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Master Thesis
Summary

GENERAL NEUTRINO INTERACTIONS WITHIN COHERENT ELASTIC
NEUTRINO-NUCLEUS SCATTERING

Muhammad Fauzi MUSTAMIN

Karadeniz Technical University
The Graduate School of Natural and Applied Sciences

Physics Graduate Program, High Energy and Plasma Physics
Supervisor: Assoc. Prof. Mehmet DEMİRCİ

2021, 80 pages

In this work, we investigate the effect of general neutrino interactions within the Co-

herent Elastic Neutrino Nucleus Scattering (CEνNS). In this process, neutrino collides with

the nucleus via a neutral boson exchange as a whole. We give the standard model (SM)

formulation of the process by considering the nucleus as spin-0 and spin-1/2. Coherent

criteria of the interaction are also discussed by showing the form factor effect for several

target nuclei. For the general interaction, we consider two models: non-standard interac-

tions (NSI) and a simplified model. We show the differential cross-section effect of each

model with the SM predictions to look for new physics behaviors. Indication of new physics

from the NSI is presented in a parameter space of interaction strength of flavor conserving

and flavor violation case. Recent values of interaction strength for the NSI for both con-

siderations are used to show the difference from the SM. The simplified model consists of

all the possible invariant bilinear combinations; scalar, pseudoscalar, vectorial, axial-vector,

and tensorial interactions. We consider low energy scale approximation in the calculation of

new physics contributions so that the momentum transfer term in the propagator is included.

The constraints on free parameters of both models, namely interaction strength for NSI and

coupling-mass for the simplified model, are given with 68% and 90% CL using data from

the COHERENT experiment.

Keywords: Neutrino, CEνNS, General neutrino interactions, NSI.
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Yüksek Lisans Tezi
ÖZET

KOHERENT ELASTİK NÖTRİNO-ÇEKİRDEK SAÇILMASI İLE GENEL NÖTRİNO
ETKİLEŞMELERİNİN İNCELENMESİ

Muhammad Fauzi MUSTAMIN

Karadeniz Teknik Üniversitesi
Fen Bilimleri Enstitüsü

Fizik Anabilim Dalı, Yüksek Enerji ve Plazma Fiziği
Danışman: Doç. Dr. Mehmet DEMİRCİ

2021, 80 sayfa

Bu çalışmada, genel nötrino etkileşimlerinin Koherent Elastik Nötrino Çekirdek Saçıl-

ması (CEνNS) üzerindeki etkisini inceliyoruz. Bu süreçte, nötrino, çekirdeğin yapısını boz-

maksızın, bir nötr bozon değiş-tokuşu aracılığıyla çekirdekten saçılır. Çekirdeği hem spin-0

hem de spin-1/2 olarak dikkate alarak, standart model (SM)’de CEνNS için tüm formülasy-

onu türetiyoruz. Ayrıca, birkaç hedef çekirdek için form faktörü etkisi üzerinden koher-

entlik kriterini tartışıyoruz. Bu bağlamda, genel nötrino etkileşmelerini iki farklı yoldan

ele alıyoruz: Standart Olmayan Nötrino Etkileşmeleri (NSI) ve Basitleştirilmiş model. SM

ötesi Yeni Fizik davranışlarını incelemek için her modelin diferansiyel tesir kesitini SM tah-

minleriyle karşılaştırıyoruz. NSI’den gelen Yeni Fizik katkıları, çeşni korumlu ve çeşni

ihlali durumları için çiftlenim parametrelerinin uzayında sunuluyor. Burada, SM’den sap-

mayı göstermek için parametrelerin güncel değerleri kullanılmıştır. Basitleştirilmiş model

çerçevesinde, tüm olası invaryant bilineer kombinasyonları, yani; skaler, pseudoskaler, vek-

tör, aksiyel-vektör ve tensör etkileşmeleri inceliyoruz. Yeni fizik katkılarını düşük enerji

ölçeğinde hesaplıyoruz. Sonuç olarak her iki model için, COHERENT deneyi verilerini

kullanarak serbest parametreler uzayı (NSI için etkileşme parametreleri ve basitleştirilmiş

model için çiftlenim-kütle parametre uzayı) üzerindeki kısıtlamaları %68 ve %90 güvenirlik

düzeyinde elde ediyoruz.

Anahtar Kelimeler: Nötrino, CEνNS, Genel nötrino etkileşmeleri, NSI.
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1. INTRODUCTION

1.1. The Early Era of Neutrino

In the year 1930, a neutral particle was hypothesized by W.Pauli to address unknown

missing energy in the β -decay. He proposed the existence of a weakly interacting fermion

with the scale of the electron mass that responsible for this phenomenon. E. Fermi in 1932

then termed this elusive particle neutrino and considered it to be massless and neutrally

charged (Fermi, 1934). The general form of the β -decay process that produces this particle

can be written as

X(A,Z)→ Y (A,Z +1)+ e−+ ν̄e. (1.1)

The initial atom X , with the atomic number Z and mass number A, decays into the final atom

Y accompanied with an electron and an electron anti-neutrino. This process can be viewed

at the nucleon level as neutron changes to a proton

n → p+ e−+ ν̄e, (1.2)

where the diagram describing this three-body decay mode can be pictured as a four-fermion

vertex as in Figure 1. The amplitude of this process can be interpreted using the prescription

n

p

ν̄e

e
−

Figure 1. β -decay with Four-fermion coupling.
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of quantum electrodynamic (QED) by introducing a coupling GF to the interaction vertex,

M = GF(p̄γµn)(ēγµνe), (1.3)

where p,n,e, and νe are spinors of proton, neutron, electron, and electron neutrino, respec-

tively. In writing amplitude, we note that only particle spinor is entered so when we en-

counter an antiparticle, we can reverse the momentum to obtain particle spinor.

The amplitude in Eq.(1.3) which is a product of two currents in the same point in

space-time is known as an effective theory. This four-point interaction, proposed by Fermi

(Fermi, 1934), had been driven by many experimental attempts to explain the full features

of the β -decay phenomena. The cross-section of the hypothetical neutrino was predicted to

be σν̄ ≤ 10−44 cm2 with energy Eν̄ ≈ 2 MeV (Bethe and Peierls, 1934). The first detection

was succeeded from the proton inverse β -decay experiment in a ton-mass scale Savannah

River detector (Cowan et al., 1956), which match the theoretical prediction. Their attempts

became not only the first successful observation of anti-neutrinos but also the inspiration for

the development of neutrino detectors. Since then, the β -decay experiments intensified to

study the full physics of the phenomenon.

The general set-up of the β -decay experiments was aimed to observe emitted electron

angle using specific nuclei under the influence of an external magnetic field, such that the

nuclear spin-polarized along the field. The triumph of this experiment happened as Wu and

her team (Wu et al., 1957), using 60Co (J = 5) nucleus, found a signature of maximal parity

violation since the emitted electrons in their observation prefer the opposite direction from

the nucleus spin. Figure 2 represents the experimental setting as well as the consequence of

the process. Since the total spin J = L+S, where the angular momentum L does not change

under parity, only the spin S can be in an arbitrary direction under the parity transformation.

It implies that antineutrinos should be emitted in the same direction as the nuclear spin.

With this observation, the emitted electron antineutrinos that accompanying electrons then

should have the right helicities, a parameter that will be discussed further. This conclusion

is achieved from the massless consideration of neutrino. This is the reason why neutrino

(antineutrino) was considered to carry no mass and left-handed (right-handed) chirality.

The four-fermion interaction needs to be modified to accommodate this parity vio-
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Figure 2. Experimental consideration of β -decay of 60Co into 60Ni∗, e−L and ν̄R.

lation. This was achieved by introducing a simple form of vector−axial-vector, V −A, to

the weak current (Feynman and Gell-Mann, 1958; Sudarshan and Marshak, 1958; Sakurai,

1958). Hence, for the case of electron and its antineutrino

jµ
ν̄ee = ēγµ(1− γ5)νe. (1.4)

We can then write the previous amplitude, neglecting nucleon structure, as

M =
GF√

2
[p̄γµ(1− γ5)n][ēγµ(1− γ5)νe]. (1.5)

The factor 1/
√

2 is conventional to compensate the new form of interaction so that the value

of GF stay still. The updated value of this coupling is 1.1663787(6)×10−5GeV−2 (Zyla et

al., 2020). The scale of this coupling indicates a necessity for a new interaction at that time,

a weak interaction.

1.2. Neutrino Sources

Neutrinos are available abundantly around us since they are fabricated from many

sources. Neutrally charge, tiny mass (even considered massless), and only interact weakly

with other particles made neutrinos unobserved with human’s sense organs. Extremely sen-
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sitive and generally large detector size is needed to detect neutrinos from their source, which

can come from natural and artificial agents. The spectrum of neutrinos that pass through the

earth is shown in Figure 3, an updated version for Grand Unified Neutrino Spectrum (GUNS)

at the earth so far (Vitagliano et al., 2020). Some of them are briefly discussed below.

Figure 3. The neutrino spectrum from various sources on the surface of the Earth,
taken from the improvement of GUNS (Vitagliano et al., 2020). In this
improved version, neutrino comes from CNB, BBN, and DSNB, as well as
from cosmogenic sources have been included.

• Relic Neutrino: Relic neutrinos come from the early universe before the expansion

period. In this phase, neutrinos together with photons were trapped as hot-plasma in

an equilibrium state by electroweak interactions. They were exist through γγ → νν̄

or e−e+ ⇆ νν̄ , detected as cosmic neutrino background (CNB), and n → p+ e−+ ν̄e

during the big-bang nucleosynthesis (BBN). When the temperature decrease, neutrinos

decoupled and filled the universe as hot relics. Neutrinos then dominated dynamics of

the early stage and structure formation of the universe as they have tiny masses. Cross-

section of this case is predicted to be σ ∼ 10−56 cm2 (Gelmini, 2004).

• Cosmogenic: Cosmogenic events have been recorded an ultra-high-energy cosmic

rays up to 1020 eV (Bird et al., 1994). This is the most energetic neutrino source

had ever been observed, yet with the lowest flux. What kind of event-triggered this
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acceleration still remains unanswered. Some candidates for this process are gamma-

ray burst, a remnant of supernovae, and cosmic rays with Greisen-Zatsepin-Kuzmin

(GZK) cutoff (Greisen, 1966; Zatsepin and Kuzmin, 1966). Detection of this event

has been driving the development of the so-called neutrino telescope, such as IceCube

(Aartsen et al., 2015) in the South Pole and Antarctic Ross Ice-Shelf Antenna Neutrino

Array (ARIANNA) (Barwick et al., 2015) in the Antartica.

• Supernova: Supernovas produce a high-flux neutrino when a core of a massive star

collapse. The collapse occurs just in a small fraction of a second, however able to

separate iron nuclei in the core into its nucleons components which then undergoes

neutronization as free protons favored to capture electrons followed by neutrino prod-

uct and formed what is called a protoneutron star. There is an exchange of energy from

p+ e− ⇆ n+νe reactions. Neutrinos produced during this procedure rapidly escape

the star core which now mostly composed of the neutron as burst. Only about 1% of

energy in this process produce visible electromagnetic radiation, while the rest is radi-

ated away as neutrinos. Supernova explosion was detected with 24 events of νe when

the explosion of the Supernova 1987A reached earth in 1987; 11 at Kamiokande-II

(Hirata et al., 1987), 8 at Irvine-Michigan-Brookhaven (IMB) (Bionta et al., 1987),

and 5 at Baksan (Alekseev et al., 1987). This is the first detection of neutrino from

such a process so far. Additionally, this supernova explosion also produces the diffuse

supernova neutrino background (DSNB) which has lower flux and weakly glow in the

MeV scale (Horiuchi et al., 2018). The aim of detecting this phenomenon is still in

advancement.

• Stars: Stars that undergo thermonuclear reaction in their core produce neutrinos with

large flux, especially the electron neutrino. As for our solar system, neutrinos appear as

a product of nuclear fusion inside the core of the sun. Fusion reaction of hydrogen clas-

sified from pp chain (Bethe and Critchfield, 1938) as well as carbon-nitrogen-oxygen

(CNO) cycle (Bethe, 1939) which can be expressed as 4p+2e−→ 4He+2νe+energy.

The released energy is 4mp +2me −m4He = 26.731 MeV, where 4mp = 28.296 MeV,

me = 0.511 MeV, and m4He = 2(mn −mp) = 2(939.565− 938.272) MeV. Schematic

diagrams for both process are shown in Figure 4. Neutrinos from this source are

termed solar neutrinos, which has been integrated in the standard solar model (SSM)
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(Bahcall et.al., 2000). Neutrinos reach the surface of the sun much earlier than pho-

Figure 4. Process of the proton-proton cycle and CNO cycle inside the sun.

tons since only interact weakly, so that understanding solar neutrino is important to

learn the interior of the sun. Despite availability, they arrive at the Earth’s surface with

relatively small energy.

• Atmospheric Neutrino: In the outer atmosphere of the earth, interactions of cosmic ray

particles such as the proton, helium, or other massive nuclei, with atoms that construct

the atmospheric layer generate short-lived mesons such as kaon or pion (Gaisser and

Honda, 2002). Neutrinos are commonly occur as a product of pion (π+ → µ++νµ )

and kaon (K− → µ−+ ν̄µ ) decays, which then lead to muon decay (µ− → e−+ ν̄e +

νµ , µ+→ e++νe+ ν̄µ ). Neutrinos from this process are termed atmospheric neutrinos

and arrive at the Earth’s surface with relatively large energy, but smaller flux compared

to the previous sources.

• Earth Radioactivity: Neutrinos are also produced beneath the Earth from the existing

radioactive materials. The neutrino fluxes are mostly originated from the decay of

Uranium and Thorium isotopes on the crust layer, only available as ν̄e. The main reac-

tions which produce this geoneutrinos can be expressed as 238U→206 Pb+8α+8e−+

6ν̄e + 51.7 MeV or 232Th →208 Pb+ 6α + 4e−+ 4ν̄e + 42.7 MeV (Fiorentini et. al.,
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2007). Detection of these neutrinos can be conducted by observing their interactions

with protons that followed by neutron capture, ν̄e + p → n+ e+. Since the elements

responsible for its decay have a comparable lifetime with Eath’s age, geoneutrinos

provide useful information about geological activities, the generation of the magnetic

field as well as the evolution of the Earth.

• Particle Accelerator: Neutrinos from particle accelerator can be obtained mostly from

pion decays, which is produced from the collision of the proton beam with a fixed

heavy target such as graphite. Massive target enables the produced decaying pion to

come at rest. This is the reason this kind of accelerator is termed a decay at rest (DAR)

experiment. With this procedure, all SM neutrino flavors can be produced. Such ex-

periments have been used by Karmen (Armbruster et al., 2002) and LSND (Athanas-

sopoulos et al., 1997) for studying, for example, neutrino oscillation, the weak form

factor of nuclei, neutral current universality, and astrophysical neutrinos.

