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 In this work, we present the design and implementation of an interpreter 

program for the step-by-step numerical solutions of non-linear systems of equations with 

multiple variables, using symbolic computation methods and automatic code generation 

tools. The development process starts with a representation of a nonlinear system of 

equations in a formal language in terms of context-free grammars then, a parser which is 

generated via the JavaCC tool is used to represent the nonlinear system of equations in the 

form of object structures.  

The numerical method Newton-Raphson are employed to obtain better 

approximations to solutions of nonlinear systems. The interpreter can easily be extended to 

cover other numerical methods, only describing the related iterative computation steps. On 

the other hand, integrating into their own interactive development environments, 

researchers can input any system of nonlinear equations directly into the interpreter and get 

the approximating solution as an output. 

 

 

Key words: Symbolic computation, system of nonlinear equations, step-by-step 

           Solution, Newton-Raphson method, parser, context-free grammars. 



 

 

IX 

 

Yüksek Lisans Tezi 

 

ÖZET 
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 Bu çalışmada, simgesel hesaplama yöntemleri ve otomatik kod üretme 

araçlarını kullanarak birden fazla değişkene sahip doğrusal olmayan denklem sistemlerinin 

adım-adım sayısal çözümleri için bir yorumlayıcı programının tasarımı ve gerçeklenmesini 

sunarız. Geliştirme süreci, bağlamdan bağımsız gramerleri kullanarak bir biçimsel dilde 

doğrusal olmayan denklem sisteminin temsil edilmesi ile başlar. Daha sonra, JavaCC 

aracıyla üretilen bir ayrıştırıcı, doğrusal olmayan denklem sistemini nesne yapıları 

formunda temsil etmek için kullanılır.  

Newton-Raphson sayısal yöntemi doğrusal olmayan sistemlerin çözümlerine daha iyi 

yaklaşımlar sağlamak için kullanılmıştır. Yorumlayıcı, sadece gerekli olan yinelemeli 

hesaplama adımları tanımlanarak, diğer sayısal yöntemleri kapsayacak şekilde kolayca 

genişletilebilir. Diğer yandan, etkileşimli geliştirme ortamlarına entegre ederek, 

araştırmacılar doğrusal olmayan denklem sistemlerini yorumlayıcıya girip çıktı olarak 

yaklaşık çözümü elde edebilir. 

 

 

Anahtar Kelimeler: Sembolik hesaplama, doğrusal olmayan denklem sistemleri, adım    

                          adım çözüm, Newton-Raphson yöntemi, ayrıştırıcı, bağlamdan  

                          bağlamdan bağımsız gramerler. 
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1.  GENERAL INFORMATION 

1.1. Introduction 

In the past decades, a continual improvement of programming in computer science 

has enabled to develop useful software tools to solve human problems. Mathematics has a 

vital role in human life. The mathematical operations used in engineering applications 

cannot be accomplished by human hands, therefore, mathematical software tools for 

efficiently solving mathematical problems was developed. Mathematical software or 

scientific software is used for mathematical modelling and statistical analysis. 

Generally, scientific software can be classified into computer algebra systems that 

are used for the symbolic evaluation of mathematical expression (e.g. Maple [2], 

Mathematica [3]) and numerical computation systems (e.g. MATLAB [4], GNU Octave 

[5]) that are widely used for engineering applications [1].  Numerical methods find an 

approximate solution to mathematical problems by using direct and iterative methods. 

Most of the numerical methods involve in many iteration calculations. Numerical 

computations often propagate errors from round-off and truncation. Symbolic computation 

methods have been developed against this disadvantage of numerical methods. Symbolic 

computation is the development and manipulation of mathematical expressions. Symbolic 

computation or algebra computation solves mathematical problems without error and finds 

the exact value using computer technology [6]. In this type of calculation, mathematical 

equations must be fully expressed before they can be processed and then transformed into 

algorithms that can be solved by computer programs [7, 8]. Computer Algebra System 

(CAS) or symbolic computation deals with mathematical expressions symbolically rather 

than numerically, results are exact, that there are no numerical errors. CAS can save both 

time and effort in solving a wide range of mathematical problems. More details on 

symbolic computation and its applications can be referred to the book by Cohen [6]. 

 In this thesis, a hybrid method, symbolic-numeric computation, that combines 

symbolic and numeric methods, an interpreter software tool is implemented for step-by- 

step solving of a multivariate nonlinear system of equations. Symbolic approaches are used 

to analyse the source data and represent it in an intermediate structure for later evaluation. 
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Numerical computation method, Newton-Raphson iteration is employed to obtain 

better approximations to solutions of nonlinear systems.  

With the rapid development of high-level programming languages that facilitate code 

writing processes, compilers have become indispensable tools for software developers. In 

computer programming, the translation and execution of programs are carried out in 

different ways. The first way is to use a compiler to read a source program written in a 

particular language (source code) and translate it into another equivalent language 

(machine code), reporting possible errors detected during the translation process. The 

output of the compiler is a machine code that can be run by the user with an input to 

produce an output. An interpreter is another language processor, which directly runs the 

source code instructions, instead of producing machine code (target language). The 

interpreter translates the source code statement by statement that makes easy to detect 

errors. Compilers are faster than interpreters because every time the program starts 

running, all the lines should be translated again in the interpreter. Automatic code 

generation tools have been developed to facilitate the steps of analysis, and parsing of 

source data generated by programming languages. There are a lot of compilers and 

interpreters developed with these tools called compiler compilers, some that can only 

generate code for source code in the Java language; ANTLR [9], SableCC [10], JTB [11], 

JavaCC [12], JLex [13], and JFlex [14]. For example, the source code to be generated by 

the JavaCC tool can be easily integrated with other software and serve as a handy analyser 

and parser components that can process the input data 

The proposed system parses the source data, converts it into a tree data structure 

using a Context Free Grammar (CFG) and then interprets the intermediate code 

representation in the form of a tree structure into a final result. The methodology consists 

of three phases which are source data analysis to represent the source data with a tree data 

structure, numerical programming to simplify and solve expressions using symbolic 

approaches, and finally the evaluation of the expressions using the Newton-Raphson 

numerical method to get and print the final result of the equations.  

In this thesis, solving of multivariate nonlinear equations is discussed. The thesis is 

organized as follows. In Section 1. Literature review, nonlinear equations, compilers, 

interpreters, grammars, parsing techniques, mathematical expression interpretation phases, 

and evaluation of expressions is discussed. In Section 2, Step-by-Step solving of nonlinear 

equations, the architecture of the system, and implementing Newton-Raphson methods are 



3 

 

 

 

presented. Application of the methodology are discussed is Section 3, results and 

discussions are presented in Section 4. In Section 5, the conclusion is presented and finally, 

in Section 6, future research and open research topics are presented. 

 

1.2. Literature Review 

In many scientific disciplines where mathematical problems need to be solved; the 

development of computer hardware and software that produce very fast and error-free 

solutions for the complex problems encountered in physics, computer science, 

mathematics, chemistry, engineering, astronomy, and biology had to wait. The lack of 

advanced software, many difficult problems remained unsolved [15].  

The rapid development of science and technology has affected the lives of human 

beings in every field. In the 1950s the development of digital computers has enabled easy, 

fast and successful computations of different problems in many areas such as applied 

science and engineering. The most important use of the computer has been to do fast and 

errorless calculations to solve complex problems in different scientific disciplines, the 

availability of computers have been enabled to develop various systems, algorithms, 

techniques, and methods for this purpose. The impact of rapid development and high speed 

computers has increased the use of computer systems in mathematics field enabling the 

computation of mathematical problems both in numerically and symbolically; this rapid 

growth of computer systems in mathematics make possible to do many operations such as 

mathematics e-learning, comparing the efficiency between two algorithms, and developing 

new algorithms for automatic mathematical solution.  

The state of art in this work, symbolic computation and root value finding operations 

are discussed. Although symbolic computing has been used in computers since 1953, it has 

a long history in terms of its use in scientific development [16]. We have come a long way 

since then many scientific software tools to computer mathematical problems have been 

developed. We will focus on the most recent developments in symbolic and root finding 

methods, the beginning, and the early developments in this field. 

The technology is changing the way in which secondary schools and university 

education are delivered. Many e-learning systems to teach and support mathematical 

learning have been created, Coursera [18] and Edventure [19] provided for automatic 
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assessment, intelligent mathematical learning systems such as algebra problem generation 

[20], and automatic solution assessment [21] has also been developed [17]. 

There are many algorithms developed for the computerized solution of mathematical 

problems. Euclid's algorithm is the most common algorithms for finding the greatest 

common divisor of integers found by Euclid in the 3rd century and this algorithm is among 

the most basic algorithms of the symbolic computation systems used today in 

generalizations [22]. However, the finding of the roots of polynomial equations, the 

investigation of algorithmic solution methods of derivative, integral and differential 

equations has been the subject of symbolic computation. 

Decomposing factorization of polynomials into a product of irreducible factors has a 

long history. The first algorithm for decomposing univariate polynomials over integers into 

products was found by Schubert in 1793. In 1882 this algorithm was extended to 

polynomials with algebraic coefficients by Kronecker. The Schubert and Kronecker 

algorithms were very slow even for computers, In 1967 Berlekamp developed a fast 

algorithm for factorization of polynomials over the final fields into products [23], the 

Berlekamp algorithm is an important factor (Factorization of Polynomials). As a result of 

his work on the Berlekamp algorithm, Zassenhaus showed in 1969, products over the 

integers obtained by this algorithm can be used to obtain products over the integers [24]. In 

1975-76, Musser [25] Wang and Rothschild [26] developed similar methods for 

multivariate and algebraic coefficient polynomials. 

Symbolic computation systems began in the early 1960’s, it has attracted the 

attention of many mathematicians and developers to design and develop new systems in 

the future in this field, Association for computing Machinery (ACM) specıal interest group 

on symbolic and algebra manipulation (SIGSAM) was formed in 1965 to bring come 

together different researchers to publish the recent development in algebraic algorithms 

and their applications, in the next ten years the old systems were revised and new systems 

were developed, these systems have added a new ability to scientific computing by 

providing exact mathematical computation without error and manipulation of mathematical 

expressions [27]. 

There are various applications and technologies developed in the literature related to 

computation on the computer. In the beginning of 1950s, after the invention of the 

electronic computer, there were some challenging factors to design symbolic computation 

systems such as slow speed and small storage computers. J.F. Nolan from the 



5 

 

 

 

Massachusetts Institute of Technology [28] and the other by H. G. Kahrimanian at Temple 

University [29] has developed automatic computation applications for analytical 

differentiation in their graduate thesis. 

In 1958, Lisp programming language was invented by John McCarthy and he 

published its design in the paper [30]. Lisp is the most common and longest living 

language. Lisp is also the second oldest high-level programming language after 

FORTRAN that is older than one year. Lisp enables to make many operations such as 

computing with symbolic expressions rather than numbers and symbolic expressions 

representation as list structures in the memory of the computer. Lisp Language has played 

a very important role in the growth of symbolic computation. Symbolic automatic 

INTegration (SANIT) was the first program to calculate the symbolic integration problems 

in calculus and it was written by Slagle in 1961 with Lisp language, this substance was 

developed as a doctoral dissertation at the Massachusetts Institute of Technology 

developed as a doctoral study [31]. 

After Lisp language invention, it was understood that mathematical problems can be 

solved using personal computers with symbolic computation, after the recovery of this 

advantage from Lisp language, in the 1960s,  the symbolic computations has shown a rapid 

growth development. 

In 1963 Jean E. Sammet developed by FORMAC, FORmula MAnipulation Compiler 

(FORMAC) was an early experimental programming system that had the capability of 

handling formal of mathematical expressions such as computation, manipulation, and use 

of symbolic expressions on the computer and it was built in FORTRAN language [32]. 

CAS software is a software package that capable of doing the symbolic computation. 

CAS applications represent mathematical expressions symbolically and operate on these 

symbolically represented objects. CAS can be separated into general purposes which 

provide computing facilities for general mathematical problems and specific purposes 

which give special uses for algebraic and special mathematical areas. 

The first general purpose symbolic computation systems were developed at the end 

of the 1960s and early 1970s. These systems are, Reduce [33] in 1967, Macsyma [34] and 

Reduce 2 [35] in 1971, Scratchpad [36] in 1971, and muMATH [37] in 1979. 

  Macsyma based version called Maxima was developed in 1971 by Paul S. 

Wang. This system supports many operations such as differentiation, integration, ordinary 

https://eu3.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qdzyKFg9%2BlNGSyfGEjeCJP5B3x2P6ID2fkmCU5leUbu2%2Fa&b=1
https://eu4.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qdxSuFg9foKFahZWQ%2FUw%3D%3D&b=1
https://eu4.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qawTKCsfOZX3avbn0tRnhJog%3D%3D&b=1
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differential equations, rational, logarithmic, trigonometric expressions, linear equations, 

polynomials, Laplace transforms, matrices, and Taylor series [38]. 

Today, the major general purpose CAS systems include Maple [2] from University of 

Waterloo, Mathematica [3] from Wolfram research, SageMath [39] from William A. Stein, 

Axiom [40] from Richard Jenks, Maxima [24] from Massachusetts Institute of Technology 

researchers, Magma [41] from University of Sydney, and Symbolic Math Toolbox 

(MATLAB) [42] from Mathworks.  

The major special purpose CAS systems include CoCoA-5 [43] for commutative 

algebra, Fermat [44] for polynomial and matrix computation, KANT/KASH [45] for 

algebraic number theory, and Macaulay2 [46] for algebraic geometry and commutative 

algebra. 

