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Master Thesis

SUMMARY

HANDWRITTEN TEXT RECOGNITION USING DEEP LEARNING

Usama MUNIR

Karadeniz Technical University
The Graduate School of Natural and Applied Sciences

Department of Electrical & Electronics Engineering
Supervisor: Assistant Prof. Dr. Mehmet ÖZTÜRK

2019, 65 Pages

Handwritten alphabet recognition is one of the Artificial Intelligence applications

which provides important fundamental for various advanced applications, including in-

formation retrieval and human-computer interaction applications. This thesis seeks to

classify an individual handwritten character so that handwritten text can be translated

to a digital form.

To classify a complete word or text, the first and foremost step is the accurate

detection of text lines. A text line detection system is developed which can detect all

text lines based on the skew angle of text lines by dividing the original image of an

A4 size scanned document. Individual alphabets are detected from each text line at a

later stage to give the input to a deep neural network for recognition.

A dataset of our own handwriting is also prepared that includes 2200 images of

each alphabet, which is mixed with another publicly available dataset for the training

phase of the deep learning network. A total of 26 × 7800 = 202, 800 images are used

for the training of the neural network.

A GUI system using MATLAB is developed which can input a scanned document

in image form, and can give an output of text lines detection, alphabet detection and

alphabets recognition. A set of different parameters can also be changed to get the

desired output depending upon the variations in different types of documents.

Key Words: Artificial Intelligence, Deep Learning, Machine Learning, Handwritten

character recognition, MATLAB.
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Yüksek Lisans Tezi

ÖZET

HANDWRITTEN TEXT RECOGNITION USING DEEP LEARNING

Usama MUNIR

Karadeniz Teknik Üniversitesi
Fen Bilimleri Enstitüsü

Elektrik-Elektronik Mühendisliği
Danışman: Dr. Öğr. Üyesi Mehmet ÖZTÜRK

2019, 65 Sayfa

El yazısı karakter tanıma, bilgi çıkarma ve insan-bilgisayar etkileşimi uygulamaları

da dahil olmak üzere çeşitli gelişmiş uygulamalar için önemli bir temel sağlayan yapay

zeka uygulamalarından biridir. Bu tez, el yazısı metninin dijital bir forma çevrilebilmesi

için tek bir el yazısı karakterini sınıflandırmaya çalışır.

Tam bir kelimeyi veya metni sınıflandırmak için, öncelikle yapılması gereken adım

metin satırlarının doğru algılanmasıdır. A4 boyutunda taranmış bir belgenin oriji-

nal görüntüsünü bölerek metin satırlarının eğrilik açısına göre tüm metin satırlarını

algılayabilen bir metin satırı algılama sistemi gel- iştirilmiştir. Metin satırlarında yer

alan her bir harf görüntüsü tespit edilerek daha sonra tanınması için derin öğrenme

ağına giriş olarak verilir.

Derin öğrenme ağının eğitim aşaması için kamuya açık bir veri setiyle birlikte kul-

lanılan ve her bir harfin 2200 görüntüsünü içeren kendi el yazımızdan oluşturulmuş bir

veri kümesi de hazırlanmıştır. Yapay sinir ağının eğitimi için toplamda 26 × 7800 =

202, 800 adet resim kullanılmıştır.

MATLAB kullanılarak taranan bir dokümanı görüntü biçiminde alabilen ve metin

satırları algılaması, harf tespiti ve harf tanıma sonuçlarını verebilen bir GUI sistemi

tasarlanmıştır. Çeşitli belge türlerindeki farklılıklara ve içerdikleri gürültüye bağlı

olarak istenilen sonucu elde etmek için farklı parametre de ayarlanabilmektedir.

Anahtır Kelimeler: Yapay zeka, Derin öğrenme, Derin öğrenme, Makine öğrenme,

El yazısı karakter tanıma, MATLAB.
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1. INTRODUCTION AND LITERATURE REVIEW

Communication has been in use since the birth of first mankind on earth. In the

start, people had some sign language for intercommunications which is still valid for

deaf people living across the world. People from different regions have different com-

munication languages and different writing styles. Some languages have a systematic

way of writing while others have some random or graphical way of writing.

The invention of very first Egyptian and Sumerian scripts of writing dates back to

some 3400 to 3200 BC during the Egyptian era. Chinese script was invented around

1200 BC and is believed to be one of the first independent scripts of that era [1]. The

first true alphabetical script and is still in use dates back to 800 BC, belongs to the

Greek language [2]. But the most commonly used writing style which evolved around

300 BC is Latin, which is widely used around the world by more than 70 % of the

world population [3].

Scientists, philosophers, teachers and other professionals had been writing their

work by hand until the invention of the typewriter in 1886 [4], which was a breakthrough

for writers to write on a big scale. The typewriter quickly became an indispensable

tool for writing all official documents. It was widely used by professional writers, in

offices, and for business correspondence in private homes [5].

The typewriter had been in big use in the 20th century until the invention of modern

computers and Integrated Circuits (ICs) in 1970. As time passed, computers limited

the use of typewriters from offices and homes. Because, computers were more easy,

flexible, cost-saving and a multipurpose machine to be used in offices. Later on, as

upgradation of computers continued, it became cheaper and as a result, it became an

essential part of every home and office.

Despite our life is surrounded by technologies in today’ s world, thus, writing on
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portable computers or smart phones is very easy, still, on a lot of occasions, every

human have to write a lot of things by hand, whether it is in the form of lecture

notes, meeting notes or writing contact details etc. As it is human nature to upgrade

everything they have, it also became important to make some program which can

digitize handwritten text.

Early Optical Character Recognition (OCR) may be traced back to the technologies

involving telegraphy and creating reading devices for blinds [6]. Commercial products

incorporating handwriting recognition as a replacement for keyboard input were intro-

duced in the early 1980s.

1.1. Artificial Intelligence

Artificial intelligence (AI) also referred to as Machine Intelligence sometimes is an

area of computer science that focuses on the creation of intelligence, where machines

try to behave like humans. Any technology that includes some sort of intelligence can

be referred to as Artificial Intelligence.

Computer science defines AI research as the study of “intelligent agents”: any

device that perceives its environment and takes actions that maximize its chance of

successfully achieving its goals [7]. More specifically, Kaplan and Haenlein [8] define AI

as “a system’s ability to correctly interpret external data, to learn from such data, and

to use those learnings to achieve specific goals and tasks through flexible adaptation”.

The classification, shown in Fig. 1.1 may not be absolute as the laws of nature, but

it is widely accepted. In general Deep Learning (DL) is a kind of Machine Learning

(ML) and Machine Learning is a kind of Artificial Intelligence (AI) [9].

The overall research goal of AI is to create a system that tries to work in an

intelligent manner, by the use of previous experience (training). The general problem

of simulating (or creating) intelligence has been broken down into sub-problems. These

consist of particular traits or capabilities that researchers expect an intelligent system

to display. The traits described below have received the most attention [10]:
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Figure 1.1. Artificial Intelligence, Machine Learning and Deep Learning.

(i) Knowledge

(ii) Reasoning

(iii) Problem-solving

(iv) Perception

(v) Learning

(vi) Planning

(vii) Ability to manipulate and move objects

1.1.1. Machine Learning

The term Machine Learning refers to the automated detection of meaningful pat-

terns in data [11]. Machine learning is an application of Artificial Intelligence that

makes a system able to automatically learn from its previous experience (training

phase) and thus improve its output accuracy without being explicitly programmed.

Machine learning focuses on the development of computer programs that can use the

training data, to learn for themselves and give outputs for the next data.

Nowadays Machine Learning is widely used around the globe in various applications,

which include search engines where we get our desired results based on our previous

searches, our location, placing profitable ads on top based on our current location,
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adaptive user interfaces, personalized assistants (information systems), anti-spam soft-

ware learns to filter our email messages between spam and non-spam emails, and credit

card transactions (secured by software that learns how to detect frauds) [11].

