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Doktora Tezi 

ÖZET 

ÇİFT DALGABOYLU FOTOPLETİSMOGRAF İŞARETLERİNİN ZAMAN FARKI 
DEĞİŞİMLERİNE DAYALI YENİ FİZYOLOJİK ANALİZ YÖNTEMLERİNİN 

GELİŞTİRMESİ 

Nader Vahdani Manaf 

Karadeniz Teknik Üniversitesi 
Fen Bilimleri Enstitüsü 

Elektrik-Elektronik Mühendisliği Anabilim dalı 
Danışman: Prof. Dr. Temel KAYIKÇIOĞLU 

2015, 98 Sayfa, 16 Ek Sayfa 

Fotopletismografi (PPG) sinyali, kalp faaliyetleri kaynaklı arteriyel kan miktarının 

değişimine bağlıoluşur. PPG, biyolojik ve fizyolojik değerlendirmelerde avantajlı bir 

ölçüm tekniği olarak kullanılmaktadır. Literatürde PPG analizlerinin çoğu,tek dalga boylu 

PPG darbesinin zaman ve frekans karakteristiklerine veya darbe şekline dayalıdır.Bu tezde, 

ilk kez olarak iki ayrı dalga boylu fotopletismografi (PPG) işareti arasındaki zaman farkları 

çıkarılmıştır ve bu farklar çift dalga boylu PPG sinyallerinin analizi için yeni bir yöntem 

olarak önerilmiştir. Çalışmada, öncelikle olarak veri kaydı ve işlemesi için bilgisayara 

bağlanabilen iki-dalga boylu PPG sensor sistemi geliştirilmiştir. Daha sonra her kalp atımı 

için oluşan PPG çiftleri arasındaki zaman farkları elde edilmiştir ve çeşitli fizyolojik 

durumların izlenmesinde kullanılmıştır. Elde edilen zaman farkı öznitelikleri farklı 

çalışmalarla incelenmiştir. Verilerin analizi için istatistiksel analizler ve sınıflandırma 

algoritmaları kullanılmıştır. Sonuçlar incelendiğinde, değişik durumlarda farklı dalga boylu 

PPG işaretleri arasındaki zaman farklarının anlamlı bir değişim gösterdiği gözlemlenmiştir. 

Daha önce varılmamış (bildirilmemiş) olan bu olgu, yeni ve ilginç bir bulgu olarak 

tanımlanmıştır. Ayrıca, sınıflandırma sonuçlarında kullanılan zaman farkı özelliklerinin 

çeşitli fizyolojik durumların sınıflandırmasında yüksek bir potansiyele sahip olduğunu 

görülmüştür. 

Anahtar Kelimeler: Çift-dalga boylu PPG işaretleri, Zaman farkı, Fizyoloji, Sınıflandırma 
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       Photoplethysmographic (PPG) signals are obtained by changes in the amount of 

arterial blood, which in turn depends on the heart activities. PPG has been used as an 

advantageous measurement technique in biological and physiological assessments. Most 

previous analyses of PPG signal were based on time and frequency domain characteristics 

or shape of the simple PPG signal with a unique wavelength of light. In the present thesis, 

for the first time, time difference variations between two simultaneous unlike PPG signals 

were extracted and proposed as a new strategy for the analysis of dual-wavelength PPG 

signals. An improved dual-channel PPG biosensor was developed to obtain simultaneous 

PPG signals with different wavelengths. Then, time differences between the obtained PPG 

pairs were extracted in each heartbeat and used for various physiological conditions 

monitoring. The extracted time difference features were analyzed in different studies. 

Statistical analysis and classification algorithms were used to analyze the obtained data. 

Results showed that different PPG signals had significant time difference variations (time 

shifts relative to each other) with changes in a psychophysical state of investigated 

subjects. This earlier unreported phenomenon would have been a novel and interesting 

finding. In addition, analyses and classification results showed that the used time 

difference features had very good potential to classify various bio-physiological 

conditions. 

Key Words: Dual-wavelength PPG signals, Time difference, Physiology, Classification 
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1. GENERAL INFORMATION

Photoplethysmography (PPG) is a noninvasive method to evaluate physiological 

parameters. Providing simple and continuous monitoring are some advantages of this 

technique. Tissue blood volume is changed in each heartbeat due to pumping of blood by 

the heart. PPG measures blood volume variations from the skin surface and is usually 

obtained non-invasively by biomedical devices such as pulse oximeters in which a 

photodetector is used to detect blood volume changes.  

The arterial pulse waveform carries biological information about the blood 

properties, cardiovascular system and peripheral arteries. Thus, PPG signal could be 

employed to obtain information about the cardiac conduction and circulatory system. The 

most usual information extracted from the PPG signals are the pulse rate and pulse rate 

variability (PRV). Other important information such as heart rate (HR) and heart rate 

variability (HRV), respiratory rate (RR), blood pressure (BP) and blood glucose could be 

estimated using PPG. 

Due to the existing of principal biological information in the PPG, analyzing the PPG 

signal can be an important procedure to assessment the status of human physiology. Until 

to now, many properties of PPG were studied, but attributes, physiological characteristics 

and different aspects of PPG not fully discovered yet and researches in this field continues 

unabated. 

1.1. Introduction 

Providing noninvasive, simple and continuous biological monitoring are important 

goals in biomedical applications. Optical measurement of vital signs is one of the main 

noninvasive biomedical techniques and photoplethysmography is a most applicable 

instance of these technologies [1]. Photoplethysmography (PPG) is a photo-electric 

technique and PPG signals are obtained by using a light source and a photodetector 

simultaneously with changes in the amount of arterial blood, which in turn depends on the 

heart activities. Until recent decades, PPG was used for the evaluation of some biological 

parameters such as PR and PRV. However, need for reliable and inexpensive clinical 
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assessment techniques has led to further utilization of PPG based methods. PPG signals are 

carefully achieved and recorded by using suitable optical sensors which help researchers 

and clinicians for assessment of bio-physiological conditions or diagnosis and therapy of a 

variety of diseases. A detailed explanation about PPG principles will be revealed in 1.3 

Section.  

PPG is easy to use and strongly correlated with circulatory system and heart 

activities. The output of a PPG sensor is a signal called PPG signal and it has 

cardiovascular system related waveform named pulse waveform. This signal arises from 

the interaction of light with tissues. The complex interplay between light and biological 

tissue includes some optical processes such as scattering, absorption, reflection, 

transmission and fluorescence [2]. 

PPG characteristics such as pulse width [3], wave shape [4], and some other 

variables have been used in literature and there are many studies on these issues. For 

instance, Hertzman introduced some important properties of PPG signals [5]. He also, 

described that PPG pulses have two phases of rising pulse edge (anacrotic phase) and 

falling pulse edge (catacrotic phase) [6]. Measuring of blood oxygen saturation using PPG 

signals is another field of PPG applications and it is actually a well consolidated and 

widely adopted in the clinical routine technique known as pulse oximetry [7]. In the 

mentioned field, amplitude ratios of separate PPG signals with different wavelengths are 

used and blood oxygen saturation is obtained from the amplitude ratio of the signals. There 

are some other studies in which respiratory related amplitude modulated oscillations [8], 

respiratory rate [9] and fluorescence characteristics of human blood [1] were studied using 

PPG signals. There are also some researches which report a high correlation between HRV 

and PRV [10]. Furthermore, PPG could contain some other significant cardiovascular 

features, such as arterial stiffness [11] and cardiac output and systemic vascular resistance 

[12]. Use of derivatives of photoplethysmographic signals as biometric identification 

technique was another interesting application of PPG signals [13]. 

A diversity of procedures have been utilized to process PPG signals, the most usual 

of which are applying wavelet transform [14], digital filtering, feature extraction and time 

domain averaging [15-20], variety of motion artifact decreasing methods [21], using 

artificial neural networks [22, 23], types of modeling approaches [24, 25], principal 
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components analysis [26-28], chaos theory [29], correlation [30], and wave form 

derivatives [31]. In general, major features of PPG signals were as follows: 

• Time and frequency domain characteristics of single wavelength PPG signal

• PPG features according to the wave shape (turning points and slope of the curve)

• Amplitudes ratio of different PPG signals with different wavelengths

In fact, important specifications of PPG signal that previously were used to biological 

measurements could be divided to the pulse-morphology-based methods and the pulse-

occurrence-based methods.  

Parametric modeling and classification of the photoplethysmographic signals were 

other research subjects. Classification accuracy is key issue in the corresponding 

applications and it depends largely upon the extracted features. A variety of approaches 

have been proposed to feature extraction from PPG signals, the most common of which are 

eigenvector methods [32], wavelet transform based feature extraction [33], system 

identification and transfer function modeling [34], features extraction in second derivative 

[35], frequency domain and spectral features [36]. In addition to above mentioned studies, 

morphological features of PPG signal have also been used in some other studies. The 

morphological techniques allowed the detection of many bio-physiological parameters by 

monitoring how the shape of each PPG pulse was changed over time [37]. Changes in the 

morphology of PPG pulse have been investigated in some cases such as detecting 

Hypovolemia [38], detection of the hemodynamic stress of exercise [39] and measuring 

changes in posture and orthostatic stress [40]. 

Some PPG analyses needed for an efficient mathematical modeling of the signal to 

increase measurement speed and get the most accurate feature extraction results. Curve 

fitting methods were widely used for parametric modeling of biological signals such as 

electroencephalographic (EEG) signals [41]. In the case of PPG signals there are also 

several studies that have used waveform fitting methods (which break down PPG pulse 

into several distinct sub-waveforms) for representation of PPG pulses. Published studies in 

this field contained analyzing PPG signals recorded concurrently from finger and ear using 

Gaussian functions [42] and Huotari's approach for representation of PPG pulses obtained 

from different body sites by fitting with lognormal functions [43,44]. In [42], a simple 

algorithm was presented by Rubins for extracting pulse parameters from PPG waveform. 
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Huotari's studies illustrated that parameters of the fitted models were extremely related to 

some cardiac system parameters.  

Many properties of PPG were studied in literature, but all attributes and different 

aspects of PPG signals is not fully discovered yet [45]. Using of complex PPG signals with 

two (or more) simultaneous different PPG signals is relatively new field of researches and 

it is usually called dual (or multi)-wavelength PPG. In previous works, there are a few 

number of studies related to complex PPG signals with two or more unlike light 

wavelengths, the most of which are limited to application of amplitude ratios in order to 

pulse oximetry, analyzing vascular pressure variations at different depths of human skin 

[46] or analysis of skins blood circulation specifications [47,48]. Neither the mentioned 

studies nor any other study have considered the variations of time difference between 

separate PPG signals (phase shifts) with respect to physiological conditions of human. 

Actually, despite the fact that two-or more wavelength PPG signals have been used 

previously, none of the works have concentrated the time difference (TD) changes of 

distinct simultaneous PPG signals relative to each other in terms of individual's biological 

conditions. 

1.2. The Main Applications of PPG 

The potential of photoplethysmography for evaluating vascular diseases has been 

recognized many decades ago. But, in more recent years, the need for small, accessible, 

reliable, cost effective, simple to use and non-invasive cardiovascular assessment 

techniques has led to greater use of PPG. This technique has been used in a wide range of 

clinical applications such as physiological monitoring, diseases diagnosis and 

cardiovascular assessments. Some important applications of PPG are described as follows: 

1.2.1. Blood Pressure Estimation 

Estimating of blood pressure (BP) using PPG signals is one of the most interesting 

applications of photoplethysmographic signals. Measurement of BP is a major task to 

evaluate individual's biological situation and healthcare. BP can be estimated from pulse 

transit time (PTT). PTT can be calculated by measuring of beat-to-beat time differences 
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between an electrocardiographic (ECG) and a photoplethysmographic (PPG) signal. In fact 

PTT is the time delay between R point of ECG and peak point of PPG waveforms. 

Important advantage of this method is avoiding from using of cuff that it is customary in 

the usual methods of blood pressure measurement. Figure 1.1shows typical PTT obtained 

by using concurrent ECG and PPG signals. 

 Figure 1.1. Simultaneous ECG and PPG signals and obtained PTT 

1.2.2. Respiratory Monitoring 

Monitoring of breathing is feasible using PPG. This is due to respiration causes 

changes in the peripheral system. Respiratory-induced intensity variations (RIIV) are well 

known issue and can be extracted from PPG signals [49]. RIIVs are amplitude modulated 

oscillations in PPG and are mainly due to the variations in venous return to the heart, 

caused by the alterations in intrathoracic pressure. The basics of RIIV is not fully 

understood, but is believed to be caused by skin blood volume fluctuations induced by the 

respiratory variations in intra-thoracic pressure transmitted to the measurement site by the 

venous system [50]. Using PPG for respiratory monitoring can be led to avoid from use of 
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types of gas sensors and face or nasal masks that are bothering the patient in the clinical or 

hospital applications.  

1.2.3. Apnea Detection 

Central apnea is described as the incidence of a glancing pause of breathing, 

normally accompanied by a resting heart rate. So, each pause in respiration is named 

apnea. Apnea arises because of different reasons such as intermittent airway closure due to 

pharyngeal muscle relaxation and is a very common indication for several medical 

situations [51]. Another widespread reason for apnea is unripe birth [51]. Other reasons 

such as paroxysmal attacks, seizures, circulatory arrest, neurological disorders, head injury 

and drug overdose could be lead to apnea [52]. Apnea detection by PPG signals without 

using chemical or physical sensors is an advantageous technique in clinical uses.  

1.2.4. Pulse Oximetry 

The oxygen carried in the blood is called the oxygen saturation level (SpO2). Each 

red blood cell contains several millions of Hemoglobin molecules. When it contains its full 

complement of four oxygen molecules, hemoglobin is known as Oxyhemoglobin (HbO2). 

If it contains no oxygen, it is referred to as Reduced Hemoglobin (Hb). An important and 

widely used application of PPG is a well-known evaluation technique called pulse 

oximetry and it is used to measure SpO2. Pulse oximetry attempts to estimate the amount 

of oxygen contained in arterial red blood cells by non-invasively measuring the oxygen 

concentration at a peripheral point such as the finger. Pulse oximetry has been one of the 

most meaningful advances in biomedical engineering over the last few decades. Types of 

commercial pulse oximeters are available and used in many home or hospital applications. 

In pulse oximetry, a sensor probe is located on a small area of the subject's skin (often on 

the finger). The sensor illuminates two unlike wavelengths of light on the skin and 

transmitted lights are received by a photodetector. The technique calculates the absorbance 

difference of the wavelengths and measures the ratio of amplitude variations of the 

wavelengths relative to each other. SpO2 goes up or down according to how well a person 
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is breathing and how well blood is being pumped around the body. SpO2is obtained by 

using the amplitudes ratio and can be calculated as Equation (1.1). 

 𝑆𝑆𝑆𝑆𝑆𝑆2 =  100×𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻 2
𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻 2+ 𝐶𝐶𝐻𝐻𝐻𝐻

 % (1.1)     

where CHbO2 and CHb refer to concentration of Oxyhemoglobin and Reduced Hemoglobin 

respectively. Typical reading for SpO2 value is usually between 95% and 100% in healthy 

humans. Variety types of pulse oximeters are commercially available. A portable instance 

of these devices can be seen in Figure 1.2.    

             Figure 1.2. A wireless commercial finger pulse oximeter 

1.2.5. Assessment of Arterial Disease 

Another field of PPG applications is assessing of peripheral arterial disease. There 

are several studies in the case of vascular evaluations by using PPG. Assessment of disease 

using PPG is feasible due to PPG pulse shape often is changed when severity of vascular 

disease is occurred [53-55]. PPG signal collection from multiple body sites have been used 

to evaluate peripheral vascular diseases in [56, 57]. Also, assessment of endothelial 

function and dysfunction in diabetic patients was assessed by using the PPG-extracted data 
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in studies [58, 59]. In another study, PPG signals recorded from healthy subjects and 

Raynaud’s patients were analyzed [60]. The results of those study demonstrated that pulse 

shape was a reliable indicator of situation. In addition to above, PPG signal revealed 

significant capability for neurological evaluation, with the possibility to present new vision 

for the nervous systems [61-63]. 

1.3. The Basics of PPG Pulse 

PPG provides the necessary ground to monitor heartbeat-synchronized blood volume 

variations in microvascular beds. This technology has been applied in a wide range of 

clinical aims, by the help of commercial medical instruments. As mentioned before, 

instance of these devices are pulse oximeters, vascular diagnostics and digital beat-to-beat 

blood pressure measurement devices [64]. The amplitude of PPG signal depends on the 

measurement device and can change from a few millivolts to several volts. PPG signals 

have a small frequency band that may change in the range of 0.5-5 Hz.    

