KARADENİZ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

÷,

MAKİNA MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI

TEZ NUMARASI

Genel : Ana Bilim Dalı : Program :

Seat. 101 02 1. Sec. 20 Fight

İÇTEN ÖZEL DİRENÇLİ BORULARDA ISI TRANSFERİ VE AKIŞIN İNCELENMESİ

Yüksek Lisans Tezi

Mehmet Emin ARICI

Yönetici: Yrd.Doç.Dr. Teoman AYHAN

Trabzon,1985

ÖNSÖZ

Karadeniz Üniversitesi Makina Mühendisliği Bölümünde Yüksek Lisans Tezi olarak ele alınan bu çalışmada, içten özel dirençli borularda ısı transferi ve akış incelenmiştir. Düşündüğümüz özel direnç tipi ile ilgili çalışmanın literatürde yer almayışı, en yakın modellerle ilgili çalışmaları referans olarak seçmemize neden olmuştur. Deneysel ağırlıklı bir çalışma olarak ele alınan bu tezde, önce literatürde yapılan çalışmalara yer verilmiş daha sonra laboratuvar sonuçları değerlendirilmiştir.

Çalışmamın her aşamasında ilgi ve yardımlarını esirgemeyen Hocam Sayın Yrd. Doç. Dr. Teoman AYHAN'a teşekkür ederim. Ayrıca deneyler sırasında yardımları dokunan laboratuvar teknisyeni Veysel (KAZAZ'a, şekil ve grafikleri çizen Ergül DAR'a ve bu metni daktilo eden Temel TOSUN'a teşekkürü bir borç bilirim.

> Mehmet Emin Arıcı Trabzon, Mart 1985

Ι

	II
İÇİNDEKİLER	
ÖNSÖZ	Ĩ
SEMBOLLER	III
1. GIRIS	1
2. İÇTEN ÖZEL DİRENÇLİ BORULAR	3
2.1 İÇTEN HELİSEL OYUKLU BORULARDA ISI TRANSFERİ	
VE BASINÇ KAYBI	3
2.2 ONDULELİ (DAİRESEL BOĞUMLU) BORULARDA ISI	
TRANSFERI	9
3. DENEYSEL ÇALIŞMA	11
3.1 DENEY DÜZENEĞİ	11
3.2.ISI TRANSFERI DENEYLERI	15
3.2.1 Termokupl Kalibrasyonu ve Sistemin Isı Kaybı	15
3.2.2 Dairesel Kesitli Borularda Akış ve Isı	
Transferi	17
4. SONUÇ	42
EK	
DENEYSEL ÖLÇÜM DEĞERLERİ	43
KAYNAKLAR	62

SEMBOLLER

: Kesit alanı, m² Α Cp : Sabit basınçta özgül ısı, kJ/kg ^OC : Çap, m D : Oyuk derinliği, m e : Yüzey alanı, m² F : Yerçekimi ivmesi, m/s² g h_a : Helis adımı, m : Isı transferi katsayısı, W/m^{2 O}C h Δh : Basınç farkı, mSS : Akım, A I k : Isı iletim katsayısı, W/m ^OC : Boru boyu, m L m : Kütle debisi, kg/s p : Basing, N/m^2 Δ_p : Basınç farkı, N/m² : Isı akısı, W Q. **q** : Birim yüzeydeki ısı akısı, W/m² Т : Sıcaklık, ^OC ΔT : Sıcaklık farkı, ^OC ΔT_{mlog} : Ortalama logaritmik sıcaklık farkı, ^OC : Yerel uzunlum, m Х : Gerilim, hız; V, m/s ប : Gerilim, mV u : Hacim debisi, m³/s v. α : Lüle katsayısı ρ : Yoğunluk, kg/m³ v : Kinematik viskozite, m²/s $f = \frac{2D_{H}}{L} \cdot \frac{\Delta p}{p_{U}^{2}}$ Basing kayip katsayisi $\frac{h \cdot \Delta T_{mlog} \cdot F}{\dot{V} \cdot \Delta p}$ Ekonomiklik kriteri $Re = \frac{U_{m} \cdot D_{H}}{v}$ Reynolds sayisi $p_r = \rho \frac{C_p v}{v}$ Prandtl sayisi

indisler :

a	: Akışkana ait
b	: Boşluk, boşluk çapına göre tanımlanmış
Ç	: Çıkış şartlarında
đ	: Duvara ait, dış (çap için)
g	: Giriş şartlarında
H	: Hidrolik
h	: Havaya ait
i	: İç, iç çapa göre tanımlanmış
k	: Kayıp
m	: Ortalama
mđ	: Ortalama duvar
N	: Net
n	: Nominal
0	: Ortama ait, helisel yay dış çapına ait
S	: Su için
Т	: Toplam
x	: Yerel değer

1. GİRİŞ

Geçmişte ve özellikle günümüzde enerji üretimi ve tüketimi insanların refahı bakımından adeta ayırt edici bir ölçü durumuna gelmiştir. Bir enerji şekli olan ısının da, üretim ve kullanımındaki verimliliği yanında, farklı sıcaklıktaki iki ortam arasında en ekonomik bir biçimde transfer edilmesi gerekmektedir. Farklı sıcaklıktaki iki ortam arasında ısı transferinin çeşitli yollarla gerçekleştiği bilinmektedir.

Bu çalışmada dairesel borularda zorunlu konveksiyonda isi transferi ele alınacaktır. Burada sabit ve üniform ısı akısı altında ısıtılan boru ile akışkan arasındaki ısı transferi mekanizması incelenecektir. Bu durumda Newton'un soğuma kanununa göre akışkana transfer edilen ısı,

$$Q = h \Delta T F$$

(1.1)

eşitliği ile verilir. Burada sıcaklıkları belli iki ortam arasında ısı transferini artırmak için yüzey alanını artırma dışında tek etkin yolun ısı transferi katsayısı h 'yı büyütmek olduğu açıkça görülür. Isı transferi katsayısı h, çok değişik parametrelere, -akışkan özelliklerine, yüzey geometrisine ve akışın durumuna- bağlıdır. Bazı durumlarda yüzey geometrisinden dolayı ısı transferi katsayısı büyürken aynı geometri yüzey alanını da büyütmüş olur. Bu şekilde ısı transferinde görülecek toplam artış hem ısı transferi katsayısına hem de yüzey alanı artışına bağlanabilir.

İçten özel dirençli borularda ısı transferini incelerken, ısı transferinin fiziksel oluş mekanizması incelenmeyip ısı transferi katsayısındaki artış araştırılacaktır. Ele alınan çalışma ile ilgili literatür araştırması sonucunda bu konuyu isteyen bir çalışmaya rastlanmamıştır. Yapılan çalışmalardan, boru duvarına açılmış helisel oyuklu borular araştırma konusuna en yakın modeller olarak seçilmiştir. İçten helisel oyuklu borularda boru iç yüzey geometrisi değiştirilirken, içten helisel yaylı borularda boru iç yüzey geometrisi değiştirilmemiştir.

Akış karekterine göre oluşan sınır tabakalar ısı transferi mekanizmasının esasını meydana getirmektedir. Pratikte genellikle

akışlar türbülanslıdır. Bu teze konu olan araştırma, türbülanslı akış bölgesindeki ısı transferini esas alacaktır. Newton soğuma 🖉 kanunundan da görüleceği üzere, akışkana verilen ısı miktarının artırılması yollarından biri de ısı transferi katsayısının artırılmasıdır. Ele alınan araştırma konusu, h ısı transferi katsayısının yükseltilmesi yöntemlerinden biriyle ilgilidir. Sınır tabakanın belirli aralıklarla parçalanıp tekrar venilenmesinin sağlanması, ısı transferinin iyileştirilmesi yönünde etkili olacağı acıktır. Bu mekanizmanın akış ortamı içerisinde gerçekleştirilmesi yukarıda tanımlanan helisel yayla sağlanmaktadır. Boru akışında oluşan sınır tabakanın içindeki helisel yayın boru duvarına temasının, duvardan uzaklığının, helisel yayın helis adımının ve yay malzemesinin tel çapının akışa etkileri araştırma konusunu meydana getirmektedir. Boru duvarına yakın bölgeye helisel yay yerleştirmekle oluşacak girdapların laminer alt tabakayı harekete geçirerek; sıcak ve soğuk akışkan girdaplarının karışması, ısı transferi katsayısında meydana gelen artışın sebebi olarak açıklanmaktadır. Helisel yayla birlikte akışa getirilen direnç basınç kaybındaki artışa neden olacağından, borudaki basınç kayıpları ölçülerek kayıp katsayıları hesaplanmıştır.

Tezde sunulan çalışmada, ısı transferi ve basınç kaybı açısından en ekonomik direnç tipi bulunmaya çalışıldı ve ısı transferi katsayısında artış sağlamak için seçilen yöntemin üstünlüğü savunuldu.

2. ICTEN ÖZEL DİRENÇLİ BORULAR

İçten özel dirençli borular son altmış yıldan beri ısı eşanjörü ve benzeri tesislerde kullanılmıştır. Bu boruların ısıl ve hidrolik performansı ile ilgili çalışmalara 1970 yılından sonra çıkan [2,3,...,23] yayınlarda raslanmaktadır. Bunlar arasında en yaygın olanları "Turbotec" boruları olarak bilinen, helisel oyuklu borulardır. Çeşitli şekillerde üretilen Turbotec boruları kullanılış amaçlarına göre; içerden helisel oyuklu, içerden ve dışardan helisel oyuklu, tek yada çok sıralı helisel oyuklu olabilmektedirler.

D, D (a) (Ъ) Şekil-2.1: İçten helisel oyuklu Turbotec borusu [1] (a) Fotograf, (b) Şematik resim

Bir örnek olarak Şekil-2.1.a. da fotoğrafı ve Şekil-2.1.b. de basit resmi verilen Turbotec borusu [1], iç ve dış yüzeylerine eksenel oyuklar açılmış düz bir borunun burulması sonucu elde edilmiştir. Meydana gelen helisel oyuklu borunun maksimum iç çapı D_i ve gerçek boşluk çapı D_b ile oyuk adımı h_a önemli geometrik büyüklüklerdir.

2.1. İÇTEN HELİSEL OYUKLU BORULARDA ISI TRANSFERİ VE BASINÇ KAYBI

içerden helisel oyuklu borularla ilgili ilk ayrıntılı çalışma 1970 yılında yapıldı [2]. 13 ayrı boru üzerinde yapılan çalışmadan

sadece dört tanesi için içerden türbülanslı akışta ısı transferi katsayıları ve basınç kayıp katsayıları çıkarılmıştır. Bu boruların özellikleri Tablo-2.1de listelenmiştir. Aynı yıllarda tek bir boru üzerinde yapılan başka bir çalışmada [3] sadece ısı transferi katsayıları çıkarılmıştır. Yine 1970 yılında başka bir çalışmada [4] içerden helisel oyuklu borular için ısı transferi katsayıları çıkarılmıştır. Ancak burada pürüzsüz boru için elde edilen sonuçlar Şekil-2.2 de görüldüğü gibi Dittus ve Boelter tarafından verilen pürüzsüz boru bağıntısının biraz üzerindedir. 1975 yılında aynı tip borular üzerinde iki ayrı çalışma [5,6] daha yapıldı. Bunlardan Meade Iron Works [5] çalışmasında pürüzsüz borular için elde edilen değerler Şekil-2.2 de görüldüğü gibi Kaynak [4] de yapılan çalışma ile iyi bir uyum sağlamaktadır. Watkinson ve Martinez [6] 'in yaptığı çalışmada durum çok farklı olup pürüzsüz boru için elde edilen noktalar, verilen pürüzsüz boru bağıntısının altındadır, Şekil-2.4.a. Ancak bu düşüş deneylerin paslı boruda yapılmasından kaynaklanmaktadır. Aynı boruların duvarına CaCO₂ kalıntılarının birikmesi durumunda yapılan çalışmalarda ısı transferinin çok kötüleştiği görülür, Şekil-2.4.b. Turbotec boruları ile ilgili en yeni çalışma [8,9] 1978, 1979 yıllarında yapıldı. Tablo-2.1 de boyutları listelenen borular üzerindeki çalışmalardan elde edilen sonuçlar Şekil-2.2 ve Şekil-2.3 de görülmektedir.

