
KARADENİZ TECHNICAL UNIVERSITY

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCE

COMPUTER ENGINEERING GRADUATE PROGRAM

DESIGN AND IMPLEMENTATION OF A GENERAL INTERPRETER FOR

STEP-BY-STEP SOLVING OF NONLINEAR SYSTEM OF EQUATIONS USING

SYMBOLIC APPROACHES

MASTER THESIS

Computer Eng. Mohamed Yusuf HASSAN

SEPTEMBER 2017

TRABZON

III

FOREWORD

This thesis is written as completion to the master of computer engineering, at

Karadeniz Technical University. The subject of this thesis is focused on finding the roots

of nonlinear functions with 𝑛 unknowns using a hybrid symbolic-numeric approach.

I would like to offer my heart thanks to my master thesis supervisor, Asst. Prof. Dr.

Hüseyin PEHLİVAN, for much support, guidance, and patient reading of my drafts and

help make it sense. I am also grateful to other members of my thesis committee, Assoc.

Prof. Dr. Mustafa ULUTAŞ and Assoc. Prof. Dr. Ahmet BARAN for their valuable

feedback and encouragement.

I would like to thank my parents for their love, constant encouragement and

wonderful emotional support. I also like to thank my young brother who was there for me

and gave me a great motivation to finish this work.

This thesis would have taken far longer to complete without the encouragement from

many other friends. The days would have passed far more slowly without the support of

them.

 Mohamed Yusuf HASSAN

 Trabzon 2017

IV

THESIS STATEMENT

I declare that, this Master Thesis, I have submitted with the tittle “Design and

Implementation of a General Interpreter for Step-by-Step Solving of Nonlinear System of

Equations Using Symbolic Approaches” has been completed under the guidance of my

Master supervisor Asst. Prof. Dr. Hüseyin PEHLİVAN. All the data used in this thesis are

obtained by simulation and experimental works done as part of this work in our research

labs. All referred information used in thesis has been indicated in the text and cited in

reference list. I have obeyed all research and ethical rules during my research and I accept