PPG technique is based on the measuring of the optical response of a small region of 

the skin surface. Blood is driven by the heart all over the body arteries in a rhythmic mode 

called cardiac cycle. It was turned out that PPG pulse mainly represents the flow of blood 

in the arteries of the region being considered [65]. 

PPG pulse consists of AC and DC components [66].  The pulsatile component of the 

PPG is called ‘AC’ component. Basic frequency of AC component related to cardiac cycle 

is about 1 Hz (it may be changed depending on individual's heart rate) [66]. AC component 

is modulated onto a non-pulsating DC component relevant to the tissues and average blood 

volume. DC component may changes slowly due to some reasons such as respiration.  

The light has a complex interplay with biological cells. It contains the optical 

processes such as scattering, absorption, reflection, transmission and fluorescence [2]. 

Beer-Lambert’s law can support the concept of the light absorbance and its interaction with 

the vital tissue. This law expresses the debilitation of light passing through an absorbing 

material. When a single wavelength light with the intensity of I0 enters a matter, a portion 

of the light is transmitted through the matter, but another portion is absorbed. The intensity 

of light passing through the matter is reduced in exponential form.  



9 

Output light intensity is called I and can be defined as: 

  I = I0 e-ε(λ)cd (1.2) 

where ε(λ) is the extinction coefficient or absorptive of the absorbing matter at the 

wavelength of λ, c is uniform concentration of the absorbing matter, and d is the optical 

path length. Beer-Lambert law can be extended for multiple absorbers in the cases with 

two or more light wavelengths as: 

I = I0 e-(ε1(λ)c1 + ε2(λ)c2….εn(λ)cn) d (1.3) 

where εi(λ) are the respective extinction coefficients and ci are the respective 

concentrations. Figure 1.3 shows the concept of light absorbance in pulse oximetry. 

         Figure 1.3. Light absorbance concept in pulse oximetry 
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Light absorbing components of blood are hemoglobin compounds (HbO2 and Hb) 

and their extinction coefficients are changed with the wavelength [67-69]. Table (1.1) 

shows extinction coefficient variation in the wavelengths of 660nm and 940nm. 

  Table 1.1. Extinction coefficient with respect to wavelength 

Wavelength(nm) 
Extinction Coefficient 

Hb HbO2 

660 0.81 0.08 

940 0.18 0.29 

1.4. Optimum Placement of LED and Photodiode 

The effect of the distance between the light source and the detector were studied in 

[70]. It was turned out that greater PPG amplitudes were obtained by installation the 

photodiode farther from the LED. However, since the optical path length was longer, 

higher LED driving currents were required to dominate the further absorption of light. This 

study also revealed that by installing more than one photodetector, a larger part of 

backscattered light can be detected and larger PPG amplitudes may be obtained. 

In addition to above, there was a like inference about the distance between LEDs and 

photodetectors in [71]. It was concluded that the number of photodiodes was effective on 

the amount of detected light. That study revealed that 7mm was the optimal distance 

between the LED and photodiode to obtain the largest PPG signal.  

1.5. Suitable Wavelengths 

In most PPG sensor systems wavelengths at which the blood volume is normally 

measured, are 660nm for visible light and 910 nm or 940 nm for infrared, but it is possible 

to apply PPG at different wavelengths and also with more than a single wavelength. The 

benefit to using several wavelengths is that it makes it able to measure amount of some 

blood dissolved gases. There are a few researches in which different light wavelengths 
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were used to obtain PPG signals. For example, red, green and blue PPG signals were 

applied for heart rate monitoring and compared with each other [72]. Also, changing the 

two selected wavelengths from 665/910 nm to 730/880nm to show a linear relationship for 

oxygen saturation rate was performed in [73]. According to conducted studies it can be 

said that each wavelength of light can be suitable for a particular aim. 

1.6. Characteristic Parameters of PPG Pulses 

The important characteristics of a single PPG pulse including pulse height, full width 

half max, peak of the pulse, rising edge and falling edge are labeled in Figure 1.4. The 

peak of pulse is the maximum value of PPG pulse. The Pulse Height (PH) is the difference 

between the maximum value of a pulse and minimum value of the same pulse. The Full 

Width Half Max (FWHM) is a statement of the width of a function, obtained by the 

difference between the two boundary values of a function at which the function is equal to 

half of its maximum value. In the case of PPG pulse, FWHM is the width of the pulse at 

half the maximum value of PPG pulse. The rising edge of the pulse is known as anacrotic 

phase and the falling edge as catacrotic phase [5, 6]. 

              Figure 1.4. Characteristic parameters of a single PPG pulse 
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1.7. Photoplethysmographic Signals 

In photoplethysmography, the light is illuminated by transmitter part of the sensor. 

The illuminated light may be reflected, absorbed or passed by different parts of the human 

skin, tissues or blood. In the receiver part of the sensor, arising light is detected as an 

electrical voltage that is called PPG signal.  This analog signal is usually changed to a 

discrete signal by using different types of data acquisition devices to be able to record by 

digital computers. A typical short-term PPG signal in normal physiological conditions  can 

be seen in Figure 1.5 (a). A long-term instance of PPG signal that was obtained for several 

minutes while the subject was in deep sleep has been shown in Figure 1.5 (b). 

 Figure 1.5. (a) A sample short-term PPG signal (b) A sample 

  long-term PPG signal 
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1.8. Artifacts in PPG 

PPG signals have a suitable structure for statistical analysis and signal processing 

operations. PPG has a good signal to noise ratio, but it may be affected by some unwanted 

factors such as noise, network initiative, environmental factors and so on. Some reasons 

that may be led to damage PPG signals can be mentioned as below: 

• Abundance of the environmental light

• Colors and materials that are rubbed into the skin (Methylene blue, nail polish,

henna)

• Adhesive bands

• Pigmentation (deep pigmentation makes a decrease in signal)

• Motion artifacts

• Low perfusion (the fall of cardiac output, hypothermia, decrease in systemic

vascular resistance, shock and many others)

• Incorrect use of the sensor (optical shunt formation as a result of insufficient

sensor contact)

• Network artifacts (radio waves, electrostatic artifacts and  mains noise)

Variety types of methods may be used to decrease the effects of artifacts. Some of 

these methods are as below: 

• Use accelerometer to detect the movement to decrease motion artifacts [74].

• Use DSP techniques to template match [75].

•Using of discrete saturation transforms (DST) [76].

• Many types of filtering techniques [77-79].

• Methods based on time and period domain analysis [80].
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1.9. Methods of Light Detection 

A PPG sensor system includes a transmitter part (light source) which emits visible 

(often a red LED with the wavelength of 660nm) or infrared (often an IR LED with the 

wavelength of 940nm) light onto the skin surface and illuminates a tissue bed. Some light 

is absorbed by blood, and the transmitted or reflected light (depending on the mode of 

PPG) is detected and recorded by a receiver part (a light-sensitive photodiode). Detection 

of light may be carried out either in transmission or reflection modes. In fact, PPG sensor 

systems are generally classified as transmission mode and reflectance mode [81]. Output 

magnitude of a transmission mode PPG is much greater than its reflection mode [64]. PPG 

measurement mode depends on the relative positions of the light source and photo-

sensitive element. Figure 1.6 shows the placement of transmitter and receiver parts of the 

sensor for both of transmission mode and reflection mode PPG sensor systems. 

    Figure 1.6. (a) Transmission and (b) reflection mode PPG types [81] 

In the transmission mode PPG, skin is illuminated by the transmitter part of the 

sensor. Transmitted light is detected by the receiver part which is positioned on the 

opposite side of the transmitter in the measuring area. In different phases of a heartbeat 

(systolic and diastolic phases), blood volume is changed in tissues and so, the intensity of 

the absorbed and transmitted light is changed. Consequently, these light intensity 
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variations can be measured at the receiver part of the sensor. Transmission mode PPG 

sensors may be placed on different body sites such as finger, toe, ear or nose. 

In the reflection mode PPG, both of the transmitter and receiver parts of the sensor 

are placed near each other on one side of the skin. Here, backscattered light (returned from 

different depths of the skin) is received by receiver sensor. A special opaque substance is 

normally placed between two parts of the sensor as a guard to avoid from direct radiation 

between the transmitter and the receiver without relation to the subject's body. This type of 

PPG sensors supports data acquisition from several body sites (such as chest, wrist, ankle 

and forehead).that is not available in the transmission mode PPG. 

1.10. Simple and Complex PPG 

Apart from those already mentioned modes (transmission and reflection), PPG signal 

can be also classified with respect to another aspect as simple and complex signals. These 

concepts are described in the following subsections.  

1.10.1. Simple PPG 

In order to collect simple PPG data, a light source with a single wavelength of λ, is 

placed on the skin surface and a photo-detector receives the transmitted (or reflected) light. 

So, in this type of PPG, just one wavelength of light is used and the resulting signal is 

achieved with respect to transmittance/absorbance characteristics of the same wavelength 

of the light. Simple PPG is not applicable to assess biological parameters such as blood 

oxygen saturation (pulse oximetry) in which multiple factors (Hb and HbO2) need to be 

measured. 

1.10.2. Complex (Multi-Wavelength) PPG 

Some biological measurements need to two (or more) simultaneous PPG signals with 

different wavelengths. This complex kind of PPG is generally used for pulse oximetry and 

is called multi-wavelength PPG. To obtain a complex PPG data, the transmitter portion of 

the sensor needs to separate light sources, the wavelengths of which are λ1, λ2,…, λn. The 
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receiver part of the sensor, detects light intensities corresponded with each of the 

wavelengths separately. Time division multiplexing method is usually used for this end. 

This method is expressed in below.  

1.10.3. Time Division Multiplexing (TDM) 

In the existing multi-wavelength PPG biosensor devices with two or more 

wavelengths of emitting, a single photodetector with a wide spectral response -in the range 

visible and infrared light- is employed to detect all of the wavelengths. Separate light 

sources were driven and emitted different lights in sequence one after the other with a dark 

space between each of them (to prevent overlap) at a suitable repetition rate in antiparallel 

mode. This way, each of the different PPG waveforms with separate wavelengths was 

allotted a time division and their amplitudes in these time divisions were caught. In fact, 

PPG waveforms were multiplexed by sampling each of them at certain time divisions. This 

method was called time division multiplexing (TDM) approach. For instance of time 

multiplexing, timing diagram for driving two light sources (Red and IRLEDs) by TDM 

method with the emitting frequency of 1 KHz for each light source has been shown in 

Figure 1.7. 

  Figure 1.7. Instance timing for driving two different light sources 

In the receiver portion of TDM based PPG sensor, multiplexed PPG signal is split 

into separate paths using sample and hold, preamplifier and pre-filtering circuits. Separated 

different PPG signals can be applied to a multi-channel data acquisition device to record 
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signals. Figure 1.8 shows a dual-wavelength PPG sensor system including Red and IR 

lights connected to a dual-channel audio codec as the acquisition device.  

 Figure 1.8. Dual-wavelength PPG sensor using TDM method 

Dual-wavelength PPG system can be expanded to a system with further light 

wavelengths by using more emitting light sources. For example, a four wavelength PPG 

sensor system with the red, green, blue and IR lights has been revealed in Figure 1.9.  

 Figure 1.9. Expanding dual-wavelength PPG sensor to four separate wavelengths 
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1.10.4. Disadvantages of TDM Method 

In TDM, light sources (LEDs) in the measurement setup are alternatively driven by 

impulses at a certain sampling rate. For instance, in the typical timing example presented in 

Figure 1.8 this rate was equal to 1000 Hz for each of LEDs. So, the IR and Red signals 

were not measured synchronously, but with the time delay of 0.5ms. Usually, the sampling 

rate is less than 1000Hz in real implementations and this makes it more inaccurate. Thus, 

TDM method can have serious challenges with applications in which synchronicity of PPG 

signals is important. In addition, there is a large switching noise in TDM method.  

1.11. Aims and Objectives 

The main aim of the present thesis was propose time differences (TDs) extracted 

from complex PPG signals as alternative physiological measure for interpretation of PPG 

signals. In this thesis, the possibility of using of dual-wavelength PPG signal to evaluate 

physiology of human was investigated with respect to the following specific objectives: 

1. To introduce a new method for obtaining complex PPG signals -without

disadvantages of TDM method (Study 1);

2. To analyze physiological situations by using of the introduced TD variations (Study

2);

3. To use TDs to assess respiratory system (Study 3);

4. To assess biological conditions by using of three different PPG pairs and compare

between the pairs to determine the most suitable PPG pair (Study 4);

5. To Apply TDs for fast identification of apnea (Study 5);

6. To use TDs for fast and accurate wake/sleep classification (Study 6);

7. To compare PTTs obtained from an ECG signal and different PPG signals with

separate wavelengths (Study 7);

8. To compare TDs and PTTs during exercise test (Study 8).
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1.12. Thesis Overview 

The thesis is divided into five chapters. Chapter one begins by introducing research 

background, and includes research motivations, basic aspects of the PPG technique, 

understanding the principle of PPG, basic aspects of PPG technique, research aims and 

objectives. Chapter two presents the used tools, materials and methods to obtain dual-

wavelength PPG signals, extract different TD features from them and analyze the obtained 

features with respect to physiological situations. The results of different studies conducted 

in this thesis, has been presented in Chapter Three. Chapter Four discusses about the 

obtained results from the presented method and compares them with the previous works. 

Chapter five provides concluding remarks, and addresses future works. 



2. MATERIALS AND METHODS

This section explains clearly that how the studies were conducted to reach the main 

goal of this dissertation (analysis of TD variations in terms of biological situations). In the 

following subsections, performed studies, used tools, materials and methods are described 

in detail. 

2.1. Planning of the Studies 

In this thesis, several studies were carried out to investigate paired PPG signals with 

respect to their time domain differences and subject's biological situations. The conducted 

studies are introduced and abstracted in below subsections. 

2.1.1. Study (1): New method to Obtain Dual-Wavelength PPG Signals 

This study was carried out in order to design a new approach for obtaining dual-

wavelength PPG signals instead of TDM method, compare the obtained results and 

determine the most suitable approach for extracting of TDs. Based on the obtained results, 

in the case of TDM method, TD variations were not statistically significant, but in the 

proposed method, TDs had very statistically significant variations. 

2.1.2. Study (2): Bio-Physiological Analysis Based on TD Variations 

In this study, TD variations between Red and IR PPG signals were extracted and 

proposed as a new strategy for the analysis of dual-wavelength PPG. For this aim, the new 

designed dual-wavelength PPG sensor system was applied to obtain simultaneous IR and 

Red transmission mode PPG signals. Then, TDs between the obtained PPG pulses were 

extracted in each heartbeat for monitoring of various physiological conditions. The 

proposed method was verified in three different physiological changing situations 

(wakefulness-sleep, rest-run, nonsmoking-smoking). Results showed that different PPG 

signals had significant TD variations (time shifts relative to each other) with change in a 

psychophysical state of investigated subjects. 
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2.1.3. Study (3): Use of TDs to Assess Respiratory System 

This study was planned to propose TDs inferred from dual-wavelength PPG signals 

to assess respiratory system. Two different types of respiratory challenge tests were 

planned and the details of TDs and their variations according to respiration changes were 

analyzed using the recorded signals. Statistical analysis was performed using the obtained 

data. The results showed that PPG signals with distinct wavelengths had respiratory-related 

TD variations and there was significant difference between mean and standard deviations 

of TDs in separate stages of the experiments (P< 0.05).  

2.1.4. Study (4): Biological Assessments by Using of Multi-Wavelength TDs 

The aim of this study was to obtain TDs between three different pairs of PPG signals 

during a breath holding experiment (as biological challenge test) in order to investigate and 

compare their TD variations within the tests. Based on the results, all of the three PPG 

pairs of Red-IR, Green-IR and Blue-IR had significant biological related TD variations, but 

the Red-IR pair was the most relevant case for biological applications. 

2.1.5. Study (5): Apnea Detection Using TDs 

This study was aimed to apply TDs as time domain features for fast detecting of 

apnea during respiratory monitoring. The use of TDs to fast identify abnormal breathing 

could be an interesting research field. Four separate TD features along with a pulse height 

feature and k-NN classification method were used in this study. The results revealed that 

TDs could be good indicative for normal and abnormal respirations. 

2.1.6. Study (6): Use of TDs for Wake/Sleep Classification 

The aim of the present study was to investigate time domain differences inferred 

from dual-wavelength PPG signals in order to feasibility of fast and accurate wake/sleep 

classification. For this purpose, the developed computer connectable dual-channel PPG 

sensor system (including Red and IR lights) was employed to obtain paired PPG signals 

from a small hole of the finger skin during wake/sleep experiments. Three separate TD 
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features and k-NN classification algorithm were employed in this study. The promising 

classification results were achieved and it turned out that TDs may have a good potential 

for wake/sleep detection. 