Machine learning algorithms are often categorized as supervised or unsupervised[11]:

Supervised Learning: Supervised learning is a data mining task of inferring a func-

tion from labeled training data. In supervised learning, each example of training data

is a pair that consists of an input object and the desired output value called label in

ML terminology. Learning algorithm seeks a function or connection between inputs

and their respective target outputs (labels). Then this function is applied to the next

input whether it can predict its label correctly or not.

Unsupervised Learning: In unsupervised learning the training data given for learn-

ing is unlabeled, and the task is to find hidden structure or connection in unlabeled

data. Most importantly, unsupervised learning is a type of clustering, which will create

different clusters of inputs based on the similarity in the data and will be able to put

any new input in an appropriate cluster made earlier during learning. Since the data

is unlabeled, there is no error or accuracy to evaluate a potential signal.

1.1.2. Deep Learning

The most important aspect of Deep Learning is its human-like performance. Every

task we do and everything we save in our memory is controlled by our nervous system

which is composed of neurons [12]. The information processed by our brains is done

by the interconnections between different neurons and their relative weights. That is

the concept behind the logic of DL. Deep Neural Networks (DNN) are just a group of

neurons (like the brain neurons), where the interconnections and their relative strengths

are calculated during the training of the networks. Fig. 1.2 shows a basic example of

the neural network.

The interesting concept of DNNs is that the networks are independent of the job

it has to do. The only thing differs is interconnections and relative strengths between
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Inputs Outputs 

Input Layer Output Layer 

Hidden Layers 

Figure 1.2. A basic machine learning network.

different neurons. So, a neural network developed to do a task may also work on

different data or environment, provided it gives good training accuracy on the new

data [12].

Deep learning is becoming very useful nowadays due to its better accurate results

that were not possible before. Deep Learning is the main technology, which is being

used and is still in progress, behind driverless cars. In driverless cars, the deep learning

enables them to recognize a stop sign, or to distinguish a pedestrian from a lamppost. It

is the key to voice control in consumer devices like phones, tablets, TVs, and hands-free

speakers.

Considering Fig. 1.2, in DL, the hidden layers can be as many as tens or hundreds.

These hidden layers actually make the network more accurate, complex and power

consuming.

1.1.3. Machine Learning Vs Deep Learning

Difference between both the terminologies is shown in Fig. 1.3. A Feature is an

individual measurable property or characteristic of a phenomenon being observed [13].

In machine learning, features have to be fed to the network by the user, which the

computer will try to find in the input data for deciding its output. The network will

look for those specific features in the input and decide the relationship between the

features and possible outputs. Whereas in deep learning, features are not required to
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be distinguished by the user, rather the deep learning network will do it. It will look

and will try to sort out some features for different types of outputs.

 

Machine Learning 

Deep Learning 

Feature Extraction + Classification 

Input 

Input 

Output 

Output 

Feature Extraction Classification 

Car / Not Car 

Car / Not Car 

Figure 1.3. Difference between machine learning and deep learning.

1.1.4. Transfer Learning

Transfer Learning (TL), also called ML’s next frontier, is a technique which stores

solution of one problem and uses it again another similar problem. In ML context, TL

is the improvement of learning in a new task with new data, through the transfer of

knowledge from a related task that has already been learned and trained [14]. Fig. 1.4

shows a simple difference between machine learning and transfer learning.

Transfer learning is the reuse of a pre-trained model on a new problem. It is

currently very popular in the field of DL because it enables us to train DNN with

comparatively little data and in less time. This is very useful since most real-world

problems typically do not have millions of labeled data to train such complex models

[15].

Human learners appear to have inherent ways to transfer knowledge between dif-

ferent tasks. Humans can apply the result of one occurrence on a new incident to

improve their own outputs. That is, humans recognize and apply relevant knowledge

from other learning experiences when they encounter some new but similar problem.

The more related a new task is to the previous task, the easier will it be to tackle.
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Figure 1.4. Difference between conventional ML and Transfer Learning.

1.2. Handwritten Text Detection

For a text to be recognized from a handwritten document for digitization, the first

and foremost task is to detect the text region out of that document accurately. There

are some documents that are as simple as Fig. 1.5a (Bangla language [16, 17]) or

complex as Fig 1.5b (class notes). These are just two example images, as some text

document may be simpler or might the more complex than the one presented here.

Text region detection may be simple in Fig. 1.5a as there are only text-lines with

no figures and plots in it. But still it is a difficult task, as the text lines may not

be straight and horizontal, or the alphabets might be overlapping with the text lines

nearer to them, or the alphabets might be overlapping with each other.

Text region detection in Fig. 1.5b is a lot more difficult than the previous one.

There are some non-text objects within text regions, which makes it more difficult to

classify between them. The first step in this case for text region detection is to remove

the non-text objects. Rest of the document will be the same as Fig. 1.5a.
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(a) (b)

Figure 1.5. Scanned text documents of (a) Bangla language and (b) Class notes.

1.3. Handwritten Text Recognition

In general, handwritten text recognition is classified into two groups which are

on-line and off-line handwriting text recognition methods. In off-line recognition, the

writing is usually captured optically by a scanner and the complete handwritten docu-

ment is available as an image in one go, whereas, in on-line recognition system, the two

dimensional coordinates of successive points are represented as a function of time and

the order of strokes made by the writer are also available. On-line methods are consid-

ered to be superior to their off-line counterparts in recognizing handwritten characters

due to the fact that, more information is available in on-line recognition systems in

form of their writing sequence[18, 19].
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1.4. Optical Character Recognition

Optical Character Recognition (OCR) is the recognition or reading of the text

from a scanned document and transferring it to digital format, such that the system

can read and understand the alphabets written on it. OCR makes it possible, to scan

that paper, which someone lost from his/her hard drive, but fortunately placed it in

his cupboard in printed form. A scanned document given to a system with no OCR is

just an image, without any retrieval of information from it. The computer has no idea

that there is some text in that scanned document unless an OCR software is used to

convert that image into a texture image, from where the computer can now understand

that there is some text actually in that image and this text now can be used by some

word processing program to prepare a new document. A more advanced OCR program

can even keep the formatting of the document intact while digitizing that text. Early

optical character recognition may be traced to technologies involving telegraphy and

creating reading devices for blinds [6].

1.5. Dataset of Handwritten Text Characters

Machine learning is an application of AI where the system tries to learn from its

previous experience (training) and thus improve its output accuracy without being ex-

plicitly programmed. During the training of the ML algorithm, a huge data is required

representing every single Input/Output class, such that ML algorithm must be aware

of all possible styles of writing a single alphabet.

There are many datasets available for handwritten characters that can be used

for the training phase of machine learning algorithms. One of such data is EMNIST

dataset [20]. The EMNIST dataset is a set of handwritten character digits derived from

the NIST Special Database 19 [21] and converted to a 28 × 28 pixel image format. The

EMNIST letters dataset contains 145, 600 characters with 26 classes each representing

one alphabet out of 26. Each alphabet has 5600 images including small and capital

letters.
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The EMNIST data mentioned above is adequate for training the ML algorithm.

Here requirement of a new dataset was needed, written by myself, just to increase the

accuracy rate of my handwritten characters. The new data, which will be discussed in

Chapter 2 contains 57, 200 images of characters, of the same size as of EMNIST dataset.

Both of the data of 145, 600 + 57, 200 = 202, 800 characters are used for training of ML

algorithm.

1.6. Literature Review

Artificial intelligence can be defined as the art of creating machines, that perform

functions, which actually require intelligence when it is performed by humans [22]. AI

has received significance importance in recent years with increased accuracy. Problems

which used to be solved without it, are being solved or tried to be solved using differ-

ent techniques of AI to achieve higher accuracy. Applications of AI include robotics,

medical, industry, astronomy, agriculture, games and much more [23]. Handwritten

character recognition is also one of the major application of AI.

In off-line handwritten character recognition systems, the neural networks have been

successfully used to yield comparably high recognition accuracy levels. Several useful

applications including mail sorting, bank processing, document reading and postal

address recognition require off-line handwriting recognition systems. As a result, the

off-line handwriting recognition continues to be an active area for research towards

exploring the newer techniques, that would improve recognition accuracy [24, 25].