In 2002, GiNac a special purpose system in C ++ environment was developed by 

Cristian Bauer to implement the symbolic computation and it was designed to handle 

multivariate polynomials, algebras, and other special functions [47]. 

In 2004, Hyungju Park defined that many problems in digital processing can be 

converted to algebraic problems and can be solved using algebraic and symbolic 

computation methods [48]. 

In 2013, Yavuz TEKBAŞ presented the graduate thesis entitled "CODE 

PRODUCTION TOOLS USING AUTOMATIC CALCULATION OF DERIVATIVES 

AND SIMPLIFICATION MATHEMATICAL EXPRESSIONS" [49]. In this work, A 

CFG is developed for syntactic and semantic structures of mathematical expressions, 

JavaCC an automatic code generation tool was used to generate abstract syntax tree (AST) 

as an object tree, and finally evaluating object tree was handled to simplify and derive the 

expressions. 

In 2015, Mir Mohammad Reza Alavi Milani conducted in his doctoral dissertation, 

grammar based methodologies for automatic generation and step-by-step solving of 

mathematical expressions [17]. In this work, CAS like system, grammar-based 

methodologies that were organized into two parts was developed. The first part was 

designed a methodology that solves mathematical expressions step-by-step, and in the 

second part was designed for the production of new questions using template expressions. 

In 2016, Baki GÖKGÖZ presented a graduate thesis entitled as “DESIGN AND 

IMPLEMENTATION OF A GENERAL INTERPRETER FOR NUMERİCAL ROOT 

FINDING METHODS USING SYMBOLIC APPROACHES” [50]. In this work, A CFG 

https://eu1.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qAySaHtfOrKETuV1ouQmNC&b=1
https://us11.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qawTmYvfGuAnalfH0peENC%2BATo2f%2BZGGf4nRMInvIapnSfqMqJ&b=1
https://us11.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qUzwmEnQ%3D%3D&b=1
https://us11.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qc4QS%2Fg7q1GGO0f2goQiM%3D&b=1
https://us11.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qWzC2OvuCnHmafZnw3RW9e1ATpyOWfBA%3D%3D&b=1
https://us11.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qawSmKqf6nDjc%3D&b=1
https://us11.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qWzC2OvuCnHmafb2w1Sm9Y%2BQk%3D&b=1
https://us11.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qUzyeGqeanA2y2bVY7S21J6QLg&b=1
https://us11.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qUzyeGqeanA2y2bVY7S21J6QLg&b=1


7 

 

 

 

is developed for syntactic and semantic structures of mathematical expressions, an 

automatic code generation tool of JavaCC was used to generate AST as the object tree, and 

finally the object tree was simplified before its evaluation and then the root finding 

methods were used to find roots of equations. In this thesis, the designed application can 

find roots for only equations that have only one variable. 

In this thesis, Newton-Raphson method was used for finding multiple roots of multi 

variate nonlinear equations [51]. There are many papers devoted to iterative methods for 

root solver, the literature for previously implemented algorithms see, e.g., [52–62].  

As a result, many problems have been solved throughout the history of symbolic 

computation and it has been proved that some problems cannot be resolved algorithmically 

and some problems needs for further research to get better performance and result.  

With the emergence growth of symbolic computing tools, mathematicians began 

using these tools to do proofs of theorems with computers and save time for mathematical 

operation by hand. In later periods, these tools began to be used in high schools and 

universities in support of mathematics education. Apart from the studies given here, many 

studies have been done on computer science related to symbolic and algebraic 

computations such as coding, modelling, computer animations, signal or image processing. 

 

1.3. Nonlinear Equations 

Nonlinear Equations are very important in science and engineering fields. They have 

many real world applications. The solution of nonlinear equations is one of the most 

difficult problems in scientific computation [63]. 

1.3.1. Nonlinear Equations Introduction 

An equation related to a straight line is called linear equation, for example 

 

𝑓(𝑥) = 𝑚𝑥 + 𝑐                                                                                                          (1)       

                                                                                                 

The equation (Eq. 1) describes a straight line with slope 𝑚 and the linear equation   

𝑓(𝑥)  =  0, involving such an 𝑓, is easily solved to give 𝑥 =  −𝑐/𝑚 ( 𝑚 ≠  0). If the 

function 𝑓(𝑥)  =  0 is not a linear equation (do not relate a straight line) then it’s called 
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nonlinear equation. Algebraic equations and transcendental equations are nonlinear 

equations. 

 

Given a continuous function 𝑓(𝑥), finding the value of 𝑥1 such that 𝑓(𝑥1) = 0 is 

called root finding problems, if 𝑥1 satisfies the equation of 𝑓(𝑥1) = 0 then 𝑥1 is the root of 

the function 𝑓(𝑥1) = 0 or we can say 𝑥1 is a zero of the function of f. 

The System of nonlinear equations is a set of simultaneous equations with multi 

variable unknowns. Nonlinear equations may have just one solution, no solutions, or many 

solutions.  

 

 

 

                                       Figure 1. General form of multivariate nonlinear system of  

                                                       equations 

 

 

1.3.2. Methods for Solving Nonlinear Equations 

Finding an exact solution to nonlinear equations is very difficult because the change 

of input is not proportional to the change of output [64]. Nonlinear systems may appear 

chaotic, unpredictable or counter-intuitive. 

Several ways are possible to solve System of nonlinear equations. We can divide 

them into three main methods which are an analytical method, graphic method, and 

numerical methods. 

 Numerical methods can be further classified into bracketing and open methods, 

many methods are available to solve nonlinear equations such as Bisection method, 

Newton’s method, secant method, fixed point iterations, and Muller’s method. In this 

thesis, we will use Newton’s method. 

https://www.boundless.com/definition/system-of-equations/
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In bracketing methods, the method starts with an interval that contains the root and 

the solution is obtained in the smaller interval containing the root. 

In the open methods, the method starts with one or more good initial guess points. In 

each iteration, a new guess of the root is obtained. 

 

 

                                     

 
  Figure 2. Nonlinear equation solvers 

 

 

1.3.3. Newton-Raphson Method 

Newton-Raphson method also known as Newton’s method is the most widely used 

method to solve a nonlinear equation. It is based on Taylor series expansion. Given an 

initial guess of the roots of (𝑥0, … , 𝑥𝑛) Newton Raphson method uses information of the 

given function and its derivative at that point to find better guess of the root. The Newton 

Raphson formula is showed in Eq. (2) where 𝑘,𝑖 is the number of iteration is. 

 

 𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 −
𝑓(𝑥𝑖

𝑘)

𝑓′(𝑥𝑖
𝑘)

                                                                                                    (2)                                                                                                                                                                                             

                                                  

Nonlinear 
Equation 
Solvers

Numerical Methods

Bracketing

e.g. Bisection and false 
position methods

Open Methods

e.g. Newton's and secant 
methods 

Graphical 
Methods

Analytical 
Methods



10 

 

 

 

1.3.3.1. Graphical Depiction of Newton-Raphson Method 

Assumptions:  

a) Given 𝑓(𝑥) is continuous and the first derivative of 𝑓is known. 

b) Given an initial guess of 𝑥0 such that 𝑓′(𝑥0) ≠ 0.Where 𝑓′ denotes the 

first derivate of 𝑓. 

  

Let’s assume at 𝑥𝑖 is the initial guess, then a tangent to the function of 𝑥𝑖 that is 

𝑓′(𝑥𝑖) is extrapolate down to the x-axis to provide an estimate of the root 𝑥𝑖+1. 

 

 

                             Figure 3. Graphical depiction of Newton-Raphson method 

 

1.3.3.2.  Derivation of Newton-Raphson Method 

1.3.3.2.1. Derivation of Newton-Raphson Method Using Graph 

Assumptions:  

a) Given 𝑓(𝑥) is continuous and the first derivative 𝑓 is known. 

b) Given an initial guess of 𝑥0 such that 𝑓′(𝑥0) ≠ 0.Where 𝑓′ denotes the 

first derivate of 𝑓. 

 

 

 

 



11 

 

 

 

 Table 1. Derivation of Newton-Raphson method using graph 

 

 f(x) 

 f(xi) 

xi+1 xi 

 X 

 B 

 C  A 

 

 

tan(𝛼) =
𝐴𝐵

𝐴𝐶
 

 

𝑓′(𝑥𝑖) =
𝑓(𝑥𝑖)

𝑥𝑖− 𝑥𝑖+1
 

 

𝑥𝑖+1 = 𝑥𝑖 −
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
 

 

1.3.3.2.2. Derivation of Newton-Raphson Method of 1-Dimension System  

Consider Taylor series expansion of 𝑓(𝑥) at the value     𝑥 = 𝑥0. 

 

𝑓(𝑥) =  𝑓(𝑥𝑜) + 𝑓′(𝑥𝑜)(𝑥 − 𝑥𝑜) + (𝑓"(𝑥𝑜)/2!)(𝑥 − 𝑥𝑜)2 + ⋯                                (3) 

          

First approximation to the root of the equation 𝑓(𝑥) = 0 can be found using only the 

two first terms of the expansion in Eq. (3), obtaining the Eq. (4). 

 

𝑓(𝑥)  =  0 ≈  𝑓(𝑥𝑜) + 𝑓′(𝑥𝑜)(𝑥1 − 𝑥𝑜)                                                                    (4)          

                                                                        

First approximation is given by: 

𝑥1 =  𝑥𝑜 −  𝑓(𝑥𝑜)/𝑓′(𝑥𝑜). 

Second approximation is given by: 

𝑥2 =  𝑥1 −  𝑓(𝑥1)/𝑓′(𝑥1), 

And third approximation is given by: 

𝑥3 =  𝑥2 −  𝑓(𝑥2)/𝑓′(𝑥2), 

This iteration procedure can be generalized by writing the below equation, where 𝑖 is 

the iteration number. 

𝑥𝑖 + 1 =  𝑥𝑖 −  𝑓(𝑥𝑖)/𝑓′(𝑥𝑖). 

We start to check the Taylor series after each iteration, the program should check to 

see if the convergence condition is satisfied. 
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1.3.3.2.3. Derivation of Newton-Raphson Method of N-Dimension System 

We start the Taylor series expansion of n variables to obtain a form of Newton 

Raphson method. E.g., we start two-dimensional system to obtain values of 𝑥1 and   𝑥2. 

Given the below equations: 

 

           𝑓1(𝑥1, 𝑥2) = 0 

                                                                                                                                    (5) 

           𝑓2(𝑥1, 𝑥2) = 0 

We extend 𝑓1 and 𝑓2 equations into Taylor series into two dimension with respect to 

iteration 𝑘. 

 

𝑓1(𝑥1
𝑘+1, 𝑥2

𝑘+1) = 𝑓1(𝑥1
𝑘, 𝑥2

𝑘) +
Ə𝑓1(𝑥1

𝑘,𝑥2
𝑘)

Ə𝑥1
(𝑥1

𝑘+1 − 𝑥1
𝑘) + 

Ə𝑓1(𝑥1
𝑘,𝑥2

𝑘)

Ə𝑥2
(𝑥2

𝑘+1 − 𝑥2
𝑘) + ⋯                                                                                                                                                     

.                                                                                                                                            (6)      

𝑓2(𝑥1
𝑘+1, 𝑥2

𝑘+1) = 𝑓2(𝑥1
𝑘 , 𝑥2

𝑘) +
Ə𝑓2(𝑥1

𝑘,𝑥2
𝑘)

Ə𝑥1
(𝑥1

𝑘+1 − 𝑥1
𝑘) + 

Ə𝑓2(𝑥1
𝑘,𝑥2

𝑘)

Ə𝑥2
(𝑥2

𝑘+1 − 𝑥2
𝑘) +

⋯   

After the first derivative terms, resulting equation expressed in terms of Newton 

correction. 

 

𝛥𝑥1
𝑘 = (𝑥1

𝑘+1 − 𝑥1
𝑘)                                                                                                   (7)                                                                                                                                    

                                                                                                                                          

 𝛥𝑥2
𝑘 = (𝑥2

𝑘+1 − 𝑥2
𝑘) 

 

LHS of equation (6) are zero, gives 

 

 
  Ə𝑓1(𝑥1

𝑘,𝑥2
𝑘)

Ə𝑥1
𝛥𝑥1

𝑘 + 
Ə𝑓1(𝑥1

𝑘,𝑥2
𝑘)

Ə𝑥2
𝛥𝑥2

𝑘 = −𝑓1(𝑥1
𝑘 , 𝑥2

𝑘) 

                                                                                                                                    (8)                                                                       

 
Ə𝑓2(𝑥1

𝑘,𝑥2
𝑘)

Ə𝑥1
𝛥𝑥1

𝑘 + 
Ə𝑓2(𝑥1

𝑘,𝑥2
𝑘)

Ə𝑥2
𝛥𝑥2

𝑘 = −𝑓2(𝑥1
𝑘 , 𝑥2

𝑘) 

 

  

win7
Dikdörtgen

win7
Dikdörtgen

win7
Dikdörtgen
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Eq. (8) can be generalized in 𝑛𝑥𝑛 case in Jacobian matrix form. 

