 0.03 0.03 0.03 0.00 0.03 0.18 0.03 0.18 0.03 0.18 0.03 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 0.00 0.000 <
 |
| <u>363</u> | mik n | nar | 11101 | 63.94 5 [,] | 63.94 5 ⁴ 0.03 0 | 63.94 52
0.03 0
19.46 2' | (63.94 5 ⁴)
(63.94 5 ⁴)
(0.03 0
(19.46 2 ⁷)
(0.88 1 | (63.94 5c
(63.94 5c
(0.03 0
(19.46 2'
(0.88 1
(0.00 0 | (3.3) (1.1) | (3.37))))))))))))))))))))))) | 63.94 54 63.94 54 63.94 54 19.46 27 19.46 27 0.08 1 19.46 27 0.00 0 0 0.00 0 0 0 0.00 0 0 0 0.35 0 0 1.55 1 1.55 1 3.38 4 | 63.94 56
63.94 56
0.03 0
0.03 0
0.00 0
0.35 0
0.35 1
1.55 1
1.55 1
3.38 4
3.38 4 | 63.94 5. 63.94 5. 63.94 5. 0.03 0 0.88 1 0.88 1 0.88 1 0.35 0 0.35 1 1.55 1 3.38 4 10.60 0 0.00 0 | 63.94 54 63.94 54 63.94 54 63.94 54 63.94 54 63.94 54 63.94 54 63.95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1.55 1 1 1.55 1 1 1.55 1 1 1.55 1 1 1.0.60
 | 63.94 54 63.94 55 63.94 54 63.94 54 19.46 2 0.03 0 0.35 0.35 0 0 0 0.35 1 1.55 1 1.55 1 1.55 1 3.38 4 4 10.60 0 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
 |
| <u>363</u>
pl-1 | mik | | mer | 5 50.82 | 5 50.82
0.02 | 5 50.82
0.02
4 30.01 | mer
5 50.82
0.02
4 30.01
1.11 | mer
5 50.82
0.02
4 30.01
1.11
0.00 | mer
5 50.82
0.02
4 30.01
1.11
1.11
0.00
0.13 | mer
5 50.82
4 30.01
1.11
1.11
0.00
0.00
1 14.01 | mer
5 50.82
0.02
1.11
0.00
0.00
0.13
1 14.01
3.03 | mer
5 50.82
0.02
1.11
1.11
0.00
0.13
0.13
1.14.01
1.14.01
1.14.01
0.52 | mer
5 50.82
4 30.01
1.11
1 1.11
1 1.11
1 1.11
1 1.11
1 1.11
0.00
0.52
0.00 | mer
5 50.82
4 30.01
1.11
1.11
1.11
1.11
1.11
1.11
1.11 | mer 5 50.82 0.02 0.02 1.11 1.11 0.00 0.00 1 1.11 1 1.11 0.00 0.00 0.13 0.13 0.13 0.13 0.00 0.00 0.52 0.00 0.00 0.00 0.00 0.00 | mer
5 50.82
0.02
1 1.11
0.00
0.13
0.13
0.13
0.13
0.13
0.13 | mer
5 50.82
4 30.01
1.11
1.11
1.11
0.00
0.00
0.00
0.00 | mer
5 50.82
1 0.02
1.11
0.00
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.00
0.00
0.00
0.00
0.00
0.00
0.02
0.03
0.03
0.13
0.00
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.000
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.000
0.03
0.000
0.000
0.000
0.03
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.000000
0.00000
0.000000
0.00000000 | mer mer 0.02 5.82 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0 | mer
5 50.82
0.02
1.11
0.03
0.00
0.13
0.13
0.13
0.13
0.13
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.01
0.02
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.000000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.000000
0.00000000 | mer
5 50.82
0.02
1.11
1.11
0.00
0.13
0.13
0.13
0.13
0.13
0.13
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.01
0.00
0.01
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.00000
0.0000
0.00000
0.0000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000000 | mer
5 50.82
0.02
1 30.01
1.11
0.13
0.13
0.13
0.13
0.00
0.00 | mer
5 50.82
0.02
1 1.11
0.00
0.00
0.00
0.00
0.00
0.00
0. | mer mer 1.11 | mer mer 1111 mer 1111 mer 1111 mer 11111 mer 11111 mer 11111 mer 11111 mer 11111 mer 11111 mer 111111 mer 111111 mer 1111111111 | mer mer 1.11 mer 0.02 5.50.82 0.02 1.11 0.02 0.03 0.01 0.03 0.01 0.03 0.03 0.03 0.03 | mer mer 1.11 | mer mer 1.11 mer 0.02 \$50.82 0.02 \$1.11 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 | mer mer 1.11 mer 0.02 5.50.82 0.02 1.11 0.02 0.02 0.03 0.01 1.11 1.11 0.03 0.01 0.00 0.03 0.13 0.1 |
| <u>-1-5 pl-5</u> | sno feno | | ner ken | aer ken
9.55 51.76 | ner ken
).55 51.76
.00 0.07 | ner ken
3.55 51.76
0.00 0.07
0.82 28.94 | ner ken 3.55 51.76 0.00 0.07 0.82 28.94 .01 0.96 | ner ken
3.55 51.76
.00 0.07
.82 28.94
.01 0.96
.01 0.08 | ner ken
3.55 51.76
0.0 0.07
3.82 28.94
0.1 0.96
1.12 0.15 | ner ken 3.55 51.76 0.0 0.07 3.82 28.94 0.1 0.96 0.1 0.96 1.12 0.15 5.20 13.31 | ner ken 7.55 51.76 0.00 0.07 0.82 28.94 0.1 0.96 0.1 0.96 1.01 0.08 1.12 0.15 5.20 13.31 5.50 3.48 | ner ken
0.55 51.76
0.0 0.07
0.82 28.94
0.1 0.96
0.1 0.08
0.1 0.08
0.15
5.20 13.31
5.20 3.48
0.70 3.48 | ner ken .55 51.76 .00 0.07 .82 28.94 .82 28.94 .01 0.96 .01 0.96 .01 0.96 .01 0.96 .01 0.96 .01 0.96 .01 0.98 .01 0.98 .01 0.98 .12 0.15 .520 13.31 .50 3.48 .50 0.70 .00 0.01 | ner ken 3.55 51.76 .00 0.07 .00 0.07 .01 0.96 .01 0.96 .01 0.96 .01 0.96 .01 0.96 .01 0.96 .01 0.96 .01 0.96 .01 0.96 .01 0.96 .01 0.96 .015 0.15 .520 13.31 .50 3.48 .46 0.70 .00 0.01
 | ner ken 5.55 51.76 0.0 0.07 0.82 28.94 0.82 28.94 0.1 0.96 0.1 0.96 0.1 0.08 1.12 0.15 5.20 13.31 5.50 3.48 .46 0.70 .00 0.01 .00 0.01 .01 0.94 .52 3.48 .54 0.70 .60 0.00 9.67 99.46 | ner ken .55 51.76 .00 0.07 .82 28.94 .93 28.94 .01 0.96 .01 0.96 .01 0.96 .01 0.96 .01 0.96 .01 0.96 .01 0.96 .01 0.96 .01 0.96 .12 0.15 .520 13.31 .50 3.48 .60 0.00 .00 0.00 .13 9.52 .13 9.52 | ner ken 0.55 51.76 0.0 0.07 0.82 28.94 0.1 0.96 0.1 0.96 0.1 0.96 0.1
0.96 0.1 0.96 0.1 0.96 0.1 0.96 0.1 0.03 3.48 0.15 5.20 13.31 5.20 13.31 5.0 3.48 6.0 0.16 0.00 0.00 0.67 99.46 0.67 99.46 0.13 9.52 0.00 0.00 0.01 0.01 | ner ken 7.55 51.76 0.00 0.07 0.00 0.01 0.82 28.94 0.11 0.96 0.12 0.15 1.12 0.15 5.20 13.31 5.20 13.31 5.20 13.31 5.00 0.15 6.0 0.00 9.67 99.46 9.67 99.46 1.13 9.52 1.13 9.52 1.13 9.52 1.13 9.52 1.13 9.52 1.13 9.52 | ner ken 5.5 51.76 .00 0.07 .82 28.94 .982 28.94 .01 0.96 .01 0.96 .01 0.96 .01 0.96 .01 0.96 .01 0.96 .01 0.96 .01 0.08 .01 0.09 .12 0.15 .520 13.31 .50 3.48 .46 0.70 .00 0.01 .00 0.01 .00 0.00 .13 9.52 .13 9.52 .16 0.15 | ner ken 0.55 51.76 0.0 0.07 0.82 28.94 0.1 0.96 0.1 0.96 0.1 0.96 0.1 0.96 0.1 0.96 0.1 0.96 0.1 0.15 0.1 0.08 1.1 0.15 5.20 13.31 5.0 3.48 6.0 0.16 0.12 0.15 0.13 9.52 1.13 9.52 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 | ner ken 0.55 51.76 0.0 0.07 0.00 0.07 0.82 28.94 0.11 0.96 0.12 0.15 1.12 0.15 5.20 13.31 5.20 13.31 5.20 13.34 5.20 13.34 5.0 0.15 60 0.01 0.00 0.01 0.00 0.00 1.13 9.52 1.15 9.46 0.15 9.52 1.13 9.52 1.16 0.15 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.02 0.01 | ner ken 5.5 51.76 .00 0.07 .82 58.94 .982 28.94 .01 0.96 .01 0.96 .01 0.96 .01 0.96 .01 0.96 .12 0.15 .50 13.31 .50 3.48 .60 0.01 .00 0.01 .00 0.01 .13 9.52 .13 9.52 .13 9.52 .13 9.52 .00 0.01 .00 0.01 .00 0.01 .00 0.01 .00 0.01 .00 2.62 .00 2.62 | ner ken 0.55 51.76 0.0 0.07 0.82 28.94 0.1 0.96 0.1 0.96 0.1 0.96 0.1 0.96 0.1 0.96 0.1 0.96 0.1 0.08 5.20 13.31 5.0 3.48 5.0 3.48 5.0 9.46 9.67 99.46 9.67 99.46 1.13 9.52 1.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01 1.00 0.02 1.00 2.62 1.00 2.62 1.00 2.62 | ner ken 0.55 51.76 0.0 0.07 0.0 0.07 0.0
0.07 0.0 0.07 0.1 0.96 0.1 0.96 0.1 0.96 0.1 0.08 1.2 0.15 0.12 0.15 0.12 0.15 0.13 0.13 0.12 0.15 0.13 9.52 0.13 9.52 0.13 9.52 0.13 9.52 0.13 9.52 0.13 9.52 0.14 0.15 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 2.62 0.00 2.62 0.00 2.62 0.00 2.62 0.00 2.62 0.00 2.62 0.00 | ner ken 0.55 51.76 0.0 0.07 0.00 0.07 0.12 0.96 0.12 0.15 0.12 0.15 1.12 0.15 5.20 13.31 5.20 13.31 5.20 13.31 5.20 13.31 5.20 13.34 5.20 13.34 5.20 13.34 5.20 13.34 5.20 13.48 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 2.62 1.11 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | ner ken 0.55 51.76 0.0 0.07 0.82 28.94 0.1 0.96 0.1 0.96 0.1 0.96 0.1 0.96 0.1 0.96 0.1 0.96 0.1 0.00 0.0 0.01 0.0 0.01 0.0 0.01 0.0 0.01 0.0 0.01 0.0 0.01 0.0 0.01 0.0 0.01 0.0 0.01 0.0 0.01 0.0 0.01 0.0 0.01 0.0 2.62 0.0 2.62 0.0 2.62 0.0 2.62 0.0 2.62 0.0 2.62 0.0 2.62 0.0 2.62 0.0 2.62 0.0 2.62 <
 | ner ken 0.55 51.76 0.0 0.07 0.82 28.94 0.1 0.96 0.1 0.96 0.1 0.96 0.1 0.96 0.1 0.96 0.1 0.96 0.1 0.96 0.1 0.96 0.1 0.99 0.0 0.01 0.0 0.01 0.0 0.01 0.0 0.01 0.0 0.01 0.0 0.01 0.0 0.01 0.0 0.01 0.0 0.01 0.0 0.01 0.0 0.01 0.0 2.62 0.0 2.62 0.0 2.62 0.0 2.62 0.0 2.62 0.0 2.62 0.0 2.62 0.0 2.62 0.0 0.00 < | ner ken 0.55 51.76 0.0 0.07 0.82 28.94 0.1 0.96 0.1 0.96 0.1 0.96 0.1 0.96 1.2 0.15 5.20 13.31 5.20 13.31 5.20 13.31 5.20 13.48 .12 0.15 .00 0.01 .00 0.00 .13 9.52 .13 9.52 .13 9.52 .13 9.52 .13 9.52 .13 9.52 .146 0.15 .124 0.15 .124 .124 .133 0.00 .100 0.00 .100 0.00 .124 .124 .139 .124 .149 .000 .100 0.00 .101 | ner ken 0.55 51.76 0.0 0.07 0.00 0.07 0.01 0.96 0.11 0.96 0.12 0.15 1.12 0.15 5.20 13.31 5.20 13.31 5.20 13.31 5.20 13.31 5.20 13.31 5.20 13.31 5.20 13.31 0.00 0.01 0.00 0.00 0.01 0.00 0.02 0.01 0.03 0.04 0.04 0.01 0.05 0.01 0.06 0.01 0.07 0.02 0.08 1.24 0.01 0.00 0.00 0.00 0.01 20.03 1.124 1.24 1.124 1.20 1.124 2.03 1.124 2.03 <
 |
| <u>301 3</u>
pl-4 pl | feno fe | | ken m | ken m
45.17 49 | ken m
45.17 49
0.05 0. | ken m 45.17 49 0.05 0. 33.93 30 | ken m 45.17 49 0.05 0. 33.93 30 0.86 1. | ken m 45.17 49 0.05 0. 33.93 30 0.86 1. 0.06 0. | ken m 45.17 49 0.05 0. 33.93 30 0.86 1. 0.06 0. 0.06 0. | ken m 45.17 49 6.65 0.05 33.93 30 33.93 30 0.86 1. 0.06 0. 0.06 0. 18.55 15 | ken m 45.17 49 45.17 49 0.05 0. 33.93 30 33.93 30 0.86 1. 0.06 0. 0.06 0. 0.91 2. 0.91 2. | ken m 45.17 49 45.17 49 0.05 0. 33.93 30 33.93 30 0.86 1. 0.06 0. 0.06 0. 0.06 0. 0.06 0. 0.918.55 15 0.91 2 0.11 0. | ken m 45.17 49 45.17 49 0.05 0. 33.93 30 33.93 30 0.86 1. 0.06 0. 0.06 0. 0.06 0. 0.06 0. 0.911 0. 0.11 0. 0.01 0. | ken m 45.17 49 6.05 0.05 0.05 0.05 0.86 1. 0.86 1. 0.06 0. 0.06 0. 0.06 0. 0.06 0. 0.01 18.55 0.91 2. 0.11 0. 0.11 0. 0.00 0.
 | ken m 45.17 49 45.17 49 0.05 0. 33.93 30 33.93 30 0.86 1. 0.06 0. 0.06 0. 0.06 0. 0.06 0. 0.911 2. 0.11 0. 0.00 0. 0.00 0. 0.00 0. | ken m 45.17 49 45.17 49 0.05 0. 33.93 30 33.93 30 0.86 1. 0.86 1. 0.06 0. 0.06 0. 0.06 0. 0.911 0. 0.11 0. 0.11 0. 0.00 0. 0.00 0. 0.00 0. 0.00 0. 99.70 99 | ken m 45.17 49 $6.5.7$ 49 0.05 0.05 0.86 $1.$ 0.86 $1.$ 0.86 $1.$ 0.86 $1.$ 0.86 $1.$ 0.86 $1.$ 0.066 $0.$ 0.066 $0.$ 0.066 $0.$ 0.911 $2.$ 0.111 $0.$ 0.01 $0.$
0.00 $0.$ 0.010 $0.$ 0.01 $0.$ | ken m 45.17 49 6.6.5 0.05 0.86 1. 0.86 1. 0.86 1. 0.86 1. 0.86 1. 0.86 1. 0.86 1. 0.86 1. 0.90 0. 0.91 2. 0.91 2. 0.91 2. 0.91 0. 0.91 0. 0.91 2. 0.91 2. 0.91 0. 0.00 0. 99.70 99 8.40 9. 8.40 9. 7.44 6. | ken m 45.17 49 45.17 49 0.05 0. 0.86 1. 0.86 1. 0.066 0. 0.066 0. 0.066 0. 0.911 0. 0.911 0. 0.911 0. 0.911 0. 0.000 0. 0.000 0. 0.010 0. 0.010 0. 0.010 0. 0.010 0. 0.011 0. 0.010 0. | ken m 45.17 49 45.17 49 0.05 0.05 0.05 0.1 0.86 $1.$ 0.86 $1.$ 0.86 $1.$ 0.86 $1.$ 0.86 $1.$ 0.066 $0.$ 0.066 $0.$ 0.011 $0.$ 0.011 $0.$ 0.010 $0.$ 0.011 $0.$ 0.011 $0.$ 0.011 $0.$ 0.011 $0.$ 0.011 $0.$ | ken m 45.17 49 $6.5.7$ 49 0.05 0 0.86 1 0.86 1 0.86 1 0.86 1 0.86 1 0.86 1 0.06 0 0.06 0 0.06 0 0.111 0 0.011 0 0.000 0 0.001 0 0.011 0 0.011 0 0.011 0 0.011 0 0.13 0 0.13 0 | ken m 45.17 49 45.17 49 0.05 0. 0.86 1. 0.86 1. 0.066 0. 0.066 0. 0.911 0. 0.911 0. 0.911 0. 0.911 0. 0.911 0. 0.000 0. 0.000 0. 0.011 0. 0.011 0. 0.011 0. 0.011 0. 0.011 0. 0.011 0. 0.011 0. 0.013 0. 0.13 0. 0.02 0. 0.02 0. 0.02 0. | kenm 45.17 49 45.17 49 0.05 0.05 0.06 $1.$ 0.06 $0.$ 0.06 $0.$ 0.01 $0.$ 0.01 $0.$ 0.00 $0.$ 0.01 $0.$ 0.01 $0.$ 0.01 $0.$ 0.01 $0.$ 0.01 $0.$ 0.01 $0.$ 0.02 $0.$ 0.03 0.33 0.33 0.33 | kenm 45.17 49 45.17 49 0.05 0.05 0.06 0.11 0.06 0.00 0.011 0.2 0.011 0.00 0.000 0.000
0.011 0.00 0.011 0.01 0.011 0.01 0.012 0.013 0.013 0.012 0.02 0.033 0.033 0.03 0.033 0.03 | kenm 45.17 49 45.17 49 0.05 0.05 0.06 $0.$ 0.86 $1.$ 0.06 $0.$ 0.06 $0.$ 0.06 $0.$ 0.011 $0.$ 0.011 $0.$ 0.00 $0.$ 0.00 $0.$ 0.00 $0.$ 0.01 $0.$ 0.13 $0.$ 0.13 $0.$ 0.01 $0.$ 0.33 $0.$ 0.00 $0.$ | ken m 45.17 49 45.17 49 0.05 0.05 0.05 0.05 0.86 $1.$ 0.06 $0.$ 0.06 $0.$ 0.06 $0.$ 0.06 $0.$ 0.06 $0.$ 0.011 $0.$ 0.00 $0.$ 0.01 $0.$ 0.01 $0.$ 0.01 $0.$ 0.013 $0.$ 0.013 $0.$ 0.033 $0.$ 0.033 $0.$ 0.00 $0.$
 | kenm 45.17 49 45.17 49 0.05 0.05 0.06 0.1 0.86 $1.$ 0.06 $0.$ 0.06 $0.$ 0.01 0.2 0.00 $0.$ 0.00 $0.$ 0.01 $0.$ 0.01 $0.$ 0.01 $0.$ 0.01 $0.$ 0.01 $0.$ 0.02 $0.$ 0.03 $0.$ 0.03 $0.$ 0.00 $0.$ 0.00 $0.$ | ken m 45.17 49 45.17 49 0.05 0 0.05 0 0.86 1 0.86 1 0.86 1 0.86 1 0.86 1 0.06 0 0.06 0 0.01 0 0.01 0 0.00 0 0.01 0 0.13 0 0.13 0 0.13 0 0.13 0 0.01 0 0.13 0 0.03 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 | kenm 45.17 49 45.17 49 0.05 0.05 0.06 $1.$ 0.06 $0.$ 0.06 $0.$ 0.06 $0.$ 0.011 $0.$ 0.00 $0.$ 0.00 $0.$ 0.01 $0.$ 0.01 $0.$ 0.01 $0.$ 0.01 $0.$ 0.02 $0.$ 0.033 $0.$ 0.033 $0.$ 0.00 $0.$ 0.00 $0.$ 0.00 $0.$ 0.00 $0.$ 0.00 $0.$ 0.00 $0.$ 0.00 $0.$ 0.00 $0.$ 0.00 $0.$ 0.00 $0.$ 0.00 $0.$ 0.00 $0.$ 0.00 $0.$
 |
| <u>301</u>
pl-4 | feno | | mer | mer
44.73 | mer
44.73
0.04 | mer
44.73
0.04
33.84 | mer
44.73
0.04
33.84
0.79 | mer
44.73
0.04
33.84
0.79
0.00 | mer
44.73
0.04
33.84
0.79
0.00
0.10 | mer
44.73
0.04
33.84
0.79
0.00
0.10
18.50 | mer
44.73
0.04
33.84
0.79
0.79
0.10
18.50
0.86 | mer
44.73
0.04
33.84
0.79
0.10
0.10
0.10
0.86
0.86
0.12 | mer
44.73
0.04
33.84
0.79
0.00
0.10
0.86
0.12
0.86
0.12
0.00 | mer
44.73
0.04
33.84
0.79
0.79
0.10
0.10
0.86
0.12
0.00
0.00
 | mer
44.73
0.04
33.84
0.79
0.10
0.86
0.10
0.86
0.12
0.00
0.00
98.98 | mer
44.73
0.04
33.84
0.79
0.79
0.10
0.10
0.86
0.12
0.86
0.12
0.00
0.00
98.98
8.38 | mer
44.73
0.04
33.84
0.79
0.79
0.10
0.86
0.12
0.86
0.12
0.00
0.00
8.38
8.38
0.00
 | mer
44.73
0.04
33.84
0.79
0.10
0.86
0.12
0.86
0.12
0.00
0.00
98.98
8.38
8.38
0.00
0.00 | mer
44.73
0.04
33.84
0.79
0.79
0.10
0.10
0.86
0.12
0.86
0.12
0.00
0.00
98.98
8.38
8.38
0.00
0.00
0.00
0.00 | mer
44.73
0.04
33.84
0.79
0.79
0.10
0.10
0.86
0.12
0.00
0.00
0.00
0.00
0.00
0.12
0.00
0.00 | mer
44.73
0.04
33.84
0.79
0.00
0.86
0.12
0.00
0.00
0.00
0.00
0.00
0.12
0.00
0.00 | mer
44.73
0.04
0.79
0.00
0.10
0.86
0.12
0.00
0.00
0.00
0.00
0.00
0.12
0.00
0.00 | mer
44.73
0.04
0.79
0.79
0.10
0.10
0.12
0.12
0.12
0.00
0.00
0.00 | mer
44.73
0.04
33.84
0.79
0.00
0.10
0.00
0.00
0.00
0.00
0.00
0.12
0.00
0.00
 | mer
44.73
0.04
0.79
0.79
0.10
0.86
0.00
0.00
0.00
0.00
0.00
0.12
0.00
0.00 | mer
44.73
0.04
0.79
0.00
0.10
0.86
0.00
0.00
0.00
0.00
0.00
0.00
0.0
 | mer
44.73
0.04
33.84
0.79
0.79
0.10
0.86
0.12
0.00
0.00
0.00
0.00
0.00
0.12
0.12 | mer
44.73
0.04
33.84
0.79
0.00
0.10
0.86
0.12
0.00
0.00
0.00
0.00
0.12
0.00
0.00 | mer
44.73
0.04
33.84
0.79
0.00
0.00
0.00
0.00
0.00
0.00
0.00
 |
| <u>301</u>
pl-3 | feno | | ken | кеп
50.19 | кеп
50.19
0.04 | ken
50.19
0.04
27.66 | кеп
50.19
0.04
27.66
2.54 | ken
50.19
0.04
27.66
2.54
0.06 | кеп
50.19
0.04
27.66
2.54
0.06
1.94 | кеп
50.19
0.04
27.66
2.54
0.06
1.94
11.63 | кеп
50.19
0.04
27.66
2.54
0.06
1.94
11.63
3.29 | ken
50.19
0.04
27.66
2.54
0.06
1.94
11.63
3.29
0.70 | ken
50.19
0.04
27.66
2.54
0.06
1.94
11.63
3.29
0.70
0.00 | ken
50.19
0.04
27.66
2.54
0.06
11.63
3.29
0.70
0.00
 | ken
50.19
0.04
2.7.66
2.54
0.06
11.63
3.29
0.70
0.00
0.00 | Ken
50.19
0.04
27.66
2.54
0.06
1.94
11.63
3.29
0.70
0.70
0.00
98.05
9.42 | Ken
50.19
0.04
27.66
2.54
0.06
11.63
3.29
0.70
0.00
0.00
98.05
9.42
0.01
 | Ken
50.19
0.04
27.66
2.54
0.06
11.63
3.29
0.70
0.70
0.00
0.00
98.05
98.05
9.42
0.01 | Ken 50.19 0.04 27.66 2.54 0.06 1.94 1.94 1.94 1.94 9.06 9.07 98.05 98.05 9.42 0.01 0.12 9.42 9.42 0.40 0.40 0.40 0.40 | ken 50.19 0.04 27.66 2.54 0.06 11.94 11.63 3.29 0.70 0.00 9.20 9.42 9.42 9.42 0.01 9.42 0.01 9.42 0.01 9.42 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 | ken 50.19 0.04 27.66 2.54 0.06 1.94 11.63 3.29 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.040 0.01 0.02 0.03 | ken
50.19
0.04
2.54
0.06
1.94
11.63
3.29
0.70
0.00
0.00
98.05
9.42
0.00
0.01
6.12
0.01
0.01
0.01
0.24
0.54
2.34 | ken 50.19 50.19 27.66 2.54 0.06 1.94 11.63 3.29 0.70 0.00 9.00 98.05 98.05 9.42 0.01 0.01 0.01 0.01 0.23 9.42 0.01 0.23 9.42 0.12 0.12 0.12 0.12 0.12 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 | ken 50.19 0.04 27.66 2.54 0.06 11.94 11.63
3.29 0.70 0.00 0.70 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.12 0.12 0.12 0.12 0.12 0.11 | ken 50.19 50.19 27.66 2.54 0.06 1.94 11.63 3.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 98.05 98.05 9.42 0.01 0.01 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 | ken 50.19 50.19 27.66 2.54 0.06 1.94 11.63 3.29 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.01 0.01 0.01 0.12 0.12 0.17 0.17 0.01 0.17 0.00 0.17 0.01 0.01 0.17 0.01
 | ken 50.19 0.04 27.66 2.54 0.06 11.63 3.29 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.71 0.72 0.734 0.740 0.71 0.72 0.734 0.740 0.740 0.740 0.740 0.741 0.741 0.741 0.741 0.741 0.741 0.751 | ken 50.19 0.04 27.66 2.54 0.06 1.94 11.63 3.29 0.70 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.17 | ken 50.19 50.19 0.04 27.66 2.54 0.06 1.94 11.63 3.29 0.00 0.00 0.00 0.00 0.00 0.01 0.02 98.05 98.05 98.05 0.00 0.01 0.01 0.17 0.117 0.117 1.1.5 32.337
 |
| <u>1</u> <u>301</u>
2 pl-3 | k feno | | r mer | r mer
14 49.45 | r mer
14 49.45
0 0.02 | r mer
14 49.45
00 0.02
04 30.08 | T mer 14 49.45 0 0.02 04 30.08 5 0.92 | T mer 14 49.45 0 0.02 34 30.08 5 0.92 b2 0.03 | T mer 14 49.45 0 0.02 34 30.08 5 0.92 22 0.03 5 0.03 5 0.03 5 0.03 | T mer 14 49.45 0 0.02 31 30.08 5 0.92 6 0.03 7 0.03 5 0.17 5 0.17 5 0.17 5 0.17 | T mer 14 49.45 0 0.02 30.08 5 5 0.92 6 0.03 7 0.02 7 0.03 8 0.17 5 0.17 57 14.52 60 2.64 | T mer 14 49.45 0 0.02 30.08 5 5 0.92 6 0.03 7 0.03 8 0.17 8 0.45 | T mer 14 49.45 0 0.02 14 49.45 5 0.92 6 0.03 5 0.92 5 0.17 5 0.17 5 0.17 60 2.64 8 0.45 0 0.00 | T mer 14 49.45 0 0.02 14 49.45 5 0.92 6 0.02 7 0.02 6 0.03 7 14.52 60 2.64 8 0.45 00 0.00 00 0.00
 | T mer 14 49.45 0 0.02 5 0.92 5 0.92 6 0.03 7 14.52 6 0.03 7 14.52 6 0.03 7 0.03 8 0.45 00 0.00 00 0.00 00 0.00 05 98.28 | T mer 14 49.45 0 0.02 30.08 5 5 0.92 6 0.03 7 14.52 6 2.64 8 0.45 0 2.64 8 0.45 0 2.64 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 9.28 6 9.22 | T mer 14 49.45 0 0.02 30.08 5 5 0.92 5 0.17 5 0.17 5 0.17 5
 0.17 5 0.17 57 14.52 60 2.64 8 0.45 00 2.64 00 0.00 00 0.00 05 98.28 66 9.22 66 9.22 60 0.00 | T mer 14 49.45 0 0.02 30.08 5 5 0.92 5 0.92 6 0.03 7 14.52 6 2.64 8 0.45 8 0.45 9 0.00 0 0.00 0 0.00 05 98.28 66 9.22 00 0.00 00 0.00 00 0.00 00 0.00 00 0.00 00 0.00 | T mer 14 49.45 0 0.02 30.08 5 5 0.92 5 0.17 5 0.17 57 14.52 60 2.64 8 0.45 0 2.64 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01 13 6.61 8 0.14 | T mer 14 49.45 0 0.02 5 0.92 5 0.92 6 0.03 7 14.52 6 2.64 8 0.45 0 2.64 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 13 6.61 8 0.14 8 0.14 0 0.00 0 0.00 0 0.00 13 6.61 8 0.14 0 0.00 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | \overline{r} mer 14 49.45 0 0.02 5 0.92 6 0.03 5 0.17 57 14.52 0 2.64 8 0.45 0 2.64 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 | \overline{r} mer 14 49.45 0 0.02 5 0.92 6 0.02 7 14.52 6 0.17 57 14.52 0 2.64 8 0.45 0 0.00 0 0.00 0 0.00 0 0.00 14.52 98.28 16 9.22 16 9.222 17 98.28 18 0.14 19 0.00 14 0.00 14 0.05 14 0.05 14 0.05 14 0.05 | T mer 14 49.45 0 0.02 5 0.92 5 0.92
5 0.17 5 0.17 5 0.17 5 0.17 5 0.17 5 0.17 6 9.26 0 0.00 0 0.00 0 0.00 13 6.61 8 0.14 0 0.00 13 6.61 8 0.14 9 0.01 8 0.14 9 2.59 9 2.50 9 2.90 8 0.05 9 2.90 8 0.95 9 0.95 9 0.95 9 0.95 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | \overline{r} mer 14 49.45 0 0.02 5 0.92 5 0.92 5 0.17 57 14.52 0 2.64 8 0.45 0 0.00 0 2.64 8 0.45 6 9.22 9 9.23 6 9.22 9 0.00 13 6.61 8 0.14 9 0.00 9 9.230 9 2.900 9 2.900 9 2.900 9 2.900 9 2.900 9 2.900 9 2.900 9 2.900 9 2.900 9 2.900 9 0.010 9 0.000 9 0.000
 | τ mer 14 49.45 0 0.02 5 0.92 6 0.02 7 14.52 6 0.17 57 14.52 6 9.25 00 0.00 00 0.00 00 0.00 014 0.00 02 9.264 03 0.455 04 0.00 00 0.00 00 0.00 13 6.61 8 0.14 00 0.00 13 6.61 8 0.14 00 0.00 00 0.00 00 0.00 00 0.00 019.98 0.00 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | T mer 14 49.45 0 0.02 5 0.92 5 0.92 5 0.17 5 0.17 5 0.17 5 0.17 5 0.03 6 0.17 6 9.45 6 9.264 8 0.45 9 0.00 9 0.00 9 9.228 6 9.22 8 0.14 8 0.14 8 0.14 9 0.00 9 0.00 9 0.01 9 0.01 9 0.02 9 0.03 00 0.00 00 0.00 01 19.98 71 73.18 33 24.09
 |
| <u>301 301</u>
pl-1 pl-2 | feno mik | | ken mei | ken mer
19.18 51.1 | ken mei 9.18 51.1 0.02 0.00 | ken mei 9.18 51.1 0.02 0.00 11.11 29.6 | ken mei 9.18 51.1 0.02 0.00 1.11 29.0 1.10 1.1: | ken met 9.18 51.1 0.02 0.00 1.11 29.0 1.10 1.1 0.05 0.05 | ken met 9.18 51.1 9.18 51.1 0.12 0.0 1.11 29.0 1.10 1.1 0.05 0.0 0.05 0.0 0.05 0.0 0.29 0.0 | ken met 9.18 51.1 9.12 0.00 1.11 29.0 1.10 1.1 0.05 0.07 0.05 0.01 0.29 0.13 5.43 13.5 | ken met 9.18 51.1 9.18 51.1 0.02 0.00 1.11 29.0 1.10 1.1! 0.05 0.05 0.29 0.01: 0.29 0.01: 2.34 3.3: | ken met 9.18 51.1 9.18 51.1 9.02 0.00 1.11 29.0 1.10 1.1f 0.05 0.07 0.05 0.01 0.29 0.11 2.34 13.5 2.34 3.3 0.46 0.6 | ken met 9.18 51.1 9.18 51.1 1.02 0.0 1.11 29.0 1.11 29.0 0.05 0.0 0.05 0.0 0.29 0.11 0.05 0.0 0.23 0.0 0.24 13.5 2.34 3.3 0.46 0.6 0.00 0.0 | ken met 9.18 51.1 9.18 51.1 9.02 0.01 1.11 29.0 1.11 29.0 0.05 0.05 0.05 0.01 0.234 13.5 5.43 13.5 0.46 0.6 0.00 0.00 0.00 0.00
 | ken met 9.18 51.1 9.18 51.1 1.02 0.00 1.11 29.0 1.10 1.11 0.05 0.05 0.05 0.01 0.29 0.11 0.05 0.05 0.23 0.11 2.34 13.5 2.34 3.3 0.46 0.60 0.00 0.00 0.998 99.0 | ken met 9.18 51.1 9.18 51.1 1.02 0.00 1.11 29.0 1.10 1.11 0.05 0.05 0.05 0.01 0.05 0.01 0.05 0.01 0.234 13.5 2.34 3.3(0.46 0.6(0.00 0.00 0.00 0.00 0.99.9 9.4 9.05 9.4 | ken met 9.18 51.1 9.18 51.1 2.02 0.00 1.11 29.0 1.10 1.1! 2.05 0.00 0.29
0.11 2.14 1.3.5 5.43 13.5 0.234 3.3 0.46 0.6 0.00 0.00 0.998 99.0 9.05 9.46 0.00 0.00 0.00 0.00 0.00 0.00 | ken met 9.18 51.1 9.18 51.1 1.02 0.00 1.11 29.0 1.10 1.11 2.05 0.05 0.05 0.01 0.29 0.01 0.29 0.01 0.23 0.01 0.23 13.5 2.34 13.5 2.34 3.3 0.00 0.00 9.99 99.0 9.05 9.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | ken met 9.18 51.1 9.18 51.1 2.02 0.00 1.11 29.0 1.10 1.1! 2.05 0.00 3.29 0.11 2.05 0.00 3.29 0.11 2.243 13.5 2.34 3.3(0.46 0.6(0.00 0.00 9.95 9.44 0.00 0.00 9.05 9.44 0.00 0.00 0.00 0.00 0.017 0.01 0.17 0.11 | ken met 9.18 51.1 9.18 51.1 2.02 0.00 1.11 29.0 1.10 1.1! 2.05 0.00 3.129 0.11! 2.055 0.01 3.24 13.5 3.33 0.46 0.66 0.00 0.00 0.00 0.999 99.0 0.01 9.05 9.44 0.01 0.00 0.00 0.01 0.017 0.11 0.11 0.017 0.01 0.01 0.17 0.11 0.01 | ken met 9.18 51.1 9.18 51.1 9.02 0.00 1.11 29.0 1.11 29.0 1.12 21.1 2.05 0.00 3.29 0.15 3.29 0.16 3.243 13.5 3.34 3.33 0.46 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.017 0.013 0.017 0.01 0.01 0.01 0.02 0.03 0.03 0.04 | ken met 9.18 51.1 9.18 51.1 1.02 0.00 1.11 29.0 1.10 1.11 2.05 0.05 0.05 0.01 3.35 0.00 0.146 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.017 0.11 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.02 0.01 0.03 0.04 0.04 0.00 | ken met 9.18 51.1 9.18 51.1 1.02 0.00 1.11 29.0 1.10 1.11 2.05 0.05 0.05 0.01 3.29 0.11 2.24 13.5 2.34 13.5 0.00 0.00 0.00 0.00 9.05 9.44 0.00 0.00 0.017 0.01 0.02 0.00 0.017 0.11 0.17 0.11 0.01 0.00 0.02 0.03 0.03 0.04 0.04 0.00 0.08 0.00 0.08 0.00 0.083 1.11 | ken met 9.18 51.1 9.18 51.1 9.02 0.00 1.11
29.0 1.10 1.1! 2.05 0.00 9.23 13.5 5.43 13.5 0.234 3.3 0.46 0.6 0.00 0.00 0.00 0.00 9.05 9.40 9.05 9.40 0.00 0.00 0.017 0.18 0.017 0.18 0.17 0.19 0.08 0.0 0.08 0.0 0.17 0.18 0.10 0.00 0.83 1.18 0.11 0.11 | ken met 9.18 51.1 9.18 51.1 1.02 0.00 1.10 1.11 2.05 0.00 0.229 0.01 0.229 0.01 0.224 13.5 0.234 3.33 0.200 0.00 0.00 0.00 0.00 0.00 0.017 0.013 0.017 0.01 0.028 0.02 0.033 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 | ken met 9.18 51.1 9.18 51.1 1.02 0.00 1.10 1.11 2.05 0.00 2.05 0.00 2.29 0.11 2.05 0.00 2.243 13.5 2.344 $3.3(0)$ 0.00 0.00 0.00 0.00 0.00 0.00 0.017 0.01 0.028 0.01 0.017 0.01 0.017 0.01 0.08 0.00 0.08 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00
 | ken met 9.18 51.1 9.18 51.1 0.02 0.00 1.10 1.11 2.05 0.00 1.10 1.11 2.05 0.00 0.229 0.11 0.234 13.5 0.246 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.017 0.11 0.01 0.00 0.023 0.01 0.017 0.01 0.023 0.02 0.01 0.00 0.023 0.01 0.01 0.00 0.023 0.01 0.01 0.00 0.00 0.00 0.00 0.00 | ken met 9.18 51.1 9.18 51.1 2.02 0.00 1.10 1.11 2.05 0.00 2.05 0.00 2.29 0.11 2.23 3.33 2.24 0.33 2.24 0.33 2.34 3.33 0.00 0.00 0.00 0.00 9.05 9.40 9.05 9.40 9.05 9.40 0.00 0.00 0.017 0.01 0.011 0.01 0.011 0.01 0.023 0.02 0.020 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | ken met 9.18 51.1 9.18 51.1 1.02 0.00 1.11 29.0 1.10 1.12 2.05 0.00 9.18 3.3 9.05 0.01 9.14 0.11 9.15 3.3 9.16 0.00 9.00 0.00 9.09 99.0 9.09 99.0 9.09 99.0 9.017 0.11 0.17 0.11 0.17 0.11 0.19 0.00 0.08 0.00 0.09 0.00 0.01 0.01 0.11 0.14 0.01 0.00 0.02 0.00 0.03 0.04 0.04 2.66 0.054 20.0 0.04 20.0 0.054 20.0
 |
| <u>301</u> | feno f | | mer | mer <u>}</u> 49.38 4 | mer H
49.38 4
0.03 (| mer H 49.38 4 ¹ 0.03 (30.75 3 | mer H
49.38 44
0.03 (
30.75 3
1.02 | mer H 49.38 4 49.38 4 0.03 0 30.75 3 1.02 1 0.07 0 | mer H 49.38 4! 49.38 4! 0.03 0 30.75 3 30.75 3 0.07 (0.07 (| mer H 49.38 4' 49.38 4' 0.03 0 30.75 3 30.75 3 1.02 1 0.07 (0.13 (0.13 (| mer H 49.38 4' 49.38 4' 0.03 0.03 0 30.75 3 30.75 3 1.02 1 1.02 1 0.07 0.07 0 0.13 (14.95 14.95 1 2.70 5 1 | mer H 49.38 44 49.38 44 0.03 0 30.75 3 30.75 3 1.02 1 0.07 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.15 1 0.56 0 | mer H 49.38 49.38 49.38 49.38 0.03 0 30.75 3 30.75 3 30.75 3 1.02 1 1.02 1 0.07 0 0.13 0 14.95 1 2.70 2 0.56 0 0.56 0 | mer H 49.38 49.38 49.38 49.38 0.03 0 0 30.75 3 30.75 3 30.75 3 1.02 1 1.02 1 1.02 1 1.1.02 1.13 0 0.13 0 0.13 0.13 0 0 0 0.556 0 0.02 0 0
 | mer H 49.38 44 49.38 44 0.03 0 30.75 3 30.75 3 30.75 3 1.02 1 0.07 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.56 0 0.00 0 99.61 9 | mer her | mer H 49.38 49.38 49.38 49.38 0.03 0 30.75 3 30.75 3 30.75 3 1.02 1 1.02
 1 1.02 1 1.102 1 1.14.95 1 2.70 2 0.566 0 0.00 0 9.12 9 9.12 9 0.00 0 | mer her 4 49.38 49.38 44 49.38 49.38 44 0.03 0.3 6 30.75 3 30.75 3 1.02 1 1.02 1 1 1.02 1.13 0 0 1 1.4.95 1 2.70 2 2 7 2.70 2.70 2 0.02 0 9 1 9.12 9.12 9 9 1 9 1 9 1 2 1 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
 |
| Jrnek
Aineral | | | | SiO ₂ | SiO ₂
TiO ₂ | SiO ₂
TiO ₂
Al ₂ O ₃ | SiO ₂
TiO ₂
Al ₂ O ₃
FeO | SiO ₂
TiO ₂
Al ₂ O ₃
FeO
MnO | SiO ₂
TiO ₂
Al ₂ O ₃
FeO
MnO
MgO | SiO ₂
TiO ₂
Al ₂ O ₃
FeO
MnO
MgO
CaO | SiO ₂
TiO ₂
Al ₂ O ₃
FeO
MnO
MgO
Na ₂ O
Na ₂ O | SiO ₂
TiO ₂
Al ₂ O ₃
FeO
MnO
MgO
CaO
Na ₂ O
K ₂ O | SiO ₂
TiO ₂
Al ₂ O ₃
FeO
MnO
MgO
CaO
Na ₂ O
K ₂ O
Cr ₂ O ₃ | SiO ₂
TiO ₂
Al ₂ O ₃
FeO
MnO
MgO
CaO
Na ₂ O
K ₂ O
Cr ₂ O ₃
P ₂ O ₅ | SiO ₂
TiO ₂
Al ₂ O ₃
FeO
MnO
MgO
CaO
Na ₂ O
K ₂ O
Cr ₂ O ₃
P ₂ O ₅
Toplam | SiO ₂
TiO ₂
Al ₂ O ₃
FeO
MnO
MgO
CaO
Na ₂ O
K ₂ O
Cr ₂ O ₃
P ₂ O ₅
Si | SiO ₂
TiO ₂
Al ₂ O ₃
FeO
MnO
MnO
MgO
CaO
Na ₂ O
K ₂ O
Cr ₂ O ₃
P ₂ O ₅
Si
Tipplam | SiO ₂
TiO ₂
Al ₂ O ₃
FeO
MnO
MgO
CaO
Na ₂ O
K ₂ O
Slo ₅
P ₂ O ₅
Si
Ti
Ti | SiO ₂
TiO ₂
Al ₂ O ₃
FeO
MnO
MnO
MnO
CaO
Na ₂ O
K ₂ O
Si
P ₂ O ₅
Si
Si
Fe ⁺²
Si | $\begin{array}{l} \text{SiO}_2\\ \text{TiO}_2\\ \text{Al}_2\text{O}_3\\ \text{FeO}\\ \text{MnO}\\ \text{MnO}\\ \text{MnO}\\ \text{MnO}\\ \text{Na}_2\text{O}\\ \text{CaO}\\ \text{Na}_2\text{O}\\ \text{CaO}\\ \text{CaO}\\ \text{CaO}\\ \text{Si}\\ \text{Pe}^{+2}\\ \text{Fe}^{+2}\\ \text{Mn}\\ \end{array}$ | $\begin{array}{c} \text{SiO}_2\\ \text{TiO}_2\\ \text{Al}_2\text{O}_3\\ \text{FeO}\\ \text{MnO}\\ \text{MnO}\\ \text{MnO}\\ \text{MgO}\\ \text{CaO}\\ \text{Na}_2\text{O}\\ \text{K}_2\text{O}\\ \text{CaO}\\ \text{Na}_2\text{O}\\ \text{K}_2\text{O}\\ \text{Cr}_2\text{O}_3\\ \text{P}_2\text{O}_5\\ \text{P}_2\text{O}_5\\ \text{Si}\\ \text{Ti}\\ \text{Ti}\\ \text{Mn}\\ \text{Mn}\\ \text{Mg}\\ \end{array}$ | Si O_2
Ti O_2
Al $_2O_3$
FeO
MnO
MnO
MgO
CaO
Na $_2O$
K $_2O_3$
P $_2O_5$
P $_2O_5$
Ti
Ti
Fe ⁺²
Mn
Mn
Mg | Si O_2
Ti O_2
A I_2O_3
FeO
MnO
MnO
CaO
CaO
CaO
Cr $_2O_3$
P $_2O_5$
Ti
Fe^{+2}
Mn
Mn
Mn
Mg
Na | $\begin{array}{c} \text{SiO}_2\\ \text{TiO}_2\\ \text{FeO}\\ \text{Al}_2\text{O}_3\\ \text{FeO}\\ \text{MnO}\\ \text{MnO}\\ \text{MnO}\\ \text{Na}_2\text{O}\\ \text{CaO}\\ \text{C2}_2\text{O}_3\\ \text{P}_2\text{O}_5\\ \text{P}_2\text{O}_5\\ \text{Si}\\ \text{Ti}\\ \text{Ti}\\ \text{Mn}\\ \text{Mn}\\ \text{Mn}\\ \text{Mg}\\ \text{K}\\ \text{K}\\ \end{array}$ | Si 0_2
Ti 0_2
A 1_2O_3
FeO
MnO
MgO
CaO
Na $_2O$
K $_2O$
Si
P $_2O_5$
P $_2O_5$
Si
Ti
Ti
Ti
Ti
Ti
K
Mn
Mn
Mn
Ca
Si
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr $_2O_3$
Cr | Si O_2
Ti O_2
Al $_2O_3$
FeO
MnO
MgO
CaO
Na $_2O$
K $_2O_3$
P $_2O_3$
P $_2O_3$
Cr $_2O_3$
P $_2O_3$
Si
Fe ⁺²
Fe ⁺²
Ka
Mn
Mn
Mn
Mn
Mn
Mn
Mn
Si
FeO
To
Si
Feo
To
Si
Feo
To
Si
Feo
MnO
MnO
MgO
MagO
Si
Feo
MagO
Si
Feo
MnO
MnO
MgO
MgO
MgO
MgO
MgO
MgO
MgO
MgO
MgO
Mg | Si O_2
Ti O_2
A I_2O_3
FeO
MnO
MnO
Na ₂ O
CaO
Nna ₂ O
K ₂ O
Si
Toplam
K
K
Ca
Nn
Mn
Mn
Mn
Mn
Mn
Ca
Si
Toplam
T
Ca
Toplam
T
P
CaO
Toplam
Ti
Si
Toplam
Ti
Si
Toplam
Ti
Si
Si
Topla
Ti
Si
Si
Si
Si
Si
Si
Si
Si
Si
Si
Si
Si
Si | $\begin{array}{c} \text{SiO}_2\\ \text{TiO}_2\\ \text{Al}_2\text{O}_3\\ \text{FeO}\\ \text{MnO}\\ \text{MnO}\\ \text{MnO}\\ \text{MnO}\\ \text{Na}_2\text{O}\\ \text{CaO}\\ \text{Na}_2\text{O}\\ \text{K}_2\text{O}_3\\ \text{P}_2\text{O}_5\\ \text{P}_2\text{O}_5\\ \text{P}_2\text{O}_5\\ \text{Mn}$ | SiO ₂
TiO ₂
Al ₂ O ₃
FeO
MnO
MgO
CaO
Na ₂ O
K ₂ O
Cr ₂ O ₃
P ₂ O
Si
Fe ⁺²
Fe ⁺²
Ca
Mn
Mn
Mn
Mn
Mn
Mn
Mn
Mn
Mn
Mn
Mn
Mn
Mn |