In the past decades, a large number of researcher have been dedicated to character

recognition. The first driving force behind handwritten text classification was for digit

classification for postal mail. Jacob Rabinows early postal readers incorporated scan-

ning equipment and hardwired logic to recognize mono-spaced fonts [26]. Allum et.

al [26] invented a system which used to sort out posts on the basis of their shipment

number, which defines sender and receiver addresses.

The first prominent piece of OCR software was invented by Ray Kurzweil in 1974

which allowed for the recognition of any font [27]. This software used a more advanced
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form of the matrix method (pattern matching) for recognition. Essentially, this would

compare bitmaps of the template character with already available bitmaps of the char-

acter and would determine to which character it is matched closely. The downside was

this software was sensitive to variations in sizing and the distinctions between each

individual and their way of writing.

1.6.1. Text Region detection

Rodolfo P. et al. [28] discussed a method of text line segmentation using histogram

projection. The method discussed in [28], includes a couple of stages starting with

binarization of the original image which is termed as feature extraction. Then a Y-

histogram projection is obtained to detect possible text lines. False text lines are

excluded using a threshold based on line spacings. X-histogram projection is used now

on each detected text line to obtain the final result which is alphabets in those text

lines.

Devadeep S. et al. [29] also used the histogram to detect text lines and to differ-

entiate text regions from non-text regions. Text line extraction from complex layout

documents is carried out using the concept of dilation and histogram [30]. Preethi

[31] discussed an efficient line extraction technique from handwritten document images

using the histogram and connected component analysis.

Barlas at al. [32] worked on recognizing handwritten or typed text in a hetero-

geneous document and developed analysis system for text recognition. This module

concerned the task of document segmentation into 8 classes of homogeneous areas:

text, photographic image, hand-drawn line area, graph area, table area, edge line area,

separator, and material damage area. In their work they presented connected compo-

nent based strategy for identification and segmentation of the text and heterogeneous

documents are dealt with it, which make it different and credits to learning based

approach.

Yao et al. [33] worked on multi-oriented text detection and proposed a new uni-

fied framework for it. Text detection and recognition is done all together and the
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same features are utilized. The system worked well on multiple orientations of the

text. A new search based dictionary approach is invented to eliminate errors caused

by resembling symbol [33]. Firstly, the candidates are generated via clustering and

Stationary Wavelet Transform (SWT), then recognition is performed using the similar

classification schema. The dataset of ICDAR2003, 2005 and 2011 are used [34].

Vaidya et al. [35] discussed a handwritten character recognition method using a

convolutional neural network using the EMNIST dataset [20]. The accuracy of 94 % was

obtained after training the neural network. An android application was also developed

which detected alphabets and the pass the detected alphabets for recognition. A final

digital text was generated in the final output.

1.6.2. Text Character Recognition

Immense research is going on in the field of handwritten character recognition.

Many people have developed systems for handwritten character recognition. Some of

the research work in this field is listed below:

A character recognition system has been designed using fuzzy logic [36]. System

developed can be created using Very Large Scale Integration (VLSI) structure. But

the system is immune to some variation and distortions in the shift. Hamming neural

network is used in the system.

An innovative method for recognition of handwritten Tamil characters using neural

networks has been developed [37]. Kohonen Self Organizing Map (SOM) has been used

for the recognition of some Indian languages. The accuracy of this system depends a

lot on accurate segmentation of handwritten characters.

Murthy et al. [38] presented a unique method for authenticating a person based on

their handwriting. Multilayer feed-forward neural network has been used to authenti-

cate a person based on the height and width of handwritten characters written by the

person.
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A novel method for handwritten character recognition has been designed which does

not use feature extraction [39]. A feed forward neural network with back-propagation

has been used in this work.



2. PROPOSED STUDIES

Text extraction is an important phase in document recognition systems. In order to

detect all alphabets accurately, it is necessary to detect all possible text regions in the

document. In Section 2.1, an efficient algorithm is proposed to detect all handwritten

text characters from a page, written specifically, to prepare a dataset of handwritten

alphabets at large scale, to be used in training phase of Machine Learning algorithms.

The text line extraction algorithm uses a series of different steps to obtain the text re-

gion. Following, a sequence of histogram projection and recovery is proposed to obtain

the line segmented region of the text. Text line positions are detected using a horizontal

histogram projection. Vertical histogram projection is used in each individual text line

to find out the positions of alphabets in the respective text line. In post-processing,

noise which is mostly small black spots (similar to salt and pepper noise), is removed

using a moving median filter. Histogram projections are used once again, to detect all

alphabets again after removal of noise.

Handwritten text is not always the same in shape, size, formation, direction, bold-

ness etc. All these features depend upon the writer and the environment. Section 2.1

discusses text lines detection which is straight and horizontal. But the text lines are

not always straight and horizontal for all the writers. There can also be some inter-

vention of one alphabet in two or more than two text lines. This also makes it difficult

to detect the text lines accurately. Section 2.2 detects the text lines while addressing

all these problems very efficiently. The algorithm starts with the estimation of skew

angles by dividing original image into parts, using a mean rectangular filter at differ-

ent angles and creating a filtered image at optimum skew angles of each divided part

of the original image. This final image is used for text lines detection. Wrong text

lines detections are removed while detecting them and at the later stage as well. The

detected text lines are then used to find the alphabets in them, based on connected

component logic. Those alphabets are then passed through a text recognition system

which identifies each alphabet. Section 2.3 discusses a 49 layer Deep Neural Network
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trained for recognition of handwritten alphabets.

2.1. Preparation of Dataset

Machine learning is an application of artificial intelligence that makes a system able

to automatically learn from its previous experience (training) and thus improve its out-

put accuracy without being explicitly programmed. During the training of Machine

Learning algorithm, a huge data is required representing every single Input/Output

class, such that, the Machine Learning algorithm should be aware of all possible out-

comes. If working on alphabets recognition in any language, writing a single alphabet

4000+ times is not an easy task.

Text line extraction is an important problem, that does not have a universal ac-

cepted solution in the context of automatic handwritten document recognition systems

[40] as every writer have a different way of writings and may differ in various aspects.

There have been a lot of researches in this area, and a number of algorithms have

been proposed for the extraction of text lines in machine-printed document images

[41, 42]. Characteristics of handwritten text can vary in font, size, shape, style, orien-

tation, alignment, texture, colour, contrast and background. These variations turn the

process of word detection to be complex and difficult [43, 44].

Rodolf P. [28] discusses text line extraction using a series of histogram projections at

different orientations. A set of 1363 text lines were detected on applying the algorithm

on 150 images of IAM database [45] in which 15 false text lines are detected, giving

false alarm rate equal to 15/1363 = 1.1 %.

2.1.1. Proposed Method

Dataset of handwritten characters is prepared using a technique mentioned in [28]

with some alterations and focuses to ease out the whole process of preparing dataset

at large scale, which later can be used to train any of Machine Learning algorithm.

To prepare the dataset, the alphabets are written in a specific format, following pre-

determined criteria. The criteria include writing of alphabets in straight horizontal
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Figure 2.1. A cropped part of the scanned page of
handwritten alphabet “H”.

lines, with significant spacings between the alphabets. While preparing these docu-

ments, an effort has been made to keep text lines straight and horizontal as much as

possible with significant spacings almost equal to the height of alphabets between the

text lines. A small part of one of such documents has been shown in Fig. 2.1 containing

the capital letter “H”.

There are total 52 such pages i.e., 2 images for every single alphabet (for small

and capital letters separately). Each image is named by the alphabet written in it

followed by a number 1 or 2 representing whether the image contains capital or small

alphabets respectively. As an example, the name “A1” represents an image of capital

As and “h2” contains small hs. Based on the name of the image, the output images

of individual alphabets will be placed in a folder named after the name of the original

image. All 52 documents contain around 30+ text lines and each line have around 30+

alphabets on an A4 size white plain paper.

The proposed algorithm starts with the binarization of the original grey-scale image,

followed by 2 step histogram projections for detection of text lines and then individual

characters respectively. The final step includes the removal of noise present in the
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Figure 2.2. Binary image with its horizontal histogram.

scanned original image.