all responsibility if proven otherwise. 05/09/2017

 Mohamed Yusuf HASSAN

V

TABLE OF CONTENTS

Page No

FOREWORD ... III

THESIS STATEMENT ... IV

TABLE OF CONTENTS ... V

SUMMARY ... VIII

ÖZET …………….. .. IX

LIST OF FIGURES .. X

LIST OF TABLES .. XI

LIST OF ABBREVIATIONS .. XIII

1 GENERAL INFORMATION ... 1

1.1. Introduction ... 1

1.2. Literature Review .. 3

1.3. Nonlinear Equations .. 7

1.3.1. Nonlinear Equations Introduction ... 7

1.3.2. Methods for Solving Nonlinear Equations .. 8

1.3.3. Newton-Raphson Method .. 9

1.3.3.1. Graphical Depiction of Newton-Raphson Method .. 10

1.3.3.2. Derivative of Newton-Raphson Method.. 10

1.3.3.2.1. Derivative of Newton-Raphson Method using Graph ... 10

1.3.3.2.2. Derivative of Newton-Raphson Method of 1-Dimension System....................... 11

1.3.3.2.3. Derivative of Newton-Raphson Method of N-Dimenison System 12

1.4. Language Processors ... 14

1.4.1. Compilers .. 14

1.4.2. Interpreters ... 15

1.4.3. Mixed Compilation and Interpretation Systems .. 16

1.4.4. Comparison between Compilers and Interpreters ... 17

1.4.5. Basic Compiler Phases .. 17

1.4.5.1. Front-End ... 17

1.4.5.2. Back-End ... 18

VI

1.5. Mathematical Expressions Interpretation .. 18

1.5.1. Lexical Analyser (Scanner) ... 19

1.5.2. Syntax Analyser (Parser) ... 21

1.5.2.1. Context-Free Grammar .. 22

1.5.2.2. Derivation and Parsing Context-Free Grammar .. 23

1.5.2.3. Parser Tree .. 24

1.5.2.3.1. Ambiguity .. 24

1.5.2.3.2. Left Recusrion ... 25

1.5.2.3.3. Left Factoring ... 26

1.5.3. Semantic Analyser ... 27

1.5.4. Symbol Table ... 27

1.6. Parsing Techniques .. 28

1.6.1. Top-Down Parsing ... 28

1.6.1.1. LL Parsers .. 29

1.6.1.2. First and Follow Sets ... 30

1.6.1.2.1. Firts Sets .. 31

1.6.1.2.2. Follow Sets .. 31

1.6.2. Bottom-Up Parsing .. 33

1.6.2.1. LR Parsers ... 33

1.7. Automatic Parser Generator Tools .. 34

1.7.1. JavaCC ... 35

1.8. Parser Tree Evaluation... 36

1.8.1. Instanceof Operator ... 36

1.8.2. Interpreter () Methods .. 36

1.8.3. Visitor Design Patter ... 37

2. STEP-BY-STEP SOLUTIONS FOR NONLINEAR SYSTEM OF

 EQUATIONS .. 39

2.1. Introduction ... 39

2.2. General Structure of the Implemented Mathematical Expresssion Interpreter .. 39

2.2.1. Lexical Analaysis .. 42

2.2.1.1. Token Declaration ... 42

2.2.2. Syntax Analaysis ... 43

2.2.2.1. Syntax Structure of Nonlinear Equations .. 44

VII

2.2.2.2. Generating Abstract Syntax Tree .. 46

2.2.3. Semantic Analaysis ... 47

2.2.4. Nonlinear Equations Evaluation Methods ... 48

2.2.5. Newton-Raphson Implementation ... 49

2.2.5.1. Partial Derivative ... 50

2.2.5.2. Function Evaluations ... 51

2.2.5.3. Transformation of Nonlinear Equations into Linear Equations 52

2.2.5.4. Solving Linear Equations using Cramer's Rule ... 52

2.2.5.5. Newton-Raphson Iterations and Stopping Criteria .. 53

2.2.5.6. Simplification .. 54

2.2.5.7. Printing Solution Values and Intermediate Steps .. 57

3. APPLICATION OF THE METHODOLOGY .. 59

3.1. Source Data Format ... 59

3.2. Step-by-Step Solving of the Given Nonlinear Equation Application.................. 59

3.2.1. Analysis Phase of the Application ... 60

3.2.2. Interpretation Phase of the Application ... 62

4. RESULTS AND DISCUSSIONS..66

5. CONCLUSION ... 68

6. FUTURE WORKS .. 70

7. REFERENCES .. 71

CURRICULUM VITAE

VIII

Master Thesis

SUMMARY

DESIGN AND IMPLEMENTATION OF A GENERAL INTERPRETER FOR STEB-BY-

STEP SOLVING OF NONLINEAR SYSTEM OF EQUATIONS USING SYMBOLIC

APPROACHES

Mohamed Yusuf HASSAN

Karadeniz Technical University

The Graduate School of Natural and Applied Sciences

Computer Engineering Graduate Program

Supervisor: Asst. Prof. Dr. Hüseyin PEHLİVAN

2017, 75 Pages

 In this work, we present the design and implementation of an interpreter

program for the step-by-step numerical solutions of non-linear systems of equations with

multiple variables, using symbolic computation methods and automatic code generation

tools. The development process starts with a representation of a nonlinear system of

equations in a formal language in terms of context-free grammars then, a parser which is

generated via the JavaCC tool is used to represent the nonlinear system of equations in the

form of object structures.

The numerical method Newton-Raphson are employed to obtain better

approximations to solutions of nonlinear systems. The interpreter can easily be extended to

cover other numerical methods, only describing the related iterative computation steps. On

the other hand, integrating into their own interactive development environments,

researchers can input any system of nonlinear equations directly into the interpreter and get

the approximating solution as an output.

Key words: Symbolic computation, system of nonlinear equations, step-by-step

 Solution, Newton-Raphson method, parser, context-free grammars.

IX

Yüksek Lisans Tezi

ÖZET

SİMGESEL YAKLAŞIMLARI KULLANARAK DOĞRUSAL OLMAYAN DENKLEM

SİSTEMLERİNİN ADIM-ADIM ÇÖZÜMÜ İÇİN GENEL BİR YORUMLAYICININ

TASARIMI VE GERÇEKLENMESİ

Mohamed Yusuf HASSAN

Karadeniz Teknik Üniversitesi

Fen Bilimleri Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Danışman: Yrd. Doç. Dr. Hüseyin PEHLİVAN

2017, 75 Sayfa

 Bu çalışmada, simgesel hesaplama yöntemleri ve otomatik kod üretme

araçlarını kullanarak birden fazla değişkene sahip doğrusal olmayan denklem sistemlerinin

adım-adım sayısal çözümleri için bir yorumlayıcı programının tasarımı ve gerçeklenmesini

sunarız. Geliştirme süreci, bağlamdan bağımsız gramerleri kullanarak bir biçimsel dilde

doğrusal olmayan denklem sisteminin temsil edilmesi ile başlar. Daha sonra, JavaCC

aracıyla üretilen bir ayrıştırıcı, doğrusal olmayan denklem sistemini nesne yapıları

formunda temsil etmek için kullanılır.