2.1.7. Study (7): To Compare PTTs Obtained from ECG and Different PPGs 

Complex PPG signals were recorded along with the ECG signal simultaneously. This 

job was carried out by the same PPG sensor system plus an additional circuit including an 

instrumentation amplifier to record ECG signal. Breath holding experiments were 

performed and the time differences between peak points of PPG signals (TDs) and also the 

differences between 'R' point of ECG and peak points of PPGs (PTTs) were obtained from 

experimental recordings separately for each heartbeat. The results showed that PTTs 

extracted using different PPG signals were different with each other. This outcome can be 

an important finding and must be considered in applications such as calculation of blood 

pressure. 

2.1.8. Study (8): To Compare Simultaneous TDs and PTTs in Exercise Test 

Similar to the study (7), dual-wavelength PPG signals were recorded along with the 

ECG signal simultaneously. Exercise test (rest run experiment on treadmill) was carried 

out instead of the breath holding experiment. Finally, TDs and PTTs were extracted from 

experimental recordings for further investigations. 

2.2. Sensor Systems 

Two types of dual-wavelength PPG sensor systems (proposed and TDM methods) 

along with a sensor system to record ECG signals were prepared and used for data 

collection in corresponding studies. TDM method for dual-wavelength 

photoplethysmography was explained in Section 1.10.1. The proposed PPG sensor system 

and ECG are explained in the following subsections. 



23 

2.2.1. Proposed Dual-Wavelength PPG Sensor System 

In the TDM method, due to the use of a wide range single output photodetector, 

LEDs in the measurement setup should be alternatively driven by impulses at a special 

rate, so the different PPG signals were not tested absolutely synchronous, but with a small 

time delay in the range of milliseconds. In addition, due to the switching, sampling and 

holding, it was conceivable that signal to noise ratio and also the phases of PPG signals 

were interfered by these stages. To overcome these problems, a computer connectable 

transmission mode multi pair dual-wavelength PPG signal recorder prototype device with a 

new arrangement of transmitter-receiver was developed. Angular position of transmitters 

and receiver sensor was empirically set to 90º to have the improved output magnitude of 

sensor and the largest PPG signals. This type of sensor arrangement not presented in 

previous works. Optimum placement of the sensors can be seen in Figure 2.1. 

 Figure 2.1. Position of sensors and connections 

The main difference between TDM and the proposed methods was in their photo-

detectors. TDM method used a photodiode with a broad-spectrum and a single output for 

both of visible and infrared lights. However, in the proposed method photodiode had two 

separate analog outputs for visible and infrared beams. These two direct analog outputs 

were caused to prevent from any delay and switching noise (that there were in TDM 

method). A typical block diagram for PPG sensor system based on dual-output photodiode 

with two separate analog outputs can be seen in Figure 2.2. As seen in this figure, the 

periodic driving of LEDs (time multiplexing) in the transmitter section and also sample & 

hold part in the receiver part has been eliminated in the presented approach. Two separate 
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outputs of the photodiode could be directly applied to a dual-channel analog to digital 

converter (ADC) after an amplification stage. 

  Figure 2.2. A proposed block diagram for dual-wavelength PPG sensor 

One of our goals in this thesis was to determine the most suitable wavelength pair to 

extract TDs for using in bio-physiological analysis. Hence, we needed a multi paired dual-

wavelength PPG sensor system. Multi pair means that the developed system had choice 

between several PPG signal pairs. Such a system was developed with PPG pairs as below: 

1. Red-IR PPG pair

2. Green-IR PPG pair

3. Blue-IR PPG pair

In this system, a single Red-Green-Blue (RGB) LED with the wavelengths of 660nm 

(Red), 520nm (Green) and 460nm (Blue) and a near infrared LED with the wavelength of 

940nm (IR) were used as transmitters. The RGB and IR LEDs were glued to each other in 

order to avoid gap between them. As mentioned above, three separate pairs of 

simultaneous PPG signals with the wavelength pairs of 660-940nm (Red-IR), 520-940nm 

(Green-IR) and 460-940nm (Blue-IR) could be selected by this device. In the designed 
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sensor system a dual-element common cathode S8753 photodiode (HAMAMATSU 

PHOTONICS) with two separate simultaneous analog outputs (for visible and infrared 

range) was used as receiver sensor. Both of the LED and photodiode were placed on a 

ring-shape holder. Separate outputs of the photodiode produced two concurrent analog 

paths of the visible and infrared PPG signals that could be connected to a data acquisition 

device after amplification. In the developed device, the computer connection was provided 

by using a dual channel USB connectable audio codec (PCM 2902). Complete circuit 

diagram of the developed PPG sensor system using the proposed method is shown in 

Figure 2.3.  In this circuit, one of the Red, Green or Blue parts of RGB LED was selected 

and driven along with IR LED by constant DC voltages. On the other hand, distinct outputs 

of the photodiode provided two separate signals that one of them was corresponded with 

IR beam and other one was corresponded with Red, Green or Blue light. Each of obtained 

PPGs was amplified and applied to ADC input of USB connectable audio codec. 

2.2.2. Dual-Element Photodiode 

It was expressed that the developed dual-wavelength PPG device used a S8753 

photodiode with two separate analog outputs. S8753 is a wide range (visible-infrared) 

photo-detector. It uses two separate elements integrated in a single small package. It has 

two distinct photosensitive semiconductors with different spectral response characteristics 

to give high sensitivity for the covering range. Spectral response of this sensor has been 

revealed in Figure 2.4. 

2.2.3. RGB and IR LEDs 

Spectrum of peak wavelengths of RGB and IR LEDs are revealed in Figure 2.5. As 

seen in this figure, the wavelengths for blue, green, red an IR are 460nm, 520nm, 660nm 

and 940nm respectively.  These values have been measured at normal room temperature of 

25oC. 
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  Figure 2.3. Circuit diagram of the developed sensor system 
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 Figure 2.4. Spectral response of S8753 photodiode [82] 

 Figure 2.5. Peak wavelength spectrum of used LEDs 

2.2.4. ECG System 

In addition to PPG sensor systems, a 3-lead ECG recorder system containing an AD 

620 instrumentation amplifier (IA), an Op-Amp and filtration stages was separately 

prepared. Similar to PPG sensor system, the filtered output of IA was connected to audio 
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codec to record signals by computer. Schematic diagram of 3-lead ECG recording system 

is shown in Figure 2.6.    

 Figure 2.6. Schematic diagram of 3-lead ECG recording system 

2.2.5. Acquiring Data Using Audio Codec 

 When needed to use the computer for data acquisition, audio codec and sound cards 

can be used instead of expensive data acquisition cards or analog to digital converters. 

Specially, in the case of low frequency signals such as PPG and ECG, audio codec could 

be a suitable selection for data acquisition duo to the appropriate resolution (16-24 bit) of 

their internal analog to digital converters, ability of setting of sampling rate from a lowest 

value up to 44100 Hz and low price. On the other hand, MATLAB® supports Windows® 

compatible audio codecs and sound cards that use the DirectSound driver by Data 

Acquisition Toolbox™. The following tasks can be carried out by Data Acquisition 

Toolbox™ MATLAB®: 

• Obtaining of multi-channel data

• Setting of sampling frequency

• Setting of recording duration

• Analyze data as it is being recorded

• Real time data analysis
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• Triggering the start of recording

• Working with minimal MATLAB® code

A range of commercially available audio codecs could be used for acquire low frequency 

bio-signals such as PPG or ECG. CM6300 from C-Media Electronics and PCM2902 from 

Texas Instruments are two types of double channel audio codecs with two 16-bit analog 

inputs. Both of mentioned codecs were suitable for acquiring the dual-wavelength PPG and 

also ECG data involved in this thesis. These audio codecs are USB compliant full-speed 

protocol controller. The USB protocol controller works with no software code. 

2.3. Host Computer Installed Program 

Because of the high ability for processing of signals and data analysis, use of 

MATLAB® as a software environment can be an appropriate choice to develop automated 

applications. In This thesis, in addition to the hardware, MATLAB® programs were 

developed to record PPG signals using the prepared sensor circuit, filtering, peak detection, 

signal processing, statistical analysis, feature extraction, classification and others. The 

developed software for signal recording was able to set time duration of data collection and 

also sampling frequency. 

2.4. Experimental Setup to Collect PPG Data 

This section introduces the setup to collect PPG data. Important characteristics of the 

prepared setup were the simplicity and portability of it. Internal circuits and the external 

view of the prepared prototype device can be seen in Figure 2.7 (a) and (b) respectively. 

Experimental setup containing sensor system, a laptop and embedded MATLAB® 

program, is revealed in Figure 2.7 (c). As it turns out, this setup could be easily positioned 

on a small table and connected to subject's finger. This setup was used for all of the studies 

conducted in this thesis. 
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 Figure 2.7. (a) Circuits (b) external view of device and (c) experimental setup 

2.5. Experimental Protocols 

In this dissertation, several studies were planned in which paired PPG signals were 

recorded from the number of volunteers and analyzed with respect to their bio-

physiological conditions. The nature of the researches was defined to the volunteers before 

the starting to experiments, and their informed consent was obtained. The protocols of the 

studies are described as below subsections. 

2.5.1. Experimental Protocol for the Study (1) 

 Study (1) was aimed to compare the new designed dual-wavelength PPG sensor 

system with TDM based system. This comparison was performed by investigating TD 



31 

variations corresponding with bio-physiological conditions. One of the sensors (proposed 

sensor) was positioned on the forefinger of the left hand and the other sensor (TDM based 

one) was placed on the forefinger of the right hand. In this way, two separate dual-

wavelength PPG data could be recorded in parallel by using both of the sensor systems. 

Breath holding experiments was carried out as biological challenge test. The breath 

holding experiments contained three steps of 30s normal breathing, holding the breath as 

much as possible and breathing again. Experimental recordings were obtained with the 

participation of fifteen healthy subjects [age=29.35±4.5 years (mean ± SD), range 24 to 38 

years, male/female=11/4]. 

2.5.2. Experimental Protocol for the Study (2) 

In some situations, the physiological state of the human is changed. For example, in 

bedtime when human is transmitted from wakefulness to sleep some physiological changes 

occur. In this study, three different experiments were planned for instance of physiological 

changes occurring situations, and long-term PPG signals were recorded during the 

experiments. The separate experiments are as follows: 

1. Individual's transition from wakefulness to sleep (first experiment)

2. Running on a treadmill (second experiment)

3. Smoking (third experiment)

PPG data acquisition was performed by fixed and motionless placement of the sensor 

on the forefinger of left hand. Signal recording in each experiment was started from a rest 

condition and continued until the changing physiological situation. For example, in the first 

experiment before beginning to signal recording, subjects were asked to lie and relax on a 

bed. Then signal recording was started and continued until the subject goes into deep sleep. 

In second experiment, PPG signals were acquired starting from standing rest and 

continuing with running on a treadmill. In third experiment, signals were recorded starting 

from non-smoking and continuing with smoking. The signals were acquired from ten 

healthy subjects (three females) in age groups between 24 and 39 years old 

[age=31.54±7.5 years (mean ± SD), range 24 to 39 years, male/female=7/3] all gave 

written informed consent. All the experiments were repeated twice. Each of the iterations 

of the experiments was done on separate day to confirm that steady state was regained 

before the next experiment. Time duration of signal recording was different for each case 
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according to physiological conditions. Sampling frequency was 1000 Hz for all recordings. 

The total number of obtained experimental recordings was 60 separate dual-channel PPG 

signals. 

2.5.3. Experimental Protocol for the Study (3) 

 In this study, TD variations were investigated with respect to respiratory changes. It 

has been proved that respiratory rhythm of human was different in sleep and wake 

situations [83, 84]. In addition, breath holding is a major respiratory challenge test [85-87]. 

Hence, in this study, two different types of experiments were planned for instance of 

respiratory changes occurring situations. These separate experiments were as follows:   

Wake-sleep test as the first experiment and breathe holding test as the second experiment. 

PPG data were acquired by fixed and motionless placement of the ring-shaped sensor 

on the forefinger of left hand. In the first experiment before beginning to record signal, 

subjects were asked to lie and relax on a bed. In this experiment, the signal recordings were 

performed at two separate stages, before falling asleep and when the subject was in deep 

sleep. Duration of signal recording was three minutes in each stage of this experiment. In 

the second experiment, volunteers comfortably positioned on a chair, and then the signals 

were recorded. This experiment contained three unceasing and consecutive stages of 60 

seconds normal breathing (first stage), holding the breath as much as possible (second 

stage) and at last, breathing again (third stage). In the third stage of this experiment when 

the subjects started to breathe again, the first breath naturally was a deep inhalation. 

Timing of the steps of the experiments was carried out by a digital stopwatch. The data 

were collected from twenty five healthy volunteers [age=26.4±12.3 years (mean±SD), 

range 20 to 39 years, male/female=22/3] with one day interval between the first and second 

experiments to confirm that steady state was regained before experiment 2. Sampling 

frequency was 1000 Hz for all recordings like the previous studies.  

2.5.4. Experimental Protocol for the Study (4) 

Experimental protocol to assess the multi-wavelength TD variations with respect to 

biological situations conducted in this study is expressed. Similar to previous study, breath 
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holding experiment was performed as an important instance of biological changes 

occurring conditions. The experiment was contained the same steps of one minute normal 

breathing, holding the breath as much as possible and normal breathing again. Timing of 

the experiments was performed by a digital stopwatch.  

Experimental recordings were obtained with the participation of twenty-five healthy 

volunteers [age=26.4±12.3 years (mean±SD), range 20 to 39 years, male/female=22/3]. 

Before beginning to record signals, subjects were seated and relaxed on a chair, ring-

shaped sensor was placed in a motionless form on their left hand forefinger and then, 

recording was began and the subjects were asked to execute the mentioned steps of the 

current experiment. All of the signals were recorded at the room temperature 

approximately 24 °C. Sampling frequency of signal recording was 1 KHz. 

2.5.5. Experimental Protocol for the Study (5) 

This study was aimed to classify normal and apneatic conditions in a fast and 

accurate way. The recordings of the breath holding experiment obtained from study (3) 

were used as the database of this study. The difference was that each of the recordings was 

split in separate epochs each one having duration of 5s. The first and second stages of the 

breath holding experiment were considered as normal situation and apneatic situations 

respectively. Then, TD features were extracted using the obtained epochs.  

2.5.6. Experimental Protocol for the Study (6) 

In this study, the recorded PPG signals in the first experiment of the study (2) were 

used as the database. As mentioned in Section 2.5.2, in that experiment before beginning to 

signal recording, subjects were asked to lie and relax on a bed. Then signal recording was 

started and continued until the subject goes into deep sleep. Selected data from wake and 

sleep situations was used as different biological states of the present study. The difference 

between this study and study (2) is that in the present study, was tried to detect wake/sleep 

situations in each heartbeat instead of time epochs with several seconds duration.  
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2.5.7. Experimental Protocol for the Study (7) 

This study was aimed to compare PTTs obtained from an ECG signal and different 

PPG signals. ECG signal was recorded along with simultaneous different PPG signal pairs. 

PPG sensor was placed on the forefinger of the left hand of the subjects. Three ECG 

electrodes of lead I, II and III were positioned on the right wrist, left wrist and right leg 

respectively. Breath holding experiment was carried out (similar to study 3) and concurrent 

ECG and Red-IR PPG signal pair was recorded. This job was repeated once again by 

Green-IR PPG signal pair with two hours interval with the first iteration to confirm that 

steady state was regained before second iteration. Experimental recordings were obtained 

with the participation of ten healthy volunteers [age=34.3±5.4 years (mean ± SD), range 21 

to 39 years, male/female=9/1]. 

2.5.8. Experimental Protocol for the Study (8) 

This study was aimed to compare reliability of TDs and PTTs in cases where motion 

artifacts are high. Exercise test was carried out and similar to previous study, simultaneous 

ECG and dual-wavelength PPG signals (separately with Red-IR and Green-IR pairs) were 

recorded. ECG and PPG signals were acquired starting from three minutes standing rest, 

continuing with five minutes running on a treadmill and consequently three minutes rest 

again.     

The basic information of the subjects and experimental protocols are summarized in Table 

2.1. 

2.6. Preprocessing 

Some preprocessing operations were need prior to extraction of TD series from 

experimentally recorded PPG signals. These operations are described in detail in the 

following subsections. 
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2.6.1. Filtering and Noise Cancelation 

The first step of the preprocessing involves filtering the signal to remove types of 

noises. In spite of the fact that PPG signals have a good structure for mathematical and 

statistical analysis, these signals may be affected and destroyed by several types of noises 

such as high-frequency noises, mains noise, ambient optical noise and small drifts. 