• Nuclear Reactor: Produced energy from nuclear power plants contains neutrino within

a few MeV scale. Typically, ν̄e type is detected since the core of reactors undergo β -

decay from the nuclear fission process. Nuclei with rich neutron become the main

source of the fuel such as 235U, 239Pu, 238U, and 241Pu. Hence, a steady-state single

flavor neutrino is produced from a nuclear reactor. Neutrinos detected from reactor

based on proton’s inverse β -decay ν̄e + p → n+ e+. Some of the nuclear reactors that

aim to observe mixing angle and the possible appearance of sterile neutrino are Double

CHOOZ (Abe et al., 2012), RENO (Ahn et al., 2012), and Daya Bay (An et al., 2012).

1.3. Neutrinos in the Standard Model

The Standard Model (SM) is the state-of-the-art theory that explains all fundamental

particles and their interactions. The model is constructed from a gauge theory of SU(3)C ×

SU(2)L ×U(1)Y local symmetry (Glashow, 1961; Weinberg, 1967; Salam, 1968). The sub-

scripts C,L, and Y stand for color, left-hand chirality, and hypercharge, respectively. The

SU(3)C describes color charges from Quantum Chromodynamics (QCD), a model that ex-

plains the dynamics of quarks inside nucleons together with their binding gluons. The

SU(2)L ×U(1)Y is the group transformation that is obeyed by all the particles, quarks and
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leptons, correspond to the electroweak interactions. After spontaneous symmetry breaking,

the electroweak-interaction Lagrangian reads the following form (Zyla et al., 2020):

LSM(int) =− e∑
i

Qiψ̄iγµψiAµ − gW

2
√

2 ∑
i

Ψ̄iγµ(1− γ5)(T+W+
µ +T−W−

µ )Ψi

− gW

2cosθW
∑

i
ψ̄iγµ(gi

V −gi
Aγ5)ψiZµ +∑

i
ψ̄i

(
i/∂ −mi −

mi

v
H
)

ψi.
(1.6)

This Lagrangian describes both quarks and leptons with their electroweak interactions with

photon Aµ ≡ Bµ cosθW +W 3
µ sinθW , charged bosons W±

µ ≡ (W 1
µ ∓W 2

µ )/
√

2, neutral boson

Zµ ≡ −Bµ sinθW +W 3
µ cosθW , and the Higgs boson H. Here θW denotes the weak mixing

angle. Fermions are denoted by ψi, while its doublet representation Ψ stands for either quarkui

d′
i

 or lepton

νi

li

. Note that d′ = ∑ j Vi jd j where Vi j is known as Cabibbo-Kobayashi-

Maskawa (CKM) matrix, responsible for quark flavor-mixing under the influence of weak

interactions.

The first term in the Lagrangian describes electromagnetic interaction, where e stands

for positron electric charge and Q for its sign. The next two terms are for weak interaction. It

contains the electroweak coupling gW = e/sinθW with T± stand for the weak isospin raising

and lowering operators, and also the coupling of vector and axial-vector structure, defined as

gi
V = T3 −2Qi sin2 θW , gi

A = T3. (1.7)

Here, T3 and Qi are respectively the weak isospin third component and the charge of fermion-

i. The last component in the Lagrangian describes fermion kinetic and mass term, as well

as its coupling to Higgs boson. The parameter v ≈ 246 GeV is the vacuum expectation

value (vev) of the Higgs field. The effective value of the sinus square of the weak angle is

sin2 θW = 0.23153(4) (Zyla et al., 2020). This value changes according to the energy scale

as depicted in Figure 5, where results from various experiments are shown.

The elementary particles of the SM can be summarized as the gauge group irreducible

representation in Table 1. It shows the fermions quantum numbers for each gauge group

transformations. It can be seen that neutrinos are doublets under SU(2) transformation,

singlets in SU(3), and own −1/2 hypercharge. Their electric charge vanishes since Q =

T3 +Y , where their weak isospin T3 is 1/2.
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Figure 5. The sin2 θW as a function of energy scale µ , adapted from (Zyla et al., 2020).

Table 1. Irreducible representation of the SM (dSU(3),dSU(2))Y .

(1,2)−1/2 (3,2)−1/6 (1,1)−1 (3,1)−2/3 (3,1)−1/3(
νe
e

)
L

(
ui

di

)
L

eR ui
R di

R

(
νµ
µ

)
L

(
ci

si

)
L

µR ci
R si

R

(
ντ
τ

)
L

(
t i

bi

)
L

τR t i
R bi

R

Considering only neutrinos, where gi
V = gi

A = 1/2, the Lagrangian becomes

L
(ν)
int =− g

2
√

2 ∑
α

ν̄αγµ(1− γ5)lαW+
µ − g

4cosθW
∑
α

ν̄αγµ(1− γ5)ναZµ

+h.c.,
(1.8)

with i runs up to the third lepton family and h.c. stands for Hermitian conjugate. The La-

grangian shows that the neutrino interaction with lepton needs to be mediated by either W±

or Z0 boson. Both mediators are respectively responsible for the standard charged and neutral

current interactions. It can be seen clearly that the electroweak current has V −A structure.

This also indicates that neutrinos are left-handed in the SM, as have shown in Table 1.

The Fermi interaction from the previous β -decay then being resolved by the appear-
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ance of a massive W boson as in Figure 6. The corresponding amplitude of this process can

n

p
ν̄e

e−

W−

Figure 6. β -decay in the SM with mediator W−.

be obtained from Feynman rules Appendix 7.2. as

Mβ =
g2

W

8m2
W
[p̄γµ(1− γ5)n][ēγµ(1− γ5)νe]. (1.9)

Comparing to the GF form, it is found that GF√
2
=

g2
W

8m2
W
. The mass of the W± boson is about

80.4 GeV, hence using the value of GF the weak coupling is gW = 0.65.

1.4. Neutrino Properties

1.4.1. Neutrino Flavors

It is known that neutrinos come in three flavors. They are correspond to each lepton

types, e−,µ−, and τ−. The νe type occurs in the β -decay process as mentioned previously in

Eq.(1.2). The other two types were discovered from different channels. Possible processes

of these are the pion decay for νµ and the leptonic-tau decay for ντ , respectively given in the

following reactions

π+ → µ++νµ , τ− → ντ + e−+ ν̄e. (1.10)

These processes obey lepton number conservation, L = 1 for lepton, L =−1 for antilepton,

and L = 0 for non-leptonic particle. Moreover, there are also number conservation for each

generations denoted by Le,Lµ , and Lτ which can have value of 1 for particle and −1 for an-

tiparticle. Both reactions above and the β -decay for example obey this lepton conservation.
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The restriction of three generations in the electroweak theory is determined from Z

boson decay. The decay width consists of the summation of visible hadrons, e−e+, µ−µ+,

and τ−τ+, as well as invisible process widths. The branching ratio of the invisible final states

for SM consideration would be due to the number of the light neutrino species Nν . There-

fore, the branching ratio of the invisible decay would be Γinv = NνΓνν̄ and from combined

LEP observations (Schael et al., 2006), the number of light neutrino species, excluding non-

standard possibilities, is Nν = 2.984±0.0082. Hence, the SM should contain three neutrino

flavors.

1.4.2. Chirality and Helicity

Concept of chirality comes from the chiral matrix γ5 in the V −A structure of weak in-

teractions. It gives rise to two possible chiral operators, right and left projection, respectively

defined as

PR =
1
2
(1+ γ5), PL =

1
2
(1− γ5). (1.11)

The γ5 matrix itself consists of the other γ-matrices

γ5 = γ5 = iγ0γ1γ2γ3 =

(
0 1

1 0

)
. (1.12)

The left(right)-handed operator belongs to −1(+1) eigenvalue of the PL(PR) operator for

particle spinor and reversed case for antiparticle, since γ2
5 = 1. Both operators satisfy the

following properties

PL +PR = 1, PLPR = PRPL = 0, P2
R,L = PR,L. (1.13)

With these operators, any fermion and anti-fermion spinor can be decomposed respectively

as

fR,L = PR,L f , f̄R,L = PL,R f̄ . (1.14)
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The weak current in Eq. (1.4) clearly contain left-handed chirality if factor 1/2 attached.

Furthermore, we may calculate this current form to show that

ēγµ 1
2
(1− γ5)νe = ēγµP2

L νe = ēPRγµPLνe = ēLγµνeL. (1.15)

It then appears that in the weak interactions, involved particles participate only with L-

component spinor. This is in fact a direct implication of the parity violation, observed in

the β -decay experiment.

Another important quantity in the electroweak process is the helicity of a particle. He-

licity is defined as the projection of particle spin to its momentum, i.e. direction of particle

motion. As for massless particle, or at least moves at the speed of light, helicity is equiva-

lence with chirality. We can show this by firstly notice that the Dirac Lagrangian

L = ψ̄(i/∂ −m)ψ, (1.16)

gives the following equation of motions as a right or left-handed spinor

i/∂ψR,L = mψR,L. (1.17)

Since the four-momentum operator obeys i∂µ = pµ , then /p = γµ pµ = γ0E − γ i pi. So for

massless case, |p⃗|= E and by multiplying γ5γ0 from the left we have

(γ5γ0γ0|p⃗|− γ5γ0γ i pi)ψR,L = 0. (1.18)

Using the representation of the spin matrix

Σi = γ0γ iγ5 =

(σ i 0

0 σ i

)
, (1.19)

we find that

γ5ψR,L =
Σ⃗ · p⃗
|p⃗|

ψR,L ≡ hψR,L, (1.20)

which shows that the chirality is the same with helicity for massless particle.
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Recognizing the difference between chirality and helicity can be seen from the pion

decay process to µ+νµ or to e+νe. Spinless pion at initial set the decay products to have

opposite spins. Since (νµ ,νe) is left-handed in helicity, with the same chirality, the (µ+,e+)

also need to have the left-handed helicity to preserve angular momentum conservation. But

this requirement is forbidden as anti-particle must be in right-handed helicity. The process

then contains a mixture of left-handed helicity for a right-handed chirality state (Naumov,

2011). This behavior can be depicted as in Figure 7.

Figure 7. Helicity interpretation of neutrino and antineutrino.

In short, the V −A structure of the weak process in the SM only couples left-handed

neutrino and right-handed antineutrino as a consequence of (1− γ5) correction in Eq.(1.4)

from the initial proposed model that violates parity. Therefore, only

νL =
1
2
(1− γ5)ν , ν̄R =

1
2
(1+ γ5)ν̄ , (1.21)

states are allowed in the SM framework.

1.4.3. Dirac and Majorana Neutrinos

Neutrinos appear to have a tiny mass as indicated from neutrino oscillation experiment.

It makes neutrinos unique from other particles in the SM which are considered as Dirac type.

The latest conducted experiments give the upper bound limits with 90% Confidence Level

(CL) of their masses (Zyla et al., 2020) :

me f f
νe < 1.1eV, me f f

νµ < 190keV, me f f
ντ < 18.2MeV. (1.22)

In its early stage, neutrinos were considered as Dirac particles in the same spirit as the
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other fermions. The process of weighting a Dirac particle can be made by introducing the

following mass term

Lm =−mψ̄ψ =−m(ψL +ψR)(ψL +ψR) =−m(ψ̄LψR + ψ̄RψL). (1.23)

It shows that massive particle must have both left and right-handed components. But this

adding by hand process is simply not allowed since it breaks gauge symmetry. The field ψL

is a doublet in SU(2)L while ψR is a singlet U(1). For this reason, fermion mass needs to be

generated spontaneously with the Higgs mechanism (Higgs, 1964; Englert and Brout, 1964;

Guralnik et. al., 1964).

If neutrinos are considered to be the same as the other SM particles, we need three

right-handed neutrinos. So that its mass term can be introduced by introducing Yukawa

interaction

LDirac
Y =−L̄gνϕcνR − ν̄Rgνϕ †

c L (1.24)

with L is a doublet
(νL

eL

)
, νR is a singlet, and ϕc = iσ2ϕ∗ is a Higgs doublet conjugate, which

after spontaneous symmetry breaking becomes ϕc =
1√
2

(
v+h

0

)
with h is the Higgs field.

With this procedure, we obtain the Yukawa Lagrangian as

LDirac
Y =−vgν√

2
(ν̄LνR + ν̄RνL)−

gν√
2
(ν̄LνR + ν̄RνL)h. (1.25)

The mass term of neutrino is then

mDirac
ν = gν

v√
2
. (1.26)

Assuming mνe < 1 eV and since v = 242 GeV, we would then have gνe < 10−11. This is

bothering since for the other fermion, for example, me ∼ 0.5 MeV ge ∼ 10−6. This is in fact

a hierarchy problem, why the same mechanism of obtaining mass lead to different coupling

scale?

Experiments have been showing that they only appear as left-handed (right-handed)
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particles (anti-particles). However, the ν̄e products of beta decay are not observed in the re-

action with incoming νe and imply that both particles may be the same entities. If neutrinos

are equal with their antiparticles, they are categorized as Majorana particles. The massive-

ness of neutrino is also accounted for with this Majorana proposal. This model could be

sensitively observed from the neutrinoless double beta decay (0νββ ) process.

If neutrinos are Majorana particles, the right-handed neutrinos should be the conjugate

of the left-handed ones so that neutrinos are nothing but their own anti-neutrinos. For this

purpose, we need a conjugate field

ψc =Cγ0ψ∗=Cψ̄T , (1.27)

where C denotes the charge conjugation operator with properties C =−C−1 =−C† =−CT

so that ψR = ψc
L. With this, a field then can be composed as ψ = ψL+ψc

L and hence ψ = ψc.

With this prescription, we may try to construct Yukawa interaction for this case by writing

L
Ma jorana
Y =−L̄ϕcgα(C(L̄ϕ̄c)

T )+h.c.

=−L̄ϕcgαCϕ̄ T
c L̄T +h.c.

(1.28)

where we have used L̄ → L̄ϕ c to get singlet transformation (Hernandez, 2015), where gα

refers to Weinberg coupling. After breaking the symmetry we find

L
Ma jorana
Y =−1

2
gαv2ν̄Lνc

L + interaction term+h.c.. (1.29)

The conventional form of Majorana mass term is

LMa jorana
m =

1
2
(mψ̄ψc +mψ̄cψ), (1.30)

so that the mass of Majorana neutrino is predicted to be

mMa jorana
ν = gαv2. (1.31)

Since the field in Eq.(1.28) has [M]5, the coupling gα should have [M]−1. We can relate this

coupling with the neutrino as gα = gν/Λ, where Λ is the place new physics enters. If there is
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a Λ with a scale much greater than the v, the hierarchy problem can emerge naturally through

this Majorana mechanism.

1.4.4. Neutrino Oscillation

In its early stage, neutrinos are concerned massless with three distinct flavors. How-

ever, possible anomalies from solar and atmospheric neutrino observations (Fukuda et. al.,

1998; Ahmad et al., 2002) indicate that neutrinos possess to be massive. The two exper-

iments showed that over a large distance, neutrinos undergo flavor transformation. It had

been anticipated theoretically by B. Pontecorvo (Pontecorvo, 1957) and then later on elab-

orated by Maki, Nakagawa, and Sakata (Maki et al., 1962). This phenomenon is known as

neutrino oscillation.