 

𝐽𝛥𝑥 = −𝑓                                                                                                                   (9) 

                                                                                                                     

Where J is the Jacobian matrix and it can be generalized as: 

 

𝐽𝑖𝑗 =
𝜕𝑓𝑖

𝜕𝑥𝑗
        

𝛥𝑥 = −𝐽−1𝑓       

                                                                                                                      

Eq. (9) is Newton’s Method for 𝑛𝑥𝑛 system, can be written in this form  

 

 

[
 
 
 
 
 
 
 
Ə𝑓1(𝑥1

𝑘,𝑥2
𝑘,…,𝑥𝑛

𝑘)

Ə𝑥1
      

Ə𝑓1(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥2
… 

Ə𝑓1(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥𝑛

Ə𝑓2(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥1
      

Ə𝑓2(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥2
… 

Ə𝑓2(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘) 

Ə𝑥𝑛
.                                              .                                   ..                                              .                                   .
.                                              .                                   .
Ə𝑓𝑛(𝑥1

𝑘,𝑥2
𝑘,…,𝑥𝑛

𝑘)

Ə𝑥1
      

Ə𝑓𝑛(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥2
…

Ə𝑓𝑛(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥𝑛 ]
 
 
 
 
 
 
 

.

[
 
 
 
 
 
   𝛥𝑥1

𝑘    

𝛥𝑥2
𝑘

.

.

.
   𝛥𝑥𝑛

𝑘    ]
 
 
 
 
 

   = − 

[
 
 
 
 
 

 

Ə𝑓1(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥
      

Ə𝑓2(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

...
      

     
Ə𝑓𝑛(𝑥1

𝑘,𝑥2
𝑘,…,𝑥𝑛

𝑘)

Ə𝑥 ]
 
 
 
 
 

 (10) 

      

𝑥𝑛
𝑘+1 = 𝛥𝑥𝑛

𝑘 + 𝑥𝑛
𝑘                                                                                                     (11)   

                                                                                                                                                                                                                               

Where 𝑘 is the iteration number and 𝑘 = 0,1,2, … 𝑛         

After each iteration, the program should check to see if the convergence condition is 

satisfied. A stopping criteria is required for the iterations. E.g. 

 

𝛥𝑥𝑖
𝑘  < ℇ𝑖, 𝑖 = 1,2, … , 𝑛                                 

𝛥𝑥𝑖
𝑘+1 − 𝛥𝑥𝑖

𝑘  < ℇ𝑖, 𝑖 = 1,2, …,n 

𝑓𝑖(𝑥𝑖
𝑘) < ℇ𝑖, 𝑖 = 1,2, … , 𝑛                                 

𝑓𝑖(𝑥𝑖
𝑘+1 − 𝑥𝑖

𝑘) < ℇ𝑖, 𝑖 = 1,2, … , 𝑛       

Where ℇ  is a pre-specified error tolerance.                   

Comparing to other numerical methods, Newton-Raphson method is a faster and 

better method to find roots of nonlinear equations with a condition that is required to fulfil; 

a good initial guess near to the root is given to converge to the root point. If the initial 
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guess is not a good guess or close to the inflection point of the function, Newton-Raphson 

method diverges away from the root. When the initial guess is close enough to a simple 

root of the function then Newton’s method is guaranteed to converge quadratically. 

Quadratic convergence means that the number of correct digits is nearly doubled at each 

iteration.  

 

1.4. Language Processors 

The Computer is capable of executing instructions of object code. An object code is a 

string of binary bits (0, 1) stored in computer’s memory. A human can’t understand low-

level languages. They write source program in one of the high-level languages. Therefore, 

it’s necessary to find a tool that maps between high-level languages and low-level 

languages. Language processor is a software program that maps an input of a source 

language into an output a target language. There are different types of language processors 

such as assemblers, compilers, pre-processors, interpreters, and disassemblers. In this part, 

we will explain the most widely used language processors which are compilers and 

interpreters. 

 

1.4.1. Compilers 

The Compiler is a type of language processor that translates a source code of high-

level language into a machine code of a low-level language to create an executable 

program. Delphi, Visual, C/C++, COBOL, and Java languages are examples of such 

language processor. 

Modern compilers are used to generate codes that are platform dependent from any 

source code. In the process of creating these codes, the compilers create intermediate codes 

that dependent on environment. 

In compilers, the amount of memory used by the underlying code is small and the 

fast operation is considered as compilers do variable allocation without need variable 

lookup at runtime. Therefore, compilers perform code optimization in order to get the best 

efficiency from the generated code and exploit hardware features. In case of errors in the 

source program, compilers catch and report these errors in the compilation process. 
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   Figure 4. Compilation and execution process 

1.4.2. Interpreters 

Interpreters are another type of language processor, such as compilers, but the goal of 

interpreters are different from compilers. Interpreters, instead of translating the source 

program into a machine code (target program), it interprets each command in user’s 

program into a result. No target program is saved, instead, it analyse the user commands 

and produces a binary code for the voltages carrying out operation of the computer 

hardware component. Interpreters; run source code in a programming language, translate 

and represent it into intermediate code, and execute and interpret the compiled code when 

it arrives. Examples of interpreter languages include Python, Ruby, Lisp, and Pascal. 

Interpreters use one of three strategies for program execution [65]. 

1) Parsing the source code and performs directly its behaviour. E.g., Lisp 

Programming 

2) Translate the source program into an intermediate representation (IR) 

then execute this IR. E.g., Python, MATLAB, PHP, and JavaScript. 

3) Mixed type, the complier is a part of the interpreter system, and the 

interpreter execute precompiled source code made by the compiler. UCSD Pascal is 

an example of this type. 
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    Figure 5. Interpreter process 

 

1.4.3. Mixed Compilation and Interpretation Systems 

There are some mixed systems which combines both compilers and interprets. 

Compiler translates source program in a high-level language into an intermediate code, 

then the interpreter executes the intermediate code to low-level language. Java language 

which combines the two strategies of compilation and interpretation is an example of such 

system. Source files in Java languages compiles into Java Virtual machine (JVM) 

bytecodes, then these JVM bytecodes can be interpreted over the JVM on the hosting 

computer. Frequently executed code is loaded by Just-in-time compiler which enables to 

optimize the code and then runs that code to increase the interpretation speed. 

 

  
  Figure 6. Mixed systems execution architecture 
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1.4.4. Comparison between Compilers and Interpreters 

Compilers and interpreters do the same job in general, translating source program 

into target program but there are many difference between them. 

 Compilers creates machine code for later evaluation but interpreters 

don’t, instead they directly maps a source program into a result.  

 Compilers translates all source code at once no need for re-compilation 

unless we change the source code while interprets are very slow because every time 

the programs starts running, all the source code lines should be translated again.  

 Every time the source program is starting, the interpreter needs to be 

loaded into memory, this causes the source code to allocate less space in memory. 

In the compiler, more space is allocated to the source code in memory, the compiler 

loads only the source code at compile time, and it is not loaded at the next run time. 

 Running programs translated into machine language faster than programs 

interpreted. 

 Interpreters perform better error detection than compilers, the reason for 

this is that the compiler shows a list of many errors in the whole program while 

interpreter shows errors in each instruction. In compilers, some mistakes that 

cannot be detected at compile time can be detected at the time of interpretation.  

 Making changes to the code of compiled programs is slower and more 

difficult than modifying the code of interpreted programs. 

1.4.5. Basic Compiler Phases 

Compilation process can be grouped into two phases, front-end and back-end. 

1.4.5.1. Front-End 

Front-end reads the source program and analysis it. It is primarily dependent on the 

source language. The front end phase consists of lexical analysis, syntax analysis and 

semantic analysis, and intermediate code representation, sometimes some of the code 

optimization can be done in the front end. 
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1.4.5.2. Back-End 

Back-end generates target program. It is independent of the source code and is 

dependent on the target code. The back end, however, includes code generation and code 

optimization.  

Symbol table and error handler is part of the compilation process.  

Compilers and interpreters can share the same front-end but they have different back-

end as the output the two is different. 

 

 

         Figure 7. Complier phases 

 

 

1.5. Mathematical Expressions Interpretation. 

Mathematical expressions contain all mathematical symbols such as numbers, 

operators (like add and subtract), functions (like sin and cos), constants, and variables (like 

x and y) in algebraic operations. Mathematical expressions computation in the computer is 

needed for efficiency computation and time-saving. Mathematical expressions are given 

based on the structure and rules of the interpreters as input data to the interpret software, 

the output of this expression is the result of the mathematical expression. 

Mathematical expressions interpretation is the process of analysing the source 

program of mathematical expressions to represent it in an intermediate code and evaluating 
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the IR of the mathematical expressions to print a final. The interpretation contains two 

phases which are analysis and execution phases. The analysis phase consists lexical 

analysis, syntax analysis, and semantic analysis. The analysis phase produces an 

intermediate code representation as an output in the form of tree data structure. The next 

phase is the execution of the IR code into a final result, this phase translates the IR code by 

evaluating the data tree structure and then print the result. The general process of 

interpreting mathematical expressions is given in Figure 8. 

 

 

   Figure 8. Process of mathematical expressions interpretation 

 

 

1.5.1. Lexical Analyser (Scanner) 

The task of lexical analyser also called lexer or scanner is to read a stream of 

characters from a source program, converts it into series of tokens by grouping the 

characters into a meaningful sequences called lexemes and removing any white space or 

comments in the source program [66]. Lexical analyser breaks up the program into a 

sequence of pieces called tokens in accordance with the word structure of the relevant 

programming language. Tokens, which is a stream of characters, are traditionally written 

using regular expressions. The pattern in Table 3, is an example of predefined regular 

expression rules that identify the lexeme to be a valid token or not. In programming 

languages, integral literals, string literals, keywords, identifiers, symbols, punctuations, and 

operators are types of tokens. Lexical analysis reports error if the token is invalid. Lexical 

errors include misspellings of identifiers, operators, or keywords. The output of lexical 

analyser is a stream of tokens that are passed to the parser for syntax analyser. Lexical 
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analyser output is a token of the form (token name, attribute-value), the first component 

token-name is an abstract symbol that is used during syntax analysis, and the second 

component attribute-value points to an entry in the symbol table for this token. Information 

from the symbol-table entry is needed for semantic analysis and code generation [66]. To 

produce lexical analysers from a regular expression description of the tokens of a language 

a software tool that is called scanner generator is used. 

 

 
            Figure 9. Lexical analyser process 

 

There are several types of token such as variables, numbers, and keywords, each of 

these expressions is defined by its own regular expression. Further reading for regular 

expressions can be referenced by Mogensen, and Torben Ægidius book [67]. 

 

            Table 2. Example of tokens definition 

 

TOKEN 

 

 

REGULAR EXPRESSION OF TOKEN   

DEFINITION 

 ID 

 

NUMBER 

 

ASSIGN 

 

TIMES 

 

DIVIDE 

["a"-"z"](["a"-"z"]|["0"-"9"])* 

 

(["0"-"9"])+("."(["0"-"9"])+)?> 

 

“=” 

 

 “*”  

 

“/” 
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For example, we have the below equation as source program, the lexical analyser 

will read the source program as a stream of characters and breaks up into pieces of a 

stream of tokens as in Table 3. 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑃𝑟𝑜𝑓𝑖𝑡 =
𝑝𝑟𝑜𝑓𝑖𝑡

𝑐𝑜𝑠𝑡𝑃𝑟𝑖𝑐𝑒
∗ 100                                                                     (12)   

    

                     Table 3. Stream of tokens of Eq. (12) 

ID, ASSIGN, ID DIVIDE, ID, TIMES, NUMBER 

 

The identifier profit is a lexeme that would be mapped into a token (ID, 2), where ID 

is an abstract symbol standing for identifier and 1 points to the symbol table entry for 

profit. The symbol table entry for an identifier holds information about the identifier, such 

as its name and type. The assignment symbol = is a lexeme that is mapped into the token 

(ASSIGN). We have omitted the second component since this token needs no attribute-

value. The remaining tokens follow the same logic of the previous two tokens. 

1.5.2. Syntax Analyser (Parser) 

The next phase is syntax analysis (also called parser). The parser has two main tasks; 

first parser checks the grammatical structure of the stream of tokens produced by the 

lexical analyser and then generates a data structure called parser tree or syntax tree. The 

output of syntax analyser is an intermediate representation also called AST. The interior 

nodes of this tree represent an operation and the children of the nodes represent the 

arguments of the operation produced by the lexical analyser.  

Formal grammars are used to specify the syntax of the representative language of 

equations. The Backus Norm Form (BNF) presents a special notation for CFG describing 

the syntax of formal languages. A formal language is a set of strings over a finite set of 

symbols in programming languages and natural languages, which can be defined by a 

context-free grammar given according to the specifications of parser generator tool [68]. A 

software tool that is called parser generator is used to automatically produce syntax 

analysers from a grammatical description of a programming language. JavaCC tool is an 

example of parser generators and it will be explained in the end of this section. In addition 
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according the specified syntax rules, the syntax analysis must also reject invalid tokens by 

reporting syntax errors.  

 

  
  Figure 10. Syntax analyzer process 

 

1.5.2.1.  Context-Free Grammar 

The hierarchical structure of programming languages is defined the combination of 

its syntax and semantics and it is described by grammars. Semantics add meaning and 

interpretation to the syntax of programming language structure.  

In 1956, Noam Chomsky formalized generative grammars and classified into four 

types that are called Chomsky hierarchy [69]. In general, CFG is a more powerful notation 

than regular expression. Every regular expression is context free grammar and every 

construct that can be described by a regular expression can be described by a grammar, but 

not vice-versa. In Table 4, we defined the four types of Chomsky hierarchy. CFG is type-2 

grammar that is used to describe the syntax structure of most programming languages. 