vamı
de
'nin
$\mathbf{B2}$
blo
Ta
Ř

. IIIAIIIU.	7111, 111 a 111		II , IBIGI I		y unias, i	. pi. piaji	Salullalal	ı. mşun	ncsapiai		u liblicau	7C INITIO,I
	4.51	6.08	4.05	4.28	7.89	4.57	3.59	3.62	0.07	90.0	2.60	Or <u> </u>
	33.69	38.12	31.96	33.12	44.67	35.00	28.98	30.09	2.53	2.49	26.10	Ab
	61.80	55.80	63.99	62.60	47.44	60.43	67.43	66.29	97.40	97.45	71.30	An
	20.08	20.03	20.02	20.09	19.95	20.09	20.01	20.12	21.62	21.53	20.03	Toplam
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Р
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.00	Cr
	0.18	0.24	0.16	0.17	0.30	0.18	0.14	0.14	0.00	0.00	0.10	K
	1.34	1.50	1.27	1.35	1.70	1.41	1.15	1.18	0.12	0.12	1.05	Na
	2.46	2.20	2.54	2.54	1.80	2.43	2.68	2.61	4.71	4.79	2.86	Са
	0.05	0.04	0.05	0.04	0.13	0.04	0.04	0.33	3.98	4.35	0.04	Mg
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.02	0.00	Mn
	0.26	0.25	0.22	0.23	0.21	0.25	0.20	0.23	1.67	1.20	0.16	Fe^{+2}
	6.22	5.96	6.18	6.20	5.55	6.14	6.36	6.19	1.35	1.00	6.58	AI
	0.01	0.01	0.01	0.00	0.05	0.01	0.01	0.01	0.15	0.09	0.00	Ti
	9.56	9.83	9.59	9.56	10.21	9.63	9.43	9.43	9.60	96.6	9.24	Si
	99.39	98.87	66.66	99.52	96.70	99.55	99.23	98.87	99.22	99.98	99.10	Toplam
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	P_2O_5
	0.00	0.00	0.01	0.00	0.01	0.02	0.01	0.00	0.01	0.35	0.02	Cr_2O_3
	0.77	1.02	0.69	0.74	1.25	0.78	0.61	09.0	0.01	0.01	0.44	K_2O
	3.76	4.19	3.57	3.77	4.67	3.94	3.22	3.29	0.31	0.32	2.92	Na_2O
	12.47	11.11	12.93	12.89	8.98	12.31	13.56	13.10	21.66	22.50	14.44	CaO
	0.19	0.15	0.17	0.14	0.48	0.15	0.15	1.20	13.18	14.68	0.16	MgO
	0.00	0.00	0.00	0.00	0.01	0.01	0.02	0.02	0.21	0.13	0.02	MnO
	1.67	1.61	1.44	1.51	1.34	1.62	1.29	1.51	9.84	7.24	1.02	FeO
	28.61	27.41	28.66	28.54	25.14	28.32	29.23	28.28	5.65	4.27	30.17	Al_2O_3
	0.07	0.11	0.10	0.02	0.35	0.08	0.07	0.07	1.01	0.63	0.00	TiO_2
	51.85	53.27	52.42	51.91	54.47	52.32	51.07	50.80	47.34	49.85	49.91	SiO_2
	ken	mer	ken	mer	ken	mer	ken	mer	mant	mer	ken	
	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	
	pl-4	pl-4	pl-3	pl-3	pl-2	pl-2	pl-1	pl-1	pl-4	pl-4	pl-3	Mineral
	637	637	637	637	637	637	637	637	373	373	373	Örnek

Ek Tablo	B3. Eos	en yaşl	ı bazalt	ik lavle	ıra ait p	lajiyok	lasların	mikrop	rob ana	lliz sonı	ıçları							
Örnek	111	111	111	111	111	111	111	111	111	111	111	111	111	111	111	111	111	111
Mineral	pl-1	pl-1	pl-1	pl-1	pl-1	pl-1	pl-1	pl-1	pl-1	pl-1	pl-1	pl-1	pl-1	pl-1	pl-1	pl-1	pl-1	pl-2
	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	feno
	ken															↑	mer	mer
SiO_2	48.01	45.80	46.09	45.80	45.66	46.21	46.67	45.64	45.55	45.48	45.59	46.01	44.92	49.67	45.82	46.33	46.58	45.00
TiO ₂	0.00	0.08	0.06	0.05	0.10	0.05	0.10	0.06	0.09	0.00	0.03	0.00	0.05	0.08	0.02	0.05	0.00	0.00
Al_2O_3	31.85	33.42	33.14	32.92	33.71	32.59	34.42	33.19	32.83	32.91	33.30	33.41	34.35	30.61	32.86	33.08	33.38	34.36
FeO	0.58	0.56	0.59	0.57	0.60	0.67	09.0	0.52	0.60	0.61	0.61	0.65	0.61	0.62	0.56	0.67	0.66	0.57
MnO	0.01	0.04	0.00	0.04	0.02	0.02	0.00	0.00	0.03	0.02	0.00	0.05	0.02	0.01	0.00	0.03	0.03	0.00
MgO	0.04	0.02	0.03	0.00	0.01	0.01	0.03	0.01	0.04	0.04	0.06	0.09	0.03	0.06	0.03	0.02	0.06	0.04
CaO	15.49	17.66	17.69	17.53	17.87	16.99	17.56	17.61	17.28	17.94	17.53	17.74	18.38	14.64	17.57	17.05	17.48	18.20
Na_2O	2.54	1.41	1.32	1.29	1.40	1.51	1.53	1.38	1.48	1.32	1.26	1.23	0.75	3.22	1.40	1.54	1.60	1.04
$\rm K_2O$	0.20	0.04	0.03	0.08	0.06	0.11	0.07	0.06	0.12	0.09	0.05	0.02	0.01	0.34	0.05	0.09	0.10	0.06
Cr_2O_3	0.00	0.02	0.02	0.00	0.00	0.02	0.04	0.02	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.02
P_2O_5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	98.72	99.05	98.97	98.28	99.43	98.18	101.02	98.49	98.02	98.41	98.44	99.2	99.12	99.25	98.31	98.86	<u>99.89</u>	99.29
Si	8.93	8.54	8.59	8.60	8.49	8.68	8.52	8.55	8.58	8.55	8.54	8.56	8.37	9.18	8.60	8.64	8.61	8.38
Τi	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0.00	0.00
AI	6.98	7.34	7.28	7.28	7.38	7.21	7.41	7.33	7.29	7.29	7.35	7.33	7.55	99.9	7.27	7.27	7.27	7.54
Fe^{+2}	0.09	0.09	0.09	0.09	0.09	0.11	0.09	0.08	0.09	0.10	0.10	0.10	0.10	0.10	0.09	0.10	0.10	0.09
Mn	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	00.00	0.00	0.00	0.01	0.00	0.00
Mg	0.01	0.01	0.01	0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.02	0.02	0.01	0.02	0.01	0.01	0.02	0.01
Ca	3.09	3.53	3.53	3.52	3.56	3.42	3.43	3.54	3.49	3.61	3.52	3.54	3.67	2.90	3.53	3.41	3.46	3.63
Na	0.92	0.51	0.48	0.47	0.51	0.55	0.54	0.50	0.54	0.48	0.46	0.44	0.27	1.15	0.51	0.56	0.57	0.38
K	0.05	0.01	0.01	0.02	0.01	0.03	0.02	0.02	0.03	0.02	0.01	0.00	00.00	0.08	0.01	0.02	0.02	0.01
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Р	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	20.07	20.05	20.00	20.00	20.05	20.01	20.04	20.03	20.04	20.06	20.00	20.00	19.98	20.10	20.02	20.03	20.05	20.04
An	76.22	87.17	87.95	87.78	87.24	85.6	86.04	87.28	85.96	87.80	88.18	88.75	93.04	70.13	87.12	85.51	85.33	90.29
Ab	22.60	12.57	11.85	11.73	12.40	13.74	13.56	12.34	13.32	11.67	11.50	11.13	6.88	27.91	12.57	13.96	14.10	9.38
Or	1.18	0.26	0.20	0.49	0.36	0.66	0.40	0.38	0.72	0.53	0.32	0.12	0.08	1.96	0.31	0.53	0.57	0.33
Formül 32 o	ksijen üz(erinden l	nesaplanı	mştır. Ki	isaltmala	r: pl: plaj	jiyoklas;	feno:feno	okristal; ţ	orfl: profi	il.							

sonuç
analiz s
s do a
mikrop
dasların
ok
ajiy
pl
ait
vlara
la
ıltik
baza
yaşlı
Eosen
B3.
oldi
L 2
Ek '

devamı
'ün
B3
ıblo
Ta
Ĩ.

Örnek	111	111	111	111	111	111	111	111	111	260	260	260	260	260	260	260	260	260
Mineral	pl-2	pl-2	pl-3	pl-3	pl-4	pl-4	pl-4	pl-4	pl-5	pl-1	pl-1	pl-1	pl-2	pl-2	pl-2	pl-3	pl-4	pl-4
	feno	feno	feno	feno	feno	feno	feno	feno	mik	feno	feno	feno	feno	feno	feno	mik	feno	feno
	mant	ken	mer	ken	mer	mantl	mant2	ken	mer	mer	mant	ken	mer	mant	ken	mer	mer	ken
SiO_2	46.27	55.94	45.41	55.76	45.95	48.44	47.88	55.72	62.56	46.29	46.37	49.75	45.62	45.08	47.22	64.46	47.72	48.26
TiO_2	0.06	0.03	0.06	0.05	0.03	0.04	0.10	0.00	0.00	0.07	0.00	0.01	0.02	0.02	0.02	0.03	0.01	0.00
Al_2O_3	32.82	27.21	33.85	27.16	33.17	31.68	31.67	27.16	19.28	33.38	33.72	31.37	33.05	33.89	32.12	19.90	31.69	32.07
FeO	0.61	0.48	0.50	0.44	0.64	0.64	0.59	0.37	0.08	0.45	0.46	0.43	0.41	0.45	0.54	0.56	0.32	0.42
MnO	0.02	0.07	0.00	0.05	0.00	0.00	0.00	0.02	0.00	0.08	0.04	0.03	0.01	0.08	0.01	0.00	0.02	0.00
MgO	0.02	0.04	0.01	0.05	0.05	0.07	0.06	0.05	0.00	0.06	0.00	0.00	0.00	0.02	0.01	0.00	0.04	0.01
CaO	16.96	10.10	18.20	9.90	17.56	15.91	16.08	10.01	0.26	17.54	17.40	15.05	18.39	18.81	17.01	1.86	16.25	16.07
Na_2O	1.64	5.28	1.18	5.11	1.44	2.30	2.25	5.16	0.23	1.33	1.41	2.83	1.12	0.84	1.77	5.23	2.23	2.37
K_2O	0.07	0.63	0.02	0.59	0.09	0.21	0.17	0.55	15.71	0.08	0.06	0.15	0.01	0.05	0.07	7.78	0.09	0.05
Cr_2O_3	0.02	0.01	0.01	0.01	0.00	0.03	0.00	0.00	0.00	0.01	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.02
P_2O_5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	98.49	99.79	99.24	99.12	98.93	99.32	98.80	99.04	98.12	99.29	99.46	99.64	98.63	99.24	98.77	99.82	98.37	99.27
Si	8.66	10.12	8.46	10.14	8.58	8.96	8.91	10.14	11.79	8.59	8.59	9.13	8.55	8.41	8.80	11.68	8.91	8.92
Ti	0.01	0.00	0.01	0.01	0.00	0.01	0.01	0.00	0.00	0.01	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al	7.24	5.80	7.43	5.82	7.30	6.91	6.94	5.82	4.28	7.30	7.36	6.79	7.29	7.45	7.05	4.25	6.97	6.99
Fe^{+2}	0.10	0.07	0.08	0.07	0.10	0.10	0.09	0.06	0.01	0.07	0.07	0.07	0.06	0.07	0.08	0.08	0.05	0.06
Mn	0.00	0.01	0.00	0.01	0.00	0.00	00.00	0.00	00.00	0.01	0.01	00.00	0.00	0.01	0.00	0.00	00.00	0.00
Mg	0.00	0.01	0.00	0.01	0.01	0.02	0.02	0.01	0.00	0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00
Са	3.40	1.96	3.63	1.93	3.51	3.15	3.20	1.95	0.05	3.49	3.45	2.96	3.69	3.76	3.40	0.36	3.25	3.18
Na	0.60	1.85	0.43	1.80	0.52	0.82	0.81	1.82	0.08	0.48	0.51	1.01	0.40	0.30	0.64	1.84	0.81	0.85
K	0.02	0.15	0.00	0.14	0.02	0.05	0.04	0.13	3.78	0.02	0.02	0.04	0.00	0.01	0.02	1.80	0.02	0.01
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Р	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	20.03	19.97	20.04	19.93	20.04	20.02	20.02	19.93	19.99	19.99	20.01	20.00	19.99	20.02	19.99	20.01	20.02	20.01
An	84.71	49.52	89.41	49.88	86.66	78.33	79.00	50.02	1.37	87.49	86.91	73.92	90.03	92.24	83.76	9.03	79.69	78.70
$\mathbf{A}\mathbf{b}$	14.86	46.81	10.48	46.59	12.83	20.46	20.00	46.72	2.16	12.03	12.71	25.20	9.88	7.46	15.81	45.96	19.78	21.03
Or	0.43	3.67	0.11	3.53	0.51	1.21	1.00	3.26	96.47	0.48	0.38	0.88	0.09	0.30	0.43	45.01	0.53	0.27
Formül 32 o.	ksijen üz	erinden h	ıesaplanı	mıştır. Kı	saltmala	r: pl: pla	jiyoklas;	feno:feno	okristal; 1	nik: mikı	olit; ma	nt: manto						

devamı
'ün
B3
blo
Ta
Ľ,

Örnek	260	260	331	331	331	<u>331</u>	511	<u>511</u>	511	511	511	<u>511</u>	511	<u>511</u>	511	511	<u>511</u>	511
Mineral	pl-5	pl-5	pl-1	pl-2	pl-3	pl-4	pl-1	pl-1	pl-1	pl-2	pl-2	pl-2	pl-3	pl-3	pl-4	pl-4	pl-4	pl-5
	feno	feno	mik	mik	mik	mik	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno
	mer	ken	mer	mer	mer	mer	mer	mant	ken	mer	mant	ken	mer	ken	mer	mant	ken	mer
SiO_2	45.18	46.95	4.27	3.84	3.82	2.20	48.21	47.10	47.05	45.30	47.08	47.80	48.41	69.05	47.20	47.15	46.97	47.76
TiO_2	0.05	0.08	0.08	0.14	0.04	3.45	0.02	0.03	0.01	0.01	0.03	0.06	0.06	1.17	0.00	0.06	0.02	0.00
Al_2O_3	33.42	32.99	3.05	2.25	0.95	4.66	31.66	32.13	32.49	33.51	32.71	31.62	30.94	12.45	32.22	32.35	32.40	32.29
FeO	0.41	0.54	59.71	52.85	52.48	31.18	0.64	0.68	0.68	0.58	0.61	0.74	0.67	2.17	0.58	0.55	0.68	0.69
MnO	0.00	0.06	0.01	0.09	0.04	0.24	0.00	0.00	0.04	0.04	0.00	0.02	0.00	0.07	0.00	0.03	0.01	0.03
MgO	0.01	0.01	0.24	0.45	0.15	0.38	0.08	0.06	0.07	0.04	0.05	0.07	0.07	0.33	0.07	0.07	0.07	0.05
CaO	17.83	16.61	1.13	2.14	1.40	36.30	16.44	16.51	16.69	18.00	17.01	16.67	15.78	0.95	16.48	16.27	16.97	16.43
Na_2O	1.25	1.87	23.25	24.90	28.21	15.22	2.33	1.87	2.07	1.06	1.73	2.20	2.60	2.35	1.91	2.06	1.71	2.10
K_2O	0.07	0.09	7.91	10.52	12.09	1.37	0.14	0.14	0.17	0.06	0.14	0.17	0.24	7.66	0.17	0.16	0.12	0.14
Cr_2O_3	0.00	0.00	0.00	0.03	0.00	0.03	0.00	0.00	0.04	0.03	0.03	0.01	0.00	0.00	0.00	0.00	0.00	0.03
P_2O_5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	98.22	99.20	99.65	97.21	99.18	95.03	99.52	98.52	99.31	98.63	99.39	99.36	98.77	96.2	98.63	98.7	98.95	99.52
Si	8.49	8.71	1.47	1.36	1.36	0.71	8.92	8.80	8.74	8.49	8.73	8.87	9.01	12.82	8.80	8.79	8.75	8.83
Ti	0.01	0.01	0.02	0.04	0.01	0.84	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.16	0.00	0.01	0.00	0.00
AI	7.40	7.21	1.23	0.94	0.40	1.77	6.90	7.07	7.11	7.40	7.14	6.91	6.79	2.72	7.08	7.11	7.11	7.04
Fe^{+2}	0.06	0.08	17.16	15.72	15.59	8.41	0.10	0.11	0.11	0.09	0.10	0.11	0.10	0.34	0.09	0.09	0.11	0.11
Mn	0.00	0.01	0.00	0.03	0.01	0.06	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
Mg	0.00	0.00	0.12	0.24	0.08	0.18	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.09	0.02	0.02	0.02	0.01
Ca	3.59	3.30	0.42	0.82	0.53	12.54	3.26	3.30	3.32	3.61	3.38	3.31	3.15	0.19	3.29	3.25	3.39	3.25
Na	0.46	0.67	15.49	17.17	19.43	9.52	0.83	0.68	0.74	0.38	0.62	0.79	0.94	0.84	0.69	0.75	0.62	0.75
K	0.02	0.02	3.47	4.77	5.48	0.56	0.03	0.03	0.04	0.02	0.03	0.04	0.06	1.81	0.04	0.04	0.03	0.03
Cr	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Р	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	20.03	20.01	39.38	41.10	42.89	34.60	20.06	20.01	20.10	20.01	20.03	20.06	20.08	18.98	20.01	20.06	20.03	20.02
An	88.39	82.62	2.14	3.59	2.10	55.44	78.96	82.32	80.88	90.06	83.76	79.94	75.94	6.62	81.83	80.58	83.92	80.54
$^{\mathrm{Ab}}$	11.20	16.87	79.97	75.44	76.37	42.07	20.22	16.85	18.13	9.56	15.44	19.07	22.66	29.69	17.15	18.50	15.35	18.63
Or	0.41	0.51	17.89	20.97	21.53	2.49	0.82	0.83	66.0	0.38	0.80	0.99	1.40	63.69	1.02	0.92	0.73	0.83
Formül 32 o	ıksijen üz	crinden l	resaplan	mıştır. Kı	saltmala	r: pl: plaj	jiyoklas;	feno:feno	okristal; r	nant: mai	nto.							

sonuçları
analiz
oprob
n mikı
lasları
lajiyok
e ait pl
t ve sil
k dayk
bazalti
ı yaşlı
. Eoser
B 4.
Tablo
Ek

Örnek	121	121	121	121	121	399	399	399	399	399	399	399	399	399	399	399	642	642
Mineral	pl-1	pl-1	pl-2	pl-2	Pl-3	pl-1	pl-1	pl-1	pl-1	pl-2	pl-3	pl-3	pl-4	pl-4	pl-5	pl-5	pl-1	pl-2
	feno	feno	feno	feno	mik	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	mik	mik
	mer	ken	mer	ken	mer	mer	mant1	mant2	ken	mer	mer	ken	mer	mant	ken	mer	mer	mer
SiO_2	45.19	51.44	48.33	49.77	49.26	48.09	48.58	47.19	50.41	54.17	52.63	47.94	52.79	52.69	52.23	47.77	64.21	47.62
TiO ₂	0.03	0.03	0.03	0.12	0.09	0.01	0.02	0.04	0.10	0.04	0.06	0.01	0.09	0.07	0.16	0.00	0.22	0.11
Al_2O_3	34.30	29.61	31.88	30.86	31.06	32.26	31.67	32.19	30.36	27.81	28.37	31.55	28.22	28.52	26.90	32.09	19.60	32.20
FeO	0.57	0.69	0.57	0.82	0.81	0.54	0.67	0.61	0.79	0.58	0.63	0.58	0.58	0.57	1.18	0.61	0.57	0.69
MnO	0.02	0.03	0.05	0.00	0.02	0.00	0.05	0.04	0.00	0.00	0.02	0.01	0.00	0.00	0.03	0.00	0.02	0.03
MgO	0.06	0.11	0.06	0.13	0.09	0.07	0.06	0.04	0.10	0.05	0.03	0.06	0.05	0.06	0.28	0.03	0.06	0.11
CaO	18.35	13.22	16.05	14.30	14.62	16.11	15.89	17.15	14.27	11.18	12.03	16.07	11.68	11.97	11.08	16.07	18.35	13.22
Na_2O	1.09	3.62	2.36	2.90	2.78	2.22	2.40	1.82	3.15	4.55	3.97	2.38	4.24	4.06	4.23	2.35	1.09	3.62
K_2O	0.10	0.50	0.23	0.32	0.35	0.28	0.37	0.22	0.56	1.11	0.93	0.35	1.03	1.02	0.94	0.28	0.10	0.50
Cr_2O_3	0.04	0.05	0.00	0.02	0.03	0.00	0.01	0.00	0.00	0.03	0.00	0.04	0.05	0.00	0.00	0.03	0.04	0.05
P_2O_5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	99.75	99.30	99.56	99.24	99.11	99.58	99.72	99.30	99.74	99.52	98.67	98.99	98.73	96.96	97.03	99.23	104.26	98.15
Si	8.38	9.46	8.92	9.18	9.11	8.88	8.96	8.77	9.26	9.89	9.71	8.92	9.74	9.70	9.82	8.86	11.12	8.90
Ti	0.00	0.00	0.00	0.02	0.01	0.00	0.00	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.02	0.00	0.03	0.01
AI	7.50	6.41	6.94	6.71	6.77	7.02	68.9	7.05	6.57	5.98	6.17	6.92	6.13	6.19	5.96	7.01	4.00	7.10
Fe^{+2}	0.09	0.11	0.09	0.13	0.13	0.08	0.10	0.09	0.12	0.09	0.10	0.09	0.09	0.09	0.18	0.09	0.08	0.11
Mn	0.00	0.01	0.01	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Mg	0.02	0.03	0.02	0.03	0.03	0.02	0.02	0.01	0.03	0.01	0.01	0.02	0.01	0.02	0.08	0.01	0.02	0.03
Ca	3.65	2.60	3.18	2.83	2.90	3.19	3.14	3.41	2.81	2.19	2.38	3.20	2.31	2.36	2.23	3.19	3.40	2.65
Na	0.39	1.29	0.84	1.04	1.00	0.80	0.86	0.66	1.12	1.61	1.42	0.86	1.52	1.45	1.54	0.84	0.37	1.31
К	0.02	0.12	0.06	0.07	0.08	0.07	0.09	0.05	0.13	0.26	0.22	0.08	0.24	0.24	0.23	0.07	0.02	0.12
Cr	0.01	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.01	0.01
Р	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	20.06	20.04	20.06	20.01	20.04	20.06	20.07	20.06	20.05	20.04	20.02	20.10	20.06	20.06	20.06	20.07	19.05	20.25
An	89.77	64.93	77.91	71.78	72.83	78.71	76.85	82.83	69.13	53.92	59.16	77.24	56.75	58.31	55.80	77.82	89.77	64.93
Ab	9.67	32.16	20.73	26.32	25.07	19.67	21.01	15.91	27.65	39.73	35.38	20.75	37.31	35.78	38.56	20.57	9.67	32.16
Or	0.56	2.91	1.36	1.90	2.10	1.62	2.14	1.26	3.22	6.35	5.46	2.01	5.94	5.91	5.64	1.61	0.56	2.91

devamı
$\mathbf{B4}^{\circ}$ ün
Tablo
Ek

Örnek	642	<u>642</u>	<u>642</u>	642	801	801	801	801	801	801	801
Mineral	pl-3	pl-3	pl-4	pl-4	pl-1	pl-1	pl-2	pl-2	pl-3	pl-4	pl-4
	feno	feno	feno	feno	feno	feno	feno	feno	mik	feno	feno
	mer	ken	ken	ken	mer	ken	mer	ken	mer	mer	ken
SiO_2	48.80	48.58	48.80	49.37	47.95	48.65	49.93	49.97	64.77	49.06	48.41
TiO_2	0.05	0.05	0.10	0.11	0.09	0.00	0.08	0.06	0.07	0.06	0.00
Al_2O_3	31.80	31.67	31.30	31.26	31.43	30.92	29.99	30.29	19.10	31.16	31.29
FeO	0.57	0.82	12.48	0.81	0.82	0.93	0.87	0.87	0.17	0.92	0.93
MnO	0.05	0.00	0.67	0.02	0.00	0.02	0.00	0.00	0.00	0.00	0.00
MgO	0.06	0.13	11.04	0.09	0.11	0.09	0.12	0.09	0.01	0.12	0.06
CaO	16.05	14.30	19.96	14.62	16.49	15.74	14.57	13.99	0.52	15.12	15.44
Na_2O	2.36	2.90	0.85	2.78	2.07	2.61	3.03	3.14	3.67	2.63	2.65
$\rm K_2O$	0.23	0.32	0.05	0.35	0.31	0.37	0.49	0.49	11.33	0.38	0.26
Cr_2O_3	0.00	0.02	0.00	0.03	0.01	0.00	0.00	0.02	0.00	0.02	0.01
P_2O_5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	79.97	98.79	125.25	99.44	99.28	99.33	90.66	98.92	99.64	99.47	99.05
Si	8.97	9.02	7.70	9.10	8.90	9.02	9.25	9.25	11.85	9.06	8.99
Ti	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.00
AI	6.89	6.93	5.82	6.79	6.88	6.76	6.55	6.61	4.12	6.78	6.85
Fe^{+2}	0.09	0.13	1.65	0.13	0.13	0.14	0.13	0.13	0.03	0.14	0.14
Mn	0.01	0.00	0.09	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00
Mg	0.02	0.03	2.60	0.03	0.03	0.03	0.03	0.03	0.00	0.03	0.02
Са	3.16	2.84	3.37	2.89	3.28	3.13	2.89	2.77	0.10	2.99	3.07
Na	0.84	1.04	0.26	0.99	0.74	0.94	1.09	1.13	1.30	0.94	0.96
K	0.06	0.08	0.01	0.08	0.07	0.09	0.12	0.12	2.64	0.09	0.06
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Р	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	20.05	20.08	21.51	20.02	20.04	20.11	20.07	20.05	20.05	20.04	20.09
An	77.91	71.78	92.56	72.83	80.04	75.29	70.62	60.69	2.53	74.38	75.14
Ab	20.73	26.32	7.14	25.07	18.15	22.60	26.54	28.03	32.13	23.41	23.36
Or	1.36	1.90	0.30	2.10	1.81	2.11	2.84	2.88	65.34	2.21	1.50
Formül 32 ol	ksijen üz	erinden l	hesaplann	nıştır. Kıs	saltmalar:	pl: plaji	yoklas; fi	eno:fenol	cristal; m	nik: mikr	olit.