2.1.2. Pre-processing

Preprocessing of the original image includes removal of non-homogenous contrast

in the background and binarization of the scanned grey-scale image. Both of these

results can be achieved by binarization of the original image.

Binarization of an image can be represented as:

Imout =

1 for Imin ≥ th.

0 for Imin < th.

(2.1)

where Imin is the input image, Imout is output image and th is the threshold value.

Eq. 2.9 represents the simple definition of binarization of any greyscale image. The

value of th can be set to 0.5 in the default case.
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Figure 2.3. Binary image with boundaries of its text lines (red
is upper boundary and green is the lower
boundary of each text line).

Bradely and Roth [46, 47] presented the process of adaptive thresholding, as a form

of thresholding that takes into account, the spatial variations in illumination and spatial

variations that occur during scanning of documents. This technique converts the grey-

scale image into a binary one, using real-time adaptive thresholding of input image.

The value of the threshold for adaptive binarization in Eq. 2.9, can be calculated as

the mean of neighbour values around a specific pixel in an image:

th(x, y) =
1

sw × sh

x+sw∑
i=x−sw

y+sh∑
j=y−sh

Imin(i, j) (2.2)

sw = 2 × w

16
+ 1; sh = 2 × h

16
+ 1

where th(x, y) is the threshold value at (x, y), Imin(i, j) is the intensity level of image

Imin at (i, j), sw & sh are the neighbourhood sizes (width and height respectively) for

calculating average and w & h are, width and height of original image respectively.
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Figure 2.4. Binary image with detected text lines in blue
colour and line number written on the left side of
each line.

2.1.3. Text Lines Detection

For alphabets to be detected accurately, the first and most important step is to find

out the boundaries of text lines accurately. As the purpose of this work is to prepare

dataset of handwritten alphabets, following pre-defined criteria, the chances of any

inclination of text lines are very less, as the documents are prepared very carefully.

Upper and lower boundaries of text lines can be determined using the horizontal

histogram. The horizontal histogram of each row in the entire image can be represented

as; nhorizontal = n(1), n(2), . . . , n(H), where n(1) is the histogram of the first row,

n(H) is the histogram of the last row, and its yth value (histogram of yth row) can be

represented as:

nhorizontal (y) = W −
W∑
x=1

Iin (x, y) (2.3)

where, W is the width of the original image, H is the height of the image in pixels and
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Iin(x, y) is the intensity level of the binary image at (x, y).

Horizontal histogram of the binary image is shown on the left side in Fig. 2.2 in

blue colour. Horizontal histogram with 0 value represents blank spacings between the

original text lines. Using this histogram, the text lines where the histogram is 0, are

marked with different colour as shown in Fig. 2.3. Some extra text lines (between

4th and 8th actual text lines) can be seen on careful examination of Fig. 2.3. These

wrong detections are due to the fact that the histogram is 0 at some points, due to the

presence of some small dots corresponding to it. These small dots will be removed in

post-processing of the algorithm.

The text lines which are wrong detections are small in vertical height compared to

all other text lines. A sorting algorithm is applied, based on vertical widths of text

lines, in which text lines having widths more than mean width of all text lines, are

removed. The text lines after the removal of falsely detected lines are shown in Fig. 2.4.

2.1.4. Alphabets Detection

The next step after the successful detection of text lines is accurate detection of

alphabets. The technique used here is the same as it is used for text lines detection.

Alphabets are detected using vertical histogram projection in all text lines individually.

The vertical histogram of each individual column, in a text line, is represented as;

nvertical = n(1), n(2), . . . , n(W ), where n(1) is the histogram of the first column,

n(W ) is the histogram of the last column of the text line, and its xth value (histogram

of xth column) is represented by:

nvertical (x) = Ht −
Ht∑
y=1

It (x, y) (2.4)

where, Ht is the height of specific individual text line and It(x, y) is the intensity level

at (x, y) in that specific text line.
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Figure 2.5. Binary image with objects detected and marked
with blue boundaries.

The value of vertical histogram is 0, at the points where there is blank space between

the alphabets. These values of vertical histogram projection are used to find out the

horizontal positions of all alphabets. Detected alphabets are shown in blue rectangular

boxes in Fig. 2.5.

2.1.5. Post-Processing

The purpose of this post-processing is to remove all non-alphabetical objects from

Fig. 2.5. As the alphabets are written very carefully, the only possibility of non-

alphabetical objects is some small dots, present on the paper while writing. Some of

those small dots can also be clearly seen in Fig. 2.5.

An intermediate image is generated, such that, each detected object is transformed

into rectangular black objects of the same size, as it is in blue boundaries, shown in

Fig. 2.5. This results in the small dots close to alphabets, to be classified as part of

the respective alphabet. Because chances of small dots, written close to the alphabets

mistakenly, are very less.
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Figure 2.6. Binary image with objects detected after removing
small dots and marked with blue boundaries.

A moving median filter is applied on the intermediate image resulting removal of

small dots, which were not part of alphabets. Size of the median filter depends upon

the mean size of all detected objects.

Fig. 2.6 shows the final objects detected after removal of small dots from Fig. 2.5.

Comparing both Figures, the difference in detected alphabets can be noticed, i.e. small

dots, which were classified as alphabetical objects are now removed.

2.1.6. Experimental Results

There is no other research carried out on the preparation of handwritten alphabets.

So in that term, this is the first paper which discusses, the method to prepare a dataset

of handwritten characters and to ease out the whole process. The discussed algorithm

was applied to the scanned documents mentioned in section 2.1.1. The total objects

detected from all 52 scanned documents are 71180, out of which 70411 objects were

detected correctly. Detection rate for these experiments resulted to be 98.9 % and false

detection rate to be 1.1 %.
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Figure 2.7. Objects detected in a normal handwritten document.

Fig. 2.7 represents a sample text specifically prepared for the proposed study. The

total number of alphabets in this text document are 543 and all these alphabets are

detected accurately except some non-alphabetical objects detection. The total number

of those non-alphabetical objects are 11, which yields 98 % of detection rate and 2 %

false detection rate.

The same algorithm mentioned in Section 2.1.3 is also applied on 100 images of

IAM dataset [45] for detection of text lines, just to compare results with [28]. Fig 2.8

shows the output of one of those images. The total number of text lines detected in

these 100 images are 945 out of which 940 are detected accurately giving false detection

rate equal to (945 − 940)/945 = 0.53 %. Whereas, the false detection rate for [28] is
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Figure 2.8. An image from IAM database with text lines detected.

1.1 %, proving better results of our proposed algorithm also shown in Table 2.1.

2.1.7. Conclusion

In conclusion, a novel algorithm is proposed for detection of text lines and hand-

written characters, written in the specified format discussed in section 2.1.1. According

to the research carried out, there is no other paper which presents a method to prepare

a dataset of handwritten characters or to ease out this process. This method eases

and speeds up the process of preparing large dataset required for training of Machine

Learning algorithms. Difference between the proposed method and one in [28] is an

addition of extra step i.e., thresholding text lines on the basis of their vertical widths,

mentioned in section 2.1.3.

The proposed algorithm is the first phase for the solution of automatic handwritten

document recognition systems, where the criteria of writing characters in straight hor-
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Table 2.1. Detection rates of different experiments. Detection rates
of different experiments. Detection rates of different
experiments. Detection rates of different experiments.

Proposed Rodolf P. [28]

Text line detection

on IAM database
99.47 % 98.9 %

Alphabets detection

for dataset preparation
98.9 % –

Alphabets detection

for normal document
98 % –

izontal lines, without overlapping of text lines with each other, on a white plain paper,

has to be followed.

The next phases of this study, are the compensation of inclined text lines at any

angle and removal of figures & plots drawn in between handwritten text documents.

So that class notes, written by a student during their lectures, can also be translated

into digital copies. The technique discussed here can be used with some advancements

for these problems as well.