Syntactic categories are statements, expressions, and declarations. These are defined by 

rules of the form of   A →  γ. A is a nonterminal and γ is a string of terminals and 

nonterminal (it can be empty). CFG is a set of production rules that is used to generate the 

parse tree. 

 

                       Table 4. Chomsky hierarchy 

Type-0 Recursively enumerable grammars 

Type-1 Context-sensitive grammars 

Type-2 Context-free grammars  

Type-3 Regular grammars 
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CFG  are made up of finite set of grammar rules and  G it is a 4-tuple (N,T,P,S) 

which are nonterminal (syntactic categories of sets sentences), terminals (the basic symbols 

from which sentences are formed), production rules (rules specifying how the terminals 

and nonterminal combine to form sentence) , and starting symbol respectively.  

 N is a fine set of non-terminal symbols. 

 T is a fine set of terminals where 𝐍 ∩  𝐓 =  𝐍𝐔𝐋𝐋. 

 P is a set of rules, 𝐏: 𝐍 →  (𝐍 ∪  𝐓) ∗,  i.e., the asterisk represents the 

Kleene start operation. 

 S is the start symbol, it is used to represent the whole sentence. It must 

be an element of N. 

In Table 5, E, and F, are nonterminal. Terminals are id, num, and ( ). Start symbol is 

E. One Production rule is E→ E + E. 

                       Table 5. Ambiguous grammar 

E→ E + E  

E→ E - E         

E→ E * E     

E→ E / E      

E→ F  

F→ num 

F→ id 

F→ (E)                                                      

      

1.5.2.2. Derivation and Parsing Context-Free Grammar 

Derivation is carried out starting with the start symbol, and repeatedly replacing any 

non-terminal on the right-hand side. There are two types of derivation methods. The first 

method is the leftmost derivation, in each step of derivation, apply production to leftmost 

nonterminal. The second derivation is the right most derivation and in each step of 

derivation, apply production to rightmost nonterminal. For every leftmost derivation, there 

is a right most derivation, and vice versa.  
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1.5.2.3. Parser Tree 

A parser serves as a tree constructor that transforms the token sequence in the source 

data into an object tree in accordance with the syntactic structure [70]. CFG can be 

represented using a parser tree. Each internal node is labelled by a nonterminal. Each leaf 

is terminal symbol. The construction of a parse tree can be made by rewriting the 

production rules. Beginning with the start symbol, each rewriting step replaces a 

nonterminal by the body of one of its Productions. 

There are some issues that we have to deal with when parsing CFG to generate parse 

tree or AST such as ambiguity, recursive rules, and left factoring. 

1.5.2.3.1. Ambiguity 

Ambiguity is happened when it is possible to derive several parse trees for the same 

string. Ideally there should be only one parse tree for each string (unambiguous). A 

grammar is said to be ambiguous if it generates an ambiguous string. 

Example: if we have a source input of mathematical expression  

𝑥 + 6 ∗ 7/5                                                   (13)  

The grammar sentence of expression (13) according straight line programming 

grammar rules is as following.  id + num ∗ num/num.  

The parser tree of expression (13) has different parse tree in the leftmost derivation 

and in the rightmost derivation therefore; it is an ambiguous as shown Figure 11. The 

problem of ambiguity is that there is no high operator precedence in mathematical 

expressions. 

 

  

                                Figure 11. Ambiguous parser tree of expression” 𝑥 + 6 ∗ 7/5" 

 



25 

 

 

 

We can rewrite ambiguous grammar in Table 5 to remove ambiguity as in Table 6: 

                          Table 6. Unambiguous grammar example 

E→ E + T  

E→ E - T         

E→ T    

T→  T * F     

T→ T / F 

T → F 

F→ num 

F→ id 

F→ (E)                                                    

. 

Now if we try to derive expression (13), it will have one parse tree both in leftmost 

derivation and in rightmost derivation. 

 

  

                                Figure 12. Unambiguous parser tree of expression “𝑥 + 6 ∗ 7/5" 

 

1.5.2.3.2. Left Recursion 

In general, when the function calls its self is said to be recursion. A grammar is said 

to have direct left recursion if the leftmost symbol on the right side of a production rule is 

the same as the non-terminal on its left side, for example,  𝐴 → 𝐴𝜶 or indirect left 

recursion if it can be made itself some sequence of substitutions, for example 𝐴 → 𝛽𝐴𝛼 

where 𝛽 can be yielded in an empty string. Left recursion is problem because parser 

cannot make decision which rule should be applied as rules have common symbol. Top-

down parsers can go infinite recursion in case of left recursion. Example, In Table 7, the 

grammar has left recursive because expression E has three different production rules that 
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start the same symbol of T and the parser can’t made an immediate decision about which 

rule has to be read.  

 

                            Table 7. Left recursion grammar 

 

 

We can eliminate the left recursion by re-writing production rules without changing 

the syntax structure of the grammar. As shown in Table 8. Sometimes we may have 

hidden left-factors when a rule may not appear to have left factor. 

                                        Table 8. Eliminated left recursion grammar  

E → TE` 

E`→ + TE` | -TE` | Ԑ 

T → FT` 

T → *FT`|  /FT` | Ԑ 

F → (E) | id | num 

 

 

1.5.2.3.3. Left Factoring. 

Sometimes two productions have the same start symbol .Production rules have 

common left factor that define in terms of themselves, removing  the common left factor 

that appears in two productions of the same nonterminal is called left factoring.  

 

 

 

E  → E + T | E + T | T 

E  → T * F | T * F | F 

F  → (E) | id | num. 
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Example 

𝐴 → 𝑓𝐵 | 𝑓𝐶                                                                                                            (14)      

Where A, B, C are non-terminals and 𝑓 is a terminal. In this case, the parser will be 

confused as to which of the two productions to choose and it might have to back-trace. 

After left factoring, the grammar is left factored 

         𝐴 → 𝑓𝐿                                                                                                                     (15)                                                                                                                          

 𝐿 → 𝐵 | 𝐶 

1.5.3. Semantic Analyser. 

After the construction of a parser tree, the interpreter uses semantic analyser to cover 

the meaning of a program by analysing its parse tree. Semantic analysis checks whether 

the syntax structure constructed in the source program derives any meaning or not. 

Semantic analysis is performed during run time of the program. 

In semantic analysis, many operations such as type checking, scope resolution, 

array-bound checking, and subroutines arguments calls is performed. Semantic errors 

include type mismatch, undeclared variable, arithmetic errors, and multiple declaration of 

variable. At the time these errors is detected an exception about the error is raised.  

Example 𝑖𝑛𝑡 𝑎 = "5";  cannot be detected during lexical and syntax analysis. 

1.5.4. Symbol Table 

Symbol table is a data structure used to record information about the identifiers used 

in the program and various attributes of identifiers. It stores type, scope, storage location, 

procedure name, return type, and other relevant information. Symbol tables information is 

collected and created in the analysis phase and later it used by the evaluation phase 

(synthesis phase) of the interpreter (compiler). Example the token 𝑥, in symbol table its 

stored information such as (x,1) where x is the token-name and  1 is the attribute value that 

point the entry of this token in the symbol table. Detailed information about symbols is 

referenced [66]. 
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1.6. Parsing Techniques 

Syntax analysers follow the syntax structure defined by means of a context-free 

grammar. The way the structure syntax is implemented (derivation) divides parsing into 

two types: top-down parsing and bottom-up parsing [71].  

 

 

     Figure 13. Parsing types 

 

1.6.1. Top-Down Parsing 

Top-Down Parsing constructs parse tree for input sentence by parsing from the start 

symbol using leftmost derivation to the input sentence. The key objective of Top-Down 

parsing is determining which production rule to be applied for a nonterminal. Recursive 

parsing is a top-down parser that uses recursive procedures to process the input sentence 

and determine the production rule to be applied. Recursive descent may require back-

tracing or may not require. Predictive parsing is a recursive descent parser that doesn’t 

require back-tracing, the problem is a recursive parser which suffers from back-tracing, 

means a bad pack, the production rule is not matched and fails, it starts again to process the 

input using different rules of the same production. In general, Top-Down parsers can’t 

handle left recursion and left factoring, therefore; we have to eliminate the left recursion 

and left factoring before the parsing begins. 

 

Parsing

Top-down Pasring Bottom-up parsing
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                             Figure 14. Top-Down parsing types 

 

1.6.1.1. LL Parsers  

LL (k) parsers analyses the input from left to right performing left most derivation, 

where k is the number of tokens when parser parses a sentence. When 𝑘 = 1 the grammar 

is called LL (1) grammar LL (1) grammar will not work with left recursion and left-

factoring grammars because the grammar can read one symbol at one time. 

 

   
                     Figure 15. LL (k) definition 

 

The grammar in Table 9 is LL (1) grammar, the parser can read enough information 

from right-hand side symbols to choose which production rule is to be applied. 

 

 

 

                                       

Top-Down Parsing

Recursive Descent

Back-Tracing Non-Back-Tracing

Predictive Parser

LL Parser
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                                      Table 9. An example of LL (1) grammar 

S → T 

S → ( S * T) 

S → number 

 

 

  

    Figure 16. LL parser process example 

 

1.6.1.2. First and Follow Sets 

Predictive parsing requires the grammar should have left recursion or left factoring to 

enable that the first terminal symbol of each production right-hand side provides enough 
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information to choose a production, therefore; predictive parsing requires two functions to 

aid getting this information. 

1.6.1.2.1. First Sets 

𝐹𝐼𝑅𝑆𝑇(𝜶)  

If 𝛼 is a string of non-terminals and terminals then  𝐹𝐼𝑅𝑆𝑇(𝜶) is the all terminal 

symbols that begin any string derived from   𝛼. If 𝛼 →  ℇ the ℇ is included   𝐹𝐼𝑅𝑆𝑇(𝜶).  

For 𝑋𝜶1 and   𝑋𝜶2, 𝐹𝐼𝑅𝑆𝑇(𝜶𝟏) and 𝐹𝐼𝑅𝑆𝑇(𝜶𝟐) cannot be overlapped. 

 

   Table 10. Algorithm to compute first sets 

1. If A is a terminal then First(A) is A! 

2. If A →  ε    is a production then add ε to first(A) 

3. If A is nonterminal and there is a Production A →  B1B2,… , Bk  

then add First(B1B2. . Bk) to first(A) 

4. First(B1B2. . Bk)  is one of the following cases. 

1. First(B1)  if First(B1) doesn't contain ε 

2. If First(B1) does contain ε then First(B1B2. . Bk)   is everything 

in First(B1) except for ε  as well as everything in First(B2. . Bk) 

 

 

1.6.1.2.2. Follow Sets 

          𝐹𝑂𝐿𝐿𝑂𝑊(𝑨) 

For nonterminal A, if A  can derive empty string  𝐹𝑂𝐿𝐿𝑂𝑊(𝑨) is defined to be the 

set of terminals that can appear immediately to the right of A. 

𝐴 → 𝐴𝑏𝛽𝛼 .  Here 𝑏  is  𝐹𝑂𝐿𝐿𝑂𝑊(𝐴) 

𝐴 → 𝐴𝛽𝛼𝑏  . Here if 𝛼 𝑎𝑛𝑑 𝜷 are produced an empty string then 𝑏  is  𝐹𝑂𝐿𝐿𝑂𝑊(𝐴) 

$ representing the input right end marker is in 𝐹𝑂𝐿𝐿𝑂𝑊(𝑨) 
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         Table 12. First and follow sets of the grammar in Table 8 

 

 

 

 

 

 

 

 

 

 

       Table 11. Algorithm to compute follow sets  

1. First, put $ (the end of input marker) in Follow(S) (S is the start 

symbol) 

2. If there is a production A →  DBF, then everything in FIRST(F)except 

for ε is placed in FOLLOW(B). 

3. If there is a production A →  DB,  then everything in   

FOLLOW(A) is in FOLLOW(B). 

4. If there is a production A →  DBF, where FIRST(F) contains 

ε, then everything in    FOLLOW(A) is in FOLLOW(B). 

 

 

 

 

 

 

 

 

 

 

 

 

Null? 

 

First Sets 

 

Follow Sets 

 

 

no { (id, num } {$,  )} 

E’ yes {+,  -,  Ԑ} {$,  )} 

T no {( id, num} {+,  -, $,  )} 

T’ Yes { *,  /,  

Ԑ} 

{+,   -, $,  )} 

F no {(,  id,  num} { *,  /,  +,  -, 

$, )} 
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1.6.2. Bottom-Up Parsing 

Bottom-up construct parse tree for input sentence by parsing from the input using 

leftmost derivation to the start symbol. Shift-Reduce parsing is a technique used Bottom-

UP parsers making a shift and reduce action. At the beginning of parsing, the stack is 

empty and the parsing process finishes with success if (EOF) the end of file maker is 

shifted. Stack action pushes the first input token top onto the stack and the reduce action is 

when the grammar right-hand side (𝐴 → 𝐵𝐶𝐷) replaces left-hand side grammar using pop 

function (pop B, C, and D from top of the stack). 

 

 

                            Figure 17. Bottom-Up parsing types 

1.6.2.1. LR Parsers  

LR also called LR(k)  parsers analyse the input from left to right performing right 

most derivation, where k is the number of look ahead tokens symbols. LR parser is the 

most general bottom-up parsing methods. LR parsing starts with an empty stack and ends 

with the root of non-terminal on the stack.  

Three algorithms for LR are LR (1) parsing, SLR (1) parsing, and LALR (1) parsing. 

Simple LR (SLR) parsing is a simple that works on small size grammars and makes a 

fast construction. Look Ahead LR (LALR) works on intermediate size grammars. More 

information about LL and LR parsing algorithms can be referenced [72]. 