	000
nuçları	000
ializ soi	000
prob ar	000
n mikro	000
klasları	000
plajiyol	000
ma ait	000
k ve do	000
itik day	000
I andez	000
en yaşlı	000
35. Eos	000
Fablo F	.
Ek 1	:(

<u>675</u> pl-2	feno	mant	57.16	0.03	26.21	0.47	0.02	0.01	8.72	5.78	1.09	0.00	0.00	99.49	10.35	0.00	5.59	0.07	0.00	0.00	1.69	2.03	0.25	0.00	0.00	19.98	42.59	51.07	6.34	
<u>675</u> pl-2	feno	mer	56.00	0.04	26.76	0.41	0.00	0.04	9.92	5.40	0.83	0.00	0.00	99.40	10.17	0.01	5.73	0.06	0.00	0.01	1.93	1.90	0.19	0.00	0.00	20.00	47.93	47.27	4.80	
<u>675</u> pl-1	feno	ken	54.25	0.05	27.61	0.42	0.03	0.04	10.71	5.01	0.75	0.00	0.00	98.87	9.94	0.01	5.96	0.07	0.00	0.01	2.10	1.78	0.17	0.00	0.00	20.04	51.84	43.86	4.30	
<u>675</u> pl-1	feno	mant	54.83	0.07	27.76	0.38	0.01	0.02	10.67	4.80	0.64	0.00	0.00	99.18	66.6	0.01	5.96	0.06	0.00	0.01	2.08	1.70	0.15	0.00	0.00	19.96	53.01	43.18	3.81	
<u>675</u> pl-1	feno	mer	55.04	0.00	27.35	0.42	0.00	0.02	10.34	5.12	0.78	0.00	0.00	99.07	10.04	0.00	5.88	0.06	0.00	0.01	2.02	1.81	0.18	0.00	0.00	20.00	50.37	45.10	4.53	anto.
<u>232</u> sa-3	feno	ken	66.29	0.03	18.77	0.27	0.00	0.01	0.67	5.14	9.16	0.02	0.00	100.36	11.94	0.00	3.99	0.04	0.00	0.00	0.13	1.79	2.10	0.00	0.00	19.99	3.21	44.55	52.24	mant: m
<u>232</u> sa-3	feno	mer	64.25	0.07	19.11	0.14	0.00	0.00	0.76	4.89	8.86	0.00	0.00	98.08	11.84	0.01	4.15	0.02	0.00	0.00	0.15	1.75	2.08	0.00	0.00	20.00	3.76	43.91	52.33	mikrolit;
<u>232</u> pl-3	feno	ken	54.50	0.01	27.77	0.55	0.06	0.05	11.37	4.78	0.58	0.00	0.00	99.67	9.92	0.00	5.96	0.08	0.01	0.01	2.22	1.69	0.13	0.00	0.00	20.02	54.88	41.79	3.33	al; mik: 1
<u>232</u> pl-3	feno	mant	56.15	0.00	27.10	0.43	0.01	0.01	9.93	5.59	0.39	0.00	0.00	99.61	10.16	0.00	5.78	0.06	0.00	0.00	1.92	1.96	0.09	0.00	0.00	19.97	48.41	49.30	2.29	fenokrist
<u>232</u> pl-3	feno	mer	56.44	0.00	26.71	0.52	0.02	0.03	9.67	5.54	0.52	0.00	0.00	99.45	10.22	0.00	5.70	0.08	0.00	0.01	1.88	1.94	0.12	0.00	0.00	19.95	47.63	49.34	3.03	in; feno:
<u>232</u> sa-2	feno	mer	65.62	0.06	18.84	0.19	0.00	0.01	0.45	4.65	9.92	0.00	0.00	99.74	11.92	0.01	4.03	0.03	0.00	0.00	0.09	1.64	2.30	0.00	0.00	20.02	2.18	40.69	57.13	sa: sanid
<u>232</u> sa-2	mik	mer	65.19	0.05	19.20	0.23	0.01	0.01	0.74	4.90	8.92	0.04	0.00	99.29	11.86	0.01	4.12	0.04	0.00	0.00	0.14	1.73	2.07	0.01	0.00	19.98	3.67	43.85	52.48	jiyoklas;
<u>232</u> pl-1	mik	ken	55.44	0.04	27.10	0.45	0.00	0.03	10.45	5.36	0.55	0.04	0.00	99.46	10.08	0.00	5.80	0.07	0.00	0.01	2.04	1.89	0.13	0.01	0.00	20.03	50.27	46.60	3.13	r: pl: pla
<u>232</u> pl-2	feno	mer	56.36	0.00	26.69	0.40	0.00	0.04	9.65	5.36	0.64	0.00	0.00	99.14	10.23	0.00	5.71	0.06	0.00	0.01	1.88	1.89	0.15	0.00	0.00	19.93	47.98	48.24	3.78	ısaltmala
<u>232</u> pl-1	feno	ken	54.65	0.02	27.79	0.47	0.00	0.03	11.11	4.91	0.53	0.00	0.00	99.51	9.94	0.00	5.96	0.07	0.00	0.01	2.17	1.73	0.12	0.00	0.00	20.00	53.86	43.09	3.05	mştır. K
<u>232</u> pl-1	feno	mer	54.83	0.09	26.90	0.48	0.00	0.03	10.75	5.36	0.51	0.00	0.00	98.95	10.04	0.01	5.80	0.07	0.00	0.01	2.11	1.90	0.12	0.00	0.00	20.06	51.05	46.08	2.87	hesaplan
<u>232</u> sa-1	feno	ken	65.70	0.07	18.73	0.13	0.05	0.01	0.72	5.13	8.90	0.02	0.00	99.46	11.93	0.01	4.01	0.02	0.01	0.00	0.14	1.81	2.06	0.00	0.00	19.99	3.50	45.07	51.43	cerinden l
<u>232</u> sa-1	feno	mer	64.79	0.04	19.50	0.18	0.03	0.00	1.08	5.15	8.31	0.00	0.00	90.08	11.80	0.00	4.19	0.03	0.00	0.00	0.21	1.82	1.93	0.00	0.00	19.98	5.33	45.94	48.73	ksijen üz
Örnek Mineral			SiO_2	TiO_2	Al_2O_3	FeO	MnO	MgO	CaO	Na_2O	K_2O	Cr_2O_3	P_2O_5	Toplam	Si	Ti	AI	Fe^{+2}	Mn	Mg	Са	Na	K	Cr	Р	Toplam	An	Ab	Or	Formül 32 o

devamı	
B5'in	
Tablo	
K	

Ornek	675	675	675	675	675	675	675	675	675	<u>683</u>	683	683	683	683	683	683	<u>683</u>	<u>683</u>
Mineral	pl-2	pl-3	pl-3	pl-3	pl-4	pl-4	pl-4	pl-4	pl-4	pl-1	pl-1	pl-1	pl-2	pl-2	pl-2	pl-1	pl-3	pl-3
	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	mik	feno	feno
	ken	mer	mant	ken	mer	mant1	mant2	kenl	ken2	mer	mant	ken	mer	mant	ken	mer	mer	mantl
SiO_2	56.59	54.60	54.78	52.67	54.70	54.54	55.50	51.84	53.22	47.49	50.12	50.82	50.12	49.88	53.12	53.82	47.53	49.83
TiO_2	0.00	0.04	0.04	0.00	0.02	0.04	0.03	0.00	0.00	0.02	0.06	0.07	0.02	0.03	0.01	0.09	0.03	0.03
Al_2O_3	25.95	26.65	27.50	28.46	27.11	28.03	26.68	29.56	28.37	33.02	30.60	30.26	30.50	31.15	28.26	27.70	32.47	30.81
FeO	0.53	0.49	0.48	0.53	0.48	0.50	0.48	0.51	0.39	0.73	0.72	0.69	0.60	0.78	0.79	1.17	0.70	09.0
MnO	0.04	0.00	0.02	0.00	0.00	0.00	0.04	0.03	0.01	0.00	0.02	0.05	0.00	0.07	0.00	0.00	0.06	0.01
MgO	0.04	0.07	0.04	0.03	0.06	0.04	0.04	0.03	0.04	0.07	0.10	0.11	0.08	0.11	0.11	0.12	0.07	0.07
CaO	9.41	10.44	10.50	12.33	10.68	10.97	9.81	13.24	12.05	16.75	14.42	14.08	14.20	15.22	11.43	11.14	16.13	14.63
Na_2O	5.60	5.06	5.04	4.10	4.95	4.52	5.16	3.77	4.29	1.78	2.76	3.19	3.07	2.48	4.64	4.62	1.89	2.81
K_2O	0.96	0.84	0.79	0.48	0.79	0.61	0.93	0.43	0.58	0.25	0.55	0.45	0.49	0.40	0.39	0.44	0.31	0.46
Cr_2O_3	0.00	0.06	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.02	0.03	0.00	0.04	0.01	0.01	0.00	0.00	0.00
P_2O_5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	99.12	98.25	99.19	98.60	98.79	99.25	98.67	99.44	98.95	100.13	99.38	99.72	99.12	100.13	98.76	99.10	99.19	99.25
Si	10.31	10.07	10.00	9.71	10.03	9.93	10.16	9.50	9.76	8.74	9.23	9.32	9.25	9.14	9.77	9.86	8.81	9.19
Ti	0.00	0.01	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.01	0.00	0.00
AI	5.57	5.79	5.92	6.18	5.85	6.02	5.76	6.38	6.13	7.16	6.64	6.54	6.64	6.72	6.12	5.98	7.10	6.70
Fe^{+2}	0.08	0.07	0.07	0.08	0.07	0.08	0.07	0.08	0.06	0.11	0.11	0.11	0.09	0.12	0.12	0.18	0.11	0.09
Mn	0.01	0.00	0.00	0.00	0.00	00.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.01	0.00
Mg	0.01	0.02	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.02	0.03	0.03	0.02	0.03	0.03	0.03	0.02	0.02
Са	1.84	2.06	2.05	2.43	2.10	2.14	1.92	2.60	2.37	3.30	2.85	2.77	2.81	2.99	2.25	2.19	3.20	2.89
Na	1.98	1.81	1.78	1.46	1.76	1.60	1.83	1.34	1.52	0.64	0.99	1.13	1.10	0.88	1.65	1.64	0.68	1.00
K	0.22	0.20	0.18	0.11	0.18	0.14	0.22	0.10	0.14	0.06	0.13	0.10	0.12	0.09	0.09	0.10	0.07	0.11
Cr	00.00	0.01	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00
Р	00.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	20.02	20.04	20.02	19.98	20.01	19.93	19.98	20.01	19.99	20.03	20.00	20.02	20.04	19.98	20.03	19.99	20.00	20.00
An	45.49	50.70	51.10	60.68	51.90	55.18	48.45	64.36	58.77	82.65	71.8	60.69	69.84	75.39	56.31	55.59	81.00	72.20
Ab	48.98	44.46	44.35	36.5	43.55	41.15	46.1	33.17	37.85	15.91	24.91	28.3	27.3	22.23	41.38	41.78	17.17	25.09
Or	5.53	4.84	4.55	2.82	4.55	3.67	5.45	2.47	3.38	1.44	3.29	2.61	2.86	2.38	2.31	2.63	1.83	2.71

Ek Tablo B5'in devamı

Únck683683683683683683683683683683Mineralpl-3pl-3pl-3pl-4pl-4pl-4pl-4pl-5pl-5su-5FronfenomikfenofenofenofenomikmikmikSiO250.5064.1547.3251.3350.44qb-27qb-27qb-27qb-27qb-27SiO250.500.010.010.010.010.000.030.030.030.030.03MiO0.000.000.000.000.000.000.000.000.000.00MiO0.000.000.000.000.000.000.000.000.00MiO0.000.000.000.000.000.000.000.000.00MiO0.000.000.000.000.000.000.000.00MiO0.000.000.000.000.000.000.000.00MiO0.000.000.000.000.000.000.000.00MiA0.010.010.010.020.030.030.030.03MiA0.010.000.000.000.000.000.000.00MiA0.010.010.000.000.000.000.000.00MiA0.010.010.010.030.030.030.0	fenokr	lin: feno:	sa: sanic	jiyoklas;	r: pl: pla	usaltmala	mistir. K	hesaplan	zerinden	oksijen ü	Formül 32
Ornek 683 883 884 mint feno mint feno feno feno feno feno mint ken SiO2 5056 6413 4732 5133 50.44 4827 4922 4807 TiO2 004 007 007 003 50.40 50.46 50.46 MinO 007 003 007 003 50.47 4827 4923 2135 MinO 006 007 003 003 003 003 004 003 MinO 006 003 003 003 003 003 004 003 MinO 003 003 003 003 </td <th></th> <td>1.67</td> <td>2.63</td> <td>1.94</td> <td>3.12</td> <td>3.99</td> <td>1.78</td> <td>57.83</td> <td>3.66</td> <td>3.02</td> <td>Or</td>		1.67	2.63	1.94	3.12	3.99	1.78	57.83	3.66	3.02	Or
Ornek 683 885 </td <th></th> <td>19.87</td> <td>24.03</td> <td>19.48</td> <td>26.38</td> <td>30.77</td> <td>17.28</td> <td>36.54</td> <td>28.01</td> <td>28.56</td> <td>$\mathbf{A}\mathbf{b}$</td>		19.87	24.03	19.48	26.38	30.77	17.28	36.54	28.01	28.56	$\mathbf{A}\mathbf{b}$
Úrnek683683683683683683683683683Mineralpl-3pl-3pl-4pl-4pl-4pl-4pl-5pl-5st-5fraofraomikrenomikfraofraofraomikmikmikTiO250.5064.1547.3251.3350.4448.2749.2248.07TiO250.6064.1547.3251.3350.4448.2749.2248.07TiO2000001001001003003004004MaO003003012003003003004003MaO00300301311316.4013.2314.8913.7330.83MaO00300301401314.4013.7314.8914.7215.92MaO00300301301401314.7215.9215.9MaO01301401314.8314.7215.9215.9MaO020020020020020020020020MaO020020020020020020020020MaO020020020020020020020020MaO020020020020020020020020MaO020020020020020020020020MaO <t< td=""><th></th><td>78.46</td><td>73.34</td><td>78.58</td><td>70.50</td><td>65.24</td><td>80.94</td><td>5.63</td><td>68.33</td><td>68.42</td><td>An</td></t<>		78.46	73.34	78.58	70.50	65.24	80.94	5.63	68.33	68.42	An
Úrnek683683683683683683683683683683Mineralpl-3pl-3pl-4pl-4pl-4pl-4pl-5pl-5st-5fronfronmixfronmixfronfronmixmixmixmand2kenmermermermermermermantkenmantkenTrO250.5050.6664.1547.3251.3350.4448.2749.2248.07TrO250.600.070.010.000.070.030.070.04MnO0.060.070.030.030.060.070.04MnO0.090.090.010.000.030.070.04May13.9013.9611.316.4013.2314.8913.7330.8332.15May0.090.000.000.000.030.060.070.04May0.010.000.030.040.000.000.000.00May0.010.000.000.000.000.000.000.00May0.010.010.020.020.030.040.070.04May0.010.000.000.000.000.000.000.00May0.010.010.020.020.030.040.070.04May0.020.030.040.04 <th></th> <td>20.06</td> <td>20.02</td> <td>20.01</td> <td>20.08</td> <td>20.03</td> <td>20.04</td> <td>20.03</td> <td>20.03</td> <td>20.03</td> <td>Toplam</td>		20.06	20.02	20.01	20.08	20.03	20.04	20.03	20.03	20.03	Toplam
Ornek 683 </td <th></th> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>Р</td>		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Р
Ornek 683 from from from mint from mint from mint m		0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	Cr
0 mek 683 683 683 683 683 683 683 683 $Mineral$ $pl-3$ $pl-3$ $pl-3$ $pl-4$ $pl-4$ $pl-4$ $pl-5$ $pl-5$ $s-5$ $feno$ fenomikfenofenofenofenomikmik $feno$ fenomitmantkenomantkenomantkeno $feno$ $sofo$ 64.15 47.32 51.33 50.44 48.27 49.22 48.07 SiO_2 50.56 64.15 47.32 51.33 50.44 48.27 49.22 48.07 TiO_2 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 MiO 0.07 0.07 0.07 0.07 0.07 0.07 0.07 MiO 0.00 0.00 0.00 0.07 0.07 0.07 0.07 MiO 0.00 0.00 0.00 0.00 0.07 0.07 0.07 MiO 0.00 0.00 0.00 0.00 0.07 0.07 0.07 MiO 0.07 0.08 0.07 0.07 0.07 0.07 MiO 0.07 0.08 0.07 0.07 0.07 0.07 MiO 0.09 0.07 0.07 0.07 0.07 0.07 MiO 0.09 0.07 0.07 0.07 0.07 0.07 MiO 0.09 0.07 0.07 0.07 </td <th></th> <td>0.07</td> <td>0.11</td> <td>0.08</td> <td>0.13</td> <td>0.16</td> <td>0.07</td> <td>2.28</td> <td>0.15</td> <td>0.12</td> <td>K</td>		0.07	0.11	0.08	0.13	0.16	0.07	2.28	0.15	0.12	K
0 mek 683 683 683 683 683 683 683 683 Mineral $pl-3$ $pl-3$ $pl-3$ $pl-3$ $pl-3$ $pl-3$ $pl-3$ $sa-5$ fenofenofenofenofenofenofenomikmikmik $mant2$ kenmermermantkenmantkenmantken $mant2$ kenmermermantkenmantkenmantken $mant2$ so 50 66641547.3251.3350.4448.2749.2248.07 TiO_2 004007011000007003008007004 M_2O 01301101001120.7831.7330.8332.15 $Mato$ 010010010010010010010010 $Mato$ 13.9611.316.4013.2314.8915.9414.7215.92 $Mato$ 13.9013.9611.316.4013.2314.8915.9414.7215.92 $Mato$ 010010010010010010010010010010 $Mato$ 32.1532.1729.7831.7330.8332.155.94 $Mato$ 13.9013.9611.316.4013.2314.8914.7215.92 $Mato$ 010010010010010010000010010 Mat		0.80	0.96	0.78	1.09	1.23	0.70	1.44	1.13	1.14	Na
Črnek683683683683683683683683683Mineralpl-3pl-3pl-3pl-4pl-4pl-4pl-5pl-5sa-5fenofenofenofenofenofenomixmixmixmixfenofenonnitfenofenofenomixmixmixmixman2kennnernnermermerman1kenmixkenSiO250.5950.6664.1547.3251.3350.4448.2749.2248.07TiO20.040.070.070.070.030.080.070.040.07Aj-O330.6029.9819.650.550.700.660.670.71MnO0.000.000.000.000.000.000.070.07MgO0.000.000.000.000.000.000.07MgO0.0113.961.1316.4013.2314.8915.9414.72Size32.1531.632.1531.7330.8332.15MgO0.030.030.060.070.030.060.07MgO0.090.090.090.090.090.070.05MgO0.0313.9414.7314.8915.9414.7215.92Size0.1313.9611.1316.4013.2314.8915.94MgO		3.15	2.93	3.16	2.90	2.61	3.27	0.22	2.76	2.73	Са
		0.03	0.03	0.01	0.02	0.02	0.01	0.03	0.02	0.02	Mg
		0.01	0.00	00.00	0.00	0.00	0.01	0.00	0.00	0.00	Mn
		0.11	0.10	0.11	0.10	0.11	0.10	0.09	0.11	0.10	Fe^{+2}
		7.00	6.74	6.92	6.66	6.45	7.06	4.23	6.51	6.62	Al
Örnek 683 683 683 683 683 683 683 683 683 Mineral $pl-3$ $pl-3$ $pl-3$ $pl-3$ $pl-4$ $pl-4$ $pl-5$ $pl-5$ $pl-5$ $se-5$ fenofenominfenominfenofenofenominminfenofenominfenominfenofenominminMineralfenominfenominfenofenominminfenofenominminkenmermantkenminMino50.5950.6664.1547.3251.3350.4448.2749.2248.07SiO250.5950.6664.1547.3251.3350.4448.2749.2248.07Mio0.040.070.010.000.030.050.060.070.03Mio0.050.030.060.000.000.000.070.07Mio0.000.000.000.000.000.000.07Mio0.090.000.000.000.030.070.03Mio0.090.090.010.030.060.070.03Mio0.090.000.000.000.000.000.00Mio0.090.030.040.030.040.05Mio0.090.000.000.000.000.00 <t< td=""><th></th><td>0.01</td><td>0.01</td><td>0.01</td><td>0.00</td><td>0.01</td><td>0.00</td><td>0.02</td><td>0.01</td><td>0.01</td><td>Ti</td></t<>		0.01	0.01	0.01	0.00	0.01	0.00	0.02	0.01	0.01	Ti
Örnek683683683683683683683683683Mineralpl-3pl-3pl-3pl-3pl-4pl-4pl-5pl-5sa-5fenofenomikfenomikfenofenofenomikmikfenofenomikfenofenofenofenomikmikmant2kenmermermantkenmantkensiO250.5950.6664.1547.3251.3350.4448.2749.2248.07YiO20.040.070.110.000.070.030.080.070.04YiO20.040.070.110.000.070.030.070.04MiO0.000.000.010.000.030.030.090.070.04MiO0.000.000.000.030.000.000.070.070.03MiO0.000.000.000.030.000.000.000.070.03MiO0.090.090.090.000.000.000.000.030.03MiO0.090.090.030.090.030.090.000.030.03MiO0.090.090.090.090.090.090.030.090.03MiO0.090.090.090.090.090.090.090.030.03MiO <td< td=""><th></th><td>88.88</td><td>9.14</td><td>8.94</td><td>9.18</td><td>9.44</td><td>8.81</td><td>11.71</td><td>9.34</td><td>9.29</td><td>Si</td></td<>		88.88	9.14	8.94	9.18	9.44	8.81	11.71	9.34	9.29	Si
Črnek 683 683 683 683 683 683 683 683 683 Mineral $pl-3$ $pl-3$ $pl-3$ $pl-3$ $pl-3$ $pl-3$ $pl-3$ $pl-3$ $sa-5$ fronfronfronmantfronfronfronfronmant ken fronfronmantkenmentkenmantkenmantfrons0.59s0.66 64.15 47.32 51.33 50.44 48.27 49.22 48.07 SiO2s0.940.070.110.000.070.030.080.07 0.04 MiO0.0929.9819.65 32.17 29.78 31.73 30.83 32.15 FeO0.630.720.560.700.030.090.07 0.04 MiO0.000.000.000.000.000.000.07MaO0.090.090.090.030.090.07 0.03 0.09MaO0.090.090.090.090.090.090.09MaO0.090.090.090.090.090.090.09MaO0.090.090.090.090.090.090.09MaO0.090.090.090.090.090.090.09MaO0.090.090.090.090.090.090.09MaO0.090.090.090.090.090.09 <th></th> <td>99.57</td> <td>98.70</td> <td>99.30</td> <td>100.80</td> <td>99.32</td> <td>98.91</td> <td>99.59</td> <td>99.26</td> <td>99.58</td> <td>Toplam</td>		99.57	98.70	99.30	100.80	99.32	98.91	99.59	99.26	99.58	Toplam
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	P_2O_5
		0.00	0.00	0.00	0.00	0.00	0.04	0.04	0.00	0.00	Cr_2O_3
		0.28	0.44	0.33	0.55	0.68	0.30	9.77	0.63	0.52	K_2O
Örnek683683683683683683683683683683Mineralpl-3pl-3pl-3pl-1pl-4pl-4pl-4pl-5pl-5sa-5fenofenofenomikfenofenofenofenomikmikfenofenomant2kenmermantkenmantkenkensiO250.5950.6664.1547.3251.3350.4448.2749.2248.07TiO20.040.070.110.000.070.030.030.040.04Al_O330.6029.9819.6532.1729.7831.0531.7330.8332.15FeO0.630.720.560.660.700.030.070.04MnO0.000.000.000.030.000.000.050.73MgO0.991.1316.4013.2314.8915.9414.7215.92		2.23	2.66	2.18	3.08	3.45	1.94	4.06	3.16	3.21	Na_2O
		15.92	14.72	15.94	14.89	13.23	16.40	1.13	13.96	13.90	CaO
		0.10	0.09	0.05	0.08	0.08	0.05	0.12	0.08	0.09	MgO
		0.05	0.00	0.03	0.00	0.00	0.03	0.00	0.00	0.00	MnO
		0.73	0.67	0.69	0.68	0.70	0.66	0.56	0.72	0.63	FeO
Örnek 683 </td <th></th> <td>32.15</td> <td>30.83</td> <td>31.73</td> <td>31.05</td> <td>29.78</td> <td>32.17</td> <td>19.65</td> <td>29.98</td> <td>30.60</td> <td>Al_2O_3</td>		32.15	30.83	31.73	31.05	29.78	32.17	19.65	29.98	30.60	Al_2O_3
Örnek 683 </td <th></th> <td>0.04</td> <td>0.07</td> <td>0.08</td> <td>0.03</td> <td>0.07</td> <td>0.00</td> <td>0.11</td> <td>0.07</td> <td>0.04</td> <td>TiO_2</td>		0.04	0.07	0.08	0.03	0.07	0.00	0.11	0.07	0.04	TiO_2
Örnek 683 </td <th></th> <td>48.07</td> <td>49.22</td> <td>48.27</td> <td>50.44</td> <td>51.33</td> <td>47.32</td> <td>64.15</td> <td>50.66</td> <td>50.59</td> <td>SiO_2</td>		48.07	49.22	48.27	50.44	51.33	47.32	64.15	50.66	50.59	SiO_2
Örnek 683 </td <th></th> <td>ken</td> <td>mant</td> <td>mer</td> <td>ken</td> <td>mant</td> <td>mer</td> <td>mer</td> <td>ken</td> <td>mant2</td> <td></td>		ken	mant	mer	ken	mant	mer	mer	ken	mant2	
Örnek <u>683</u> <u>683</u> <u>683</u> <u>683</u> <u>683</u> <u>683</u> <u>683</u> <u>683</u> <u>683</u> <u>683</u> Mineral pl-3 pl- pl- pl-4 pl-4 pl-5 pl-5 sa-5		mik	mik	feno	feno	feno	feno	mik	feno	feno	
Örnek <u>683</u>		sa-5	pl-5	pl-5	pl-4	pl-4	pl-4	-lq	pl-3	pl-3	Mineral
		683	683	683	683	683	683	683	683	683	Örnek

manto.	
; mant:	
mikrolit	
mik:	
:fenokristal;	
feno	
sanidin;	
s; sa:	
ıjiyokla	
l: pla	
Kısaltmalar: p	
hesaplanmıştır.	
üzerinden	
coksijen	
ül 32	
nm	
lasların mikroprob analiz sonuçları	
-------------------------------------	--
it plajiyokl	
dayklara a	
aşlı trakitik	
6. Eosen y	
Ek Tablo B(

<u>318</u> pl-4	teno mer	54.95	27.19	0.40	0.00	0.05	10.23	4.94	0.71	0.02	0.00	98.53	10.07	0.01	5.87	0.06	0.00	0.01	2.01	1.75	0.17	0.00	0.00	19.95	51.13	44.66	4.21	
<u>318</u> pl-3	teno ken	58.83 0.04	0.04 25.28	0.40	0.00	0.04	7.23	6.37	1.20	0.00	0.00	99.39	10.61	0.01	5.37	0.06	0.00	0.01	1.40	2.23	0.28	0.00	0.00	19.97	35.85	57.09	7.06	
<u>318</u> pl-3	teno mant	53.83 0.00	0.00 27.98	0.56	0.04	0.07	11.32	4.68	0.64	0.04	0.00	99.24	9.85	0.01	6.03	0.09	0.01	0.02	2.22	1.66	0.15	0.01	0.00	20.05	55.11	41.21	3.68	
<u>318</u> pl-3	teno mer	53.92 0.06	00.0 27.99	0.53	0.01	0.06	11.36	4.76	0.60	0.02	0.00	99.31	9.85	0.01	6.03	0.08	0.00	0.02	2.22	1.69	0.14	0.00	0.00	20.04	54.88	41.67	3.45	
<u>318</u> pl-2	teno ken	55.76 0.02	26.93	0.47	0.04	0.04	9.92	5.32	0.75	0.00	0.00	99.25	10.14	0.00	5.77	0.07	0.01	0.01	1.93	1.88	0.17	0.00	0.00	19.98	48.53	47.12	4.35	into.
<u>318</u> pl-2	teno mer	56.79 0.00	0.00 26.02	0.45	0.03	0.05	8.71	5.88	1.03	0.02	0.00	98.98	10.34	0.00	5.58	0.07	0.01	0.01	1.70	2.08	0.24	0.00	0.00	20.03	42.34	51.72	5.94	mant: ma
<u>318</u> pl-1	teno ken	54.26 0.02	27.72	0.41	00.0	0.10	11.00	4.82	0.67	0.00	0.00	99.01	9.93	0.00	5.98	0.06	0.00	0.03	2.15	1.71	0.16	0.00	0.00	20.02	53.60	42.54	3.86	nikrolit;
<u>318</u> pl-1	teno mer	54.92 0.00	27.59	0.46	0.00	0.05	10.82	4.89	0.74	0.00	0.00	99.55	9.98	0.01	5.91	0.07	0.00	0.01	2.11	1.73	0.17	0.00	0.00	19.99	52.63	43.08	4.29	al; mik: n
<u>188</u> pl-2	mık mer	67.57 0.01	20.59	0.20	0.06	0.00	0.66	10.49	0.13	0.00	0.00	99.71	11.83	0.00	4.25	0.03	0.01	0.00	0.12	3.56	0.03	0.00	0.00	19.83	3.32	95.89	0.79	enokrist
<u>188</u> pl-2	mık mer	67.59 0.07	20.45 20.45	0.46	0.00	0.03	0.96	10.59	0.20	0.00	0.00	100.30	11.80	0.00	4.21	0.07	00.00	0.01	0.18	3.59	0.04	0.00	0.00	19.90	4.73	94.10	1.17	n; reno:1
<u>188</u> sa-4	teno ken	64.25 0.00	18.07	0.00	0.00	0.01	0.00	0.21	16.73	0.00	0.00	99.27	12.00	0.00	3.98	0.00	0.00	0.00	0.00	0.08	3.99	0.00	0.00	20.05	0.00	1.89	98.11	sa: sanid
<u>188</u> sa-4	teno mer	64.19 0.02	co.v 18.30	0.01	0.00	0.00	0.00	0.24	16.80	0.00	0.00	99.57	11.96	0.00	4.02	0.00	0.00	0.00	0.00	0.09	3.99	0.00	0.00	20.06	0.00	2.16	97.84	iyokias;
<u>188</u> sa-3	teno ken	63.96 0.00	0.00 17.89	0.03	0.15	0.00	0.00	0.22	16.61	0.02	0.00	98.88	12.00	0.00	3.96	0.00	0.02	00.00	00.00	0.08	3.98	0.00	0.00	20.04	00.00	2.00	98.00	: pi: piaj
<u>188</u> sa-3	teno mer	64.41 0.01	18.18	0.02	0.01	0.02	0.02	0.24	16.85	0.00	0.00	99.76	11.98	0.00	3.99	0.00	0.00	0.00	0.00	0.09	4.00	0.00	0.00	20.06	0.08	2.13	97.79	saltmalar
<u>188</u> sa-2	teno ken	64.71 0.02	cu.u 17.99	0.00	0.02	0.02	0.00	0.30	16.79	0.00	0.00	98.66	12.02	0.00	3.94	0.00	0.00	0.00	0.00	0.11	3.98	0.00	0.00	20.05	0.00	2.67	97.33	nışur. Nı
<u>188</u> sa-2	teno mer	64.13 0.00	0.00 18.42	0.02	0.00	0.01	0.00	0.22	16.91	0.00	0.00	99.71	11.94	0.00	4.04	0.00	0.00	0.00	0.00	0.08	4.02	0.00	0.00	20.08	0.00	1.95	98.05	lesaplant
<u>188</u> sa-1	teno ken	64.98 0.00	17.98	0.00	0.03	0.00	0.00	0.22	17.19	0.00	0.00	100.40	12.02	0.00	3.92	0.00	00.00	0.00	00.00	0.08	4.06	0.00	0.00	20.08	0.00	1.95	98.05	erinden f
<u>188</u> sa-1	teno mer	64.90 0.00	18.13	0.04	00.00	0.02	0.01	0.22	16.78	0.00	0.00	100.10	12.02	0.00	3.96	0.01	0.00	0.01	0.00	0.08	3.96	0.00	0.00	20.04	0.05	1.91	98.04	ksijen uz
Örnek Mineral		SiO ₂ TiO	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na_2O	K_2O	Cr_2O_3	P_2O_5	Toplam	Si	Ti	AI	Fe^{+2}	Mn	Mg	Са	Na	K	Cr	Ρ	Toplam	An	Ab	Or Eorumii 2.7 ol	rormul 32 oi

devamı	
B6'nın	
Tablo	
×	

Ek Tablo	B6 'nın	devamı																
Örnek	318	318	318	625	<u>625</u>	<u>625</u>	<u>625</u>	<u>625</u>	<u>625</u>	<u>625</u>	700	700	700	700	700	700	700	700
Mineral	pl-4	pl-4	pl-5	pl-1	pl-1	pl-2	pl-2	pl-3	pl-3	pl-4	pl-1	pl-1	pl-2	pl-2	pl-3	pl-3	pl-4	pl-4
	feno	feno	mik	feno	feno	feno	feno	feno	feno	mik	feno	feno	feno	feno	feno	mik	mik	feno
	mant	ken	mer	mer	ken	mer	ken	mer	ken	mer	mer	ken	mer	ken	mer	ken	mer	ken
SiO_2	53.92	55.48	63.97	69.07	69.59	16.69	69.49	69.28	68.98	69.11	68,80	68,44	68,12	67,95	67,74	68,76	67,50	67,46
TiO_2	0.06	0.03	0.07	0.03	0.00	0.00	0.02	0.00	0.00	0.00	0,00	0,00	00,00	00'0	0,00	0,02	0,02	0,03
Al_2O_3	28.20	26.76	19.79	20.00	19.86	19.75	19.78	20.19	19.87	20.34	20,20	20,07	19,90	20,10	20,51	20,16	19,97	19,78
FeO	0.45	0.40	0.37	0.02	0.02	0.00	0.00	0.05	0.06	0.05	0,04	0,09	00,00	0,07	0,00	0,07	0,05	0,26
MnO	0.00	0.03	0.03	0.00	0.02	0.04	00.0	0.01	0.00	0.00	0,02	0,01	00,00	0,00	0,00	0,03	00'0	0,00
MgO	0.05	0.04	0.03	0.00	0.02	0.04	0.00	0.01	0.00	0.00	0,01	0,02	00,00	0,00	0,01	0,03	00'0	0,01
CaO	11.37	9.95	1.81	0.12	0.09	0.08	0.04	0.07	0.18	0.22	0,54	0,55	0,65	0,84	0,69	0,51	0,58	0,57
Na_2O	4.57	5.32	4.92	11.21	11.28	11.30	11.41	11.69	11.31	11.54	11,38	10,91	11,18	10,94	11,11	11,12	10,66	10,70
$\rm K_2O$	0.60	0.79	8.12	0.05	0.09	0.03	0.06	0.07	0.09	0.08	0,02	0,06	0,07	0,07	0,08	0,02	0,13	0,05
Cr_2O_3	0.03	0.00	0.02	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0,02	0,00	0,02	00'0	0,00	0,02	0,00	0,00
P_2O_5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00
Toplam	99.25	98.80	99.13	100.52	100.97	101.15	100.8	101.37	100.49	101.34	101,03	100,17	99,95	99,97	100,15	100,75	98,91	98,85
Si	9.85	10.14	11.68	11.97	12.01	12.04	12.01	11.93	11.97	11.91	11,90	11,93	11,91	11,88	11,83	11,92	11,91	12,17
Ti	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0,00	00'0	00'0	0,00	00,00	0,01	0,01
AI	6.07	5.76	4.26	4.09	4.04	4.01	4.03	4.10	4.07	4.13	4,12	4,12	4,10	4,14	4,22	4,12	4,15	0, 19
Fe^{+2}	0.07	0.06	0.06	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0,01	0,01	00'0	0,01	0,00	0,01	0,01	0,29
Mn	0.00	0.00	0.00	0.00	0.00	0.01	0.00	00.00	0.00	0.00	0,00	0,00	00'0	0,00	0,00	0,00	0,00	0,00
Mg	0.01	0.01	0.01	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0,00	0,00	00'0	0,00	0,00	0,00	0,00	0,00
Са	2.22	1.95	0.35	0.02	0.02	0.01	0.01	0.01	0.03	0.04	0,10	0,10	0,12	0,16	0,13	0,09	0,11	7,05
Na	1.62	1.88	1.74	3.77	3.77	3.77	3.82	3.90	3.81	3.86	3,82	3,69	3,79	3,71	3,76	3,74	3,65	0,06
К	0.14	0.18	1.89	0.01	0.02	0.01	0.01	0.02	0.02	0.02	0,00	0,01	0,02	0,02	0,02	0,00	0,03	0,00
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Р	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Toplam	19.99	19.98	20.00	19.86	19.87	19.86	19.88	19.97	19.91	19.97	19,95	19,86	19,94	19,91	19,95	19,89	19,86	19,77
An	55.83	48.51	8.88	0.60	0.44	0.39	0.21	0.34	0.85	1.05	2,55	2,70	3,11	4,05	3,31	2,45	2,89	99,14
Ab	40.65	46.91	43.71	99.11	99.02	99.47	99.44	99.25	98.66	98.52	97,35	96,94	96,50	95,55	96,22	97,43	96,37	0,86
Or	3.52	4.58	47.41	0.29	0.54	0.14	0.35	0.41	0.49	0.43	0,10	0,36	0,39	0,40	0,47	0,12	0,74	0,00
Formül 32 o	ıksijen üz	erinden h	ıesaplanı	mştır. Kı	Isaltmala	:: pl: plaj	iyoklas; s	sa: sanidi	in; feno:1	enokrista	ıl; mik: r	nikrolit; 1	nant: ma	into; prfl:	profil.			