2.2. Text Lines Detection

For a text to be recognized, the first and the most important step is the accurate

detection of text lines in a handwritten document. While writing, most of the writers do

not focus on the straightness of there text lines. A writer may start writing a document

carefully, intending for the text lines to be straight and horizontal, but it might end with

some inclination growing in each text line. Fig. 2.9 shows a handwritten document,

where the writer starts carefully, but even then the text lines get some inclination in

downwards direction. The first line in Fig. 2.9 looks to be at around 0◦ but the last

lines are at about 4◦ − 6◦ degrees compared to the first line. Intertext line spacings

are also not constant for all the text lines. There are some alphabets which can be
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Figure 2.9. A sample of a scanned document.

classified correctly by the human but can be classified into two text lines by the system.

First and second text lines are the example of such possible errors.

Section 2.1 discusses the text lines detection without any chance of inclinations in it

using a series of histogram projections. Horizontal histogram technique can be tested

on Fig. 2.9 for the text lines detection but it cannot give the desired text lines. It will

merge the text lines which are at some inclinations, to single text line as histogram

will not be 0 at points, where the text lines are at some angle or alphabets are merged

into other text lines. It may work for couple of first text lines but not the later ones.

Fig. 2.10 shows another example of handwritten text in Bangla language [16, 17].
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Figure 2.10. A sample of a scanned document taken from
CMATER database.

The second problem other than the inclination of text lines is the intersection of some

alphabets with text line above or below it. This problem makes it difficult to differen-

tiate the two text lines at first, and if the text lines are detected correctly, it makes the

system difficult to label the alphabet, to which text line it actually belongs to. Such

alphabets can be easily seen in Fig. 2.10.

This section focuses on the solution of text lines detection that is at some inclination

and the text lines that contains overlapping alphabets.
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2.2.1. Pre-processing of Scanned Document

Preprocessing of Scanned document depends upon the type of paper used and

non-homogeneous contrast in the background which is mostly caused by the scanning

process of documents. There are several types of papers that are used for preparing

handwritten notes, i.e., a white plain paper or a paper with grids on it. A clear

difference can be seen between the background of Fig. 2.9 and Fig. 2.10. Fig. 2.10 is

apparently preprocessed document whereas, the background of Fig. 2.10 can be noticed

with changing between white colour and greyish white colour at some point.

There are several types of pre-processing algorithms which can be used depending

upon the types of documents. Some of those which are used in this research are

mentioned below:

Bottom - Hat filtering

A bottom - hat filter enhances black spots in a white background. It subtracts the

morphological “Close” of the image from the image. The effect is to fill holes and join

nearby objects. In mathematical morphology and digital image processing, bottom -

hat transform is an operation that helps to highlight the dark spots in given images.

Extract small, dark regions from an image. The bottom - hat transform effectively

inverts high-frequency regions. Thus it also suppresses the light grey coloured back-

ground grid. bottom - hat transforms are used for various image processing tasks, such

as feature extraction, background equalization, image enhancement, and others.

Bottom - Hat filtering can be represented as [48]:

Bhat (f) = (f • b) − b (2.5)

where, f is an image on which bottom - hat filtering is to be applied, b is a structuring

element and • is a closing operation.

Closing operation (•) of image f by structuring element b is defined as the erosion



29

of f by b followed by a dilation of the result with b [48]:

(f • b) = (f ⊕ b) 	 b (2.6)

where, ⊕ and 	 denote dilation and erosion, respectively.

The erosion of f by a flat structuring element b at any location (x, y) is defined as

the minimum value of the image in the region coincident with b when the origin of b is

at (x, y). Therefore, the erosion at (x, y) of an image f by a structuring element b is

given by [48]:

[f 	 b] (x, y) = min(s,t)εb [f(x+ s, y + t)] (2.7)

The explanation is similar to one for erosion except for using maximum instead of

a minimum. The dilation of f by a flat structuring element b at any location (x, y)

is defined as the maximum value of the image in the window outlined by b, when the

origin of b is at (x, y) [48]. That is:

[f ⊕ b] (x, y) = max(s,t)εb [f(x+ s, y + t)] (2.8)

Fig. 2.11b shows the result of bottom - hat filtering applied on Fig. 2.11a. The orig-

inal image contains grids at its background. Most of this grid background shades out

during bottom - hat filtering, Rest of the shaded grids are removed during binarization

of this filtered image.

Histogram Equalization

Fig. 2.12a shows a sample image taken from CMATER database [16, 17] in the

Bangla language. The database is published in colourful form such that each text

line is represented with different colours. While converting an image of such type into

greyscale or binary form, some of colours just totally disappear or fade out. Averaging

the RGB colours also does not work in this case, as binarization fades out the light
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(a) (b)

Figure 2.11. (a) Original Scanned image with the grid background and (b)
bottom - hat filtering and binarization.

colours later on.

Adaptive Binarization

A document prepared on a white plain paper can be easy to process, but scanning

of documents is another factor which can affect the results. Fig. 2.13a shows a white

plain paper with alphabets “A” written on it. The document is prepared on white

plain paper, but the process of scanning left a non-homogeneous contrast in the back-

ground, which can be worse than this. The background of Fig. 2.13a is no more pure

white, instead it is greyish white somewhere and pure white at some points. Adaptive

Binarization removes such effects while binarizing the original image.

Binarization of an image can be represented as:



31

(a) (b)

Figure 2.12. (a) Original Scanned image (Bangla Language) and (b) Results of
Histogram Equalization and binarization.

Imout =

1 for Imin ≥ th.

0 for Imin < th.

(2.9)

where Imin is the input image, Imout is output image and th is the threshold value.

Eq. 2.9 represents the simple definition of binarization of any greyscale image. The

value of th can be set to 0.5 in the default case.

Bradely and Roth [46, 47] presented the process of adaptive thresholding, as a

form of thresholding that takes into account, the spatial variations in illumination and

spatial variations that occur during scanning of documents. This technique converts

the grey-scale image into a binary one, using real-time adaptive thresholding of input

image. The value of the threshold for adaptive binarization in Eq. 2.9, can be calculated
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(a) (b)

Figure 2.13. (a) Original Scanned image and (b) After adaptive binarization.

as the mean of neighbour values around a specific pixel in an image:

th(x, y) =
1

sw × sh

x+sw∑
i=x−sw

y+sh∑
j=y−sh

Imin(i, j) (2.10)

sw = 2 × w

16
+ 1; sh = 2 × h

16
+ 1

where th(x, y) is the threshold value at (x, y), Imin(i, j) is the intensity level of image

Imin at (i, j), sw & sh are the neighbourhood sizes (width and height respectively) for

calculating average and w & h are, width and height of original image respectively.
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(a) (b)

Figure 2.14. (a) A sample of scanned document for text line extraction and (b)
Scanned document divided vertically into 4 equal parts.

2.2.2. Estimation of Skew Angles

Considering Fig. 2.14a [49] as the next input, the text lines are not horizontal and

straight, and the inter text lines spacing are also very less at the bottom half of the

document. At some point, the line starts at a specific angle but it changes it as it goes

further. This makes some of the text lines curvy. Some of the curvy text lines can be

noticed by careful examination of Fig. 2.14a. Such text lines are difficult to trace out.

A series of different processes are applied on scanned image to estimate the skew

angle of the text lines accurately, which later will be used for text lines detection.

Dividing Image Vertically

There are some writers who may start writing a text line straight and horizontal,

but the text line may end at some angle which was not in the start of the text line.

Such text lines can also be seen in Fig. 2.14a. The skew angle does not remain the

same throughout the text line. To address this problem, the original image is divided

into parts vertically, such that, the angle of text line in a single vertical part remains

the same. A divided image in 4 parts is also shown in Fig. 2.14b.



34

Generating Filtered Images for all Angles

The text lines in Fig. 2.14a are not explicitly differentiated from each other. Some

of the alphabets which belong to a specific text line might be overlapped by the text

line above or below it. The original image is filtered using a rectangular averaging filter

at specific angles.

Result of averaging filter at (x, y) at an angle θ is represented by [50, 51]:

Imout(x, y) =
1

m × n

m+x∑
i=x

n+y∑
j=y

Imin(i cos(θ)−j sin(θ), i sin(θ)+j cos(θ)) (2.11)

where, m & n are widths and heights of rectangular filter, Imin & Imout are the input

and output images respectively.