 

 

          

Bottom-Up parsing

Shift-Reduce

LR Parsing

SLR Parsing LR Parsing LALR Parsing
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  Figure18. LR parser process example 

 

1.7. Automatic Parser Generator Tools 

In this section, automatic parser generator tools are presented. A compiler-compiler 

generates scanner and parser for particular language from its grammar. Compiler-compiler 

takes grammars as input and produces a compiler as an output. As we mentioned before 

scanner and parser analysers use grammars to analyse the input data, these grammars 

should follow the compiler-compiler rules. There are many automatic code generation 

tools that are used to day. These tools are different depending the programming language 

code to be generated. Some of these tools are JavaCC [12], javaCup [74] for object 

oriented languages, and YACC [75], and bison [76] for imperative languages. In this 

thesis, we are using Java programming language so we will discuss automatic code 

generation tool for java Language and some other important tools. 
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1.7.1. JavaCC 

JavaCC is a java-based parser generator and lexical analyser generator from context-

free grammar and regular expressions respectively.  

JavaCC uses a configuration file with the extension ".jj". This file starts with setting 

options. Among these options are the number of tokens to be looked at when making 

predictive production, whether to activate or deactivate the debug mode, and to specify the 

target folder of the files to be created. 

Next, the body of the parser to be produced is defined. This can be done between the 

PARSER_BEGIN and PARSER_END tags by defining the main parser class. Any code to 

be added to this field will be recognized exactly as the class will be created by JavaCC. 

As a third step, the skip character and the token list required for lexical analysis are 

defined using regular expressions. The token list is identified using the regular expressions, 

if necessary, under the TOKEN tag. Skipped characters are identified by the SKIP tag, and 

are usually space and end-of-line characters. These can be added to other characters 

according to the application. 

 

 

 
    Figure 19. Javacc file structure 
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1.8. Parse Tree Evaluation Approaches 

Syntax classes are implemented using the object-oriented concepts of Java in case of 

java programming language. As a result of syntactic analysis of the source data, syntax 

classes are used to generate object trees via the JavaCC generator tool. Each grammar rule 

is generally defined by a syntax class which is then used to evaluate mathematical 

expressions. The AST structure holds the essential sections of syntax classes in the form of 

a tree. An object tree can be evaluated using one of three approaches from the inner most 

nodes towards the root node. The three approaches are instanceof and type cast, dedicated 

methods, and visitor design pattern, In Table 13, comparison about each one’s advantage 

and disadvantage are presented.  

       Table 13. Comparison of syntax tree evaluation approaches 

Method Object derivations Class Compilation 

Instanceof Operator Yes No 

Interpreter Methods No Yes 

Visitor Design Pattern No No 

 

1.8.1. Instanceof Operator 

In this method, the type (class or subclass or interface) of an object (instance) 

belonging to a node can be determined using the intanceof operator. In order to be able to 

perform the represented operation after determining the object type of the node, it is 

necessary to derive the subclass object from the super class. In this type, the disadvantages 

are that code constantly uses type cast and instanceof to determine the type of an object. 

1.8.2. Interpreter () Methods 

In this method, an interpreter () method is added to each class of the syntax, which 

can perform the operation represented by the class. To evaluate an object tree node, it is 

sufficient to call the eval () method of the object that contains the node. Therefore, it is not 
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necessary to determine the node object type to be evaluated. The disadvantages of this 

method are that for each new operation on objects, new dedicated methods have to be 

added and all classes must be recompiled. 

1.8.3. Visitor Design Pattern 

We can see from the comparison in Table 7 that visitor pattern is a good approach to 

evaluate the syntax tree compared to other parser tree evaluation approaches. Visitor 

Design Pattern is defined to operate on the object tree structure. Visitor pattern comes 

under behaviour pattern category, we use a visitor interface and a visitor class which 

changes the executing algorithm of an element class. When the visitor algorithm varies, the 

execution algorithm of the element also vary. As per the syntax class, element object has to 

accept the visitor object so that visitor object handles the operation on the element object. 

A visit () and accept () method is added to each syntax classes. To evaluate nodes of syntax 

tree visit () method is used. In this way, visit () and accept () methods call each other until 

all the nodes of the object tree are visited. The Visitor class serves as an interface with a 

visit () method declaration for each syntactic class. The definition of the visit () methods is 

done in a class that implements the Visitor interface. A different evaluation of syntactic 

class objects requires the definition of another Visitor interface.  

In visitor design, we can add new operations on an object without touching the other 

code, visitor pattern also gathers same operations More detailed information about visitor 

design pattern is referenced by the book “Design Patterns: Elements of Reusable Object-

Oriented Software” [73]. 
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    Table 14. Syntax classes with accept () methods 

abstract class Exp { 

public abstract Object accept(Visitor v); 

} 

class Plus extends Exp { 

  Exp a, b; 

  public Plus(Exp x, Exp y) { 

    a = x; 

    b = y; 

  }   

  public Object accept(Visitor v) { 

      return v.visit(this); 

   } 

 } 

 

class Minus extends Exp { 

  Exp a, b; 

  public Minus(Exp x, Exp y) { 

    a = x; 

    b = y; 

  } 

  public Object accept(Visitor v) { 

      return v.visit(this); 

   } 

   } 

 

 

 

  

 



 

 

     

 

2.  STEP-BY-STEP SOLUTIONS FOR NONLINEAR SYSTEM OF   

EQUATIONS. 

2.1. Introduction 

There is a need for the use of different computational methodologies and 

programming methods to solve mathematical problems with computer programs. In 

general, there are two main computational methods which are numerical and symbolic 

approaches.  

Numerical methods find an approximate solution to mathematical problems. 

Numerical computations often propagate of errors from round-off and truncation. 

Symbolic computation methods have been developed against this disadvantage of 

numerical methods. Symbolic computation is the development and manipulation of 

mathematical expressions. Symbolic computation or algebra computation solves 

mathematical problems without error and finds the exact value using computer technology. 

In this thesis, using a hybrid method with symbolic-numeric computation which 

combines symbolic and numeric methods, an interpreter software tool is implemented for 

step-by- step solving of a multivariate nonlinear system of equations. Symbolic approaches 

are used to analyse the source data and represent it in an intermediate structure for later 

evaluation. Numerical computation method, i.e., Newton-Raphson iteration is employed to 

obtain better approximations to solutions of nonlinear systems.  

2.2. General Structure of the Implemented Mathematical Expression 

Interpreter 

In this study, solving nonlinear system of equations undergoes two main phases, 

source data analysis, and interpreter phases. In the source data analysis, lexical analysis, 

syntax analysis, and semantic analysis are carried out. In case of any error in any of these 

stages, the expression which is the source of the error is reported without passing to the 

next stage. JavaCC tool is used for analysing the source data, which generates automatic 

source code in the Java programming language. A token generator takes the general source

expression, analyses the source data using regular expressions, and transforms it into a 

token sequence. In the syntax analysis, JavaCC parser generates a syntax tree from the 
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token array according to an Extended Backus Naur Form (EBNF) grammatical form that is 

suitable for the syntactic and semantic structure of mathematical expressions and 

transformed into the LL (k) grammar, which is a left-to-right grammatical structure. In 

addition, syntax classes in the form of syntax tree are defined to represent operators and 

functions that can be included in a mathematical expression. The analysis phase produces 

an intermediate code representation as an output in the form of tree data structure. 

The source expression is evaluated with the help of an interpreter developed based on 

the syntax tree (object trees). In the other stage, the evaluation process is started and the 

object tree is interpreted with the evaluation method of visitor design pattern. In the 

interpreter phase, many intermediate operations such as derivation, function 

transformations, matrix calculations, and simplification for the solution of a system of 

mathematical equations is done. The interpretation phase produces a final result by 

evaluating the object trees using visitor design pattern and shows all intermediate steps 

carried out to solve these expressions. Newton-Raphson method is implemented to obtain 

better approximations to solutions of nonlinear systems. In the Newton-Raphson method, 

functions are transformed into linear equations in the form of matrices equations. Cramer’s 

rule is employed to solve these matrices and find new solutions. In the Newton-Raphson 

method, the root is not bracketed. In fact, some initial guesses of the root are needed to get 

the iterative processes started to find the roots of a system of equations. Convergence in 

open methods is not guaranteed but if the given initial guesses are good enough Newton-

Raphson does convergence, faster compared to other numerical methods. All the 

programming processes from the source expression analysis and the interpretation of this 

source expression to the production of the final result are presented in detail. In the 

following sections, the General structure of solving nonlinear system of equations is shown 

in Figure 20.  

To display the solution steps of a nonlinear system of equations, the expressions on 

the object tree after each evaluation is printed. The main components of the expression 

analyser and expression interpreter can be listed as follows: 

 Lexical Analysis 

 Syntax Analysis 

 Semantic Analysis 

 Nonlinear Equations Evaluation methods 

 Implementing of Newton Raphson Method 
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 Partial Derivatives 

 Function Evaluations 

 Transformation of Nonlinear Equations into  linear equations  

 Solving linear Equations using Cramer’s Rule 

  Newton Raphson Iterations and Stopping criteria 

 Simplification 

 Printing Solution Values and Intermediate Steps 

 

       Figure 20. Architecture of the Implemented Interpreter 
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2.2.1. Lexical Analysis 

The first step in the analysis process of the source program, which is taken a system 

of nonlinear equations, initial guess values and absolute error as the input data and the 

nonlinear equations are subjected to the lexical analysis. In this section, the source program 

is divided into a sequence of pieces called token which is suitable for the syntax structure 

of the Java programming language which is the coding language used in the application. 

Each possible token is defined by means of regular expressions. The compiler compiler 

JavaCC tool uses regular expressions for token definitions. The definitions are declared 

into the JavaCC tool in a file with the extension .jj. 

2.2.1.1.  Token Declaration 

As we mentioned earlier, the JavaCC file consists of several subdivisions, such as 

options, the main parser body, token list in terms of regular expressions, skipped tokens 

such as white spaces, and syntax related methods in terms of CFG according to JavaCC 

rules. In this section, the token definitions for nonlinear equations are presented. 

 

Table 15. JavaCC token declaration for the application 

TOKEN:{  

 <PLUS: ”+”>          | <MINUS: ”-”>         | <TIMES: ”*”>       | <DIVIDE: ”/”>  

| <POWER: ”^”>      |<ASSIGN: ”=”>       | <COMMA: ”,”>     | <SEMI: ”;”> 

| <LPAREN: ”(”>     | <RPAREN: ”)”>      | <SIN: ”sin”>          | <COS: ”cos”> 

| <TAN: ”tan”>         | <LOG: ”log”>          | <LN: ”ln”>            | <EXP: ”exp”>  

| <ID: (["a"-"z","A"-"Z"])(["a"-"z","A"-"Z","0"-"9"])*> 

| <NUM :( [”0”-”9”])+(”.”([”0”-”9”])+)?>  

} 

SKIP: { " " | "\n" | "\t" | "\r" | "\r\n" } 

 

 

Example: Given input source data (Nonlinear equations):  

 

f(x, y) = x2 + y − 3 = 0  ;                                                                                       (16)    
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The characters could be grouped into the lexemes which are then mapped into a 

sequence of tokens passed on to the syntax analyser, as shown in Table 16. 

 

Table 16. Token sequence of Eq. (16) 

ID LPAREN ID COMMA ID RPAREN ASSIGN ID POWER NUM PLUS ID MINUS NUM ASSIGN 

NUM  <SEMI> 

 

 

Scanner reports errors in the case that invalid token is detected. Lexical errors 

include misspellings of identifiers, operators, or keywords. The output of scanner is passed 

to the parser for syntax analysis. Lexical analyser output is a sequence of pairs of the form 

(token name, attribute-value), the token-name is an abstract symbol that is used during 

syntax analysis, and the attribute-value points to an entry in the symbol table for this token. 

Information from the symbol-table entry is needed for semantic analysis. 

2.2.2. Syntax Analysis 

In general, every programming language needs predefined elements in a proper way 

and has a defined sequence of the language component combinations. The output of 

Lexical analyser is a sequence of predefined tokens (words, operators, symbols, functions) 

but it does not have a defined format. In this section, the syntax structure (format) of the 

tokens is declared using CFG. 

The JavaCC parser, which performs syntax operations, has two main tasks; to 

perform the formal check of the syntax structure of the source input data and to carry out 

the production process of the object tree. For formal check, grammar types such as BNF 

and CFG, which define the syntax structure of the data, are used, and expressions that 

generate the object tree are added to these definitions. Using the JavaCC tool, it quite easy 

to define the syntax structure of nonlinear equations and generate abstract object trees for 

nonlinear equations. 

Syntax classes and methods are defined for each rule of a grammar that represents 

the source data. After the grammatical structure is determined for the syntax analysis stage, 

this grammatical structure must be adapted to LL (k) because JavaCC works with the LL 

(k) algorithm. Therefore, in order to be able to comply with the LL (k) algorithm of the 

grammar structure, left factoring has been performed by eliminating the recursive states 
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from the left. After all these processes, the related grammatical structure was transferred to 

JavaCC environment and Java code is produced, which can perform syntax analysis 

processes for the developed application. 

In this section, the grammar structure developed for the application and the JavaCC 

code structure, which generates automatic code in the Java programming language of this 

grammar are discussed. 

2.2.2.1.  Syntax Structure of Nonlinear Equations 

In order to use the compiler compiler tool JavaCC, some operations have to be made 

on EBNF grammar such as eliminating the ambiguity and left factoring to produce an LL 

(1) grammar as shown in Table 17. 