In the formulation of neutrino oscillation, the mass and the flavor eigenstates are not

identical. Three eigenstates, correspond to lepton family νe,νµ ,ντ , can be connected with

mass eigenstate ν1,ν2,ν3 (or matter waves) by
νe

νµ

ντ

=UPMNS


ν1

ν2

ν3

 . (1.32)

UPMNS denotes the commonly used mixing matrix in the lepton flavor sector (PMNS comes

from the initial name of the above-mentioned scientists that built its foundation). Explicitly,

each element of this matrix can be expressed generally as (Thomson, 2013)

UPMNS =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1

 , (1.33)

where, cab = cosθab, sab = sinθab, with θ12,θ13,θ23 are the mixing angles between fla-

vors, and δ represents phase of charge and parity (CP)-violation. Using this unitary matrix,
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generic formula to account probability oscillation of νa to νb is given by

P(νa → νb) = ∑
j,k

U∗
a jUb jUakU∗

bke−i
∆m2

j,kL

2|p| , (1.34)

where ∆2
jk ≡ m2

j −m2
k is the squared mass difference of the state ν j and νk, Ua j is the a, j

element of the UPMNS matrix, L is the distance traveled by neutrino from its source to a

detector (or simply baseline), and |p| is the momentum of the neutrino.

In its observation, neutrinos from a source (sun, µ-decay, nuclear reaction, etc.) are

produced and then are detected after traveling a distance L. During propagation, neutrinos

experience a weak process in combination with flavor states and randomly distributed in

space-time. It implies a slightly different velocity phase, hence there is a non-zero probability

of obtaining a different state between the detected and produced neutrinos.

1.5. Outline of Thesis

Having briefly described the development of neutrino physics in the previous pages,

what follows will be focused on discussing the coherent interaction of a neutrino with a nu-

cleus, the main objective of this thesis. Neutrino interaction with the nucleus is important as

neutrinos available in the universe in a gigantic amount while the nucleus constructs every

macroscopic matter. In this work, we are focusing on a coherent process, meaning that neu-

trinos scatter with the nucleus as a whole via neutral boson exchange in low energy without

changing their internal structure. It is commonly known as coherent elastic neutrino-nucleus

scattering. The process plays role in many physical phenomena, such as dark matter probes,

supernova physics, neutrino electromagnetic, nuclear physics, and new neutrino interactions.

The discussion will be conducted in the framework of SM as well as beyond. For

the latter, generalized new interactions from two models are considered: non-standard in-

teraction and simplified model. Both of them are important to study possible new neutrino

interaction which is indicated from various observations. The phenomenology of both mod-

els will be studied by including their possible effect on the SM predictions.

We describe the formulation of the neutrino coherent interaction with the nucleus

within the SM in Chapter 2. Both spin-0 and spin-1/2 cases will be discussed. We also



18

give the formulation of its event rate as well as the number of events in this chapter. In addi-

tion, we will briefly describe how this process is observed, particularly in the COHERENT

experiment whom the results we concern. Chapter 3 will discuss the theoretical formula-

tion of the generalized neutrino interaction from non-standard interactions and a simplified

model. Numerical results of the SM process, as well as from these models, will be elabo-

rated in Chapter 4. We firstly present the kinematics of the process and its standard model

differential cross-section in the SM, non-standard interaction, and simplified model for five

nucleus target. For the SM, we also provide the total cross-section and also the differen-

tial rate from COHERENT experiment. Afterwards, by performing single-bin χ2-analysis,

we present the constraint of each parameter from both considered models. Finally, we will

conclude this Master thesis and give further suggestions in Chapter 5.



2. COHERENT ELASTIC NEUTRINO-NUCLEUS SCATTERING

Since neutrinos in the universe available in gigantic amounts, their interaction with the

nucleus has been considered an advancement for investigating new physics. One proposed

a tree-level process of this kind called coherent elastic neutrino-nucleus scattering (CEνNS)

in which Neutral-Current (NC) interaction happens between neutrinos with quarks inside the

nucleus of an atom. The proposal (Freedman, 1974) had been hanging up for a few decades

after first its confirmation in recent years by COHERENT experiment (Akimov et al., 2017).

In what follows, we first examine the theoretical formulation of the process and then present

some appropriate attempts to detect this neutral interaction.

2.1. Theoretical Formulation of CEνNS

CEνNS reaction can be depicted as neutrinos interact with a nucleus coherently via

neutral boson exchange in low energy. Coherent here means that neutrinos are capable to

reach the nucleus structure without breaking it. The implication of this is that the complex-

ity of strong interaction can be attached to a nuclear form factor. Through this procedure,

properties of neutrinos when they mingle with matters in low momentum transfer can be

investigated. Feynman diagram showing CEνNS process is shown in Figure 8. It shows

ν(p1) ν(p3)

N(p2) N(p4)

Z(q)

Figure 8. CEνNS process in the SM.

a neutrino interacting with the nucleus as a whole by exchanging neutral boson. So far,

CEνNS is a process with the largest cross-section involving neutrinos as shown in Figure 9.
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In this work, the CEνNS is generally studied to show the differential cross-section

predictions for the cases of SM and beyond, considering the effect of general new interac-

tions. For this purpose, we consider NSI and a simplified model. In doing so, we approach

the nucleus as a spinless or a Dirac particle.

Figure 9. Various processes involving neutrino, adapted from (Sinev, 2020).

2.1.1. Spinless Nucleus

The scattering amplitude for the process of

ν(p1)+N(p2)→ ν(p3)+N(p4), (2.1)

while assuming the nucleus as a spinless particle can be calculated as

−iM =
[
− i

g
2cosθW

ν̄(p3)gν
Lγµ(1− γ5)ν(p1)

][
− i

(gµν − pµ pν/m2
Z)

q2 −m2
Z

]
×
[
− i

g
2cosθW

⟨N(p4)|Jν
NC|N(p2)⟩

]
,

(2.2)
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and for q2 ≪ m2
Z , we have

M =
g2

4m2
Z cos2 θW

ν̄(p3)gν
Lγµ(1− γ5)ν(p1)⟨N(p4)|JNCµ |N(p2)⟩

=
2GF√

2
gν

L ν̄(p3)γµ(1− γ5)ν(p1)⟨N(p4)|JNCµ |N(p2)⟩
(2.3)

where we have used GF/
√

2 = g2/8m2
W and mW = mZ cosθW . The |N⟩ represents that the

nucleus is composed of quarks. Since the nucleus consists of the proton (uud) and neu-

tron (udd), which then also composed of quarks, the nucleus NC term can be written using

Eq.(1.7) as

⟨N(p4)|JNCµ |N(p2)⟩=2⟨N(p4)|gu
LūLγµuL +gu

RūRγµuR

+gd
Ld̄LγµdL +gd

Rd̄RγµdR|N(p2)⟩

=2⟨N|(gu
L +gu

R)ūLγµuL +(gd
L +gd

R)d̄LγµdL|N⟩,

(2.4)

where the u and d quarks considered to conserve parity. For a nucleus with a large mass

number, the ratio of the up and down quarks related to the proton number, Z, and neutron

number, N, which is related by the atomic mass number A =Z+N, is given by

⟨N|ūγµu|N⟩
⟨N|d̄γµd|N⟩

=
⟨p|ūγµu|p⟩+ ⟨n|ūγµu|n⟩
⟨p|d̄γµd|p⟩+ ⟨n|d̄γµd|n⟩

=
2Z+N

Z+2N
. (2.5)

From this relation, the EM property can be attached by defining f µ to each quark as (Lindner

et al., 2017)

⟨N|ūγµu|N⟩= (2Z+N) f µ , ⟨N|d̄γµd|N⟩= (Z+2N) f µ . (2.6)

We know that the EM charge of u and d are Qu = 2/3 and Qd = −1/3, respectively. From

the EW Lagrangian, the EM current for quarks in a nucleus is

Jµ
EM =

2
3

ūγµu− 1
3

d̄γµd. (2.7)

Then for the whole nucleus, we have

⟨N(p4)|Jµ
EM|N(p2)⟩=

2
3
(2Z+N) f µ − 1

3
(Z+2N) f µ =Z f µ . (2.8)
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Comparing this with the case of scalar QED (Appendix 7.2.),

⟨N(p4)|Jµ
EM|N(p2)⟩=−Qnucl(pµ

4 + pµ
2 )F(q2), (2.9)

where we have defined form factor F(q2) to take into account nucleus structure, we can see

that

Qnucl =Z, f µ =−(pµ
4 + pµ

2 )F(q2). (2.10)

Since we have

⟨N|ūLγµuL|N⟩= 1
2
⟨N|ūγµu|N⟩− 1

2
⟨N|ūγµγ5u|N⟩, (2.11)

⟨N|d̄LγµdL|N⟩= 1
2
⟨N|d̄γµd|N⟩− 1

2
⟨N|d̄γµγ5d|N⟩, (2.12)

and the fact that the QED nature is independent of γµγ5 terms, we can split the nucleus

current as

(gu
L +gu

R)⟨N(p4)|ūLγµuL|N(p2)⟩ ≡ gu
V

1
2
⟨N|ūγµu|N⟩= 1

2
gu

V (2Z+N) f µ , (2.13)

and

(gd
L +gd

R)⟨N(p4)|d̄LγµdL|N(p2)⟩ ≡ gd
V

1
2
⟨N|d̄γµd|N⟩= 1

2
gd

V (Z+2N) f µ , (2.14)

hence the nucleus current becomes

⟨N(p4)|JNCµ |N(p2)⟩=−
[
Z(2gu

V +gd
V )+N(gu

V +2gd
V )
]
(pµ

4 + pµ
2 )F(q2)

=−
[
Zgp

V +Ngn
V

]
(pµ

4 + pµ
2 )F(q2). (2.15)

Substituting the following relations for the couplings

gu
L =

1
2
− 2

3
sw2, gu

R =−2
3

sw2, gd
L =−1

2
+

1
3

sw2, gd
R =

1
3

sw2, (2.16)
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where sw2 ≡ sin2 θW , we find

⟨N(p4)|JNCµ |N(p2)⟩=−
[
Z(1/2−2sw2)+N(−1/2)

]
(pµ

4 + pµ
2 )F(q2)

=
1
2

QSM(pµ
4 + pµ

2 )F(q2), (2.17)

with the weak charge defined by (Scholberg, 2005)

QSM =N−Z(1−4sw2). (2.18)

Here the subscript indicates that the charge corresponds to the SM current.

The scattering amplitude for the CEνNS in Eq.(2.3) then becomes

M =
GF√

2
gν

LQSMν̄(p3)γµ(1− γ5)ν(p1)(p4µ + p2µ)F(q2). (2.19)

The average square of this amplitude can be written as

⟨|M|2⟩= ∑
ss′

|M|2 = 1
2

G2
FQ2

SM|F(q2)|2(gν
L)

2Lµν
ν W N

µν (2.20)

where we note that neutrino appears only in the left-handed state so that no need for spin

averaging factor. We have defined the neutrino tensor Lµν
ν and nucleus tensor W N

µν . We can

express both of them as

Lµν
ν = ∑

ss′
[ν̄s(p3)γµ(1− γ5)νs′(p1)][ν̄s(p3)γν(1− γ5)νs′(p1)]

†

= Tr[ /p3γµ(1− γ5) /p1γν(1− γ5)]

= 8(pµ
1 pν

3 + pν
1 pµ

3 − p1 p3gµν − iεαµβν p3α p1β ),

(2.21)

and

W N
µν = (p2µ + p4µ)(p2ν + p4ν). (2.22)

Note that the following completeness relations for particle u and antiparticle v have been
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implemented

∑
s
= us(p)ūs(p) = /p+m, ∑

s
= vs(p)v̄s(p) = /p−m. (2.23)

Contracting both terms we have

Lµν
ν W N

µν =8
[
2(p1 · (p2 + p4))(p3 · (p2 + p4))− (p1 · p3)(p2 + p4)(p2 + p4)

− iεαµβν p3α p1β (p2µ + p4µ)(p2ν + p4ν)
]
.

(2.24)

The last term is zero due to symmetric-antisymmetric multiplication. Hence we have

⟨|M|2⟩=4G2
FQ2

SM|F(q2)|2(gν
L)

2
[
2(p1 · p2 + p1 · p4)(p2 · p3 + p3 · p4)

− (p1 · p3)(p2
2 +2p2 · p4 + p2

4)
]
.

(2.25)

Implementing the four-vector momentum contractions to the |M̄|2, we find

⟨|M|2⟩= 4G2
FQ2

SM|F(q2)|2(gν
L)

22
[
2m2

NEν(Eν −T )+m2
NE2

ν

+m2
N(Eν −T )2 −m3

NT −m2
NT (mN +T )

]
= 32G2

FQ2
SM|F(q2)|2(gν

L)
2m2

NE2
ν

(
1− T

Eν
− mNT

2E2
ν

)
.

(2.26)

Applying this result to the differential cross-section as in Eq.(A.34), we obtain

[dσ
dT

]
SM

=
G2

FQ2
SMmN |F(q2)|2

4π

(
1− mNT

2E2
ν
− T

Eν

)
. (2.27)

The nuclear form factor F(q2) approaches to 1 in the coherent limit q2 → 0.

2.1.2. Dirac Nucleus

The nucleus can also be considered as a Dirac particle. We can use the usual vector

current to replace the scalar of Eq.(2.15), so that

⟨N(p4)|Jµ
EM|N(p2)⟩= [Zgp

V +Ngn
V ]ū(p4)γµu(p2)F(q2). (2.28)
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The scattering amplitude then becomes

M =
GF√

2
QSMF(q2)gν

L ν̄(p3)γµ(1− γ5)ν(p1)ū(p4)γµu(p2). (2.29)

Note that we could also have antineutrino, but the final result will not be changed with this

structure. The contribution of the new nucleus term is the only difference here as we compute

the averaged square amplitude, which has the following tensor

W N
µν = ∑

ss′
[ūs(p4)γµus′(p2)][ūs(p4)γνus′(p2)]

†

= Tr[( /p4 +mN)γµ( /p2 +mN)γν ]

= 4(p4µ p2ν + p4ν p2µ − (p4 · p2 −m2
N)gµν).

(2.30)

Contracting the neutrino and the nucleus tensor, we obtain

Lµν
ν W N

µν =32(pµ
1 pν

3 + pν
1 pµ

3 − p1 p3gµν − iεαµβν p3α p1β )

× (p4µ p2ν + p4ν p2µ − (p4 · p2 −m2
N)gµν)

=32
[
2(p1 p4)(p2 p3)+2(p1 p2)(p3 p4)−2(p1 p3)(p2 p4)

+2(p1 p3)(p2 p4 −m2
N)
]

=64
[
(p1 p4)(p2 p3)+(p1 p2)(p3 p4)− (p1 p3)m2

N
]
.

(2.31)

Using the lab frame, the four-vector momentum contraction gives

Lµν
ν W N

µν = 64
[
m2

N(Eν −T )2 +E2
νm2

N −m3
NT
]

= 128m2
NE2

ν

[
1− T

Eν
− mNT

2E2
ν
+

T 2

2E2
ν

]
.

(2.32)

The cross section then becomes

[dσ
dT

]
SM

=
G2

FQ2
SMmN |F(q2)|2

4π

(
1− mNT

2E2
ν
− T

Eν
+

T 2

2E2
ν

)
. (2.33)

We notice that only the last term distinguishes this result from the spinless case. In addition,

for lower recoil nuclear energy limit, the last two terms can be neglected and we have the

same form from both considerations.