Filtered images are also shown in Fig. 2.15. All the filtered images are then divided

into four equal parts, with boundaries shown in blue colour.

Mean of each individual vertical part is calculated at respective angles and is plotted

in red at the left side of each vertical part. Mean can also be represented by using

Eq. 2.11 with small modifications. Mean value of a group of rows starting from row x

at angle θ, in a vertical part, can be defined as:

Me(x : x+ hp) =
1

wp

x+hp∑
i=x

wp∑
j=1

Imp(i cos(θ) − j sin(θ), i sin(θ) + j cos(θ)) (2.12)

where, Imp represents each vertical part individually, wp is the width of Imp and width

of the rectangular window to calculate mean and hp is the height of the rectangular

window to calculate mean.
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(a) At angle −5◦ (b) At angle −4◦ (c) At angle −3◦

(d) At angle −2◦ (e) At angle −1◦ (f) At angle 0◦

(g) At angle +1◦ (h) At angle +2◦ (i) At angle +3◦

(j) At angle +4◦ (k) At angle +5◦

Figure 2.15. Filtered images by using the rectangular averaging filter at angles
from −5◦ to +5◦. Vertical blue lines represent the division of original
image, plots in red colour is the mean calculated horizontally of each
vertical part at respective angles and green line represent a line at the
respective angle for reference.
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(a) (b)

Figure 2.16. (a) Optimum angles of each part and (b) Filtered image at optimum
angles.

Mean value gives the contribution of individual pixel intensity for the entire image.

A mean value will be lower compared to the brighter part of an image. This concept of

the mean value is used in the estimation of skew angles. Careful focus on Fig. 2.15 re-

veals that the mean value variation is very small at the angles other than the optimum.

By comparing the mean plots of leftmost vertical parts in Fig. 2.15a and Fig. 2.15g,

it is evident that variations are very small in Fig. 2.15a whereas, mean variations are

comparatively large in Fig. 2.15g. This technique can be used in correct skew angles

estimation.

The value of hp in Eq. 2.12 and n, the height of rectangular filter, in Eq. 2.11 effects

the final outcome. Both of these variables can be adjusted to the same value or can be

close to each other, and can be changed according to the inter text lines spacings. If

the text lines are much closer to each other, both of these values should be moved to

lower ones, as these will cause the closer text lines to be merged into each other.

The value of m in Eq. 2.11 depends upon the inter-word spacings. Default value of

m, which is used here, is the 4th part of the width of the original image.

The filtered images which are shown in Fig. 2.15, are divided into 4 vertical parts
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but the original algorithm uses more than 4 vertical parts. 4 vertical parts are used for

a clear demonstration of filtered images (at this stage only) and their later processes.

The range of angles shown in Fig. 2.15 is from −5∩ to +5∩. The ranges here are

used (at this stage only) for a clear demonstration of the algorithm, and to show all

the possible filtered images on one page. The original angle range was −7∩ to +7∩.

Dividing Filtered Images Horizontally

The skew angle cannot be constant throughout one vertically divided part. The

first text line may be at a different angle than the next one. For this reason, the

images in Fig. 2.15 are divided horizontally as shown in Fig. 2.16a. Likewise, mean

values plotted in Fig. 2.15 are also divided horizontally.

The final divided image as shown in Fig. 2.16a is divided into 12 × 8 horizontal and

vertical parts respectively. Each of these parts has there own mean values representing

the rows. These mean values are used for skew angles estimation for the respective

divided part.

Optimum Angles Estimation

In the final divided image into 12 × 8 parts, it can be said that the skew angle

will remain the same in each of it. There can be a slight difference in inclination of

text lines within one divided part, but it can be compromised as the difference cannot

that much, which may affect the final results.

The angles in each of 12 × 8 parts are calculated by using the mean value which

is calculated by Eq. 2.12:

stdp(k, θ) = std(Me(k, θ)) (2.13)

where, k represents one of the parts from 12 × 8 parts, θ is the respective estimated
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(a) (b)

Figure 2.17. (a) Text Lines Detected shown in red colour and (b) Text lines
differentiated with different colours.

skew angle, Me(k, θ) is the mean value of rows of kth vertical part.

The skew angle for each divided part of the original image will be the one with the

maximum value of stdp. The estimated skew angles are shown in Fig. 2.16a. These are

the possible skew angles at their respective parts.

Final Filtered Image

A new final filtered image is generated using skew angles in Eq. 2.11, in which the

text lines are detected as darker portions, with the same movement of each text line

horizontally as it is in the original text, irrespective of any intervention of alphabets

between two text lines. The filtered image at skew angles is also shown in Fig. 2.16b.

Accurate estimation of skew angles is a must, as it affects the final filtered image.

There might be some difference in the actual and estimated skew angle in Fig. 2.16a,

but still the final filtered image can trace out text lines with best high accuracy. This

image can be used for text lines detection, as the alphabets overlapping between the

text lines is diminished.
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2.2.3. Text Lines Detection

Fig. 2.16b shows the text lines that does not have any overlapping between the text

lines. A peak finding algorithm is applied in vertical direction column by column on

Fig. 2.16b. Peak Ps in column x can be calculated by:

Ps(x : x+ L) =

1, if mean(Im(x : x+ L, :)) ≥ Lim

0, if mean(Im(x : x+ L, :)) < Lim

(2.14)

where Lim = mean(Im(x : x+ L, :)) − min(Im(x : x+ L, :)) and L represents set of

columns where peaks are determined by averaging all these columns before finding the

peaks.

Text Lines detected using Eq 2.14 are shown in Fig. 2.17. The text lines in this

document are much closer to each other, still, they are detected correctly. There are

some text lines which are divided into two or more parts, because of an increase in inter

words spacing, i.e., text line numbers 1, 2, 3. This division of text lines is not counted

as an error, because it will not effect the final alphabets detection or the sequence of

the detected alphabets of the document.

The algorithm presented here can also be useful in almost all languages, as all

languages are written in the same format. Fig. 2.18, Fig. 2.19 and Fig. 2.20 shows

results of Bangla [16, 17], English [34] and Arabic [34] languages.

The text lines detected in Fig. 2.18 are inclined in the downward direction. Some

of the text lines are starting from the mid of paper i.e., text line number 8, 14 and 21.

The algorithm has detected even a small text line number 21 which is small in length

and is also surrounded by the text lines from upward and downward direction. The

text lines spacing is also much smaller than the rest of the document. The proposed

algorithm has accurately detected text lines of such a complex document.

Fig. 2.19 shows a much simpler document compared to the earlier one. The curvy
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(a) (b)

(c)

Figure 2.18. Text Line detection applied on Bangla language.
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(a) (b)

(c)

Figure 2.19. Text Line Detection applied on English language.

(a) (b)

(c) .

Figure 2.20. Text Line Detection applied on Arabic language.
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text lines i.e., text line number 3, 4 are accurately detected.

Fig. 2.20 shows a script written in the Arabic language. Unlike Bangla and English

languages Arabic is written from right to left. The text lines are much more inclined,

closer to each other, also have some small in length text lines, but are detected with

best high accuracy.

2.2.4. Conclusion

At every stage, the output image is masked using a mask which is constructed by

averaging the original grey scale image using a square averaging function of size 20× 20

pixels. This lets us remove the unwanted blank part of the document so that it does

not affect our later processes.

The detected text lines are used to find alphabets which lie under those detected

text lines. The connected component technique is used to find alphabets in the text

lines.

The total time for text lines tracking depends upon the size of the original image.

As the size of scanned documents differ in all cases, the time for text lines detection

may also vary. Table 2.2 shows the size of images which are used in this chapter for

text line detection. Bigger the size of the image, more will be the time and power

required for line detection.

To reduce the processing time, the original image in the pre-processing step is

resized to a smaller one, i.e. [400 NaN ] in this case. Width of images is reduced to

400 pixels and height will also be decreased accordingly. Table 2.3 shows the decrease

in time if the size of the original image is decreased.