	I																													I
<u>yk ve Si</u>	603	sa-2	feno	mer	65.52	0.04	18.85	0.30	0.00	0.00	0.74	2.51	12.60	0.00	0.00	100.56	11.92	0.01	4.04	0.05	0.00	0.00	0.14	0.89	2.92	0.00	19.97	3.66	22.42	73.92
<u>Foidli Da</u>	603	sa-1	feno	mer	64.44	0.16	19.53	0.43	0.02	0.00	1.01	3.36	11.48	0.00	0.00	100.43	11.74	0.02	4.19	0.06	0.00	0.00	0.20	1.19	2.67	0.00	20.07	4.89	29.28	65.83
FU DI. LAV	721	pl-1	mik	mer	65.51	0.01	19.21	0.98	0.27	0.00	1.23	7.37	4.89	0.00	0.00	99.47	11.80	0.00	4.08	0.15	0.04	0.00	0.24	2.58	1.12	0.00	20.01	6.02	65.44	28.54
	601	pl-4	feno	ken	50.61	0.04	30.28	0.85	0.00	0.04	13.88	3.40	0.14	0.03	0.00	99.27	9.31	0.01	6.57	0.13	0.00	0.01	2.74	1.21	0.03	0.00	20.01	69.89	30.48	0.83
	601	pl-4	feo	mer	51.31	0.06	29.27	0.69	0.00	0.07	12.64	3.86	0.41	0.00	0.00	98.31	9.51	0.01	6:39	0.11	0.00	0.02	2.51	1.39	0.10	0.00	20.04	62.85	34.75	2.40
5117	601	pl-3	feno	ken	51.90	0.04	29.30	0.92	0.05	0.04	12.26	4.11	0.24	0.01	0.00	98.87	9.55	0.01	6.36	0.14	0.01	0.01	2.42	1.47	0.06	0.00	20.03	61.34	37.23	1.43
	601	pl-3	feno	mer	51.15	0.07	29.56	0.84	0.04	0.08	12.71	3.70	0.34	0.01	0.00	98.50	9.46	0.01	6.45	0.13	0.01	0.02	2.52	1.33	0.08	0.00	20.01	64.16	33.81	2.03
	601	pl-2	feno	mer	54.70	0.07	27.47	0.89	0.00	0.03	9.67	5.38	0.43	0.02	0.00	98.66	10.02	0.01	5.93	0.14	0.00	0.01	1.90	1.91	0.10	0.00	20.02	48.52	48.90	2.58
	601	pl-2	feno	ken	54.13	0.12	27.62	0.93	0.00	0.03	10.10	5.27	0.40	0.00	0.00	98.60	9.94	0.02	5.98	0.14	0.00	0.01	1.99	1.87	0.09	0.00	20.04	50.23	47.39	2.38
	601	pl-1	feno	mer	53.14	0.02	28.28	0.83	0.01	0.05	10.95	4.51	0.49	0.03	0.00	98.31	9.80	0.00	6.15	0.13	0.00	0.01	2.16	1.61	0.12	0.00	19.98	55.60	41.44	2.96
	Örnek	Mineral			SiO_2	TiO_2	Al_2O_3	FeO	MnO	MgO	CaO	Na_2O	K_2O	Cr_2O_3	P_2O_5	Toplam	Si	Ti	Al	Fe^{+2}	Mn	Mg	Са	Na	K	Р	Toplam	An	Ab	Or

Ek Tablo B7. Miyosen yaşlı Foidli volkanik breşler, foidli breşik lavlar ve foidli dayk ve sile ait plajiyoklasların mikroprob analiz sonuçları

nuçları
analiz so
prob
mikro
erin
ivinl
uit ol
reșlere a
anik b
lvolk
yaşlı
Eosen
C1. J
Fablo
Ek

I				I												I													I		1; feno: fenokristal.
118	ol-4	feno	mer	37.53	0.07	0.03	0.03	27.37	0.65	34.14	0.48	0.03	0.00	0.00	100.33	1.00	0.00	0.00	0.00	0.61	0.01	1.36	0.01	0.00	0.00	0.00	2.99	0.69	68.47	30.79	ol: oliviı
118	ol-3	feno	mer	37.68	0.01	0.02	0.04	27.60	0.61	33.92	0.56	0.00	0.00	0.00	100.44	1.00	0.00	0.00	0.00	0.61	0.01	1.35	0.02	0.00	0.00	0.00	2.99	0.69	68.18	31.12	altmalar:
118	ol-2	feno	ken	37.53	0.06	0.02	0.02	27.21	0.53	34.83	0.46	0.01	0.04	0.00	100.71	1.00	0.00	0.00	00.00	09.0	0.01	1.38	0.01	0.00	0.00	0.00	3.00	0.70	69.12	30.28	ıştır. Kısa
118	ol-2	feno	mer	38.72	0.02	0.04	0.00	24.02	0.53	37.59	0.37	0.00	0.00	0.00	101.29	1.00	0.00	0.00	00.00	0.52	0.01	1.45	0.01	00.00	0.00	0.00	2.99	0.74	73.18	26.23	esaplanm
118	ol-1	feno	ken	38.36	0.00	0.06	0.02	24.14	0.51	37.22	0.34	0.00	0.02	0.00	100.67	1.00	0.00	0.00	0.00	0.53	0.01	1.45	0.01	0.00	0.00	0.00	3.00	0.73	72.91	26.52	rinden he
118	ol-1	feno	mer	38.64	0.01	0.10	0.02	21.23	0.41	39.32	0.38	0.03	0.00	0.00	100.14	1.00	0.00	0.00	0.00	0.46	0.01	1.52	0.01	0.00	0.00	0.00	3.00	0.77	76.41	23.14	csijen üze
Örnek	Mineral			SiO_2	TiO_2	Al_2O_3	Cr_2O_3	FeO	MnO	MgO	CaO	Na_2O	$ m K_2O$	NiO	Toplam	Si	Ti	Al	Cr	Fe^{+2}	Mn	Mg	Ca	Na	К	Ni	Toplam	Mg #	Fo	Fa	Formül 4 ok

onucları	•
analiz sc	
rob	
mikrop	
erin	
/inl	
oliv	
ait	
lavlara	
Γ	
vastı	,
vaslı	, ,
osen	
Щ	
S	
Tablo	
Ek	

Örneb	363	363	363	363	363	363	363	363	363	363	373	373	373	373	373	373
						-										
Mineral	ol-1	ol-1	ol-2	ol-2	ol-3	ol-3	ol-4	ol-4	ol-5	ol-5	ol-1	ol-1	ol-2	ol-2	ol-3	ol-3
	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno
	mer	ken	mer	ken	mer	ken	mer	ken	mer	ken	mer	ken	mer	ken	mer	ken
SiO_2	40.17	39.76	39.67	39.52	39.92	39.93	39.82	39.64	41.02	39.47	40.62	39.63	40.41	39.67	39.81	39.11
TiO_2	0.06	0.00	0.00	0.00	0.00	0.03	0.01	0.03	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00
Al_2O_3	0.01	00.00	0.01	0.02	0.04	0.03	0.03	0.03	0.00	0.00	0.00	0.06	0.01	0.04	0.05	0.01
Cr_2O_3	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.02	0.06	0.03	0.04	0.04	0.00	0.00	0.03	0.00
FeO	16.66	18.43	19.00	18.69	16.63	17.28	18.29	17.17	10.33	17.25	11.61	17.32	13.78	17.57	17.11	20.77
MnO	0.42	0.31	0.32	0.37	0.34	0.32	0.45	0.38	0.23	0.31	0.24	0.39	0.32	0.34	0.38	0.55
MgO	43.47	42.38	41.72	42.26	44.09	43.23	42.51	42.78	48.90	43.50	47.54	42.81	45.89	42.82	43.84	40.30
CaO	0.33	0.30	0.28	0.35	0.42	0.33	0.36	0.32	0.32	0.30	0.37	0.38	0.45	0.33	0.35	0.32
Na_2O	0.00	0.00	0.02	0.01	0.00	0.01	0.00	0.02	0.00	0.00	0.03	0.00	0.01	0.00	0.02	0.01
K_2O	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.03
NiO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	101.14	101.19	101.03	101.22	101.45	101.16	101.47	100.40	100.87	100.86	100.45	100.63	100.89	100.78	101.59	101.10
Si	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	66.0	1.00	1.00	1.00	1.00	66.0	1.00
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe^{+2}	0.35	0.39	0.40	0.39	0.35	0.36	0.38	0.36	0.21	0.36	0.24	0.37	0.29	0.37	0.36	0.44
Mn	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.00	0.01	0.01	0.01	0.01	0.01
Mg	1.62	1.59	1.57	1.59	1.64	1.62	1.59	1.61	1.78	1.63	1.74	1.61	1.69	1.61	1.63	1.54
Са	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Na	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ni	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	2.99	3.00	2.99	3.00	3.01	3.00	2.99	2.99	3.00	3.00	2.99	3.00	3.00	3.00	3.00	3.00
Mg #	0.82	0.80	0.80	0.80	0.83	0.82	0.81	0.82	0.89	0.82	0.88	0.82	0.86	0.81	0.82	0.78
Fo	81.95	80.13	79.38	79.80	82.24	81.41	80.17	81.29	89.19	81.53	87.73	81.17	85.30	80.99	81.70	77.11
Fa	17.61	19.55	20.28	19.80	17.40	18.25	19.35	18.30	10.57	18.14	12.02	18.42	14.36	18.64	17.89	22.29
Formül 4 o	ksijen üza	erinden h(esaplanm	ıştır. Kısa	ltmalar: (ol: olivin;	feno: fen	okristal.								

Ek Tablo C2'nin devamı

Ek Tabl	o C2'nii	n devam	П					
Örnek	637	637	637	637	301	301	301	301
Mineral	ol-1	ol-1	ol-2	ol-2	ol-1	ol-1	ol-2	ol-2
	feno	feno	feno	feno	feno	feno	feno	feno
	mer	ken	mer	ken	mer	ken	mer	ken
SiO_2	40.34	39.94	40.23	39.92	41.32	41.15	40.29	40.04
TiO_2	0.33	0.34	0.39	0.26	0.13	0.14	0.36	0.31
Al_2O_3	0.04	0.02	0.02	0.02	0.06	0.07	0.00	0.03
Cr_2O_3	0.05	0.02	0.05	0.02	0.07	0.05	0.02	0.00
FeO	15.87	16.19	15.86	15.95	8.01	8.12	14.70	15.42
MnO	0.01	0.05	0.03	0.00	0.02	0.00	0.04	0.04
MgO	44.04	43.76	43.81	43.71	49.92	49.78	44.68	44.06
CaO	0.38	0.47	0.30	0.31	0.28	0.38	0.28	0.38
Na_2O	0.01	0.01	0.00	0.00	0.05	0.00	0.03	0.00
K_2O	0.04	0.02	0.02	0.00	0.05	0.00	0.02	0.00
NiO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	101.11	100.82	100.71	100.19	16.66	69.66	100.42	100.28
Si	1.00	1.00	1.01	1.00	1.01	1.00	1.00	1.00
Ti	0.01	0.01	0.01	00.00	0.00	0.00	0.01	0.01
Al	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe^{+2}	0.33	0.34	0.33	0.34	0.16	0.17	0.31	0.32
Mn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mg	1.63	1.63	1.63	1.64	1.81	1.81	1.66	1.65
Са	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Na	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
К	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ni	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	2.98	2.99	2.99	2.99	2.99	2.99	2.99	2.99
Mg #	0.83	0.83	0.83	0.83	0.92	0.92	0.84	0.84
Fo	83.17	82.77	83.10	83.01	91.73	91.61	84.39	83.56
Fa	16.81	17.17	16.87	16.99	8.25	8.39	15.57	16.40
Formül 4 o	ksijen üz(erinden he	esaplanm	uştır. Kıst	altmalar:	ol: olivin	; feno: fer	nokristal.

Örnek	<u>331</u>	331	<u>331</u>	<u>331</u>	<u>331</u>	<u>331</u>	<u>331</u>	331	<u>331</u>	<u>331</u>	<u>331</u>	<u>331</u>	331	<u>511</u>
Mineral	ol-1	ol-1	ol-1	ol-1	ol-1	ol-1	ol-1	ol-1	ol-1	ol-1	ol-3	ol-3	ol-5	ol-1
	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	Prfl	feno	feno	feno	feno
	mer								1	ken	mer	ken	mer	mer
SiO_2	40.76	40.73	40.73	40.57	40.50	40.64	40.85	40.89	40.46	40.90	39.82	38.32	50.30	36.38
TiO_2	0.01	0.00	0.00	0.04	0.02	0.07	0.00	0.00	0.01	0.00	0.00	0.01	0.59	0.03
Al_2O_3	0.05	0.02	0.05	0.02	0.02	0.02	0.00	0.00	0.03	0.06	0.06	0.02	4.08	0.00
Cr_2O_3	0.00	0.03	0.06	0.06	0.05	0.12	0.07	0.10	0.01	0.07	0.05	0.02	0.09	0.00
FeO	10.99	10.78	10.84	10.70	10.81	10.52	10.62	10.82	10.73	10.84	15.22	25.26	7.34	34.13
MnO	0.19	0.14	0.18	0.21	0.25	0.17	0.19	0.14	0.22	0.21	0.29	0.56	0.15	0.95
MgO	48.21	47.83	48.29	47.86	47.88	48.05	48.18	48.42	47.91	48.14	44.56	36.92	14.80	29.07
CaO	0.45	0.44	0.41	0.41	0.37	0.41	0.37	0.43	0.37	0.36	0.41	0.38	22.37	0.25
Na_2O	0.00	0.01	0.03	0.01	0.03	0.02	0.02	0.00	0.00	0.00	0.03	0.00	0.00	0.03
K_2O	0.00	0.01	0.00	0.00	0.00	0.04	0.00	0.02	0.00	0.00	0.02	0.00	0.00	0.00
NiO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	100.66	66.66	100.59	99.88	99.93	100.06	100.30	100.82	99.74	100.58	100.46	101.49	99.72	100.84
Si	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.25	1.00
Ti	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
Al	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.12	0.00
Cr	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe^{+2}	0.23	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.32	0.55	0.15	0.78
Mn	0.00	0.00	00.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.02
Mg	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.66	1.43	0.55	1.19
Ca	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.59	0.01
Na	0.00	0.00	00.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ni	0.00	0.00	00.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	3.00	2.99	2.99	2.99	3.00	2.99	2.99	2.99	2.99	2.99	3.00	3.00	2.67	3.00
Mg #	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.84	0.72	0.78	0.60
Fo	88.48	88.65	88.65	88.66	88.53	88.90	88.82	88.73	88.64	88.59	83.67	71.82	77.88	59.63
Fa	11.31	11.20	11.16	11.12	11.21	10.91	10.98	11.12	11.13	11.19	16.03	27.57	21.68	39.27
Formül 4 ok	sijen üze	rinden ho	esaplanm	ıştır. Kıs:	altmalar: «	ol: olivin;	feno: fen	okristal; J	orfl: profil.					

sonuçları
analiz
oprob
n mikr
leriı
vin
oliv
ait
∕lara
lav
tik
bazal
yaşlı
Eosen
3
Tablo (
Ek

Örnek	<u>642</u>	<u>642</u>	<u>642</u>	<u>642</u>	<u>642</u>	642	<u>642</u>	<u>642</u>	<u>801</u>	<u>801</u>
Mineral	ol-1	ol-1	ol-2	ol-2	ol-3	ol-3	ol-4	ol-4	ol-1	ol-1
	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno
	mer	ken	mer	ken	mer	ken	mer	ken	mer	ken
SiO_2	39.41	38.63	39.70	39.21	38.83	38.43	38.32	37.89	39.20	39.08
TiO_2	0.00	0.02	0.00	0.02	0.02	0.02	0.00	0.02	0.00	0.03
Al_2O_3	0.01	0.02	0.02	0.01	0.03	0.01	0.02	0.01	0.00	0.04
Cr_2O_3	0.04	0.00	0.00	0.02	0.00	0.00	0.00	0.01	0.04	0.00
FeO	18.27	21.92	17.82	22.01	21.21	24.54	24.75	25.89	19.75	22.26
MnO	0.24	0.38	0.23	0.41	0.39	0.48	0.50	0.62	0.49	0.51
MgO	42.13	39.17	42.35	39.20	40.55	36.98	37.13	35.52	40.65	38.71
CaO	0.24	0.31	0.29	0.28	0.30	0.30	0.21	0.43	0.38	0.37
Na_2O	0.00	0.00	00.00	0.00	0.00	0.00	0.04	0.00	0.02	0.00
K_2O	0.00	0.01	00.00	0.03	0.04	0.02	0.01	0.00	0.04	0.00
NiO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	100.34	100.46	100.41	101.19	101.37	100.78	100.98	100.39	100.57	101.00
Si	1.00	1.00	1.01	1.01	0.99	1.00	1.00	1.00	1.00	1.01
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe^{+2}	0.39	0.47	0.38	0.47	0.45	0.54	0.54	0.57	0.42	0.48
Mn	0.01	0.01	00.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Mg	1.60	1.51	1.60	1.50	1.54	1.44	1.44	1.40	1.55	1.49
Са	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Na	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
К	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ni	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	3.01	3.00	3.00	3.00	3.00	3.00	3.00	2.99	2.99	3.00
Mg #	0.80	0.76	0.81	0.76	0.77	0.73	0.73	0.71	0.79	0.76
Fo	80.23	75.79	80.71	75.71	77.00	72.49	72.38	70.48	78.17	75.19
Fa	19.51	23.79	19.04	23.84	22.59	26.98	27.06	28.82	21.30	24.25
Formül 4 o	ksijen üze	srinden he	saplanm	ştır. Kısa	ltmalar: c	ol: olivin;	feno: fen	okristal.		

-	sonuçiari
-	analiz
-	sroprot
	IN MI
-	nlen
•	5
	0
	alt
	SILE
	Ve
	layk
	N
1	E
	oaza
-	
	yaş
	sen
Ļ	О Ц
ζ	5
	0
	aD
E	-
F	T T

		•	,							,				
Örnek	<u>cy-17</u>	cy-17	<u>cy-17</u>	<u>cy-17</u>	cy-17	cy-17	<u>cy-17</u>	cy-17	cy-17	cy-17	cy-18	<u>cy-18</u>	<u>cy-18</u>	<u>cy-18</u>
Mineral	ol-1	ol-1	ol-2	ol-2	ol-3	ol-3	ol-4	ol-4	ol-5	ol-5	ol-1	ol-1	ol-2	ol-2
	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno
	mer	ken	mer	ken	mer	ken	mer	ken	mer	ken	mer	ken	mer	ken
SiO_2	41.58	40.53	40.86	40.60	41.52	41.52	41.08	40.50	48.39	51.10	41.36	42.04	40.79	41.12
TiO_2	0.00	0.01	0.02	0.01	0.04	0.00	0.00	0.04	1.58	0.76	0.01	0.04	0.02	0.05
Al_2O_3	0.07	0.07	0.06	0.06	0.05	0.03	0.04	0.03	5.62	3.57	0.02	0.01	0.04	0.03
Cr_2O_3	0.02	0.04	0.01	0.00	0.03	0.06	0.06	0.03	0.02	0.03	0.01	0.01	0.01	0.05
FeO	10.94	13.70	12.98	13.49	10.18	10.87	12.09	13.50	9.12	7.96	10.66	10.21	11.56	10.01
MnO	0.18	0.46	0.27	0.34	0.12	0.21	0.22	0.34	0.38	0.23	0.18	0.19	0.16	0.18
MgO	51.00	48.28	48.47	46.74	51.07	51.86	49.22	47.33	13.45	14.92	49.12	49.37	47.85	49.02
CaO	0.34	0.67	0.47	0.48	0.38	0.54	0.41	0.64	22.33	22.67	0.40	0.34	0.39	0.48
Na_2O	0.03	0.00	0.00	0.00	0.03	0.02	0.06	0.01	0.54	0.36	0.00	0.00	0.02	0.01
K_2O	0.02	0.00	0.00	0.02	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.01	0.00	0.01
NiO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	104.18	103.76	103.14	101.74	103.42	105.11	103.19	102.42	101.44	101.60	101.76	102.22	100.84	100.96
Si	0.98	0.98	0.99	1.00	0.99	0.98	0.99	0.99	1.20	1.25	1.00	1.01	1.00	1.00
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.01	0.00	0.00	0.00	0.00
AI	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.10	0.00	0.00	0.00	0.00
Cr	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe^{+2}	0.22	0.28	0.26	0.28	0.20	0.21	0.24	0.28	0.19	0.16	0.22	0.20	0.24	0.20
Mn	0.00	0.01	0.01	0.01	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00
Mg	1.80	1.74	1.74	1.71	1.81	1.82	1.76	1.72	0.50	0.55	1.77	1.76	1.75	1.78
Ca	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.02	0.59	09.0	0.01	0.01	0.01	0.01
Na	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ni	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	3.01	3.03	3.01	3.01	3.01	3.02	3.00	3.02	2.68	2.67	3.00	2.98	3.00	2.99
Mg #	0.89	0.86	0.87	0.86	0.90	0.89	0.88	0.86	0.72	0.77	0.89	0.90	0.88	0.90
Fo	89.10	85.87	86.69	85.76	89.83	89.29	87.68	85.90	71.62	76.46	86.88	89.42	87.92	89.56
Fa	10.72	13.66	13.02	13.88	10.04	10.50	12.08	13.74	27.23	22.87	10.82	10.37	11.90	10.25
Formül 4 ok	ksijen üze	rinden he	saplanmış	ştır. Kısaltı	malar: ol: (olivin; fenc	o: fenokris	tal.						

-	ıçları
:	naliz son
-	orob a
:	mıkrop
•	erin
	/Inl
÷	oliv
	alt
	ara
-	avl
	oreșık l
Ē	
د	toi
-	yaşlı
	'osen
i	MIY
l	Ś
E	l ablo
ŗ	Ϋ́

																														o:fenokristal.
114	hbl-5	feno	ken	39.21	2.8	14.75	10.37	0.07	13.64	12.2	1.77	1.68	0.04	96.53	5.80	0.31	2.20	0.38	2.57	1.28	0.00	0.01	3.01	1.94	1.02	0.32	0.00	16.27	0.70	lende; fene
114	hbl-5	feno	mer	38.46	2.97	15.11	11.88	0.13	12.74	12.41	1.76	1.69	0.11	97.26	5.71	0.33	2.29	0.35	2.64	1.47	0.00	0.02	2.82	1.97	1.01	0.32	0.01	16.30	0.66	l: hornb
114	hbl-4	feno	ken	39.46	2.56	14.57	12.26	0.13	12.76	12.32	1.95	1.27	0.05	97.33	5.83	0.28	2.17	0.36	2.54	1.51	0.00	0.02	2.81	1.95	1.11	0.24	0.01	16.29	0.65	nalar: hb
114	hbl-4	feno	mer	39.57	2.8	14.75	12.07	0.14	12.92	12.16	2.09	1.28	0.09	97.87	5.80	0.31	2.20	0.35	2.55	1.48	0.00	0.02	2.82	1.91	1.19	0.24	0.01	16.33	0.66	Kısaltm
114	hbl-3	feno	ken	39.25	3.1	14.49	11.93	0.1	12.6	12.25	2.02	1.41	0.02	97.17	5.80	0.34	2.20	0.33	2.52	1.47	0.00	0.01	2.78	1.95	1.16	0.27	0.00	16.31	0.65	anmıştır.
114	hbl-3	feno	mer	38.68	3.04	14.39	11.81	0.11	12.82	12.36	1.98	1.36	0.01	96.56	5.76	0.34	2.24	0.29	2.53	1.47	0.00	0.01	2.85	1.98	1.14	0.26	0.00	16.34	0.66	en hesapl
114	hbl-2	feno	ken	39.64	2.82	14.65	10.71	0.13	13.54	12.71	1.87	1.59	0	97.66	5.81	0.31	2.19	0.34	2.53	1.31	0.00	0.02	2.96	2.00	1.07	0.30	0.00	16.31	0.69	n üzerind
114	hbl-2	feno	mer	39.32	2.77	14.84	10.62	0.15	13.67	12.56	1.86	1.58	0.04	97.41	5.78	0.31	2.22	0.35	2.57	1.30	00.00	0.02	3.00	1.98	1.06	0.30	0.00	16.32	0.70	3 oksijer
114	hbl-1	feno	ken	39.84	2.6	14.27	10.65	0.1	13.91	12.46	1.98	1.49	0.03	97.33	5.85	0.29	2.15	0.31	2.47	1.31	0.00	0.01	3.04	1.96	1.13	0.28	0.00	16.33	0.70	Formül 2
114	hbl-1	feno	mer	39.43	2.86	14.77	12.09	0.15	13.23	12.6	1.95	1.37	0.02	98.47	5.76	0.31	2.24	0.30	2.54	1.48	0.00	0.02	2.88	1.97	1.11	0.26	0.00	16.33	0.66	g+Fe ⁺²).]
Örnek	Mineral			SiO_2	TiO_2	Al_2O_3	FeO	MnO	MgO	CaO	Na_2O	$\mathbf{K}_{2}\mathbf{O}$	Cr_2O_3	Toplam	Si	Ti	$\mathbf{A}^{[4]}$	$\mathbf{A}^{[6]}$	\mathbf{Al}^{T}	Fe^{+2}	Fe^{+3}	Mn	Mg	Ca	Na	K	Cr	Toplam	Mg#	Mg#=Mg/(M

Ek Tablo D1. Eosen yaşlı volkanik breşlere ait hornblendlerin mikroprob analiz sonuçları

ları
sonuç
analiz
oprob
mikr
dlerin
ornblen
t he
ai
sile
ΣVθ
dayk
tik
bazal
yaşlı
osen
Щ
D2.
ablo
E
Ek

Örnek	121	121	121	121	121	121	121	121
Mineral	hbl-1	hbl-1	hbl-2	hbl-2	hbl-3	hbl-3	hbl-4	hbl-4
	feno	feno	feno	feno	feno	feno	feno	feno
	mer	ken	mer	ken	mer	ken	mer	ken
SiO_2	40.18	39.76	39.66	38.82	39.38	40.37	39.23	39.45
TiO_2	2.83	3.90	3.03	3.87	2.80	2.81	3.49	2.91
Al_2O_3	14.51	14.04	13.97	14.65	14.56	14.12	14.57	14.25
FeO	8.46	11.49	9.95	12.52	9.21	9.44	10.46	10.32
MnO	0.07	0.15	0.03	0.15	0.07	0.02	0.05	0.08
MgO	15.03	13.12	14.21	12.06	14.18	14.53	13.17	14.17
CaO	12.62	12.46	12.60	12.31	12.50	12.65	12.52	12.35
Na_2O	1.71	2.00	1.86	2.03	1.76	1.85	1.95	1.85
K_2O	1.92	1.57	1.83	1.65	1.90	1.94	1.60	1.84
Cr_2O_3	0.00	0.02	0.00	0.00	0.01	0.00	0.00	0.00
Toplam	97.33	98.51	97.14	98.06	96.37	97.73	97.04	97.22
Si	5.85	5.80	5.83	5.72	5.82	5.88	5.78	5.81
Ti	0.31	0.43	0.34	0.43	0.31	0.31	0.39	0.32
$\mathbf{A}^{[4]}$	2.15	2.20	2.17	2.28	2.18	2.12	2.22	2.19
$A^{[6]}$	0.34	0.21	0.25	0.26	0.36	0.30	0.31	0.28
\mathbf{Al}^{T}	2.49	2.41	2.42	2.54	2.54	2.42	2.53	2.47
Fe^{+2}	1.03	1.40	1.22	1.54	1.14	1.15	1.29	1.27
Fe^{+3}	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00
Mn	0.01	0.02	0.00	0.02	0.01	0.00	0.01	0.01
Mg	3.26	2.85	3.12	2.65	3.12	3.16	2.89	3.11
Ca	1.98	1.96	2.00	1.96	1.99	1.99	1.99	1.95
Na	0.97	1.14	1.07	1.17	1.02	1.05	1.12	1.06
K	0.36	0.29	0.35	0.31	0.36	0.36	0.30	0.35
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	16.26	16.30	16.35	16.34	16.31	16.32	16.30	16.35
Mg#	0.76	0.67	0.72	0.63	0.73	0.73	0.69	0.71
$\Lambda \Lambda \alpha H - \Lambda \Lambda \alpha / \Lambda$	1 ALEA ⁺²)	Earmil	22 alreita	n inconin	ton hace	Jonmietir	. V 100 144	holor. h

 $Mg\#=Mg/(Mg+Fe^{+2}). \ Formul \ 23 \ oksijen \ \ddot{u}zerinden \ hesaplanmıştır. \ Kısaltmalar: \ hbl: \ hornblende; \ feno: fenokristal.$

																														enokristal.
																														le; feno:fe
220	hbl-5	leno	ken	39.68	2.75	14.27	10.73	0.13	13.77	12.39	2.05	1.89	0.02	97.68	5.82	0.30	2.18	0.29	2.47	1.32	0.00	0.02	3.01	1.96	1.17	0.36	0.00	16.43	0.70	hornblend
<u>220</u>	hbl-5	leno	mer	40.71	2.46	13.90	9.36	0.02	14.86	12.40	2.05	1.89	0.00	97.65	5.92	0.27	2.08	0.30	2.38	1.14	0.00	0.00	3.22	1.94	1.16	0.35	0.00	16.38	0.74	alar: hbl:
220	hbl-4	leno	ken	40.18	2.70	13.86	11.03	0.17	13.52	12.07	2.04	2.06	0.01	97.64	5.90	0.30	2.10	0.30	2.40	1.35	0.00	0.02	2.96	1.91	1.17	0.39	0.00	16.40	0.69	Kısaltma
220	hbl-4	leno	mer	40.31	2.65	13.94	9.61	0.10	14.26	12.36	2.00	1.96	0.06	97.25	5.90	0.29	2.10	0.31	2.41	1.18	0.00	0.01	3.11	1.95	1.15	0.37	0.01	16.38	0.73	nmıştır.
220	hbl-3	leno	ken	39.95	2.81	13.84	11.02	0.08	13.84	12.34	2.05	1.96	0.02	97.91	5.85	0.31	2.15	0.24	2.39	1.35	0.00	0.01	3.02	1.95	1.17	0.37	0.00	16.42	0.69	hesaplar
<u>220</u>	hbl-3	leno	mer	39.93	2.65	13.80	10.24	0.08	14.15	12.24	1.98	1.99	0.00	97.06	5.88	0.29	2.12	0.27	2.40	1.26	0.00	0.01	3.11	1.94	1.14	0.38	0.00	16.40	0.71	erinden
220	hbl-2	leno	ken	39.45	2.87	13.84	10.37	0.05	14.21	12.39	2.03	1.87	0.04	97.12	5.82	0.32	2.18	0.22	2.40	1.28	0.00	0.01	3.12	1.97	1.16	0.35	0.00	16.43	0.71	sijen üz
<u>220</u>	hbl-2	leno	mer	40.17	2.74	13.53	10.05	0.11	14.28	12.31	2.01	2.07	0.03	97.30	5.90	0.30	2.10	0.24	2.34	1.23	0.00	0.01	3.13	1.95	1.15	0.39	0.00	16.40	0.72	ül 23 ok
220	l-ldh	leno	ken	39.74	2.77	14.13	9.97	0.10	14.05	12.27	2.09	1.90	0.02	97.04	5.84	0.31	2.16	0.29	2.45	1.23	0.00	0.01	3.08	1.94	1.20	0.36	0.00	16.42	0.72). Form
220	l-ldh	leno	mer	40.08	2.77	13.70	10.77	0.14	13.79	12.20	2.26	1.65	0.00	97.36	5.88	0.31	2.12	0.25	2.37	1.32	0.00	0.02	3.02	1.93	1.29	0.31	0.00	16.45	0.70	Mg+Fe ⁺²
Örnek	Mineral			SiO_2	TiO_2	Al_2O_3	FeO	MnO	MgO	CaO	Na_2O	K_2O	Cr_2O_3	Toplam	Si	Ti	$Al^{[4]}$	$Al^{[6]}$	Al^{T}	Fe^{+2}	Fe^{+3}	Mn	Mg	Ca	Na	K	Cr	Toplam	Mg#	Mg#=Mg/(

	Ш
-	sonuçli
÷	analiz
-	oprob
:	mikr
•	erin 1
E	
	enc
	0
	lornt
-	<u> </u>
·	a alt
-	/lar
-	Ia/
_	\mathbf{z}
•	5
	õ
	Z
	_
-	Ξ.
	¥.
e	2
-	5
	b)
	\geq
	en
	OS
	Š,
i,	Ξ
۴	4
	÷.
ŕ	Ĺ
	0
	ō
1	R
	-
_	\mathbf{k}
ŗ	Ŧ

-	
H	
<u>_</u>	
Š	
n	
D	
Ö	
Š	
. 🗅	
<u> </u>	
5	
Ę	
g	
0	
1	
Ľ	
à	
0	
Ц,	
\mathbf{z}	
· =	
В	
Ц	
. 🗖	
Ð	
\equiv	
р	
ц	
O.	
4	
H	
Ξ	
Ĕ	
4	
÷	
· 🎞	
O.	
5	
<u> </u>	
Ξ	
·2	
$\mathbf{\hat{o}}$	
N	
~	
<u>ج</u>	
H.	
0	
Ξ	
5	
٠Ĕ	
,0	
Ŧ	
5	
b	
5	
<u> </u>	
P	
õ	
S	
\tilde{c}	
<u>_</u>	
Ţ	
2	
_	
÷	
Ä	
-	
Ľ	
9	
<u> </u>	
~	
(-1)	

603	hbl-2	feno	ken	39.64	2.70	13.97	9.97	0.12	14.04	12.22	2.09	1.96	0.13	96.84	5.85	0.30	2.15	0.27	2.43	1.23	0.00	0.01	3.09	1.94	1.20	0.37	0.01	16.42	0.72
603	hbl-2	feno	mant	39.46	2.74	14.31	9.94	0.08	13.88	12.14	2.05	1.98	0.06	96.64	5.83	0.30	2.17	0.32	2.49	1.23	0.00	0.01	3.06	1.93	1.18	0.38	0.01	16.42	0.71
603	hbl-2	feno	mer	39.86	2.76	14.04	9.19	0.14	14.57	12.30	1.89	1.99	0.03	96.77	5.86	0.31	2.14	0.30	2.43	1.13	0.00	0.02	3.20	1.95	1.08	0.38	0.00	16.37	0.74
603	hbl-1	feno	ken	39.69	3.50	13.44	10.07	0.16	13.86	12.28	1.98	1.86	0.00	96.84	5.86	0.39	2.14	0.20	2.34	1.24	0.00	0.02	3.05	1.96	1.14	0.35	0.00	16.35	0.71
603	hbl-1	feno	mer	40.03	2.66	14.02	9.96	0.10	14.19	12.16	2.02	2.02	0.00	97.16	5.88	0.29	2.12	0.30	2.43	1.22	0.00	0.01	3.11	1.92	1.16	0.38	0.00	16.39	0.72
Ornek	Mineral			SiO_2	TiO_2	Al_2O_3	FeO	MnO	MgO	CaO	Na_2O	K_2O	Cr_2O_3	Toplam	Si	Ti	$Al^{[4]}$	$Al^{[6]}$	Al^{T}	Fe^{+2}	Fe^{+3}	Mn	Mg	Са	Na	K	Cr	Toplam	Mg#

 $Mg \# = Mg / (Mg + Fe^{+2}). \ Form \"{ull 23 oksijen `uzerinden'} hesaplanmıştır. Kısaltmalar: hbl: hornblende; feno:fenokristal; manto.$

					1		•										
Örnek	111	111	111	111	111	111	111	111	111	111	111	111	111	111	111	111	111
Mineral	bt-1	bt-1	bt-2	bt-2	bt-3	bt-3	bt-3	bt-3	bt-3	bt-3	bt-3	bt-3	bt-3	bt-3	bt-3	bt-3	bt-3
	feno	feno	feno	feno	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl
	mer	ken	mer	ken	ken											↑	ken
SiO_2	36.18	36.88	36.42	36.43	35.31	36.38	36.13	36.26	36.15	36.47	35.86	36.13	36.28	36.04	36.29	36.55	38.15
TiO_2	5.74	5.65	6.04	5.73	5.38	5.77	5.86	5.94	5.73	5.90	5.79	5.51	6.18	5.85	5.64	5.51	0.00
Al_2O_3	14.19	14.10	14.29	14.37	14.49	14.30	14.37	14.22	14.02	14.41	14.19	13.92	14.46	14.17	14.19	14.60	13.37
FeO	14.67	13.82	14.05	14.27	15.84	15.48	14.09	13.81	14.60	14.25	14.46	14.06	12.61	13.94	14.40	14.02	25.26
MnO	0.22	0.30	0.29	0.26	0.22	0.24	0.29	0.23	0.28	0.28	0.24	0.24	0.19	0.26	0.27	0.29	0.61
MgO	14.76	15.20	14.91	14.79	15.09	14.75	15.15	14.86	14.84	15.14	14.72	14.78	15.53	14.64	15.06	14.96	11.37
CaO	0.12	0.07	0.04	0.15	0.17	0.25	0.13	0.08	0.19	0.04	0.13	0.19	0.07	0.14	0.01	0.06	2.65
Na_2O	0.82	0.79	0.73	0.73	0.56	0.66	0.75	0.79	0.81	0.78	0.76	0.74	0.77	0.81	0.81	0.82	0.09
K_2O	8.56	8.97	9.02	8.55	7.16	7.75	8.58	8.70	8.62	8.92	8.50	8.60	8.90	8.50	8.90	9.08	0.23
P_2O_5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr_2O_3	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.03	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00
Toplam	95.26	95.78	95.79	95.28	94.24	95.58	95.35	94.92	95.24	96.19	94.65	94.18	94.99	94.35	95.57	95.91	91.73
Si	2.82	2.85	2.81	2.84	2.78	2.84	2.81	2.83	2.82	2.81	2.81	2.84	2.81	2.84	2.81	2.82	3.29
Ti	0.34	0.33	0.35	0.34	0.32	0.34	0.34	0.35	0.34	0.34	0.34	0.33	0.36	0.35	0.33	0.32	0.00
$\mathbf{A}\mathbf{l}^{[4]}$	0.84	0.83	0.83	0.83	06.0	0.83	0.85	0.82	0.84	0.85	0.85	0.83	0.83	0.82	0.86	0.86	0.71
$\mathbf{Al}^{[6]}$	0.46	0.46	0.47	0.49	0.45	0.49	0.46	0.49	0.45	0.45	0.46	0.46	0.49	0.50	0.43	0.46	0.65
\mathbf{Al}^{T}	1.30	1.28	1.30	1.32	1.35	1.31	1.31	1.31	1.29	1.31	1.31	1.29	1.32	1.31	1.30	1.33	1.36
Fe^{+2}	0.96	0.89	0.91	0.93	1.04	1.01	0.92	0.90	0.95	0.92	0.95	0.93	0.82	0.92	0.93	06.0	1.82
Mn	0.01	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.04
Mg	1.72	1.75	1.72	1.72	1.77	1.71	1.75	1.73	1.73	1.74	1.72	1.73	1.80	1.72	1.74	1.72	1.46
Са	0.01	0.01	0.00	0.01	0.01	0.02	0.01	0.01	0.02	0.00	0.01	0.02	0.01	0.01	00.00	0.00	0.22
Na	0.12	0.11	0.10	0.11	0.08	0.10	0.11	0.11	0.12	0.11	0.11	0.11	0.11	0.12	0.12	0.12	0.01
K	0.85	0.88	0.89	0.85	0.72	0.77	0.85	0.87	0.86	0.88	0.85	0.86	0.88	0.85	0.88	0.89	0.03
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	8.13	8.13	8.10	8.14	8.08	8.13	8.12	8.13	8.15	8.12	8.12	8.13	8.12	8.15	8.12	8.11	8.23
Mg #	0.64	0.66	0.65	0.65	0.63	0.63	0.66	0.66	0.64	0.65	0.64	0.65	0.69	0.65	0.65	0.66	0.45
Annit	0.30	0.29	0.29	0.29	0.32	0.31	0.29	0.29	0.30	0.29	0.30	0.30	0.26	0.29	0.30	0.29	0.46
Flogopit	0.54	0.56	0.55	0.54	0.54	0.53	0.56	0.55	0.55	0.56	0.55	0.55	0.58	0.55	0.56	0.55	0.37
Mg#=Mg/(M; Kısaltmalar: b	g+Fe ⁺²). F	e ⁺² , Fe ⁺³ ; feno:fenc	ıyrımı Dy kristal; pı	mEk Tabl fl: profil.	lo (1983)	'e göre, Y	avuz ve Ö)ztaş (199	17) progra	ımı kullar	ularak ya	pılmıştır.	Formül 1	1 oksijen	üzerinde	n hesapla	nmıştır.