Furthermore, in TDM based PPG sensors, time multiplexing process leads to a strong 

switching noise and so simple filtering methods such as smoothing by moving average or 

detrending were not enough for obtaining clear IR and visible PPG signals from the time 

multiplexed PPGs. Hence, for removing the mentioned noises from the recorded PPG 

signals, appropriate filtering processes were needed in this thesis. These filters are 

described in the next subsections.  

2.6.1.1. Band Pass Filtering 

Since the filtration of a signal depends on its frequency characteristics, frequency 

analysis of signals is very important. There are few studies on the frequency features of 

PPG signals. However, considering that PPG signals are a major component of arterial 

system [88], the basic frequency of PPG has been turned out to be 1 Hz and low frequency 

component of this signal is less than 0.5 Hz [89]. On the other hand, frequency range of 

important PPG noises is as follows:  

Frequencies of mains noise, respiratory-related artifacts, baseline deflection, motion 

artifacts, and high-frequency noises (containing EMG artifacts) are 50 or 60 Hz, between 

0.15–0.4 Hz [90], less than 0.5 Hz [91], under 0.1 Hz, and more than 170 Hz [92], 

respectively. Considering the frequency characteristics of PPG signals and the mentioned 

noises, it is easily understood that a band pass filter in the range of 0.05–5 Hz would be 

suitable for PPG signal filtering. In the some studies of this thesis in which TDM method 

has been used, noise canceling process from the recorded PPG signals was performed 

using well known IIR filter. Main difference equation of this type of filters can be written 

as Equation (2.1) [93]. 
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Table 2.1.The basic information of experimental protocols 

Item Study 

(1) 

Study 

(2) 

Study  

 (3) 

Stud 

(4) 

Study 

(5) 

Study 

(6) 

Studies 

(7 & 8) 

Subjects 

Male 

Female 

15 

11 

4 

10 

7 

3 

25 

22 

3 

25 

22 

3 

25 

22 

3 

10 

7 

3 

10 

9 

1 

Age 29.3± 

4.5 

31.5± 

7.5 

26.4± 

12.3 

26.4± 

12.3 

26.4± 

12.3 

31.5± 

7.5 

34.3± 

5.4 

Sensor 

System 

Proposed 

&TDM   

PPG 

Proposed 

PPG 

Proposed 

PPG 

Proposed 

PPG 

Proposed 

PPG 

Proposed 

PPG 

Proposed 

PPG 

&ECG 

PPG Pair Red-IR Red-IR Red-IR 

Red-IR& 

Green-IR 

& 

Blue-IR 

Red-IR Red-IR 

Red-IR& 

Green-IR 

Experiment 

Breath 

holding 

Wake 

/Sleep& 

Rest/Run

& Smoke 

Breath 
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/Sleep 
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where bk and ak, yn-k, xn-k and M represent the tunable coefficients of the filter, output signal 

of the IIR filter, delayed version of the output signal of the filter, delayed version of the 

input signal to the filter and order of the filter, respectively, and n is the time index. 

Transfer function of the filter can be obtained taking the z-transform of (2.1) as (2.2). 
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where H(z) is the filter's transfer function and B(z) and A(z) are numerator and denominator 

polynomials. The 4th-order IIR filter (pass band = 0.5–5 Hz and sampling frequency=1 

kHz) that was designed respecting to Equation (2.2), is expressed by Equation (2.3). 

     H(z)=𝐵𝐵(𝑧𝑧)
𝐴𝐴(𝑧𝑧) 

= 1.9592+3.9185𝑧𝑧−2+1.9592𝑧𝑧−4

1−3.9598𝑧𝑧−1+5.88044𝑧𝑧−2−3.8814𝑧𝑧−3+0.9608𝑧𝑧−4  (2.3) 

PPG data obtained from TDM method in study (1) were filtered applying Equation 

(2.3) and prepared for next stages of signal processing. A part of the recorded time 

multiplexed PPG data and its filtered form is revealed in Figure 2.8 (a) and (b). This figure 

contains simultaneous Red and IR PPG pulses obtained from a unique heartbeat.  

 Figure 2.8. (a) Time multiplexed and (b) Filtered PPG signals 
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2.6.1.2. Smoothing and Detrending 

Despite TDM method, in the proposed PPG sensor system there was no modulation 

and so there was no complicate signals. Therefore, it was possible to filter signals without 

the need for complex filtering. Two simple filters were applied for signal cleaning in these 

types of signals. The first one was a detrending filter based on smoothness prior approach 

[94]. This filter was used to remove slow-varying baseline drift from the infrared and red 

signals, which may also disturb the proper assessment of their maxima. In the smoothness 

prior approach, bio-signals could be presented by two general components of the stationary 

and the non-stationary. Then PPG signal could be expressed by (2.4).  

 𝑃𝑃 = 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (2.4) 

where P is recorded PPG signal, 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is the approximately desired stationary PPG signal 

and 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is the slow trend component. An estimation of trend component can be defined 

as [94]: 

 P̂trend = H Ɵ̂ (2.5) 

where H is the observation matrix and Ɵ̂ is the estimate of the regression parameters by the 

regularized least squares method. With respect to (2.4) and (2.5), an estimation of 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 

can be represented as: 

  Pstat = P – HƟ̂      (2.6) 

More detailed explanations in the case of smoothness prior approach could be studied in 

[95]. 

The next applied filter was a moving-average filter to smooth and remove random 

noises. Mathematic description of this type of filters can be shown as (2.7). 
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 y(n) =
1
N
�𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (n − i)
N−1

i=0

  (2.7) 

where y(n) and N represent the filtered signal and order of the filter, respectively, and n is 

the time index. All of the recordings obtained from the proposed method were filtered 

using these filters and prepared for next stages of signal processing. A sample PPG signal 

obtained directly from one of the outputs of photodiode (proposed method) and its filtered 

form is shown in Figure 2.9 (a) and (b). 

2.6.2. Removal of DC Component 

It was expressed that AC component of PPG, illustrates pulsations of blood vessels 

and DC component indicates the light scattered from constant blood volume in tissues. 

Therefore, temporal characteristics of PPG signals only depend on the AC component and 

there is no requirement for time difference calculation of DC components; especially to 

eliminate DC offset, it is essential to reduce or remove the DC component. In this study, a 

DC offset removal preprocess was carried out, as (2.8).   

  PAC = y - E(y)             (2.8) 

Here, PAC, y and E(y) denote DC component removed PPG signal, PPG signal obtained 

from filtration stage and mean of y, respectively. Figure 2.10 shows a part of recorded 

dual-wavelength PPG signals without DC component cancelling (obtained the proposed 

method). The same signals after cancelling DC component can be seen in Figure 2.11. 
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 Figure 2.9. (a) Recorded PPG and (b) filtered PPG signals 
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 Figure 2.10. PPG signals without DC component cancelling 

 Figure 2.11. PPG signals after cancelling DC component 

0 1000 2000 3000 4000 5000 6000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time (ms)

R
ed

 a
nd

 IR
 P

P
G

 s
ig

na
ls

 

Red PPG
IR PPG

0 1000 2000 3000 4000 5000 6000
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Time (ms)

D
C

 c
om

po
ne

nt
 c

an
ce

le
d 

si
gn

al
s

 

Red PPG
IR PPG



42 

2.6.3. Normalization 

After the DC component removal, a normalization operation was employed to cancel 

amplitude differences between the PPG signals at separate wavelengths that may be 

occurred due to the different light absorbance [96]. To do this, 0-1 normalization process 

[97] was accomplished on all the trials, as demonstrated in (2.9). 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑃𝑃) = 𝑃𝑃𝐴𝐴𝐴𝐴 −𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚
𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 +𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

            (2.9) 

where Emax and Emin denote maximum and minimum values for PAC, respectively. Figure 

2.12 shows the normalized PPGs. 

 Figure 2.12. Normalized PPG signals 
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2.6.4. Peak Detection 

Finding of peak points is a major task in various signal analyzing processes including 

the time difference extraction involved in this study. PPG signal has a relatively simple 

shape and it seems that isn't hard to peak detection. Nevertheless, major baseline wander 

and respiration effect may be superimposed on PPG signal. This signal also can be quickly 

affected by frequently happened physiological oscillations or motions. The conventional 

methods for peak detection are difficult to exert for quick variations of PPG waveform in 

various heart rates, and they also may have time lag [98, 99] which can interfere with the 

time difference computing operations involved in this thesis and led to inaccurate 

measurements. Thus, for PPG signal conditioning and peak calculation, adaptive threshold 

peak detection algorithm [98] was employed. This algorithm was specially introduced and 

applied as a promising method to overcome respiration and other damaging effects for the 

peak detection of photoplethysmographic signals.  

In the adaptive threshold peak detection, an amplitude controlled virtual threshold 

was considered. Virtual threshold was reduced or increased by a permanent slope 

parameter. In peak point detection, the value of threshold was decreased as long as amount 

of the main signal was less than the threshold. When the threshold was equal to the signal, 

its value would be equal to the magnitude of signal until reaching the peak. After peak 

finding, the threshold was reduced again by a modified slope parameter. These operations 

were repeated until all the peaks were found. Permanent slope parameter and modified 

slope parameter can be resolved by (2.10) and (2.11) respectively. 

        Sp = 0.2argmax(PPG) (2.10) 

     Sk = Sk-1+Rs
 (𝑃𝑃𝑛𝑛−1+  𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠  )

𝐹𝐹𝑠𝑠
 (2.11) 

In (2.10), Sp indicate the permanent slope parameter and argmax(PPG) is argument of the 

peak points of the PPG signal. In (2.11), Sk, Rs, Pn-1, PPGstd, and Fs denote the k-th slope 

amplitude, changing rate of slope, value of previous peak, standard deviation of original 

PPG signal, and sampling frequency, respectively. Changing rate of slope is empirically 
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given as -0.6 for peak points. Detected peak points for sample pulses are revealed in Figure 

2.13. 

 Figure 2.13. Peak points of PPG pulses and their time difference 

2.7. Calculation of TDs 

Beat-to-beat time differences between the PPG pairs could be obtained after the peak 

detection process. For example, TDs between peak points of Red and IR PPG signals could 

be calculated by subtracting the detected peak point time of the PPG pulses in each 

heartbeat. Equation (2.12) shows this operation. TD series correspond to the peak points 

could be formed by using the achieved TD values as (2.13).  

        ∆tpi = tPeak2 – tPeak1 (2.12) 

        TDs = (∆tp1,∆tp2,…, ∆pi  )      (2.13) 
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In (2.12), ∆tpi, tPeak1, and tPeak2 denote the time difference between peak points of PPG 

pulses in ith heartbeat and peak point times of PPG pulses respectively and i is the heartbeat 

number index. In (2.13) TDs denote the TD series obtained by using peak point time.  

In addition to time differences between peak points, in this thesis, we needed to 

calculate some other time domain difference features in which TDs between important 

characteristic parameters of PPG pulses (introduced in Section 1.6) should be measured. 

These time domain differences were as follows: 

• The difference between rising edges of PPG pair (Anacrotic phase difference)

• The difference between falling edges of PPG pair (Catacrotic phase difference)

• The difference between pulse heights of PPG pair

• The Full Width Half Max (FWHM) of each of the pulses (this feature was obtained

by calculation the difference between the rising edge and falling edge of each

unique pulse separately for Red and IR signals)

Figure 2.14 shows the time domain differences as, (a) difference between peak points, (b) 

difference between falling edges, (c) difference between rising edges, (d) FWHM of Red 

PPG and (e) FWHM of IR PPG.  

  Figure 2.14. TDs between unlike PPG signals 



46 

Above mentioned TDs could be obtained after peak detection. To this end, a 

MATLAB® program was developed based on an algorithm. The algorithm to obtain all of 

TD features is expressed as below: 

1- Detect the minimum and maximum (peak) points separately for the both of 

Red and IR PPG signals. 

2- Get the interval between a minimum point and the next minimum as a 

unique PPG pulse obtained from a beat of the heart. 

3- Calculate the difference between pulse heights as below: 

  IRPH = IRMax - IRMin (2.14) 

  RedPH = RedMax- RedMin (2.15) 

     DPH
 = IRPH - RedPH (2.16) 

where IRMax, IRMin, IRPH, RedMax, RedMin, RedPH and DPH denote the maximum point of IR 

pulse, the minimum point of IR pulse, pulse height of IR PPG, maximum point of Red 

pulse, the minimum point of Red pulse, pulse height of Red PPG and the difference 

between pulse heights respectively. 

4- Calculate Half Max (HM) of the peak for each pulse as Equation (2.17) 

  𝐻𝐻𝐻𝐻 =  𝑀𝑀𝑀𝑀𝑀𝑀
2

                      (2.17) 

whereHM and Max are Half Max of peak and the maximum point of the pulse respectively. 

5- Find the times of calculated HM points. In this step, two time values are 

achieved for each HM point, one of them is related to a HM point on the 

rising edge and the other one is related to the same HM point on the falling 

edge. 

6- Call the obtained HM points as: 

• IRHM1: the time of HM point on the rising edge of IR PPG pulse

• IRHM2: the time of HM point on the falling edge of IR PPG pulse
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• VHM1: the time of HM point on the rising edge of visible (Red, Green or Blue) PPG

pulse

• VHM2: the time of HM point on the falling edge of IR PPG pulse

7- Calculate FWHM for each of PPG pulses as Equations (2.18) and (2.19): 

 IRFWHM = IRHM2 - IRHM1  (2.18) 

      VFWHM = VHM2 - VHM1 (2.19) 

where IRFWHM and VFWHM denote FWHM of IR and visible signals respectively. 

8- Calculate the difference between the rising edges of two simultaneous PPG 

pulses as Equation (2.20): 

  ∆tr  = IRHM1 –  VHM1 (2.20) 

where ∆tr is the difference between rising edges.  

9- Calculate the difference between the falling edges of two simultaneous 

PPG pulses as Equation (2.21): 

  ∆tf  = IRHM2 –  VHM2  (2.21) 

where ∆tf is the difference between falling edges. This algorithm can be summarized as 

Figure 2.15. 



48 

 Figure 2.15. The algorithm to extract TDs 

2.8. Features and Specifications Used in Each Study 

Different features and specifications were used in separate studies that are described 

in the following subsections. 
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2.8.1. Features Used in the Study (1) 

In study (1), two types of dual-wavelength PPG signals (obtained by TDM and 

proposed systems) were compared in terms of their TD variations. To make a quantitative 

analysis, some features were needed to compare TDs in different physiological conditions 

and study whether significant variations were observed between groups or not. In 

analyzing biomedical signals, the mean, standard deviation (SD) and standard errors (SE) 

are important parameters. In this study, the mean (µ) and standard errors (SE) of the mean 

of TDs were used as specifications. Recorded signals in different phases of the experiments 

were separated and arithmetic mean and SE of TDs correspond with these separate stages 

were obtained as below Equations (2.22) and (2.23) respectively. 

u= 1
𝑁𝑁
∑ ∆𝑡𝑡𝑡𝑡(𝑖𝑖)𝑁𝑁−1
𝑖𝑖=0   (2.22) 

where ∆tp(i) denote the time difference between peak points of Red and IR PPG pulses in 

the ith heartbeat, i is the heartbeat number index, N is the number of TDs ( it is equal to the 

number of heartbeats in the related phase of the experiment) and µ is the mean of TDs.   

 𝑆𝑆𝑆𝑆 =   𝑆𝑆𝑆𝑆
√𝑁𝑁

(2.23) 

where, standard deviation of the time difference series (SD) is obtained by Equation (2.24). 

  SD= �( 1
𝑁𝑁

[(∆𝑡𝑡𝑡𝑡1 − 𝑢𝑢)2 + (∆𝑡𝑡𝑡𝑡2 − 𝑢𝑢)2 + ⋯+ (∆𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑢𝑢)2)  (2.24) 

2.8.2. Features Used in the Study (2) 

Red-IR PPG pair and TDs of peak points were investigated in this study. TD 

analyses in this study were performed by using 𝑢𝑢 and SD related to separate phases of each 

experiment. Equations (2.22) and (2.24) were employed to obtain µ and SD of TDs. 
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For graphical illustrating an instance of TDs in different biological conditions, the obtained 

TDs in wake and deep sleep situations are shown in Figure 2.16 (a) and (b) respectively. 