The form factor in the differential cross-section (2.27) determines inner structure of
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nucleus target. There are many possibilities for choosing it. In this study, we use the Helm

parameterization (Helm, 1956) for the form factor:

FHelm(q2) = 3
j1(qR)

qR
e−

1
2 q2s2

. (2.34)

Here, j1(x) = sinx/x2 − cosx/x is the first order Spherical Bessel function. Nuclear radius

is given by R =
√

c2 + 7
3π2 −5s2, with the nuclear parameters c = (1.23A1/3 − 6) fm and

s = 0.9 fm (Duda et al., 2007). Notice that A is the nucleus mass number. The form factor

for proton and neutron are considered equal. Note that relation of the momentum transfer

obeys Q2 =−q2 = 2MT .

2.2. Criteria of Coherency

Coherency interaction occurs in low energy-momentum transfer. Perfect coherency

takes place as q2 → 0, so that nucleons can be considered as point-like particles (Kerman et.

al., 2016). The dynamics of the strong interactions can simply be ignored.

Formulation of the criteria of coherency can be obtained from the weak charge in

(2.18) by including the proton and neutron form factor as

Γ(q2) = (εZFZ−NFN)2, ε ≡ 1−4sw2 ≈ 0.045. (2.35)

Quantification of the coherency can be utilized by considering alignment of the phase angle,

ϕ(q2) that can be from 0◦ to 90◦, from amplitudes of two nonidentical nucleons. Scattering

from the center of the involved nucleons leads to quantum mechanics (QM) superpositions.

The above formulation then becomes (Sharma et. al., 2021)

Γ(q2)≡ ΓQM(q2) =Zε2[1+α(Z−1)]+N[1+α(N−1)]−2αεZN

= (εZ−N)2α(q2)+(ε2Z+N)[1−α(q2)].
(2.36)

The parameter α ≡ cosϕ(q2) quantifies the degree of coherency. With this relation, full

coherency occurs as α = 1, while the case of total decoherency is α = 0. Furthermore,

another parameter has been introduced to directly connect QM coherency and form factor
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with the observed cross-section. The former is given by

ξ (q2) = α +(1−α)
ε2Z+N

(εZ−N)2 , (2.37)

while the latter is

ξ 2(q2) =
(εZFZ−NFN)2

(εZ−N)2 . (2.38)

This parameter is the cross-section reduction fraction.

Behavior of α and ξ , which is equivalent to the Helm form factor denoted F2
A in

(Sharma et. al., 2021), using several different nucleus target is shown in Figure 10. Fluxes

from several neutrino sources were implemented. It can be seen that the full coherency

criteria, α ∼ 1, could be studied better using reactor experiments.

Figure 10. Behavior of α and ξ for several targets with
neutrino flux from π-DAR, reactor and solar
neutrino (Sharma et. al., 2021).

2.3. Event Rates and Number of Events

The general form of event rate according to nuclear recoil energy is

dR
dT

=
∫ Eνmax

Eνmin

dEν
dΦ(Eν)

dEν

dσ(Eν ,T )
dT

. (2.39)
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It is the convolution of neutrino spectrum, dΦ/dEν , and differential cross-section of the pro-

cess.In the case of a new physics appearance, only the differential cross-section will change.

Accordingly, the number of events detected in observation can be written as

Nevent = Ntar

∫ Tmax

Tth

dT
dR(T,Eν)

dT
, (2.40)

where Ntar = 2mtarNA/mx is the total number of target nucleons with mass target mtar, molar

mass of the involved x-atom mx, and the Avogadro’s number NA = 6.022× 1023. Uncer-

tainty from observation can not be neglected so that the event numbers must also include the

efficiency of an experiment.

2.4. CEνNS Observations

CEνNS gives relatively a large cross-section comparing to other processes involving

neutrino so far. An abundance of neutrino sources that meet the detection criteria from

terrestrial sources, solar, atmospheric as well as artificial ways like accelerators and detectors

would attract scientific activity in near future. The difficulty of detecting the process comes

from the nuclear recoil energy that lies in a few keV scales. This challenging objective has

finally been witnessed by the advancement of accelerator neutrino technology in recent years

by COHERENT collaboration (Akimov et al., 2017).

COHERENT collaboration detected the CEνNS with neutrino energies less than 10

MeV. This collaboration is located at the Spallation Neutron Source (SNS) which runs the

most intense neutron pulse have been known. In this experiment, heavy target such as mer-

cury is bombarded by high-energy proton. It then produces a pion-stopped source for fab-

ricating neutrinos (πDAR process) with three types: electron neutrino, muon neutrino, and

muon antineutrino. These neutrinos neutrino-energy fluxes satisfy the Michel spectrum (Aki-
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mov et al., 2017)

[dΦ(Eν)

dEν

]
νµ

= ηδ
(

Eν −
m2

π −m2
µ

2mπ

)
, (2.41)[dΦ(Eν)

dEν

]
ν̄µ

= η
64E2

ν
m3

µ

(
 −

)
, (2.42)

[dΦ(Eν)

dEν

]
νe
= η

192E2
ν

m3
µ

(1
2
− Eν

mµ

)
. (2.43)

Here η = rNPOT/4πL2 is the normalization factor, where according to the COHERENT

first detection, the number of neutrinos per flavor produced each proton on target (POT) is

r = 0.08 with NPOT = 1.76× 1023, and detector distance from source is L = 1930 cm. The

data was taken during 308.1 days running. Figure 11 shows the neutrino spectral according

to those forms with the η sets to unity. It can be seen that there is an energetic νµ flux around

0 10 20 30 40 50
E (MeV)

0.00

0.01

0.02

0.03

0.04

d
/d

E
 [

=
1]

e

Figure 11. Neutrino flux from π-DAR source with η = 1.

30 MeV which comes from the direct product of decaying pion at rest. For example, neutrino

for two different lifetimes:

π+ → νµ +µ+ (26 ns), µ+ → ν̄µ +νe + e+ (2200 ns). (2.44)

Being a scintillation-based, the COHERENT experiment measures the number of pho-

toelectrons (PE), nPE of CEνNS events. The differential rate that depends on the nuclear re-

coil energy is related to the electron recoil energy with quenching factor Q(T ). This quantity

4 −
3 Eν

mµ



30

can then be converted to PE using (Papoulias, 2020)

nPE = Q(T )LY T, (2.45)

with Q(T ) = Tee/T is quenching factor, the ratio between emitted scintillation light in nu-

clear and electron recoils, and LY = 13.348PE/keVee is light yield, where keVee refers to

electron recoil energy. For this work, we use the first COHERENT data which gives

nPE = 1.17
( T

keV

)
. (2.46)

The factor 1.17 comes from energy independent Q with 8.78±1.66% (Akimov et al., 2017).

Also from COHERENT, the efficiency function of the observation is

ε(x) =
k1

1+ e−k2(x−x0)
Θ(x), (2.47)

with k1 = 0.6655 and k2 = 0.4942, and x0 = 10.8507, where the Heaviside function satisfies

Θ(x) =


0, x < 5

0.5, 5 ≤ x < 6

1, x ≥ 6.

(2.48)

However, the full coherency was predicted will be achieved from reactors or solar neu-

trino experiments (Kerman et. al., 2016). During the preparation of this thesis, CONUS Col-

laboration has announced their result of CEνNS observation from neutrino detector (Bonet

et al., 2020). The nowadays active collaborations that suitable for detecting CEνNS are

summarized in Table 2, along with their detector target.

Detection of CEνNS will surely offer a new perspective of understanding other phe-

nomena in nature. Any deviation from SM prediction may indicate occurrences of new

physics so that it can be used to explain any BSM proposal. The process is also predicted to

be dominant in the core-collapse of a supernova (SN), as well as other astrophysical and ter-

restrial events. The subject of direct detection of weakly interacting massive particle (WIMP)

as one of the most probable dark matter candidate has also been affected since their similar
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Table 2. Some suitable experiments around the globe for detecting CEνNS.

Experiment Detector Source Location Reference
COHERENT CsI, HPGe, etc. πDAR USA (Akimov et al., 2017)

CONNIE Si CCDs Reactor Brazil (Aguilar-Arevalo et al., 2019)
CONUS HPGe Reactor Germany (Bonet et al., 2020)

Darkside-LM LAr Sun, SN Italy (Agnes et al., 2018)
LUX-ZEPLIN Dual-phase LXe Sun, SN USA (Akerib et al., 2020)

MINER Cryogenic Ge/Si Reactor Brazil (Agnolet et al., 2016)
NEWS-G Spherical Counters Reactor Canada (Arnaud et al., 2018)

NuCLEUS Cryogenic CaWO4 Reactor Germany (Rothe et al., 2020)
RED-100 Dual-phase LXe Reactor Russia (Akimov et al., 2016)

RICOCHET Ge, Zn bolometers Reactor France (Billard et al., 2017)
SuperCDMS Cryogenic Ge/Si Sun, SN Canada (Asamar et al., 2019)

TEXONO p-PCGe Reactor Taiwan (Wong, 2015)
Xenon NT Dual-phase LXe Sun, SN Italy (Aprile et al., 2017)

nuclear recoil energy behavior and also from the irreducible neutrino background.



3. GENERAL NEUTRINO INTERACTIONS

Below the electroweak symmetry breaking energy scale, other types of neutrino in-

teractions with other fundamental particles may come into consideration for new physics

phenomena. Along with vector and axial-vector types, other Lorentz invariant bilinear com-

binations may also be introduced at this low scale. From this spirit, we consider a model-

independent extension to the SM Lagrangian to accommodate the new mediators for each

interactions. Only the interaction of a neutrino with nucleon (proton and neutron), will be

focused on in this thesis. Criteria of coherency is considered during the process, so that

instead of to each quarks, neutrino is considered to elastically scattered off nucleus.

3.1. Non-standard Interactions of Neutrino

One of the widely studied models in search of new physics BSM is the non-standard

interaction (NSI) of neutrinos (Davidson et al., 2003). The model introduces a new type

of contact interactions of neutrinos with matter which differs from the SM theory (Miranda

and Nunokawa, 2015). In general, it can induce a neutral current (NC) as well as charge

current (CC) processes. Both cases suggest the presence of a new mediator with heavier

mass (Berezhiani and Rossi, 2002) or in the same order with the EW theory (Farzan and

Shoemaker, 2016). Particular to CEνNS, only the NC case is concerned. Neutrino with the

NSI influences quarks inside a nucleus, which could interact either as a non-universal flavor

conserving (FC) or flavor violating (FV) process. In general, the model is formulated as

LNSI
e f f =−2

√
2GF ∑

ab=e,µ,τ
ε

f P(L,R)
ab (ν̄aγµPLνb)( f̄ γµP(L,R) f ), (3.1)

where f denotes involved fermion, a and b denote neutrino flavors and ε f P
ab is the NSI param-

eterization. This form assumes low-energy interaction below the EW scale, hence neutrino

interaction with other particles considered as four fermion point. Considering only the first

quark family, we can change f with q that corresponds to u or d quarks, the relevant La-
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grangian for CEνNS process can be written as

LNSI
e f f =

GF√
2

ν̄aγµ(1− γ5)νbq̄γµ(εqV
ab − εqA

ab γ5)q. (3.2)

This formula describes the NC interaction of neutrino with quarks. We only consider the

first generation of quarks, which is the constituent of the nucleon in our hitherto knowl-

edge. The parameter εqV
ab and εqA

ab represent the NSI vector and axial-vector interaction,

respectively. These new interactions, if we compare to the Fermi theory, are proportional to

ε ≈ g2
X m2

W/(g2m2
X) where gX is a coupling constant and mX the mass of a new mediator.

Consider spinless nucleus, neutral current from the quark case is

⟨N(p4)|Jµ
NSI|N(p2)⟩= (εuV

ab ⟨N|ūγµu|N⟩+ εuV
ab ⟨N|d̄γµd|N⟩)F(q2)

= (εuV
ab (2Z+N)+ εuV

ab (2N+Z))(pµ
4 + pµ

2 )F(q2).
(3.3)

The total neutral current then becomes

⟨N(p4)|Jµ
NC|N(p2)⟩= ⟨N(p4)|Jµ

SM + Jµ
NSI|N(p2)⟩

= ⟨N|ūγµ [(gu
V + εuV

ab )− (1+ εuA
ab )]u

+ d̄γµ [(gd
V + εdV

ab )− (1+ εdA
ab )]d|N⟩(pµ

4 + pµ
2 )F(q2),

(3.4)

and hence neglecting the axial-vector case

⟨N|Jµ
NC|N⟩=[(gu

V + εuV
ab )(2Z+N)+(gd

V + εud
ab )(Z+2N)](pµ

4 + pµ
2 )F(q2)

=
1
2

2[Z(1/2−2sin2 θW +2εuV
ab + εdV

ab )

+N(−1/2+ εuV
ab +2εdV

ab )](pµ
4 + pµ

2 )F(q2).

(3.5)

Comparing with (2.17), we see the same form. Hence, the different term from the SM

differential cross-section is

Q2
NSI = 4 ∑

a=e,µτ

[
N
(1

2
+ εuV

aa +2εdV
aa

)
+Z

(1
2
−2s2

W +2εuV
aa + εdV

aa

)]2

+4 ∑
a̸=b=e,µτ

[
N(εuV

ab +2εdV
ab )+Z(2εuV

ab + εdV
ab )
]2 . (3.6)

As the parameter ε(u,d)Vab vanishes, we obtain the SM form.
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3.2. Simplified Model

A simplified model in general is an alternative type of model in high-energy physics

to relate theoretical prediction with experimental data from measurements. It extends the

SM with a proposed BSM scenario of new particles. Experimental parameters from this

kind of model are considering only new masses and cross-sections as well as branching

ratios, while the common full extensions of BSM involve plenty of particles with decay chain

accordingly. Hence, it is important to note that simplified models do not represent the actual

physics beyond the SM (McCoy and Massimi, 2018). Nevertheless, explaining simplified

models still worth consideration such as embedding the model which can be dependent or

independent to possible SM extension. Alwall and Toro 2009 for example proposed four

simplified models which contain 2-3 masses and 4-5 branching ratios in order to explain

data from a collider experiment quantitatively.

From the above explanation, we consider general new neutrino interactions, namely

scalar, pseudoscalar, vectorial, axial-vector, (Cerdẽno et al., 2016) and tensor (Barranco et

al., 2012). Each of these is considered to carry light masses and hence couple to neutrinos

and quark constituents of the nucleus. We note that effective neutrino-quark approxima-

tion that also consider these types had been conducted recently (Sierra et. al., 2018). The

following equations are the corresponding Lagrangians for each considered scenario:

LS ⊃ [(gνSν̄RνL +h.c.)+gqSq̄q]S, (3.7)

LP ⊃ [(gνPν̄RνL +h.c.)− igqPγ5q̄q]P, (3.8)

LV ⊃ [gνV ν̄LγµνL +gqV q̄γµq]Vµ , (3.9)

LA ⊃ [gνAν̄LγµνL −gqAq̄γµγ5q]Aµ , (3.10)

LT ⊃ [gνT ν̄Rσ µννL −gqT q̄σ µνq]Tµν , (3.11)
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where σµν = i
2 [γµ ,γν ] =

i
2(γµγν − γνγµ). In what follows, we match the quark level current

to the nucleus scale. It is performed by first connecting the quark Lagrangian to the nucleon

level following (Cirelli et al., 2013), and then the obtained nucleon case to the nucleus level

(Kahlhoefer, 2010). After that, we calculate the amplitudes for each possibility to obtain the

predicted differential cross-section. Results from this section will be analyzed using the data

experiment in the next chapter.