Tablo-2.1 de listelenen çalışmaların tamamı türbülanslı akışta, Reynolds sayısının 2300 ile 300 000 arasında yapılmıştır. Şekil-2.2 de görüldüğü gibi çalışmaların yoğun olduğu bölge Reynolds sayısının 10 000 den büyük olduğu bölgedir. Yani akışın tam türbülanslı olduğu bölgedir. Pürüzsüz borular için verilen eşitlik tüm türbülans bölgelerini kapsamaktadırb Şekil-2.2 'ye bağlı olarak aynı Reynolds sayısı aralıkları için Şekil-2.3 de basınç kayıp katsayılarının Reynolds sayısına göre değişimi verilmiştir. Şekil-2.2 de helisel oyuklu borularda ısı transferi katsayısının Reynolds sayısı ile değişimi pürüzsüz borularda geçerli olan bağıntıya paraleldir. Helisel oyuklu borulardaki basınç kaybını pürüzsüz borudaki basınç kaybı ile karşılaştırabilmek için Şekil-2.3 deki grafik çizilmiştir. Grafikten görüleceği gibi helisel oyuklu borularda basınç kaybı, Reynolds sayısının belirli bir değerinden sonra değişmemektedir. Bu ise tam pürüzlü boru davranışına benzemektedir.

Çalışma	Singe	Boru Di	Boyut D _b	ları (h _a	m) e	Helis Sayısı	Grafik İşareti	Isı Transferi Katsayısı Artış Yüzdesi (%)	Basınç Kayıp Artışı Yüzdesi (%)
Bulumenkrantz	Ø10	0.147	0.091	0.353	0.020	4	▼ ⊽		600
ve Taborek	Ø14	0.249	0.160	0.659	0.042	4		200	700
[2]	Ø17	0.223	0.128	0.448	0.039	5	Δ		1000
• O	Ø21	0.269	0.182	1.080	0.027	3	• •		300
Bergles,A.E [3]		0.183	0.116	0.657	0.034	4	1	150	-
Palen, J. [4] Pürüzsüz (*)		0.236	0.139	0.572	0.048	4		120	
Meade Iron	A	0.162	0.101	0.430	0.031	3	4	75	
[5]	В	0.162	0.101	0.240	0.031	3	5	125	-
Puruzsuz 5	C	0.264	0.170	0.780	0.047	3	6	100	
Watkinson ve	T-1	0.112	0.710	0.249	0.020	3		(++)	
[6]	T-2	0.112	0.710	0.226	0.020	3	0		
Pürüzsüz ()	T-3	0.112	0.710	0.203	0.020	3	\$		

Tablo-2.1: İçerden türbülanslı akışta helisel oyuklu borular üzerinde çalışmalar

Ĵ

Tablo-2.1: den devam

Çalışma	mge	Bo1	u Boyu	itları	(m)	Helis Sayısı	Grafik İşareti	lsı Transferi Katsayısı Artışı	Basınç Kayıp Katsayısı Artışı
	Si	Di	Db	ha	е			(%)	(%)
Everly ve Genetti [7]	-	0.218	0.128	0.508	0.038	5.	2	60	
	TT-1	0.145	0.091	0.503	0.027	3	▲ ⊲	100	320
Marto, P.J. ve	TT-2	0.145	0.080	0.368	0.033	3	• •	190	630
Fenner,J.H. [8,9]	TT-3	0.145	0.078	0.225	0.034	3	• • (+) • • • • • • • • • • • • • • • • • • •	400	2000
	TT-4	0.145	0.080	0.240	0.032	3	► ▷	260	1200

(*) Aynı çalışma pürüzsüz boruda da yapılmış olup karşılaştırma ölçülen pürüzsüz boru değerlerine göre yapılmıştır.

Pürüzsüz boru deneyleri ayrıca yapılmayan çalışmalar için karşılaştırma Dittus ve Boelter eşitliğine göre yapılmıştır.

- (**) İçerleri dolu olan grafik işaretleri deneylerde kullanılan akışkanın su olduğunu, boş olanları ise kullanılan akışkanın hava olduğunu göstermektedir. İçerleri yarı dolu olan işaretler ise deneylerin kirlenme şartlarında (CaCO3 kalıntıları) su ile yapıldığını göstermektedir.
- (+) 1) Desteksiz boru

Destekli boru için yapılan deneyleri gösteriyor.
 Burada bu durumun sonuçları pek etkilemediği Şeki1-2.2 de görülüyor.

(++) Borulardaki CaCO₃ kalıntılarının etkisini araştırmak için yapılmış olan bu çalışma burada değerlendirme dışı bırakılmış olup sadece şekilsel bilgi bakımından Şekil-2.4 ve Şekil-2.5 verilmiştir. Tablo-2.1, Şekil-2.2. ve Şekil-2.3 'e bakıldığında, pürüzsüz boruya göre içerden helisel oyuklu Turbotec borularında ısı transferindeki %50 'den %400 'e varan artışlar karşısında, basınç kayıplarının 3 ile 20 kat kadar arttığı görülür. Boru boyutlarına

bakıldığında ısı transferi ve basınç kaybını etkileyen en önemli faktörün oyuk derinliği ve helis adımı olduğu anlaşılır. Helis sayısının da sonucu etkileyen üçüncü bir faktör olacağı düşünülürse de ilk ikisi kadar etkili olmadığı görülmektedir. Oyuk derinliği için e/D_i ve helis adımı için h_a/D_i boyutsuz büyüklükleri tanımlanırsa ısı transferi katsayısındaki artış için en uygun değar, tanımlanan boyutsuz sayılara bağlı olarak, hesaplanabilir.

En son yapılan çalışmalardan Marto [8,9] TT-3a ve TT-3b borularında ısı transferi katsayısında %400 'lük bir iyileşme ile birlikte basınç kayıp katsayısında pürüzsüz boruya göre 20 katlık bir artış izlenmektedir. Bu konuda yapılan çalışmalara genel olarak bakıldığında, ısı transferi katsayısındaki iyileşmeye karşılık, basınç kayıplarının arttığı görülmektedir.

Şekil-2.4: Turbotec borularında: a) Paslanma durumunda, b) CaCO₃ kalıntılarının birikmesi durumunda ısı transferi katsayısı [1]

2.2. ONDULELI (DAIRESEL BOĞUMLU) BORULARDA ISI TRANSFERI

İçerden helisel oyuklu borular (Turbotec boruları) dışında değişik içten özel dirençli borularda da ısı transferlerini iyileştirme yolunda çalışmalar yapılmıştır. Bu çalışmalar ve ısı transferi katsayılarındaki artış yüzdeleri Tablo-2.2 'de verilmiştir. Tabloya bağlı olarak Şekil-2.5 de deneye, tabi tutulan boruların fotoğrafları [1] görülmektedir. Burada da Turbotec borularında olduğu gibi ısı transferi katsayısında %40 dan %400 'e varan artışlar görülmektedir. Tablo-2.2 de üzerinde araştırma yapılan boru türlerinin bazıları sanayide uygulama alanı bulmuştur. Bu çalışmalarla ilgili ayrıntılara girilmeyip tablo halinde verilmeleri ile yetinilmiştir. Tablo-2.2 'de gösterilen boru tiplerinde sınır tabaka oluşumu değişik koşullar altında gerçekleştiğinden kesit içerisindeki hız dağılımı farklı profillerde olacağı anlaşılır.

Şeki1-2.5: İçten helisel oyuklu ve onduleli (dairesel boğumlu) borular [1]

		,	
Çalışma	Direnç Şekli	Isı Transfer Katsayısı Artış Yüzdesi (%)	Fotoğraf (Şek.2.5)
Lewson, C.G. [10]	Helisel çentiklenmiş	100	
Bulemankrantz,A. [11]	Helisel yivli	40	D
Kidd [12]	Helisel oluklu	90	-
Withors ve Young [13]	01uk1u	173	Е
Kalinin ve Yarkho [14]	Halka diyaframlı	150	
Kramer ve Gater [15]	Helisel ve halkalı karışık	300	C
Newson ve Hodgson [16]	Şekillendirilmiş ve ip şekline sokulmuş içeri doğru helisel çentikli çok oluklu, uzunluğuna dalgalı	150	В
Robles [17]	Karmaşık helisli	400	С
Torii, T.[18]	Dairesel yivli, Burulmuş	193 178	
Watkinson,A.P. [19]	Helisel çentikli	75	D
Yoshitomi, H. [20]	J.S.P. Helisel borusu	130	The F actor (1)
Cunningham ve ^{Milne} [21]	İp şekline getirilmiş	70	A
Marto, P.J. [8]	Burulmuş (Wolerine) (General Atomik)	160 228	E G
Mehto ve Rao [22]	Helisel çentikli	150	
Bupto ve Rao [23]	Helisel çentikli	240	

Tablo-2.2: İçerden türbülanslı akışta helisel oyuklu ve onduleli (dairesel boğumlu) borular üzerinde yapılan çalışmalar

3. DENEYSEL ÇALIŞMA

İçten özel dirençli borularda artan basınç kaybıyla birlikte isi transferinde önemli artışlar olduğu görüldü. Bu çalışmalardan şimdiye kadar yapılanları, birkaç ondule şişirilmiş boru dışında genellikle hepsi helisel oyuklu borular üzerinde olmuştur. Bu borularda isi transferi katsayısının artırılması yanında yüzey alanı da büyütülmüştür. Burada yapacağımız deneysel çalışmada durum biraz farklı olup, boru içerisindeki akışta duvara yakın bölgeler dışarıdan etkilendirilerek ısı transferinde meydana gelen değişiklik araştırılacaktır. Sınır tabakanın etkilenmesi boru içerisine yerleştirilen helisel yaylar yardımı ile gerçekleşecektir. Deneyler helisel yayın boru duvarına bitişik olması durumunda da yapılacak ve ısı transferi katsayıları hesaplanacaktır. Ancak burada helisel yay boru duvarına herhangi bir şekilde yapıştırılmış olmayıp serbest temas durumundadır.

3.1. DENEY DÜZENEĞİ

Deneysel çalışma için aralarında geometrik benzerlik olan, A borusu ve B borusu olarak adlandırılan iki boru alındı. Özel dirençler bu boruların içine sonradan yerleştirildi. Şekil-3.1 de montajı görülen A borusu 0.0525 m iç çapında ve 0.5 m uzunluğunda dikişli galvenizli çelik borudur. Şekil-3.2 deki B borusu ise 0.0323 m iç çapında ve 0.244 m uzunluğunda alaşımlı çelik çekme borudur. A borusu ile B borusunun D_i/L, yani, çap/uzunluk oranları yaklaşık eşittir. Her iki borunun da, montaj resminde de görüldüğü gibi, girişte birer ön boru çıkışta karışım odaları vardır. ön boruların boyu deney borularındaki kadardır ve bu boruların yatay eksenleri deney borusunun yatay ekseni ile çakışacak şekilde flanşa tesbit edilmişlerdir. Boruların çıkış kısmında, akışkanın çıkış sıcaklığını ortalama karışım sıcaklığında ölçebilmek için karışım odası vardır.