The text line detection algorithm is compared with the algorithm mentioned in

[28]. The proposed algorithm was tested on 200 images of IAM dataset [45]. The total

number of text lines detected are 1867 out of which 7 text lines are found to be a false

detection, which gives an accuracy of 99.63 % which is better than the one listed in
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Table 2.1. Although the text lines in IAM dataset are almost horizontal.

Table 2.2. Time consumption for text lines detection.

Dimensions without

resizing (w × h)

Time without

resizing (sec)

Dimensions after

resizing (w × h)

Time with

resizing (sec)

Fig. 2.17 393 × 371 15.54 400 × 378 16.042

Fig. 2.18 2263 × 1572 222.40 400 × 278 13.52

Fig. 2.19 3359 × 2471 944.40 400 × 295 19.12

Fig. 2.20 3347 × 2471 843.54 400 × 296 17.69

Table 2.3. Decrease in size and time.

Decrease in Dimension Decrease in Time

Fig. 2.17 −3.70 % −3.22 %

Fig. 2.18 96.87 % 93.92 %

Fig. 2.19 98.58 % 97.98 %

Fig. 2.20 98.56 % 97.90 %

2.3. Text Character Recognition

The field of handwritten character recognition is very important for offline recogni-

tion. As offline character recognition is more difficult than online character recognition

systems [18]. The online characters also have the information of sequence or direction

in which they are written. The ability to deal with a large amount of data in a certain

context will bring a lot of value. One example of these applications is to automate

the text transcription process that intended to be applied on the ancient documents

and considering its complexity and irregularity nature due to of the manual aspects of

writing [52].
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Deep Learning (DL) is the new application of machine learning for learning repre-

sentation of data. Deep Learning architecture had also won the ImageNet classification

challenge in 2012 [53]. Since that time, Deep Learning based architectures had won

many challenges and are still in progress.

2.3.1. Convolutional Neural Network

Convolutional neural networks are currently one of the most prominent algorithms

for deep learning with image data. For traditional machine learning, relevant features

have to be extracted manually whereas, deep learning uses raw images as input to

learn certain features. Convolutional Neural Network (CNN) consists of an input and

output layer, and several hidden layers between the input and output. Examples of in

between layers are convolutional layers, max-pooling layers and fully connected layers

[54].

CNN architectures vary in the number and type of layers implemented for its specific

application. For continuous responses, the network should include a regression layer

at the end of a network, whereas for categorical responses the system must include

a classification function and layer. Neurons in each CNN layer are arranged in a

3D arrangement and transform a three-dimensional output from a three-dimensional

input. For our particular application, the input layer holds the images as 3D inputs,

with the height, width and RGB values as dimensions. Hereafter, in the convolutional

layer neurons are attached to the regions of the image and transformed into a three-

dimensional output [54]. An example of a simple network [55] is also shown in Fig. 2.21.

Figure 2.21. A basic CNN where the red input layer shows
input image is transformed into a 3D
arrangement.
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CNN configurations comprise a multitude of hidden layers. In each layer, activation

volumes are altered with the use of differentiable functions. Four principle layer types

exist that are used to build CNN configurations, an example [56] is illustrated in

Fig. 2.22.

Figure 2.22. Convolutional neural network architecture that classifies input
images as belonging to a number of categories including cars,
trucks, vans and bicycles.

1. imageinputLayer : An image input layer inputs 2-D images to a network and

applies data normalization [57].

2. convolution2dLayer : A 2-D convolutional layer applies sliding convolutional fil-

ters to the input. The layer convolves the input by moving the filters along the

input vertically and horizontally and computing the dot product of the weights

and the input and then adding a bias term [58].

3. leakyReluLayer : A leaky ReLU layer performs a threshold operation, where any

input value less than zero is multiplied by a fixed scalar [59].

4. batchNormalizationLayer : A batch normalization layer normalizes each input

channel across a mini-batch. To speed up the training of convolutional neural

networks and reduce the sensitivity to network initialization, use batch normaliza-

tion layers between convolutional layers and nonlinearities, such as ReLU layers

[60].

5. dropoutLayer : A dropout layer randomly sets input elements to zero with a given
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probability. Dropout layer is used to prevent the neural network from overfitting

[57, 61].

6. maxPooling2dLayer : A max pooling layer performs down-sampling by dividing

the input into rectangular pooling regions, and computing the maximum of each

region [62].

7. additionLayer : An addition layer adds inputs from multiple neural network layers

element-wise.

8. fullyConnectedLayer : A fully connected layer multiplies the input by a weight

matrix and then adds a bias vector. Understanding the difficulty of training deep

feedforward neural networks

9. softmaxLayer : A softmax layer applies a softmax function to the input [63].

10. classificationLayer : A classification layer computes the cross-entropy loss for

multi-class classification problems with mutually exclusive classes. The layer

infers the number of classes from the output size of the previous layer [63].

2.3.2. Building a CNN in MATLAB

The framework described in this section is developed in MATLAB. Two MATLAB

toolboxes are used: The Parallel Computing and Deep Learning Toolboxes. The par-

allel toolbox is used to speed up the task by using GPUs of a desktop computer. Deep

Learning Toolbox allows to build and edit deep learning networks interactively using

the Deep Network Designer app. This app can be used to:

i. Import and edit networks.

ii. Build new networks from scratch.

iii. Drag and drop to add new layers and create new connections.

iv. View and edit layer properties.
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v. Generate MATLAB code.

A basic 16 layer neural network mentioned in [56], used for handwritten digits recogni-

tion, is used here at the initial stage for alphabets recognition. More advanced versions

of this network are trained for alphabets recognition by increasing the numbers of lay-

ers, changing the filter sizes of layers, changing the layers itself and changing different

training parameters. More than 30 different neural networks are trained and tested

with different parameters. A 49 layer network shown in Fig. 2.23 is finalized after

training it for a couple of times and making sure of its best performance.

Time for training the deep convolution network shown in Fig. 2.23, may vary de-

pending upon the size of the dataset and available processing power. There are three

options available for training of a deep convolutional network:

1. CPU based computation

2. GPU based computation

3. Cloud based GPU computation

The most reliable and simpler option for training phase is CPU based computations.

However, the time consumption using CPU is very high as a computer computes the

task in a serial configuration. The use of Graphical Processing unit, without any

further programming, can cut down the training time of CNN significantly. A CUDA

based NVidea GPU is necessary with at least 3.0 to compute capability for parallel

computation. Lastly, cloud based GPU computation considers the employment of cloud

resources for the processing power [54]. In this research, both CPU and GPUs are used

for the training of the network.
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Figure 2.23. 49 layer Deep Neural Network with varying filter sizes, used for
handwritten character recognition developed in MATLAB using Deep
Network Designer.
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Figure 2.24. Results of training on MATLAB.



50

2.3.3. CNN Training Phase

As discussed in Section 2.1, a combination of EMNIST dataset [20] and self-prepared

dataset is used for the training phase. The total number of images are 202, 800, which

includes 7800 images per alphabet. The size of each image is 28 × 28 pixels and is

saved in binary format. All the data is labelled from 1 to 26 representing each alphabet

by placing in a folder named from 1 to 26. Fig. 2.26 shows some examples of alphabets

taken from the combined dataset.

The training variables and the values used are listed below:

1. MaxEpochs = 10,

2. V alidationFrequency = 10,

3. MiniBatchSize = 150,

4. TrainingData = 202, 800 × 0.75 = 152, 100 and

5. V alidationData = 202, 800 × 0.75 = 50, 700.

One Epoch is passing an entire dataset forward and backwards through the neural

network during the training phase to update the values of neurons. Since passing a

dataset at once to the network is difficult, so the dataset is divided into small batches.

Batch size represents, how many images are passed to the network at once. One epoch

leads to underfitting of the curve in the graph. As the number of epochs increases,

more the number of times the weight are changed in the neural network and the curve

goes from underfitting to optimal to overfitting curve. [64].