 

    Table 17. LL (1) grammar definition for nonlinear equations 

G={Σ, T, V, P, S} 

V={Eq, Eq2, ArgL, Exp, Term, Power, Elem, Func, Num, 

   Id }⊆  𝛴 

T={sin, cos, tan, log, Ln, exp, ( , ), +, -, *, /, ^, =,  

, , ;}⊆ 𝛴  

Σ=𝑇 ∪ 𝑉 

S={Eq} 

Productions 

<Eq>      → <Eq2> (;<Eq>)? 

<Eq2>     → <id>(<ArgL>) = <Exp> = <num> 

<ArgL>    → <id> (, <ArgL>)? 

<Exp>     → ("+"│"-")? <term> [("+"│"-") <term> ]* 

<Term>    → <power> [("*"│"/") <power>]* 

<Power>   → <element> ("^"<power>)? 

<Elem>    → <func> "(" <Exp> ")" | <num> | <id> 

<Func>    → "Sin" | "Cos" | "Tan" | "log" | "ln" | "e" 

<Num>     → "-"? ["0"-"9"] + ("."["0"-"9"]+)? 

<Id>      →  ["a"-"z","A"-"Z"](["a"-"z","A"-"Z","0"-"9"])* 

  

 

Parsing an expression is processing the expression according to the grammar 

production rules. The name of methods in JavaCC syntax description of nonlinear 

expressions is determined according to the nonterminal set in Table 17 as shown in Table 

18. All JavaCC methods are defined according to the grammar structure, then the JavaCC 

parser generator tool is used to generate syntax classes from the JavaCC methods in the 

form of object trees for interpreter process. 
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  Table 18. JavaCC grammar definition for nonlinear equations 

Equation Prog() :{ Equation eq; }{ 

 eq = Eq() <EOF> { return eq; } 

} 

Equation Eq() :{ Equation eq1, eq2; }{ 

  eq1=Eq2 () (<SEMI> eq2=Eq () {eq1 = new CompoundEquation   

  (eq1, eq2) ;})? { return eq1; } 

} 

Equation Eq2() :  

{ Token t1,t2; Exp e;  Exp args[] = new Exp[26]; } 

{ 

    t1 = <ID> <LPAREN>( ArgL(args, 0)) <RPAREN> <ASSIGN> e=E()  

    <ASSIGN>  <NUM> 

   { return new Function(t1.image,args,e); } 

} 

... 

Exp E() :{ Exp e1, e2; int n=1; }{ 

(<PLUS> | <MINUS> {n=-1 ;})?  e1=T() { if (n<0) e1=new  

Times(new Num(-1), e1); } ( <PLUS> e2=T() 

{ e1 = new Plus(e1, e2); } 

    | <MINUS> e2=T() { e1 = new Minus(e1, e2); } 

  )* { return e1; } 

} 

... 

Exp F() :{ Token t1,t2; Exp e;}{ 

    t1=<ID> { return new Var(t1.image); } 

  | t2=<NUM> { return new Num(Double.parseDouble(t2.image)); } 

  | <LPAREN> e=E() <RPAREN> { return e; } 

  | <SIN> <LPAREN> e=E() <RPAREN> { return new Sin(e); } 

  ... 

} 
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2.2.2.2.  Generating Abstract Syntax Tree 

There are many parser generating tools. In this thesis, Object-Oriented based JavaCC 

parser generator tool is used to create the object trees. Each rule of a CFG grammar is 

represented as a syntax class. The formation of the hierarchical structure of the 

grammatical object tree depends on the execution of the grammar rules used to form the 

source data. A syntax tree (object tree) consists of several nodes linked together in a 

hierarchical structure. From these nodes on the object tree, each node is derived from 

syntax classes and contains an object that represents a process or data.  

 

           Table 19. Abstract syntax tree for the application 

abstract class Equation {  

} 

class CompoundEquation extends Equation { 

  Equation eq1, eq2; 

  public CompoundEquation(Equation a, Equation b) { 

    eq1 = a; 

    eq2 = b; 

  } 

} 

… 

abstract class Exp { 

public abstract Object accept(Visitor v); 

public abstract double eval(double x); 

}  

class Plus extends Exp { 

  Exp a, b; 

  public Plus(Exp x, Exp y) { 

    a = x; 

    b = y; 

  } 

   public double eval(double x) { 

    return a.eval(x) + b.eval(x); 

  } 

 } 

class Sin extends Exp { 

  Exp a; 

  public Sin(Exp x) { 

    a = x; 

  } 

   public double eval(double x) { 

    return Math.sin(a.eval(x)); 

  } 

} 

... 
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2.2.3. Semantic Analysis 

In the analysis phase, the syntax tree created in the syntax analysis phase is subjected 

to the semantic analysis process. The semantic process works on the token structures on 

the leaves of the tree to make sense for the interpreter. For example; a double variable is a 

double token, and the string variable is a string variable. As mentioned earlier, the most 

important operations in this phase include type checking, scope resolution, and array-

bound. Faults that may occur at this stage are called semantic errors. For example; an 

integer variable and a string variable cannot be directly equalized because their token types 

are different. In this phase, semantic errors in the source code are checked and data type 

information is specified for the interpreter. The creation of the symbol table and the 

implementation of the type check are the most important parts of the semantic analysis. 

The semantic information is not displayed in the context-free language. The CFG used in 

the syntactic analysis is combined with semantic rules.  

      In this thesis, the symbol table is created to record the information of some 

identifiers to retrieve later in the evaluation process. For example; the initial guesses values 

of the Newton-Raphson method and the absolute error data are recorded in the symbol 

table (hash table) and the interpreter uses the table to look up easily these values in the 

evaluation process. Symbol tables are mostly implemented as hash tables, where the source 

code symbol itself is treated as a key for the hash function and the return value is the 

information about the symbol. 

 

    Table 20. Hash table usage for Newton-Raphson initial guess values 

--Hash tables for initial guess values in the form of 

(var_name,var_value) 

class Table { 

  Hashtable table = new Hashtable(); 

  public void put(String id, String d) { 

   table.put(id, new String(d)); 

 } 

 public String get(String id) {  

    return table.get(id).toString(); 

} 

} 
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2.2.4. Nonlinear Equations Evaluation Methods 

The output of the analysis phase is a meaningful and error free syntax classes in the 

form of object trees. These syntax classes represent grammar rules in the JavaCC grammar 

methods. The next phase is to interpret the nodes (process or data) on the object tree 

according to the implemented interpreter algorithm. The interpreter phase uses Newton-

Raphson algorithm to interpret the nodes on the object trees. Visitor design pattern and 

interpreter methods are used to operating on the object tree, each of which is explained in 

Section 1.8. Visitor design pattern is a useful pattern that enables to add new operations to 

the system without changing other classes or methods. The eval () method is also added to 

each syntax class, which can perform the operation represented by the class. To evaluate an 

object tree node, it is sufficient to call the eval () method of the object that contains the 

node. 

 

             Table 21. Adding visitor and eval methods to the syntax classes 

abstract class Equation {  

public abstract Object accept(Visitor v); 

} 

class CompoundEquation extends Equation { 

  Equation eq1, eq2; 

  public CompoundEquation(Equation a, Equation b) { 

    eq1 = a; 

    eq2 = b; 

  } 

  public Object accept(Visitor v) { 

   return v.visit(this); 

   } 

} 

... 

abstract class Exp { 

public abstract Object accept(Visitor v); 

public abstract double eval(double x); 

} 

class Plus extends Exp { 

  Exp a, b; 

  public Plus(Exp x, Exp y) { 

    a = x; 

    b = y; 

  } 

   

public Object accept(Visitor v) { 

   return v.visit(this); 

   } 

} 

   public double eval(double x) { 

    return a.eval(x) + b.eval(x); 

  } 

 }… 
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2.2.5. Newton-Raphson Implementation 

In the interpreter phase, we implement the Newton-Raphson algorithm to solve the 

nonlinear expressions and obtain better approximation solutions. We have the input data in 

the form of object trees. The interpretation process includes partial derivatives, function 

evaluations, function transformations into linear equations in matrix form, solving the 

linear equations using Cramer’s rule, Newton-Raphson iterations and stopping criteria, 

simplifications, controlling of step-by-step solutions, and finally printing the result with all 

intermediate solution steps. 

   First, the NLEParser class (Nonlinear Equations Parser) is called to read and parse 

the input source data and represent it in the form of object tree in the case that no error is 

detected during the analysis phase as shown in Table 22. 

 

          Table 22. Parsing input source data operation 

 
public class EQSolver  { 

 static Equation eq = null; 

 static Function f = null; 

 static boolean endEq = false; 

 

 public static void solveEquations(){ 

    try{ 

       eq = new NLEParser(System.in).Eq(); 

    ... 

      while (!endEq) 

      {    

        

  if (eq instanceof CompoundEquation) 

        {            

          f = (Function)(((CompoundEquation)eq).eq1); 

          eq = ((CompoundEquation)eq).eq2; 

        } 

        else 

        {  

          f = (Function)eq; 

          endEq = true; 

        } 

   } 

    catch(ParseException ex) { 

       System.out.println("Fail!\n" + ex.getMessage()); 

  } 

 

    ... 

} 
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2.2.5.1. Partial Derivative 

Given a system of nonlinear equations, initial guess values, and absolute error 

tolerance as input data, as mentioned in Section 1.3, the first step of Newton-Raphson 

method is to find the derivative of the given functions with respect to specific variables 

(partial derivative). For a given function 𝑓1 with 𝑥𝑛 variables, the partial derivative of this 

function is shown below and the code is given in Table 23. Derivative processing is done 

by evaluating the AST tree. For this, a class doing partial derivatives of nonlinear functions 

is created with visitor design template and it is used general derivative rules.  

 𝑓1(𝑥1
𝑘+1, 𝑥2

𝑘+1) = 𝑓1(𝑥1
𝑘, 𝑥2

𝑘) +
Ə𝑓1(𝑥1

𝑘,𝑥2
𝑘)

Ə𝑥1
(𝑥1

𝑘+1 − 𝑥1
𝑘) + 

Ə𝑓1(𝑥1
𝑘,𝑥2

𝑘)

Ə𝑥2
(𝑥2

𝑘+1 − 𝑥2
𝑘) + ⋯                                                                                                                                                      

      

      Table 23. Partial derivative of nonlinear equations 

 
class EQSolver { 

   ... 

  for (int i=0; i<f.args.length; i++) 

      {  

        if (f.args[i]==null) 

     break;  

        var = f.args[i].toString(); 

    derives{row][column] = (Exp)(new EQDerive().visit(f.e)); 

         

    ... 

  } 

 class EQDerive implements Visitor  { 

   

  public Object visit(Equation equ){ 

        equ.accept(this);  

        return null; 

   } 

  ... 

  public Object visit(Plus e) { 

    Exp a = (Exp)(e.a.accept(this)); 

    Exp b = (Exp)(e.b.accept(this)); 

    return new Plus(a, b); 

  } 

... 

  public Object visit(Sin e) { 

    Exp a = (Exp)(e.a.accept(this)); 

    return new Times(a, new Cos(e.a)); 

  } 

  public Object visit(Var e) { 

  if(EQSolver.var.equals(e.id) ) 

    return new Num(1); 

     else  

  return new Num(0); 

  } 

 

  public Object visit(Num e) { 

    return new Num(0);}} 
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2.2.5.2. Function Evaluations 

The next step after partial derivative is to evaluate the derived functions and the 

normal functions using the initial guesses of the Newton-Raphson method as shown in 

Table 24. The implemented application can evaluate every nonlinear function that with n 

variables, as we mentioned earlier, we look up the initial values from the hash table and 

update them after each iteration. 

 

    Table 24. Nonlinear function evaluations 

public class EQEval implements Visitor  { 

public Object visit(Equation equ){ 

       equ.accept(this); 

       return null; 

 }... 

  public Object visit(Function eq) { 

       eq.e.accept(this); 

       return null; 

  } 

  public Object visit(Exp e) { 

    return e.accept(this); 

  } 

  public Object visit(Plus e) { 

    double a = ((Double)(e.a.accept(this))).doubleValue(); 

    double b = ((Double)(e.b.accept(this))).doubleValue(); 

    return new Double(a+b); 

  }... 

  public Object visit(Sin e) { 

    double a = ((Double)(e.a.accept(this))).doubleValue(); 

    return new Double(Math.sin(a)); 

  }... 

  public Object visit(Var e) { 

    String id = e.id; 

    return Double.parseDouble(EQSolver.t.get(id));  

  } 

  public Object visit(Num e) { 

    return new Double(e.n); 

  } 

} 
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2.2.5.3. Transformation of Nonlinear Equations into Linear Equations  

The next step is to represent the derived functions in the form of a Jacobian matrix 

and evaluate them, then the unknowns is represented as 𝑥𝑛vector and the functions is 

represented in the another vector as   𝑓𝑛 as shown in the next page.  

 

[
 
 
 
 
 
 
 
Ə𝑓1(𝑥1

𝑘,𝑥2
𝑘,…,𝑥𝑛

𝑘)

Ə𝑥1
      

Ə𝑓1(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥2
… 

Ə𝑓1(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥𝑛

Ə𝑓2(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥1
      

Ə𝑓2(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥2
… 

Ə𝑓2(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘) 

Ə𝑥𝑛
.                                              .                                   ..                                              .                                   .
.                                              .                                   .
Ə𝑓𝑛(𝑥1

𝑘,𝑥2
𝑘,…,𝑥𝑛

𝑘)

Ə𝑥1
      

Ə𝑓𝑛(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥2
…

Ə𝑓𝑛(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥𝑛 ]
 
 
 
 
 
 
 

.