A borusunun montajı ile B borusunun montajı arasında bazı farklar vardır. Bu farklılık, yapılacak ısı transferi deneyleri ve basınç kaybı ölçümlerini etkilemeyecektir. Şekil-3.1 deki A

Seki1-3.1: A deney borusu montaj resmi, Ölçek: 1/5

- 1. Giriş borusu
- 2. İzolasyon
- 3. Elektrikli 1s1t1c1
- 4. A deney borusu
- 5. Sıkıştırma çubukları (4 adet)
- 6. Termokupl (duvar sıcaklığı için)
- 7. Mantar conta
- 8. Karışım odası
- 9. Çıkış sıcaklığı için termokpl

j§eki1-3.2: B deney borusu montaj resmi , Ölçek: 1/2,5

- 1. İzolasyon
- 2. Tutucu ayaklar (iki adet)
- 3. Termokupl (duvar sıcaklığı için)
- 4. B deney borusu
- 5. Elektrikli isitici
- 6. Mantar conta
- 7. Karışım odası
- 8. Çıkış sıcaklığı için termokupl

deney borusu, flanşlar arasına uzun germe çubukları ile sıkıştırılırken, Şekil-3.2 deki B deney borusunda bu rijitlik borunun flanşa yapıştırılması ile sağlanmıştır. Şekil-3.3 de deney düzeneğinin şematik resmi görülüyor. Deney borusunun duvarı elektrikli ısıtıcı yardımı ile ısıtılmaktadır. Isıtıcıya verilen toplam ısı akısı

$$\dot{Q}_{\mu} = U \cdot I$$
 (3.1)

şeklinde hesaplanmaktadır. Burada U, gerilimi I 'da akımı göstermektedir. Gerilim ve akım şekilde görüldüğü gibi ölçülmektedir. Deney borusu üzerindeki çeşitli noktaların sıcaklıkları ve ortam sıcaklığı bakır-konstantan termokupl çifti yardımı ile mV birimi cinsinden ölçülmektedir. 0[°]C deki referans ucu sabit kalmak üzere ölçülecek nokta kanal seçici yardımı ile devreye alınarak, açık uçlara milivoltmetre bağlanır ve sıcaklık ölçümü gerçekleştirilir. Şekil-3.3 deki şemada görülen fan sabit devir sayısında çalıştığından kesitten geçen toplam hava debisi kısma varması ile kontrol edilir. Kesitten geçen debi lüle giriş ve çıkışı arasındaki basınç farkından hesaplanır. Basınç farklarına göre kalibre edilmiş lüle için,

$$\dot{\tilde{V}} = \alpha A \sqrt{\frac{2g(\rho_{s} - \rho_{h})\Delta h}{\rho_{h}}}$$
(3.2)

eşitliği kullanılarak geçen debi miktarı hesaplanır. Burada Δh lüle giriş ve çıkışı arasında ölçülen basınç farkı mSS cinsinden, α lüle katsayısı, A lülenin akışa dik kesit alanı m² cinsinden $\rho_{\rm s}$ ve $\rho_{\rm h}$ da suyun ve havanın yoğunlukları olmak üzere debi, m³/s cinsinden elde edilir.

3.2. ISI TRANSFERİ DENEYLERİ

3.2.1. Termokupl Kalibrasyonu ve Sistemin Isı Kaybı

Burada sıcaklık ölçümlerinde kullanılan termokuplların kalibrasyonu ve sistemin isi kaybı hakkında ayrıntılara girmeyip sadece elde edilen sonuçlar verilecektir. Deney ve hesaplamalarda aynı yöntem kullanılarak A ve B borularından oluşan her iki sistem için de termokupl kalibrasyonu yapıldı ve ısı kayıpları ölçülerek ısı kayıp katsayısı çıkarıldı. Sıcaklıklar ve bu sıcaklıkların meydana getirdiği gerilmeler tablo değerleri olmak üzere Şekil-3.4 de A ve B borularında kullanılan termokupl telleri için kalibrasyon eğrileri verilmiştir.

Yine Şekil-3.5 de her iki boru için ayrı ayrı ısı kayıp eğrileri verilmiştir. Burada, deney borusunun ortalama duvar sıcaklığı ile ortam sıcaklığı arasındaki sıcaklık farkı ve sisteme verilen ısı (kaybedilen ısı) tablo değerleri olmak üzere eğri uydurulmuştur.

Şekil-3.5: Ortalama duvar sıcaklığına göre sistemin ısı kaybı (1) A deney borusu için, (2) B deney borusu için

3.2.2. Dairesel Kesitli Borularda Akış ve Isı Transferi

Dairesel kesitli borularda Reynolds sayısının 2300 den büyük olduğu durumlarda akış laminer rejimden türbülenslı rejime geçer. Bu geçiş Reynolds sayısı 8000 oluncaya kadar devam eder ve bu noktadan sonra akış tamamen türbülanslı olur. Boru içerisindeki akışta; akışkandan boru duvarına veya boru duvarından akışkana olan ısı transferinde önemli bir büyüklük olan ısı transferi katsayısını karakterize eden Nusselts sayısı da boru içersindeki akışa, yani Reynolds sayısına bağlıdır. Nusselt sayısı Reynolds sayısı yanında akışkanın fiziksel özelliği olan Prandtl sayısına da bağlıdır. Bu durumda

$$Nu = \emptyset (Re) \cdot \psi (Pr)$$
(3.3)

dır. Borularda ısı transferi için

$$Nu = CRe^{m}Pr^{n}$$
(3.4)

şeklinde bir eşitlik vermek istenirse, Dittus ve Boelter gelişmiş türbülanslı akışta pürüzsüz borular için (3.4) eşitliğindeki sabitleri

$$Nu = 0.023 Re^{0.8} Pr^{0.4}$$
(3.5)

olarak vermektedirler.

(3.5) eşitliği gelişmiş boru akışı için verilmiştir. Şekil-3.6 da türbülanslı akış için giriş etkileri görülmektedir. Laminer akışta girişten itibaren 50 D_i uzunluğunda giriş etkileri görülürken, türbülanslı akışta bu etkiler 10 D_i kadarlık bir giriş uzunluğundan sonra kaybolmaktadır. Şekil-3.6 da izlenebileceği gibi boru duvarına sabit ısı akışı verildiğinde ısı transferi katsayısı girişten itibaren belirli bir noktaya kadar değişir. Tam gelişmiş hız dağılımında ısı transferi katsayısı artık değişmemektedir. Şekil-3.1 ve Şekil-3.2 de A ve B boruları için ölçme bölgesi girişten itibaren yaklaşık 10 D_i kadar sonra geldiğinden ve akış türbülanslı rejimde olduğundan çalışma bölgesi tam gelişmiş hız dağılımındadır.

Isı transferi ve basınç kayıp deneyleri A ve B boruları için önce pürüzsüz boruda yapıldı. Pürüzsüz boru deneylerinde ısı transferi için (3.5) eşitliği ve basınç kaybı deneyleri için Reynolds sayısının 3.10⁴ den küçük olması durumunda,

$$f = 0.316 \text{Re}^{-0.25}$$

ve büyük Reynolds sayılarında

Blasius tarafından verilen eşitliklerle karşılaştırma yapıldı. Yapılan deneylerden elde edilen sonuçların yukarıdaki eşitliklerle uyum içinde olduğu görüldükten sonra içten helisel yaylı borularda deneylere geçildi. Yapılan ısıl ve hidrolik çalışmalar Şekil-3.7 deki şemada görülen 10 ayrı boru üzerinde yapılmıştır. A ve B serileri olarak ele alınan ve aralarında geometrik benzerlik bulunan boruların herbirinde, Reynolds sayısı 2300 den büyük olan akış durumunda yeni türbülanslı akışta deneyler yapıldı. A serisi için Reynolds sayısının üst sınırı 15000 civarında tutulurken, B serisindeki borular için bu sınır 50000 'e zorlanmıştır.

(3.6)

(3.7)

Şekil-3.7: İçten helisel yaylı borular ve geometrik ölçüleri

Şekil-3.7 deki şemada A ve B boruları için geometrik büyüklükler verilmiştir. Her boru için öngörülen kodlamada şu düşünceden hareket edilmiştir.

sxy

olmak üzere s, borunun hangi seriden olduğunu (A ya da B) belirtir. s'den sonra gelen x ve y borudaki direnç durumunu belirtir. x ve y nin her ikisi birden 0 ise pürüzsüz boruyu simgeler. x yerine 1 gelirse borudaki helisel yayın duvardan ayrık olduğunu, 2 gelirse duvarla temas halinde olduğunu gösterir. y, 1 den itibaren tamsayı sabitler alır ve x 'in her durumu için helisel yayın adımını belirtir. Bir örnek olarak, B21 kodundaki boru, B serisindendir, helisel yay duvarla temastadır ve helis 1 nolu adımdadır. Ayrıca A borusu için deneyler üç ayrı ısı akışı altında yapıldığından sxy 'den sonra dördüncü bir karakter gelir. Bu da A, B ya da C harflerinden biridir. Tablo-3.1 de bunların hangi ısı akılarına karşılık geldiği görülüyor.

Deneylerde ölçülen büyüklükler tablo halinde ekte verilmiştir. Ek. Tablo-1 den Tablo-9 'a kadar A borusu için ölçülen sıcaklıklar verilmiştir. Her bir tablo üzerinde ölçülen büyüklüklerin hangi boruya ait olduğunu belirten boru kodu ve diğer bilgiler yer aldığından ayrıca açıklamaya gerek görülmemiştir. A borusu tablolarından da anlaşılacağı gibi her durum için deneyler üç ayrı ısı akısı altında tekrarlandı. B borusu deneyler yalnız bir ısı akısı için yapıldı. Ek. Tablo-10 dan Tablo-16 'ya kadar da B borusu için ölçülen sıcaklıklar ve diğer büyüklükler yer almaktadır.

Daha önce de belirtildiği gibi deneysel çalışmada sıcaklık ölçümlerinin yanında ölçme bölgesinde meydana gelen toplam basınç kayıpları da önemli olduğundan her durum için borudaki basınç farkları da ölçüldü. Ek. Tablo-17 ve Tablo-18 'de bu basınç farkları listelenmiştir.

Bir örnek olarak üç ayrı nominal Reynolds sayısı için, yani hidrolik çapı gözönünde bulundurmadan, A borusunda duvar ve akışkan sıcaklığının boyutsuz boru boyu x/L ile değişimleri Şekil-3.8 de görülüyor. Burada grafikler, her bir nominal Reynolds sayısı için pürüzsüz boru değerleri bir defa A11 bir defa da A21 borularının değerleri ile karşılaştırılacak şekilde düzenlenmiştir. Şekil-3.8 'e bağlı olarak aynı durumlar için hesaplanan yerel Nusselt sayılarının boyutsuz boru boyu ile değişimi Şekil-3.9 dadır. A borusundaki gibi B deney borusunda da pürüzsüz borunun 6 ayrı helisel yaylı boru ile karşılaştırılması yapılabilecek şekilde iki ayrı nominal Reynolds sayısı için sıcaklıkların boyutsuz boru boyu ile değişimi Şekil-3.10 ve Şekil-3.12 de görülüyor. Yalnız burada B borusu için düşey koordinatta T yerine T-T_o farkı yer almaktadır. Yine Şekil-3.10 ve Şekil-3.12 'ye bağlı olarak aynı durumlar için yerel Nusselt sayılarının boyutsuz boru boyu x/L ile değişimleri Şekil-3.11 ve Şekil-3.13 deki gibidir.