Ek Tablo E1. Eosen yaşlı bazaltik lavlara ait biyotitlerin mikroprob analiz sonuçları

80 30 33 93
9.20 0.00 97.20 2.67
8.84 0.00 97.22 2.90 0.21
9.42 0.00 98.02 2.67 0.31
0.00 0.00 0.03 100.73 2.66 0.37 1.34 0.05
9.54 8.50 0.00 0.00 0.04 0.03 98.70 100.73 2.67 2.66 0.35 0.37 1.33 1.34 0.00 0.05 1.33 1.34 1.33 1.39

nuclari	νπυγιαι
analize	allalle o
hon	hi vu
mibro	
larin	
inotit	1 y ULII
کے +	۔ د
.5	3
وازه و	
7 116	>
التعام	uayr
1:1	
hazal	naza
باعفية	y aşıı
Ue a U	Incor
1	;
È	j
Ц	

																																ıd (796
232	bt-4	feno	ken	37.44	4.58	13.65	14.06	0.29	15.32	0.00	0.53	9.30	0.00	0.00	95.17	2.89	0.27	0.85	0.40	1.24	0.91	0.02	1.76	0.00	0.08	0.92	0.00	8.10	0.66	0.29	0.57	Öztaş (19
232	bt-4	feno	mer	37.34	4.88	13.63	13.32	0.18	15.70	0.02	0.72	9.38	0.00	0.00	95.17	2.88	0.28	0.84	0.40	1.24	0.86	0.01	1.80	0.00	0.10	0.92	0.00	8.09	0.68	0.28	0.59	/avuz ve
232	bt-3	feno	ken	36.60	4.49	14.22	14.71	0.25	14.73	0.01	0.52	9.35	0.00	0.00	94.88	2.84	0.26	06.0	0.40	1.30	0.95	0.02	1.70	00.00	0.08	0.93	0.00	8.08	0.64	0.31	0.55	'e göre, Y
232	bt-3	feno	mer	37.23	4.87	13.95	13.46	0.23	15.33	0.03	0.61	9.38	0.00	0.04	95.13	2.87	0.28	0.84	0.43	1.27	0.87	0.02	1.76	00.00	0.09	0.92	0.00	8.08	0.67	0.28	0.57	<u>lo (198</u> 3)
232	bt-2	feno	ken	36.50	5.07	13.84	15.41	0.32	14.35	0.01	0.44	9.50	0.00	0.00	95.44	2.83	0.30	0.88	0.39	1.26	1.00	0.02	1.66	00.00	0.06	0.94	0.00	8.08	0.62	0.33	0.54	'mEk Tab
232	bt-2	feno	mer	36.81	4.49	13.71	14.75	0.35	15.00	0.00	0.55	9.49	0.00	0.01	95.16	2.85	0.26	0.89	0.36	1.25	0.95	0.02	1.73	0.00	0.08	0.94	0.00	8.08	0.64	0.31	0.56	ayrımı Dy
232	bt-1	feno	ken	36.69	4.60	14.18	14.71	0.34	14.98	0.06	0.59	9.36	0.00	0.00	95.51	2.83	0.27	06.0	0.39	1.29	0.95	0.02	1.72	00.00	0.09	0.92	0.00	8.09	0.64	0.31	0.56	e^{+2}, Fe^{+3}
232	bt-1	feno	mer	36.03	4.45	15.05	13.94	0.31	14.97	0.02	0.76	9.08	0.00	0.01	94.62	2.80	0.26	0.94	0.44	1.38	0.91	0.02	1.73	00.00	0.11	06.0	0.00	8.11	0.66	0.29	0.56	(+Fe ⁺²). F
Örnek	Mineral			SiO_2	TiO ₂	Al_2O_3	FeO	MnO	MgO	CaO	Na_2O	K_2O	P_2O_5	Cr_2O_3	Toplam	Si	Ti	$\mathbf{Al}^{[4]}$	$\mathbf{Al}^{[6]}$	\mathbf{Al}^{T}	Fe^{+2}	Mn	Mg	Ca	Na	K	Cr	Toplam	Mg #	Annit	Flogopit	Mg#=Mg/(Mg

ıçları	•
ializ soni	
prob an	
n mikro	
otitlerir	
ait biy	و
e doma	
dayk vo	•
ndezitik	
ı yaslı a	, ,
. Eosen	
blo E3	
Ek Tal	

rogramı kullanılarak yapılmıştır. Formül 11 oksijen üzerinden hesaplanmıştır. Kısaltmalar: bt: biyotit; feno:fenokristal.

Örnek	188	188	188	188	188	188	188	188	188	625	625	625	625	625	625	625	625
Mineral	bt-1	bt-1	bt-2	bt-2	bt-3	bt-3	bt-4	bt-4	bt-5	bt-1	bt-1	bt-2	bt-3	bt-3	bt-4	bt-4	bt-5
	feno	prfl	prfl	prfl	prfl	prfl	prfl	feno	prfl	feno	feno	feno	feno	feno	feno	feno	prfl
	mer	ken	mer	ken		↑	ken	mer	ken	mer	ken	mer	mer	ken	mer	ken	ken
SiO_2	36.06	35.80	35.87	36.42	36.41	36.52	36.85	36.71	36.10	36.98	36.96	36.37	37.25	38.70	36.45	36.38	37.07
TiO_2	7.21	7.12	7.67	7.38	7.51	6.62	6.53	6.36	6.25	4.65	4.59	4.55	4.54	4.62	4.74	4.64	4.58
Al_2O_3	12.99	12.89	13.17	13.29	12.88	12.72	14.02	13.91	13.84	14.46	14.58	14.50	14.57	13.98	14.91	14.47	14.72
FeO	18.76	18.87	20.60	20.04	19.67	20.39	13.04	13.23	13.83	13.45	13.19	13.06	13.45	12.35	13.40	13.47	13.47
MnO	0.29	0.33	0.34	0.33	0.29	0.37	0.17	0.18	0.25	0.22	0.25	0.23	0.24	0.28	0.18	0.17	0.26
MgO	10.81	10.68	9.91	10.28	10.70	9.93	15.04	15.05	14.13	15.72	15.76	15.21	15.74	15.05	15.64	15.56	15.82
CaO	0.05	0.02	0.02	0.03	0.18	0.18	0.02	0.09	0.02	0.00	0.07	0.37	0.08	0.38	0.06	0.07	0.00
Na_2O	0.66	0.71	0.65	0.68	0.61	0.58	0.83	0.69	0.72	0.58	0.59	0.41	0.56	0.32	0.62	0.54	0.56
K_2O	9.04	9.04	8.90	9.25	8.75	8.29	9.05	9.16	8.71	9.15	9.21	7.40	9.17	7.29	9.16	9.12	9.46
P_2O_5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr_2O_3	0.01	0.05	0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.03	0.00
Toplam	95.88	95.51	97.15	97.70	97.01	95.60	95.55	95.38	93.85	95.21	95.20	92.12	95.60	92.97	95.16	94.45	95.94
Si	2.87	2.87	2.85	2.86	2.88	2.94	2.85	2.85	2.86	2.84	2.84	2.91	2.85	3.07	2.81	2.82	2.82
Ti	0.43	0.43	0.46	0.44	0.45	0.40	0.38	0.37	0.37	0.27	0.27	0.27	0.26	0.28	0.27	0.27	0.26
$\mathbf{AI}^{[4]}$	0.69	0.70	0.70	0.70	0.67	0.65	0.77	0.78	0.77	0.89	0.89	0.82	0.89	0.66	0.92	0.91	0.91
$\mathbf{Al}^{[6]}$	0.53	0.51	0.54	0.53	0.53	0.55	0.51	0.49	0.52	0.42	0.43	0.55	0.43	0.65	0.43	0.41	0.41
\mathbf{Al}^{T}	1.22	1.22	1.23	1.23	1.20	1.21	1.28	1.27	1.29	1.31	1.32	1.37	1.32	1.31	1.35	1.32	1.32
Fe^{+2}	1.25	1.26	1.37	1.32	1.30	1.37	0.84	0.86	0.92	0.86	0.85	0.87	0.86	0.82	0.86	0.87	0.86
Mn	0.02	0.02	0.02	0.02	0.02	0.03	0.01	0.01	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.01	0.02
Mg	1.28	1.28	1.17	1.20	1.26	1.19	1.74	1.74	1.67	1.80	1.81	1.81	1.80	1.78	1.79	1.80	1.80
Ca	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0.00	0.00	0.01	0.03	0.01	0.03	0.01	0.01	0.00
Na	0.10	0.11	0.10	0.10	0.09	0.09	0.12	0.10	0.11	0.08	0.08	0.06	0.08	0.05	0.09	0.08	0.08
K	0.92	0.92	06.0	0.93	0.88	0.85	0.89	0.91	0.88	06.0	06.0	0.75	06.0	0.74	06.0	06.0	0.92
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	8.09	8.10	8.11	8.10	8.09	8.08	8.11	8.12	8.12	8.07	8.10	8.09	8.10	8.10	8.09	8.08	8.08
Mg#	0.51	0.50	0.46	0.48	0.49	0.46	0.67	0.67	0.65	0.68	0.68	0.67	0.68	0.68	0.68	0.67	0.68
Annit	0.41	0.41	0.44	0.43	0.42	0.44	0.27	0.28	0.29	0.28	0.27	0.27	0.28	0.25	0.28	0.28	0.28
Flogopit	0.42	0.41	0.38	0.39	0.41	0.38	0.56	0.56	0.53	0.58	0.58	0.56	0.58	0.54	0.58	0.58	0.58
Mg#=Mg/(M Kısaltmalar:	g+Fe ⁺²). F bt: biyotit;	e ⁺² , Fe ⁺³ feno:fen	ayrımı Dy okristal; µ	/mek (198 orfl: profil	3)'e göre	, Yavuz v	e Öztaş (1997) pro	gramı kul	lanılarak	yapılmışt	ır. Formü	il 11 oksij	en üzerir	nden hesa	planmıştu	

onuçları
analiz s
prob
mikro
erin
otitl
t biy
a ait
klar
day
trakitik
yaşlı
Eosen
Е4.
Tablo
Ek

-1	105	202	202	202	105	105	202	202	202	202	001	001	001	006	000	000	000
Omek	<u>C70</u>	<u>C70</u>	<u>C70</u>	070	<u>C70</u>	<u>C70</u>	<u>C70</u>	<u>C70</u>	<u>C70</u>	<u>C70</u>	/00/	/00/	/00/	00/	/00/	/00/	/00/
Mineral	bt-5	bt-5	bt-5	bt-5	bt-5	bt-5	bt-5	bt-5	bt-5	bt-5	bt-1	bt-1	bt-2	bt-3	bt-3	bt-4	bt-4
	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	prfl	feno	feno	feno	feno	feno	feno	feno
									↑	ken	mer	ken	ken	mer	ken	mer	ken
SiO_2	37.14	36.56	36.58	36.59	36.71	36.84	36.55	36.70	36.60	36.48	35.84	36.26	36.31	36.23	36.32	36.35	35.98
TiO_2	4.41	4.13	4.49	4.60	4.35	4.15	4.23	4.74	4.53	4.63	5.50	5.31	5.25	5.20	5.03	5.26	5.20
Al_2O_3	14.62	14.87	14.83	14.33	14.61	14.93	14.85	14.68	14.74	14.75	14.84	14.64	14.60	14.73	15.00	14.88	14.81
FeO	13.19	13.51	13.20	13.42	13.52	13.13	13.46	13.17	12.93	12.98	14.50	14.39	14.18	14.81	14.75	14.88	14.54
MnO	0.18	0.33	0.20	0.24	0.24	0.21	0.25	0.19	0.19	0.18	0.29	0.23	0.17	0.20	0.25	0.22	0.16
MgO	15.97	15.82	15.91	15.32	15.81	16.03	16.07	15.81	15.52	15.72	14.72	14.74	14.84	14.60	14.71	14.39	14.58
CaO	0.01	0.02	0.01	0.21	0.05	0.02	0.01	0.02	0.00	0.08	0.10	0.20	0.08	0.04	0.07	0.03	0.02
Na_2O	0.61	0.56	0.65	0.61	0.60	0.64	0.66	0.60	0.64	0.62	0.71	0.64	0.66	0.67	0.68	0.64	0.66
K_2O	8.97	9.32	9.22	9.18	9.25	9.07	9.25	9.52	9.12	9.17	8.88	8.92	9.04	8.96	8.96	9.24	9.11
P_2O_5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr_2O_3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.02	0.00	0.04	0.00	0.02	0.00	0.00
Toplam	95.10	95.12	95.09	94.50	95.14	95.02	95.33	95.44	94.27	94.61	95.40	95.33	95.17	95.44	95.79	95.89	95.06
Si	2.85	2.81	2.81	2.84	2.82	2.83	2.80	2.81	2.84	2.82	2.78	2.81	2.82	2.81	2.80	2.80	2.79
Ti	0.25	0.24	0.26	0.27	0.25	0.24	0.24	0.27	0.26	0.27	0.32	0.31	0.31	0.30	0.29	0.31	0.30
$Al^{[4]}$	0.89	0.96	0.93	0.89	0.93	0.93	0.96	0.92	06.0	0.91	06.0	0.88	0.88	0.89	0.91	0.89	0.90
$\mathbf{Al}^{[6]}$	0.43	0.39	0.41	0.43	0.40	0.42	0.38	0.41	0.45	0.43	0.46	0.46	0.46	0.46	0.46	0.46	0.45
\mathbf{Al}^{T}	1.32	1.35	1.34	1.31	1.32	1.35	1.34	1.32	1.35	1.34	1.36	1.34	1.33	1.35	1.36	1.35	1.36
Fe^{+2}	0.85	0.87	0.85	0.87	0.87	0.84	0.86	0.84	0.84	0.84	0.94	0.93	0.92	0.96	0.95	0.96	0.94
Mn	0.01	0.02	0.01	0.02	0.02	0.01	0.02	0.01	0.01	0.01	0.02	0.02	0.01	0.01	0.02	0.01	0.01
Mg	1.83	1.81	1.82	1.78	1.81	1.83	1.83	1.80	1.79	1.81	1.70	1.70	1.72	1.69	1.69	1.65	1.69
Ca	0.00	00.00	00.00	0.02	0.00	0.00	00.00	00.00	0.00	0.01	0.01	0.02	0.01	00.00	0.01	0.00	0.00
Na	0.09	0.08	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.10	0.09	0.10	0.10	0.10	0.09	0.10
K	0.88	0.91	06.0	0.91	0.91	0.89	06.0	0.93	06.0	06.0	0.88	0.88	0.89	0.89	0.88	0.91	06.0
Cr	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	8.08	8.09	8.08	8.12	8.10	8.08	8.08	8.08	8.08	8.09	8.11	8.10	8.12	8.11	8.11	8.08	8.08
Mg#	0.68	0.68	0.68	0.67	0.68	0.69	0.68	0.68	0.68	0.68	0.64	0.65	0.65	0.64	0.64	0.63	0.64
Annit	0.27	0.28	0.27	0.28	0.28	0.27	0.28	0.27	0.27	0.27	0.30	0.30	0.30	0.31	0.31	0.31	0.30
Flogopit	0.59	0.59	0.59	0.57	0.59	0.59	0.59	0.59	0.58	0.59	0.55	0.55	0.55	0.54	0.54	0.54	0.55
Mg#=Mg/(Mg Kısaltmalar: bt	+Fe ⁺²). F(: biyotit;	e ⁺² , Fe ⁺³ ; feno:fenc	ayrımı Dy vkristal; p	mek (198 vrfl: profil	33)'e göre. l.	, Yavuz v	e Öztaş (1	.997) pro	gramı kul	llanılarak	yapılmışt	ır. Formü	l 11 oksij	en üzerin	den hesap	olanmıştır	

Ek Tablo E4'ün devamı

1		_				5	6		7		_		_							_				_		·	_					esaplanmıştır.
805	bt-1	feno	mer	35.63	3.85	16.16	11.62	0.16	17.87	0.01	0.49	9.27	00.00	0.04	95.10	2.62	0.21	1.38	0.02	1.40	0.31	0.01	1.96	00.00	0.07	0.87	00.00	7.45	0.86	0.13	0.85	inden h
805	bt-1	feno	mer	35.88	3.05	17.59	10.34	0.10	19.15	0.02	0.45	9.27	0.00	0.00	95.85	2.60	0.17	1.40	0.10	1.50	0.25	0.01	2.07	0.00	0.06	0.86	0.00	7.52	0.89	0.10	0.85	ijen üzer
<u>805</u>	bt-1	feno	mer	35.83	3.83	16.29	12.11	0.19	17.88	0.08	0.50	9.09	0.00	00.00	95.8	2.62	0.21	1.38	0.02	1.40	0.32	0.01	0.95	0.01	0.07	0.85	0.00	6.44	0.75	0.25	0.73	ül 11 oks
<u>805</u>	bt-1	feno	mer	36.42	3.26	17.11	9.85	0.09	19.18	0.11	0.54	9.52	0.00	0.04	96.12	2.63	0.18	1.37	0.08	1.45	0.30	0.01	2.06	0.01	0.08	0.88	0.00	7.60	0.87	0.12	0.84	tır. Formi
<u>805</u>	bt-1	feno	mer	36.07	3.81	16.41	11.52	0.10	17.95	0.04	0.51	9.29	0.00	0.00	95.7	2.63	0.21	1.37	0.04	1.41	0.33	0.01	1.95	0.00	0.07	0.87	0.00	7.48	0.86	0.14	0.84	yapılmışt
<u>805</u>	bt-1	feno	mer	36.22	3.72	16.38	11.16	0.11	17.96	0.05	0.48	9.08	0.00	0.01	95.17	2.65	0.20	1.35	0.06	1.41	0.34	0.01	1.96	00.00	0.07	0.85	0.00	7.49	0.85	0.14	0.83	lanılarak
<u>805</u>	bt-1	feno	mer	36.51	3.78	17.35	12.00	0.22	18.60	0.03	0.53	8.97	0.00	0.02	98.01	2.60	0.20	1.40	0.05	1.45	0.25	0.01	1.97	0.00	0.07	0.81	0.00	7.36	0.89	0.11	0.86	gramı kul
<u>805</u>	bt-1	feno	mer	36.53	3.42	17.60	9.57	0.08	19.83	0.02	0.50	9.38	0.00	0.06	96.99	2.60	0.18	1.40	0.08	1.48	0.18	0.00	2.11	0.00	0.07	0.85	0.00	7.47	0.92	0.08	0.89	1997) pro
<u>603</u>	bt-1	feno	ken	36.83	3.52	16.17	9.78	0.06	18.71	0.08	0.73	9.07	0.00	0.00	94.95	2.77	0.20	1.03	0.41	1.44	0.62	0.00	2.10	0.01	0.10	0.87	0.00	8.11	0.77	0.20	0.67	e Öztaş (I
<u>603</u>	bt-1	feno	mer	36.52	3.70	16.13	8.96	0.06	18.96	0.05	0.76	8.92	0.00	0.00	94.06	2.77	0.21	1.02	0.42	1.44	0.57	0.00	2.14	0.00	0.11	0.86	0.00	8.10	0.79	0.18	0.68	Yavuz v
238	bt-1	feno	mer	38.61	3.13	16.59	9.29	0.11	20.23	0.11	0.65	9.12	0.00	0.04	97.88	2.71	0.17	1.29	0.08	1.37	0.28	0.01	2.12	0.01	0.09	0.82	0.00	7.58	0.88	0.11	0.85	3)'e göre,
238	bt-1	feno	mer	36.91	3.34	17.06	10.34	0.08	19.59	0.01	0.65	9.16	0.00	0.04	97.18	2.64	0.18	1.36	0.07	1.43	0.20	0.00	2.08	0.00	0.09	0.83	0.00	7.45	0.91	0.09	0.89	mek (198
238	bt-1	feno	mer	36.80	3.19	16.53	10.30	0.14	18.79	0.04	0.62	9.27	0.00	0.00	95.68	2.67	0.17	1.33	0.08	1.41	0.33	0.01	2.03	0.00	0.09	0.86	0.00	7.57	0.86	0.13	0.83	yrımı Dyi
238	bt-1	feno	mer	37.07	3.33	16.40	9.86	0.01	19.82	0.04	0.70	9.62	0.00	0.09	96.94	2.65	0.18	1.35	0.04	1.39	0.27	0.00	2.12	0.00	0.10	0.88	0.01	7.60	0.89	0.11	0.87	⁺² , Fe ⁺³ a
238	bt-1	feno	mer	37.40	3.14	17.32	8.36	0.03	20.62	0.02	0.74	9.55	0.00	0.04	97.22	2.65	0.17	1.35	0.09	1.44	0.20	0.00	2.17	0.00	0.10	0.86	0.00	7.59	0.92	0.08	0.88	+Fe ⁺²). Fe
Örnek	Mineral			SiO_2	TiO_2	Al_2O_3	FeO	MnO	MgO	CaO	Na_2O	K_2O	P_2O_5	Cr_2O_3	Toplam	Si	Ti	$Al^{[4]}$	$Al^{[6]}$	Al^{T}	${\rm Fe}^{+2}$	Mn	Mg	Ca	Na	K	Cr	Toplam	Mg #	Annit	Flogopit	Mg#=Mg/(Mg

Ц	
çla	
nu	
SO	
liz	
na	
b a	
lol	
rop	
lik	
ιu	
erii	
itle	
yot	
bi	
ait	
te	
ille	
es	
V X	
ayl	
i d	
idl	
fo	
ışlı	
l ya	
sen	
yo	
Mi	
5	
E	
blc	
Ta	
ľ	
Ţ	

	<u>109</u>	601
	an2	an-3
-	feno	feno
	mer	mer
α,	68.9	48.60
(1	3.84	35.31
-	4.91	0.48
	2.96	0.27
	1.86	1.06
	0.14	0.20
	0.88	0.64
	0.11	0.02
	0.03	00.00
	0.05	0.00
	91.67	86.59
	2.04	1.80
	1.01	1.54
	0.15	0.01
	0.16	0.02
	0.07	0.04
	0.01	0.01
	0.04	0.03
	0.00	00.00
	00.00	0.00
	0.00	0.00
	3.48	3.45
ind	en he:	aplanmiş

Ek Tablo F1. Miyosen yaşlı foidli volkanik breşlere ait analsimlerin mikroprob analiz sonuçları

Örnek	CY-18	CY-18	CY-18	CY-18	CY-18	CY-18	CY-18	CY-18	CY-17	CY-17	CV-17	CV-17	CY-17	CY-17	CV-17	CY-17	CY-17	CY-17	177
Mineral	an-2	an-3	an-3	an-4	an-5	an-5	an-6	an-6	an-1	an-1	an-2	an-2	an-3	an-3	an-4	an-4	an-5	an-5	an-1
	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno
	ken	mer	ken	ken	mer	ken	mer	ken	mer	ken	mer	ken	mer	ken	mer	ken	mer	ken	mer
SiO ₂	51.35	53.58	54.73	54.84	53.87	53.05	54.15	54.10	54.91	53.79	54.59	54.18	54.85	54.91	54.36	52.58	54.61	51.04	58.24
Al_2O_3	21.34	22.76	23.37	22.90	22.75	21.99	22.45	22.48	23.38	22.82	23.34	22.99	22.90	22.85	23.21	24.74	23.36	26.93	24.11
$\mathrm{Fe}_{2}\mathrm{O}_{3}$	1.68	0.65	0.77	06.0	0.57	1.88	0.76	0.56	0.63	1.05	0.77	0.77	0.69	0.75	0.77	0.79	0.74	0.89	0.42
MgO	0.56	0.01	0.01	0.08	0.03	0.70	0.06	0.00	0.07	0.61	0.02	0.08	0.04	0.05	0.03	0.25	0.04	0.07	0.01
CaO	2.40	0.29	0.23	0.78	0.22	1.04	0.24	0.53	0.57	0.73	0.42	0.41	0.42	09.0	0.61	0.67	0.62	0.71	0.08
Na ₂ O	9.31	11.60	11.86	11.54	10.49	10.42	11.51	11.21	11.26	10.72	11.68	11.01	11.54	11.26	11.60	10.94	11.00	10.34	5.72
K_2O	1.51	1.34	1.64	06.0	4.07	1.11	1.55	0.94	0.72	0.85	0.92	0.79	0.88	0.70	0.68	0.51	0.77	0.49	0.26
TiO_2	0.63	0.05	0.12	0.20	0.31	0.28	0.00	0.04	0.14	0.03	0.07	0.06	0.04	0.13	0.07	0.16	0.16	0.08	60.0
MnO	0.00	0.00	0.02	0.01	0.04	0.06	0.00	0.21	0.05	0.13	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00
Cr_2O_3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	88.77	90.29	92.75	92.14	92.37	90.53	90.71	90.07	91.73	90.72	91.81	90.30	91.37	91.23	91.36	90.63	91.29	90.56	88.94
Si	1.97	2.00	2.00	2.01	2.00	1.99	2.02	2.02	2.01	2.00	2.00	2.01	2.02	2.02	2.00	1.95	2.01	1.89	2.11
Al	0.97	1.00	1.01	0.99	0.99	0.97	0.99	0.99	1.01	1.00	1.01	1.01	0.99	66.0	1.01	1.08	1.01	1.18	1.03
Fe^{+2}	0.05	0.02	0.02	0.03	0.02	0.06	0.02	0.02	0.02	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.01
Mg	0.03	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00
Ca	0.10	0.01	0.01	0.03	0.01	0.04	0.01	0.02	0.02	0.03	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.03	0.00
Na	0.69	0.84	0.84	0.82	0.75	0.76	0.83	0.81	0.80	0.77	0.83	0.79	0.82	0.80	0.83	0.79	0.78	0.74	0.40
К	0.07	0.06	0.08	0.04	0.19	0.05	0.07	0.04	0.03	0.04	0.04	0.04	0.04	0.03	0.03	0.02	0.04	0.02	0.01
Ti	0.02	0.00	0.00	0.01	0.01	0.01	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	3.91	3.95	3.95	3.92	3.97	3.92	3.94	3.91	3.90	3.91	3.93	3.90	3.92	3.90	3.92	3.91	3.89	3.90	3.58

Formül 6 oksijen üzerinden hesaplanmıştır. Kısaltmalar: an: analsim; feno:fenokristal.

Ek Tablo F2. Miyosen yaşlı foidli breşik lavlara ait analsimlerin mikroprob analiz sonuçları

Ek Tablo F2'nin devamı

Örnek	721	721	721	721	721	721	721
Mineral	an-1	An2	an-2	an-3	an-3	an-4	an-4
	feno	feno	feno	feno	feno	feno	feno
	ken	mer	ken	mer	ken	mer	ken
SiO_2	57.94	57.48	58.21	57.01	57.77	57.75	57.33
Al_2O_3	24.36	24.65	24.51	24.27	24.74	24.90	24.91
$\mathrm{Fe}_{2}\mathrm{O}_{3}$	0.61	0.41	0.45	0.51	0.52	0.51	0.39
MgO	0.03	0.01	0.00	0.02	0.00	0.02	0.06
CaO	0.11	0.07	0.17	0.05	0.07	0.10	0.12
Na_2O	5.73	5.60	5.67	5.28	5.63	5.91	5.68
K_2O	0.25	0.23	0.24	0.23	0.22	0.28	0.21
TiO_2	0.10	0.04	0.10	0.08	0.07	0.06	0.08
MnO	0.00	0.00	0.01	0.00	0.04	00.00	0.00
Cr_2O_3	0.02	0.00	0.06	0.03	0.00	00.00	0.01
Toplam	89.15	88.50	89.42	87.49	89.05	89.54	88.79
Si	2.10	2.10	2.10	2.10	2.09	2.09	2.07
Al	1.04	1.06	1.04	1.05	1.06	1.06	1.06
Fe^{+2}	0.02	0.01	0.01	0.02	0.02	0.02	0.01
Mg	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ca	0.00	0.00	0.01	0.00	0.00	0.00	0.00
Na	0.40	0.40	0.40	0.38	0.40	0.41	0.40
K	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Ti	0.00	0.00	0.00	0.00	0.00	00.00	0.00
Mn	0.00	0.00	0.00	0.00	0.00	00.00	0.00
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	3.58	3.58	3.58	3.56	3.58	3.60	3.56
Formül 6 oksi	jen üzeri	inden he	saplanmı	ştır. Kısa	ltmalar: a	n: analsir	n; feno:fenokrista

Örnek	238	238	238	238	238	<u>603</u>	<u>603</u>	603	<u>805</u>	<u>805</u>	<u>805</u>	<u>805</u>	805
Mineral	an-1	an-2	an-3	an-4	an-5	an-1	an-2	an-3	an-1	an-2	an-3	an-4	an-5
	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno	feno
	ken	mer	mer	mer	mer	mer	mer	mer	mer	mer	mer	mer	mer
SiO_2	61.11	62.19	61.85	61.97	55.58	54.35	51.51	52.10	55.55	55.76	55.60	55.28	55.02
Al_2O_3	25.71	25.97	26.19	25.27	23.78	24.10	31.97	31.73	24.34	24.12	24.00	23.66	23.83
$\mathrm{Fe}_{2}\mathrm{O}_{3}$	0.38	0.55	0.52	0.43	0.58	0.08	3.30	3.39	0.50	0.47	0.51	0.38	0.33
MgO	0.06	0.02	0.01	0.00	0.06	0.00	2.34	2.28	0.03	0.00	0.03	0.00	0.01
CaO	0.64	0.38	0.58	0.58	0.56	0.19	1.50	1.42	0.07	0.11	0.08	0.11	0.19
Na_2O	8.53	5.84	5.47	5.73	9.66	10.68	0.18	0.16	9.84	11.86	12.02	11.82	11.66
K_2O	0.33	0.33	0.30	0.30	0.40	0.07	5.17	5.14	0.42	0.40	0.42	0.34	0.41
TiO_2	0.05	0.10	0.09	0.10	0.19	0.00	0.01	0.05	0.11	0.04	0.02	0.03	0.09
MnO	0.02	0.00	0.06	0.00	0.06	0.03	0.05	0.10	0.00	0.00	0.00	0.00	0.08
Cr_2O_3	0.00	0.02	0.05	0.06	0.00	0.00	0.03	0.00	0.00	0.03	0.00	0.00	0.00
Toplam	96.83	95.41	95.14	94.44	90.88	89.50	90.96	96.37	90.85	92.79	92.69	91.62	91.63
Si	2.07	2.11	2.10	2.12	2.03	1.81	1.81	1.82	2.02	2.01	2.01	2.02	2.01
AI	1.03	1.04	1.05	1.02	1.02	1.25	1.32	1.31	1.05	1.02	1.02	1.02	1.02
Fe^{+2}	0.01	0.02	0.01	0.01	0.02	0.17	0.10	0.10	0.02	0.01	0.02	0.01	0.01
Mg	0.00	0.00	0.00	0.00	0.00	0.16	0.12	0.12	0.00	0.00	0.00	0.00	0.00
Ca	0.02	0.01	0.02	0.02	0.02	0.06	0.06	0.05	0.00	0.00	0.00	0.00	0.01
Na	0.56	0.38	0.36	0.38	0.68	0.01	0.01	0.01	0.70	0.83	0.84	0.84	0.82
К	0.01	0.01	0.01	0.01	0.02	0.23	0.23	0.23	0.02	0.02	0.02	0.02	0.02
Ti	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mn	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toplam	3.71	3.57	3.56	3.57	3.80	3.69	3.65	3.64	3.81	3.90	3.91	3.90	3.90
Formül 6 ol	ksijen üzei	rinden he	saplanm	ştır. Kısal	tmalar: a	n: analsii	n; feno:f	enokrist	al.				

	onuçları
;	analiz sc
•	orob
:	mikroj
	enn
	SIM
	anal
•	e ait
	allere
	UN I
	ve
	layk ve
	dli dayk ve
	1 foldli dayk ve
	yaşlı foıdlı dayk ve
	osen yaşlı foıdlı dayk ve
	Miyosen yaşlı foldlı dayk ve
	F3. Miyosen yaşlı foidli dayk ve
	lo F3. Miyosen yaşlı foidli dayk ve
	blo F3. Miyosen yaşlı foidli dayk ve
	l'ablo F3. Miyosen yaşlı foidli dayk ve
	Clable F3. Miyosen yaşlı foldlı dayk ve
	Ek Tablo F3. Miyosen yaşlı foldli dayk ve

																1												hesanlanmistir. Kisaltmalar: ap: apatite: feno:fenokristal.
238	ap	feno	mer	0.87	0.03	0.02	0.19	0.02	0.14	54.55	0.13	0.00	40.51	2.36	98.82	0.14	00.00	0.00	0.03	00.00	0.04	9.73	0.04	0.00	5.71	1.24	16.93	erinden h
238	ap	feno	mer	1.04	0.03	0.01	0.15	0.06	0.12	54.23	0.16	0.01	40.06	2.59	98.46	0.17	0.00	0.00	0.02	0.01	0.03	9.67	0.05	0.00	5.64	1.36	16.95	oksiien üz
Örnek	Mineral			SiO_2	TiO_2	Al_2O_3	FeO	MnO	MgO	CaO	Na_2O	K_2O	P_2O_5	F	Toplam	Si	Ti	\mathbf{Al}^{T}	Fe^{+2}	Mn	Mg	Ca	Na	K	Р	Ц	Toplam	Formiil 25 c

Ek Tablo Tablo G1. Miyosen yaşlı foidli dayk ve sillere ait apatitlerin mikroprob analiz sonuçları

Örnek	114	114	114	114	114	118	118	118	118	118	240	240	240	240	240	240	250	250
Mineral	opk- 1	opk -2	opk- 3	opk-4	opk -5	opk- 1	opk- 2	opk- 3	opk -4	opk- 5	opk -1	opk- 2	opk-3	opk -4	opk- 5	opk- 6	opk-1	opk -2
	mik	kpir iç 1	mik	mik	mik	mik	kpir iç 3	mik	mik	mik	mik	kpir iç 1	kpir iç 2	mik	mik	mik	kpir iç 2	mik
SiO ₂	0.12	0.09	0.13	0.06	0.10	0.05	0.12	0.10	0.10	0.10	0.35	0.09	0.12	0.57	0.24	0.10	0.05	0.09
TiO_2	13.63	7.28	13.37	8.76	15.73	10.07	14.34	14.41	14.55	14.04	13.01	9.64	8.94	8.98	11.16	9.78	8.41	11.02
Al_2O_3	3.76	6.19	4.24	6.26	3.88	7.87	4.63	5.85	6.41	5.79	3.35	4.50	5.11	5.02	3.89	4.40	3.35	2.20
Cr_2O_3	0.03	0.18	0.03	0.16	0.01	0.17	0.03	0.06	0.06	0.09	0.04	0.06	0.07	0.10	0.02	0.05	0.03	0.03
FeO	72.42	76.66	72.95	75.55	72.29	71.88	69.28	69.14	68.63	70.48	63.41	76.29	74.79	76.60	68.90	76.72	79.27	78.20
MnO	0.81	0.48	0.80	0.58	2.47	0.41	0.49	0.45	0.45	0.47	0.62	0.45	0.39	0.48	0.52	0.51	0.66	0.69
MgO	2.34	3.30	2.40	3.94	0.15	5.25	4.85	4.40	4.10	4.42	2.93	3.61	3.62	2.90	2.52	3.14	2.29	1.58
CaO	0.09	0.26	0.03	0.01	0.12	0.00	0.43	0.06	0.06	0.03	0.19	0.02	0.01	0.05	0.41	0.00	0.06	0.00
Toplam	93.20	94.44	93.95	95.32	94.75	95.70	94.17	94.47	94.36	95.42	83.90	94.66	93.05	94.70	87.66	94.70	94.12	93.81
Si	0.04	0.03	0.04	0.02	0.03	0.01	0.04	0.03	0.03	0.03	0.12	0.03	0.04	0.17	0.07	0.03	0.02	0.03
Ti	3.09	1.59	3.00	1.89	3.58	2.13	3.14	3.15	3.18	3.03	3.25	2.12	1.99	1.97	2.67	2.15	1.88	2.51
Al	1.34	2.12	1.49	2.11	1.38	2.61	1.59	2.00	2.20	1.96	1.31	1.55	1.78	1.73	1.46	1.52	1.17	0.78
Fe^{+3}	8.41	10.61	8.43	10.04	7.40	90.6	8.05	7.64	7.38	7.89	7.94	10.16	10.16	9.97	9.05	10.10	11.02	10.14
Cr	0.01	0.04	0.01	0.04	00.00	0.04	0.01	0.01	0.01	0.02	0.01	0.01	0.02	0.02	0.01	0.01	0.01	0.01
Fe^{+2}	9.84	7.99	9.76	8.08	10.87	7.85	8.81	9.14	9.30	9.04	9.68	8.45	8.32	8.74	9.27	8.69	8.70	9.64
Mn	0.21	0.12	0.20	0.14	0.63	0.10	0.12	0.11	0.11	0.11	0.17	0.11	0.10	0.12	0.14	0.13	0.17	0.18
Mg	1.05	1.43	1.07	1.68	0.07	2.20	2.11	1.90	1.78	1.89	1.45	1.57	1.60	1.26	1.19	1.37	1.02	0.71
Са	0.03	0.08	0.01	0.00	0.04	0.00	0.13	0.02	0.02	0.01	0.07	0.01	0.00	0.02	0.14	0.00	0.02	0.00
Toplam	24.02	24.01	24.01	24.00	24.00	24.00	24.00	24.00	24.01	23.98	24.00	24.01	24.01	24.00	24.00	24.00	24.01	24.00
Usp	0.41	0.22	0.40	0.26	0.49	0.30	0.43	0.43	0.44	0.42	0.44	0.28	0.27	0.27	0.36	0.29	0.25	0.02
Fe ⁺² ve Fe ⁺³ ayı opk: opak mine	rımı stoki ral; kpir:	ometrik klinopirc	olarak he sksen. mi	ssaplanm ik: mikro	nştır. Fo əlit.	rmül 6 ol	ksijen üz	erinden l	hesaplan	mıştır. U	sp oranı	Lindsley	r ve Sper	ıcer (198	2)'a gör	e hesapla	anmıştır.	Kısaltmalar

sonuçları
analiz s
roprob
ı mik
tlerin
oksit
Ъ-Ті
uit Fe
eșlere a
k bre
volkani
yaşlı
. Eosen
H1,
Tablo
Ek

onuçları
analiz s
prob
mikro
erin
csitle
li ok
Fe-]
ait]
avlara
yastık l
yaşlı
Eosen
H2.
Tablo
Ek