[
 
 
 
 
 
   𝛥𝑥1

𝑘    

𝛥𝑥2
𝑘

.

.

.
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𝑘)
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Ə𝑓𝑛(𝑥1

𝑘,𝑥2
𝑘,…,𝑥𝑛

𝑘)

Ə𝑥 ]
 
 
 
 
 

   

 

In Newton Raphson method, nonlinear Equations is simplified as linear equations in 

the form of a matrix as  𝐴𝑋 = 𝐵, where 𝐴 is the Jacobean matrix, 𝑋 is the unknown vector, 

and 𝐵  is the functions vector. The linear equations in the form of matrix and their solution 

is explained in the next section 

2.2.5.4. Solving Linear Equations Using Cramer’s Rule 

 Cramer's rule is used to solve a system of linear equations with 𝑛 unknowns, It uses 

to find the solution by finding the determinants of the square coefficient matrix and it a 

way to solve for just one variable at each time by replacing the corresponding column on 

the left hand side by the variable vector of right hand side of the equations. This method is 

valid whenever the system has a unique solution (𝐷 ≠ 0).The general form of 𝑛 linear 

equations is defined as below:  

 

  

First, we have to calculate the determinant of the coefficient matrix and it is 

represented as 𝐷 

 

https://eu3.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qE2Tmfuf%2BZGGOfZGA0Qmte1BXw2OuZFFf5iA%3D%3D&b=1
https://eu3.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qTxT6Orv%2BvGWSufA%3D%3D&b=1
https://eu3.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qawT6ZteqZX2ihfGE%2FSmtY4hPyhA%3D%3D&b=1
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Second, we calculate the determinant of each column in the coefficient matrix 

 

 

Finally, the solution of each unknown is computed as: 

 

𝑥
𝑘= 

𝐷𝑘
𝐷⁄

 

 

 Table 25. Solving linear equations using Cramer’s rule 

public void cramers(double lhsEvaluation[][],double rhs[])  

 { 

  double temp[][] = new double[N][N]; 

  for(int i=0;i<N;i++) { 

    for(int j=0;j<N;j++){  

      for(int k=0;k<N;k++){ 

        if(k == i)  

          temp[j][k] = (-1)*rhs[j]; 

        else  

          temp[j][k] = lhsEvaluation[j][k]; 

      } 

    } 

deltaValues[i]=determinant(temp,N)/determinant(lhsEvaluation,N); 

    String s = t2.get(i);  

    solutionValues[i] = Double.parseDouble(t.get(s)) + 

deltaValues[i]; 

  } 

 

 

 

2.2.5.5. Newton-Raphson Iterations and Stopping Criteria 

Comparing to other numerical methods, Newton-Raphson method is a faster to 

converge to the solution (root point) with a condition that is a good initial guess near to the 

root. Newton-Raphson method diverges away from the root if the initial guess is not a 

good guess. When the initial guess is close enough to a simple root of the function then 
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Newton’s method is guaranteed to converge quadratically (the number of correct digits is 

nearly doubled at each iteration).  

Newton Raphson Method Iterations needs stopping criteria to terminate the iterations 

for one of two results; better approximation (success) or the solution diverges for the root 

point (failure). There are four stopping criteria as we mentioned in Section 1.3.3. In our 

system, we used a stopping criteria to check if we meet a given condition (absolute error).  

First, we compare the value of each 𝛥𝑥𝑛 with a given ℇ (absolute error), if all the 

values of  𝛥𝑥𝑛 are less than the absolute error, then the iterations are terminated and the 

final solutions are calculated. Sometimes, the given initial guess may not good enough to 

converge to the root point and in other cases, recursive iterations may happen. To handle 

the above and similar situations, we have used to check the iteration number (25 

maximum). For example, More than 25 iterations, the iterations are terminated with failure. 

 

                  Table 26. Newton-Raphson stopping criteria 

public static boolean controlDeltaValues( ) { 

    for(int k = 0; k < N; k++){ 

      if (deltaValues[k] > errorValue) 

        return false; 

    } 

    return true; 

  } 

 

2.2.5.6. Simplification 

It may be necessary to simplify the expression during the intermediate steps of the 

evaluation process or before the printing process. There is no a common definition of 

simplicity for every situation, the simplification must be defined according to the 

expression or problem. 

The simplification is normally done by rewriting the rules. To this end, there are a lot 

of things to consider and a lot of rules that need to be rewritten. In simplest terms, 

simplification rules should be arranged to reduce the size of the expression or algebraic and 

trigonometric transformations is applied to an expression as part of the evaluation process. 

In our system, after derivation of mathematical functions, it may be necessary to 

simplify the function expression. The reason for this is that the generated function after the 
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derivation process has some expressions necessary to simplify because the structure of the 

function may contain a lot of data which is complicated and unnecessary and this makes 

the readability of the related function less. To avoid possible problems, the derived 

expression is subjected to simplification. 

In this phase, some basic transformations for simplifications such as numerical, 

distributive, associative, commutative transformations are performed. In the evaluation 

process, some special cases needed to be simplified as shown in Table 27. Simplification 

operations can be performed according to the syntax class of the node accessed by these 

methods. More details about these transformations can be referenced in [17]. 

Example. Some cases that need to be simplified are showed below:  

0 + 𝑎 → 𝑎   

1 ∗ 𝑎 → 𝑎   

0 − 𝑎 → −𝑎   

𝑎 + (−1) → 𝑎 − 1   

         2 + 𝑎 + 5 → 𝑎 + 7 

          𝑎0→1 

 𝑎1 → 𝑎 

 

     Table 27. Simplification rules for some basic transformations 

 

exp+ 0 

+

exp 0

exp

 

 

Plus( exp,Num(0)) 

 

exp ∗  0 

*

exp 0

0

 

 

Times( exp, Num(0)) 

 

0
𝑒𝑥𝑝⁄  

/

0 exp

0

 

 

Divide( Num(0), exp) 

 

𝑒𝑥𝑝0 

^

exp 0

1

 

 

Power( exp, Num(0), ) 
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In our system, after derivation of mathematical functions, some function expressions 

is simplified. The reason for this is that some expressions don’t need read from the AST to 

calculate their values. As shown in Table 27, any number multiplied by zero is equal to 

zero so we automatically simplify like these expressions to zero.  

 

             Table 28. Simplification methods implementation 

public class EquationSimplify implements Visitor  { 

  public Object visit(CompoundEquation equ){ 

       equ.eq1.accept(this); 

       equ.eq2.accept(this); 

       return null; 

 } 

  public Object visit(Plus e) { 

    Exp a = (Exp)(e.a.accept(this)); 

    Exp b = (Exp)(e.b.accept(this)); 

    if (a instanceof Num && ((Num)a).n == 0.0) 

      a = null; 

    if (b instanceof Num && ((Num)b).n == 0.0) 

      b = null; 

    if (a == null && b == null) 

      return new Num(0); 

    if (a == null) 

      return b; 

    if (b == null) 

      return a; 

    return new Plus(a, b); 

  } 

  public Object visit(Sin e) { 

    Exp a = (Exp)(e.a.accept(this)); 

    if (a instanceof Num && ((Num)a).n == 0.0) 

        return new Num(0); 

    return e; 

  }... 
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2.2.5.7. Printing Solution Values and Intermediate Steps 

One of the major goals of this work is to help students and users to show all 

intermediate steps and final solution. During the calculations and evaluation process of 

Newton-Raphson Method, all intermediate steps are stored in an Array list. For example, 

derived functions are simplified and stored in the AST for speed up the evaluation process. 

In the print process, print class looks up the derived functions from AST to print them as 

shown in Table 29. Other intermediate solution steps are stored in Java arrays and update 

in each iteration. 

 

      Table 29. Print derived functions 

public class EquationPrint implements Visitor  { 

   public Object visit(Equation equ){ 

       equ.accept(this); 

       return null; 

   } 

  public Object visit(Times e) { 

    String a; 

    if (e.a instanceof Num && ((Num)(e.a)).n==-1) 

      a = "-"; 

    else 

      a = (String)(e.a.accept(this)); 

    String b = (String)(e.b.accept(this)); 

    if (e.a instanceof Plus || e.a instanceof Minus) 

      a = "(" + a + ")"; 

    if (e.b instanceof Plus || e.b instanceof Minus) 

      b = "(" + b + ")"; 

    Return new String (a + (a.equals ("-")? "" : "*") + b); 

  } 

 

  public Object visit(Sin e) { 

    String a = (String)(e.a.accept(this)); 

    return new String("sin(" + a + ")"); 

  } 

... 
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 After the final solution is obtained. All intermediate and final solution is presented 

as shown in Table 30. 

 

 

 Table 30. Print final solution values and intermediate steps 

Public class EQSolver { 

 public static void main(String[] args) { 

... 

 while(proceed){ 

 ... 

 flag = controlDeltaValues(); 

  if(flag){ 

    for(int i=0;i<N;i++){  

      System.out.println("FinalDelta("+ t2.get(i) + ")=" +  

      deltaValues[i]); 

    } 

    System.out.println("all Deltavalue is less than the given  

    absolute error "); 

    for(int i=0;i<N;i++){  

      System.out.println("Final solution value of("+ t2.get(i) +  

      ")=" +solutionValues[i]); 

    }    

    proceed=false; 

  } 

  else {  

    for(int i=0;i<N;i++){   

      System.out.println("Delta("+ t2.get(i) + ")=" +  

      deltaValues[i]); 

    } 

    System.out.println("all Deltavalue is not less than the given 

    absolute error ");  

... 

 

 

 

 

 

 



 

 

     

 

3.  APPLICATION OF THE METHODOLOGY 

In this section, a sample application for the Newton-Raphson method is illustrated. 

The functions to perform the root calculation and other Source data are entered in the 

interface in the specified format. The Newton-Raphson numerical method is used to 

calculate the root values of the respective function and display it in the interface. 

 

3.1. Source Data Format 

The format of the source data is illustrated the LL (1) Grammar Definition for 

Nonlinear Equations in Table 17. First, in brackets, all initial values such as Newton-

Raphson initial guesses, and absolute error value are entered by the user. Second, the 

nonlinear functions to calculate the root of the application are entered separated by semi 

colon. 

General structure of source data format is shown in Table 31: 

 

                       Table 31. Source data format 

(𝑖𝑛𝑖𝑡𝑉𝑎𝑟1 = 𝑣𝑎𝑙𝑢𝑒, 𝑖𝑛𝑖𝑡𝑉𝑎𝑟2 = 𝑣𝑎𝑙𝑢𝑒,⋯ , 𝑖𝑛𝑖𝑡𝑉𝑎𝑟𝑛 = 𝑣𝑎𝑙𝑢𝑒); 

𝑎𝑏𝑠𝐸𝑟𝑟𝑜𝑟𝑉𝑎𝑙𝑢𝑒; 

𝑓1(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛, ) = 0; 

𝑓2(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛, ) = 0; 

𝑓3(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛, ) = 0; 

             … 

𝑓𝑛(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛, ) = 0 

 

 

 

3.2. Step-by-Step Solving of a Given Nonlinear Equation Application 

In this section, to illustrate the methodology of our system, we explain all 

intermediate steps needed to solve a given nonlinear equations in Table 32.  



60 

 

 

 

 

                                             Table 32. Input source data of the application 

 (𝑥0 = 0.6, 𝑦0 = 1.5); 

0.08; 

𝑓1(𝑥, 𝑦) = 𝑥2 + 𝑦 − 3 = 0; 

𝑓2(𝑥, 𝑦) = 𝑦2 + 𝑥 − 5 = 0 

 

The given input source data in Table 32, the initial Newton-Raphson guess of 𝑥0 and 

𝑦0 is 0.6 and 1.5 respectively. The absolute error is 0.08. We have two given functions  𝑓1 

and 𝑓2. Using Newton-Raphson iterations, we solve these equations to get a better 

approximation to the roots of the given functions. First, the system analyzes the given input 

source data format using the analysis phase, in case of no error is detected, the source data 

is generated as AST. Secondly, the generated AST nodes (data or operator) is interpreted 

using the interpretation phase. In this section, the methodology of the given application is 

illustrated. 

3.2.1. Analysis Phase of the Application 

The given source data (nonlinear equations) in Table 32 undergoes lexical analysis 

according to the JavaCC Token Declaration for the Application in Table 15. There is no 

error in the format of the given input source data, therefore; the generated token sequence 

the given input source data is given in Table 33. 

 

Table 33. Token sequence of the given application source data 

ID LPAREN ID COMMA ID RPAREN ASSIGN ID POWER NUM PLUS ID MINUS NUM 

ASSIGN NUM  <SEMI> 

ID LPAREN ID COMMA ID RPAREN ASSIGN ID POWER NUM PLUS ID MINUS NUM 

ASSIGN NUM   

  

 

After the sequence of tokens is generated, the syntax analyser first task is to control 

the token component combinations according to the LL (1) grammar defined in Table 17. 

The given input source data structure is correct according to the defined LL (1) grammar.   
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The next task is to generate the AST of the given source data as illustrated in Table 34. 

Hash table is used to store the information of the given initial values in the form of 

(𝑣𝑎𝑟𝑁𝑎𝑚𝑒, 𝑣𝑎𝑟𝑉𝑎𝑙𝑢𝑒) so that in our application the hash table is stored as (𝑥 = 0.6, 𝑦 =

1.5). The last step of the analysis phase after the syntax analysis is the semantic analysis to 

make type checking, scope resolution, and array-bound that we have used in the JavaCC 

file.  