Yapılan çalışmada elde edilen deneysel değerlerle, Şekil-3.7 deki şemada ayrıntılı boyutları verilen A ve B boruları için aynı hesap yöntemleri kullanılarak pürüzsüz boru ve içten helisel yaylı borular için ortalama ısı transferi katsayısını karakterize eden Nusselt sayıları hesaplanmıştır. Hesaplamalar Şekil-3.14 deki şemaya uygun olarak hazırlanmış bir bilgisayar programı ile gerçekleştirilmiştir. Şemada görülen DV deneysel verileri ile programa girilmekte ve programın DH bölümünde istenilen değerler hesaplanmaktadır. Programa aynı anda birden çok veri ile girildiğinde, bütün veriler için yerel ve ortalama büyüklükleri heseplayıp sonuçları verebilmektedir.

Şekil-3.14 de şeması verilen programın akışı içerisinde, ölçülen duvar sıcaklıklarına eğri uydurulmakta ve ortalama duvar sıcaklığı bu eğrisel noktalardan elde edilmektedir. Şekil-3.5 deki eğriden sistemin ısı kaybı bilindiğinden, akışkana transfer edilen yerel ve ortalama net ısı akıları,

$$\dot{\mathbf{q}}_{\mathbf{N}} = \dot{\mathbf{q}}_{\mathbf{T}} - \dot{\mathbf{q}}_{\mathbf{K}}$$
(3.8)
$$\dot{\mathbf{Q}}_{\mathbf{N}} = \dot{\mathbf{Q}}_{\mathbf{T}} - \dot{\mathbf{Q}}_{\mathbf{K}}$$
(3.9)

şeklinde hesaplanır. Burada \dot{Q}_N akışkana transfer edilen ısı akısı, \dot{Q}_T deney elemanına uygulanan ısı akısı, \dot{Q}_K ise Şekil-3.5 kullanılarak hesaplanan kayıp ısıdır. \dot{q}_N , \dot{q}_T ve \dot{q}_K da birim yüzey için hesaplanan ısı akılarıdır. Akışkana transfer edilen ısı ayrıca,

$$\dot{Q}_{N} = \dot{m} C_{p} (T_{c} - T_{g})$$
 (3.10)

Şekil-3.8: A deney borusunda yerel duvar ve akışkan sıcaklıklarının boru boyunca değişimi için örnekler

2-

Şekil-3.10: B deney borusu için yerel duvar ve akışkan sıcaklıkları. Nominal Reynolds sayısı: Re_n=5692

Şekil-3.11: Şekil-3.10 durumu için yerel Nusselt sayıları

Şekil-3.12: B deney borusu için yerel duvar ve akışkan sıcaklıkları. Nominal Reynolds sayısı: Re_n=13620

Şekil-3.13: Şekil 3.12 için yerel Nusselt sayıları

Şekil-3.14: Bilgisayar programı akış şeması

olarak hesaplanır. Şekil-3.5 den tesbit edilen ısı kayıp katsayısının yerel bölgelerde de sabit kaldığı kabul edilerek, program akışı içerisinde enerji denkleminin nümerik çözümü gerçekleşir. Çözüm sonucu elde edilen akışkan çıkış sıcaklığının deney elemanı çıkışında ölçülen ortalama karışım sıcaklığı ile uygunluğu karşılaştırıldığında yaklaşık Ţ%10 mertebesinde farklılık getirmektedir. Bilgisayar programında bu karşılaştırma yapıldıktan sonra Nusselt sayılarının bulunmasında, hesaplanan akışkan çıkış sıcaklığı esas alınarak işlemlere devam edilmiştir. Ayrıca, akışkanın fiziksel büyüklüklerinden viskozite μ, özgül ısı C_p ve yoğunluk ρ, ortalama akışkan sıcaklığında alınmıştır. Ortalama Nusselt sayısı,

$$Iu = \frac{\dot{Q}_{N} \cdot D_{H}}{F \cdot k \cdot \Delta T_{mlog}}$$
(3.11)

olarak hesaplanmıştır.

Tablo-3.1 ve Şekil-3.15 de A borusu için farklı ısı akılarında ısı transferi katsayısının davranışı görülmektedir. Burada görüldüğü gibi yüksek ısı akılarında ısı transferi katsayısı düşük performansa sahiptir. Ancak bu fark, Tablo-3.1 de görüldüğü gibi ortalama %5 'i geçmemektedir. Ayrıca ısı transferi katsayısındakı bu farklılık Şekil-3.15 deki gibi yüksek Reynolds sayılarına doğru ortadan kalkmaktadır.

SİMGE	Q _T (W)	Dittus ve Boelter'e göre fark	Grafik işareti
A00A	17.36	$N_{u}=0.023Re^{0.8}P_{r}^{0.4}$	0
A00B	36.29	ile hemen hemen	•
A00C	57.36	çakışmaktadır.	¢
A11A	17.36	95	0
A11B	36.29	95	Ð
A11C	57.36	91	¢
A21A	17.36	90	
A21B	36.29	89	•
A21C	57.36	87	

Tablo-3.1: A borusu deneyleri için ısı transferindeki artış yüzdeleri

Şekil-3.15: A deney borusunda ısı transferi katsayısının Reynolds sayısı ile değişimi

Yine Şekil-3.15 pürüzsüz borular için elde edilen deneysel noktaların Dittus ve Boelter tarafından verilen (3.5) eşitliği ile iyi bir uyum sağladığı görülmektedir. İçerden helisel yaylı borularda ısı transferi pürüzsüz boruya göre %90 ile %95 kadar iyidir. Bu artış yüzdesi helisin boruya bitişik olması ve ayrı olması durumlarında da yaklaşık aynıdır.

Şekil-3.19 da basınç kayıp katsayısının Reynolds sayısı ile değişimi görülüyor:

$$f = \frac{2D_{H}}{L} \frac{\Delta p}{\rho U_{m}^{2}}$$
(3.12)

eşitliği yardımı ile ölçülen basınç farklarından f hesaplanarak ordinata ve

$$Re = \frac{U_m D_H}{v}$$
(3.13)

den hesaplanan Reynolds sayıları da apsise taşınırsa, elde edilen noktalar Şekil-3.19 daki gibidir. Ayrıca pürüzsüz borular için türbülanslı akışta Blasius'un verdiği (3.6) ve (3.7) eşitlikleri kullanılırsa, pürüzsüz boruya göre basınç kaybındaki artış yüzdeleri hesaplanabilir. Pürüzsüz boruya göre ısı transferinde %95 lik artışa karşılık, basınç kaybında helisel yayın boru duvarından ayrı olması durumunda %330, civarında bitişik olması durumunda %130 luk bir artış vardır. Isı transferindeki artış yüzdesi her iki durum için yaklaşık aynı olduğu halde, basınç kaybı helisel yayın cidardan ayrı olması durumunda daha yüksektir. Ayrıca pürüzsüz borudaki basınç kayıp katsayısı f, Reynolds sayısına bağlı olarak azalırken, helisel yaylı borularda belirli bir noktadan sonra Reynolds sayısından bağımsız olarak sabit kalmaktadır. Bu ise tam pürüzlü boru davranışıdır.

Geometrik olarak A borusuna benzer alınan B borusu için de ısı transferi katsayıları çıkarıldı, Şekil-3.16 da D_i/d_t ve d_t/h_a oranları her iki boru için aynı olmak üzere ısı transferi katsayılarının aynı performansa sahip olduğu görülüyor. Bu uygunluğu gördükten sonra B borusu için boru içerisine yerleştirilen helisel yayın adımı ve boru duvarıyla olan temas durumuna göre ısı transferi performansları Şekil-3.16 ve Şekil-3.18 de izlenebilir. Şekil-3.7 deki şemaya bağlı olarak boru geometrisine göre ısı transferi katsayılarının davranışı değerlendirilir.

Şekil-3.17 de B11, B12 ve B13 boruları için ısı transferi katsayılarının Reynolds sayısına göre değişimi görülüyor. Burada performansı en yüksek olanı B13 -yani helis adımı en büyük olan h_a=12 dt- borusudur. Ancak, Reynolds sayısı arttıkça belli bir değerden sonra (Şekil-3.17 de yaklaşık Re=30.000 den sonra) helis adımı hemen hemen önemsiz olmaktadır. Şekil-3.18 de B21, B22 ve B23 boruları için aynı şey söylenemez. Burada, görüldüğü gibi, ısı transferi katsayısı helis adımından bağımsızdır.

Şekil-3.19 ve Şekil-3.20 de A ve B boruları için şekilsel bir benzerlik vardır. Yani Şekil-3.20 de de Şekil-3.19 da olduğu gibi B21 borusunun basınç kayıp performansı pürüzsüz boru ile B11 borusu arasına düşmektedir. Şekil-3.21 de bütün B boruları için basınç kayıp performansı verilmiştir. Yine Şekil-3.20 ve Şekil-3.21 de de Şekil-3.19 da olduğu gibi helisel yaylı borular için basınç kayıp katsayısının Reynolds sayısından bağımsız olduğu görülüyor.

B borusundaki altı ayrı direnç durumu arasında ısı transferi performansı en yüksek olan B13 borusudur. Şekil-3.15 ,..,Şekil-3.21 ve Tablo-3.2 deki bilgiler değerlendirildiğinde ortaya çıkan

BORU			А			
SIMGE	A11A	A11B	A11C	A21A	A21B	A21C
Isı transferi artış yüzdesi (%)	95	95	91	90	89	87
Basınç kaybı artış yüzdesi (%)		330			130	
BORU			В			
SİMGE	B11	B12	B13	B21	B22	B23
Isı transferi artış yüzdesi (%)	94	102	112	102	103	103
Basınç kaybı artış yüzdesi (%)	839	474	425	425	458	418

Tablo-3.2: Isı transferi katsayılarının ve basınç kayıp katsayılarının ortalama artış yüzdeleri

sonuç şudur: İçerden helisel yaylı 6 borudan B13 borusunda ısı transferindeki %112 lik artışın yanında basınç kaybındaki yükselme %425 kadardır. Duvara bitişik helisel yaylı borulardan B23 borusunda yaklaşık aynı basınç kaybı artışı yanında ısı transferinde önemli bir iyileşme olmamaktadır. Bu sonuç Şekil-3.18 deki grafikten de görülebilir. Duvara bitişik helisel yaylı borularda helis adımı ısı transferi açısından önemli bir iyileşme getirmemektedir. Bu nedenle B1X boruları, B2X borularına tercih edilecektir.