Newton-Raphson sayısal yöntemi doğrusal olmayan sistemlerin çözümlerine daha iyi

yaklaşımlar sağlamak için kullanılmıştır. Yorumlayıcı, sadece gerekli olan yinelemeli

hesaplama adımları tanımlanarak, diğer sayısal yöntemleri kapsayacak şekilde kolayca

genişletilebilir. Diğer yandan, etkileşimli geliştirme ortamlarına entegre ederek,

araştırmacılar doğrusal olmayan denklem sistemlerini yorumlayıcıya girip çıktı olarak

yaklaşık çözümü elde edebilir.

Anahtar Kelimeler: Sembolik hesaplama, doğrusal olmayan denklem sistemleri, adım

 adım çözüm, Newton-Raphson yöntemi, ayrıştırıcı, bağlamdan

 bağlamdan bağımsız gramerler.

X

LIST OF FIGURES

Page No

Figure 1. General form of multivariate nonlinear system of equations 8

Figure 2. Nonlinear equation solvers. .. 9

Figure 3. Graphical depiction of Newton-Raphson method. ... 10

Figure 4. Compilation and execution process ... 15

Figure 5. Interpreter process. ... 16

Figure 6. Mixed systems execution architecture. .. 16

Figure 7. Compiler phases. .. 18

Figure 8. Process of mathematical expressions interpretation .. 19

Figure 9. Lexical analyser process. ... 20

Figure 10. Syntax analyser process. .. 22

Figure 11. Ambiguous parser tree of expression” 𝑥 + 6 ∗ 7/5". .. 24

Figure 12. Unambiguous parser tree of expression “𝑥 + 6 ∗ 7/5" 25

Figure 13. Parsing types .. 28

Figure 14. Top-Down parsing types .. 29

Figure 15. LL (k) definition ... 29

Figure 16. LL parser process example... 30

Figure 17. Bottom-Up parsing types ... 33

Figure 18. LR parser process example .. 34

Figure 19. JavaCC file structure .. 35

Figure 20. Architecture of the implemented interpreter .. 41

Figure 21. Application interface (1)...64

Figure 22. Application interface (2)...65

XI

LIST OF TABLES

Page No

Table 1. Derivation of Newton-Raphson method using graph. ... 11

Table 2. Example of tokens definition... 20

Table 3. Stream of tokens of the expression "𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑃𝑟𝑜𝑓𝑖𝑡 =
𝑝𝑟𝑜𝑓𝑖𝑡

𝑐𝑜𝑠𝑡𝑃𝑟𝑖𝑐𝑒
∗ 100"21

Table 4. Chomsky hierarchy .. 22

Table 5. Ambiguous grammar ... 23

Table 6. Unambiguous grammar example ... 25

Table 7. Left recursion grammar ... 26

Table 8. Eliminated left recursion grammar .. 26

Table 9. An example of LL (1) grammar .. 30

Table 10. Algorithm to compute ffirst sets .. 31

Table 11. Algorithm to compute follow sets ... 32

Table 12. First and follow sets of the grammar in Table 8. ... 32

Table 13. Comparison of syntax tree evaluation approaches .. 36

Table 14. Syntax classes with accept () methods .. 38

Table 15. JavaCC token declaration for the application. ... 42

Table 16. Token sequence of the expression "f(x, y) = x2 + y − 3 = 0 " 43

Table 17. LL (1) grammar definition for nonlinear equations .. 44

Table 18. JavaCC grammar definition for nonlinear equations .. 45

Table 19. Abstract syntax tree for the application ... 46

Table 20. Hash table usage for Newton-Raphson initial guess values. 47

Table 21. Adding visitor and eval methods to the syntax classes..48

Table 22. Parsing input source data operation ... 49

Table 23. Partial derivatives of nonlinear equations ... 50

Table 24. Nonlinear function evaluations.. 51

Table 25. Solving linear equations using Cramer’s rule. .. 53

Table 26. Newton-Raphson stopping criteria .. 54

Table 27. Simplification rules for some basic transformations ... 55

XII

Table 28. Simplification methods implementation ... 56

Table 29. Print derived functions .. 57

Table 30. Print final solution values and intermediate steps ... 58

Table 31. Source data format ... 59

Table 32. Input source data of the application... 60

Table 33. Token sequence of the given application source data ... 60

Table 34. The object tree for the input source data in Table 32. ... 61

Table 35. Newton-Raphson interpretation process of the object tree in Table 34. (Iter. 1). 62