3.2.1. Matching the nucleus current

3.2.1.1. Scalar Interaction

From quark q to nucleon level n (p or n), we have

LSn = ⟨n|LS|n⟩= ∑
n,q

gSqS⟨n|q̄q|n⟩, (3.12)

where

⟨n|q̄q|n⟩= fnT q
mn

mq
n̄n. (3.13)

The proton, neutron, and quark masses are represented by mp, mn, and mq, respectively.

Parameter fnT q represents the scalar charge of the quark for n= p,n.

From this nucleon level, we may proceed further to the nucleus by n̄n→ ⟨N|n̄n|N⟩.

This case needs to consider the momentum transfer qµ = pµ
4 − pµ

2 as well as the initial

and final momentum, pµ
2 and pµ

4 , of the nucleus. Defining the total nucleus momentum as

Pµ = pµ
2 + pµ

4 = 2pµ
4 −qµ = 2pµ

2 +qµ , the general form of the current can be written as

⟨N|n̄n|N⟩=N̄NFS1(q2)+ N̄γµqµN
FS2(q2)

mN
+ N̄γµPµN

FS3(q2)

mN

+ N̄σ µνPµqνN
FS4(q2)

m2
N

.

(3.14)

Our ignorance of the inner structure of nucleus is carried in the form factors Fi’s.

They are a function of only scalar q2 in the vertex. We have included the nucleus mass

so that all the form factors have the same dimension. Application of the Dirac equation,
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/p2N(p2) = N̄(p4)/p4 = mNN, gives zero to the second term and 2N̄N to the third nucleus

currents. To the last term we have

N̄(p4)σ µνPµqνN(p2) = N̄
i
2
(γµ(2pµ 4 −qµ)γν − γνγµ(2pµ 2 +qµ))qνN

=
i
2

N̄(2 /p4γν −2γν
/p2 − (γµγν + γνγµ)qµ)qνN

= iN̄( /p4γν − γν
/p2 −qν)qνN

= iN̄(mNγνqν −mNγνqν −q2)N

=−iq2N̄(p4)N(p2),

(3.15)

so that we find N̄N(FS1 +2FS3 − iq2FS4/m2
N), or simply

⟨N|n̄n|N⟩= N̄NFS(q2). (3.16)

For the coefficient of the nucleus level, we can define the following expression according to

the number of proton Z and neutron N of the nucleus as (Cirelli et al., 2013)

gSN ≡ ∑
n,q

gSq fnT q
mn

mq
=Z∑

q
gSq f p

T q
mp

mq
+N∑

q
gSq f n

T q
mn

mq
. (3.17)

We only consider the light quarks content of the nucleus in writing this equation. Therefore,

the Lagrangian of scalar interaction for nucleus then becomes

LSN = gSNSN̄NFS(q2). (3.18)

This form will enter the calculation of the amplitude.

3.2.1.2. Pseudoscalar Interaction

From quark to nucleon level, the relation is

LPn = ⟨n|LP|n⟩= ∑
n,q

gPqP⟨n|q̄(−iγ5)q|n⟩, (3.19)



37

where the pseudoscalar interaction of quarks satisfy (Ema et. al., 2021)

⟨n|q̄iγ5q|n⟩= mn

mq
hqn̄iγ5n. (3.20)

We emphasize that pseudoscalar form factor was considered zero. This result is a recent

result taken from lattice approximation. Matching this to the nucleus level, we have n̄γ5n→

⟨N|n̄γ5n|N⟩. As before, we can write the most general form as

⟨N|n̄γ5n|N⟩=N̄γ5NFP1(q2)+ N̄γµγ5qµN
FP2(q2)

mN

+ N̄γµγ5PµN
FP3(q2)

mN
+ N̄σ µνγ5PµqνN

FP4(q2)

m2
N

.

(3.21)

The second term gives 2N̄N and the third is zero. γ5 gives a little difference to the last term

N̄(p4)σ µνγ5PµqνN(p2) =iN̄(p4)γ5( /p4γν − /p2γν −qν)qνN(p2)

=iN̄(p4)(− /p4γ5γνqν − γ5γνqν /p2 − γ5q2)N(p2)

=i2mNN̄(p4)γνγ5qνN(p2)− iq2N̄(p4)γ5N(p2)

=(4m2
N i−q2i)N̄(p4)γ5N(p2),

(3.22)

where before the last line we implement the same process from the second term. We then

obtain N̄γ5N(FP1 +2FP2 +4imNFP4 − iq2FP4/m2
N), which can be simplified as

⟨N|n̄iγ5n|N⟩= N̄iγ5NFP(q2). (3.23)

Considering the number of protons and neutrons of the nucleus as for the scalar case, we

use the following expression for the coefficient which relates new interaction coupling with

quarks

gPN ≡Z∑
q

gPq
mp

mq
hp

q +N∑
q

gPq
mn

mq
hn

q. (3.24)

Then, the Lagrangian for the pseudoscalar interaction becomes

LPN =−igPNPN̄γ5NFP(q2). (3.25)



38

3.2.1.3. Vectorial Interaction

From quark to nucleon level, we have

LVn = ⟨n|LV |n⟩= ∑
n,q

gV qVµ⟨n|q̄γµq|n⟩. (3.26)

Since we are dealing with proton and neutron and assuming equal coupling to all quarks, we

can match the quark current as

⟨n|gV qq̄γµq|n⟩= ⟨n|gVuūγµu|n⟩+ ⟨n|gV d d̄γµd|n⟩

= gV q

[
⟨n|ūγµu|n⟩+ ⟨n|d̄γµd|n⟩

]
= gV q

[
(2Z+N)n̄γµn+(2N+Z)n̄γµn

]
= gV Nn̄γµn,

(3.27)

where we have (Cerdẽno et al., 2016)

gV N = 3gV qA. (3.28)

Matching this to the nucleus level, we write n̄γµn → ⟨N|n̄γµn|N⟩. The general form of

this term can be written as

⟨N|n̄γµn|N⟩=N̄γµNFV 1(q2)+ N̄qµN
FV 2(q2)

mN
+ N̄PµN

FV 3(q2)

mN

+ N̄σ µνqνN
FV 4(q2)

mN
+ N̄σ µνPµN

FV 5(q2)

mN
.

(3.29)

We can implement the following Gordon identity

N̄γµN =
1

2mN
N̄
(
(pµ

4 + pµ
2 )+ iσ µνqν

)
N . (3.30)

It can be directly seen that the third term of the general form consists of the sum of N̄γµN and

N̄σ µνqνN. Moreover, from the process of obtaining Eq.(3.15), the last term proportional to
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N̄qµN. Consequently, we only left with the following

⟨N|n̄γµn|N⟩=N̄γµN
(

FV 1(q2)+2FV 3(q2)
)
+ N̄qµN

(
FV 2(q2)

mN

− i
FV 5(q2)

mN

)
+ N̄σ µνqνN

(
FV 4(q2)

mN
+ i

FV 3(q2)

mN

)
.

(3.31)

At this point, we should notice that for any covariant current Jµ the Ward identity qµJµ = 0

applies. With this necessity, the second term must be zero, and hence the general form

becomes

⟨N|n̄γµn|N⟩=N̄
(

γµFV (q2)+
σ µνqν
2mN

GV (q2)
)

N, (3.32)

where 1/2 at the second term is conventional and form factor corresponds to magnetic dipole

moment. Coherent interaction required that the momentum transfer q is small, compared to

the nucleus mass. Neglecting the second term then, for coherent criteria, we obtain

⟨N|n̄γµn|N⟩=N̄γµNFV (q2). (3.33)

The Lagrangian for vectorial interaction then becomes

LV N = gV NVµ N̄γµNFV (q2). (3.34)

3.2.1.4. Axial-vector Interaction

From quark to nucleon level, we have

LAn = ⟨n|LA|n⟩= ∑
n,q

gAqAµ⟨n|q̄γµγ5q|n⟩. (3.35)

The nucleon current satisfies the following relation

⟨n|q̄γµγ5q|n⟩= 2sµ∆n
q n̄γµγ5n= Sn∆n

q n̄γµγ5n, (3.36)
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where we have defined Sn = 2sµ , with sµ represents the nucleon spin four-vector. The ∆n
q

denotes the axial-vector charge of the quark for n= p,n. Matching this to the nucleus level,

we need n̄γµγ5n→ ⟨N|n̄γµγ5n|N⟩. The general form of this term can be written as

⟨N|n̄γµγ5n|N⟩=N̄γµγ5NFA1(q2)+ N̄γ5qµN
FA2(q2)

mN
+ N̄γ5PµN

FA3(q2)

mN

+ N̄σ µνγ5qνN
FA4(q2)

mN
+ N̄σ µνγ5PνN

FA5(q2)

mN
.

(3.37)

The suitable Gordon identity for this case is

N̄γµγ5N =
1

2mN
N̄
(
(pµ

4 − pµ
2 )γ

5 + iσ µν(pµ
4 + pµ

2 )γ
5
)

N. (3.38)

It makes the last term proportional to N̄γµγ5N and N̄qµγ5N. Moreover, the Dirac equation

gives zero to the third term. So that the remaining term is

⟨N|n̄γµγ5n|N⟩=N̄γµγ5N
(

FA1 +2iFA5

)
+ N̄γ5qµN

(
FA2

mN
− i

FA5

mN

)
+ N̄σ µνγ5qνN

FA4

mN
.

(3.39)

We found no conserved current, so that all terms stay still. The general nucleus current for

the axial-vector case can then be written as

⟨N|n̄γµγ5n|N⟩=N̄

(
γµγ5FA(q2)+

γ5qµ

mN
GA(q2)+

σ µνγ5qν
2mN

HA(q2)

)
N. (3.40)

Appearance of the second term is needed to consider the partially conserved axial current

(Kurylov and Kamionkowski, 2004). Moreover, the third term accounts for the electric

dipole moment. Applying the coherent criteria, the second and the third term can be ne-

glected and we arrive at

⟨N|n̄γµγ5n|N⟩=N̄γµγ5NFA(q2). (3.41)
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For the coefficient part, to include all protons and neutrons of the nucleus, we have (Cirelli

et al., 2013)

gAN ≡Z∑
q

gAqSp∆p
q +N∑

q
gAqSn∆n

q. (3.42)

Hence, the nuclear Lagrangian for axial-vector interaction becomes

LAN = gANAµ N̄γµγ5NFA(q2). (3.43)

3.2.1.5. Tensorial Interaction

From the neutrino term, we have

LTn = ⟨n|LT |n⟩= ∑
n,q

gT qTµν⟨n|q̄σ µνq|n⟩. (3.44)

To the nucleon current, we have

⟨n|q̄σ µνq|n⟩= δn
q n̄σ µνn. (3.45)

From nucleon to nucleus current, n̄σ µνn→ ⟨N|n̄σ µνn|N⟩, the general form for tensorial

interaction can be expressed as

⟨N|n̄σ µνn|N⟩= N̄σ µνNFT1(q
2)+ N̄(γµPν − γνPµ)N

FT2(q
2)

mN

+ N̄(γµqν − γνqµ)N
FT3(q

2)

mN
+ N̄(Pµqν −Pνqµ)N

FT4(q
2)

m2
N

.

(3.46)

Appropriate Gordon identity for this form is

N̄γµγνN =
1

4mN
N̄
(

γν(pµ
4 + pµ

2 )+qµγν
)

N. (3.47)

We can see that the second term will be proportional to

i8mNN̄σ µνN + N̄(γµqν − γνqµ)N,
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which reduces the general form to

⟨N|n̄σ µνn|N⟩= N̄σ µνN
(

FT1 +8iFT2

)
+ N̄(γµqν − γνqµ)N

(FT3

mN
+

FT2

mN

)
+ N̄(Pµqν −Pνqµ)N

FT4

m2
N
.

(3.48)

Redefining the form factors, we can write the general form as

⟨N|n̄σ µνn|N⟩= N̄
(

σ µνFT +
(γµqν − γνqµ)

mN
GT +

(Pµqν −Pνqµ)

m2
N

HT

)
N. (3.49)

Requirement of coherency lead us to neglecting the second and the third term, so that

⟨N|n̄σ µνn|N⟩=N̄σ µνNFT (q2). (3.50)

For the coefficient, we have (Cirelli et al., 2013)

gT N =Z∑
q

gT qδ p
q +N∑

q
gT qδ n

q . (3.51)

The Lagrangian for axial-vector interaction at the nuclear level then becomes

LT N = gT NTµν N̄σ µνNFT (q2). (3.52)

3.2.2. Differential cross-section

We calculate the differential cross-section for each of proposed interaction in this sec-

tion according to the interaction Lagrangians at the nuclear level we have obtained. In doing

so, we notice that the neutrino currents for the scalar (pseudoscalar) can be rewritten as

ν̄RνL =

(
1
2
(1+ γ5)ν

)†

γ0 1
2
(1− γ5)ν =

1
4

ν†(1+ γ5)γ0(1− γ5)ν

= ν̄PLν ,
(3.53)
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while for the vectorial (axial-vector) as

ν̄LγµνL =
(1

2
(1− γ5)ν

)†
γ0γµ 1

2
(1− γ5)ν =

1
4

ν†(1− γ5)γ0γµ(1− γ5)ν

= ν̄γµPLν ,
(3.54)

which is the SM weak current, and for the tensorial as

ν̄Rσ µννL =
(1

2
(1− γ5)ν

)†
γ0σ µν 1

2
(1− γ5)ν

=
1
4

ν†(1− γ5)γ0σ µν(1− γ5)ν = ν̄σ µνPLν .
(3.55)

Moreover, every form factors for every interaction are adapted as the Helm form factor (2.34)

from now on.

3.2.2.1. Scalar Contribution

Following the Feynman rules, the amplitude of the process in the Figure 12 can be

constructed as

−iMS =
[
− igSν ν̄3PLν1

][ −i
q2 −m2

S

][
− igSNN̄4N2F(q2)

]
. (3.56)

In the propagator we have used mS to account the mass of the scalar propagator. We can

ν1(p1) ν(p3)

N(p2) N(p4)

S

Figure 12. CEνNS with scalar mediator.

then rewrite this form as

MS =−1
2

GFQS

q2 −m2
S

ν̄3(1− γ5)ν1N̄4N2F(q2), (3.57)
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where we have defined the scalar coupling as QS = gSνgSN/GF . The averaged amplitude

square then becomes

⟨|M2
S |⟩=

1
2 ∑ |M2|

=
1
2

G2
FQ2

S|F(q2)|2

4(q2 −m2
S)

2 ∑[ν̄3(1− γ5)ν1][ν̄1(1+ γ5)ν3][N̄4N2][N̄2N4]

=
G2

FQ2
S|F(q2)|2

8(q2 −m2
S)

2 Tr
[
/p3(1− γ5)/p1(1+ γ5)

]
Tr
[
(/p4 +mN)(/p2 +mN)

]
=

G2
FQ2

S|F(q2)|2

4(m2
S +2mNT )2 (4p1 · p3)(4p2 · p4 +4m2

N),

(3.58)

and implementing the kinematics we have

⟨|M2
S |⟩=

G2
FQ2

S|F(q2)|2

4(m2
S +2mNT )2 16(mNT )(mN(mN +T )+m2

N)

=
4G2

FQ2
Sm3

N |F(q2)|2

(m2
S +2mNT )2

(
2T +

T 2

mN

)
.