İçten helisel oyuklu [2,.,23] ve içten helisel yaylı borularda yapılan çalışmalarda ısı transferi ile basınç kaybı arasında bir ilişkinin olduğu görülmektedir. Boru boyunca akışkana transfer edilen toplam ısı,

$$\dot{Q}_{N} = h \cdot \Delta T_{mlog} \cdot F$$
(3.14)

olmak üzere,

$$K = \frac{\dot{Q}_{N}}{\dot{V} \cdot \Delta P}$$
(3.19)

boyutsuz büyüklüğü ortalama ekonomiklik kriteri olarak tarif edilirse K 'nın Reynolds sayısına göre değişimi Şekil-3.22 ve Şekil-3.23 de verilmiştir. Basınç kaybı bakımından en ekonomik ısı transferi pürüzsüz boruda olmaktadır. Şekil-3.22 her bir boru için farklı ısı akıları uygulandığında artan ısı akısı ile birlikte boru basınç kaybi açısından ekonomik olmaktadır. Şekil-3.15 de yüksek ısı akılarında ısı transferi katsayısı düşük ısı akılarına oranla daha düşük performansa sahip olduğu görülüyor. Şekil-3.22 de sabit bir Reynolds sayısı için \dot{V} ve Δp terimleri sabit kalmak üzere akışkana transfer edilen net ısı $\dot{\mathtt{Q}}_{_{
m N}}$ artan duvar sıcaklığı ile birlikte yükseldiğinden yüksek ısı akılarında ekonomiklik yüksektir. Şekil-3.23 de aynı ısı akısı altında çeşitli boru geometrileri için ekonomiklik kriterleri karşılaştırılmıştır. Boruya bitişik helisel yaylı B21, B22, B23 borularının ekonomikliği B11 borusu ile pürüzsüz boru arasına düşmektedir. Helisel yayın duvardan ayrı olması durumunda helis adımı büyüdükçe boru ekonomik olmaktadır. B13 borusunun ekonomikliği B23 ile hemen hemen çakışmaktadır.

Şekil-3.16: A ve B deney boruları için ısı transferi katsayısının Reynolds sayısı ile değişimi

Şekil-3.17: B deney borusunda ısı transferi katsayısının Reynolds sayısı ile değişimi (helisel yayın duvarla temasta olmaması durumu)

Şekil-3.18: B deney borusunda ısı transferi katsayısının Reynolds sayısı ile değişimi (helisel yayın duvarla temasta olması durumu)

Şekil-3.20: B deney borusunda basınç kayıp katsayısının Reynolds sayısı ile değişimi

Şekil-3.21: B deney borusunda farklı durumlar için basınç kayıp katsayısının davranışı

Şekil-3.22: A deney borusu için ekonomiklik kriterinin Reynolds sayısı ile değişimi

Şekil-3.23: B deney borusunda çeşitli durumlar için ekonomiklik kriterinin Reynolds sayısı ile değişimi

4. SONUÇ

Deneysel sonuçlar topluca ele alındığında, belirli bir basınç kaybına karşılık ısı transferinde, düz boruya oranla ortalama %90 ile %110 arasında artış izlenmektedir. Buna karşılık basınç kaybındaki artış en çok 8 kat olmaktadır. Basınç kaybındaki bu artış, literatürde yapılan çalışmalarda elde edilen basınç kayıpları ile karşılaştırıldığında, hemen hemen aynı mertebede olduğu görülür.

Deneysel sonuçlar kendi aralarında karşılaştırıldığında en uyqun tipin B13 borusu olduğu ortaya çıkar. B13 borusu, helisel 🖉 yayla boru duvarının birbiri ile temasta olmadığı içten özel dirençli bir boru tipidir. Aynı şekilde B11 ve B12 boruları da boru duvarıyla temas etmeyen helisel yaylar içermektedirler. Ancak B11 den B13 'e, -dt helisel yay telinin çapı olmak üzere- helis adımı h_a= 4 dt'den h_a=12 dt 'ye kadar artmaktadır. B11, B12 ve B13 borularının helis adımları arasındaki ilişki, helisel yayın boru duvariyla temas halinde olduğu B21, B22 ve B23 boruları arasında da vardır. Ancak helisel yayın boru duvarıyla temas halinde olduğu borular için helis adımı, ısı transferi ve basınç kaybı açısından önemli bir faktör olmamaktadır. Buna karşılık B11 den B13 'e ısı transferi ve basınç kaybı açısından ekonomiklik kriteri hızla artmaktadır. Şekil-3.23 de bu sonuç açıkça görülmektedir. Bu sonuç, helisel yaylı boru içerisindeki akışın durumu için bir yorum getirebilmektedir. Fakat bu yorumun geçerliliğinin araştırılması ancak başka bir çalışmada ele alınabilir.

Literatürde konuyla ilgili araştırmalar yer almadığından, konuya en yakın çalışmalar referans değeri olarak alınmıştır. Bu referans çalışmaları, pratikte karşılaşılabilecek bütün içten dirençli boru tipleri üzerinde yapılan çalışmaları kapsamaktadır. Literatürdeki geniş çalışma alanında içten özel dirençli borular için ısı transferinde ortalama %40 ile %400 'e varan artışlar elde edilmiştir. Ancak bu tiplerin, çeşitli çalışma koşullarında uygun çalışma ömrünü veremediği literatürde de belirtilmektedir. Bu nedenle araştırma konusunun değişik çalışma koşullarındaki kazan ve ısı eşanjörlerine uygulanabilir olduğu görülür. EK DENEYSEL ÖLÇÜM DEĞERLERİ

BORU DUVARINA VERILEN ISI \dot{Q}_{T} =17.82 W

DENEY BORUSU : A00A

옥이 이 일어. 홍산 12 - 이산 44

	P	Ta	T	T	DUVAR SICAKLIKLARI (⁰ C) x/L										Ŷ		
NO	o (bar)	(⁰ C)	(^o C)	ç (°C)	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	(1t/dk)	Re
1	1.015	13.51	15.04	20.40	35.95	38.76	40.80	42.08	43.60	43.86	44.12	44.12	43.86	43.35	41.31	111.342	3082
2	1.015	13.51	14.53	20.14	34.43	36.97	38.76	40.80	41.82	42.33	42.84	43.09	42.58	41.82	40.54	130.445	3616
3	1.018	13.77	14.79	19.89	32.83	35.44	36.46	38.25	38.76	39.52	40.29	40.29	40.29	39.01	38.25	149.221	4134
4	1.018	14.02	15.04	19.13	31.11	33.40	35.19	36.21	37.48	37.74	38.25	38.25	38.25	37.99	35.95	176.090	4875
5	1.018	12.75	13.26	17.59	28,82	30.85	32.89	33.66	35.19	35.44	35 . 95	36.21	35.95	35.70	33.91	186.805	5197
6	1.016	15 . 04	15.56	18.61	28.05	30.09	31.11	32.64	33.40	33.40	33.66	33.66	33.66	33.40	32.89	224.018	6193
7	1.015	15 . 04	15.30	18.36	26.26	28.56	29.83	30.85	31.36	31.36	32.13	32.64	32.64	32.38	31.11	262.542	7264
8	1.014	14.02	14.79	17.59	25.50	27.03	28.30	29.07	30.09	30.34	30.60	30.60	30.60	30.60	29.32	297.880	8253
9	1.016	18.10	18.36	20.65	27.03	28.56	30.09	30.85	31.62	31.62	3187	32.13	32.13	31.87	30.85	361.632	9924
10	1.016	18.36	18.61	20.65	26.01	27.79	28.81	29.83	30.34	30.34	30.60	30.60	30.60	30.60	30.09	440.178	12071
11	1.015	18.26	18.51	15.30	20.65	22.18	23.20	23.71	24.73	24.73	24.99	24.99	24.99	.24.99	23.71	480.940	13371

Tablo-1

BORU DUVARINA VERILEN ISI \dot{Q}_{T} =36.29 W

	Po	Т _о	Tg	T _c	DU	VAR SI	CAKLIK	LARI	(°C)				х/L —		•	v	
No	(bar)	(°C)	(°C)	(⁰ C)	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0)(lt/dk)	Re
1	1.010	18.36	20.14	31.88	60.43	66.04	69.87	72.69	75.22	75.99	76.24	76.24	75.48	74.20	69.87	111.342	3041
2	1.010	16.57	18.61	29.58	57.88	63.24	66.81	69.87	71.91	73.18	73.69	73.95	73.44	72.16	68.59	130.445	3577
3	1.010	17.59	18.38	28.82	56.10	61.45	65.02	68.59	70.63	71.40	71.91	71.91	71.40	70.89	66.81	149.221	4084
4	1.010	17.59	19.13	28.30	53.55	58.39	61.96	64.77	67.32	68.34	68.85	69.36	68.85	68.59	64.26	176.090	4822
5	1.010	17.59	18.61	27.03	51.00	55.84	59.16	61.71	64.00	64.51	65.79	66.30	66.04	65.53	61.96	186.805	5123
6	1.011	19.12	20.14	27.54	46.41	51.00	54.06	56.10	58.39	58.65	59.16	59.41	59.67	59.16	56.10	224.018	6118
7	1.011	18.16	20.14	26.26	43.60	47.94	50.74	52.53	54.57	54.82	55.84	56.10	56.10	55.84	53.29	262.542	7171
8	1.011	18.87	20.14	26.01	41.31	45.13	47.94	48.72	51.51	51.76	52.27	53.29	53.29	53.04	50.49	297.880	8136
9	1.014	17.85	18.36	23.46	37.99	41.31	43.60	45.64	47.43	47.94	48.19	48.45	48.45	48.19	45.90	361.632	9924
10	1.014	17.34	17.59	21.67	33.91	36.72	39.02	41.05	42.84	42.84	43.09	43.09	43.35	43.35	40.80	440.178	12104
11	1.014	12.49	12.49	16.32	27.54	30.60	32.89	34.17	35.70	35.70	35.95	36.21	36.21	36.21	33.91	480.940	13408

Tablo-2

DENEY BORUSU : AOOC

BORU DUVARINA VERILEN SICAKLIK Q_T=57.36 W

	Po	$P_o T_o T_g T_c DUVAR SICAKLIKLARI (°C) x/L$										Ť	D -				
NO	(bar)	(°)	(°C)	(°C)	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	(1t/dk)	ĸe
1 1	1.017	16.06	20.65	38.76	83.13	92.05	98.17	102.2	105.0	105.5	105.8	105.8	104.8	102.5	86.44	111.342	3037
2	1.013	16.57	19.63	35.70	79.81	89.25	95.37	99.70	102.5	102.7	103.2	103.0	102.0	99.96	94.09	130.445	3567
3	1.013	16.32	19.89	34.17	78.28	86.70	92.31	99.90	99.96	100.7	101.2	101.2	99.96	98.43	92.05	149.221	4078
, 4	1.013	16.06	19.13	33.40	72.42	81.09	86.44	90.52	94.35	94.86	96.39	96.39	96.39	94.35	88.99	176.090	4822
5	1.014	16.06	18.36	31.62	68.34	75,99	81.09	85.17	89.25	89.76	91.29	91.54	91.54	90.01	84.40	186.805	5126
6	1.013	15.04	16.57	28.30	60.69	67.06	72.16	76.50	79.56	81.09	81.85	81.85	82.11	81.60	76.50	224.018	6177
7 7	1.013	14.02	15.56	25.76	53.80	59.92	64.26	68.59	71.40	72.16	73.69	73.95	73.95	73.44	68.59	262.542	7259
8	1.012	15.30	16.06	25.50	49.47	55.59	59.67	63.24	66.04	66.55	67.57	68.34	68.34	67.57	63.49	297.880	8224
9	1.012	15.30	16.06	24.22	45.39	50.74	54.57	57.37	60.18	60.94	61.45	61.71	61.71	61.45	57.63	361.632	9985
10	1.012	15.04	15.81	22.44	40.80	45.90	49.72	52.02	54.82	55.08	55.89	55.84	56.10	55.84	51.76	440.178	12.162
11	1.012	12.75	13.00	19.13	36.21	41.31	45.13	47.94	50.74	50.77	51.00	51.00	51.25	51.00	57.17	480.940	13389