Table 36. Newton-raphson interpretation process of the object tree in Table 34. (Iter. 2) 63

Table 37. Input data of example(2) of the application .. 67

Table 38. Solution of example(2) of the application ... 67

XIII

LIST OF ABBREVIATIONS

AST Abstract Syntax Tree

BNF Backus–Naur Form

CAS Computer Algebra System

CFG Context Free Grammar

EBNF Extended Backus-Naur Form

Eq Equation

FORMAC FORmula Manipulation Compiler

IR Intermediate Representation

JVM Java Virtual Machine

LL Parser Left to right Left most derivation Parser

LR Parser Left to right Right most derivation Parser

1. GENERAL INFORMATION

1.1. Introduction

In the past decades, a continual improvement of programming in computer science

has enabled to develop useful software tools to solve human problems. Mathematics has a

vital role in human life. The mathematical operations used in engineering applications

cannot be accomplished by human hands, therefore, mathematical software tools for

efficiently solving mathematical problems was developed. Mathematical software or

scientific software is used for mathematical modelling and statistical analysis.

Generally, scientific software can be classified into computer algebra systems that

are used for the symbolic evaluation of mathematical expression (e.g. Maple [2],

Mathematica [3]) and numerical computation systems (e.g. MATLAB [4], GNU Octave

[5]) that are widely used for engineering applications [1]. Numerical methods find an

approximate solution to mathematical problems by using direct and iterative methods.

Most of the numerical methods involve in many iteration calculations. Numerical

computations often propagate errors from round-off and truncation. Symbolic computation

methods have been developed against this disadvantage of numerical methods. Symbolic

computation is the development and manipulation of mathematical expressions. Symbolic

computation or algebra computation solves mathematical problems without error and finds

the exact value using computer technology [6]. In this type of calculation, mathematical

equations must be fully expressed before they can be processed and then transformed into

algorithms that can be solved by computer programs [7, 8]. Computer Algebra System

(CAS) or symbolic computation deals with mathematical expressions symbolically rather

than numerically, results are exact, that there are no numerical errors. CAS can save both

time and effort in solving a wide range of mathematical problems. More details on

symbolic computation and its applications can be referred to the book by Cohen [6].

 In this thesis, a hybrid method, symbolic-numeric computation, that combines

symbolic and numeric methods, an interpreter software tool is implemented for step-by-

step solving of a multivariate nonlinear system of equations. Symbolic approaches are used

to analyse the source data and represent it in an intermediate structure for later evaluation.

2

Numerical computation method, Newton-Raphson iteration is employed to obtain

better approximations to solutions of nonlinear systems.

With the rapid development of high-level programming languages that facilitate code

writing processes, compilers have become indispensable tools for software developers. In

computer programming, the translation and execution of programs are carried out in

different ways. The first way is to use a compiler to read a source program written in a

particular language (source code) and translate it into another equivalent language

(machine code), reporting possible errors detected during the translation process. The

output of the compiler is a machine code that can be run by the user with an input to

produce an output. An interpreter is another language processor, which directly runs the

source code instructions, instead of producing machine code (target language). The

interpreter translates the source code statement by statement that makes easy to detect

errors. Compilers are faster than interpreters because every time the program starts

running, all the lines should be translated again in the interpreter. Automatic code

generation tools have been developed to facilitate the steps of analysis, and parsing of

source data generated by programming languages. There are a lot of compilers and

interpreters developed with these tools called compiler compilers, some that can only

generate code for source code in the Java language; ANTLR [9], SableCC [10], JTB [11],

JavaCC [12], JLex [13], and JFlex [14]. For example, the source code to be generated by

the JavaCC tool can be easily integrated with other software and serve as a handy analyser

and parser components that can process the input data

The proposed system parses the source data, converts it into a tree data structure

using a Context Free Grammar (CFG) and then interprets the intermediate code

representation in the form of a tree structure into a final result. The methodology consists

of three phases which are source data analysis to represent the source data with a tree data

structure, numerical programming to simplify and solve expressions using symbolic

approaches, and finally the evaluation of the expressions using the Newton-Raphson

numerical method to get and print the final result of the equations.