If the training dataset size is 152, 100 and batch size is 150, one epoch will have

152, 100 / 150 = 1014 iterations. As max epochs is 10, the total number of iterations

in 10 epochs will be 1014 × 10 = 10140. Validation frequency is the number of

iterations between evaluations of validation metrics.



51

(a) (b)

Figure 2.25. Example of my own handwriting (a) Text lines detected and (b)
Predicted text.

2.3.4. Conclusion

Vaidya et al. [35] discussed a handwritten character recognition method using

convolutional neural network using the EMNIST dataset [20]. The accuracy of 94 %

was obtained after training the neural network.

The validation accuracy for the training of the proposed neural network shown in

Fig. 2.23 is 94.56 %, which gives higher accuracy compared to the one carried out by

Vaidya et al. [35]. The training was carried out on the GPU system in 87 minutes.

The accuracy plot is shown in Fig. 2.24.

Fig. 2.26 shows some of the predicted alphabets taken randomly from the mixed

dataset which were tested using the trained network in a batch size of 40 images. The

alphabets shown here were taken in a group of 40 images at one time randomly and

the accuracy was calculated based on the predicted alphabets. False detections are

highlighted in red colour.

Fig. 2.25 shows a sample handwritten text document written by myself.
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(a) Accuracy = 100 % (b) Accuracy = 100 %

(c) Accuracy = 95 % (d) Accuracy = 95 %

Figure 2.26. Examples of alphabets taken from the combination of EMNIST
dataset and self-prepared dataset. Original and Predicted
alphabets are shown on the top of each alphabet respectively.
Wrong detections are shown in red colour.



3. RESULTS AND DISCUSSION

This thesis discusses the method of text-lines detection, alphabet detection and

alphabet recognition in Chapter 2. After successful detection of text lines, the next

phase is alphabets detection. At this stage the ideal case is used i.e., the alphabets

in a text lines are not connected to each other, which is not the case in reality. The

alphabets may interfere with each other within a text line. Some of the examples are

also discussed in Chapter. 2.

The current research work focuses on the text document which does not have any

of the graphical objects in it. But in the real case, the text documents, mostly the ones

prepared by students during their lectures do contain graphical objects like figures,

plots or sketches. In the case of such documents, the first step is to detect and remove

graphical objects out of the scanned documents.

3.1. Graphics Extraction

The proposed algorithm can also be used in classifying graphics from a scanned

document. One of the scanned document which contains some graphics is also shown

in Fig. 3.1a. Text lines detection algorithm is applied on this image and the result is

shown in Fig. 3.1b. The text lines are detected correctly beside, there is some detection

of non-textual objects in it.

The graphical objects can also be differentiated while dividing the original image

into parts. Fig. 3.2a shows scanned document where the original image was divided

and the objects which lie on the boundaries are labelled as false objects and are marked

in red colour here. The False objects are then scrutinized such that the group of false

objects which are connected with each other and the sizes are more than the average

of all the objects, are classified as graphical objects. The graphical objects are shown

in Fig. 3.2b.
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(a) (b)

Figure 3.1. (a) Original image with graphical objects and (b) Text Lines
algorithm applied.

(a) (b)

Figure 3.2. (a) False objects detected and (b) Graphical objects detected.
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(a) (b)

Figure 3.3. (a) Graphical Objects Detection and (b) Text Line Detections.

Fig. 3.3 & Fig. 3.4 shows two other examples of handwritten text documents which

contain graphs and figures in it. Fig. 3.3a & Fig. 3.4a shows figures extracted by

dividing the original image into parts. The noticing thing is the output that gives very

good result in excluding those figures.

Fig. 3.3b & Fig. 3.4b show text lines detection algorithm results. The text lines are

detected very efficiently even with the presence of graphical objects.

By comparing the results of Fig. 3.3 & Fig. 3.4, combining both outputs, i.e.,

graphical objects extraction and text line detection can give better results in such

types of documents.

3.2. MATLAB GUI

A GUI is developed to implement all the research work explained in previous the

chapter using MATLAB application designer. GUI has the option of changing some
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(a) (b)

Figure 3.4. (a) Graphical Objects Detection and (b) Text Line Detections.

variables depending upon the input document. The algorithms discussed in Chapter 2

are implemented with a user-friendly interface giving a variety of options to the user,

starting from uploading input image to getting predicted text.

3.2.1. How To Use

The GUI consists of two main panels, each has own axes called input and output

side. Each panel has options, to show any of the intermediate results, under each axes.

These two panels can be used to compare any of the two intermediate results. Fig. 3.5

shows the GUI developed for this research work. The input side is showing text lines

detected, whereas, the output panel is showing the predicted text extracted from the

input image.

The options to show image in any of the panels include, input greyscale image,

input binary image, resized image, a filtered image at a random angle, an image with

estimated skew angles, a final filtered image at the respective estimated skew angles,
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text lines detected, words detected and predicted text.

The information of GUI shown in Fig. 3.5 is listed below:

1) represents number of columns represented by Lim in Eq. 2.14 for finding peaks.

Default value of Lim is 8,

2) represents the height of averaging filter at different angles represented by n in

Eq. 2.11. The default value of n is 3,

3) represents the number of horizontal divisions of the original image. The default

horizontal divisions are 8,

4) represents the height of mean filter represented by hp in Eq. 2.12. The default value

of hp is 4,

5) represents limits of angles in Eq. 2.11 and Eq. 2.12. The default angles span consists

of −12 to +12,

6) represents the number of vertical divisions of the original image. The default vertical

divisions consist of 12 parts,

7) represents the type of pre-processing filter used on the original image. The default

filter is Adaptive Binarization,

8) generates text lines of the input image,

9) generates predicted text extracted from the text lines.

10) input panel,

11) output panel and

12) menu bar to upload or save an image.
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Figure 3.5. GUI with its options numbered and explained.

The process starts with uploading the image from the menu bar (12). The greyscale

image will be automatically shown in the input panel of the GUI. The default pre-

processing technique will be applied on the input image before showing it in the input

panel. The user has to check the results of the pre-processing technique and can

change from the toggle button at number 7. Switching the toggle to the other side will

automatically apply the respective filter on the image and will show the image in the

input panel.

After pre-processing, the user has to click on Generate Text Lines (8) to start the

algorithm of text lines detection. At the end of text lines detection algorithm, the final

text lines will be automatically shown at the output panel.

The user can check the final detection of text lines from the output panel. If the

results are not up to the mark, the user can change the parameters (1 - 6) in Fig. 3.5

and run the algorithm again.

After the successful detection of text lines, the user has to click on Generate the

Text (9) to start the algorithm, which uses a pre-trained neural network to predict

the alphabets detected in the last step. The recognition of characters starts with the

alphabets detection technique from the text lines detected.



4. CONCLUSION AND FUTURE WORK

The research work carried out consists of three phases. Preparation of handwritten

dataset, detection of text lines and handwritten characters recognition discussed in

Chapter 2. The dataset here is prepared to increase the accuracy of own handwriting.

The text lines detection algorithm successfully detects all kinds of text lines from almost

all kind of languages with best high accuracy. Text recognition carried out using the

neural network is best high accuracy.

Within the scope of this research work, the text documents used for text lines

detection does not contain any of the graphical objects in it. But in a real case, most

of the documents especially the one prepared by the students does contain graphical

objects in it. As discussed in Chapter 3 while dividing the original image, false objects

can be used as a base for the improvement in accuracy of graphical objects extraction.

In this research work although the text lines are detected accurately at any angle,

finding correct alphabets from those text lines is another complete long term research

work. Here the ideal case is used, where the alphabets are not connected to each other

in a text line, which is not the case in reality.

The current output which GUI can give is shown in Fig. 3.5, where all the alphabets

are placed at the exact location where those alphabets are found in the original image.

This makes the output little difficult to read.

An edit box can be added in the GUI where all the detected alphabets can be shown

with an edit option, where a user can edit any of the alphabets in that edit box if it

is a wrong detection. The wrong detections are extracted from the original image and

placed in a separate folder with their correct labels. These alphabets can be used to

train the network using Transfer Learning to improve the accuracy of the network in

the future.
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