Tablo-3

DENEY BORUSU : A11A

BORU DUVARINA VERILEN ISI \dot{Q}_{T} =17.82 W

No	P	T	To	T _c	DI	JVAR S	ICAKLI	KLARI	(°C)			x/L				Ý	Re
NO	(bar)	(°C)	ة (°C)	(°C)	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	(1t/dk)	
1	1.021	16.06	16.57	22.44	30.09	32.64	33.66	34.68	35.44	35.44	35.70	35.70	35.44	35.19	33.66	111.342	2445
2	1.021	16.32	16.83	22.44	28.81	31.11	32.89	33.15	33.66	33.91	33.91	34.42	34.17	34.17	33.91	130.445	2863
3	1.021	16.06	16.57	21.67	28.05	30.09	30.85	31.62	32.64	32.64	32.89	32.89	32.89	32.64	31.11	149.221	3277
4	1.020	16.06	16.57	20.91	26.77	28.56	30.09	30.60	31.11	31.11	31.11	31.11	31.11	31.11	30.34	176.090	3867
5	1.020	15.81	16.32	20.40	25.75	27.79	28.56	29.58	30.09	30.09	30.34	30.34	30.34	30.34	28.81	186.805	4105
6	1.018	16.57	16.83	20.14	24.99	26.26	27.79	28.05	28.56	28.56	28.56	28.81	28.81	28.56	27.79	224.018	4916
7	1.018	16.06	16.32	19.89	23.97	25.50	26.01	27.03	27.79	27.54	27.79	27.79	27.79	27.79	26.26	262.542	5770
8	1.018	16.06	16.32	19.13	23.20	24.99	25.50	26.01	26.26	26.26	26.26	26.52	26.52	26.26	25.50	297.880	6546
9	1.017	15.81	15.81	18.10	22.18	23.20	24.73	24.99	25.50	25.50	25.50	25.50	25.50	25.50	24.22	361.632	7958
10	1.017	15.81	15.81	17.85	21.16	22.44	23.20	23.46	24.22	23.97	23.97	23.97	23.97	23.97	22.95	440.178	9687
11	1.017	15.55	15.56	17.59	20.40	21.67	22.69	22.95	23.20	23.20	23.20	23.20	23.20	23.20	22.44	480.940	10591

Tablo-4

BORU DUVARINA VERILEN ISI \dot{Q}_T =36.29 W

No	P _o	To	Т	T.	DUV	VAR SI	CAKLIK	LARI ((°C)			x/L				ż	
	(bar)	(⁰ C)	(°C)	(°C)	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	(lt/dk)	Re
1	1.017	15.30	16.57	30.34	47.94	53.04	55.84	58.14	59.16	59.16	59.41	59.41	59.16	58.39	55.59	111.342	2445
2	1.016	16.06	17.59	29.58	45.39	50.49	53.04	54.57	56.10	56.10	56.35	56.35	56.10	55.59	52.53	130.445	2857
3	1.016	15.04	16.32	27.54	43.86	45.64	48.45	50.74	51.51	51.76	52.27	52.02	51.76	51.51	48.70	149.221	3279
4	1.022	16.32	17.34	26.26	38.76	43.35	45.64	47.68	48.70	48.70	48.96	49.21	48.96	48.70	45.90	176.090	3859
5	1.022	15.81	16.57	25.24	36.79	40.54	43.09	44.62	45.90	45.90	45.90	46.15	46.15	45.90	43.35	186.805	4102
6	1.021	15.55	16.06	23.46	34.42	37.99	40.03	41.05	42.84	42.84	42.84	42.84	42.84	42.58	40.03	224.018	4926
7	1.020	15.55	15.81	22.69	32.64	35.70	37.99	38.76	40.29	40.29	40.29	40.29	40.03	39.52	37.99	262.542	5778
8	1.020	15.30	15.56	21.16	30.60	33.40	35.70	35.70	37.99	37.99	37.99	37.99	37.99	37.74	35.44	297.880	6560
9	1.017	15.81	15.81	20.65	28.56	31.82	33.66	34.93	35.44	35.70	35.44	35.70	35.44	35.44	33.15	361.632	7958
10	1.016	15.81	17.34	20.14	27.03	29.83	31.36	32.64	33.40	33.15	33.15	33.15	33.15	33.15	31.11	440.178	9648
11	1.015	15.30	15.30	19.63	25.75	28.56	30.34	31.11	32.38	31.62	31.87	31.62	31.62	31.62	30.09	480.940	10599

Tablo-5

DENEY BORUSU : A11C

BORU DUVARINA VERILEN ISI Q_T=57.36 W

No	Po	Тo	Tg	T _c	DU	VAR SI	CAKLIK	LARI	(°C)				x/L ·				
	(bar)	(°C)	(°C)	(°C)	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	V (lt/dk)	Ke
1	1.012	16.32	18.36	38.25	66.30	74.20	79.05	82.62	84.66	84.91	85.17	85.42	84.40	83.38	77.26	111.342	2433
2	1.012	15.81	18.10	36.21	60.69	67.83	71.91	75.73	77.77	77.77	77.77	78.54	78.54	77.26	72.16	130.445	2853
3	1.011	16.06	17.85	35.19	56.35	63.24	66.81	70.12	72.42	72.42	73.44	73.44	73.44	72.42	68.08	149.221	3266
4	1.011	16.06	17.85	33.15	53.04	58.90	63.24	66.04	68.34	68.34	68.59	68.85	68.85	68.34	63.75	176.090	3854
5	1.010	16.06	17.59	31.11	49.98	55.84	59.16	61.71	63.75	63.75	64.26	64.26	64.26	64.00	59.92	186.805	4091
6	1.010	16.83	17.59	29.32	45.39	51.00	54.82	57.12	58.90	58.65	59.16	59.16	58.90	58.65	55.08	224.018	4906
7	1.010	16.06	17.34	27.54	42.84	48.19	51.25	53.55	55.33	54.82	55.08	55.33	55.33	54.82	51.00	262.542	5754
8	1.010	16.06	16.83	26.01	40.54	45.64	48.70	51.00	52.78	52.27	52.27	52.53	52.27	52.27	48.45	297.880	6537
9	1.011	16.32	17.08	25.24	37.74	41.82	45.39	46.66	48.45	48.19	48.19	48.19	48.19	48.19	44.37	361.632	7931
10	1.011	16.57	17.08	23.46	34.42	38.25	41.31	43.09	44.62	43.86	43.86	43.86	43.86	43.86	40.80	440.178	9654
11	1.011	16.06	16.32	22.69	33.15	36.97	39.78	41.31	43.09	42.07	42.33	42.33	42.33	42.07	38.76	480.940	10570

Tablo-6

-49

DENEY BORUSU : A21A

BORU DUVARINA VERILEN ISI \dot{Q}_{T} =17.82 W

No	P	T	T.	T.		DUVAR	SICAK	LIKLA	RI (O	C)			x/L			ý	
	(bar)	0 (°C)	е (^о с)	ç (°C)	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	(1t/dk)	ĸe
1	1.014	15.55	16.06	22.44	32.64	34.93	35.95	36.72	37.74	37.48	36.97	36.97	36.72	36.21	34.93	111.342	2428
2	1.013	15.55	16.06	21.67	30.60	32.64	33.66	34.17	34.93	34.93	34.94	35.19	34.68	34.17	32.89	130.445	2845
3	1.012	15.30	15.81	20.65	28.81	30.60	31.87	32.38	32.64	32.64	32.89	32.89	32.64	32.64	30.85	149.221	3257
4	1.012	15.55	15.81	20.40	27.28	28.56	29.83	30.09	30.60	30.60	30.60	30.85	30.60	30.34	29.32	176.090	3843
5	1.012	15.55	15.81	20.14	26.26	28.05	28.81	29.32	30.09	30.09	30.09	30.09	30.09	30.09	28.56	186.805	4077
6	1.012	15.81	16.06	22.18	25.24	26.52	27.28	27.79	28.30	28.30	28.30	28.30	28.30	28.05	27.28	224.018	4886
7	1.012	15.81	16.06	19.38	24.99	25.75	26.26	26.77	27.54	27.54	27.54	27.54	27.54	27.54	26.01	262.542	5726
8	1.012	15.81	15.81	18.61	23.46	24.99	25.24	25.50	25.75	26.01	25.75	26.01	26.01	25.75	24.99	297.880	6502
9	1.011	15.55	15.81	18.10	22.44	23.46	24.22	24.73	24.99	24.99	24.99	249	24.99	24.99	23.71	361.632	7893
10	1.012	15.55	15.56	17.85	21.67	22.44	22.95	23.20	23.46	23.46	23.20	23.46	23.46	23.46	22.44	440.178	9614
11	1.012	15.81	15.81	16.81	20.91	21.67	22.44	22.69	22.95	22.95	22,95	22.95	22.95	22.95	21.93	480.940	10498

Tablo-7

BORU DUVARINA VERILEN ISI $\dot{\dot{Q}}_{T}$ =36.29 W

No	Po	To	To	T _C	DUV	AR SIC	AKLIKI	ARI	(⁰ C)			x/L -				v	
	(bar)	(°C)	(°C)	(oC)	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	(1t/dk)	ĸe
1	1.008	15.81	17.34	29.83	51.00	55.84	58.90	60.69	61.71	61.45	60.94	60.94	60.18	59.84	55.84	111.342	2420
2	1.008	15.81	17.34	28.82	48.19	52.27	55.33	56.35	57.37	57.37	56.61	57.37	56.61	56.10	53.04	130.445	2835
3	1.007	16.06	17.34	28.05	45.13	48.70	51.00	52.02	53.04	53.04	52.78	53.04	53.04	52.27	49.21	149.221	3243
4	1.006	15.81	17.08	26.52	42.84	45.90	47.94	48.70	49.72	49.72	49.47	50.49	49.98	49.21	46.41	176.090	3830
5	1.006	15.81	16.83	25.50	40.29	43.09	44.88	45.90	46.41	46.41	46.41	47.17	46.66	46.41	43.86	186.805	4066
6	1.013	15.55	16.06	23.71	35.70	38.50	40.29	41.05	42.07	42.07	41.82	42.58	42.07	41.82	41.56	224.018	4886
7	1.013	16.06	16.57	23.20	34.42	36.97	38.25	38.76	40.29	40.03	40.03	40.54	40.29	40.29	37.99	262.542	5719
8	1.013	15.81	16.06	22.44	32.64	34.93	35.95	36.21	37.74	37.74	37.74	37.99	37.99	37.74	35.19	297.880	6497
9	1.015	13.51	14.02	19.13	27.79	30.09	31.11	31.87	32.64	32.64	31.62	32.64	32.64	32.38	30.34	361.632	7931
10	1.015	13.51	13.77	18.10	25.75	27.79	29.07	30.09	30.60	30.34	29.83	30.34	30.34	30.09	28.05	440.176	9661
11	1.015	14.02	14.02	18.10	25.30	27.28	28.56	29.32	30.34	30.09	28.81	30.09	30.09	29.83	27.79	480.940	10548