																								2)'a göre hesaplanmıştır. Kısaltmalar:
	<u>511</u>	opk-2	kpir iç 2	0.11	7.10	5.32	0.17	76.53	0.41	3.71	0.27	93.62	0.03	1.56	1.84	10.94	0.04	7.79	0.10	1.62	0.08	24.00	0.01	Lindsley ve Spencer (198:
	511	opk- 1	mik	0.10	8.98	4.40	0.14	76.74	0.45	3.27	0.02	94.10	0.03	1.99	1.53	10.41	0.03	8.46	0.11	1.43	0.01	24.00	0.01	sp oranı
	331	opk -4	mik	0.30	0.49	8.66	45.93	28.49	0.30	11.51	0.44	96.12	0.08	0.10	2.76	3.08	9.80	3.35	0.07	4.63	0.13	24.00	0.03	nıştır. Us
	331	opk-3	mik	1.97	3.58	7.72	0.00	77.52	0.39	1.99	0.22	93.39	0.58	0.79	2.66	10.61	0.00	8.33	0.10	0.87	0.07	24.01	0.11	esaplanr
ı	331	opk- 2	mik	0.01	0.46	6.51	49.15	34.27	0.37	7.20	0.04	98.01	0.00	0.10	2.12	2.91	10.76	5.03	0.09	2.97	0.01	23.99	0.03	rinden h
	331	opk -1	kpir iç 1	0.08	0.86	8.33	37.53	39.07	0.39	8.18	0.52	94.96	0.02	0.18	2.74	4.57	8.29	4.55	0.09	3.40	0.15	23.99	0.04	ijen üzeı
	260	opk- 3	mik	0.06	14.80	3.03		73.62	1.00	0.01	0.00	92.52	0.02	3.46	1.11	7.93	0.00	11.21	0.26	0.01	0.00	24.00	0.46	nül 6 oks
	260	opk -2	kpir iç 3	0.10	10.18	5.66	0.06	74.39	0.68	0.24	0.04	91.35	0.03	2.37	2.06	9.13	0.02	10.09	0.18	0.11	0.01	24.00	0.33	ștır. Forn it.
	111	opk -5	mik	0.07	10.69	2.29	0.01	79.03	1.33	2.08	0.03	95.53	0.02	2.38	0.80	10.41	0.00	9.14	0.33	0.92	0.01	24.01	0.31	aplanms : mikrol
	111	opk- 3	mik	0.14	14.51	1.35	0.00	72.84	2.34	0.09	1.20	92.47	0.04	3.40	0.50	8.61	0.00	10.39	0.62	0.04	0.40	24.00	0.46	larak hes sen. mik
	111	opk- 2	mik	0.32	14.06	1.47	0.03	74.32	2.55	0.04	0.19	92.98	0.10	3.29	0.54	89.8	0.01	10.63	0.67	0.02	0.06	24.00	0.44	metrik ol inopirok
	111	opk- 1	mik	0.08	10.69	2.05	0.03	78.48	1.19	1.95	0.00	94.47	0.02	2.41	0.72	10.41	0.01	9.26	0.30	0.87	0.00	24.00	0.31	n stokioi ; kpir: kl
	Örnek	Mineral		SiO_2	TiO_2	Al_2O_3	Cr_2O_3	FeO	MnO	MgO	CaO	Toplam	Si	Ti	AI	Fe^{+3}	Cr	Fe^{+2}	Mn	Mg	Са	Toplam	Usp	Fe ⁺² ve Fe ⁺³ ayrın opk: opak mineral

analiz sonuçları
itlerin mikroprob
a ait Fe-Ti oks
ı bazaltik lavlara
H3. Eosen yaşlı
Ek Tablo F

	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	opk-1 opk-2 opk-4 opk-3 opk-1 opk-3 opk-4 opk-3 opk-1 opk-3 opk-1 opk-3 opk-1 opk-1 opk-1 opk-1 opk-1 opk-1 opk-1 opk-1 opk-1 opk-1 opk-1 opk-1 opk-1 opk-1 opk-1 </td <td></td> <td>121</td> <td>121</td> <td>121</td> <td>121</td> <td>121</td> <td>399</td> <td>399</td> <td>399</td> <td>642</td> <td>642</td> <td>642</td> <td>642</td> <td>642</td> <td>801</td> <td>801</td>		121	121	121	121	121	399	399	399	642	642	642	642	642	801	801
	mit Ppiricy- pire mit pricy- pire mit pricy- pire mit pricy- pire mit pricy- pire mit pricy- pire mit pricy- pire mit pricy- pire mit pricy- pire mit pricy- pire mit		opk -1	opk- 2	opk-3	opk -4	opk- 5	opk-1	opk- 2	opk- 3	opk- 1	opk- 2	opk -3	opk- 4	opk-5	opk -3	opk- 1
$ \begin{array}{ ccccccccccccccccccccccccccccccccccc$	014 0.07 0.09 0.14 0.23 0.09 0.06 0.01 0.08 0.10 14.86 10.25 13.20 5.39 5.37 5.39 5.37 5.35 5.09 0.01 0.06 0.01 0.08 0.01 4.61 7.40 5.25 3.37 3.38 5.23 13.24 5.34 7.35 5.34 0.55 5.86 0.66 0.06 0.04 17.15 0.05 0.01 0.05 5.03 4.15 13.25 5.88 0.69 6.476 7.638 0.68 0.99 0.55 0.16 0.57 0.33 0.53 0.54 7.13 7.88 7.83 0.76 0		mik	kpir iç 2	mik	mik	mik	kpir iç 2	ol iç1	mik	kpir iç 1	mik	mik	mik	mik	kpir iç 3	mik
	$ \begin{array}{l l l l l l l l l l l l l l l l l l l $		0.14	0.07	0.09	0.14	0.23	0.09	0.06	0.05	0.09	0.06	0.11	0.06	0.11	0.08	0.10
461 740 5.25 3.87 3.38 5.23 13.20 5.35 6.35 4.76 4.39 5.53 4.15 13.75 5.05 0.04 0.06 0.06 0.06 0.04 0.04 17.15 0.05 0.01 0.05 5.38 0.08 0.08 0.97 70.85 6.814 9.05 0.94 17.15 0.05 0.01 0.05 5.38 0.08 0.91 0.52 0.71 0.33 0.54 72.13 72.61 73.25 71.82 73.86 64.76 65.38 0.06 0.91 0.15 0.16 0.27 0.13 0.34 0.24 17.3 2.53 74.4 2.44 73.4 73.2 71.83 1.83 2.66 77.9 77.9 0.76 0.76 0.76 0.76 0.76 0.76 0.76 73.4 7.42 7.42 7.43 7.46 7.76 7.44 9.476 0.74 0.77	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		14.86	10.25	14.20	16.01	16.30	11.59	2.59	9.72	10.90	15.59	15.84	15.43	16.51	7.05	9.60
$ \begin{array}{{ccccccccccccccccccccccccccccccccccc$	004 0.06 0.06 0.04 0.04 17.15 0.05 0.01 0.05 5.38 0.08 6997 7038 68.14 69.65 69.64 73.34 54.84 73.64 72.13 72.61 73.25 71.82 72.86 64.76 75.38 0.03 0.91 0.52 0.70 1.93 0.05 0.71 0.83 2.57 2.79 0.75 0.23 0.19 0.15 0.16 0.27 0.15 0.02 0.03 0.07 0.07 0.03 0.04 0.71 0.23 0.15 0.15 0.15 0.15 0.15 0.15 0.13 0.17 0.13 0.24 9.4.39 9.6.17 96.13 94.34 94.76 0.14 0.16 0.17 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.01 0.03 0.01 0.05 0.14 1.74 1.74 1.74 1.74		4.61	7.40	5.25	3.87	3.38	5.23	13.20	5.35	6.35	4.76	4.39	5.53	4.15	13.75	5.05
6997 7085 68.14 69.65 69.64 73.34 54.84 73.64 72.61 71.82 71.82 76.38 64.76 76.38 0.91 0.52 0.70 198 237 057 0.33 0.54 0.40 079 0.73 0.69 0.82 0.42 0.76 2.59 4.44 3.91 0.40 0.07 0.03 0.22 0.31 0.27 0.16 0.72 0.71 0.72 0.72 0.72 0.71 0.72 </td <td>6997 70.85 68.14 69.65 69.64 73.34 54.4 72.13 72.61 73.25 71.82 72.86 64.76 76.38 0.91 0.52 0.70 1.98 2.37 0.57 0.33 0.54 71.3 72.61 73.35 57.9 0.70 0.70 0.70 0.73 0.65 0.82 0.76 0.76 0.23 0.15 0.16 0.27 0.15 0.16 0.27 0.33 0.54 0.79 0.73 0.66 0.82 0.76 0.76 0.33 0.35 0.15 0.15 0.15 0.17 0.03 0.07 0.70 0.79 0.76 0.76 0.76 0.33 0.35 0.15 0.17 0.03 0.02 0.03 0.02 0.03 0.07 0.07 0.03 0.07 0.03 0.07 0.03 0.07 0.03 0.07 0.03 0.02 0.03 0.02 0.03 0.07 0.03 <</td> <td></td> <td>0.04</td> <td>0.06</td> <td>0.06</td> <td>0.00</td> <td>0.04</td> <td>0.04</td> <td>17.15</td> <td>0.05</td> <td>0.01</td> <td>0.05</td> <td>0.00</td> <td>0.19</td> <td>0.05</td> <td>5.38</td> <td>0.08</td>	6997 70.85 68.14 69.65 69.64 73.34 54.4 72.13 72.61 73.25 71.82 72.86 64.76 76.38 0.91 0.52 0.70 1.98 2.37 0.57 0.33 0.54 71.3 72.61 73.35 57.9 0.70 0.70 0.70 0.73 0.65 0.82 0.76 0.76 0.23 0.15 0.16 0.27 0.15 0.16 0.27 0.33 0.54 0.79 0.73 0.66 0.82 0.76 0.76 0.33 0.35 0.15 0.15 0.15 0.17 0.03 0.07 0.70 0.79 0.76 0.76 0.76 0.33 0.35 0.15 0.17 0.03 0.02 0.03 0.02 0.03 0.07 0.07 0.03 0.07 0.03 0.07 0.03 0.07 0.03 0.07 0.03 0.02 0.03 0.02 0.03 0.07 0.03 <		0.04	0.06	0.06	0.00	0.04	0.04	17.15	0.05	0.01	0.05	0.00	0.19	0.05	5.38	0.08
	091 052 0.70 198 2.37 0.57 0.33 0.54 0.40 0.79 0.73 0.69 0.82 0.42 0.76 259 4.44 3.91 0.40 0.05 2.74 5.48 3.72 5.04 2.24 1.78 2.55 2.79 0.70 0.01 0.34 0.00 0.23 0.19 0.15 0.21 0.15 0.02 0.03 0.07 0.07 0.07 0.03 0.05 0.01 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.03 0.02 0.03 0.02 0.03 0.02		69.97	70.85	68.14	69.65	69.64	73.34	54.84	73.64	72.13	72.61	73.25	71.82	72.86	64.76	76.38
$ \begin{array}{ ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r[r] relation conditity conditity conditity conditity conditity conditi$		0.91	0.52	0.70	1.98	2.37	0.57	0.33	0.54	0.40	0.79	0.73	0.69	0.82	0.42	0.76
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.59	4.44	3.91	0.40	0.05	2.74	5.48	3.72	5.04	2.24	1.78	2.52	1.83	2.56	2.79
	$ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		0.23	0.19	0.15	0.16	0.27	0.15	0.02	0.03	0.07	0.07	0.03	0.05	0.01	0.34	0.00
$ \begin{array}{{ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r[r]lllllllllllllllllllllllllllllllllll$	_	93.35	93.78	92.50	92.21	92.28	93.75	93.67	93.10	94.99	96.17	96.13	96.29	96.34	94.34	94.76
3.35 2.23 3.18 3.73 3.82 2.58 0.55 2.16 2.34 3.42 3.56 3.64 1.50 2.11 1.63 2.52 1.84 1.41 1.24 1.82 4.37 1.86 2.14 1.64 1.52 1.89 1.43 4.60 1.74 7.59 8.97 7.72 7.03 6.97 8.95 6.69 9.78 9.13 7.47 7.42 7.30 7.14 9.95 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1.64 1.52 1.89 1.44 9.95 0.01 0.01 0.01 0.01 0.01 0.00 0.01 1.02 1.112 0.14 0.83 8.10 10.25 10.56 10.11 10.67 8.24 8.74 0.23 0.13 0.12 0.14 0.08 0.14 0.10 0.10 0.01 0.02 0.11 10.21 0.22 0.12 <td< td=""><td>$\begin{array}{rcccccccccccccccccccccccccccccccccccc$</td><td></td><td>0.04</td><td>0.02</td><td>0.03</td><td>0.04</td><td>0.07</td><td>0.03</td><td>0.02</td><td>0.02</td><td>0.03</td><td>0.02</td><td>0.03</td><td>0.02</td><td>0.03</td><td>0.02</td><td>0.03</td></td<>	$ \begin{array}{rcccccccccccccccccccccccccccccccccccc$		0.04	0.02	0.03	0.04	0.07	0.03	0.02	0.02	0.03	0.02	0.03	0.02	0.03	0.02	0.03
1.63 2.52 1.84 1.41 1.24 1.82 4.37 1.86 2.14 1.64 1.52 1.89 1.43 4.60 1.74 7.59 8.97 7.72 7.03 6.97 8.95 6.69 9.78 9.13 7.47 7.42 7.30 7.20 7.14 9.95 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1.21 0.02 9.93 8.15 9.25 11.02 11.15 9.21 6.18 8.39 8.10 10.25 10.56 10.11 10.67 8.24 8.74 0.23 0.13 0.18 0.52 0.14 0.08 0.14 0.10 0.20 0.11 10.67 8.24 8.74 0.16 1.73 0.19 0.02 1.64 2.15 0.97 0.78 0.17 0.20 0.10 1.16 1.91 1.73 0.19 0.02 1.64 2.15 0.97 0.78 0.17 0.20 0.07 0.06 0.05 0.09 0.01 0.01 0.02 0.17 0.20 0.10 0.10 0.07 0.06 0.03 0.09 0.01 0.01 0.02 0.01 0.02 0.10 0.10 0.07 0.08 0.09 0.01 0.00 0.01 0.00 0.01 0.02 0.07 0.06 0.03 0.09 0.01 0.02 0.01 0.02 <td< td=""><td>$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$</td><td></td><td>3.35</td><td>2.23</td><td>3.18</td><td>3.73</td><td>3.82</td><td>2.58</td><td>0.55</td><td>2.16</td><td>2.34</td><td>3.42</td><td>3.50</td><td>3.36</td><td>3.64</td><td>1.50</td><td>2.11</td></td<>	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		3.35	2.23	3.18	3.73	3.82	2.58	0.55	2.16	2.34	3.42	3.50	3.36	3.64	1.50	2.11
7.59 8.97 7.72 7.03 6.97 8.95 6.69 9.78 9.13 7.47 7.42 7.30 7.20 7.14 9.95 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1.21 0.02 9.93 8.15 9.25 11.02 11.15 9.21 6.18 8.39 8.10 10.25 10.56 10.11 10.67 8.24 8.74 0.23 0.13 0.18 0.52 0.14 0.08 0.14 0.10 0.20 0.10 0.10 0.19 1.16 1.91 1.73 0.19 0.02 1.64 2.15 0.97 0.78 1.09 0.80 1.22 0.07 0.06 0.05 0.09 0.01 0.01 0.02 0.01 0.02 0.10 0.10 0.07 0.06 0.05 0.09 0.05 0.01 0.01 0.02 0.02 0.02 0.10 0.07 0.06 0.05 0.09 0.05 0.01 0.01 0.02 0.02 0.02 0.10 0.07 0.06 0.05 0.09 0.05 0.01 0.01 0.02 0.02 0.02 0.10 0.07 0.06 0.05 0.01 0.01 0.02 0.02 0.01 0.00 0.01 0.02 0.07 0.06 0.02 0.02 0.01 0.02 0.02 0.00 0.00 0.07	7.59 897 7.72 7.03 6.97 8.95 6.69 9.78 9.13 7.47 7.42 7.30 7.20 7.14 9.95 0.01 0.01 0.01 0.01 0.00 0.01 0.01 3.81 0.01 0.00 0.01 0.00 0.04 0.01 1.21 0.02 9.93 8.15 9.25 11.02 11.15 9.21 6.18 8.39 8.10 10.25 10.56 10.11 10.67 8.24 8.74 0.23 0.13 0.18 0.52 0.62 0.14 0.08 0.14 0.10 0.20 0.18 0.17 0.20 0.10 0.19 1.16 1.91 1.73 0.19 0.02 1.21 2.30 1.64 2.15 0.97 0.78 1.09 0.80 1.08 1.22 0.07 0.06 0.05 0.09 0.05 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.00 0.10 0.00 0.24.01 24.00 23.99 23.99 24.00 24.01 24.01 24.01 24.00 24.00 23.98 23.99 24.00 0.46 0.31 0.44 0.51 0.52 0.02 0.01 0.02 0.32 0.46 0.47 0.46 0.49 0.02 0.02 1.6 ⁺³ ayrim stokiometrik olarak hesaplanmistir. Formül 6 oksijen üzerinden hesaplanmiştir. Usp oran Lindsley ve Spencer (1982)'a göre hesaplanmiştir. Kısaltmalar:		1.63	2.52	1.84	1.41	1.24	1.82	4.37	1.86	2.14	1.64	1.52	1.89	1.43	4.60	1.74
001 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 9.93 8.15 9.25 11.02 11.15 9.21 6.18 8.39 8.10 10.25 10.56 10.11 10.67 8.74 8.74 9.93 8.15 9.25 11.02 11.15 9.21 6.18 8.39 8.10 10.25 10.56 10.11 10.67 8.74 8.74 0.23 0.13 0.18 0.52 0.62 0.14 0.08 0.14 0.10 0.20 0.17 0.20 0.10 0.19 1.16 1.91 1.73 0.19 0.02 1.64 2.15 0.97 0.78 1.09 0.80 1.22 0.07 0.06 0.05 0.09 0.01 0.01 0.02 0.70 0.10 0.10 0.10 0.10 0.10 0.10 0.10 1.22 0.07 0.06 0.05 0.01 0.01 </td <td>0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 9.93 8.15 9.25 11.02 11.15 9.21 6.18 8.39 8.10 10.25 10.56 10.11 10.67 8.24 8.74 9.93 8.15 9.25 11.02 11.15 9.21 6.18 8.39 8.10 10.25 10.56 10.11 10.67 8.24 8.74 0.23 0.13 0.18 0.52 0.62 0.14 0.08 0.16 2.05 10.51 10.9 8.24 8.74 0.70 0.66 0.05 0.09 0.63 0.16 0.17 0.20 0.10 0.19 0.70 0.66 0.05 0.09 0.61 0.01 0.20 0.00 0.10 0.12 0.12 24.01 24.01 24.00 24.00 24.00 24.00 24.00 24.00 23.99 24.00 0.46 0.31 <</td> <td></td> <td>7.59</td> <td>8.97</td> <td>7.72</td> <td>7.03</td> <td>6.97</td> <td>8.95</td> <td>69.9</td> <td>9.78</td> <td>9.13</td> <td>7.47</td> <td>7.42</td> <td>7.30</td> <td>7.20</td> <td>7.14</td> <td>9.95</td>	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 9.93 8.15 9.25 11.02 11.15 9.21 6.18 8.39 8.10 10.25 10.56 10.11 10.67 8.24 8.74 9.93 8.15 9.25 11.02 11.15 9.21 6.18 8.39 8.10 10.25 10.56 10.11 10.67 8.24 8.74 0.23 0.13 0.18 0.52 0.62 0.14 0.08 0.16 2.05 10.51 10.9 8.24 8.74 0.70 0.66 0.05 0.09 0.63 0.16 0.17 0.20 0.10 0.19 0.70 0.66 0.05 0.09 0.61 0.01 0.20 0.00 0.10 0.12 0.12 24.01 24.01 24.00 24.00 24.00 24.00 24.00 24.00 23.99 24.00 0.46 0.31 <		7.59	8.97	7.72	7.03	6.97	8.95	69.9	9.78	9.13	7.47	7.42	7.30	7.20	7.14	9.95
9.93 8.15 9.25 11.02 11.15 9.21 6.18 8.39 8.10 10.25 10.56 10.11 10.67 8.24 8.74 0.23 0.13 0.18 0.52 0.62 0.14 0.08 0.14 0.10 0.20 0.18 0.17 0.20 0.19 0.19 1.16 1.91 1.73 0.19 0.02 1.21 2.30 1.64 2.15 0.97 0.78 1.09 0.80 1.02 0.19 0.07 0.06 0.05 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.01 0.00 1.02 1.22 24.01 24.00 23.99 23.99 24.00 24.01 24.00 24.00 23.98 23.99 24.00 0.46 0.31 0.44 0.51 0.22 0.02 0.01 24.00 23.98 23.99 24.00 0.46 0.31 0.44 0.51 0.22	9.93 8.15 9.25 11.02 11.15 9.21 6.18 8.39 8.10 10.25 10.56 10.11 10.67 8.24 8.74 0.23 0.13 0.18 0.52 0.62 0.14 0.08 0.14 0.10 0.20 0.11 10.67 8.24 8.74 1.16 1.91 1.73 0.19 0.02 1.54 2.15 0.97 0.78 1.09 0.80 1.08 1.22 0.07 0.06 0.05 0.09 0.05 0.01 0.01 0.02 0.01 0.02 0.01 0.00		0.01	0.01	0.01	0.00	0.01	0.01	3.81	0.01	0.00	0.01	0.00	0.04	0.01	1.21	0.02
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.23 0.13 0.18 0.52 0.62 0.14 0.08 0.14 0.10 0.20 0.17 0.20 0.19 0.19 1.16 1.91 1.73 0.19 0.02 1.21 2.30 1.64 2.15 0.97 0.78 1.09 0.80 1.08 1.22 0.07 0.06 0.05 0.09 0.01 0.01 0.02 0.01 0.02 0.00 0.10 0.00 24.01 24.00 23.99 23.99 24.00 24.01 24.00 23.98 23.99 24.00 0.46 0.31 0.44 0.51 0.52 0.02 0.32 0.46 0.47 0.46 0.02 0.02 0.46 0.31 0.44 0.51 0.52 0.01 0.02 0.32 0.46 0.47 0.46 0.02 0.02 0.46 0.31 0.46 0.47 0.46 0.49 0.02 0.02 0.02 1.54******		9.93	8.15	9.25	11.02	11.15	9.21	6.18	8.39	8.10	10.25	10.56	10.11	10.67	8.24	8.74
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		0.23	0.13	0.18	0.52	0.62	0.14	0.08	0.14	0.10	0.20	0.18	0.17	0.20	0.10	0.19
0.07 0.06 0.05 0.05 0.09 0.05 0.01 0.01 0.02 0.02 0.01 0.02 0.00 0.10 0.00 1 24.01 24.00 23.99 23.99 24.00 24.01 24.01 24.01 24.00 24.00 24.00 23.98 23.99 24.00 0.46 0.31 0.44 0.51 0.52 0.02 0.01 0.02 0.32 0.46 0.47 0.46 0.49 0.02 0.02	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		1.16	1.91	1.73	0.19	0.02	1.21	2.30	1.64	2.15	0.97	0.78	1.09	0.80	1.08	1.22
0.46 24.01 24.00 23.99 23.99 23.99 24.00 24.01 24.01 24.01 24.00 24.00 24.00 23.98 23.99 24.00 0.46 0.31 0.44 0.51 0.52 0.02 0.01 0.02 0.32 0.46 0.47 0.46 0.49 0.02 0.02	1 24.01 24.00 23.99 23.99 23.99 24.00 24.01 24.01 24.01 24.00 24.00 24.00 23.98 23.99 24.00 0.46 0.31 0.44 0.51 0.52 0.02 0.01 0.02 0.32 0.46 0.47 0.46 0.49 0.02 0.02 Fe ⁺³ ayrımı stokiometrik olarak hesaplanmıştır. Formül 6 oksijen üzerinden hesaplanmıştır. Usp oranı Lindsley ve Spencer (1982)'a göre hesaplanmıştır. Kısaltmalar:		0.07	0.06	0.05	0.05	0.09	0.05	0.01	0.01	0.02	0.02	0.01	0.02	0.00	0.10	0.00
0.46 0.31 0.44 0.51 0.52 0.02 0.01 0.02 0.32 0.46 0.47 0.46 0.49 0.02 0.02	0.46 0.31 0.44 0.51 0.52 0.02 0.01 0.02 0.32 0.46 0.47 0.46 0.49 0.02 0.02 Fe ⁺³ ayrımı stokiometrik olarak hesaplanmıştır. Formül 6 oksijen üzerinden hesaplanmıştır. Usp oranı Lindsley ve Spencer (1982)'a göre hesaplanmıştır. Kısaltmalar:		24.01	24.00	23.99	23.99	23.99	24.00	24.01	24.01	24.01	24.00	24.00	24.00	23.98	23.99	24.00
	Fe ⁺³ ayrımı stokiometrik olarak hesaplanmıştır. Formül 6 oksijen üzerinden hesaplanmıştır. Usp oranı Lindsley ve Spencer (1982)'a göre hesaplanmıştır. Kısaltmalar:		0.46	0.31	0.44	0.51	0.52	0.02	0.01	0.02	0.32	0.46	0.47	0.46	0.49	0.02	0.02

arı
Ъ.
nu
so
<u>N</u>
al
an
q
JC.
ō
ik
В
in
ler
sit
ok
:二
5
Ц
ait
e
Si
ve
Ľ.
lay
хd
lti]
zaj
ba
Ц
/aş
n)
Se
Ео
+
Ή
lo
ab
E
Ū,

lek	232	232	675	675	683	683	683	683	683
ineral	opk- 1	opk- 2	opk -1	opk- 2	opk -1	opk- 2	opk-3	opk -4	opk- 5
	mik	mik	kpir iç 2	mik	mik	mik	mik	mik	mik
iO ₂	0.38	0.00	0.07	0.06	0.19	4.04	0.89	0.51	0.07
10_2	3.60	46.46	7.86	5.47	12.34	5.63	8.90	2.20	12.41
M_2O_3	0.50	0.03	4.21	2.85	5.14	2.34	2.01	0.38	4.76
$C_{12}O_{3}$	0.00	0.03	0.01	0.03	0.25	0.08	0.07	0.00	0.33
eO	85.42	44.10	77.98	83.15	72.83	79.04	80.36	86.39	73.24
AnO	0.39	7.91	1.33	0.51	0.11	0.13	0.02	0.04	0.14
AgO	0.08	0.17	0.44	0.03	0.24	0.18	0.12	0.10	0.52
JaO	0.11	0.04	0.02	0.02	0.05	0.19	0.15	0.11	0.00
oplam	90.48	98.74	91.92	92.12	91.15	91.63	92.52	89.73	91.47
	0.12	0.00	0.02	0.02	0.06	1.25	0.27	0.16	0.02
-	0.86	10.63	1.82	1.27	2.89	1.31	2.07	0.53	2.89
עו	0.19	0.01	1.53	1.04	1.88	0.85	0.73	0.14	1.74
e ⁺³	13.86	0.00	10.79	12.37	8.16	10.02	10.56	14.47	8.35
Ìr	0.00	0.01	00.00	0.01	0.06	0.02	0.02	0.00	0.08
e ⁺²	8.80	00.00	9.29	9.14	10.79	10.37	10.24	8.60	10.64
Лп	0.11	2.04	0.35	0.13	0.03	0.03	0.01	0.01	0.04
Ag	0.04	0.08	0.20	0.01	0.11	0.08	0.05	0.05	0.24
a	0.04	0.01	0.01	0.01	0.02	0.06	0.05	0.04	0.00
oplam	24.02	12.78	24.01	24.00	24.00	23.99	24.00	24.00	24.00
Jsp	0.18	0.27	0.07	0.39	0.01	66666	0.04	0.016	0.39

ıçları
iz sonu
b anal
kropro
n mi
leri
itl
oks
Ξ
5
Ц
uit
ra a
mla
q
ve
4
ay
q
Ξ
zit
de
ЯЙ
1
yaşl
ά.
Se
Εo
S.
Η
lo
ab
Ē
ľ
Ť

÷.	100	1 0.0	010	010	202	202	101	101	101		000			000	
Urnek	100	100	010	010	<u>(70</u>	<u>C70</u>	<u>C70</u>	<u>C70</u>	<u>C70</u>	00/	00/	00/	00/	00/	00/
Mineral	opk- 1	opk-2	opk- 1	opk- 2	opk -1	opk- 2	opk-3	opk -4	opk- 5	opk- 1	opk- 2	opk -3	opk- 4	opk-5	opk -6
	mik	kpir iç 3	mik	kpir iç 1	mik	mik	mik	kpir iç 3	mik	kpir iç 1	mik	mik	mik	mik	mik
SiO ₂	0.17	0.09	0.09	0.11	0.09	0.08	0.17	0.04	0.08	0.07	0.09	0.08	0.08	0.08	06.0
TiO_2	19.87	22.34	10.68	11.38	6.61	6.74	5.87	6.67	6.62	10.27	10.17	10.24	10.34	10.37	4.89
Al_2O_3	0.52	2.00	4.10	2.98	3.59	3.51	2.76	3.60	3.61	3.90	4.02	3.93	4.05	3.85	0.91
Cr_2O_3	0.00	0.01	0.00	0.02	0.04	0.01	0.07	0.01	0.05	0.02	0.00	0.03	0.00	0.01	0.00
FeO	64.26	62.47	75.99	75.79	80.74	80.23	79.41	80.69	81.28	76.86	76.78	76.74	76.07	76.82	79.40
MnO	4.09	3.83	0.77	0.96	0.95	1.03	1.28	06.0	0.99	1.46	0.92	1.75	1.64	1.73	1.39
MgO	0.00	0.01	3.41	2.06	2.37	2.36	0.39	2.42	2.43	1.44	2.09	1.15	1.38	1.31	0.00
CaO	0.11	0.26	0.00	0.23	0.00	0.00	0.01	0.03	0.01	0.02	0.00	0.08	0.01	0.15	0.60
Toplam	89.02	91.01	95.04	93.53	94.39	93.96	89.96	94.36	95.07	94.04	94.07	94.00	93.57	94.32	88.09
Si	0.05	0.03	0.03	0.03	0.03	0.02	0.05	0.01	0.02	0.02	0.03	0.02	0.02	0.02	0.29
Ti	4.91	5.38	2.35	2.58	1.47	1.51	1.40	1.48	1.46	2.31	2.28	2.31	2.34	2.33	1.19
Al	0.20	0.75	1.41	1.06	1.25	1.23	1.03	1.25	1.25	1.38	1.41	1.39	1.44	1.36	0.35
Fe^{+3}	5.87	4.44	9.84	9.72	11.75	11.71	12.06	11.75	11.77	9.95	9.98	9.92	9.83	9.93	12.68
Cr	0.00	00.00	0.00	0.00	0.01	0.00	0.02	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00
Fe^{+2}	11.79	12.28	8.70	9.37	8.22	8.22	8.92	8.20	8.17	9.31	9.14	9.36	9.32	9.29	8.90
Mn	1.14	1.04	0.19	0.25	0.24	0.26	0.34	0.23	0.25	0.37	0.23	0.45	0.42	0.44	0.38
Mg	0.00	00.00	1.48	0.92	1.04	1.04	0.18	1.07	1.06	0.64	0.93	0.51	0.62	0.58	0.00
Са	0.04	0.09	0.00	0.08	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.02	0.00	0.05	0.21
Toplam	24.00	24.01	24.00	24.01	24.01	23.99	24.00	24.00	23.99	23.99	24.00	23.99	23.99	24.00	24.00
Usp	0.20	0.20	0.19	0.20	0.20	0.31	0.31	0.31	0.32	0.32	0.16	0.16	0.16	0.03	0.03
Fe ⁺² ve Fe ⁺³ ayrın opk: opak mineral	n stokic ; kpir: k	metrik ol	larak hes csen.	aplanmi	ştır. Forn	nül 6 oks	ijen üze	rinden he	saplanm	uştır. Usj	p oranı I	indsley	ve Spend	cer (1982	.)'a göre hesaplanmıştır. Kısaltmalar

sonuçları
analiz
roprob
mik
lerin
oksit
Ъ-Ті
ait F
clara :
dayk
trakitik
yaşlı
Eosen
Н6.
Tablo
Ek

	Foidli	V. Breş								Foidli B1	reşik Lav								Foid	li Dayk ve	Sil
Örnek	601	601	cy-17	cy-17	cy-17	<u>cy-17</u>	<u>cy-18</u>	<u>cy-18</u>	<u>cy-18</u>	<u>cy-18</u>	<u>cy-18</u>	220	220	220	220	220	721	721	<u>603</u>	<u>603</u>	603
Mineral	opk	opk	opk- 1	opk- 2	opk -3	opk- 4	opk -1	opk- 2	opk-3	opk -4	opk- 5	opk -1	opk- 2	opk-3	opk- 4	opk- 5	opk- 1	opk-2	opk- 1	opk- 2	opk- 3
	ink	ink	mik	kpir iç 2	in an-4	mik	mik	mik	mik	mik	mik	kpir iç 3	mik	mik	mik	mik	kpir iç 2	mik	mik	mik	kpir iç 3
SiO_2	0.05	1.18	0.10	0.07	0.09	0.08	0.09	0.07	0.11	0.04	0.07	0.10	0.16	0.65	0.12	6:59	0.03	0.02	0.11	0.04	0.11
TiO_2	3.76	5.04	3.23	3.40	3.33	3.31	4.24	4.33	4.21	3.25	5.26	5.18	5.98	8.92	9.31	8.23	3.63	9.23	1.93	5.76	1.78
Al_2O_3	9.12	8.42	10.10	10.22	10.17	9.97	8.83	8.99	8.83	10.04	10.24	8.89	7.31	5.09	7.02	42.74	5.37	2.93	3.98	4.20	1.93
Cr_2O_3	0.11	0.00	0.27	0.18	0.10	0.28	0.08	0.01	0.12	0.18	0.10	0.10	0.05	0.00	0.02	0.04	0.06	0.00	0.00	0.00	0.06
FeO	73.13	71.30	69.80	70.22	68.69	69.13	70.51	71.89	70.44	69.36	69.57	75.18	76.63	71.48	72.37	38.16	78.30	76.60	79.14	76.15	83.17
MnO	0.35	0.45	0.49	0.49	0.53	0.40	0.43	0.49	0.51	0.44	0.46	0.50	1.14	0.67	1.46	0.57	0.50	0.52	5.34	0.95	3.79
MgO	6.76	6.88	10.59	10.05	10.45	10.59	9.25	9.29	9.55	10.74	8.68	5.10	2.49	1.43	1.87	1.33	5.08	2.24	0.42	5.71	0.32
CaO	0.16	0.86	0.05	0.06	0.03	0.12	0.22	0.05	0.26	0.08	0.20	0.04	0.19	0.27	0.23	1.39	0.08	0.06	0.18	0.04	0.32
Toplam	93.44	94.12	94.63	94.69	94.59	93.88	93.65	95.12	94.03	94.13	94.58	95.09	93.95	88.51	92.40	99.05	93.05	91.60	91.10	92.85	91.48
Si	0.01	0.33	0.03	0.02	0.02	0.02	0.03	0.02	0.03	0.01	0.02	0.03	0.05	0.20	0.04	1.60	0.01	0.01	0.03	0.01	0.03
Ti	0.79	1.06	0.65	0.69	0.67	0.67	0.88	0.88	0.87	0.66	1.08	1.09	1.31	2.12	2.09	1.50	0.79	2.13	0.45	1.26	0.41
Al	3.02	2.77	3.20	3.25	3.23	3.18	2.87	2.88	2.85	3.19	3.29	2.94	2.51	1.89	2.47	12.21	1.84	1.06	1.45	1.44	0.71 J
Fe^{+3}	11.34	10.46	11.38	11.29	11.36	11.37	11.31	11.31	11.33	11.43	10.48	10.79	10.76	9.47	9.26	0.00	12.55	10.67	13.59	12.01	14.38
Cr	0.02	0.00	0.06	0.04	0.02	0.06	0.02	0.00	0.03	0.04	0.02	0.02	0.01	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.02
Fe^{+2}	5.84	6.16	4.31	4.54	4.37	4.29	4.94	5.01	4.81	4.23	5.40	6.86	7.93	9.38	8.85	0.00	6.46	8.95	6.83	6.55	7.20
Mn	0.08	0.11	0.11	0.11	0.12	0.09	0.10	0.11	0.12	0.10	0.11	0.12	0.28	0.18	0.37	0.12	0.12	0.13	1.40	0.23	1.00
Mg	2.83	2.86	4.24	4.04	4.19	4.28	3.80	3.76	3.90	4.32	3.53	2.14	1.08	0.67	0.84	0.48	2.20	1.02	0.19	2.48	0.15
Ca	0.05	0.26	0.01	0.02	0.01	0.04	0.07	0.02	0.08	0.02	0.06	0.01	0.06	0.09	0.07	0.36	0.02	0.02	0.06	0.01	0.11
Toplam	24.00	24.00	23.99	24.00	23.99	24.00	24.02	23.99	24.02	24.00	23.99	24.00	23.99	24.00	23.99	16.28	24.00	23.99	24.00	23.99	24.01
Usp	0.01	0.01	0.10	0.10	0.10	0.10	0.13	0.13	0.12	0.10	0.16	0.16	0.19	0.29	0.30	0.02	0.02	0.17	0.12	0.08	0.10
Fe ⁺² ve Fe ⁺ onak miner	³ аугіт al: knir	1 stokic : klinor	metrik	olarak he	saplann Isim. mi	uştır. Fo k: mikro	rmül 6 o lit.	ksijen üz	cerinden	hesaplan	ımıştır. U	Jsp oranı	Lindsley	/ ve Spe	ncer (198	32)'a göı	re hesapl	lanmıştır	. Kısaltr	nalar: oț	ık:
-	-																				

Ek Tablo H7. Miyosen yaşlı foidli volkanik breş, foidli breşik lav ve foidli dayk ve sile ait Fe-Ti oksitlerin mikroprob analiz sonuçları