(3.59)

Assuming T ≪ mN and using dσ/dT , we find the differential cross section as

[dσ
dT

]
S
=

G2
FQ2

Sm2
NT |F(q2)|2

4πE2
ν(m2

S +2mNT )2 . (3.60)

3.2.2.2. Pseudoscalar Contribution

The Feynman rules for the process in Figure 13 gives the following amplitude

−iMP =
[
ν̄3(−igPν)

1
2
(1− γ5)ν1

][ −i
q2 −m2

P

][
gPNN̄(−iγ5)NF(q2)

]
. (3.61)

This amplitdue can be rewritten as

MP =−1
2

GFQP

q2 −m2
P

F(q2)ν̄3(1− γ5)ν1N̄4iγ5N2, (3.62)

where the pseudoscalar coupling is QP = gPνgPN/GF . The averaged amplitude square is
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ν1(p1) ν(p3)

N(p2) N(p4)

P

Figure 13. CEνNS with pseudoscalar mediator.

then becomes

⟨|M2
P|⟩=

1
2 ∑ |M2|

=
1
2

G2
FQ2

P|F(q2)|2

4(q2 −m2
P)

2 ∑[ν̄3(1− γ5)ν1][ν̄1(1+ γ5)ν3][N̄4iγ5N2][N̄2iγ5N4]

=
G2

FQ2
P|F(q2)|2

8(q2 −m2
P)

2 Tr
[
/p3(1− γ5)/p1(1+ γ5)

]
×Tr

[
(/p4 +mN)iγ5(/p2 +mN)iγ5

]
=

G2
FQ2

P|F(q2)|2

4(m2
P +2mNT )2 (4p1 · p3)(4p2 · p4 −4m2

N),

(3.63)

and after implementing the kinematics we have

⟨|M2
P|⟩=

G2
FQ2

P|F(q2)|2

4(m2
P +2mNT )2 16(mNT )(mN(mN +T )−m2

N)

=
4G2

FQ2
Pm2

NT 2|F(q2)|2

(m2
P +2mNT )2 .

(3.64)

The differential cross section is then becomes

[dσ
dT

]
P
=

G2
FQ2

PmNT 2|F(q2)|2

8πE2
ν(m2

P +2mNT )2 . (3.65)

3.2.2.3. Vector Contribution

The neutrino current for this case has the same form as the SM. To proceed further, we

note that there is an interference of this new proposed Lagrangian with the SM counterpart.

We start with the new vector interaction. Amplitude for the process in Figure 14 can be
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constructed from the Feynman rules as

−iMV =
[
− igV ν ν̄3γµPLν1

][ −igµν

q2 −m2
V

][
− igV NN̄γµNF(q2)

]
. (3.66)

We have used mV to denote the mass of the vectorial mediator. We can rewrite this as

ν1(p1) ν(p3)

N(p2) N(p4)

V

Figure 14. CEνNS with vectorial mediator.

MV =−1
2

GFQV

q2 −m2
V

ν̄3γµ(1− γ5)ν1N̄4γµN2F(q2), (3.67)

with QV = gV νgV N/GF . The averaged amplitude square then becomes

⟨|M2
V |⟩=

1
2 ∑ |M2

V |

=
1
2

G2
FQ2

V |F(q2)|2

4(q2 −m2
V )

2 ∑[ν̄3γµ(1− γ5)ν1][ν̄1γν(1+ γ5)ν3]

× [N̄4γµN2][N̄2γνN4]

=
G2

FQ2
V |F(q2)|2

8(q2 −m2
V )

2 Tr
[
/p3γµ(1− γ5)/p1γν(1+ γ5)

]
×Tr

[
(/p4 +mN)γµ(/p2 +mN)γν

]
=

G2
FQ2

V |F(q2)|2

8(q2 −m2
V )

2 2[4(pµ
1 pν

3 + pν
1 pµ

3 − p1 · p3gµν)

−4iεµανβ p3α p1β ]

× [4(p2µ p4ν + p2ν p4µ − p2 · p4gµν)+4gµνm2
N ]

=
G2

FQ2
V |F(q2)|2

8(q2 −m2
V )

2 32
[
2(p1 · p2)(p3 · p4)+2(p1 · p4)(p2 · p3)

−2(p1 · p3)m2
N

]

(3.68)
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and by implementing the kinematics we have

⟨|M2
V |⟩=

1
8

G2
FQ2

V |F(q2)|2

(m2
V +2mNT )2 128m2

NE2
ν

[
1− mNT

2E2
ν
− T

Eν
+

T 2

2E2
ν

]
. (3.69)

We can directly use this form to obtain the differential cross-section. But since there is an

interference to the SM, we need to consider the sum of both amplitudes Mtot =MSM −MV ,

which is nothing but

Mtot =
[GFQSM

2
√

2
+

GFQV

2(q2 −m2
V )

]
ν̄3γµ(1− γ5)ν1N̄4γµN2F(q2). (3.70)

The averaged amplitude square then becomes

⟨|Mtot |2⟩=
1
2
|Mtot |2

=
1
2

1
4
|F(q2)|2

[G2
FQ2

SM
2

+
G2

FQ2
V

(q2 −m2
V )

2 +
2G2

FQSMQV√
2(q2 −m2

V )

]
×128m2

NE2
ν

[
1− mNT

2E2
ν
− T

Eν
+

T 2

2E2
ν

]
=8m2

N |F(q2)|2
[G2

FQ2
SM

2
+

G2
FQ2

V

(q2 −m2
V )

2 +
2G2

FQSMQV√
2(q2 −m2

V )

]
× (2E2

ν −mNT ).

(3.71)

The total differential cross section of this process then becomes

[dσ
dT

]
SM+V

=

[
G2

FQ2
SM

2
+

G2
FQ2

V

(m2
V +2mNT )2 −

2G2
FQV QSM√

2(m2
V +2mNT )

]

× mN(2E2
ν −mNT )|F(q2)|2

4πE2
ν

.

(3.72)

Noticing that the first term is nothing but the SM case, the second and the third term respec-

tively gives the new vector and the interference term.
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3.2.2.4. Axial-vector Contribution

Feynman rules for the process in Figure 15 gives the following amplitude

−iMA =
[
− igAν ν̄3γµPLν1

][ −igµν

q2 −m2
A

][
− igANN̄γµγ5NF(q2)

]
, (3.73)

or nothing but

ν1(p1) ν(p3)

N(p2) N(p4)

A

Figure 15. CEνNS with axial-vector mediator.

MA =−1
2

GFQA

q2 −m2
A

F(q2)ν̄3γµ(1− γ5)ν1N̄4γµγ5N2, (3.74)

with the axial-vector coupling is QA = gAνgAN/GF . The averaged amplitude square then

becomes

⟨|M2
A|⟩=

1
2 ∑ |M2

A|

=
1
2

G2
FQ2

A|F(q2)|2

4(q2 −m2
A)

2 ∑[ν̄3γµ(1− γ5)ν1]

[ν̄1γν(1+ γ5)ν3][N̄4γµγ5N2][N̄2γνγ5N4]

=
G2

FQ2
A|F(q2)|2

8(q2 −m2
A)

2 Tr
[
/p3γµ(1− γ5)/p1γν(1+ γ5)

]
×Tr

[
(/p4 +mN)γµγ5(/p2 +mN)γνγ5

]
=

G2
FQ2

A|F(q2)|2

8(q2 −m2
A)

2 2[4(pµ
1 pν

3 + pν
1 pµ

3 − p1 · p3gµν)

−4iεµανβ p3α p1β ]

× [4(p2µ p4ν + p2ν p4µ − p2 · p4gµν)−4gµνm2
N ].

(3.75)



49

Implementing the kinematics we have

⟨|M2
A|⟩=

G2
FQ2

A|F(q2)|2

8(q2 −m2
A)

2 32
[
2(p1 · p2)(p3 · p4)+2(p1 · p4)(p2 · p3)

+2(p1 · p3)m2
N

]
=

G2
FQ2

A|F(q2)|2

8(m2
A +2mNT )2 128m2

NE2
ν

[
1+

mNT
2E2

ν
− T

Eν
+

T 2

2E2
ν

]
.

(3.76)

Similar to the vector case, here we encounter interference with the SM case. The

total amplitude then becomes Mtot =MSM −MA, where now we consider the SM case also

contain axial-vector term

MSM =
GF√

2
gν

LF(q2)[ν̄3γµ(1− γ5)ν1][N̄4γµ(QSM − γ5Qa)N2]. (3.77)

We consider the form of Qa from (Cerdẽno et al., 2016)

Qa = SN(∆
(p)
u −∆(p)

d −∆(p)
s ). (3.78)

The averaged amplitude square, using the kinematic from previous section, then becomes

⟨|Mtot |2⟩=
1
2 ∑ |Mtot |2

=
1
2
|F(q2)|2

{
G2

FQ2
SM

8
128m2

NE2
ν

[
1− mNT

2E2
ν
− T

Eν
+

T 2

2E2
ν

]
+
[G2

FQ2
a

8
+

G2
FQ2

A

4(q2 −m2
A)

2 −
G2

FQaQA

2
√

2(q2 −m2
A)

]
×
[
1+

mNT
2E2

ν
+

T
Eν

+
T 2

2E2
ν

]
+

GFQSM

2
√

2

[ GFQA

2(q2 −m2
A)

− GFQa

2
√

2

]
× [ν̄3γµ(1− γ5)ν1][ν̄1γν(1− γ5)ν3]

×
(
[N̄4γµN2][N̄4γνγ5N2]+ [N̄4γµγ5N2][N̄4γνN2]

)}
,

(3.79)
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and after calculating the last term, we have

⟨|Mtot |2⟩=
1
2
|F(q2)|2

{
G2

FQ2
SM

8
128m2

NE2
ν

[
1− mNT

2E2
ν
− T

Eν
+

T 2

2E2
ν

]
+
[G2

FQ2
a

8
+

G2
FQ2

A

4(q2 −m2
A)

2 −
G2

FQaQA

2
√

2(q2 −m2
A)

]
×128m2

NE2
ν

[
1+

mNT
2E2

ν
− T

Eν
+

T 2

2E2
ν

]
+

GFQSM

2
√

2

[ GFQA

2(q2 −m2
A)

− GFQa

2
√

2

]
128m2

NE2
ν

[
1−
(
1− T

Eν

)2
]}

.

(3.80)

Simplifying this we find (and using q2 =−2mNT )

⟨|Mtot |2⟩= 8G2
Fm2

NE2
ν |F(q2)|2

{
Q2

SM

[
1− mNT

2E2
ν

]
+Q2

a

[
1+

mNT
2E2

ν

]
−QSMQa

[2EνT
E2

ν

]
+

4QaQA√
2(m2

A +2mNT )

[
1+

mNT
2E2

ν

]
− QSMQA√

2(m2
A +2mNT )

[2EνT
E2

ν

]
+

2Q2
A

(m2
A +2mNT )2

[
1+

mNT
2E2

ν

]}
,

(3.81)

where the first three terms are for the SM with axial-vector only and we have neglected terms

with order of (T 2/E2
ν). Explicitly, the differential cross section of the SM is

[dσ
dT

]
SM+a

=
G2

FmN |F(q2)|2

4π

[
(Q2

SM +Q2
a)− (Q2

SM −Q2
a)

mNT
2E2

ν

−2QSMQa
T
Eν

]
.

(3.82)

Notice that as QA → 0, we obtain again the SM case. We then find the differential cross

section for the new axial-vector as

[dσ
dT

]
A
=

G2
FQ2

AmN |F(q2)|2(2E2
ν +mNT )

4πE2
ν(m2

A +2mNT )2 , (3.83)

and the interference term as

[dσ
dT

]int

SM+a+A
=

G2
FQaQAmN |F(q2)|2(2E2

ν +mNT )
2
√

2πE2
ν(m2

A +2mNT )

− G2
FQSMQAmN |F(q2)|2T

2
√

2πEν(m2
A +2mNT )

.

(3.84)
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It is however found that the axial-vector term of SM is negligible for heavy nucleus (Papou-

lias and Kosmas, 2018). Therefore we neglect the Qa term and hence the new axial-vector

directly added with the SM signal in this work.

3.2.2.5. Tensor Contribution

The amplitude of the process in Figure 16 can be obtained from Feynman rules as

−iMT =
[
− igT ν ν̄3σ µνPLν1

][−igµµ ′gνν ′

q2 −m2
T

][
− igT NN̄σ µ ′ν ′

NF(q2))
]
, (3.85)

where mT represents mass of the tensorial mediator. Note that here we naively use the

ν1(p1) ν(p3)

N(p2) N(p4)

T

Figure 16. CEνNS with tensorial mediator.

propagator for the tensor field mediator. We can then rewrite the amplitude as

MT =−1
2

GFQT

q2 −m2
T

F(q2)ν̄3σ µν(1− γ5)ν1N̄4σµνN2, (3.86)

where QT = gT νgT N/GF . The averaged amplitude square then becomes

⟨|M2
T |⟩=

1
2
|M2|

=
1
2

G2
FQ2

T |F(q2)|2

4(q2 −m2
T )

2 ∑ 1
16

[ν̄3(γµγν − γνγµ)(1− γ5)ν1]

× [ν̄1(1+ γ5)(γαγβ − γβ γα)ν3]

× [N̄4(γµγν − γνγµ)N2][N̄2(γαγβ − γβ γα)N4]

=
1

128
G2

FQ2
T |F(q2)|2

(q2 −m2
T )

2 Tr[ /p3(γµγν − γνγµ)(1− γ5) /p1(1+ γ5)

× (γαγβ − γβ γα)]Tr[ /p4(γµγν − γνγµ) /p2(γαγβ − γβ γα)],

(3.87)
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and using Mathematica to compute the traces, we find

⟨|M2
T |⟩=

256G2
FQ2

T |F(q2)|2

(m2
T +2mNT )2

[
1− T

Eν
+

T 2

4E2
ν
− mNT

4E2
ν

]
, (3.88)

and for T ≪ Eν , then we have

⟨|M2
T |⟩=

256G2
FQ2

T |F(q2)|2

(m2
T +2mNT )2

(
1− mNT

4E2
ν

)
. (3.89)

Therefore, the differential cross section becomes

[dσ
dT

]
T
=

2G2
FQ2

T mN |F(q2)|2(4E2
ν −mNT )

πE2
ν(m2

T +2mNT )2 . (3.90)

3.3. Summary of Generalized Interactions

The NSI gives a factor correction to the SM which come from the NSI charge QNSI .