Figure 2.16. TDs obtained in (a) wake and (b) deep sleep situations 

2.8.3. Features Used in the Study (3) 

Similar to previous study, the mean and SD of TDs were calculated and used to 

analyze Red-IR PPG data with respect to conditions of respiratory system. Figure 2.17 (a) 

and (b) show the scatter plot separately for mean and SD features obtained in different 

phases of corresponding breath holding experiments. In this figure, the horizontal axis is 

the index of trial numbers, and the vertical axis is the value of mean or SD. As seen from 

the figure, values of mean and SD were generally different and based on these clues, these 

values could be selected as features to separate groups. Figure 2.18 shows the obtained 

features in a common space. Horizontal and vertical axes of this feature space are mean 

and SD of TDs, respectively. This figure explain that the pair of mean and SD reflects the 

variations of TDs associated with normal and abnormal breathing and can be indicative of 

significant differences between two groups. 
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 Figure 2.17.  Scatter plot for (a) mean and (b) SD of TDs 

   Figure 2.18.Feature space formed by mean and SD of TDs 

2.8.4. Features Used in the Study (4) 

Like the study (1), mean and SE were used as specifications to analyze TDs. This 

time, TD variations were investigated and compared for three different pairs of the PPG 

signals with different wavelength pairs. 
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2.8.5. Features Used in the Study (5) 

This study was aimed to fast detection of breathing disorders such as apnea. For 

rapid identification of apnea, the selected features should be able to recognize abnormal 

respiration in a fast way. To achieve this aim, the experimental recordings were segmented 

into classifiable intervals called epochs. Time duration of the epochs was 5s. Four time 

domain difference features that introduced in Section 2.7 (FWHM, ∆tr, ∆tf and ∆tp) plus 

the difference between pulses heights (DPH) were extracted from each PPG pulse. The 

averaged values for each data segment formed a 1×5 feature vector. One hundred set of 

these feature vectors were prepared from normal breathing recordings and other one 

hundred set were obtained from apneatic recordings. All of these two hundred points 

formed the data set of this study.  

2.8.6. Features Used in the Study (6) 

This study was aimed for fast wake/sleep detection using TDs. For the fast and 

accurate wake/sleep identification, the selected features should be able to recognize wake 

or sleep conditions in minimum time. To reach this, a three dimensional feature vector was 

tested to detect wake/sleep situations in a unique heartbeat. Three separate time domain 

differences were used to formation a three dimensional feature vector. These features were 

as follows:  

1. A feature obtained by using both FWHMs (Equations 2.18 and 2.19) named

average FWHM (AFWHM):

𝐴𝐴FWHM =  𝐼𝐼𝐼𝐼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 +𝑉𝑉𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
2

    (2.25) 

2. The difference between rising edges (∆tr) that was defined as Equation (2.20)

3. The difference between falling edges (∆tf) that was expressed in Equation

(2.21)

All of the mentioned features were extracted for each heartbeat and were considered 

as separate coordinates of a three dimensional feature space. Each set of AFWHM-∆tr-∆tf 
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was determined a point on the given space. One hundred points (features) were prepared 

from recordings in wake conditions and other one hundred points were obtained from the 

sleep recording. All two hundred points formed data set. Scatter plot of the obtained three 

dimensional feature spaces has been shown in Figure 2.19.  As seen in this figure, use of 

this features could led to a good wake/sleep classification results. The time and shape 

differences between Red and IR PPG pulses in two different physiological conditions 

(wake and sleep) of a unique subject can be observed in Figure 2.20 (a) and (b). As seen in 

these figures, the time domain differences were considerably changed in the sleep relative 

to wake situation. 

   Figure 2.19.Feature space formed by AFWHM-∆tr-∆tf 
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 Figure 2.20. Red-IR PPG pulse pairs in (a) wake and (b) sleep conditions 
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2.8.7. Features Used in the Studies (7 and 8) 

In these two studies, ∆tp (the time difference between peak points of unlike PPG 

pulses) and PTT (the time difference between peak points of concurrent PPG and ECG 

signals) were used as the features. To obtain PTT, 'R' points of ECG signal were detected 

by using peak detection algorithm. Then PTTs were achieved in each heartbeat by 

subtracting 'R' point time from the peak point time of corresponding PPG pulse as below 

Equation (refer to Figure 1.1). 

      PPTi = tpeaki - Ri     (2.26) 

where PPTi., tpeaki and Ri denote pulse transit time, the peak point time of corresponding 

PPG pulse and  'R' point time in the ith heartbeat. A sample concurrent ECG and dual-

wavelength PPG and their peak points obtained from two heartbeats can be seen in Figure 

2.21.   

  Figure 2.21. Sample EEG and dual-wavelength PPG signals obtained 

   form two consequent heartbeats 
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2.9. Analysis and Classification Methods 

Depending on the selected specifications or features, separate analysis or 

classification methods were employed in different studies of this thesis. In some studies, 

the calculated TD features were compared using statistical analysis, indicating that all 

measured TDs in the separate phases of each experiment were statistically significant. In 

some other studies, classification methods were applied to fast identification aims by using 

calculated TD features. Statistical analysis and classification methods are expressed in the 

following subsections. 

2.9.1. Statistical Analysis 

Statistical analysis is an important analytical part of data processing. In the case of 

bio-signals, statistical analysis refers to collect and investigate some samples in a data set. 

It is basic to some experiments that apply statistics as a research methodology. Many 

researches in bio-sciences and engineering are carried on by using statistical analysis. This 

methodology is also very helpful to find approximate solutions when the real process is 

complex. Statistical analysis has several hypothesis test methods. A statistical hypothesis 

test is an approach to test a hypothesis statistically. Some of the test methods include one-

sample t-test, two sample t-test, one-way ANOVA, chi-square or binomial test and so 

many others. T-test is one of the most applicable analysis methods in the case of paired 

subjects and is described as below section. 

2.9.1.1. T-test 

A statistical tool to assess hypotheses about group-level differences in results is the t-

test. The t-test is normally used for related means. There are two separate usages of the t-

test in assessing two types of hypotheses. The first one is the one-sample t-test, in which 

the level of result for a group is compared to a determined standard. Another one is the 

two-sample t-test, where the result levels of two groups are compared with each other. 

The main application of the two-sample t-test is to compare the means or standard 

deviations of two data sets. In fact, it usually is used to know whether the means of two 
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populations on some outcome differ. For instance, it may be employed to test whether 

subjects' respiratory system responses are different in two distinct situations. In the other 

words, the t-test compares the real difference between two means with respect to the 

variation in the data. 

To determine statistical significance in a hypothesis test, P values is used. P value 

often determines what studies get published and what projects get funding. In order to 

understand the concept of P value, it must be first understood the null hypothesis. In every 

experiment, there is an effect or difference between groups that the researchers are testing. 

In the event that there is no difference between the groups, this absence of a difference is 

named the null hypothesis. The null hypothesis is true, means that there is no difference 

between the experimental groups at the population level. 

The P value or calculated probability is one of the introduced criteria for hypothesis 

testing. A high P value indicates that the data are likely with a true null. A low P value 

means that the data are unlikely with a true null. In fact, the null hypothesis is rejected 

while P is small. 

To obtain P value, first, the t-statistic must be calculated. Calculation of this test 

statistic requires three components of the average of both sample (observed averages), the 

variances of both averages and the number of observations in both populations. Having 

these values the t value can be calculated as: 

2n

2
2

S

1n

2
1

S

2x1x
t

+

−
=  (2.27) 

where 1x and 2x are the sample means, S1
2 and S1

2 are the sample variances, n1 and n2 are

the sample sizes, t is the test statistic with df freedom. Having the calculated t-statistic and 

using this value to determine P value by comparing the obtained t-value with a standard 

table of t-value (with degree of freedom) can determine whether the t-statistic reaches the 

threshold of statistical significance. Degree of freedom (df) could be calculated as: 
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2.9.2. Classification methods 

In the studies 5 and 6, TD features were used along with the classification algorithms 

to fast identification of abnormal respiration and wake/sleep conditions respectively. The 

used classifiers are described in the following sub-headings. 

2.9.2.1. k-Nearest Neighbor (k-NN) classifier 

For low dimensional feature vectors in a classification process, more accurate results 

may be obtained by naive classification algorithms. In pattern recognition, the k-nearest 

neighbor (k-NN) is a simple approach for classification aims. This algorithm considers all 

accessible subjects and classifies cases based on a likeness value. This classifier is usually 

applied for statistical estimation and pattern recognition. k-NN includes two feature groups 

of training data set and test data set(also called sample data set). Each of the features of the 

training data set is allocated to a distinct dimension of a supposed space, and the 

coordinates of the space are formed by them. So a set of points are distributed in the given 

space. Then, the similarity of the points is measured by using distance between them. A 

simple instance of this situation is shown in Figure 2.22. Here, there is two-dimensional 

feature vector for two classes of data. In this example, k has been selected as 3. Unlabeled 

test sample, is compared with three nearest labeled training data. If at last two of the 

nearest samples be labeled as class 2, the test sample is also classified as class 2.    
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 Figure 2.22. A simple example for k-NN method 

2.9.2.2. Classifier Training Methods 

Optimal parameters of the classifier to be used, is calculated using the training data 

set. This process is called training the classifier. The variety of approaches is available to 

determine the best k parameter using the training features. There are three training 

approaches frequently used in the literature. The first of them is K-fold cross-validation 

method. In this method, training data set is divided to a certain number (K) equally subsets. 

K-1 subsets are used as training set and one subset is used for test (also called confirmation 

or validation). The most suitable k parameter of the classifier is searched in this 

distribution. This process is repeated until each subset is to be used as a set of validation at 

least once. A number of problems may be occurred in this method due to random 

distribution.  

The second training method is the random subsampling cross-validation method. In 

this approach, training set is randomly divided into two equal subsets (training and 

validation) and searched for optimum classifier parameter.  

The third training method is leave one-out cross-validation. This method is a special 

case of the K-fold cross-validation. Here, K is chosen as the total number of examples. The 

algorithm of this method can be summarized as below: 
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• For a dataset with N examples, perform N tests.

• Use N-1 examples to train and the remaining example to test.

Figure 2.23 shows the concept of leave one-out approach. 

Figure 2.23. Leave one-out cross-validation with N samples 

2.10. Analysis/Classification Method Used in Each Study 

Analysis or classification method used in each study is described in below 
subsections. 

2.10.1. Study (1); Statistical Analysis 

Statistical analysis was performed in this study. The two-sample t-test was applied 

separately to mean of TDs in each phase of the breath holding experiments separately for 

both TDM and proposed methods. A P value less than 0.05 was considered to be 

statistically significant. Statistics and Machine Learning Toolbox™ of MATLAB® was 

used to perform statistical analysis. 

2.10.2. Study (2); Statistical Analysis 

In this study to have quantitative analysis, similar to study (2), the calculated TD 

values were compared with two-sample t-test, indicating that all measured TDs in the 
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separate phases of all of  three different physiological changing experiments (wakefulness-

sleep, rest-run, nonsmoking-smoking) were statistically significant. A P value less than 

0.05 was considered to be statistically significant. The t-test was applied separately to 

mean and standard deviation of TDs in each experiment. 

2.10.3. Study (3); Statistical Analysis 

To be sure that TD variation was significant (P< 0.05) the obtained TD features in 

different respiratory conditions were compared with each other. To this end, the mean and 

standard deviations of TD series were achieved in the separate phases of each experiment. 

Differences between groups were investigated by two-sample t-tests. 

2.10.4. Study (4); Statistical Analysis 

Time domain parameters as mean and standard error of means of measured TDs were 

calculated for each data segment obtained from separate steps of the experimental 

recordings. Differences between breathing spontaneously and breath holding were 

investigated separately for three PPG pairs (Red-IR, Green-IR, and Blue-IR) by two-

sample t-test. A value of P< 0.05 was considered as statistically significant. 

2.10.5. Study (5); k-NN and SVM Classifiers 

In this study there were two groups of feature vectors. The total number of samples 

was two hundred, one group (hundred fold) belonged to normal breathing and other group 

(hundred fold) belonged to apneatic situations. k-NN algorithm was employed to classify 

two groups. In order to determine the more accurate method for optimal usage of all 

available training data, three training procedures of k-NN (K-fold, random subsampling 

and leave one-out cross-validation) were examined. At last, the obtained data set was 

classified by SVM classifier once again to compare with the results of k-NN.   
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2.10.6. Study (6); k-NN and SVM Classifiers 

Three dimensional feature vectors were used in this study. The total number of 

samples was two hundred, one group (hundred fold) was belonged to wake and other group 

(hundred fold) was belonged to sleep situations. Like the study (5), k-NN and its three 

training methods were used and compared as classifiers. Also, SVM classifier was 

considered in order to comparing with k-NN method. 

2.10.7. Studies (7 and 8); Statistical Analysis 

In these two studies, differences between groups were investigated by two samples t-

tests. The mean and standard deviations of TD series were achieved in the separate phases 

of each experiment.  To be sure that TD variation was significant (P< 0.05) the obtained 

TD features in conditions were compared with each other. 

The analysis/classification methods and features used in each of the studies are 

summarized in Table 2.2. 

Table2.2. Used features and analysis/classification methods in each study 

Item Study  

(1) 

Study  

(2) 

Study    

(3) 

Study  

(4) 

Study  

(5) 

Study  

(6) 

Studies  

(7 & 8) 

Applied 

Features 

µ&SE 

of ∆tp 

µ&SD 

of ∆tp 

µ&SD 

of ∆tp 

µ&SE 

of ∆tp 

AFWHM& 

∆tr&∆tf

& ∆tp & 

DPH 

AFWHM& 

∆tr&∆tf 

µ&SE 

of ∆tp& 

PTT 

Method t-test t-test t-test t-test k-NN 

& SVM 

k-NN 

& SVM 

t-test 



3. RESULTS

Different studies, materials and methods were described in the previous section. The 

outcomes of each study are presented in this section.  

3.1. The Results of the Study (1) 

TDs obtained by both of TDM and proposed sensor systems are compared in 

breathing spontaneously and breathe holding situations. Figure 3.1 show the bar graph for 

the means of TDs and SE of means. As seen in this figure, there is a meaningful difference 

between TDs obtained from breathing spontaneously and breath holing conditions in the 

proposed method; however, in TDM method there are no considerable differences between 

groups. Table 3.1 reveals the t-test's results separately for both of the methods. In this 

Table, mean is the average difference between the two variables, SD is the standard 

deviation of the difference scores, t is the test statistic (denoted t), df is the degrees of 

freedom for this test, confidence interval of the difference (CI) is the part of the t-test 

output that complements the significance test results and P is the value corresponding to 

the given test statistic t. 

In the case of TDM method, the P value equaled 0.8024. By conventional criteria, 

this difference is considered to be not statistically significant. The mean of group one 

(breathing spontaneously) minus group two (breath holding) equaled 0.430000.Typically, 

if the CI for the mean difference contains 0, the results are not significant at the chosen 

significance level. The results of TDM method showed CI between -3.024461 to 3.884461, 

which did contain zero; this agrees with the big P-value of the not significance. P value for 

the proposed method equaled 0.0061. This difference is considered to be very statistically 

significant. The mean of group one minus group two equaled -5.9608. CI was in the 

interval between -10.113558-1.808042, which did not contain zero; this agrees with the 

small p-value of the significance test. 
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             Figure 3.1. Bar plot for the mean and SE of TDs for both of the methods 

Table 3.1.Results of t-test to compare proposed and TDM methods 

3.2.The Results of the Study (2) 

In this study TDs between peak points of Red-IR PPG pulses were tested to analyze 

biological conditions. For calculating the time difference variations of PPG signals (main 
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focus of the thesis), the time differences between the peak points of IR and Red PPG 

pulses were obtained in each heartbeat. These subtracting results were achieved from the 

beginning to the end of each experimental recordings and a vector was formed from these 

values to reach the dual-wavelength PPG time difference pseudo-signal or TD series. The 

obtained TD values for the first and last 80 sec epochs of each experiment that was 

described in Section 2.5.2 are given in Tables 3.2 and 3.3. As expressed before, data 

recording time duration was different for each experiment. For example, total duration of 

smoking was 480 sec, total duration of rest-run experiment was 700 sec, and that of wake-

sleep time was in the range of 5-30 min depending on the subject. In Tables 3.2 and 3.3, 

the time differences of recording signals were obtained just for 80 sec epoch of starting and 

80 sec epoch of the ending of each experiment. In order to brief presentation of the tables, 

time difference variations between these two epochs were not included in the tables. 

Positive or negative sign of time difference value depended on the leading or lagging phase 

of IR PPG with respect to Red PPG. As seen in the tables, in some experiments, the 

leading or lagging phase was reversed due to more changes of time difference between the 

two PPG signals. 