	_				Eose	en yaşlı 1	BTB Ta	kımı				
						Volkan	ik breş					
Örnek No	114	118	240	250	469	496	550	553	569	594	596	647
Doğu	0526296	0526278	0555450	0549687	0516485	0511785	0499653	0502618	0506197	0493148	0493431	0526039
Kuzey	4529420	4531501	4536133	4536520	4528180	4545020	4536738	4542459	4536825	4540187	4538929	4536906
SiO ₂	43.46	44.93	56.8	53.76	44.26	45.49	47.02	44.18	50.02	51.85	48.02	50.29
TiO ₂	1.41	1.68	0.78	0.79	0.69	0.80	0.78	0.84	0.80	0.89	0.83	0.79
Al_2O_3	17.16	17.38	19.89	18.20	12.56	16.01	11.60	15.20	12.60	16.66	15.26	14.37
Fe ₂ O ₃	10.5	11.8	3.1	7.48	7.74	10.15	10.86	9.06	10.05	8.18	9.43	9.45
MnO	0.2	0.2	0.0	0.11	0.18	0.18	0.18	0.17	0.18	0.10	0.16	0.18
MgO	4.29	5.67	0.62	2.82	5.86	6.57	10.64	8.65	7.36	3.27	5.47	6.21
CaO	10.97	11.7	5.13	8.43	14.55	5.23	12.13	5.97	10.77	7.78	7.52	8.88
Na ₂ O	2.4	2.01	3.66	3.15	1.96	4.15	1.63	3.84	2.27	3.27	4.28	2.84
K ₂ O	3.0	1.3	5.7	3.04	1.79	2.99	1.66	2.02	3.00	3.35	3.13	3.20
P_2O_5	0.58	0.68	0.62	0.32	0.29	0.32	0.33	0.29	0.33	0.42	0.37	0.35
AK	5.7	2.3	3.4	1.6	9.6	7.8	2.70	9.5	2.2	3.9	5.2	3.00
Toplam	99.69	99.64	99.73	99.70	99.48	99.69	99.53	99.72	99.58	99.67	99.67	99.56
Zr	83.6	81.9	104.7	80.6	54.3	56.4	54.10	71.7	69.9	101.6	73.4	71.90
Y	22.3	24.2	25.2	17.9	13.4	15.7	16.20	17.3	18.1	23.2	17.5	17.60
Sr	1164.8	1108.2	758.2	740.9	774.9	215.7	696.30	192.5	687.4	678.1	863.2	752.00
U	1	0.8	3.2	1.7	1.5	1.5	1.60	0.9	1.7	1.9	2.0	1.80
Rb	54.0	24.8	107.9	90.8	40.9	57.4	31.90	33.6	72.9	71.4	67.1	87.40
Th	3.6	2.9	11.3	6.8	4.5	5.6	4.90	3.3	6.9	6.1	5.9	8.60
Та	1	1.1	0.5	0.2	< 0.1	< 0.1	0.20	0.4	0.3	0.4	0.3	0.30
Pb	6.9	3.3	6.4	4.0	4.2	5.5	4.80	6.3	1.6	1.9	6.6	1.70
Zn	58	61	41	63	56	63	52.00	52	57	64	56	56.00
Cu	59.1	132.0	31.4	73.8	112.3	118.2	95.10	82.2	154.8	73.6	117.7	113.00
Ni	7.3	20.4	7.4	6.1	256.3	24.6	98.70	46.6	41.3	15.3	26.6	57.60
Со	31.1	38.1	5.8	18.7	43.1	33.0	48.20	29.1	39.9	24.2	30.6	37.10
Ва	413	452	743	455	339	428	300.00	481	374	433	402	443.00
Nb	17.8	21.4	7.6	6.1	3.9	3.2	3.20	4.8	4.0	5.8	4.5	4.40
Hf	2.7	2.3	2.5	2.1	1.6	1.5	1.60	2.0	2.4	3.3	2.1	2.10
W	< 0.5	<0.5	0.9	0.7	<0.5	0.6	<0.5	<0.5	1.2	<0.5	0.5	0.60
Ku	0	0	1.59	2.86	0.00	0.00	0.00	0.00	0.00	0.29	0.00	0.00
Or	25.14	12.62	39.52	18.33	10.87	18.03	10.03	12.30	18.02	20.16	18.79	19.27
Ab	3.77	18.48	33.00	26.65	4.72	20.73	12.71	20.11	18.06	27.67	19.56	22.91
An	29.43	37.05	19.96	26.36	20.04	16.04	19.32	18.09	15.18	20.70	13.04	16.83
Di	19.12	15.42	1.15	11.12	41.01	6.39	31.39	7.81	29.30	12.52	17.96	20.38
Нр	0.00	0.00	1.94	6.35	0.00	0.00	0.00	0.00	0.00	7.17	0.00	0.00
Ol	5.27	8.96	0.00	0.00	2.08	15.58	16.61	19.65	8.93	0.00	9.00	9.58
Lö	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Nf	11.42	0.85	0.00	0.00	6.43	7.80	0.59	6.71	0.62	0.00	9.02	0.61
Ilm	1.77	2.07	0.87	1.50	1.31	1.52	1.48	1.60	1.52	1.69	1.58	1.50
Mt	2.76	3.04	0.72	3.80	2.25	4.42	3.15	2.62	4.38	4.15	4.10	4.12
Ap	1.32	1.52	1.25	0.74	0.67	0.74	0.76	0.67	0.76	0.97	0.86	0.81
Mg#	28.99	32.51	16.62	27.38	43.09	39.29	49.49	48.84	42.27	28.56	36.71	39.65

Ek Tablo I. Tersiyer yaşlı volkanitlerin ana (%) ve iz (ppm) element analizleri ve CIPW normatif mineralojik (%) bileşimleri

 $Fe_2O_3^*, Fe_2O_3 \text{ cinsinden toplam demir. A.K. (Ateşten Kayıp): Toplam uçucu içeriği. Mg#= 100 X MgO / (MgO + Fe_2O_3^*) Since$

CIPW hesaplamalarında Fe₂O₃ / FeO oranı Le Maitre vd. (1989)'ne göre alınmıştır. Ku: Kuvars, Or: Ortaklas, Ab: Albit

	_]	Eosen ya	şlı BTB	Takımı				
	Volkar	ik breş			1	Yastık la	IV			Bazal	tik lav
Örnek No	752	782	301	363	366	373	408	409	637	111	141
Doğu	0539145	0529312	0543606	0533804	0534089	0537907	0526488	0526516	0524926	0526265	0522208
Kuzey	4527476	4529640	4543290	4549273	4548450	4547858	4543642	4543014	4543649	4529178	4531122
SiO ₂	43.56	42.95	46.26	46.99	46.53	45.7	48.93	48.03	46.53	54.17	51.09
TiO ₂	0.91	1.96	0.74	0.63	0.69	0.66	0.64	0.77	0.70	0.96	0.78
Al_2O_3	16.16	17.21	11.58	10.35	11.77	10.64	11.16	12.46	10.98	17.84	15.11
Fe ₂ O ₃	9.81	11.93	11.14	10.58	11.16	10.7	9.87	10.43	11.20	6.8	8.75
MnO	0.13	0.21	0.18	0.17	0.18	0.2	0.16	0.18	0.18	0.2	0.14
MgO	1.01	6.81	11.22	13.18	11.74	12.34	11.21	10.85	12.97	2.22	5.75
CaO	12.33	11.57	11.77	11.18	10.85	11.2	9.83	10.73	11.09	5.54	8.21
Na ₂ O	0.02	2.35	1.49	1.53	1.43	1.47	1.79	1.95	1.59	2.49	2.88
K ₂ O	0.12	0.88	2.18	1.87	2.05	1.8	2.25	2.40	1.63	7.2	3.23
P_2O_5	0.09	0.34	0.34	0.25	0.30	0.29	0.29	0.33	0.29	0.42	0.36
AK	15.80	3.4	2.60	2.70	2.80	4.6	3.50	1.40	2.30	1.7	3.40
Toplam	99.94	99.61	99.50	99.43	99.50	99.57	99.63	99.53	99.46	99.56	99.70
Zr	61.20	71.8	50.10	41.50	45.80	44.3	54.80	57.10	52.30	164.5	80.60
Y	17.00	21.0	14.50	12.60	13.60	14.2	14.60	16.10	14.70	26.5	18.20
Sr	54.40	766.2	675.00	465.40	616.60	551.7	435.50	618.40	664.40	2280.6	670.80
U	0.30	0.7	1.40	1.00	1.20	0.9	1.30	1.40	1.00	2	2.40
Rb	2.30	12.7	43.70	45.80	39.40	44.1	54.10	60.20	32.70	141.0	79.60
Th	1.40	3.1	4.90	3.80	4.90	3.3	5.30	5.60	3.80	7.0	7.10
Та	0.20	0.8	0.10	0.10	0.10	0.2	0.20	0.20	0.20	1.9	0.30
Pb	1.20	4.5	5.70	3.40	5.20	4.9	4.50	3.70	4.80	5.7	5.90
Zn	45.00	64	57.00	52.00	55.00	54	50.00	53.00	55.00	58	48.00
Cu	49.00	115.7	123 50	108 80	123 30	98.0	95 40	111.60	104 10	38.6	128 50
Ni	4 70	15.9	92 50	139.70	107 50	112.1	89.60	89.60	123 70	31	28.60
Co	26.00	43.0	53.40	55 30	54.80	52.3	44 10	47.30	57.20	15.7	28.80
Ba	12.00	373	303.00	224.00	268.00	22.5	285.00	315.00	204.00	807	470.00
Nh	3.00	127	2 20	1 70	200.00	1.0	2 50	3 50	2 20	34.3	4/0.00
NU LIF	1.80	2.2	1.20	1.70	2.10	1.9	2.30	1.50	2.20	4.5	4.40
111 W/	-0.5	2.5	0.60	0.50	0.50	-0.5	<0.5	-0.5	<0.5	4.2	2.50
W Ku	12.91	<0.3	0.00	0.50	0.30	<0.3	<0.3	<0.5	<0.3		<0.3
Ku Or	0.71	5.40	13 10	11.27	12.33	16.85	13.51	14.47	0.00	50.13	10.00
Ab	0.17	12 37	7 70	11.27	12.55	10.85	15.51	14.47	9.05	17.87	24.37
An An	13 65	33.67	18.36	15.74	10.52	18.53	15.15	12.41	17.00	15.22	18.58
All	45.05	17.74	20.66	20.60	19.55	20.90	25.20	26.79	20.40	2 00	16.30
Di	(21	17.74	30.00	0.09	20.20	29.89	23.20	20.78	20.40	0.00	5.77
Нр	0.21	0.00	0.00	0.00	0.00	0.00	12.70	0.00	0.00	0.00	5.77
01	0.00	14.03	18.19	21.34	20.74	17.07	13.79	18.24	22.18	3.63	4.79
LO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Nt	0.00	4.07	2.66	1.02	0.32	2.68	0.00	2.21	0.89	2.71	0.00
Ilm	1.73	3.72	1.41	1.20	1.31	0.86	1.22	1.46	1.33	1.09	1.48
Mt	2.13	3.47	3.23	3.07	3.23	2.90	2.86	3.03	3.25	1.61	4.44
Ap	0.21	0.79	0.79	0.58	0.70	0.68	0.67	0.76	0.67	0.86	0.83
Mg#	9.33	36.34	50.18	55.47	51.27	53 56	53 18	50.99	53.66	24.61	39.65

	-				Eose	en yaşlı 1	BTB Ta	kımı				
						Bazal	tik lav					
Örnek No	260	331	350	387	463	511	516	537	540	661	665	681
Doğu	0535860	0540510	0538866	0531121	0516607	0512110	0506243	0511300	0511864	0532358	0531965	0536162
Kuzey	4533175	4539979	4542363	4540196	4534451	4538203	4542998	4528412	4526481	4529724	4531428	4533497
SiO ₂	51.03	46.51	47.30	49.10	48.40	53.53	47.64	51.26	52.81	46.83	55.78	52.49
TiO ₂	0.89	0.63	0.71	0.86	0.77	0.57	0.77	0.79	0.77	1.08	0.60	0.82
Al_2O_3	18.30	10.12	11.32	16.98	13.09	20.57	13.21	14.59	15.40	17.22	18.67	18.19
Fe ₂ O ₃	8.26	11.0	10.82	9.20	9.40	5.84	10.09	9.08	8.41	11.32	5.47	7.80
MnO	0.18	0.2	0.19	0.19	0.17	0.12	0.17	0.13	0.13	0.18	0.22	0.17
MgO	3.22	13.97	11.34	5.17	8.48	1.82	9.08	7.08	6.70	5.41	1.24	2.89
CaO	7.60	11.31	10.97	8.08	9.79	8.47	9.30	8.78	8.40	10.33	5.16	6.88
Na ₂ O	3.36	1.45	2.20	2.97	3.28	3.04	2.95	1.79	2.79	2.19	4.27	3.41
K ₂ O	4.31	2.0	2.52	3.10	2.30	2.82	1.60	4.88	1.78	2.44	5.28	4.63
P_2O_5	0.49	0.32	0.35	0.37	0.38	0.30	0.30	0.34	0.33	0.40	0.34	0.49
AK	2.00	2	1.80	3.70	3.60	2.70	4.50	1.00	2.20	2.20	2.70	1.90
Toplam	99.64	99.48	99.52	99.72	99.66	99.78	99.61	99.72	99.72	99.60	99.73	99.67
Zr	97.40	46.2	53.10	83.80	68.80	93.20	56.40	30.50	92.30	61.90	127.20	109.30
Y	21.40	13.9	14.10	18.00	16.60	15.50	16.30	7.20	15.20	18.80	22.80	22.70
Sr	935.60	650.2	692.80	655.80	730.80	665.50	415.00	230.30	610.60	1059.0	871.20	921.10
U	2.40	1.3	1.40	2.20	1.80	2.20	1.20	0.70	2.50	1.30	3.10	2.60
Rb	96.00	43.8	64.20	79.20	63.90	81.40	16.10	46.90	49.40	51.30	129.60	102.70
Th	7.90	4.7	5.30	8.10	7.50	8.00	6.60	2.50	6.80	4.80	11.40	10.40
Та	0.40	0.1	0.20	0.50	0.20	0.50	0.20	0.20	0.40	0.30	1.30	0.50
Pb	4.60	2.9	8.10	3.50	3.20	3.30	2.20	1.30	25.30	3.80	2.70	4.20
Zn	59.00	53	48.00	55.00	41.00	41.00	51.00	37.00	40.00	28.00	23.00	68.00
Cu	99.80	99.2	92.40	53.30	71.50	36.60	41.00	124.40	27.60	269.20	43.10	64.10
Ni	6.90	143.4	100.90	18.80	53.00	6.20	70.10	50.70	25.50	26.50	1.60	5.20
Со	21.90	58.8	47.90	26.50	37.40	12.40	37.10	10.90	28.30	34.20	10.20	18.40
Ва	657.00	287	356.00	536.00	442.00	415.00	351.00	198.00	361.00	454.00	641.00	692.00
Nb	8.30	2	2.80	7.10	4.90	5.40	3.20	1.90	6.20	3.70	12.90	8.10
Hf	2.70	1.4	1.50	2.50	2.10	2.40	1.60	0.90	2.40	1.80	3.50	2.70
W	0.50	<0.5	0.60	<0.5	<0.5	0.90	0.50	< 0.5	1.20	< 0.5	< 0.5	0.50
Ku	0.00	0	0.00	0.00	0.00	4.30	0.00	0.00	2.79	0.00	0.00	0.00
Or	25.98	17.74	15.18	18.76	13.96	17.03	9.75	28.98	10.81	14.78	31.71	27.94
Ab	22.76	7.65	7.99	23.67	18.37	25.72	22.03	15.15	23.61	15.78	34.81	26.51
An	21.87	16.04	13.42	23.63	14.02	33.97	17.93	17.29	24.09	29.77	15.93	20.36
Di	10.56	30.94	31.36	11.58	25.94	5.19	21.33	19.35	12.56	15.82	6.38	8.89
Нр	0.00	0.00	0.00	0.00	0.00	5.85	0.00	0.47	17.27	0.00	0.00	0.00
Ol	5.99	19.18	17.94	10.56	11.72	0.00	16.67	10.04	0.00	12.72	2.18	5.79
Lö	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Nf	3.07	4.00	5.76	0.79	5.08	0.00	1.59	0.00	0.00	1.49	0.72	1.27
Ilm	1.69	0.80	1.35	1.63	1.46	1.08	1.46	1.50	1.46	2.05	1.14	1.56
Mt	4.19	2.92	3.13	4.00	4.09	2.96	2.93	4.61	3.65	3.28	3.18	3.96
Ap	1.14	0.74	0.81	0.86	0.88	0.70	0.70	0.79	0.76	0.93	0.79	1.14
Mg#	28.05	55.92	51.17	35.98	47.43	23.76	47.37	43.81	44.34	32.34	18.48	27.03

$$\label{eq:eq:second} \begin{split} Fe_2O_3^*, Fe_2O_3 \mbox{ cinsinden toplam demir. A.K. (Ateşten Kayıp): Toplam uçucu içeriği. $$ Mg#= 100 X MgO / (MgO + Fe_2O_3^*) $$ CIPW hesaplamalarında Fe_2O_3 / FeO oranı Le Maitre vd. (1989)'ne göre alınmıştır. Ku: Kuvars, Or: Ortaklas, Ab: Albit$$

					Eose	en yaşlı İ	BTB Ta	kımı				
					Ba	ızaltik I	Dayk ve	Sil				
Örnek No	46	52	121	139	179	251	315	337	346	371	399	428
Doğu	0535495	0538399	0526680	0522133	0524059	0546090	0538299	0541764	0538645	0537211	0530922	0528664
Kuzey	4550645	4549792	4532003	4531137	4532839	4536945	4541137	4547630	4544404	4547652	4537279	4536033
SiO ₂	46.97	47.47	45.7	48.36	42.72	51.77	55.92	48.40	47.95	46.09	50.30	43.74
TiO ₂	0.82	0.75	1.69	0.90	1.82	0.85	0.68	0.78	0.79	0.71	0.81	2.09
Al_2O_3	14.00	12.99	16.72	17.69	14.35	17.74	17.66	14.20	13.10	11.87	19.07	16.64
Fe ₂ O ₃	10.50	9.81	11.11	9.72	10.48	7.05	5.04	10.81	11.01	10.64	7.73	10.86
MnO	0.17	0.15	0.19	0.19	0.16	0.13	0.19	0.18	0.19	0.17	0.16	0.19
MgO	9.53	9.58	5.36	3.13	9.24	2.86	1.27	7.79	8.67	10.75	2.78	5.60
CaO	9.00	9.23	10.41	8.50	13.19	4.18	2.54	10.04	11.18	9.53	7.47	10.31
Na ₂ O	2.05	1.88	2.46	3.47	1.18	4.40	5.39	2.05	1.92	1.69	3.25	3.03
K ₂ O	3.04	2.60	2.15	2.26	1.48	5.53	6.49	2.99	2.91	2.33	4.25	1.65
P_2O_5	0.40	0.34	0.6	0.38	0.41	0.58	0.30	0.39	0.35	0.31	0.49	0.87
AK	3.10	4.80	3.2	5.10	4.60	4.60	4.30	1.90	1.50	5.40	3.30	4.70
Toplam	99.58	99.60	99.59	99.70	99.63	99.69	99.78	99.53	99.57	99.49	99.61	99.68
Zr	61.50	58.10	96.1	85.10	63.70	94.80	114.30	58.00	54.00	52.00	98.10	107.80
Y	16.40	16.40	25.8	19.90	19.90	19.90	22.90	14.00	14.50	14.30	20.10	27.30
Sr	712.4	526.6	975	759.5	606.30	706.70	331.20	689.60	743.00	511.00	1190.6	1140.4
U	1.60	1.30	1.1	1.30	0.60	2.90	3.10	1.50	1.30	1.10	2.40	1.00
Rb	75.00	62.40	48.7	46.50	20.90	140.40	148.90	68.80	68.50	54.60	110.10	42.10
Th	4.70	6.20	4.5	4.30	2.60	9.60	11.20	5.20	5.10	4.40	9.00	3.40
Та	0.10	0.10	1.3	0.50	0.60	0.10	0.20	0.10	0.10	0.10	0.30	1.90
РЬ	8.30	8.90	7.4	5.20	3.70	12.50	22.10	2.20	4.80	5.20	13.70	4.80
Zn	60.00	53.00	51	77.00	55.00	68.00	79.00	60.00	53.00	57.00	64.00	65.00
Cu	153.80	114.20	61.2	168.30	99.40	143.30	14.10	155.40	139.20	122.00	184.70	69.40
Ni	80.90	61.20	9.4	11.00	27.40	4.70	0.70	43.50	41.20	84.10	11.20	10.60
Со	43.50	40.00	35.1	25.30	40.90	14.40	6.30	40.10	45.20	47.50	18.90	32.30
Ва	388.0	326.0	454	416.0	240.00	557.00	571.00	388.00	349.00	295.00	661.00	288.0
Nb	4.20	3.00	24	12.00	13.20	5.50	6.40	2.90	2.50	2.10	7.30	34.90
Hf	2.00	1.60	2.7	2.30	2.40	2.30	3.00	1.40	1.70	1.50	2.90	2.90
W	0.50	0.50	0.5	0.50	0.50	0.70	1.30	0.60	0.50	0.50	0.80	< 0.5
Ku	0.00	0.00	18.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Or	18.26	15.66	17.72	13.72	8.96	33.12	38.79	17.96	17.49	13.99	25.62	9.97
Ab	13.72	15.91	30.08	28.21	3.76	26.15	32.34	16.04	9.71	14.15	22.76	16.00
An	19.87	19.18	15.69	25.84	29.38	12.10	4.61	20.57	18.39	17.81	24.64	26.82
Di	17.96	19.80	0.00	11.65	27.12	4.09	5.05	21.73	28.44	22.25	7.85	15.52
Hp	0.00	2.30	8.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ol	17.01	16.19	0.00	7.16	14.92	6.26	2.37	12.87	14.23	19.87	5.92	11.55
Lö	0.00	0.00	3.76	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Nf	1.97	0.00	2.08	0.62	3.37	6.00	7.19	0.71	3.54	0.08	2.57	5.22
Ilm	1.56	1.42	2.86	1.71	3.46	1.61	1.29	1.48	1.50	1.35	1.54	3.97
Mt	4.57	2.84	1.34	4.23	2.28	4.09	2.93	4.70	3.19	3.09	3.93	3.15
Ap	0.93	0.79	32.54	0.88	0.95	1.34	0.70	0.90	0.81	0.72	1.14	2.02
Mg#	47.579	49.407	18.45	24.358	46.856	28.860	20.127	41.882	44.055	50.257	26.451	34.022

$$\label{eq:eq:second} \begin{split} Fe_2O_3^*, Fe_2O_3 \mbox{ cinsinden toplam demir. A.K. (Ateşten Kayıp): Toplam uçucu içeriği. $$ Mg#= 100 X MgO / (MgO + Fe_2O_3^*) $$ CIPW hesaplamalarında Fe_2O_3 / FeO oranı Le Maitre vd. (1989)'ne göre alınmıştır. Ku: Kuvars, Or: Ortaklas, Ab: Albit$$

					Eose	en yaşlı İ	BTB Ta	ıkımı				
					Ba	ızaltik I	Dayk ve	Sil				
Örnek No	446	449	477	508	572	620	622	630	642	659	756	801
Doğu	0520065	0524615	0512213	0511832	0506445	0533804	0533687	0532334	0526126	0533206	0540772	0535498
Kuzey	4532356	4530979	4523830	4536888	4534684	4541129	4540905	4538377	4539148	4530266	4527742	4550718
SiO ₂	47.27	44.52	47.07	58.54	52.59	52.59	47.58	50.36	43.88	49.49	49.02	47.86
TiO ₂	0.71	1.72	0.89	0.81	0.58	0.58	0.76	0.76	1.43	0.84	0.81	0.88
Al_2O_3	11.75	13.80	17.40	17.00	20.49	20.49	12.25	20.07	14.10	21.12	15.52	15.37
Fe_2O_3	10.00	10.43	10.78	5.96	5.54	5.54	10.80	6.96	11.61	8.14	10.83	9.35
MnO	0.16	0.17	0.17	0.13	0.11	0.11	0.18	0.17	0.18	0.15	0.18	0.16
MgO	10.30	8.36	5.80	1.47	1.54	1.54	10.70	2.45	7.83	2.82	6.03	7.41
CaO	11.14	12.92	7.69	3.50	5.92	5.92	11.00	6.48	11.93	9.95	10.02	7.32
Na ₂ O	1.75	1.71	4.79	4.53	4.49	4.49	1.87	3.79	2.15	2.37	2.59	2.81
K ₂ O	2.20	1.66	0.37	5.76	3.86	3.86	2.83	4.25	1.94	3.62	3.17	4.06
P_2O_5	0.26	0.29	0.24	0.44	0.33	0.33	0.33	0.47	0.45	0.44	0.44	0.53
AK	4.00	4.10	4.50	1.60	4.30	4.30	1.20	3.90	4.10	0.70	1.00	3.80
Toplam	99.54	99.68	99.70	99.74	99.75	99.75	99.50	99.66	99.60	99.64	99.61	99.55
Zr	54.10	61.20	58.80	150.50	113.60	113.60	52.70	93.10	66.30	77.00	59.50	77.40
Y	14.50	18.90	15.80	22.10	17.10	17.10	14.70	20.90	19.10	18.00	15.10	18.40
Sr	495.90	604.6	1167.2	494.90	1123.6	1123.6	683.40	1323.7	776.40	1203.1	965.7	634.9
U	0.90	0.70	1.00	4.20	2.90	2.90	1.20	2.30	0.80	2.10	1.60	2.00
Rb	57.40	31.10	22.50	141.10	113.90	113.90	78.30	114.50	39.30	83.90	70.20	93.80
Th	4.80	3.10	3.80	13.80	10.20	10.20	4.80	8.40	2.60	7.20	6.10	7.50
Та	0.10	0.60	0.30	0.40	0.50	0.50	0.10	0.40	0.80	0.30	0.20	0.30
Pb	6.30	3.10	8.40	9.20	9.00	9.00	3.80	15.90	3.50	4.80	6.00	11.80
Zn	50.00	47.00	35.00	61.00	45.00	45.00	57.00	53.00	53.00	31.00	52.00	56.00
Cu	112.40	108.60	59.10	36.50	38.90	38.90	137.10	178.20	111.80	167.30	161.80	184.50
Ni	103.20	26.00	13.60	1.40	2.10	2.10	94.20	4.80	35.40	12.10	28.80	38.40
Co	49.60	42.60	31.70	8.90	10.10	10.10	46.30	14.30	41.40	19.40	36.00	29.50
Ba	306.00	290.0	87.0	650.00	469.0	469.0	335.00	593.0	327.00	544.0	423.0	524.0
Nb	2.40	10.40	4.30	8.30	7.00	7.00	2.70	7.10	16.90	5.30	3.40	5.60
Hf	1.70	1.80	1.70	4.00	3.00	3.00	1.40	2.60	1.80	2.40	1.70	2.10
W	0.60	<0.5	<0.5	1.80	1.10	1.10	0.50	1.00	0.50	<0.5	1.10	< 0.5
Ku	0.00	0.00	0.00	1.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Or	13.22	10.03	2.26	34.55	23.17	11.98	17.01	25.62	11.76	21.83	19.10	24.43
Ab	12.84	7.40	33.52	38.33	33.50	9.76	7.59	24.66	6.28	17.75	16.50	14.90
An	17.60	24.97	24.85	8.79	24.17	15.05	16.53	24.94	22.95	36.08	21.18	17.12
Di	29.11	30.23	9.86	4.81	2.80	29.24	29.12	3.74	27.28	8.89	21.11	12.84
Нр	0.00	0.00	0.00	4.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ol	16.13	11.40	13.31	0.00	4.45	21.32	17.47	6.43	12.82	6.56	9.88	14.15
Lö	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Nf	1.07	3.83	3.80	0.00	2.43	3.61	4.46	4.02	6.45	1.25	2.94	4.81
Ilm	1.35	3.27	1.69	1.54	1.10	1.29	1.44	1.44	2.72	1.60	1.54	1.67
Mt	2.90	3.03	4.68	3.45	2.81	3.15	3.13	3.54	3.36	3.54	4.71	4.07
Ap	0.60	0.67	0.56	1.02	0.76	0.65	0.76	1.09	1.04	1.02	1.02	1.23
Mg#	50.739	44.492	34.982	19.785	21.751	21.751	49.767	26.036	40.278	25.730	35.765	44.212

 $Fe_2O_3^*$, Fe_2O_3 cinsinden toplam demir. A.K. (Ateşten Kayıp): Toplam uçucu içeriği. Mg#= 100 X MgO / (MgO + $Fe_2O_3^*$) CIPW hesaplamalarında Fe2O3 / FeO oranı Le Maitre vd. (1989)'ne göre alınmıştır. Ku: Kuvars, Or: Ortaklas, Ab: Albit An: Anortit, Di: Diyopsit, Hp: Hipersten, Ol: Olivin, Lö: Lösit, Nf: Nefelin, İlm: İlmenit, Mt: Magnetit, Ap: Apatit.
					Eos	en yaşlı	TT Tak	ımı				
					And	lezitik da	ayk ve d	om				
Örnek No	232	233	302	390	427	432	444	465	494	526	663	675
Doğu	0556943	0556890	0542211	0531996	0528981	0528655	0519935	0516378	0512939	0509909	0532063	0532863
Kuzey	4535462	4535478	4543120	4538175	4536146	4535133	4532887	4532189	4532022	4533170	4530276	4535047
SiO_2	61.19	63.00	54.31	59.14	52.34	55.12	52.69	51.25	51.11	51.86	46.75	55.66
TiO ₂	0.44	0.44	0.98	0.65	0.75	0.78	0.66	0.78	0.53	0.53	0.80	0.70
Al_2O_3	18.16	18.57	17.45	17.77	19.68	18.66	18.50	17.57	19.57	18.23	19.90	16.62
Fe_2O_3	4.19	2.51	7.01	4.49	6.35	5.80	6.80	8.70	5.29	7.63	7.41	7.20
MnO	0.15	0.04	0.17	0.10	0.14	0.11	0.21	0.16	0.11	0.18	0.12	0.16
MgO	0.36	0.42	2.92	1.55	2.00	1.01	3.99	3.57	1.78	2.06	2.67	3.03
CaO	2.49	2.24	3.18	2.10	5.67	4.19	4.03	5.25	5.89	9.20	9.64	5.96
Na ₂ O	4.26	4.38	3.55	4.46	2.16	4.66	3.58	4.53	3.77	2.49	3.05	3.55
K ₂ O	5.76	6.15	6.49	7.40	7.30	5.04	4.97	3.57	4.04	1.83	1.42	4.20
P_2O_5	0.24	0.23	0.56	0.28	0.53	0.48	0.36	0.35	0.32	0.32	0.44	0.28
AK	2.60	1.80	3.10	1.80	2.7	3.90	3.9	4.00	7.4	5.50	7.5	2.30
Toplam	99.84	99.78	99.72	99.74	99.62	99.75	99.69	99.73	99.81	99.83	99.70	99.66
Zr	171.00	138.20	118.80	130.30	103.2	116.00	112.5	133.30	103.6	60.90	70.8	156.80
Y	21.20	16.20	23.90	26.20	20.6	22.60	18.3	20.20	16.2	16.80	15.6	20.20
Sr	510.00	464.80	476.40	954.40	2034.3	771.30	976.4	771.80	486.5	495.10	1330.0	639.50
U	3.00	2.00	3.20	3.10	2.6	3.00	3.3	4.30	2.5	1.10	1.0	4.60
Rb	170.80	172.00	134.20	217.10	163.9	99.70	207.0	151.30	164.9	54.30	29.8	126.90
Th	18.70	16.20	11.80	13.10	9.7	12.00	12.7	13.70	8.0	3.90	7.5	16.40
Та	0.70	0.80	0.60	0.40	0.5	0.60	0.4	0.30	0.4	0.20	0.3	1.10
Pb	2.90	3.90	14.30	18.00	23.5	15.10	18.0	10.90	6.8	3.60	5.8	26.30
Zn	60.00	31.00	82.00	71.00	64	68.00	61	59.00	53	67.00	72	43.00
Cu	13.80	21.50	39.30	21.20	160.0	39.70	83.7	102.20	31.2	18.00	256.2	123.50
Ni	1.00	1.00	0.40	0.60	5.1	1.90	8.1	12.60	2.9	4.90	13.4	16.20
Co	6.50	3.40	14.00	4.70	12.8	11.00	16.0	24.20	9.7	15.90	23.8	17.90
Ba	532.00	557.00	785.00	739.00	707	779.00	554	300.00	428	275.00	307	450.00
Nb	13.30	11.70	11.60	7.40	8.0	9.80	7.0	8.30	6.3	3.20	4.6	13.80
Hf	4.70	4.10	3.40	3.70	2.4	3.20	2.7	3.80	2.7	1.70	2.1	4.70
W	2.30	2.70	0.60	0.90	0.8	0.70	1.4	1.80	0.8	<0.5	0.7	2.00
Ku	8.21	8.68	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.80	0.00	2.72
Or	34.48	36.78	39.01	44.31	43.72	30.44	29.81	21.32	24.24	11.03	8.61	25.18
Ab	36.05	37.06	30.04	36.75	14.91	38.37	30.29	32.84	31.65	21.07	25.81	30.04
An	10.95	9.74	12.18	6.32	22.15	14.79	17.96	16.95	24.36	33.05	36.31	16.83
Di	0.00	0.00	0.08	2.04	2.59	2.58	0.00	5.75	2.40	8.96	7.54	9.02
Нр	2.18	1.43	0.55	0.00	0.00	0.00	2.73	0.00	0.00	8.89	4.26	7.08
Ol	0.00	0.00	7.24	2.75	5.65	2.94	8.58	8.69	4.93	0.00	4.52	0.00
Lö	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Nf	0.00	0.00	0.00	0.54	1.82	0.58	0.00	2.98	0.14	0.00	0.00	0.00
Ilm	0.84	0.84	1.86	1.23	1.42	1.48	1.25	1.48	1.01	1.01	1.52	1.33
Mt	3.04	1.83	4.06	3.26	3.22	3.36	3.45	4.42	2.68	2.22	2.15	4.18
Ар	0.56	0.53	1.30	0.65	1.23	1.11	0.83	0.81	0.74	0.74	1.02	0.65
Mg#	7.912	14.334	29.406	25.662	23.952	14.831	36.979	29.095	25.177	21.259	26.488	29.619

Fe₂O₃*, Fe₂O₃ cinsinden toplam demir. A.K. (Ateşten Kayıp): Toplam uçucu içeriği. Mg#= 100 X MgO / (MgO + Fe₂O₃*) CIPW hesaplamalarında Fe₂O₃ / FeO oranı Le Maitre vd. (1989)'ne göre alınmıştır. Ku: Kuvars, Or: Ortaklas, Ab: Albit

An: Anortit, Di: Diyopsit, Hp: Hipersten, Ol: Olivin, Lö: Lösit, Nf: Nefelin, İlm: İlmenit, Mt: Magnetit, Ap: Apatit.

					Eos	en yaşlı	TT Takı	mı				
	Andezi	tik dayk	ve dom	_			Tr	akitik da	nyk			
Örnek No	682	683	777	158	188	318	335	368	611	619	621	625
Doğu	0536359	0536662	0532162	0525256	0524240	0542058	0537296	0535144	0532519	0533696	0533687	0533596
Kuzey	4533589	4533681	4527273	4533498	4533736	4545777	4535803	4547798	4542840	4541309	4540905	4540529
SiO ₂	55.24	48.42	59.42	64.75	63.76	58.88	58.93	60.18	47.39	62.02	60.61	61.74
TiO ₂	0.57	0.71	0.43	0.46	0.49	0.70	0.59	0.47	0.78	0.38	0.40	0.40
Al_2O_3	18.52	20.37	17.43	16.53	16.85	17.72	18.26	17.87	17.46	17.66	17.38	17.83
Fe_2O_3	5.15	7.2	4.03	3.18	3.65	4.91	4.83	4.20	6.52	2.64	3.52	3.74
MnO	0.18	0.1	0.11	0.09	0.13	0.08	0.13	0.07	0.17	0.03	0.10	0.11
MgO	1.62	2.5	1.10	0.18	0.42	1.89	1.21	1.29	1.33	0.44	0.67	0.55
CaO	4.23	8.79	3.42	0.77	1.08	3.20	1.59	1.74	8.91	0.47	0.52	0.61
Na ₂ O	4.41	2.82	3.63	4.37	4.84	4.41	6.27	3.70	2.46	2.31	0.80	4.02
K_2O	5.24	3.4	5.77	7.32	6.63	5.61	5.11	8.56	4.21	11.68	14.14	9.53
P_2O_5	0.34	0.51	0.25	0.10	0.11	0.34	0.26	0.23	0.57	0.12	0.16	0.18
AK	4.20	4.9	4.20	2.10	1.90	2.00	2.50	1.60	9.90	2.10	1.60	1.10
Toplam	99.70	99.69	99.79	99.85	99.86	99.74	99.68	99.91	99.70	99.85	99.90	99.81
Zr	133.00	82.8	165.50	187.00	187.40	115.50	139.20	167.80	115.90	185.20	176.60	170.50
Y	21.10	18.7	19.80	27.20	26.70	23.60	22.40	21.30	23.50	25.60	21.30	22.60
Sr	803.00	1084.9	574.80	342.00	261.10	650.50	1021.0	243.90	836.80	422.60	513.40	154.70
U	4.00	1.9	4.70	4.00	4.50	2.40	3.20	4.50	2.70	4.30	5.20	2.80
Rb	127.40	62.2	181.70	223.40	189.80	126.40	122.40	164.80	105.40	256.40	327.00	284.00
Th	12.90	8	16.70	18.10	19.60	10.80	12.40	18.30	9.90	20.50	18.70	19.60
Та	0.60	0.4	0.80	0.60	0.60	0.30	0.40	0.80	0.70	0.90	0.80	0.80
Pb	7.80	4	31.30	42.30	29.30	8.40	23.40	12.90	14.70	15.60	20.20	17.40
Zn	46.00	42	75.00	93.00	57.00	77.00	82.00	60.00	69.00	37.00	60.00	66.00
Cu	33.20	77.9	20.70	13.00	11.20	14.50	15.80	14.60	21.20	13.80	10.80	10.60
Ni	1.80	9.7	0.70	0.30	0.40	2.20	0.80	1.10	< 0.1	6.80	3.70	1.00
Co	8.90	17.8	6.60	1.80	1.50	6.00	5.20	5.60	12.90	2.80	3.90	3.70
Ba	599.00	614	457.00	220.00	271.00	702.00	724.00	459.00	722.00	484.00	485.00	469.00
Nb	9.70	5.9	13.20	10.80	10.90	6.60	9.60	11.70	13.30	12.80	12.30	12.50
Hf	3.50	2.2	4.60	5.50	4.90	3.30	3.70	4.10	3.00	5.10	4.40	5.00
W	0.90	1	1.20	2.30	2.00	0.90	0.50	1.30	0.70	0.80	0.90	1.20
Ku	0.00	0	6.96	9.18	7.01	2.00	0.00	0.22	0.00	2.24	0.00	0.00
Or	31.47	26.20	34.46	43.40	39.40	33.73	30.78	50.95	25.46	69.39	83.93	56.68
Ab	36.36	21.73	30.72	36.98	40.95	37.32	49.85	31.31	17.92	19.55	6.77	34.02
An	15.01	34.15	14.04	3.27	4.56	11.70	6.30	6.69	23.87	1.68	1.70	1.90
Di	3.27	6.29	1.21	0.00	0.13	1.76	0.17	0.42	14.15	0.00	0.00	0.00
Нр	0.00	0.00	4.31	1.17	1.91	6.10	0.00	4.10	0.00	1.10	0.48	0.56
Ol	3.82	4.91	0.00	0.00	0.00	0.00	3.02	0.00	0.86	0.00	1.57	1.39
Lö	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Nf	0.52	2.98	0.00	0.00	0.00	0.00	1.74	0.00	1.57	0.00	0.00	0.00
Ilm	1.08	0.85	0.82	0.87	0.93	1.33	1.12	0.89	1.48	0.00	0.76	0.76
Mt	2.99	1.79	2.33	2.31	2.65	2.84	3.51	3.04	2.84	0.00	2.55	2.71
Ap	0.79	1.10	0.58	0.23	0.25	0.79	0.60	0.53	1.32	0.28	0.37	0.42
Mg#	23.93	25.80	21.44	5 36	10.32	27 79	20.03	23 50	16 94	14 27	15 99	12.82

An: Anortit, Di: Diyopsit, Hp: Hipersten, Ol: Olivin, Lö: Lösit, Nf: Nefelin, İlm: İlmenit, Mt: Magnetit, Ap: Apatit.