The charge provides deviation from the SM according to how neutrinos interact with quarks

inside the nucleus. There are two terms in general which consist of the FC plus the FV case

of neutrino. The FC case would change value of the SM factor if the same neutrino flavor

observed from initial and final state (i.e. εee,εµµ ,ετ,tau), while the FV case would add an

additional term if neutrino flavor changes (i.e. εeµ ,εeτ ,εµe,εµτ ,εe,tau,εµ,tau).

The simplified model provides five possible new interactions that come from the most

general bilinear combination. Each of which proposes a light new mediator with the cor-

responding coupling to the neutrino and quark constituent of the nucleus. In general, the

differential cross-section of each interaction can be summarized as in Table 3.

Table 3. Summary of quantities from simplified model.

New Lagrangian Nucleus-coupling Differential Cross-section
(3.7) (3.17) (3.60)
(3.8) (3.24) (3.65)
(3.9) (3.28) (3.72)
(3.10) (3.42) (3.83)
(3.11) (3.51) (3.90)



4. NUMERICAL RESULTS AND DISCUSSIONS

In this chapter, we present phenomenological predictions of the CEνNS in the frame-

work of general neutrino interactions. We assign benchmarks in accordance with the CO-

HERENT (Akimov et al., 2017), and also from detector such as the TEXONO (Kerman et.

al., 2016), CONUS (Bonet et al., 2020), and CONNIE (Aguilar-Arevalo et al., 2019). Some

properties of these experiments that we utilize in this work are given in Table.4.

Table 4. Key properties from several experiments.

Experiment ν Type Nuclear threshold Energy Range Detector
COHERENT νe,νµ , ν̄µ 20 keV 50,100 MeV CsI, Ar, Xe

TEXONO ν̄e 0.1 keV 2−8 MeV Ge
CONUS ν̄e 0.1 keV < 10 MeV Ge
CONNIE να 1 keV < 60 MeV Si

In what follows, we present the kinematics of the CEνNS, its SM prediction, and

possible new physics from the NSI and the simplified model. We also provide an effect of

the mass on cross section from the new interactions. Finally, the bound as mass-coupling

planes for each case is presented from χ2-analysis focusing on COHERENT 2017 data.

4.1. Kinematics and Form Factor Effect

The maximum nuclear recoil energy

Tmax =
2E2

ν
mN +2Eν

≈ 2E2
ν

mN
(4.1)

as of initial neutrino energy in the CEνNS process for nuclei mentioned in the Tab.4 is given

in Figure 17 (left-panel). We can see that a lighter nucleus has larger recoil energy. Here, we

have taken the averaged mass number of the composite CsI target. If the maximum threshold

energy is large, such as approaching the initial neutrino energy, we obtain a linear behavior.

This case for Ge target is shown in Figure 17 (right-panel), where the linearity meets at
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Figure 17. Behavior of Tmax for some different nucleus (left). Effect of Tmax for high Eν
(right).

around 105 GeV neutrino energy. In this limit, coherent interaction is not relevant.

The behavior of form factors, using the Helm parameterization, from the considered

nuclei are shown in Figure 18 (left) as a function of nuclear recoil energy. It indicates that

criteria of full coherency occur in the low nuclear recoil energy. We may also obtain the
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Figure 18. T -dependent (left) and Q-dependent of the Helm form factor (right).

behavior for momentum transfer dependent Q in Figure 18 (right). For this purpose we

use Q =
√

2mNT . From this result, it can be considered that we may take the form fac-

tor as 1 below 50 MeV momentum transfer. The Helm form factor is commonly used for

spin-independent nucleon (Engel, 1991). It is then obvious that CEνNS is a low energy

phenomenon.
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4.2. Standard Model

We present the SM CEνNS T -dependent differential cross-section in Figure 19 for

the considered nuclei in Table 4. Two initial neutrino energies are chosen, 5 MeV and 50

MeV. The mass of the nuclei is in an atomic mass unit (amu). In this calculation, we have

implemented the form factor effect. It shows that a heavier nucleus gives a larger spectrum

and fall earlier than the lighter nucleus for both considered neutrino energy. The CsI target

is calculated by separating its constituent, Cs and I, and then adding them up. With this

treatment, even though has a larger spectrum, the CsI falls nearly at the same recoil energy

as the Xe target.
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Figure 19. SM CEνNS differential (left) and its total cross-section spectrum (right) for five
nucleus targets.

The total cross-section of CEνNS can be found by integrating the differential cross

section. In general we have

σ =
∫ Tmax

Tth

dT
dσ
dT

. (4.2)

By integrating from 0 < Eν < 100 MeV, we show the total cross-section spectrum of the

process in Figure 19 (right). The CsI, being the heaviest target, provides the higher value

among concerning targets, followed by Xe, Ge, Ar, and then Si. Using the properties of

the first COHERENT experiment for 308 days running time, we also show the differential

rate of CEνNS in Figure 20 for the five considered target. It is obtained by convoluting the

differential cross section with the neutrino flux. It indicates that lightest target gives smaller
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spectrum with long T dependency. Note that for the CsI, we have added the contribution of

Cs and I nucleus separately.
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Figure 20. Differential rate of SM CEνNS for five nucleus targets.

4.3. Non-Standard Interactions

We present differential cross-section from different targets correspond to an accelerator

(CsI, Xe, Ar) and detector (Ge, Si) neutrino properties in Figure 21. From the former, we

choose 100 and 50 MeV neutrino energy which is criteria from the COHERENT, and for

the latter 8 and 5 MeV, appropriate to TEXONO, CONUS and CONNIE. Recent parameter

values of NSI interaction strength from Ref.(Giunti, 2020), given in Table 5, are used to

see the NSI behavior. With these values, the NSI spectrum (blue line) is expected to be

Table 5. Considered NSI parameters for plotting.

FC: εuV
ee = 0.02 εdV

ee = 0.17 εuV
µµ = 0.18 εdV

µµ = 0.17 εuV
µe = 0.04

FV: εdV
µe = 0.04 εuV

τe = 0.16 εdV
τe = 0.16 εuV

τµ = 0.04 εdV
τµ = 0.04

approximately ∼ 10 orders larger than the SM (green line). The grey region represents the

minimum nuclear threshold energy, taken from relevant observation of the chosen nucleus

target. For Si, the threshold is 1 keV, for Ge is 0.1 keV, and for Ar, Xe, and CsI is 20 keV.

The spectrum of each cases fall-off after reaching this value even for the CsI with 50 MeV
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Figure 21. CEνNS differential cross section for Si, Ar, Ge, Xe, and CsI with threshold
criteria from experiment using recent NSI parameters.

neutrino energy before the spectrum reaches 25 keV. Notice that for the Si, its spectra reaches

over 250 keV T so that the threshold region is hardly seen.

Bound prediction of NSI parameters on the CEνNS process is shown in Figure 22,

which is extracted from σNSI
0 /σSM

0 (Mustamin and Demirci, 2021). This ratio shows that

the NSI effect to the SM is independent with the considered target nuclei. here, we assume

εuV
ab ≈−εdV

ab and N/Z ≈ 1. In obtaining these results, two preferred parameters are taken and
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Figure 22. Bound prediction of the NSI parameters in CEνNS process.

the others are set to be zero. We show the case of the SM, in other words no new physics

appears, as the green line where the ratio is equal to one. The other lines are taken to indicate

deviation if a new interaction takes place. The range has been set within (−0.1,0.1) interval

so that the deviation can be clearly seen even for a small range of ε .

The ratio can be 0, indicated by the vanishing contours, or increase two times larger

than the SM as indicated by the color bar. The left-top figure shows the case of "non-

universal" FC, as a = b = e,µ,τ . A small deviation from the SM, either the NSI is larger

or lower, has been presented by the other four possibilities. The significance region of the

NSI lies in the lower part of this case. The right-top indicates the FV case when a ̸= b. Only

the σNSI
0 /σSM

0 > 1 case appears here, which indicates that if we observe a lower value of

deviation, the other parameters would be responsible for explanation. In other words, the FV

case could not be explained if we have a lower cross-section value. Also note the deviation

distance from the SM is relatively larger than the FC case. The two bottom panels show a
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combination of FC and FV. The bottom-left is the combination of FC on the d (εdV
aa ) and

the bottom-right for the u (εuV
aa ) with the FV cases (εu,dV

ab , where a ̸= b). These two indicate

the same behaviors would appear from these considerations. The significant effect of NSI

is indicated to occur in the negative region of εdV
aa and εuV

aa , at least for the > 1.5 line. Our

obtained predictions can be used for further analysis of the NSI status using experimental

data from observation.

4.4. Simplified Model

The general neutrino interaction here corresponds to the model on explaining solar

neutrino with possible dark matter interaction (Cerdẽno et al., 2016). With the analytical

results in the previous chapter, their differential cross-sections are shown in Figure 23 for

scalar, pseudoscalar, vectorial, axial-vector, and tensorial interactions. In obtaining these re-

sults, we have considered universal coupling from every new interaction with either neutrino

or quark, with gνS = gqS = 10−6. This value is taken for representative, from typical new

mediator consideration which predicted to be even smaller (Farzan et.al., 2018). Values of

the coupling parameters for each case are given in Table 6. We set all the possible new medi-

Table 6. Values of the simplified parameters.

Parameter Value Reference
f p
Tu

0.0208

(Hoferichter et al., 2015)f n
Tu

0.0189
f p
Td

0.0411
f n
Td

0.0451
∆p

u = ∆n
u 0.842

(Ellis et. al., 2008)∆p
d = ∆n

d -0.427
hp

u = hn
u 1.65

(Ema et. al., 2021)
hp

d = hn
d 0.375

δ p
u = δ n

d 0.84
(Belanger et al., 2009)δ p

d = δ n
u -0.23

ators to carry 100 MeV mass. We also consider two neutrino energies, 5 MeV and 50 MeV,

corresponding to the energy criteria from a neutrino accelerator and detector respectively.

As in the previous section, we also provide five different nuclei as the target. Regarding
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Figure 23. The differential cross-section for CEνNS process with the simplified model.

these choices, we can see that a heavier target gives a larger differential cross-section. The

scale of neutrino energy indicates that the spectrum goes off earlier for a smaller value. For

the CsI target, we separate the differential cross-section for each constituent target. All of the

possible new interactions provide a well-behaved spectrum for the two considered energies.

Considering the nuclear threshold, differential cross sections fall after reaching 0.1 keV. This

behavior indicates the importance of having equipment with low-energy sensitivity.
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4.5. Analysis of COHERENT Data

We constraint the parameter of the NSI and the simplified model using minimum χ2-

method (Fieldman and Cousins, 1998). Published data from experiments consist of uncer-

tainty in the best value observed. With this technique, we may put a confident level (CL)

bound on the parameter. In this work, we consider 68% and 90% CL limits from the con-

Table 7. Significance value and its corresponding degree of freedom.

CL (%) degree of freedom
1 2 3 4 5

68.30 1.00 2.30 3.53 4.72 5.89
90.00 2.71 4.61 6.25 7.78 9.24
95.40 4.00 6.17 8.02 9.70 11.3
99.00 6.63 9.21 11.3 13.3 15.1
99.73 9.00 11.8 14.2 16.3 18.2
99.99 15.1 18.4 21.1 23.5 25.7

sidered model. Prescription values for the number of degree of freedom (dof) to the CL are

given in Table 7. As we have two free parameters from the NSI and the simplified model,

the corresponding value for 68% is χ2
min +2.30 and for 90% is χ2

min +4.61.

We analyze the COHERENT data in the first publication (Akimov et al., 2017) using

the 1-bin analysis. The χ2 function for this aim is

χ2 =

(
Nobs −Npre(1+α)−Nbkg(1+β )

σ

)2

+

(
α
σα

)2

+

(
β
σβ

)2

, (4.3)

with statistical uncertainty

σ =
√

Nobs +Nbkg +2Nss. (4.4)

In the above equation, Nobs = 142,Npre,Nbkg = 6, and Nss = 405 are the number of

events for observed, predicted, prompt neutron background, and steady state background,

respectively. There are two systematic parameters, α and β . The first corresponds to the

signal rate uncertainty and the latter to the background. These two have fractional uncertainty

σα = 0.28 and σβ = 0.25. We extract the constraint by minimizing this function.
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Figure 25. ∆χ2 corresponds to 1-bin analysis of COHERENT data.

The considered spectrum we study is given in Figure 24. Here we show the predicted

event per 2 PE, relevant with COHERENT collaboration. Event from this work is presented

as dashed red line while the predicted spectrum from COHERENT is in the solid red line.

Observed data, the square blue points, can be seen fitted proportionally with the predictions.

The ∆χ2 behavior of the analyzed data is given in Figure 25. The dashed black line indicates

166 the CEνNS expected events while the dotted red lines the confidence levels.
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4.5.1. Non-Standard Neutrino Interactions

We provide the 68% CL (red) and 90% CL (blue) allowed region for the NSI parameter

in Figure 26 from COHERENT data both for FC and FV case. According to the neutrino
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Figure 26. Allowed regions of the NSI FC (upper) and FV (lower) parameter space with
68% (red) and 90% (blue) CL from COHERENT data.

type from the SNS facility, the COHERENT experiment consider a prompt νµ and delayed

ν̄µ and νe. Therefore only e and µ flavor of neutrino can be analyzed. The best-fit values are

(0.54,−0.42) for the εdV
ee ,εuV

ee , (−0.08,0.40) for the εdV
µµ ,εuV

µµ , and (0.0,0.0) for the εdV
eµ ,εuV

eµ ,

indicated by a yellow dot in each case.
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4.5.2. Simplified Model

We present the lower bound of the coupling and mass from each considered new in-

teraction with 68% CL (red) and 90% CL (blue) exclusion region from the simplified model

in this section. We take the non-universal case of the coupling, in which the new interaction

to the neutrino and to the quarks are the same. We emphasize that our results for the scalar

and vectorial case are in agreement with recent works (Billard et al., 2018; Papoulias and

Kosmas, 2018).
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Figure 27. Lower exclusion bound on parameter space of g2
S – mS (left) and gS – mS (right)

with 68% (red) and 90% (blue) CL.

Figure 27 shows the exclusion region from the new scalar mediator. The lower bound

of g2
S reaches 5.09×10−10 (68% CL) 7.40×10−10 (90% CL), while the gS reaches 2.26×

10−5 (68% CL) and 2.69×10−5 (90% CL). The mass is steady for mS < 10 MeV. After that,

the coupling dependency occurs for both cases.

Figure 28 is the exclusion region of the new pseudoscalar interactions. We have used

the non-zero form factor and keep the T 2 term. The lower bound of g2
P reaches 3.15×10−11

(68% CL) and 4.51× 10−11 (90% CL), while the gP reaches 5.61× 10−6 (68% CL) and

6.77×10−6 (90% CL). Again, the behavior of the mediator mass is the same as the previous

case.

Figure 29 shows exclusion region from the vector mediator. We emphasize that this
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Figure 29. Same as Figure 27 for vector mediator.

case has interference term with the SM. The degeneracy region is obtained, which happens as

the interference term has the same with the SM. The lower bound of g2
V reaches 2.72×10−9

(68% CL) and 3.52×10−9 (90% CL), while for the gV reaches 5.22×10−5 (68% CL) and

5.93×10−5 (90% CL).