Tablo-8

ហុ

DENEY BORUSU : A21C

BORU DUVARINA VERILEN ISI Q_T=57.36 W

No	Po	Τ _ο	Т	T _c	DU	VAR SI	CAKLIK	LARI ((oC)	<u>)</u>		x/L		•		Ŷ	
NO	(bar)	(°Č)	(°C)	(°C)	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	(lt/dk)	Re
1	1.014	14.43	17.34	37.74	71.91	79.56	90.52	87.46	89.25	88.23	85.17	86.70	85.17	83.64	77.26	111.342	2420
2	1.014	14.28	16.83	35.19	65.02	71.65	76.50	78.54	79.81	79.56	77.77	79.56	78.79	77.01	71.91	130.445	2839
3	1.014	14.53	16.57	33.15	59.67	65.79	69.36	71.40	73.44	73.18	71.40	73.44	73.18	71.65	66.81	149.221	3250
4	1.014	14.02	15.56	31.11	55.84	60.94	64.00	66.04	68.08	68.08	66.55	68.59	68.59	67.06	63.24	176.090	3845
5	1.013	14.02	15.30	29.58	51.25	56.35	33.66	60.69	62.22	61.96	61.20	63.49	63.24	61.96	58.39	186.805	4083
6	1.011	14.53	15.30	27.03	45.90	50.74	53.29	54.31	56.10	56.10	56.35	56.61	56.61	56.10	51.76	224.018	4896
7	1.010	14.79	15.30	25.76	43.35	47.68	50.23	51.00	53.04	52.53	53.04	53.29	53.04	52.27	48.45	262.542	5738
8	1.011	14.79	15.30	25.24	41.05	44.88	47.94	48.70	50.49	50.23	50.23	50.74	50.74	50.23	46.15	297.880	6511
9	1.011	14.79	15.30	23.20	37.48	40.54	43.09	43.86	45.64	45.39	45.39	45.64	45.64	45.39	41.31	361.632	7904
10	1.011	15.04	15.30	21.67	33.91	36.97	39.01	40.54	41.56	41.05	41.31	41.31	41.31	41.05	37.99	440.176	9621
11	1.011	14.53	14.79	20.91	32.64	35.44	37.74	38.50	40.29	39.27	39.27	39.27	39.52	39.52	35.95	480.940	10526

Tablo-9

52

100 g

DENEY BONUSU : BOO

	Ъ	m	Ψ	T	DUVA	R SICA	KLIKLA	RI (°	C)			x/L					
No	bar)	(⁰ C)	(°C)	(°C)	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	V (lt/dk)	Ke
1	1.012	24.93	25.76	44.39	58.36	80.55	98.44	104.3	112.3	117.8	129.0	135.0	137.0	124.4	107.1	56.257	3426
2	1.012	24.93	25.48	40.83	52.06	71.51	84.94	90.42	96.17	100.15	109.8	116.4	117.8	110.1	92.61	74.820	4560
3	1.011	24.93	25.21	38.09	47.40	65.21	76.72	81.65	86.31	89.59	98.36	103.8	104.6	99.18	82.74	93.318	5692
4	1.012	25.21	25.48	35.89	43.56	59.73	68.77	73.15	76.99	79.18	87.13	90.96	92.88	87.95	73.98	121.122	7383
5	1.012	24.66	24.93	33.43	40.82	55.34	64.93	67.67	71.24	72.33	78.91	83.57	84.66	80.28	67.40	149.071	9100
6	1.012	24.66	24.66	32.33	38.08	51.51	59.73	61.37	65.21	65.48	70.96	75.62	76.17	72.88	60.82	186.611	11399
. 7	1.012	24.66	24.66	30.41	35.89	48.77	55.34	57.54	60.28	60.55	65.48	69.04	69.87	67.13	56.17	222.954	13619
8	1.013	24.11	24.11	29.04	34.25	45.75	52.06	52.88	55.62	55.34	60.28	63.29	64.11	62.19	51.78	260.532	15938
9	1.013	24.39	24.39	28.22	33.42	43.56	49.32	49.59	52.33	52.06	55.34	59.19	59.73	57.81	48.49	315.864	19309
10	1.012	24.39	24.39	27.67	32.60	41.64	46.58	47.12	49.59	49.04	52.60	55.07	55.62	54.52	46.03	370.959	22677
11	1.012	24.66	24.66	27.40	30.92	39.73	43.84	44.11	46.30	45.21	48.22	51.23	51.51	50.41	41.92	464.919	28401
12	1.012	24.93	24.93	27.40	30.68	38.63	41.64	41.92	44.11	43.29	46.03	48.77	49.04	47.95	40.82	558.897	34118
13	1.010	25.21	25.21	27.40	30.41	37.81	41.10	41.10	43.29	41.64	44.38	46.58	47.12	46.58	38.90	662.502	40414
14	1.010	25.21	25.21	27.40	30.14	36.71	40.27	40.27	41.64	40.55	43.29	44.66	45.48	44.93	38.08	760.629	46400
15	1.009	25.48	25.48	27.40	30.14	36.16	38.90	38.90	41.10	39.18	41,64	43.56	43.84	43.56	36.99	869.367	52996
16	1.009	25.76	25.76	27.13	34.14	35.89	38.63	38.08	40.55	38.63	41.10	42.47	43.01	42.74	36.16	967.884	58960

Tablo-10

្រភ្ល

.

BORU DUVARINA VERILEN ISI \dot{Q}_T =27.36 W

54

	Р	ц	T	d.	DUV	VAR SI	CAKLIK	LARI	(°C)			x/	L/ 🚞	-		÷	Pa
No	-o (bar)	10 (°C)	(°C)	(°C)	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	(lt/dk)	Re
1 ,	1.012	25.21	26.03	46.85	50.69	69.04	80.28	83.57	87.68	87.13	92.88	95.07	94.53	89.05	74.25	56.257	2726
2	1.012	25.21	25.48	42.47	44.38	60.82	70.41	72.61	76.44	74.52	79.73	81.92	81.92	77.54	65.21	74.820	3631
3	1.012	24.93	25.21	38.91	41.10	55.07	63.02	65.48	69.04	67.13	71.51	73.43	73.43	70.69	59.45	93.318	4532
4	1.015	26.03	26.30	37.26	38.63	51.51	57.54	59.45	62.74	60.28	64.66	66.03	66.03	64.66	54.25	121.122	5866
5	1.016	24.93	24.93	34.80	35.89	47.12	52.60	54.52	57.54	55.07	59.45	60.55	60.55	69.73	49.86	149.071	7245
6	1.016	24.93	24.93	32.88	33.97	43.84	49.04	49.86	52.60	50.69	54.52	55.34	55.34	54.80	46.30	186.611	9070
7	1.016	24.93	24.93	31.24	32.60	41.37	46.03	46.85	49.59	47.12	50.69	52.06	52.06	51.78	43.29	222.954	10836
8	1.016	24.66	24.66	30.41	31.51	39.45	43.29	44.11	46.85	44.38	47.12	49.04	49.04	49.04	41.10	260.532	12672
9 1	1.016	24.66	24.66	29.32	30.41	37.81	48.82	41.64	44.11	41.37	44.11	46.03	46.03	46.03	38.36	315.864	15363
10	1.016	24.66	24.66	28.22	29.86	36.16	38.90	40.55	42.19	40.55	42.47	43.84	43.84	43.84	36.99	370.959	18043
1_1	1.016	24.93	24.93	27.95	29.59	35.62	37.81	38.63	41.10	38.63	40.82	41.64	41.64	41.64	35.34	464.919	22597
12	1.016	25.21	25.21	27.95	29.31	35.07	36.71	37.53	39.45	37.59	38.90	40.82	40.82	40.82	34.25	558.897	27146
13	1.016	25.48	25.48	27.67	29.31	34.25	35.62	36.16	38.36	36.16	38.08	39.18	39.18	39.18	32.32	662.502	32155
14	1.013	24.11	24.11	26.58	27.40	32.33	32.88	33.70	35.89	33.70	35.07	36.16	35.89	36.16	29.59	760,629	37049
15	1.013	24.11	24.11	26.30	27.12	31.51	32.60	33.15	35.62	33.15	33.42	35.62	35.34	35.62	29.59	869.367	42345
16	1.013	24.11	24.11	26.03	27.12	30.68	32.33	32.88	35.07	32.88	33.15	37.07	34.79	35.07	28.49	967.884	47144

Tablo-11

BORU DUVARINA VERILEN ISI \dot{Q}_{T} =27.36 W

No	P	T	T,	T _c	DUV	AR SIC	AKLIKI	LARI (°C)				x/I			v	D
	(bar)	(°C)	(^o C)	(°C)	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	(lt/dk)	ĸe
1	1.022	26.30	26.58	38.63	40.82	52.88	58.08	61.65	63.56	63.02	66.30	70.96	71.24	68.22	57.26	93.318	4944
2	1.022	24.93	25.21	33.70	35.62	45.21	49.04	52.06	53.97	52.33	55.07	58.08	58.63	56.99	47.95	149.071	7925
3	1.022	24.66	24.66	30.96	32.60	40.55	42.74	45.21	46.58	44.66	47.12	49.59	49.86	49.04	41.37	222.954	11871
4	1.022	24.66	24.66	28.77	30.41	37.53	38.90	41.10	41.64	40.55	41.64	41.11	44.38	43.84	37.53	315.864	16817
5	1.020	24.39	24.39	27.40	28.49	34.25	35.62	37.53	37.81	35.89	36.99	38.90	39.73	39.45	33.42	464.919	24771
6	1.020	24.93	24.93	27.40	28.22	33.15	34.25	35.89	36.71	34.52	65.62	37.81	38.08	38.08	32.60	666.502	35462
7	1.020	24.93	24.93	27.13	27.94	32.33	33.15	35.07	35.34	32.88	34.25	35.89	35.89	36.16	31.23	869.367	46256

Tablo-12

អូ

DENE	Y BORI	JSU :	B.13							BORU	DUVARI	NA VEF	RİLEN	ISI Ç	2 _T =27.	36 W	
No	P	T	T _o	Te	DUV	VAR SIG	CAKLIK	LARI (°C)				x/L			Ŷ	
	o (bar)	(°C)	(°C)	(°C)	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	(lt/dk)	Re
1	1.014	22.19	22.47	34.80	36.16	46.85	51.23	51.76	56.99	58.63	63.29	68.22	68.77	65.48	53.43	93.318	5151
2	1.018	24.11	24.39	32.69	33.42	43.56	45.75	47.12	49.32	49.32	51.51	55.07	55.89	54.52	44.38	149.071	8188
3	1.018	24.11	24.39	30.14	31.23	38.63	40.82	41.64	43.56	43.29	44.38	47.95	48.22	46.58	38.63	222.954	12247
4	1.019	24.11	24.11	28.22	29.86	35.89	37.53	38.63	40.00	38.90	40.27	43.84	43.84	41.37	35.07	315.864	17363
5	1.019	24.11	24.11	27.40	28.22	33.42	34.25	35.89	36.99	35.89	36.99	40.00	40.00	38.63	32.60	464.919	25557
6	1.020	24.93	24.93	27.67	28.49	33.15	33.70	35.62	36.16	35.34	35.34	38.63	38.36	37.81	32.05	666.502	36560
7	1.020	24.93	24.93	27.67	27.94	32.33	32.88	34.79	35.34	33.15	33.15	36.16	36.16	35.89	30.41	869.367	47688

Tablo-13

BORU DUVARINA VERILEN ISI Q_T=27.36 W

No	В	771		m	DUV	AR SI	CAKLIK	LARI (°C)			2	k∕L —				
INC	r _o (bar)	°C)	¹ g (°C)	¢ (°C)	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	V (1t/dk)	Re
1	1.013	22.19	22.47	34.52	37.53	47.95	55.62	54.80	57.81	58.08	63.56	68.22	69.04	65.76	54.25	93.318	4519
2	1.013	22.19	22.19	30.96	33.42	41.64	44.66	47.12	51.23	50.69	55.07	59.18	60.28	57.81	47.12	149.071	7224
3	1.008	22.47	22.47	28.22	30.68	38.08	39.73	41.64	45.48	44.38	48.49	51.51	52.06	50.41	41.10	222.954	10797
4	1.008	21.92	21.92	26.58	28.77	34.79	35.89	38.08	41.10	39.73	43.01	45.21	46.03	44.66	36.44	315.864	15319
5	1.008	21.92	21.92	24.66	27.12	32.33	33.15	34.79	34.25	35.62	37.81	39.12	40.27	38.90	32.33	464.919	22548

Tablo-14 .