		Eos	en yaşlı	TT Tal	kımı			Miy	osen yaşl	lı BT Tal	kimi	
			Trakit	ik dayk			Foidli volkanik breş		Foid	lli breşik	lav	
Örnek No	629	689	690	700	704	784	601	CY-17	CY-18	207	218	220
Doğu	0532410	0537377	0537850	0535889	0534792	0528042	0561097	0557779	0557785	0560267	0560053	0559559
Kuzey	4538505	4535724	4536147	4536914	4539141	4531510	4535148	4539108	4539127	4539818	4539593	4539352
SiO ₂	59.24	58.16	59.88	59.31	56.37	55.39	47.92	39.51	39.17	49.63	40.93	44.83
TiO ₂	0.50	0.57	0.52	0.53	0.63	0.63	0.91	1.21	1.2	0.77	0.83	0.90
Al_2O_3	18.69	18.74	18.33	17.64	17.96	17.72	16.60	11.43	11.97	15.59	16.45	15.58
Fe_2O_3	4.38	4.84	4.54	4.40	5.56	5.31	7.78	8.17	8.7	6.58	8.98	7.84
MnO	0.15	0.14	0.10	0.13	0.12	0.16	0.12	0.13	0.2	0.12	0.21	0.15
MgO	0.96	0.95	1.01	1.10	1.82	1.67	4.81	9.17	8.85	4.36	4.70	5.09
CaO	2.40	3.24	2.08	2.29	3.88	2.82	10.00	13.51	13.77	9.84	12.79	10.64
Na ₂ O	4.43	6.73	4.66	4.80	4.38	1.97	3.45	1.41	2.04	3.80	3.68	3.52
K_2O	6.33	3.10	6.22	7.08	6.20	10.15	1.61	1.64	2.3	2.73	2.13	2.31
P_2O_5	0.26	0.26	0.22	0.24	0.37	0.36	0.88	0.84	0.94	0.72	1.11	1.01
AK	2.50	2.90	2.20	2.20	2.40	3.50	5.20	12.10	10	5.20	7.30	7.50
Toplam	99.84	99.63	99.76	99.72	99.69	99.68	99.28	99.12	99.1	99.34	99.11	99.37
Zr	153.90	137.40	142.80	137.20	128.50	98.80	163.70	148.60	166.4	178.70	195.50	182.40
Y	26.60	23.10	24.20	23.20	21.10	19.20	15.80	21.00	23.4	16.80	25.60	20.10
Sr	683.00	1208.6	643.50	586.20	936.30	665.40	2947.8	2298.8	2588.6	2207.8	3085.6	1572.9
U	2.40	3.30	2.80	3.50	2.20	2.70	4.00	4.70	3.9	6.20	8.20	4.80
Rb	178.40	71.00	131.10	153.80	149.00	184.90	131.40	48.30	58.4	31.80	54.00	79.00
Th	17.80	13.00	14.30	13.10	10.90	12.30	16.90	19.60	20.8	23.70	39.30	24.40
Та	0.80	0.60	0.60	0.60	0.80	0.40	0.70	0.90	1.1	1.00	1.30	1.10
Pb	19.70	27.20	18.70	17.80	16.10	18.40	1.70	30.50	25.7	1.70	45.80	22.20
Zn	46.00	85.00	70.00	82.00	73.00	71.00	77.00	67.00	60	73.00	69.00	46.00
Cu	20.30	16.50	9.70	7.10	37.10	6.30	54.70	92.00	74.7	54.80	66.50	68.90
Ni	1.10	0.40	0.30	0.50	2.00	0.50	21.40	67.60	44.2	25.30	5.10	7.00
Co	6.10	5.30	4.10	4.40	9.70	6.60	25.20	35.40	37.4	20.30	27.30	26.30
Ba	564.00	478.00	1124.0	796.00	718.00	703.00	1207.0	2179.0	2635	1423.0	1909.0	1302.0
Nb	12.30	9.90	10.00	9.70	12.90	5.70	21.30	24.10	26.7	27.80	41.60	31.90
Hf	4.40	3.80	4.60	3.80	3.30	2.50	3.80	3.70	3.7	3.40	4.20	4.20
W	1.00	1.60	< 0.5	0.80	0.60	<0.5	<0.5	0.50	<0.5	0.50	0.50	0.50
Ku	2.44	0.00	2.36	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	0.00
Or	37.84	18.68	37.70	42.49	37.22	60.56	10.46	4.60	0.00	17.30	5.60	14.74
Ab	37.49	56.04	39.43	38.33	32.81	12.27	26.98	0.00	0.00	22.55	0.00	12.31
An	10.42	11.59	9.10	5.35	10.74	9.24	24.58	19.14	19.18	16.84	21.31	19.34
Di	0.00	2.62	0.00	3.74	5.20	2.13	16.36	34.56	32.89	22.59	29.45	22.28
Нр	3.65	0.00	3.71	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ol	0.00	2.64	0.00	1.53	3.53	4.30	7.14	10.06	9.45	3.53	4.85	7.04
Lö	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.36	17.24	0.00	6.67	0.00
Nf	0.00	0.49	0.00	1.24	2.30	2.38	1.20	6.46	12.48	5.20	16.87	9.47
Ilm	0.95	1.08	0.99	1.01	1.20	1.20	1.73	2.30	1.64	1.46	1.58	1.71

Mt

Ap

Mg#

3.18

0.60

17.98

2.81

0.60

16.41

3.29

0.51

18.20

3.19

0.56

20.00

 $Fe_2O_3^*$, Fe_2O_3 cinsinden toplam demir. A.K. (Ateşten Kayıp): Toplam uçucu içeriği. Mg#= 100 X MgO / (MgO + $Fe_2O_3^*$) CIPW hesaplamalarında Fe_2O_3 / FeO oranı Le Maitre vd. (1989)'ne göre alınmıştır. Ku: Kuvars, Or: Ortaklas, Ab: Albit An: Anortit, Di: Diyopsit, Hp: Hipersten, Ol: Olivin, Lö: Lösit, Nf: Nefelin, İlm: İlmenit, Mt: Magnetit, Ap: Apatit.

3.22

0.86

24.66

3.07

0.83

23.93

3.38

2.04

38.205

2.36

1.95

52.884

2.50

2.33

50.31

2.86

1.67

39.854

2.61

2.57

34.357

2.28

2.34

39.366

	_				Miyo	sen yaşlı	BI	[Takımı	l		
			Foidli b	reşik lav					Foic	ili dayk v	e sil
Örnek No	234	705	710	714	718	721	_	238	603	805	
Doğu	0557234	0560106	0560005	0560545	0562067	0562262	_	0557305	0561002	0560776	
Kuzey	4534132	4538896	4536644	4536443	4538822	4538318		4538353	4531493	4538418	
SiO ₂	45.94	43.21	47.46	46.27	45.23	46.62	_	48.48	43.14	46.89	
TiO ₂	1.34	1.10	0.84	0.77	0.83	1.01		0.90	0.93	0.87	
Al_2O_3	14.33	14.09	15.57	15.79	18.13	15.99		17.57	15.82	18.25	
Fe_2O_3	7.61	8.50	6.84	7.42	7.31	7.58		5.99	8.21	7.6	
MnO	0.11	0.15	0.12	0.13	0.16	0.14		0.13	0.16	0.2	
MgO	5.79	5.96	5.52	4.22	2.23	4.56		3.42	5.36	2.84	
CaO	10.86	13.91	10.01	9.49	8.74	9.49		7.78	11.81	7.57	
Na ₂ O	2.84	2.47	3.93	2.27	2.74	4.19		3.44	3.75	4.65	
K_2O	1.99	2.41	2.91	2.38	3.27	1.80		2.51	2.46	2.4	
P_2O_5	1.27	0.93	0.84	0.83	0.62	0.89		0.79	0.99	0.88	
AK	7.10	6.50	5.30	9.60	9.90	7.00		8.20	6.70	7	
Toplam	99.18	99.23	99.34	99.17	99.16	99.27	_	99.21	99.33	99.06	
Zr	233.10	187.10	206.60	236.20	258.60	229.50	_	234.40	180.40	277.8	
Y	21.00	23.20	18.50	23.50	24.70	23.90		21.80	20.70	28.6	
Sr	2594.4	2088.8	2107.0	2473.0	3226.2	2271.8		2652.8	2272.1	3984.9	
U	4.80	4.10	5.90	7.50	4.80	7.90		5.20	4.00	6.2	
Rb	68.90	89.90	42.90	62.50	173.40	78.90		59.20	25.00	52.6	
Th	20.20	28.20	27.00	39.40	37.60	40.40		24.40	22.60	36.9	
Та	1.60	1.10	1.30	1.80	2.40	1.60		2.00	1.30	2.4	
Pb	4.80	42.80	5.00	26.10	48.30	17.10		31.50	30.70	38.5	
Zn	80.00	59.00	44.00	53.00	94.00	59.00		93.00	97.00	93	
Cu	73.60	93.60	46.70	55.00	41.70	69.50		51.80	75.10	42.1	
Ni	31.30	9.50	19.30	10.00	3.70	9.70		13.10	13.90	4.7	
Co	25.20	28.20	23.60	23.30	16.40	22.40		17.60	24.80	19.2	
Ba	1940.0	2128.0	1499.0	1956.0	2051.0	1864.0		1873.0	1564.0	2308	
Nb	38.90	27.10	32.40	45.50	59.40	41.20		48.30	32.30	59.8	
Hf	5.90	4.50	4.10	4.30	4.80	5.00		4.60	3.90	4.8	
W	<0.5	0.50	<0.5	0.60	0.50	0.50		0.50	0.70	<0.5	
Ku	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0	
Or	13.36	11.41	18.43	15.66	20.99	12.16		16.36	15.77	19.87	
Ab	19.05	0.00	13.95	19.21	16.18	22.51		29.11	2.42	28.78	
An	19.68	19.37	15.63	25.07	26.68	18.74		24.32	18.45	23.09	
Di	21.61	35.93	23.46	14.22	11.30	18.80		8.05	27.79	8.41	
Нр	0.00	0.00	0.00	5.84	0.00	0.00		2.24	0.00	0.00	
Ol	7.80	4.13	5.43	3.84	4.07	5.60		4.76	4.44	5.16	
Lö	0.00	3.59	0.00	0.00	0.00	0.00		0.00	0.00	0.00	
Nf	2.70	11.32	10.46	0.00	3.79	7.01		0.00	15.88	9.70	
Ilm	2.54	2.09	1.60	1.46	1.58	1.92		1.71	1.77	1.07	
Mt	2.20	2.46	2.97	2.15	3.18	3.29		2.61	3.57	1.95	
Ap	2.94	2.15	1.95	1.92	1.44	2.06		1.83	2.29	1.96	
Mg#	43.209	41.217		36.254	23.375	37.562	_	36.344	39.499	27.28	

 $Fe_2O_3^*$, Fe_2O_3 cinsinden toplam demir. A.K. (Ateşten Kayıp): Toplam uçucu içeriği. Mg#= 100 X MgO / (MgO + $Fe_2O_3^*$) CIPW hesaplamalarında Fe_2O_3 / FeO oranı Le Maitre vd. (1989)'ne göre alınmıştır. Ku: Kuvars, Or: Ortaklas, Ab: Albit An: Anortit, Di: Diyopsit, Hp: Hipersten, Ol: Olivin, Lö: Lösit, Nf: Nefelin, İlm: İlmenit, Mt: Magnetit, Ap: Apatit.

					Foidl	i Bazik Breşik Lav
<u>Örnek No</u>	723	<u>726</u>	<u>728</u>	<u>732</u>	<u>734</u>	2
SiO ₂	38.50	37.46	41.99	44.18	36.80	
TiO ₂	1.39	1.07	1.01	0.84	1.02	
Al_2O_3	14.67	14.38	15.95	16.59	14.91	
Fe ₂ O ₃	9.62	9.21	8.24	8.42	10.28	
MnO	0.16	0.16	0.13	0.16	0.25	
MgO	6.63	6.65	5.15	4.17	6.22	
CaO	13.48	15.51	12.94	10.95	14.97	
Na ₂ O	3.06	1.27	2.73	5.00	2.30	
K_2O	1.22	0.57	2.03	1.11	2.38	
P_2O_5	1.48	1.12	1.15	1.05	1.37	
AK	9.10	11.90	7.90	6.70	8.60	
Toplam	99.31	99.30	99.22	99.17	99.10	
Zr	198.30	132.50	162.50	171.10	157.60	
Y	20.20	19.50	17.60	18.90	27.50	
Sr	2551.6	3158.5	3061.4	3843.3	3257.4	
U	3.10	2.10	4.10	4.70	3.80	
Rb	39.10	52.20	32.80	36.40	41.40	
Th	16.00	12.90	16.90	19.70	27.20	
Та	1.50	1.10	0.90	1.10	1.70	
Pb	25.70	20.10	12.90	18.20	33.00	
Zn	67.00	64.00	40.00	47.00	83.00	
Cu	151.50	91.80	54.00	59.60	90.50	
Ni	15.80	13.40	10.30	6.00	13.70	
Co	32.10	31.70	28.00	24.60	35.00	
Ba	1006.0	606.0	1465.0	1580.0	1656.0	
Nb	37.30	26.30	24.00	25.10	43.70	
Hf	4.90	3.00	4.00	3.70	3.00	
W	0.50	0.50	<0.5	<0.5	0.50	
Ku	0.00	0.00	0.00	0.00	0.00	
Or	3.99	0.00	13.16	7.87	0.00	
Ab	0.00	0.00	2.47	15.20	0.00	
An	22.29	31.60	24.69	18.89	22.68	
Di	29.00	30.70	26.87	24.28	15.54	
Нр	0.00	0.00	0.00	0.00	0.00	
Ol	8.39	8.68	5.70	3.71	13.55	
Lö	3.15	3.04	0.00	0.00	12.05	
Nf	14.03	5.82	11.18	14.69	10.54	
Ilm	2.64	2.03	1.92	1.60	1.94	
Mt	2.78	2.00	2.39	3.67	2.99	
Ap	3.43	2.59	2.66	2.43	3.17	
Mg#	40.800	41.929	38.462	33.122	37.697	

Fe₂O₃*, Fe₂O₃ cinsinden toplam demir. A.K. (Ateşten Kayıp): Toplam uçucu içeriği. Mg#= 100 X MgO / (MgO + Fe₂O₃*) CIPW hesaplamalarında Fe₂O₃ / FeO oranı Le Maitre vd. (1989)'ne göre alınmıştır. Ku: Kuvars, Or: Ortaklas, Ab: Albit An: Anortit, Di: Diyopsit, Hp: Hipersten, Ol: Olivin, Lö: Lösit, Nf: Nefelin, İlm: İlmenit, Mt: Magnetit, Ap: Apatit.

					Eos	en yaşlı	BTB Ta	kimi				
						Volkar	ik breş					
Örnek No	114	118	240	250	469	496	550	553	569	594	596	613
La	59.95	62.40	86.38	21.80	15.40	14.20	17.90	16.70	21.40	21.40	20.80	20.60
Ce	48.48	51.72	64.26	47.20	34.20	34.10	38.70	37.40	45.20	48.20	43.50	41.60
Pr	45.11	48.10	55.26	5.52	3.94	3.91	4.76	4.63	5.60	5.98	5.22	4.96
Nd	37.97	42.19	43.88	23.00	16.50	16.20	19.80	18.70	22.00	25.20	21.10	20.60
Sm	24.20	26.36	25.15	4.60	3.75	3.90	4.34	3.95	4.84	5.18	4.26	4.08
Eu	20.11	21.26	19.31	1.38	1.08	1.19	1.22	1.22	1.39	1.43	1.26	1.28
Gd	17.16	17.75	16.76	3.91	3.31	3.49	3.67	3.71	4.45	4.56	3.98	3.89
Tb	13.45	14.14	13.62	0.62	0.50	0.55	0.55	0.58	0.64	0.73	0.62	0.58
Dy	11.44	11.84	10.84	3.26	2.62	2.97	2.85	3.42	3.31	3.91	3.00	2.99
Ho	9.99	10.11	9.87	0.63	0.53	0.58	0.59	0.62	0.64	0.80	0.63	0.62
Er	9.12	10.16	9.88	1.88	1.47	1.71	1.63	1.77	1.96	2.34	1.71	1.75
Tm	9.27	9.55	10.11	0.30	0.23	0.26	0.25	0.28	0.26	0.36	0.25	0.26
Yb	7.90	8.67	9.44	1.91	1.45	1.60	1.58	1.60	1.66	2.19	1.60	1.78
Lu	7.61	7.87	8.92	0.29	0.21	0.25	0.23	0.26	0.25	0.34	0.26	0.27
(La/Lu) _N	7.88	7.92	9.68	7.80	7.61	5.90	8.08	6.67	8.89	6.53	8.31	7.92
(Yb) _N	20.68	22.05	20.96	7.70	5.85	6.45	6.37	6.45	6.69	8.83	6.45	7.18
(Eu/Eu*) _N	0.97	0.96	0.92	0.97	0.92	0.97	0.91	0.96	0.90	0.88	0.92	0.97

Ek Tablo J. Tersiyer yaşlı volkanitlerin nadir toprak element (NTE) analiz sonuçları

* Kondirit normalize değerleri, Taylor ve McLennan (1985)' den alınmıştır.

					Eosen y	aşlı BTB	Takımı				
	Volkan	ik breş			Y	Yastık la	v			Bazal	tik lav
Örnek No	647	782	301	363	366	373	408	409	637	111	141
La	22.80	17.10	16.50	12.70	15.20	34.33	15.20	17.30	15.30	91.01	20.70
Ce	46.60	40.20	37.20	28.60	34.20	28.00	32.60	36.20	33.20	67.19	42.80
Pr	5.53	5.30	4.46	3.47	4.08	26.13	4.12	4.49	4.07	56.86	5.21
Nd	23.30	23.30	19.70	14.40	17.40	20.53	16.90	19.30	17.00	43.46	21.30
Sm	4.63	5.32	4.21	3.54	3.89	15.19	3.73	3.92	3.46	25.32	4.27
Eu	1.32	1.68	1.23	1.01	1.11	12.53	1.07	1.19	1.13	20.11	1.24
Gd	4.19	5.25	3.55	3.02	3.39	10.75	3.27	3.61	3.35	16.31	3.83
Tb	0.58	0.79	0.53	0.47	0.49	8.10	0.50	0.54	0.49	13.45	0.59
Dy	3.32	4.38	2.77	2.36	2.57	6.59	2.64	3.00	2.55	11.44	3.10
Ho	0.63	0.74	0.53	0.46	0.50	5.99	0.49	0.59	0.53	10.81	0.64
Er	1.70	2.12	1.43	1.28	1.36	5.62	1.44	1.64	1.34	10.72	1.79
Tm	0.28	0.29	0.22	0.21	0.21	5.90	0.20	0.23	0.21	11.24	0.26
Yb	1.80	1.82	1.35	1.35	1.29	5.44	1.34	1.62	1.35	10.20	1.76
Lu	0.27	0.26	0.20	0.19	0.20	4.72	0.22	0.22	0.20	10.50	0.27
(La/Lu) _N	8.77	6.83	8.56	6.94	7.89	7.27	7.17	8.16	7.94	8.67	7.96
(Yb) _N	7.26	7.34	5.44	5.44	5.20	12.97	5.40	6.53	5.44	20.82	7.10
(Eu/Eu*) _N	0.90	0.96	0.95	0.92	0.91	0.97	0.92	0.95	1.00	0.97	0.92

	Eosen yaşlı BTB Takımı											
						Bazal	tik lav					
Örnek No	260	331	350	387	463	511	516	537	540	661	665	681
La	24.50	42.78	17.50	23.60	25.90	19.70	17.80	7.60	14.70	17.80	28.50	26.40
Ce	55.00	34.27	37.60	47.60	55.10	44.30	37.20	15.80	28.90	40.00	58.60	56.00
Pr	6.40	31.02	4.67	5.72	6.38	4.77	4.66	1.83	3.45	4.92	6.94	6.77
Nd	26.00	26.58	19.10	22.90	24.00	18.10	21.10	7.50	14.40	21.40	29.30	27.00
Sm	5.61	16.80	4.07	4.60	4.91	3.91	4.28	1.61	3.12	4.69	5.42	5.55
Eu	1.63	12.41	1.17	1.31	1.34	1.16	1.17	0.43	0.98	1.43	1.56	1.65
Gd	4.86	10.82	3.67	4.10	3.81	3.32	3.86	1.38	3.03	4.39	4.92	5.12
Tb	0.74	8.28	0.51	0.61	0.56	0.52	0.56	0.22	0.45	0.65	0.74	0.76
Dy	3.90	6.72	2.58	3.39	3.04	2.78	2.78	1.10	2.69	3.60	4.11	4.25
Ho	0.79	5.29	0.53	0.68	0.58	0.57	0.59	0.22	0.53	0.64	0.82	0.85
Er	2.24	5.46	1.34	1.77	1.66	1.74	1.67	0.66	1.60	1.97	2.43	2.36
Tm	0.36	5.62	0.19	0.27	0.25	0.28	0.27	0.09	0.23	0.28	0.40	0.35
Yb	2.32	4.88	1.38	1.85	1.61	1.79	1.48	0.64	1.56	1.85	2.47	2.35
Lu	0.33	4.72	0.20	0.27	0.25	0.27	0.25	0.10	0.25	0.27	0.37	0.35
(La/Lu) _N	7.71	9.05	9.08	9.07	10.76	7.57	7.39	7.89	6.10	6.84	8.00	7.83
(Yb) _N	9.35	13.81	5.56	7.46	6.49	7.22	5.97	2.58	6.29	7.46	9.96	9.48
(Eu/Eu*) _N	0.93	0.90	0.91	0.90	0.91	0.96	0.86	0.86	0.96	0.95	0.91	0.93

* Kondirit normalize değerleri, Taylor ve McLennan (1985)' den alınmıştır.

					Eos	en yaşlı	BTB Tal	kımı				
					В	azaltik o	layk ve s	sil				
Örnek No	46	52	121	139	179	251	315	337	346	371	399	428
La	18.00	17.90	70.57	20.00	15.00	28.80	29.10	17.10	15.30	15.80	24.20	28.20
Ce	39.30	38.60	55.59	44.80	36.50	60.20	62.90	38.10	33.90	36.20	54.40	64.30
Pr	4.71	4.69	50.95	5.06	4.71	6.93	7.11	4.43	4.25	4.28	6.14	8.02
Nd	18.40	19.70	43.60	21.00	22.10	27.40	29.30	18.60	18.70	17.50	25.10	35.40
Sm	4.17	4.25	26.84	4.38	4.94	5.27	5.96	3.95	3.93	4.03	5.42	6.78
Eu	1.22	1.22	22.64	1.32	1.55	1.54	1.65	1.18	1.16	1.19	1.61	2.22
Gd	3.65	3.68	18.63	4.02	4.77	4.25	4.76	3.48	3.45	3.44	4.57	6.32
Tb	0.58	0.59	15.00	0.64	0.72	0.67	0.75	0.52	0.53	0.52	0.71	0.97
Dy	2.95	2.82	12.05	3.35	3.80	3.39	3.93	2.55	2.66	2.78	3.88	5.15
Ho	0.60	0.61	10.22	0.71	0.74	0.70	0.80	0.52	0.54	0.55	0.76	1.02
Er	1.70	1.66	10.00	1.97	1.91	2.09	2.43	1.44	1.48	1.45	2.06	2.71
Tm	0.27	0.28	9.83	0.32	0.30	0.32	0.39	0.21	0.22	0.23	0.34	0.38
Yb	1.63	1.61	9.11	2.02	1.79	2.11	2.45	1.44	1.39	1.51	2.05	2.43
Lu	0.27	0.28	8.40	0.33	0.26	0.31	0.40	0.22	0.20	0.21	0.30	0.36
(La/Lu) _N	6.92	6.64	8.40	6.29	5.99	9.64	7.55	8.07	7.94	7.81	8.37	8.13
(Yb) _N	6.57	6.49	22.73	8.15	7.22	8.51	9.88	5.81	5.60	6.09	8.27	9.80
(Eu/Eu*) _N	0.94	0.92	1.00	0.95	0.96	0.96	0.92	0.95	0.94	0.95	0.96	1.02

					Eos	en yaşlı l	BTB Ta	kımı				
					В	azaltik o	layk ve s	sil				
Örnek No	446	449	477	508	572	620	622	630	642	659	756	801
La	15.70	14.20	12.30	33.40	22.30	14.40	15.80	24.90	18.10	21.70	19.50	23.30
Ce	36.00	32.90	26.70	72.20	47.50	30.80	33.30	51.00	40.60	46.70	41.30	48.80
Pr	4.00	4.41	3.40	7.81	5.47	3.96	4.23	5.99	5.23	5.60	4.90	5.91
Nd	17.10	19.70	14.80	29.90	21.30	17.20	19.70	23.40	24.10	24.10	21.60	24.30
Sm	3.88	4.44	3.29	5.79	4.08	3.47	3.91	4.80	4.75	4.80	4.10	4.68
Eu	1.16	1.43	1.01	1.41	1.15	1.07	1.18	1.53	1.55	1.48	1.21	1.38
Gd	3.38	4.56	3.18	4.53	3.55	3.15	3.55	4.49	4.36	4.21	3.78	4.13
Tb	0.52	0.69	0.51	0.74	0.55	0.46	0.51	0.65	0.67	0.61	0.54	0.61
Dy	2.68	3.64	2.91	3.97	3.01	2.48	2.53	3.69	3.65	3.33	2.79	3.26
Ho	0.52	0.71	0.57	0.81	0.60	0.49	0.54	0.69	0.71	0.63	0.52	0.65
Er	1.46	1.87	1.62	2.32	1.83	1.28	1.50	2.00	1.86	1.82	1.64	1.88
Tm	0.24	0.28	0.25	0.39	0.29	0.21	0.21	0.30	0.27	0.28	0.23	0.26
Yb	1.47	1.70	1.50	2.50	1.85	1.41	1.39	2.20	1.55	1.96	1.47	1.80
Lu	0.22	0.24	0.23	0.39	0.29	0.19	0.21	0.30	0.24	0.28	0.22	0.27
(La/Lu) _N	7.41	6.14	5.55	8.89	7.98	7.87	7.81	8.62	7.83	8.05	9.20	8.96
(Yb) _N	5.93	6.85	6.05	10.08	7.46	5.69	5.60	8.87	6.25	7.90	5.93	7.26
(Eu/Eu*) _N	0.96	0.96	0.94	0.81	0.90	0.97	0.95	0.99	1.02	0.99	0.92	0.94

* Kondirit normalize değerleri, Taylor ve McLennan (1985)' den alınmıştır.

					Eos	sen yaşlı	TT Tak	ımı				
					An	dezitik d	layk ve d	lom				
Örnek No	232	233	302	390	427	432	444	465	494	526	663	675
La	29.10	27.30	31.40	30.30	27.20	28.60	22.90	20.60	19.90	13.00	19.60	26.10
Ce	59.20	53.90	68.00	63.80	55.90	58.40	47.80	48.70	42.70	28.90	44.50	54.30
Pr	6.59	5.92	7.80	7.60	6.64	7.03	5.61	5.63	4.97	3.67	4.96	5.96
Nd	26.10	22.20	32.30	28.50	25.20	28.80	22.20	23.20	20.20	15.40	21.80	22.60
Sm	4.65	4.22	6.50	5.57	5.05	5.46	4.28	4.95	3.70	3.20	4.11	4.59
Eu	1.30	1.23	1.81	1.64	1.52	1.59	1.23	1.32	1.07	1.04	1.27	1.17
Gd	3.80	3.27	5.35	5.07	4.51	4.74	3.74	4.31	3.23	3.05	3.63	3.85
Tb	0.64	0.54	0.83	0.76	0.66	0.73	0.59	0.68	0.50	0.50	0.55	0.64
Dy	3.46	2.83	4.28	4.05	3.50	4.01	3.25	3.59	2.92	2.82	2.82	3.65
Ho	0.74	0.57	0.87	0.88	0.68	0.78	0.62	0.78	0.56	0.62	0.58	0.72
Er	2.14	1.65	2.54	2.54	2.06	2.29	1.85	2.16	1.66	1.72	1.76	2.24
Tm	0.38	0.29	0.42	0.40	0.29	0.35	0.30	0.36	0.26	0.28	0.26	0.34
Yb	2.50	1.78	2.56	2.71	2.09	2.30	1.95	2.30	1.63	1.85	1.66	2.33
Lu	0.41	0.29	0.39	0.41	0.31	0.37	0.29	0.35	0.27	0.29	0.25	0.38
(La/Lu) _N	7.37	9.77	8.36	7.67	9.11	8.02	8.20	6.11	7.65	4.65	8.14	7.13
(Yb) _N	10.08	7.18	10.32	10.93	8.43	9.27	7.86	9.27	6.57	7.46	6.69	9.40
(Eu/Eu*) _N	0.92	0.98	0.91	0.93	0.95	0.93	0.92	0.85	0.93	1.00	0.98	0.83

					Eosen	yaşlı T	Г Takın	n				
		Trakitik dayk										
Örnek No	682	683	777	158	188	191	318	335	368	611	619	621
La	27.80	62.13	28.90	38.50	35.60	35.80	29.50	29.10	30.40	30.10	30.60	33.10
Ce	57.50	47.75	61.10	78.50	74.20	74.00	63.00	60.90	62.90	62.00	60.60	61.90
Pr	6.73	41.46	6.36	8.60	8.18	8.23	7.17	6.95	7.14	7.31	7.52	7.48
Nd	27.20	32.49	24.40	31.40	28.70	30.40	29.60	25.70	26.90	30.50	30.80	28.10
Sm	5.12	20.04	4.80	6.04	5.74	6.11	5.93	5.48	5.09	5.78	5.70	5.15
Eu	1.45	16.21	1.23	0.86	0.95	0.91	1.72	1.53	1.40	1.66	1.42	1.35
Gd	4.69	12.68	3.97	4.87	4.76	4.88	4.93	4.54	4.37	5.06	4.74	4.25
Tb	0.71	10.34	0.64	0.79	0.79	0.81	0.79	0.72	0.67	0.76	0.75	0.66
Dy	3.73	7.69	3.61	4.47	4.60	4.50	4.29	3.93	3.76	4.15	4.08	3.73
Ho	0.78	7.29	0.76	0.94	0.94	0.95	0.84	0.82	0.74	0.79	0.87	0.72
Er	2.21	7.07	2.17	2.87	2.83	2.94	2.39	2.37	2.18	2.39	2.76	2.30
Tm	0.34	7.58	0.33	0.48	0.45	0.48	0.40	0.42	0.35	0.35	0.42	0.36
Yb	2.29	6.94	2.35	3.33	3.29	3.27	2.50	2.65	2.34	2.38	2.78	2.53
Lu	0.36	6.82	0.37	0.51	0.50	0.52	0.36	0.41	0.39	0.37	0.46	0.39
(La/Lu) _N	8.02	9.10	8.11	7.84	7.39	7.15	8.51	7.37	8.09	8.45	6.91	8.81
(Yb) _N	9.23	16.36	9.48	13.43	13.27	13.19	10.08	10.69	9.44	9.60	11.21	10.20
(Eu/Eu*) _N	0.89	0.99	0.84	0.47	0.54	0.49	0.95	0.91	0.89	0.92	0.81	0.86

* Kondirit normalize değerleri, Taylor ve McLennan (1985)' den alınmıştır.

		Eo	sen yaşlı	Miyosen yaşlı BT Takımı									
Trakitik dayk								Foidli breşik lav					
Örnek No	625	629	673	689	690	700	601	CY-17	CY-18	207	218		
La	30.60	32.20	41.50	30.90	32.70	29.70	103.20	80.70	243.32	93.10	156.70		
Ce	63.20	61.10	61.90	62.00	62.10	62.30	201.10	172.00	179.10	177.40	306.60		
Pr	7.14	7.64	8.31	6.88	7.66	6.98	20.85	19.32	152.77	18.12	31.48		
Nd	27.20	30.50	31.50	28.30	29.70	29.10	74.50	73.40	112.10	63.00	110.20		
Sm	5.16	5.51	5.48	5.30	5.58	5.30	9.86	11.93	55.45	8.73	15.45		
Eu	1.30	1.57	1.57	1.46	1.57	1.53	2.55	3.02	36.67	2.16	3.82		
Gd	4.21	4.97	4.92	4.39	4.99	4.62	6.19	7.68	28.73	4.75	8.50		
Tb	0.68	0.77	0.73	0.70	0.75	0.71	0.71	0.96	17.76	0.68	1.13		
Dy	3.66	4.11	3.75	3.89	3.97	3.89	3.23	4.53	12.02	3.22	4.93		
Но	0.82	0.89	0.79	0.83	0.86	0.81	0.54	0.74	8.81	0.56	0.83		
Er	2.45	2.49	2.35	2.49	2.42	2.46	1.39	1.82	7.51	1.38	2.10		
Tm	0.38	0.41	0.38	0.38	0.40	0.40	0.21	0.26	7.02	0.25	0.33		
Yb	2.52	2.80	2.44	2.48	2.66	2.64	1.32	1.50	6.65	1.37	2.10		
Lu	0.41	0.45	0.37	0.41	0.39	0.39	0.18	0.23	6.04	0.22	0.29		
(La/Lu) _N	7.13	7.43	11.64	7.82	8.70	7.91	59.52	36.43	40.31	43.93	56.10		
(Yb) _N	9.40	11.29	9.84	10.00	10.73	10.65	5.32	6.05	42.09	5.52	8.47		
(Eu/Eu*) _N	0.83	0.90	0.91	0.90	0.89	0.92	0.93	0.90	0.87	0.93	0.93		

	Miyosen yaşlı BT Takımı											
	Foidli breşik lav											
Örnek No	220	234	705	710	714	718	721	723	726	728	732	734
La	126.90	113.90	109.30	112.20	126.60	149.80	121.50	125.60	94.60	119.70	132.40	165.90
Ce	250.20	230.60	225.60	218.00	231.80	298.20	239.30	267.70	200.40	234.80	264.70	338.40
Pr	25.58	24.79	24.21	22.76	24.08	29.36	24.39	28.58	21.08	24.88	27.13	34.50
Nd	89.40	87.70	92.70	80.70	87.90	100.20	87.40	108.30	76.50	91.00	95.10	123.60
Sm	11.70	12.91	14.78	11.05	11.44	13.86	13.42	15.10	11.32	11.91	11.77	16.36
Eu	2.93	3.32	3.64	2.70	2.98	3.40	3.25	3.56	2.74	2.94	2.95	3.96
Gd	6.05	8.33	9.04	6.82	7.86	7.75	7.82	7.94	6.52	7.31	7.14	8.57
Tb	0.87	0.98	1.13	0.83	0.96	1.07	1.06	1.03	0.85	0.83	0.85	1.20
Dy	3.77	4.27	4.89	3.87	4.70	4.85	4.96	4.50	4.03	3.63	3.93	5.64
Ho	0.66	0.69	0.79	0.57	0.79	0.85	0.84	0.73	0.66	0.57	0.62	0.94
Er	1.69	1.70	2.02	1.52	2.04	2.36	2.26	1.86	1.78	1.48	1.62	2.74
Tm	0.27	0.24	0.28	0.22	0.32	0.32	0.32	0.24	0.24	0.21	0.24	0.38
Yb	1.64	1.50	1.76	1.48	1.93	2.14	2.05	1.52	1.61	1.30	1.61	2.39
Lu	0.23	0.20	0.25	0.20	0.28	0.31	0.30	0.22	0.23	0.18	0.22	0.36
(La/Lu) _N	57.28	59.12	45.39	58.24	46.94	50.17	42.04	59.27	42.70	69.04	62.48	47.84
(Yb) _N	6.61	6.05	7.10	5.97	7.78	8.63	8.27	6.13	6.49	5.24	6.49	9.64
(Eu/Eu*) _N	0.96	0.92	0.89	0.89	0.91	0.92	0.89	0.90	0.90	0.90	0.91	0.92

	_		Miyose	n yaşlı BT Takımı				
		Foidli dayk ve sil						
Örnek No	238	603	805					
La	130.60	135.80	438.42					
Ce	261.80	261.90	301.99					
Pr	26.41	26.52	231.02					
Nd	90.60	93.00	148.38					
Sm	12.33	12.30	63.72					
Eu	3.08	3.02	41.49					
Gd	6.84	6.90	30.29					
Tb	0.93	0.92	19.31					
Dy	4.21	4.12	13.57					
Ho	0.71	0.67	11.05					
Er	1.88	1.83	9.84					
Tm	0.29	0.26	9.83					
Yb	1.82	1.53	9.44					
Lu	0.26	0.23	8.92					
(La/Lu) _N	52.15	61.30	49.13					
(Yb) _N	7.34	6.17	47.01					
(Eu/Eu*) _N	0.93	0.92	0.88					

ÖZGEÇMİŞ

Cem YÜCEL, 13.03.1978 tarihinde Torul/Gümüshane'de doğdu. İlköğrenimini 1989 yılında Trabzon İsmet Paşa İlköğretim Okulu'nda, orta öğrenimini 1992 yılında Trabzon Kanuni Ortaokulu'nda, lise öğrenimini 1996 yılında Trabzon Fatih Lisesi'nde tamamladıktan sonra 1998 yılında Karadeniz Teknik Üniversitesi, Mühendislik-Mimarlık Fakültesi Jeoloji Mühendisliği Bölümü'ne başladı. Bu bölümden 2003 yılında mezun oldu. 2007 yılında Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Jeoloji Mühendisliği Anabilim dalı, Genel Jeoloji Bilim dalında Yüksek Lisans'ını tamamladı. 2005-2006 yıllarında bir yıl süreyle Erasmus değişim programı kapsamında Tübingen Üniversitesi'nde (Almanya) bulundu. 2007 yılında Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Jeoloji Mühendisliği Anabilim dalı, Mineraloji-Petrografi Bilim dalında doktoraya başladı. 2010-2011 yılları arasında bir yıl süreyle TÜBİTAK 2214 Yurt Dışı Doktora Araştırma Burs programı kapsamında Rennes 1 Üniversitesi'nde (Fransa) bulundu. 2005 yılından itibaren Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Jeoloji Mühendisliği Anabilim dalında Araştırma Görevlisi olarak görev yapmaktadır.