Figure 30 shows bound of the axial-vector mediator. Here we simply neglect the inter-

ference term of the new mediator with the SM. The lower bound of g2
A reaches 1.44×10−8

(68% CL) and 2.03 × 10−8 (90% CL), while the gA reaches 1.20 × 10−4 (68% CL) and
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Figure 30. Same as Figure 27 for axial-vector mediator.

1.42× 10−4 (90% CL). We can see that the mass of the axial-vector mediator is relatively

constant up to 10 MeV, same as the previous case.

10 1 100 101 102 103 104

mT (MeV)
10 10

10 9

10 8

10 7

10 6

g2 T

Tensor

10 1 100 101 102 103 104

mT (MeV)
10 6

10 5

10 4

10 3

10 2

g T

Tensor

Figure 31. Same as Figure 27 for tensor mediator.

Lastly, Figure 31 gives the exclusion bound for the appearance of tensor interaction.

The lower bound of g2
T reaches 3.17× 10−9 (68% CL) and 4.47× 10−9 (90% CL), while

the gT reaches 5.61× 10−5 (68% CL) and 6.64× 10−5 (90% CL). The mass of the tensor

mediator, again, behaves the same as the previous cases.



5. CONCLUSIONS

In this work, we have shown the formulation of the CEνNS process within the SM

and the effect of general neutrino interactions. We have considered the NSI and the simpli-

fied model for this purpose. Before discussing our objectives, we have briefly introduced

neutrino physics and then examined CEνNS theoretically as well as how to detect this phe-

nomenon. For the latter, the first successful observation of the COHERENT experiment has

been reviewed. In addition, effect of coherency has also been discussed where it is found

that the best way to study this process is by using reactor neutrino.

The NSI effect simply changes the form of the weak charge, which is different from

the possible FC and FV of neutrino flavor. For the simplified model case, we have used

model-independent parameterization with new interactions that correspond to the possible

bilinear combinations: scalar, pseudoscalar, vector, axial-vector, and tensor. Differential

cross-section of each case has been computed in which the effect of new interactions are

induced from the strength of the considered model with its coupling to quark content of

nucleus.

We have used five target nucleus to show behavior of some physical quantities: Tmax,

form factor, differential cross-section and total cross-section. It is found that the maximum

recoil energy for heavier nuclei is slightly small than the lighter ones. As the initial energy

of neutrino increases, the maximum recoil energy follows the same trend. For Ge target, we

have shown that the case of large neutrino energy would give approximately the same Tmax.

This is important for choosing sources and building the CEνNS detector. From the form

factor plots, we have shown that large T , which also implies large Q would penetrate the nu-

cleus structure. So to observe coherent criteria, equipment sensitive to small T is necessary.

For the differential and the total cross-section, heavier targets provide larger spectrum.

The NSI model only changes the overall strength from predicted SM. Hence the shape

of the cross-section is not affected as indicated in the given result. Using the updated values

of the free parameters, we have shown that NSI provides a larger spectrum than the SM

case. Analyzing COHERENT data, we have shown the 68% and the 90% CL parameter
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constraint for the FC as well as the FV case, correspond to the produced neutrinos of the

π−DAR experiment at the SNS. Updating these values from future experimental data will

surely improve our understanding of the model.

The phenomenology of the simplified model has been discussed. Five different types

of new interactions are considered: scalar, pseudoscalar, vector, axial-vector, tensor. The

pseudoscalar case in literature is considered zero from the form factor effect but taken oth-

erwise here. Our result of differential cross-section considers at least T order, except for the

pseudoscalar case where the lowest is T 2. In general, the vector-type interaction estimated

the largest spectrum than other types. The source is expected from the extra term from the

interference with the SM. Lower-exclusion bound are obtained from the COHERENT data

within 68% and 90% CL.

Predictions of both the NSI and the simplified model can be further improved from the

future advancement of CEνNS experiments. These beyond SM cases open a new perspec-

tive for investigating new physics, especially in low energy neutrino scale. Including in this

area are astrophysical, solar, atmospheric, or geoneutrino. Connection with DM-matter in-

teraction is also an interesting subject to be explored since CEνNS has a similar formulation,

either theoretical calculation or experimental equipment, with the direct detection of DM.
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7. APPENDICES

7.1. CONVENTION AND NOTATION

The γµ sandwiched between particle fields is the Dirac gamma-matrices. They obey
the Clifford algebra

{γµ ,γν}= 2gµν , (A.1)

with metric tensor gµν is defined as

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (A.2)

Explicitly, the gamma-matrices are

γ0 =

(
1 0
0 −1

)
, γ i =

(
0 σ i

−σ i 0

)
, (A.3)

where 1 is a 2×2 identity matrix while σ i, with i = 1,2,3, are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
0 1
−1 0

)
. (A.4)

These matrices are Hermitian and satisfy the following relations

[σ i,σ j] = 2iε i jkσ k, {σ i,σ j}= 2δ i j, (A.5)

where ε i jk and δ i j are the Levi-Civita symbol and Kronecker delta, respectively.

The matrix appears in the Lagrangian density of the Dirac fields

LDirac = ψ̄(i/∂ +m)ψ, (A.6)

with Feynman slashed /∂ = γµ∂µ have been used. The equation of motion of this Lagrangian
is

(iγµ∂µ −m)ψ = 0, (A.7)

which is the Dirac equation.
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7.2. RELATED FEYNMAN RULES

The following give summary of Feynman rules related to process involved in this work.

• Propagators

µ ν

p
p

µ ν

p

µα νβ

p

Photon (γ) Scalar (S,P) Vectorial (W,Z,V,A) Tensorial (T )
−igµν
p2+iε

i
p2−m2+iε

−igµν
p2−m2+iε

−igµα gνβ
p2−m2+iε

• Vertex

µ

f

f W
±µ

l

l W±µ

qi

qj

f f γ : −iQeγµ llW±: −i gW
2
√

2
γµ(1− γ5) qqW±: −i gW

2
√

2
γµ(1− γ5)Vji

Zµ

f

f µ

pi

pf

f f Z: −igz
2 γµ(gV −gAγ5) ϕϕγ: −ie(pi

µ + p f
µ)

Where gW = e
sinθW

, gZ = gW
cosθW

, gV = gL + gR = I3 − 2Qsin2 θW , and gA = gL − gR = I3.
The Vji denotes the CKM matrix. The Feynman gauge have been used for the W± and Z
mediator.

7.3. KINEMATICS

The kinematic of the ν(p1)+N(p2)→ ν(p3)+N(p3) in the rest frame of initial nu-
cleus is shown in Figure 32. In this process the initial and final mass for the target nucleus and
incoming neutirno is the same. Particularly, m1 = m3 = mν for neutrino and m2 = m4 = mN
for nucleus. Relations between four-vector momentum pi = (Ei, p⃗i) with i = 1,2,3,4 can be
proceed further. Since p⃗2 = 0, we can clearly see that

p2 · p4 = E2E4 − p⃗2 p⃗4 = mNE4. (A.8)
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Figure 32. Framework of kinematics for CEνNS process.

From p2
i = m2

i and conservation of momentum p1 + p2 = p3 + p4, squaring this equation
gives

p2
1 + p2

2 +2p1 · p2 = p2
3 + p2

4 +2p3 · p4

m2
ν +m2

N +2p1 · p2 = m2
ν +m2

N +2p3 · p4

p1 · p2 = p3 · p4.

(A.9)

Contracting the left hand side we find

p1 · p2 = E1E2 − p⃗1 p⃗2 = EνmN . (A.10)

We can also have p1 − p4 = p3 − p2 from the momentum conservation. Squaring this we
obtain

p2
1 + p2

4 −2p1 · p4 = p2
2 + p2

3 −2p2 · p3

m2
ν +m2

N −2p1 · p4 = m2
N +m2

ν −2p2 · p3

p1 · p4 = p2 · p3.

(A.11)

Hence applying energy conservation E3 = E1 +E2 −E4 and recoil energy transfer

T = E3 −E1 = E4 −E2, (A.12)

hence

p2 · p3 = E2E3 − p⃗2 p⃗3 = MN(E1 +MN −E4) = MN(E1 −T ). (A.13)

We can also work out the square of p1 − p3 = p4 − p2 to get

p2
1 + p2

3 −2p1 · p3 = p2
2 + p2

4 −2p2 · p4

2m2
ν −2p1 · p3 = 2m2

N −2p2 · p4

p1 · p3 = m2
ν −m2

N +mN ·E4 = m2
ν +mN(E4 −mN)

p1 · p3 = m2
ν +mNT ≈ mNT

(A.14)
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since neutrino is considered massless in the SM.

We can also extract the maximum nuclear recoil energy of the process. This is achieved
as the angle between the two final particles θ is 180◦. Starting with p1 · p2 = p3 · p4 we get

E1E2 − p⃗1 p⃗2 = E3E4 − p⃗3 p⃗4

E1mN = E3E4 −|p⃗3||p⃗4|cos180◦

E1mN = E3E4 + |p⃗3||p⃗4|.
(A.15)

Since T = E4−E2 = E4−mN then E4 = T +mN . From conservation of energy we also have
E3 = E1 +E2 −E4 = E1 +mN − (T +mN) or E3 = E1 −T . Neglecting neutrino mass, then
p2

3 = E2
3 −|p⃗3|2 = 0, and hence

|p⃗3|= E3 = E1 −T. (A.16)

From the p4, squaring it we get

E2
4 −|p⃗4|2 =m2

N

|p⃗4|2 =E2
4 −m2

N = (E4 −mN)(E4 +mN)

|p⃗4|2 =(T +mN −mN)(T +mN +mN)

|p⃗4|2 =T (T +2mN)

|p⃗4|=
√

T (T +2mN).

(A.17)

With E3,E4, |p⃗3| and |p⃗4| while setting E1 → Eν , then

EνmN = (Eν −T )(T +mN)+(Eν −T )(
√

T (T +2mN))

EνmN = EνT +EνmN −T 2 −T mN +(Eν −T )
√

T (T +2mN)

T mN −T (Eν −T ) = (Eν −T )
√

T (T +2mN)( mN

Eν −T
−1
)

T =
√

T (T +2mN),

(A.18)

and squaring this equation[ m2
N

(Eν −T )2 −
2mN

Eν −T
+1
]
T 2 = T (T +2mN)

m2
NT −2mNT (Eν −T ) = 2mN(Eν −T )2

mNT −2T (Eν −T ) = 2(E2
ν −2EνT +T 2)

mNT +2EνT = 2E2
ν

(A.19)

so that, denoting T → Tmax, we obtain

Tmax =
2Eν

mN +2Eν
, (A.20)

the maximum nuclear recoil energy of the process.

From this relation, it is also possible to obtain the minimum neutrino energy that can
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trigger threshold recoil energy, denoted as T th. This threshold depends on the detector prop-
erties. From the above relation, we can write

mNT +2EνT = 2Eν

2mNT +T 2 = (2Eν −T )2√
2mNT +T 2 = 2Eν −T,

(A.21)

where we have multiplied by 2 and added T 2 for completing square. Using T → T th, the
minimum neutrino energy can then be written as

Eνmin =
1
2

[√
2mNT th +T 2

th +T th

]
. (A.22)

We may also develop the relevant differential cross-section for the ν +N → ν +N
elastic process. The general form obeys (Thomson, 2013)

dσ =
⟨|M2|⟩

2E12E2|⃗v1 − v⃗2|
d3 p⃗3

(2π3)2E4

d3 p⃗4

(2π3)2E4
(2π)4δ 4(p1 + p2 − p3 − p4). (A.23)

Using the velocity relation v⃗ = p⃗/E, the incident flux can be written as

2E12E2|⃗v1 − v⃗2|= 4(E2|p⃗1|−E1|p⃗2|), (A.24)

where in the center of mass frame, p⃗1 =−p⃗2 and p⃗3 =−p⃗4, so we can integrate∫ ∫ d3 p⃗3

(2π)32E4

d3 p⃗4

(2π)32E4
(2π)4δ (E1 +E2 −E3 −E4)δ 3(p⃗1 + p⃗2 − p⃗3 − p⃗4)

=
|p⃗3|2dΩ

16π2E3E4

∫
d|p⃗3|δ (ECM −E3 −E4),

(A.25)

where now E3 =
√
|p⃗3|2 +m2

3 and E4 =
√

|p⃗3|2 +m2
4, while we have defined ECM =E1+E2.

Note also that the solid angle is dΩ = sinθdθdϕ . The Jacobian of the last line for x =
ECM −E3(p⃗3)−E4(p⃗3)

J =

∣∣∣∣∣ dx
d p3

∣∣∣∣∣= |p⃗3|
E3 +E4

E3E4
, (A.26)

changing variable d p3 = dx|J|−1 leads us to

|p⃗3|2dΩ
16π2E3E4

∫
dxδ (x)

(
E3E4

|p⃗3|(E3 +E4)

)
=

|p⃗3|dΩ
16π2ECM

θ(ECM −m3 −m4) (A.27)

where the delta function gives ECM = E3 +E4 and note that θ(x) is a Heaviside function.
The differential cross-section then becomes

dσ
dΩ

=
⟨|M2|⟩

64π2E2
CM

|p⃗3|
|p⃗1|

. (A.28)
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Instead of solid angle dΩ, we aim to convert this into nuclear recoil energy dT . We
note that q = p3 − p1, hence q2 = p2

1 + p2
3 − 2|p⃗1||p⃗3|cosθ or for massless case dq2 =

−2|p⃗1||p⃗3|d(cosθ). So that

dσ
dq2 =− dϕ

2|p⃗1||p⃗3|
⟨|M2|⟩

64π2E2
CM

=− 1
|p⃗1||p⃗3|

⟨|M2|⟩
64πE2

CM
. (A.29)

Since q2 =−2mNT → dq2 =−2mNdT , then

dσ
dT

dT
dq2 =− 1

2mN

dσ
dT

, (A.30)

then, since in the center of mass frame |p⃗1|= |p⃗3|, we obtain

dσ
dT

=
mN⟨|M2|⟩

32πE2
CM|p⃗1|2

. (A.31)

Next, we may square the incident flux of Eq.(A.24) to obtain (E2|p⃗1|−E1|p⃗2|)2 = E2
2 |p⃗1|2+

E2
1 |p⃗2|2 − 2E2|p⃗1|E1|p⃗2|, where the last term can be replaced from relation (p1 · p2)

2 =
E2

1 E2
2 + |p⃗1|2|p⃗2|2 −2E1E2|p⃗1||p⃗2| , hence

(E2|p⃗1|−E1|p⃗2|)2 = E2
2 |p⃗1|2 +E2

1 |p⃗2|2 +(p1 · p2)
2 −E2

1 E2
2 −|p⃗1|2|p⃗2|2

= (p1 · p2)
2 − (E2

1 −|p⃗1|2)(E2
2 −|p⃗2|2)

= (p1 · p2)
2 −m1m2.

(A.32)

Since from the kinematic p1 · p2 = mNEν and set m1 = mν ≈ 0, m2 = mN , in the center of
mass frame p⃗1 =−p⃗2 we obtain the following relation

E2
CM|p⃗1|2 = m2

NE2
ν . (A.33)

Hence, the general form of the differential cross-section becomes

dσ
dT

=
⟨|M2|⟩

32πmNE2
ν
. (A.34)
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