BORU DUVARINA VERILEN ISI \dot{Q}_{T} =27.36 W

N	Po	To	Ta	Ta	DUVA	R SICA	KLIKL	ARI (°	C)			x/I				ť	
INO .	(bar)	(PC)	ع (٥C)	-ç (°C)	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	(lt/dk)	Re
1	1.009	21.92	22.19	35.35	38.08	47.12	51.51	56.71	60.28	60.28	65.21	68.50	68.77	64.93	52.33	93.318	4971
2	1.009	22.19	22.19	32.06	34.52	42.47	46.58	48.77	52.33	52.06	56.99	59.73	59.73	56.17	46.03	149.071	7942
3	1.008	22.19	22.19	28.22	30.96	38.08	41.10	42.47	45.48	44.11	47.12	49.59	49.59	47.95	38.63	222.954	11878
4	1.011	21.92	21.92	26.85	28.77	35 . 07	36.44	38.36	41.10	39.18	41.64	43.84	43.84	43.01	35.07	315.864	16840
5	1.008	21.92	21.92	24.93	27.40	32.33	33.42	34.79	36.99	35.07	37.53	38.90	39.18	38.36	30.96	464.919	24787

Tablo-15.

BORU DUVARINA VERILEN ISI \dot{Q}_{T} =27.36 W

	P	Т	Т	Ţ	DUV.	AR SIC	AKLIKI	LARI (°C)			x/	L			v	
No	-0 (bar)	(°C)	-g (°C)	-ç (°C)	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	(lt/dk)	Re
1	1.009	21.92	22.19	35.62	38.36	46.85	49.59	54.80	59.18	59.73	63.84	69.87	69.87	65.76	54.80	93.318	5137
2	1.014	19.18	19.45	28.22	30.68	38.63	40.55	44.38	48.49	48.49	52.06	56.44	56.99	53.97	43.84	149.071	8266
3	1.015	19.18	19.18	25.76	27.67	34.25	36.16	38.63	41.92	41.10	44.11	48.77	48.77	46.30	36.99	222.954	12372
4	1.015	19.45	19.45	24.39	26.85	31.51	33.15	35.07	38.08	36.16	38,90	42.47	42.47	44.10	33.15	315.864	17515
5	1.015	19.45	19.45	22.47	24.66	28.77	30.41	31.51	34.79	32.88	35.07	38.08	38.08	36.71	30.14	464.919	25781

Tablo-16.

	A DENE	Y BORUSU	tçin; ∆p	$= p_g - p_c$		
	A00		A11		A21	
No	v (1t/dk)	Δ ρ (N/m ²)	▼ (1t/dk)	Δp (N/m ²)	v (lt/dk)	Δp (N/m ²)
1	111.34	0.440	111.34	1.271	111.34	0.685
2	130.44	0.587	130.44	1.663	130.44	0.927
3	149.22	0.440	149.22	2.171	149.22	1.223
4	176.09	0.636	176.09	2.611	176.09	1.467
5	186.80	0.587	186.80	3.247	186.80	1.663
6	224.01	0.782	244.01	4.333	244.01	2.347
7	262.54	0.880	262.54	6.211	262.54	2.983
8	297.88	1.125	297.88	7.971	297.88	4.450
9	361.63	1.418	361.63	11.639	361.63	5.966
10	440.17	2.054	44.17	17.409	440.17	8.998
11	480.94	2.739	480.94	20.637	480.94	10.759

		B DENEY BORUSU İÇİN : $\Delta p = p_g - p_c$												
	B00		B11		B12		B13		B21		B22		B23	
No	ý (1t/dk)	Δp (N/m ²)	v (1t/dk)	Δ̄p (N/m ²)	ý (lt/dk)	Δp (N/m ²)	v (1t/dk)	Δp (N/m ²)	v (1t/dk)	Δp (N/m ²)	ý (lt/dk)	∆p (N/m ²)	ý (1t/dk)	Δp (N/m ²)
- 1	56.2	2.350	56.20	16.66	93.3	34.46	93.3	22.81	93.3	21.24	93.3	28.19	93.3	21.04
2	74.8	2.545	74.80	25.35	149.0	73.91	149.0	50.42	149.0	56.29	149.0	45.03	149.0	44.54
3	93.3	3.329	93.3	47.97	222.9	165.45	222.9	110.6	222.9	125.8	222.9	104.2	222.9	96.43
4	121.1	6.951	121.1	78.32	315.8	332.87	315.8	217.3	315.8	235.9	315.8	198.7	315.8	183.5
5	149.0	9.986	149.0	88.89	464.9	761.69	464.9	472.8	464.9	504.2	464.9	416.0	464.9	383.7
6	186.6	11.06	186.6	140.7	666.5	1360	666.5	871.3						
7	222.9	14.68	222.9	201.6	869.3	225.6	869.3	1454						
8	260.5	19.58	260.5	276.0										
9	315.8	28.39	315.8	411.1										
10	370.9	37.98	370.9	582.5										
11	464.9	56.78	464.9	1010										
12	558.8	84.19	558.8	1387										
13	662.5	90.70	662.5	1628										
14	760.6	126.2	760.6	2109						•				
15	869.3	150.0	869.3	2677										
16	967.8	193.8	967.8	3209										

Tablo-18

C

KAYNAKLAR

- Bergles, A.E., "Survey of Heat Transfer Characteristics of Deep Spirally Fluted", Lowa State Univ. ASME Heat Transfer Div. Publ HTD v. 18, Adv in Enhanced Heat -1981, Presented of Natl Heat Transfer Conf. 20th. Miluakua, Wis, Aug. 2-5 1981- Publ by ASME, New York, NY. P. 21-33.
- Blumenkrantz, A. and Taborek, J., "Heat Transfer and Pressure Drop Characteristics of Turbotec Spirally Deep Grooved Tubes in The Turbulent Regime", Report 2439-300-7, Dec. 1970, Heat Transfer Research, Inc., Alhambra, CA.
- 3. Bergles, A.E., Brown, G.S., Lee, R.A., Simonds, R.R., and Snider, W.D., "Investigation of Heat Transfer Augmentation Through Use of Internally Finned and Roughened Tubes", Engineering Projects Laboratory Report DSR 70790-69, 1970, Massachusetts Institute of Technology, Cambridge, MA.
- 4. Palen, J., Cham, B., and Taborek, J., "Comparison of Condensation of Steam on Plain and Turbotec Spirally Grooved Tubes in a Baffled Shell-and-Tube Condenser", Report 2439-300/6, Jan. 1971, Heat Transfer Research, Inc., Alhambra, CA.
- 5. Maeda, Iron Works Co., "Turbotec Spiral Tube Used in Heat Transfer-Technical Data", April 1. 1975, Maeda Iron Works, Ltd., Yoshida, Nagani-Ken, Japan.
- Watkinson, A.P., and Martinez, O., "Scaling of Indented Heat Exchanger Tubes", Journal of Heat Transfer, Vol. 97, 1975, pp. 490-492.
- 7. Everly, D., and Genetti, W.E., "Preliminary Report of Heat Transfer from Spiral Tubing in an Air Fluidized Bed." 1977, Department of Chemical Engineering Montana State University, Bozeman, MT.
- Marto, P.J., Reilly, R.J., and Fenner, J.M., "An Experimental Comparison of Enhanced Heat Transfer Condenser Tubing", in Advances in Enhanced Heat Transfer, 1979, pp. 1-9, ASME New York.

- Fenner, J.H., "An Experimental Comparison of Enhanced Heat Transfer Condenser Tubing", M.S. Thesis in Mechanical Engineering, 1978, U.S. Naval Postgraduate School, Monterey, CA.
- 10. Lawson, C.G., Kedl, R.J., and McDonald, R.E., "Enhanced Heat Transfer Tubes for Horizontal Condensers with Possible Application in Nuclear Power Plant Design", EEAmerican Nuclear Society Transactions, Vol.9, 1966, pp.565-566.
- 11. Blumenkrantz, A., Yarden, A., and Taborek, J., "Performance Prediction and Evaluation of Phelps Dodge Spirally Grooved Tubes. Inside Tube Flow Pressure Drop and Heat Transfer in Turbulent Regime", Report 300-4, Dec. 1969, Heat Transfer Research, Inc., Alhambra, CA.
- 12. Kidd, G.J., Jr., "The Heat Transfer and Pressure-Drop Characteristics of Gas Flow Inside Spirally Corrugated Tubes", Journal of Heat Transfer, Vol.92. 1970, pp.513-519.
- 13. Withers, J.G., and Young, E.H., "Steam Condensing on Vertical Rows of Horizontal Corrugated and Plain Tubes", Industrial and Engineering Chemistry, Process Design and Development, Vol. 10, 1971, pp.19-30.
- 14. Kalinin, E.K., and Yarkho, C.A., "Study of Intersification of Head Transfer to Liquids and Gases in Channels", Journal of Engineering Physics, Vol. 20, pp. 592-599.
- 15. Kramer, J.M., and Gater, R.A., "Pressure Loss and Heat Transfer for Non-Boilding Fluid Flow in Convoluted Tubing", ASME Paper No. 73-HT-23, 1973.
- 16. Newson, I.H., and Hodgson, T.D., "The Development of Enhanced Heat Transfer Condenser Tubing", Proceedings 4th International Symposium of Fresh Water from the Sea, Vol.1, 1973, pp. 69-74.
- 17. Robles, H., "Pressure Loss and Forced-Convection Head Transfer Characteristics of Convoluted Tubing", Me Thesis, 1973, University of Florida, Gainesville FL.

- 18. Torii, T., Hirasawa, S., Kuwahara, H., Yanagida, T., and Fujie, K., "The Use Heat Exchangers with Thermoxcel's Tubing in Ocean Thermal Energy Power Plants", ASME No. 78-WA/HT-65, 1978.
- 19. Watkinson, A.P., Lois, L., and Brent, R., "Scaling of Enhanced Heat Tubes", The Canadian Journal of Chemical Engineering, Vol. 52, 1974, pp.558-562.
- 20. Yoshitomi, H., Oba, K., and Arima, Y., "Heat Transfer and Pressure Drop in Tubes with Embossed Spiral", Karyoku Genshiryoku Hatsuden, Vol. 27, 1976, pp.171-182.
- 21. Cunningham, J., and Milne, H.K., "The Effect of Helix Angle on the Performance of Roped Tubes", Heat Transfer 1978, Proceedings of the Sixth International Heat Transfer Conference, Vol. 2, Hemisphere, 1978, pp. 601-605.
- 22. Mehta, M.H., and Rao, M.R., "Heat Transfer and Frictional Characteristics of Spirally Enhanced Tubes for Horizontal Condensers", in Advances in Enhanced Heat Transfer, 1979, pp. 11-21, ASME, New York.
- 23. Gupta, R. K., and Rao, M.M., "Heat Transfer and Friction Characteristics of Newtonian and Power-Law Type of Non-Newtonian Fluids in Smooth and Spirally Corrugated Tubes", in Advances in Enhanced Heat Transfer, 1979, pp. 103-113, ASME, New York.
- 24. Holman, J.P., Heat Transfer, Fourth Edition, McGraw-Hill Kogakusha, LTD.
- 25. Kreith, F., Principles of Heat Transfer, Third Edition, Harper International Edition, 1976.
- 26. Duncan, W.J., Thom, A.S., Young, A.D., Mechanics of Fluids Second Edition, 1972.