In this thesis, solving of multivariate nonlinear equations is discussed. The thesis is

organized as follows. In Section 1. Literature review, nonlinear equations, compilers,

interpreters, grammars, parsing techniques, mathematical expression interpretation phases,

and evaluation of expressions is discussed. In Section 2, Step-by-Step solving of nonlinear

equations, the architecture of the system, and implementing Newton-Raphson methods are

3

presented. Application of the methodology are discussed is Section 3, results and

discussions are presented in Section 4. In Section 5, the conclusion is presented and finally,

in Section 6, future research and open research topics are presented.

1.2. Literature Review

In many scientific disciplines where mathematical problems need to be solved; the

development of computer hardware and software that produce very fast and error-free

solutions for the complex problems encountered in physics, computer science,

mathematics, chemistry, engineering, astronomy, and biology had to wait. The lack of

advanced software, many difficult problems remained unsolved [15].

The rapid development of science and technology has affected the lives of human

beings in every field. In the 1950s the development of digital computers has enabled easy,

fast and successful computations of different problems in many areas such as applied

science and engineering. The most important use of the computer has been to do fast and

errorless calculations to solve complex problems in different scientific disciplines, the

availability of computers have been enabled to develop various systems, algorithms,

techniques, and methods for this purpose. The impact of rapid development and high speed

computers has increased the use of computer systems in mathematics field enabling the

computation of mathematical problems both in numerically and symbolically; this rapid

growth of computer systems in mathematics make possible to do many operations such as

mathematics e-learning, comparing the efficiency between two algorithms, and developing

new algorithms for automatic mathematical solution.

The state of art in this work, symbolic computation and root value finding operations

are discussed. Although symbolic computing has been used in computers since 1953, it has

a long history in terms of its use in scientific development [16]. We have come a long way

since then many scientific software tools to computer mathematical problems have been

developed. We will focus on the most recent developments in symbolic and root finding

methods, the beginning, and the early developments in this field.

The technology is changing the way in which secondary schools and university

education are delivered. Many e-learning systems to teach and support mathematical

learning have been created, Coursera [18] and Edventure [19] provided for automatic

4

assessment, intelligent mathematical learning systems such as algebra problem generation

[20], and automatic solution assessment [21] has also been developed [17].

There are many algorithms developed for the computerized solution of mathematical

problems. Euclid's algorithm is the most common algorithms for finding the greatest

common divisor of integers found by Euclid in the 3rd century and this algorithm is among

the most basic algorithms of the symbolic computation systems used today in

generalizations [22]. However, the finding of the roots of polynomial equations, the

investigation of algorithmic solution methods of derivative, integral and differential

equations has been the subject of symbolic computation.

Decomposing factorization of polynomials into a product of irreducible factors has a

long history. The first algorithm for decomposing univariate polynomials over integers into

products was found by Schubert in 1793. In 1882 this algorithm was extended to

polynomials with algebraic coefficients by Kronecker. The Schubert and Kronecker

algorithms were very slow even for computers, In 1967 Berlekamp developed a fast

algorithm for factorization of polynomials over the final fields into products [23], the

Berlekamp algorithm is an important factor (Factorization of Polynomials). As a result of

his work on the Berlekamp algorithm, Zassenhaus showed in 1969, products over the

integers obtained by this algorithm can be used to obtain products over the integers [24]. In

1975-76, Musser [25] Wang and Rothschild [26] developed similar methods for

multivariate and algebraic coefficient polynomials.

Symbolic computation systems began in the early 1960’s, it has attracted the

attention of many mathematicians and developers to design and develop new systems in

the future in this field, Association for computing Machinery (ACM) specıal interest group

on symbolic and algebra manipulation (SIGSAM) was formed in 1965 to bring come

together different researchers to publish the recent development in algebraic algorithms

and their applications, in the next ten years the old systems were revised and new systems

were developed, these systems have added a new ability to scientific computing by

providing exact mathematical computation without error and manipulation of mathematical

expressions [27].

There are various applications and technologies developed in the literature related to

computation on the computer. In the beginning of 1950s, after the invention of the

electronic computer, there were some challenging factors to design symbolic computation

systems such as slow speed and small storage computers. J.F. Nolan from the

5

Massachusetts Institute of Technology [28] and the other by H. G. Kahrimanian at Temple

University [29] has developed automatic computation applications for analytical

differentiation in their graduate thesis.