 

  Table 34. The object tree for the input source data (nonlinear equations) in Table 32. 

Eq(new CompundEq( 

         new Function(  

                  new Minus(new Power(new Var(x),new Num(2) 

                                             ), new Minus 

                                   (new Var(y), new Num(3)))), 

  

     new Function( new Minus(new Power(new Var(y),new Num(2)), 

                            new Minus(new Var(x), new Num(5)))) 

 ) 

 

 

 

In the analysis phase, an intermediate representation object tree (AST) in Table 34 

was created. The next interpreting phase, the AST nodes are interpreted using the 

implemented Newton-Raphson algorithm. As we explained in Section 2.2.5. The 

implemented Newton-Raphson undergoes the below steps and the output is shown in Table 

35. 

1) Calculate the partial derivative of the given function. 

2) Evaluate the derived functions using the given initial guess values. 

3) Represent (2) result in Jacobin matrix form. 

4) Evaluate the original functions using the given initial values. 

5) Convert the nonlinear equations into linear equations in the form of 

𝐴𝑋 = 𝐵 where 𝐴 is the Jacobean matrix, 𝑋 is the unknowns vector, and 𝐵 is the 

evaluated original functions. 

6) Solve the linear equations using Cramer’s rule.  

7) Control the stopping criteria, if it is met calculate the final solution else 

go back step (2). 
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3.2.2. Interpretation Phase of the Application 

In the interpretation phase, several operations are done according to the Newton-

Raphson steps illustrated in Section 3.2.1. The process starts with the partial differentiation 

of the given function, then evaluating the derived function and to represent it in the 

Jacobian matrix form, the normal functions are evaluated according to the initial guess 

value, the process converts into linear equations in the form of 𝐴𝑋 = 𝐵 , we solve this 

linear equations using Cramer’s rule and finally, Newton-Raphson iterations are carried out 

until the stopping criteria is met with success finding the solution or failure with exceeding 

the iteration number. 

 

    Table 35. Newton-Raphson interpretation process of object tree in Table 34. (Iter. 1) 

1) Partial Derivative of 𝑓1 𝑎𝑛𝑑 𝑓2 With Respect to 𝑥      2𝑥     1 

With Respect to 𝑦      2𝑦     1 

2) Evaluating Results in Step (1) 

using initial values(0.6,1.5) 

1.2     1 

3        1 

3) Evaluating  𝑓1 𝑎𝑛𝑑 𝑓2 -1.1400    and     -2.15 respectively  

4) Represent the result of (2) in 

Jacobian matrix form. 

[
1.2 1
1 3

] 

5) Convert into 𝐴𝑋 = 𝐵 

 

[
1.2 1
1 3

] . [
𝛥𝑥
𝛥𝑦

]= -[
−1.1400
−2.15

] 

6) Solving the linear equations using 

Cramer’s rule 

D = 2.6, Dx = 1.27, Dy = 1.44 

𝛥𝑥 = 𝐷𝑥
𝐷⁄ = 0.488 

 𝛥𝑦 =
𝐷𝑦

𝐷⁄ = 0.554 

7) Both 𝛥𝑥 and 𝛥𝑥 is greater than the 

absolute error 0.08. Update initail 

value and go (2) 

x1 = 𝑥0 + 𝛥𝑥 =1.088 

y1 = 𝑦0 + 𝛥𝑦 =2.054 
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     Table 36. Newton-Raphson interpretation process of object tree in Table 34. (Iter. 2) 

1) Partial Derivative of 

𝑓1 𝑎𝑛𝑑 𝑓2 

With Respect to 𝑥      2𝑥     1 

With Respect to 𝑦      2𝑦     1 

2) Evaluating Results in Step 

(1) using updated initial 

values(1.088,2.054) 

2.177      1 

4.108        1 

3) Evaluating  𝑓1 𝑎𝑛𝑑 𝑓2 0.239 and 0.307 respectively 

4) Represent the result of (2) in 

Jacobian matrix form. 

[
1.2 1
1 3

] 

5) Convert into 𝐴𝑋 = 𝐵 

 

[
2.177 1

1 4.108
] . [

𝛥𝑥
𝛥𝑦

]= -[
0.239 
0.307

] 

6) Solving the linear equations 

using Cramer’s rule 

D = 7.94,  

Dx = −0.673, 

Dy = −0.429. 

𝛥𝑥 = −0.085 

 𝛥𝑦 = −0.054 

7) Both 𝛥𝑥 and 𝛥𝑥 is less than 

the absolute error 0.08. The 

stopping criteria was met. 

x2 = 𝑥1 + 𝛥𝑥 =1.003 

y2 = 𝑦1 + 𝛥𝑦 =2.000 

 

 

Where 𝐷  is the determinant of the coefficient matrix, 𝐷𝑥 and 𝐷𝑦 are the 

determinants of the unknowns vectors of 𝑥 𝑎𝑛𝑑 𝑦  respectively. The given application is 

solved in two iterations using the implemented Newton-Raphson method. The final 

solution is:  

x2 = 𝑥1 + 𝛥𝑥 =1.003 

y2 = 𝑦1 + 𝛥𝑦 =2.000 

 

 

The exact root of the given functions are (1, 2), we can clearly see that Newton-

Raphson is a good method to solve nonlinear equations.  

We have developed an interface for simplification of the usage of the program. 

It’s simple interface to use. 
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                  Figure 21. Application Interface (1) 

 

 

 

 



65 

 

 

 

 

    

 
 

                      Figure 22. Application Interface (2) 

 

 



 

     

 

4.  RESULTS AND DISCUSSIONS 

Our work can produce solutions for 𝑛𝑥𝑛 nonlinear equations, Although Newton-

Raphson method is the most useful method for finding function roots and it is the fastest 

convergence method compared to other numerical methods with a condition of a good 

initial guess values. Initial values near a root, the number of significant digits 

approximately doubles with each step (converges on the root quadratically), there are some 

situations need to discuss and solve.  

The Newton-Raphson iteration may have a unique solution, no solution or infinite 

solutions. In our system, we are using Cramer’s rule to solve the Newton-Raphson 

iterations and this method is valid whenever there is a unique solution(𝐷 ≠ 0), When 

(𝐷 = 0) means there is no a unique solution and there are two possible situations. 

 The system may be inconsistent (no solution at all) if 𝐷 = 0 and at least 

one of 𝐷𝑘 ≠ 0. 

 The system may be dependent (an infinite solutions) if 𝐷 = 0 and all of 

𝐷𝑘 = 0. 

 In case of there is no unique solution, Cramer’s rule is not valid and other methods 

can be used to solve the linear equations (infinite solutions) such as matrix row operations. 

The Newton-Raphson iteration may sometimes go recursive solution or the solution 

may diverge from the root points, in such cases, we defined maximum iteration number 

(maximum iteration number = 25), the programs automatically terminate the iterations if 

the program iterations exceed the defined maximum iterations. 

In general, the features of the system developed are as follows: 

 Nonlinear equations can be parsed. 

 Performs step-by-step solution of a nonlinear system of equations by 

applying Newton-Raphson Method. 

 It can solve linear equations by applying Cramer’s Rule. 

 It can calculate the derivatives of mathematical expressions. 

 It can calculate the partial derivatives of mathematical expressions. 

 It can evaluate mathematical functions. 

 It can do mathematical simplifications. 
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 It can display mathematical expressions. 

 It may be integrated into other projects as a framework. 

 

Nonlinear equations are one of the most complicated subjects in science and 

engineering. It’s very difficult to solve these equations by hand. As a result, symbolic 

programming systems have contributed significantly to computer aided education as 

well as providing considerable convenience in research because long and complicated 

calculations can produce definite results. In this respect, it is obvious that the field of 

usage will increase gradually. 

 In our work, the implemented system is an example of a symbolic computation 

work on the computer aided step-by-step solution of a system of nonlinear equations 

using automatic code generation tools. For these reasons, our study has been 

considered to contribute to further research and to the field of computer-aided 

education. 

As an example, we will solve a system of nonlinear equations as shown in Table 

37 and Table 38. 

 

                                    Table 37. Input data of example (2) of the application. 

Input Data of Example (2) 

(𝑥0 = 1.6, 𝑦0 = 3.5); 

  0.01; 

𝑓1(𝑥, 𝑦) = 𝑥2 + 𝑥 ∗ 𝑦 − 10 = 0; 

𝑓2(𝑥, 𝑦) = 𝑦2 + 3 ∗ 𝑥 ∗ 𝑦^2 − 57 = 0 

 

   Table 38. Solution of example (2) of the application 

𝑥(𝑘)                𝑦(𝑘) 𝑥(𝑘+1)         𝑦(𝑘+1) |(𝑥(𝑘+1) − 𝑥(𝑘) )| and|(𝑦(𝑘+1) − 𝑦(𝑘) ) < ℇ ? 

1.6                3.5 2.016              2.904 0.416                     and      0.596              > ℇ  

2.016           2.904 1.999             3.001 0.017                     and      0.097              > ℇ  

1.999          3.001 1.999            2.999 0.000                     and      0.002              < ℇ  

 

Where k is the number of iterations. 

 

 



 

 

     

 

5.  CONCLUSION 

In this study, a hybrid symbolic-numeric approach for step-by-step solving of system 

of nonlinear equations was implemented. Formal grammar rules of the related language 

were determined by using JavaCC, which automatically generates code from Java 

programming language, so that the developed application, numerical methods are 

calculated symbolically. In the developed application, there are two main phases that the 

system follows for finding the roots of nonlinear equations. First the analysis phase, a 

grammar structure was prepared in the EBNF notation for expressions of mathematical 

functions, and this structure was used to define according the JavaCC structure. The 

analysis phase consists of lexical analysis, syntax analysis, and semantic analysis. Lexical 

analysis is to read the source input as a stream of characters representing them as token 

sequences according regular expression and JavaCC rules. The combinations of the token 

sequence is controlled by the syntax structure according to the defined CFG. The syntax 

analyser (parser) also generates an intermediate code representation. JavaCC parser was 

generated the object tree (Abstract Syntax Tree). An object tree that can represent all the 

mathematical expressions was generated with the aid of the CFG grammar. This object tree 

consists of token structures (data or operator) that are understood by the defined grammar. 

Using these node structures, the next phase of the system that is the interpretation phase is 

performed operations such as partial derivation, simplification, printing expression, and 

root computation operations. 

In this work, we show how to solve system of nonlinear equations with all 

intermediate steps using Newton-Raphson method with automatic code generation tools. 

The Newton-Raphson method uses visitor design pattern technique to operate on the object 

trees. The programming process of Newton-Raphson consists of various symbolic 

programming activities such as partial derivation, function evaluations, nonlinear 

transformations into linear equations, solving linear equations using Cramer’s rule, 

generation of iteration solutions, and stopping criteria the iterations. An input mathematical 

expression to be performed on the root calculation is first passed through several analysis 

processes using the JavaCC tool, which generates automatic code in the Java programming 

language according the predefined grammar rules, and is then each grammar rule is
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Represented by syntax class in the form of object structures. All computations required by 

the Newton-Raphson method for solving the problem are carried out through these object 

structures.  

Visitor Design pattern and interpreter methods are added into the syntax classes to 

operate and evaluate the token node structures on the object tree. The visitor design pattern 

simplifies to add new operations to the system without changing the other operations. 

In our system, we have some issues need to be considered when solving nonlinear 

system of equations. Nonlinear equations may have a unique solution, no solution or 

infinite solutions. In our system, we are using Cramer’s rule to solve the Newton-Raphson 

iterations and this method is valid whenever there is a unique solution (𝐷 ≠ 0), When 

(𝐷 = 0) means there is no a unique solution and there are two possible situations.The first 

possible situation is that the system may be inconsistent (no solution at all) if 𝐷 = 0 and at 

least one of 𝐷𝑘 ≠ 0. The second possible situation is that the system may be dependent (an 

infinite solutions) if 𝐷 = 0 and all of 𝐷𝑘 = 0. In case of there is no a unique solution, 

Cramer’s rule is not valid and other methods can be used to solve the linear equations 

(infinite solutions) such as matrix row operations. The Newton-Raphson iteration may 

sometimes go recursive solution or the solution may diverge from the root points, in such 

cases we defined maximum iteration number, the programs automatically terminates the 

iterations if the program iterations exceeds the defined maximum iterations. 

The developed interpreter can easily be extended to cover other numerical methods, 

only describing the related iterative computation steps. On the other hand, integrating into 

their own interactive development environments, researchers can input any system of non-

linear equations directly into the interpreter and get the approximating solution as an 

output. Generally, many common and special purpose symbolic systems commonly used 

today don’t show intermediate steps but show only the final result of the process. With our 

system to help students and users, symbolic analysis processes of various nonlinear 

equations systems, such as differential equations, function evaluations, solving of linear 

equations can be realized in areas where all engineering and scientific calculations used in 

mathematical operations are made. In addition, each calculation step leading to the solution 

of the problem can be shown. 



 

 

     

 

6.  FUTURE WORKS 

Other Numerical methods for step-by-step solving nonlinear equations can be 

integrated to our system.  

In our application, we have used Cramer’s rule to solve the linear equations but it can 

solve only nonlinear equations with unique solutions. It can be implement matrix row 

operations technique to find other possible solutions (no solution and infinity solution) 

rather than unique solution. 
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