For illustrating full-time TD examples, the time difference series for nonsmoking-

smoking, wakefulness-sleep, and rest-run experiments obtained from subject one, are 

shown in Figures 3.2, 3.3 and 3.4, respectively. In these figures, the horizontal axis shows 

the number of heartbeats (because TDs were obtained for each heartbeat) and the vertical 

axis shows the amount of TDs in milliseconds. As seen in Figure 3.2, the time differences 

between IR and RED PPG were about 4 ms in the start of the smoking process. Over time, 

with continuing to smoke for 400 sec, the value of time differences reduced and reached 

about 10 ms and the phase angle was reversed. In Figure 3.2, a third-order polynomial 

curve was fitted to the obtained time difference pseudo-signal to have a more meaningful 

figure and higher understanding. Polynomial fitting process may be helpful for feature 

extraction and data classification processes in feature works. Figure 3.3 shows the obtained 

time difference pseudo-signal for wakefulness-sleep experiment of the object one. As seen 

in this figure, at the start of the test in wakefulness situation, time differences were about 3-

4 ms. After approximately 14 min (1050 heart beats) when the individual slept, time 

differences decreased to about -15 to -5 ms. There were significant time difference 

oscillations in the sleep situation unlike the waking state. Time differences obtained from 

the object one in rest-run test are seen in Figure 3.4. In this case, time difference increased 
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from about 4-5 ms in the standing motionless situation to about 10 ms after 4 min of 

running on the treadmill. In this test, significant oscillations of time differences were 

appeared like the sleep state.  

The results of the two-sample t-test for the mean of the TDs and standard deviation 

of the means in each of the experiments are shown in Table 3.4. As seen in this table, P 

value was less than 5%. These results confirm statistical significance both for means and 

for the standard deviations between different stages of the experiments. Error plot obtained 

using mean and standard deviations of TDs related to the each experiment is illustrated in 

Figure 3.5. This figure also indicates that the extracted features were significantly different 

for normal conditions and physiological challenging conditions. 

   Figure 3.2. TDs obtained from nonsmoking-smoking experiment 

   Figure 3.3. TDs obtained from wakefulness-sleep experiment 
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   Figure 3.4. TD series obtained from rest-run experiment 

Table 3.2. Obtained TDs in various conditions (first iteration of the experiments)

TDs (ms); Mean± SD 

Non-

Smoking Smoking Wakefulness Sleep Rest Run 

Subject 1 4 ±2.25 -10 ±2.45 3±1.50 -13±7.01 4 ±2.52 8 ±5.19 

Subject 2 8±3.21 0 ±3.41 7±2.55 -10±6.36 7 ±2.36 12 ±7.28 

Subject 3 9±3.14 -1±3.42 9±2.65 -2±5.75 10±2.14 5±5.49 

Subject 4 -3±3.41 -15±4.45 -2±2.12 -7±8.16 -3±2.52 4±6.74 

Subject 5 6±2.22 -3±2.23 4±1.78 -5±7.25 5±3 .25 10±5.11 

Subject 6 4 ±3.15 -7 ±3.63 3±1.69 -9±8.05 5 ±3.05 7 ±5.54 

Subject 7 5±2.27 -3 ±3.26 7±2.25 -2±6.65 6 ±2.36 11 ±6.17 

Subject 8 11±32 -3±4.62 10±2.34 -4±7.45 8±2.75 12±4.32 

Subject 9 -4±3.12 -10±3.85 -4±2.63 -9±5.95 -2±2.65 5±5.02 

Subject 10 4±3.62 -5±2.53 5±1.95 -5±6.45 5±3.12 9±5.32 

Average 4.4±2.87 -3.7±3.40 4.2±2.15 -6.60±6.91 4.5±2.68 9.30±5.62 
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Table 3.3. Obtained TDs in various conditions (second iteration of the experiments) 

TDs (ms); Mean± SD 

Non-

Smoking 

Smoking Wakefulness Sleep Rest Run 

Subject 1 3 ±3.11 -9 ±3.75 4±1.12 -10±8.68 3 ±3.51 6 ±5.84 

Subject 2 5±2.25 -3 ±3.44 7±2.60 -2±6.23 6 ±2.50 11 ±6.60 

Subject 3 10±2.14 -1±4.63 12±2.47 -3±7.40 10±2.25 14±4.66 

Subject 4 -2±3.52 -12±3.24 -2±2.58 -11±5.63 -2±2.85 4±5.23 

Subject 5 5±3.53 -3±2.75 4±1.96 -5±6.45 4±3 .05 9±5.21 

Subject 6 5 ±2.11 -11 ±2.71 2±1.11 -12±7.25 4 ±2.53 9 ±5.47 

Subject 7 7±3.45 -3 ±3.12 5±2.35 -9±6.75 6 ±2.56 10 ±7.14 

Subject 8 8±3.23 -2±3.14 11±2.12 -4±5.81 11±2.60 14±5.42 

Subject 9 -2±3.27 -13±4.01 -3±2.23 -6±8.98 -4±2.52 3±6.61 

Subject 10 4±2.36 -4±2.22 5±1.48 -4±7.35 4±3.19 8±5.24 

Average 4.3±2.89 -6.10±3.3 4.5± 2.00 -6.62±7.05 4.20±2.7 8.80±5.7 

  Figure 3.5. Error plot of quantitative analysis (means and SD) 



69 

Table 3.4. Results of t-test for the different experiments; study (2) 

3.3. The Results of the Study (3) 

The obtained TDs corresponded with the separate phases of each experiment of this 

study are given in Tables 3.5. Figure 3.6 (a) and (b) shows the mean and SD of TDs in the 

corresponding experiments. This figure shows that the pair of mean and SD reflects the 

difference of TDs associated with respiratory system variations and can be used to evaluate 

respiratory system. 

Pair 

Differences 

t df P Value Mean SD 

95% 

Confidence Interval of the 

Difference 

Lower Upper 

Nonsmoking-

smoking (mean) 10 4.2658 7.2535 11.2465 9.6973 19 8.614× 10-9 

Nonsmoking-

smoking(SD) 0.2457 0.8887 -0.8749 -0.0431 -2.3099 19 0.032 

Wake-Sleep 

(mean) 10 3.9132 9.1186 12.781 12.514 19 1.2718× 10-9 

Wake-Sleep (SD) 
-4 1.2856 -5.5082 -4.3048 -17.068 19 5.560× 10-12 

Rest-run (mean) 
-4 1.3416 -5.3279 -4.0721 -15.667 19 2.555× 10-12 

Rest-run (SD) 
-3 1.3181 -3.9014 -2.6676 -11.142 19 8.9477×10-10 
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 Table 3.5. Obtained TDs in each experiment of the study (3) 

TDs (ms); Mean± SD 

First Experiment Second Experiment 

Situation Wake Deep Sleep Normal 

Breathing 

Breath 

Holding 

Starting to 

Normal 

Breathing 

Again 

Subject 1 2.14±0.82 4.36±3.70 2.33 ±2.23 3.12±2.26 2.25 ±3.12 

Subject 2 -0.12±0.72 1.25±3.88 1.04±1.07 1.39±1.55 2.16±3.08 

Subject 3 9.01± 2.17 10.22±12.3 8.11±2.04 9.19±2.40 8.15±3.59 

Subject 4 -0.12±1.04 1.25±6.02 0.2± 1.33 0.16±1.55 1.42± 3.86 

Subject 5 2.4±1.98 3.22±11.89 2.11±2.10 2.90±2.51 2.14±3.56 

Subject 6 1.9±0.99 4.54± 4.89 1.81± 1.44 2.93±1.48 2.64±2.31 

Subject 7 7.74±2.7 9.45±13.19 5.86± 2.21 6.31±2.36 5.10±3.12 

Subject 8 -0.57±0.78 4.43± 4.07 0.11±2.05 0.89±2.55 0.19±3.22 

Subject 9 4.04±2.0 12.52±7.56 3.55±2.29 3.22±2.52 4.28±3.64 

Subject 10 3.55±1 9.82±8.26 4.02±1.63 5.30±2.78 4.41± 2.57 

Subject 11 -1.51±2.52 7.61±9.25 -1.23±2.02 3.95±3.67 1.75±2.84 

Subject 12 3.42±0.79 7.29±3.29 2.26±0.89 4.26±2.06 4.0±1.90 

Subject 13 0.55±0.76 3.18±2.96 0.67± 0.77 2.01±2.01 1.54±1.31 

Subject 14 1.66±0.74 13.9±5.53 1.05 ±0.86 2.01±2.32 0.77±1.24 

Subject 15 3.69±2.11 7.87±6.87 3.57± 2.00 4.82±3.22 3.71±2.637 

Average 2.51±1.46 6.29±6.89 2.36±1.63 3.56±2.56 3.14±2.90 
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 Figure 3.6.Means versus SD in (a) wake-sleep experiment (b) breath holding experiment 

The results of the t-test for the mean and SD values of TDs in each of the 

corresponding segments of the experiments are shown in Tables 3.6 and 3.7. As seen in the 

Table 3.6, P value was less than 0.05 and that the 95% confidence interval of the 

difference for means was from -5.4208 to -3.1678 and for SDs was in the range of -6.9638 

to -4.9009. These results confirm statistical differences both for the means and SDs 

between deep sleep and the wakefulness situations. In Table 3.7, it can be seen that the 

mean and SD of TDs also had statistical differences during the separate stages of the breath 

holding experiment so that P value was much less than 0.05 and the 95% confidence 

interval of the difference for means equaled from -1.7759 to -0.6587 and for SD was in the 

range of -1.3466 to -0.9265. 

The box-and-whisker diagram of mean and SD related to the each experiment are 

illustrated in Figures 3.7 and 3.8. These figures also indicate that the differences between 

mean and SD of TDs obtained in separate phases of each experiment were significant. In 

the Figure 3.7., the first column is associated with wake situation and second column is for 

the deep sleep situation. In the Figure 3.8., the First column is related to normal breathing 

and second column is for the breath holding situation. 
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Table 3.6. The results of the t-test for the first experiment of study (3) 

   Figure 3.7. Box-and-whisker diagram obtained from (a) mean and (b) SD of TDs 

Pair 

Differences 

t df P Value Mean SD 

95% Confidence 

Interval of the Difference 

Lower Upper 

Wake-Sleep 

(mean) -4.00 3.0168 -5.4208 -3.1678 -7.79 29 1.344× 10-8 

Wake-Sleep 

(SD) 
-5.00 2.7623 -6.9638 -4.9009 -11.76 29 1.468× 10-12 
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Table 3.7. The results of the t-test for the second experimentof study (3) 

    Figure 3.8. Box-and-whisker diagram of (a) mean (b) SD of TDs 

3.4. The Results of the Study (4) 

Table 3.8 represents mean, SD and standard error of the mean (SE) of TDs for the 

PPG pairs of Red-IR, Green-IR and Blue-IR separately. As seen in this table, in normal 

breathing phase (breathing spontaneously), the mean of TDs between the mentioned pairs 

of different PPGs were about 3.22ms, 8.12ms, 11.84ms, respectively. In the breath holding, 

Pair 

Paired Differences 

t df P Value Mean SD 

95% 

Confidence Interval 

of the Difference 

Lower Upper 

Normal-Hold 

breath mean 
-1.00 1.4959 -1.7759 -0.6587 -4.457 9 1.143×10-4 

Normal-Hold 

breath SD 
-1.00 0.5625 -1.3466 -0.9265 -11.06 29 6.311×10-12 
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the mean of TDs were reduced. Besides, standard deviations of the TDs were increased in 

the breath holding relative to the breathing spontaneously. 

     Table 3.8. Mean, SD and SE of TDs obtained in study (4) 

The results of the t-test for each of PPG pairs are shown in Table 3.9. As seen in this 

table, P value for TDs of Red-IR PPG pair was 7.1473×10-9. By conventional criteria, this 

difference is considered to be extremely statistically significant. For Green-IR PPG pair the 

P-value was 0.0015 that was considered to be very statistically significant. In the case of 

Blue-IR PPG, the P value calculated as 0.0241 that this value was considered to be 

statistically significant. The bar plot with error bars obtained from the mean and SE of TDs 

related to the each PPG pairs is illustrated in Figure 3.9. This figure also indicate that TDs 

were significantly different for normal conditions (breathing spontaneously) and biological 

challenging conditions (breathe holding).These results confirm that although all three PPG 

pair had significant biological related TD variations, but the greatest and the most 

significant TD variations were related to the red-IR PPG pair and TDs of blue-IR pair had 

the lowest response to biological variations. 

TDs (ms) 

PPG Pair 
Breathing 

Spontaneously(ms) 
Breath Holding (ms) 

Mean SD SE Mean SD SE 

Red-IR 3.22 0.89 0.162 -3.88 3.54 0.6463 

Green-IR 8.12 3.63 0.811 3.18 5.33 1.1918 

Blue-IR 11.84 5.95 1.502 4.922 11.69 3.8352 
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  Table 3.9. P value of the t-test for PPG pairs 

               Figure 3.9. The mean of TDs for both breathing conditions 

3.5. The Results of the Study (5) 

Apnea detection results using k-NN and SVM classification algorithms are presented 

in this section. Firstly the data set was split to two equal parts of training and test data sets. 

In order to obtain more reliable classification results, training data set were randomly 

mixed and classification stages were repeated 10 separate times. The obtained 

classification results for separate data mixing stages have been presented with Table 3.10. 

As seen in Table, good classification results were obtained by using the used TD features 

and k-NN classification methods. The most accurate results have been achieved by leave 

one-out cross-validation approach. 
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 Table 3.10. k-NNclassification results in 10 separate data mixing; study (5) 

k-NN 

K-fold 

k-NN 

Leave One-Out 

k-NN 

Random Subsampling 

SVM 

Data Mixing Correct Rate, 
FN, FP 

% 

Correct Rate, 
FN, FP 

% 

Correct Rate, 

FN, FP 

% 

Correct Rate 

FN, FP 

% 

First 93 

FN=3  FP=4 

94 

FN=2  FP=4 

91 

FN=2  FP=7 

89 

FN=3  FP=8 

Second 89 

FN=5  FP=6 

96 

FN=1  FP=3 

93 

FN=2  FP=5 

91 

FN=3  FP=6 

3th 94 

FN=2  FP=4 

94 

FN=3  FP=3 

95 

FN=2  FP=3 

88 

FN=1  FP=11 

4th 92 

FN=3  FP=5 

97 

FN=1  FP=2 

98 

FN=0  FP=2 

88 

FN=3  FP=9 

5th 88 

FN=3  FP=9 

98 

FN=0  FP=2 

91 

FN=3  FP=6 

91 

FN=3  FP=6 

6th 93 

FN=3  FP=4 

95 

FN=2  FP=3 

95 

FN=1  FP=4 

87 

FN=1  FP=12 

7th 91 

FN=2  FP=7 

95 

FN=2  FP=3 

89 

FN=4  FP=7 

90 

FN=4  FP=6 

8th 88 

FN=3  FP=9 

93 

FN=3  FP=4 

89 

FN=1  FP=10 

88 

FN=3  FP=9 

9th 93 

FN=2  FP=5 

98 

FN=1  FP=1 

94 

FN=2  FP=4 

91 

FN=4  FP=5 

10th 89 

FN=4  FP=7 

95 

FN=2  FP=3 

92 

FN=3  FP=5 

88 

FN=2  FP=10 

Average±SD 

92.34±6.06 

FN=3±0.94 

FP=6±1.94 

96.1±1.8 

FN=1.7±0.94 

FP=2.8±0.97 

92.7±3.22 

FN=2±1.15 

FP=5.3±2.3 

89.1±1.70 

FN=2.7±1.0 

FP=8.2±2.4 



77 

3.6. The Results of the Study (6) 

k-NN (K-fold cross-validation, leave one-out cross-validation and random 

subsampling classification) and SVM methods were examined for wake/sleep detection 

using the extracted three dimensional feature vectors (including AFWHM, ∆tr and ∆t 

features). The total number of features was two hundred points (100 wakes and 100 

sleeps). All of the features were divided in two separate hundred folds of training (50 

wakes and 50 sleeps) and test (50 wakes and 50 sleeps) sets. Figure 3.10 shows the feature 

spaces of training and test data sets. Like the study (5), training data set were randomly 

mixed and validation stages were repeated in 10 separate iterations. The obtained 10 

distinct classification results using three separate k-NN methods are revealed with Table 

3.11. The average±SD of classification correct rates in the validation and test stages are 

revealed in Table 3.12. As seen in this Table, the results show that wake/sleep detection 

using the mentioned TD features was indeed feasible with a good accuracy. Tables 3.10 

and 3.11 in addition to classification correct rate, indicate also samples that were classified 

as false negatives (FN) and false positives (FP). Classifications errors appear with FN and 

FP values. 
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Figure 3.10. (a) Training and (b) test data sets 
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Table 3.11. k-NN and SVM classification results in 10 separate iterations; study(6) 

       Table 3.12. Average±SD for k-NN classification results and the best k parameter

Validation Type 

The Best 

k 

Validation 

Correct Rate% 

Test 

Correct Rate% 

K-Fold 5 95±2.23 96.4±1.183 

Leave One-Out 3 98.25±1.52 97.8±1.17 

Random Subsampling 3 94.13±2.48 96.2±1.03 

k-NNK-fold k-NN Leave 
One-Out 

k-NN Random 
Subsampling 

SVM 

Data Mixing Correct rate, 

FN, FP 

% 

Correct rate, 

FN, FP 

% 

Correct rate, 

FN, FP 

% 

Correct rate, 

FN, FP 

% 

First 97 

FN=3  FP=0 

96 

FN=3  FP=1 

97 

FN=2  FP=1 

90 

FN=8  FP=2 

Second 97 

FN=2  FP=1 

97 

FN= 2 FP=1 

96 

FN=3  FP=1 

93 

FN=5  FP=2 

3th 94 

FN=5  FP=1 

96 

FN= 4 FP=0 

94 

FN=4  FP=2 

93 

FN=6  FP=1 

4th 97 

FN=2  FP=1 

97 

FN=2  FP=1 

97 

FN=2  FP=1 

93 

FN=4  FP=3 

5th 97 

FN=3  FP=0 

96 

FN=3  FP=1 

97 

FN=3  FP=0 

94 

FN=4  FP=2 

6th 96 

FN=4  FP=0 

97 

FN=3  FP=0 

96 

FN=3  FP=1 

91 

FN=6  FP=3 

7th 97 

FN=1  FP=2 

98 

FN=0  FP=2 

97 

FN=1  FP=2 

92 

FN=3 FP=5 

8th 95 

FN=5  FP=0 

97 

FN=3  FP=0 

95 

FN= 4 FP=1 

90 

FN=8  FP=2 

9th 98 

FN=2  FP=0 

99 

FN=1  FP=0 

97 

FN=2  FP=1 

91 

FN=7  FP=2 

10th 96 

FN=1  FP=3 

98 

FN=1  FP=1 

96 

FN=1  FP=3 

93 

FN=1  FP=6 
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3.7. The Results of the Study (7) 

PTTs obtained by an ECG signal and different PPG signals in both conditions of 

normal breathing and breathe holding (apneatic breathing) are compared. Figure 3.11 show 

the bar graph for the means of PTTs and SE of means obtained from corresponding 

segments of the experiments. As seen in this figure, there is a meaningful difference 

between PTTs obtained in breathing spontaneously and breath holing conditions and also 

between PTTs obtained by IR, Red and Green PPG signals.  The mean, SD and SE of 

PTTs obtained by ECG and PPGs with different wavelengths in different conditions are 

shown in Table 3.13. As seen in this Table, PTTs obtained by ECG and Green PPG was 

much different with PTTs achieved simultaneously by the same ECG and IR PPG signals. 

Also, there were slight difference between PTTs obtained simultaneously by ECG-IRPPG 

and ECG-RedPPG. Table 3.14 reveals the t-test's results separately for all of PTTs. 

 Figure 3.11. Error plot to compare PTTs obtained from ECG and different PPGs 
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 Table 3.13. PTTs obtained by ECG and PPGs in different conditions 

Table 3.14. The t-test results to compare PTTs in normal and abnormal breathing 

PTTs (ms) 

Breathing spontaneously Breath holding 

PTT Type Mean SD SE Mean SD SE 

ECG& IR-PPG 205.928 2.84 0.401 153.55 3.197 0.452 

ECG& Red-PPG 208.58 3.70 0.523 160.07 7.83 1.1073 

ECG& Green-PPG 244.21 5.7 0.806 199.75 10.19 1.44207 

PTT Type 

Differences 

t df P value Mean SD 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

ECG&IR-PPG 
52.37 0.605 51.17788 53.57812 86.610 98 <0.0001 

ECG&Red-PPG 
48.51 1.225 46.0796 50.9404 39.608 98 < 0.0001 

ECG&Green-PPG 
44.46 1.652 41.1815 47.73850 26.911 98 < 0.0001 
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3.8. The Results of the Study (8) 

Parts of the recorded concurrent ECG and dual-wavelength PPG signals before and 

during the exercise test are revealed in Figure 3.12 (a) and (b) respectively.  As seen in the 

Figure, both of ECG and dual-wavelength PPG signals had a good quality and extraction 

of features could be carried out without a major problem; but during the exercise, big 

motion artifacts led to distortion of ECG signal and PTT extraction was indeed impossible. 

However, beat-to-beat PTT and TD features were calculated before the ending the test. The 

mean results of extracted PTTs and TDs before and after exercise can be seen in Table 

3.15. As seen in this Table, strenuous physical activity PTTs reduced and TDs increased 

seriously.  

  Figure 3.12. ECG and dual-wavelength PPG (a) before and (b) during exercise test 

   Table 3.15.The mean of PTTs and TDs (ms) obtained before and after the exercise test 

PTT Type 
Before the Test After the Test 

PTTs TDs         PTTs TDs         

ECG& IR-PPG 206.831 0.33 163.76 5.66 

ECG& Red-PPG 210.75 0.33 162.28 5.66 



4. DISCUSSION

The possibility of the application of TDs obtained from dual-wavelength 

photoplethysmographic signals was studied during separate physiological challenging 

tests. In summary, it can be said, with respect to the results it was demonstrated that as 

long as physiological situation was stable, TD values had no serious variations. However, 

when the physiological conditions were changed, TD values were also significantly 

changed. This means the obtained TD series had a pattern related to physiological 

conditions that can be indicative of physiological variations. This earlier unreported 

phenomenon would have been a novel and interesting finding of this thesis. 

Multi-wavelength PPG was considered with different methods by other researchers. 

Nonetheless, TDs are new issue in multi-wavelength PPG technology and variations of 

TDs with respect to bio-physiological conditions were not studied previously. The method 

presented in this thesis is compared with that of previous studies in the field of multi-

wavelength PPG.  

Some studies such as [7], [100] and [101] used the multi-wavelength PPG without 

considering TDs. The used parameter in those studies was the amplitude ratio of PPG 

signals. Multi-wavelength PPG was applied also by Spigulis et al. [102] for skin 

microcirculation assessment. In that study, different PPG signals have been simultaneously 

recorded in separate wavelengths. Results of that research showed that signal baseline 

responses at separate wavelengths were different. They concluded that a depth variety of 

the skin blood pulsation dynamics was caused to distinct baseline values. In that study 

there was also no mention of TD variations; but their results in the case of base line 

variation can supports our research. 

Gailite et al. [103] employed multi-wavelength PPG, based on fiber-coupled laser 

irradiation and time-resolved spectrometric detection. They confirmed that PPG pulses that 

were recorded simultaneously at distinct wavelengths were different in waveform. The 

outcomes of those two researches can support our results in the case of TDs, with the 

exception that they also focused on baseline differences without considering TDs.  

Other researches in the case of simultaneous different PPG signals obtained from a 

small hole of the skin were conducted by Asare et al. studies [46-48] in which multi-
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wavelength PPG signals were analyzed with respect to blood microcirculation 

characteristics at different vascular depths. These studies reported the shape difference 

between simultaneous PPG signals. In the mentioned researches there was no TD 

extraction algorithm and no respect to the bio-physiological conditions. 

In addition to the above mentioned studies, Kuzmina et al.[104] assembled and 

tested a fiber-optic spectrometry set-up for applications in skin diffuse laser fluorescence 

spectrometry and multi-wavelength photoplethysmography studies. Their results also 

showed differences in spectra of healthy and pathologic skin without mention of TDs and 

TD variations. 

Natural fluorescence of blood has been introduced years ago [105]. Fluorescence 

feature of blood is due to the existence of some elements such as hemoglobin that they 

have an intrinsic fluorescence property [106]. Gao et al. [107] measured the fluorescence 

spectra of the whole blood and the hemoglobin. Outcomes of that research revealed that 

fluorescence spectrum was affected by the wavelength of emitting light and amount of the 

blood dissolved fluorophores. Considering the results of that research, variations of TDs in 

distinct biological situations and difference between TDs obtained from separate 

wavelength pairs (involved in the present study) may be interpreted by the blood 

fluorescence phenomenon. 

Fluorescence is one of the optical processes arises from interaction of light with 

biological tissues [108]. It is a well-known optical effect that has been proved to be an 

intrinsic parameter of biological substrates and may aid in the characterization of the 

physiological states [109]. In fluorescence process, a fluorescent substance is excited by a 

light beam and then, absorbed light is emitted by the substance [110]. Existing of 

fluorescent substance molecules in the excited state before returning to the initial 

conditions takes certain duration called lifetime. Fluorescence lifetime is the time delay 

between the light absorbance and the emission. The lifetime is dependent on concentration 

of fluorescent substance and excitation light wavelength [111]. In the case of dual-

wavelength PPG, fluorescent substances of blood were excited by Red and IR lights. Blood 

fluorescence property is due to the existence of some elements such as oxyhemoglobin that 

have intrinsic fluorescence property [106]. Light absorbance and fluorescence lifetime is 

changed considering to concentration of blood fluorescent substance (oxyhemoglobin) and 

is different for each wavelength. Concentration of the blood fluorescent substance is 
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changed when physiological situation is changed. For example, at bedtime, blood 

oxyhemoglobin is decreased relative to wakefulness [112]. Therefore, the time difference 

between unlike PPG signals may be described by fluorescence lifetime difference between 

two emitted lights and variations of the time difference can be attributed to concentration 

variations of blood oxyhemoglobin. 

There are some studies in the case of apnea detection using PPG signals. In these 

researches simple PPG signals have been used with a single wavelength. Different features 

of PPG and various classification methods were proposed to classify two groups of normal 

breathing and apnea. For example, changes in the peak and valley amplitudes (∆P and ∆V) 

were used as features and artificial neural networks (ANN) was employed as classification 

algorithm in [113]. Obtained results of that study showed classification accuracy of 85.4%. 

In another study, time domain features, reflection index (RI) and stiffness index (SI), and 

frequency domain feature, power ratio (PR) were extracted from simple PPG and used 

along with support vector machine (SVM) classifier to identify apnea [114]. Average 

classification accuracy of 95% was achieved as the results of that research. Notice to the 

results of the study (5) of this thesis, it can be said that applying the time difference 

features could improve the apnea identification results.   

In the case of wake/sleep detection there are many studies that used bio-signals such 

as Polysomnography (PSG), EEG and ECG. Use of PPG as a simple and inexpensive 

method in order to detect sleep stages was reported in a few studies. The most of those 

studies used HR and HRV as features to detect sleep. A recent study reported the averaged 

classification performance of 95% accuracy with the processing time of one minute by 

using wavelet-based HRV features [115]. The older methods based on FFT and HRV 

features, had 68.8% accuracy [115].With respect to the existing studies in the literature, the 

results of the present thesis (study 6) showed that faster and more accurate classification 

results could be achieved by using TD features.  



5. CONCLUSIONS AND FUTURE WORKS

This thesis uniquely presented a new strategy for the analysis of dual-wavelength 

photoplethysmographic signals in terms of bio-physiological conditions. An improved 

sensor system with a new design was developed for dual-wavelength 

photoplethismography. The disadvantages of previous sensor systems (TDM based) come 

from switching and modulation processes were modified in the proposed system. The 

developed sensor system had the ability to select three different pairs of unlike PPG signals 

with distinct wavelengths. Low noise and no need for complex filtration were the good 

attributes of this system. Providing fully synchronized PPG signals to avoid any delay 

between the signals, was another advantage of the developed sensor system.  

Performance of the both proposed and TDM sensor systems were evaluated based on 

time domain differences of separate PPG signals and it was demonstrated that the time-

difference between PPG signals in two unlike wavelengths obtained by the proposed 

sensor system had very significant variations when the physiological conditions were 

changed. However in the TDM based system, significant bio-physiological related TD 

variations were not observed. 

TDs were monitored and analyzed during different biological challenges such as 

smoking and running experiments in study (2). Experimental results showed that PPG TD 

series (time-difference pseudo-signal) may contain increasing, decreasing or strenuous 

oscillations that lead to different long-term patterns depending on the physiological 

conditions. The results of the corresponding experiments also confirmed the significance of 

bio-physiological related TD variations. 

In the next step, TDs obtained from three different pairs of unlike PPG signals were 

compared. Based on the results, all of the three PPG pairs of Red-IR, Green-IR and Blue-

IR had significant bio-physiological related TD variations, but the Red-IR pair was the 

most relevant case for biological applications. For this reason, in this thesis, PPG pair of 

Red-IR was selected for further analysis. 

In the other studies of this thesis, significance of TD variations based on respiratory 

system was analyzed. The main conclusion of this study was that the TDs are indeed 

applicable for respiratory system analyses. Avoiding from the use of any nasal or face 

mask and their connected chemical sensors was the good attribute to use TDs for 
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evaluating respiratory system. The recording signals obtained from this study, were used 

also in order to fast detection of apnea using k-NN classification method. The results 

showed good capability of TDs for fast and accurate classification of normal and apneatic 

respiratory situations. 

Another study of this thesis was to investigate possibility of using TD features for 

wake/sleep detection. Three different beat-to-beat TD features were extracted from the 

experimental recordings and k-NN algorithm was employed to classify wake/sleep. 

Obtained results revealed high capability of the obtained TD features to determine subjects' 

status. Use of just a finger connectable ring shaped PPG sensor to detect sleep, could be a 

very good attribute for the proposed method. 

Last two studies were related to investigate PTT time series extracted from 

concurrent ECG and dual-wavelength PPG signals. Results of these studies showed that 

PTTs obtained by using two simultaneous PPG signals with different wavelengths and an 

ECG signal, were significantly different with each other and should be considered in 

applications such as blood pressure estimation to avoid from any mistake measurement 

results. 

In summary, it can be said, with respect to the overall results of this thesis it was 

demonstrated that as long as physiological situation was stable, the TDs had no large 

variations. However, when the biological state was changed, the mean and standard 

deviations of TD values were significantly changed. This means that the obtained TD 

series had a pattern related to biological conditions that can be indicative of human 

physiology. It seems that TDs and their biology-related pattern can be used for important 

clinical applications. Good attribute of TDs was their independence from amplitude of 

PPG signals and light intensity variations. Due to this advantage, the presented approach 

may be used as an alternative to intensity-based multi-wavelength PPG applications in 

which they suffer from several drawbacks including susceptibility to light source or 

detector drift, changes in optical path, scattering and attenuation of excitation light.  

Based on the results, we believe that TDs can have a potential for clinical and bio-

physiological assessment applications such as anesthesia and drowsiness detecting, 

respiratory assessment or measuring of blood ingredients as a new helpful technology. 

Obtained results encourage more research and provide enough evidence that the proposed 
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method can have ability for clinical and physiological assessments as a new helpful 

technology.  

As the feature works, the performance of the presented method could be further 

evaluated by conducting more different studies. Especially, the robust noise of TDM 

method can be further reduced and compared with the proposed method. In addition, the 

presented sensor system can be more developed to use for real time sleep or drowsiness 

detection, measuring different factors of blood and more accurate estimation of blood 

pressure. Predict the occurrence of apnea using presented TD features can be evaluated and 

studied as another feature work.  

One of the main choices for the feature works is investigating and introducing of 

time difference variability (TDV) as an important indicator for prediction of sleep apnea 

and some other physiological disorders.  
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7. APPENDIX

Program codes that were prepared using MATLAB®R2012b are presented in this 

section. 

Program code 1: The program to record signals using audio dual-channel codec. 

% Description: This program was developed 

% to record signals via dual-channel audio 

% codecs or sound cards 

% Sampling rate, bit rate, the number of channels 

% and time duration of the recordings can bet selected 

% by this code. 

% the recordings are saved as a wav file in the end of 

% running this program 

recObj =  audiorecorder(1000,16,2); 

recordblocking(recObj,60); 

myRecording = getaudiodata(recObj); 

wavwrite(myRecording,1000,16,'Name'); 

Program code 2: The program for filtering, DC component cancelling and 
normalization of PPG signals and extraction of TD features from them. 

% Description: This program was developed 

% for filtering, DC component cancelling, normalization 
and %peak detection of PPG signals and extraction of TD 
features %from them  

clc;clear all;close all; 

ppg = wavread('Name.wav');  

Red=ppg(:,2); %Extract out each of the signals 

IR=ppg(:,1); 
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%Band pass 
filter*******************************************************
**** 

a=[1,-2.81157367732469,2.64048349277834,-
0.828146275386261]; 

b=[9.54425084237281e-
05,0.000286327525271184,0.000286327525271184,9.54425084237281
e-05]; 

 

Red2=filtfilt(b,a,Red);  

IR2 =filtfilt(b,a,IR); 

 

%Detrend 
filter*********************************************** 

 

Red2 = detrend(Red2); 

IR2 = detrend(IR2); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%5 

 

%dc canceling & normalize 
*********************************************************** 

Red3 = Red2 - mean (Red2 ); % cancel DC conponents 

IR3 = IR2 - mean (IR2 );    % cancel DC conponents 

 

Red=(Red3-min(Red3))/(max((Red3))-min((Red3)));% 
normalize first channel to one 

IR=(IR3-min(IR3))/(max((IR3))-min((IR3)));     % 
normalize second channel to one  

PPg(:,1)=Red;PPg(:,2)=IR; 

from=1; 

to=size(IR); 

figure;plot(from:to,IR(from:to),'r'); 

figure;plot(from:to,Red(from:to),'r',from:to,IR(from:to))
; 

Red=Red(from:to);IR=IR(from:to); 
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%Peak detecting of REd and IR 
peperatly****************************************************
******** 

   [maxtab, mintab] = peakdet(Red, 0.15); 

   Redh=maxtab(:,1);Redlow=mintab(:,1); 

hold on; plot(mintab(:,1), mintab(:,2), 'b*'); 

plot(maxtab(:,1), maxtab(:,2), 'b^'); 

   [maxtab, mintab] = peakdet(IR, 0.15); 

    IRh=maxtab(:,1);IRlow=mintab(:,1); 

hold on; plot(mintab(:,1), mintab(:,2), 'g*'); 

plot(maxtab(:,1), maxtab(:,2), 'g^'); 

   heart_rate=length(maxtab); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% 

from=IRlow(1); 

to=IRlow(2); 

   n= max(IR(from:to))- max(Red(from:to));IR=IR-n; 

m=min(IR(from:to))- min(Red(from:to));Red=Red+m; 

rRed1=Red(from:to); 

rIR1=IR(from:to); 

K_Red=(rRed1-min(rRed1))/(max((rRed1))-min((rRed1))); 

K_IR=(rIR1-min(rIR1))/(max((rIR1))-min((rIR1))); 

figure(44);plot(from:to,K_IR,'r',from:to,K_Red,'linewidth',2)
; 

grid; 

l1=length(Redh);l2=length(Redlow);l3=length(IRh);l4=lengt
h(IRlow); 

leng=[l1 l2 l3 l4];leng=min(leng); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

for i=2:leng-1 

az=IRlow(i); 
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ta=IRlow(i+1);   

IR1=IR(az:ta);Red1=Red(az:ta); 

FF_Red=(Red1-min(Red1))/(max((Red1))-min((Red1))); 

FF_IR=(IR1-min(IR1))/(max((IR1))-min((IR1))); 

x_Red=FF_Red(find(FF_Red>0.25)); 

x_IR=FF_IR(find(FF_IR>0.25)); 

grid; 

RRe=find(max(FF_Red)-0.030<FF_Red&FF_Red<max(FF_Red)-
0.01); 

IIRe=find(max(FF_IR)-0.030<FF_IR&FF_IR<max(FF_IR)-0.01); 

Peak(i)=-(RRe(1)-IIRe(1)); 

Re=find(max(FF_Red)-0.150<FF_Red&FF_Red<max(FF_Red)-
0.11); 

IRe=find(max(FF_IR)-0.150<FF_IR&FF_IR<max(FF_IR)-0.11); 

Far(i)=-(Re(1)-IRe(1)); 

De(i)=-(Re(end)-IRe(end)); 

pah1(i)=Re(end)-Re(1); 

pah2(i)=IRe(end)-IRe(1); 

defpah(i)=pah2(i)-pah1(i); 

end 

Peak=Peak';Far=Far';De=De';pah1=pah1';pah2=pah2';defpah=d
efpah'; 

feature=[Peak Far De pah1 pah2 defpah];feature(1,:)=[] 

figure(404);plot(FF_Red,'r','linewidth',2);hold 
on;plot(FF_IR,'linewidth',2); 

figure(44);plot(x_Red,'r','linewidth',2);hold 
on;plot(x_IR,'linewidth',2); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 
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for i=2:leng-1 

az=IRlow(i); 

ta=IRlow(i+1);   

IR1=IR(az:ta);Red1=Red(az:ta); 

IRdamane1=(max(IR1));IRdamane=IRdamane1(1); 

Reddamane1=find(max(Red1));Reddamane=Reddamane1(1); 

damane(i)=IRdamane-Reddamane; 

end 

damane(1)=[]; 

for i=2:leng-1 

az=IRlow(i); 

ta=IRlow(i+1);   

IR1=IR(az:ta);Red1=Red(az:ta); 

IRfaz1=find(max(IR1)-0.13<IR1&IR1<max(IR1)-
0.11);IRfaz=IRfaz1(1);IRdef=IRfaz1(end); 

Redfaz1=find(max(Red1)-0.13<Red1&Red1<max(Red1)-
0.11);Redfaz=Redfaz1(1);Reddef=Redfaz1(end); 

fark(i)=IRfaz-Redfaz; 

def(i)=IRdef-Reddef; 

end 

fark=fark';fark(1)=[];def=def';def(1)=[]; 

figure(66);plot(Peak,'b');grid;hold on; plot(Peak,'.r'); 

figure(660);plot(Far,'b');grid;hold on;
plot(Far,'.r');hold on 

plot(damane*8,'g') 

figure(86);plot(def,'b');grid;hold on; plot(def,'.r'); 

pah1(1)=[];pah2(1)=[];defpah(1)=[]; 

figure(861);plot(pah1,'b');grid;hold on; plot(pah1,'.r'); 

figure(862);plot(pah2,'b');grid;hold on; plot(pah2,'.r'); 

figure(863);plot(defpah,'b');grid;hold on;
plot(defpah,'.r'); 

figure(77);plot(damane);hold on;plot(damane,'.r'); 
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Mean=mean(fark); 

Std=std(fark); 

Program code 3: The program to execute t-test on the extracted TD features.

% Description: This program was developed 

% to execute t-test on the extracted TD features 

clc;clear all; close all 

load fark.mat; 

boxplot([fark(:,1),fark(:,2)]) 

[h0,p0,ci0,stats0]=ttest(fark(:,1),fark(:,2)) 

Program code 4: The program for k-NNclassification by three separate training 
methods along with the data permutationin order to repetition of experiments. 

% Description: This program was developed 

% to classify the extracted data using Random 
subsampling,  

% K-fold and Leave-one-out methods 

clear all 

close all 

clc 

load normalbreath100.mat;  

load holdbreath100.mat; 

    VB(:,1)=holdbreath(:,1);VB(:,2)=holdbreath(:,2); 

VM(:,1)=normalbreath(:,1);VM(:,2)=normalbreath(:,2); 

%Mster Mixing******************************* 

r=randperm(100); 

       VM=VM(r,:); 

       VB=VB(r,:); 

figure(1);plot(VM(:,1),VM(:,2),'or' 
,VB(:,1),VB(:,2),'+','linewidth',2) 
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xlabel('Mean of TDs (ms)','FontSize',14); 

ylabel('Standard deviation of TDs (ms)','FontSize',14); 

title('Data set','Color','k','FontSize',14) 

legend('Normal breathing','Apneatic situation');      

%********************************************************
*****  

   Train(1:50,:)=VM(1:50,:);Train(51:100,:)=VB(1:50,:); 

   TEST(1:50,:)=VM(51:100,:);TEST(51:100,:)=VB(51:100,:); 

MixVM(1:50,:)=VM(1:50,:); 

MixVB(1:50,:)=VB(1:50,:); 

TEST1(1:50,:)=VM(51:100,:);TEST2(1:50,:,:)=VB(51:100,:);  

%Validation Mixing******************* 

r=randperm(50); 

MixVM=MixVM(r,:); 

MixVB=MixVB(r,:); 

TEST1=TEST1(r,:); 

TEST2=TEST2(r,:); 

%********************************************************
*****  

figure(2);plot(MixVM(:,1),MixVM(:,2),'or' 
,MixVB(:,1),MixVB(:,2),'+','linewidth',2) 

xlabel('Mean of TDs (ms)','FontSize',14); 

ylabel('Standard deviation of TDs (ms)','FontSize',14); 

title('Train set','Color','k','FontSize',14) 

legend('Normal breathing','Apneatic situation'); 
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figure(3);plot(TEST1(:,1),TEST1(:,2),'or' 
,TEST2(:,1),TEST2(:,2),'+','linewidth',2) 

xlabel('Mean of TDs (ms)','FontSize',14); 

ylabel('Standard deviation of TDs (ms)','FontSize',14); 

title('Test set','Color','k','FontSize',14) 

legend('Normal breathing','Apneatic situation'); 

%knn 

N1=50; 

N2=50; 

tlabel=[zeros(1,N1) ones(1,N1)]'; %test datalar için 
do ً◌ruluk tablosu 

slabel=[zeros(1,N1/2) ones(1,N1/2)]'; %test datalar için 
do ً◌ruluk tablosu 

class =
knnclassify(Train,TEST,tlabel,11,'cosine','nearest');%class = 
knnclassify(XX,YY,t_d,15,'cosine','random'); 

classperf(class,tlabel) 

%Random 
subsampling****************************************** 

SubtrainM(1:25,:)=MixVM(1:25,:);    

SubtrainB(1:25,:)=MixVB(1:25,:); 

%figure(2);plot(SubtrainM,SubtrainB,'+')  

ValidationM(1:25,:)=MixVM(26:50,:); 

ValidationB(1:25,:)=MixVB(26:50,:); 

Mtest(1:50,:)=VM(51:100,:); 

Btest(1:50,:)=VB(51:100,:); 

 K=1:2:15; 

 ValidationTruetable=zeros(50,length(K)); 
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for k=1:2:15; 

for i=1:50 

distance=zeros(50,2); 

distance(1:25,2)=1; 

distance(26:50,2)=0; 

if i<=25 

             distance(1:25,1)=sqrt((SubtrainM(:,1)-
ValidationM(i,1)).^2+(SubtrainM(:,2)-ValidationM(i,2)).^2); 

             distance(26:50,1)=sqrt((SubtrainB(:,1)-
ValidationM(i,1)).^2+(SubtrainB(:,2)-ValidationM(i,2)).^2); 

else 

             distance(1:25,1)=sqrt((SubtrainM(:,1)-
ValidationB(i-25,1)).^2+(SubtrainM(:,2)-ValidationB(i-
25,2)).^2); 

             distance(26:50,1)=sqrt((SubtrainB(:,1)-
ValidationB(i-25,1)).^2+(SubtrainB(:,2)-ValidationB(i-
25,2)).^2); 

end 

 

distance=sortrows(distance); 

         M=0; 

         B=0; 

for jj=1:k 

if distance(jj,2)==1 

                 M=M+1; 

else 

                 B=B+1; 

end 

end 

 

if i<=25 && M>B 

ValidationTruetable(i,k)=1; 

end 

if i>25 && M<B 

ValidationTruetable(i,k)=1; 

end 

end 
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V(k)=length(ValidationTruetable(ValidationTruetable(:,k)=
=1)); 

end 

 Random_susampling_validationsuccess=V(:,:).*2; 

  [maximum 
Bestk]=max(Random_susampling_validationsuccess) 

  r=Random_susampling_validationsuccess;r=[r(:,1) r(:,3) 
r(:,5) r(:,7) r(:,9) r(:,11) r(:,13) r(:,15)]; 

Random_susamplingValidation_STD=std(r) 

Random_susamplingValidation_Mean=mean(r) 

%K-foldclassifier********************************* 

   trainM(1:50,:)=MixVM(1:50,:); 
trainB(1:50,:)=MixVB(1:50,:);  

     J=5:5:50;

for j=1:length(J) 

    SubtrainM=trainM;SubtrainB=trainB;

Validation(1:5,:)=trainM(j:j+4,:); 

Validation(6:10,:)=trainB(j:j+4,:); 

    ValidationM=Validation(1:5,:); 

    ValidationB=Validation(6:10,:); 

SubtrainM(j:j+4,:)=[]; 

SubtrainB(j:j+4,:)=[]; 

%********************************************      

K=1:2:15; 

ValidationTruetable=zeros(10,length(K)); 

for k=1:2:15; 

for i=1:10 
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distance=zeros(90,2); 

distance(1:45,2)=1; 

distance(46:90,2)=0; 

if i<=5 

distance(1:45,1)=sqrt((ValidationM(i,1)-
SubtrainM(:,1)).^2)+((ValidationM(i,2)-SubtrainM(:,2)).^2); 

distance(46:90,1)=sqrt((ValidationB(i,1)-
SubtrainM(:,1)).^2)+((ValidationB(i,2)-SubtrainM(:,2)).^2); 

else 

distance(1:45,1)=sqrt((ValidationM(i-
5,1)-SubtrainB(:,1)).^2)+((ValidationM(i-5,2)-
SubtrainB(:,2)).^2); 

distance(46:90,1)=sqrt((ValidationB(i-
5,1)-SubtrainB(:,1)).^2)+((ValidationB(i-5,2)-
SubtrainB(:,2)).^2); 

end 

distance=sortrows(distance); 

M=0; 

B=0; 

for jj=1:k 

if distance(jj,2)==1 

M=M+1; 

else 

B=B+1; 

end 

end 

if i<=5&& M>B 

ValidationTruetable(i,k)=1; 

end 

if i>5 && M<B 

ValidationTruetable(i,k)=1; 

end 

end 

Ktruelist(j,k)=length(ValidationTruetable(ValidationTruet
able(:,k)==1)); 
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end 

end 

        ValidationTrue= Ktruelist; 

       K_FOLD_Validation=sum(ValidationTrue) 

%********Leave One
Out***************************************   

%********************************************************
*** 

       K=1:2:15; 

       Truetable=zeros(100,length(K)); 

for k=1:2:15; 

for i=1:100 

distance=zeros(100,2); 

distance(1:50,2)=1; 

distance(51:100,2)=0; 

vt=Train(i,:); 

distance(:,1)=sqrt((vt(1)-
Train(:,1)).^2)+((vt(2)-Train(:,2)).^2); 

distance(i,:)=[]; 

distance=sortrows(distance); 

M=0; 

B=0; 

for jj=1:k 

if distance(jj,2)==1 

M=M+1; 

else 

B=B+1; 

end 

end 
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if i<=50&& M>B 

Truetable(i,k)=1; 

end 

if i>50 && M<B 

Truetable(i,k)=1; 

end 

end 

LeaveOneOutvalidationtruelist(k) 
=length(Truetable(Truetable(:,k)==1)); 

end 

      LeaveOneOutvalidationtruelist; 

 [LeaveOneOutmaximumvalidation  
Bestk]=max(LeaveOneOutvalidationtruelist) 

%********************************************************
******TEST***************************************************
********** 

 TRAIN=Train; 

 TesttrueTable=zeros(100,1); 

 FinalK=15; 

for ii=1:100 

dist=zeros(100,2); 

dist(1:50,2)=1; 

dist(51:100,2)=0; 

vt=TEST(ii,:); 

     dist(:,1)=sqrt((vt(1)-TRAIN(:,1)).^2+(vt(2)-
TRAIN(:,2)).^2); 

dist=sortrows(dist); 

     M=0; 
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B=0; 

for jj=1:FinalK 

if dist(jj,2)==1 

M=M+1; 

else 

B=B+1; 

end 

end 

if  M>B&&ii<=50 

TesttrueTable(ii,1)=1; 

end 

if M<B&&ii>50 

TesttrueTable(ii,1)=1; 

end 

end 

 [Testsuccess 
]=size(TesttrueTable(TesttrueTable(:,1)==1)); 

feature1=VB';feature2=VM'; 

mse = mse_classifier(feature1,feature1) 

mse(3)=0; 

syms x1x2real 

digits(5); 

eq3 = mse(1) + mse(2)*x1 + mse(3)*x2; testeq=vpa(eq3); 

feature2=-feature2; 

lbx1=min([feature1(2,:) feature2(2,:)]); 

ubx1=max([feature1(2,:) feature2(2,:)]); 

lbx2=min([feature1(1,:) feature2(1,:)]); 

ubx2=max([feature1(1,:) feature2(1,:)]); 

hold on 
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Test=TEST; 

x1=Test(:,1); 

x2=Test(:,2); 

   Successtable=zeros(100,1);   

for i=1:100 

gg(i)= mse(1) + mse(2)*x1(i) + mse(3)*x2(i); 

     g=gg; 

if i<=50&&g(i)>0 

Successtable(i,1)=1; 

end 

if i>50&&g(i)<0 

Successtable(i,1)=1; 

end 

end 

     Testsuccess=sum(sum(Successtable)) 

mean(K_FOLD_Validation)*2 
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