In 1958, Lisp programming language was invented by John McCarthy and he

published its design in the paper [30]. Lisp is the most common and longest living

language. Lisp is also the second oldest high-level programming language after

FORTRAN that is older than one year. Lisp enables to make many operations such as

computing with symbolic expressions rather than numbers and symbolic expressions

representation as list structures in the memory of the computer. Lisp Language has played

a very important role in the growth of symbolic computation. Symbolic automatic

INTegration (SANIT) was the first program to calculate the symbolic integration problems

in calculus and it was written by Slagle in 1961 with Lisp language, this substance was

developed as a doctoral dissertation at the Massachusetts Institute of Technology

developed as a doctoral study [31].

After Lisp language invention, it was understood that mathematical problems can be

solved using personal computers with symbolic computation, after the recovery of this

advantage from Lisp language, in the 1960s, the symbolic computations has shown a rapid

growth development.

In 1963 Jean E. Sammet developed by FORMAC, FORmula MAnipulation Compiler

(FORMAC) was an early experimental programming system that had the capability of

handling formal of mathematical expressions such as computation, manipulation, and use

of symbolic expressions on the computer and it was built in FORTRAN language [32].

CAS software is a software package that capable of doing the symbolic computation.

CAS applications represent mathematical expressions symbolically and operate on these

symbolically represented objects. CAS can be separated into general purposes which

provide computing facilities for general mathematical problems and specific purposes

which give special uses for algebraic and special mathematical areas.

The first general purpose symbolic computation systems were developed at the end

of the 1960s and early 1970s. These systems are, Reduce [33] in 1967, Macsyma [34] and

Reduce 2 [35] in 1971, Scratchpad [36] in 1971, and muMATH [37] in 1979.

 Macsyma based version called Maxima was developed in 1971 by Paul S.

Wang. This system supports many operations such as differentiation, integration, ordinary

https://eu3.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qdzyKFg9%2BlNGSyfGEjeCJP5B3x2P6ID2fkmCU5leUbu2%2Fa&b=1
https://eu4.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qdxSuFg9foKFahZWQ%2FUw%3D%3D&b=1
https://eu4.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qawTKCsfOZX3avbn0tRnhJog%3D%3D&b=1

6

differential equations, rational, logarithmic, trigonometric expressions, linear equations,

polynomials, Laplace transforms, matrices, and Taylor series [38].

Today, the major general purpose CAS systems include Maple [2] from University of

Waterloo, Mathematica [3] from Wolfram research, SageMath [39] from William A. Stein,

Axiom [40] from Richard Jenks, Maxima [24] from Massachusetts Institute of Technology

researchers, Magma [41] from University of Sydney, and Symbolic Math Toolbox

(MATLAB) [42] from Mathworks.

The major special purpose CAS systems include CoCoA-5 [43] for commutative

algebra, Fermat [44] for polynomial and matrix computation, KANT/KASH [45] for

algebraic number theory, and Macaulay2 [46] for algebraic geometry and commutative

algebra.

In 2002, GiNac a special purpose system in C ++ environment was developed by

Cristian Bauer to implement the symbolic computation and it was designed to handle

multivariate polynomials, algebras, and other special functions [47].

In 2004, Hyungju Park defined that many problems in digital processing can be

converted to algebraic problems and can be solved using algebraic and symbolic

computation methods [48].

In 2013, Yavuz TEKBAŞ presented the graduate thesis entitled "CODE

PRODUCTION TOOLS USING AUTOMATIC CALCULATION OF DERIVATIVES

AND SIMPLIFICATION MATHEMATICAL EXPRESSIONS" [49]. In this work, A

CFG is developed for syntactic and semantic structures of mathematical expressions,

JavaCC an automatic code generation tool was used to generate abstract syntax tree (AST)

as an object tree, and finally evaluating object tree was handled to simplify and derive the

expressions.

In 2015, Mir Mohammad Reza Alavi Milani conducted in his doctoral dissertation,

grammar based methodologies for automatic generation and step-by-step solving of

mathematical expressions [17]. In this work, CAS like system, grammar-based

methodologies that were organized into two parts was developed. The first part was

designed a methodology that solves mathematical expressions step-by-step, and in the

second part was designed for the production of new questions using template expressions.

In 2016, Baki GÖKGÖZ presented a graduate thesis entitled as “DESIGN AND

IMPLEMENTATION OF A GENERAL INTERPRETER FOR NUMERİCAL ROOT

FINDING METHODS USING SYMBOLIC APPROACHES” [50]. In this work, A CFG

https://eu1.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qAySaHtfOrKETuV1ouQmNC&b=1
https://us11.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qawTmYvfGuAnalfH0peENC%2BATo2f%2BZGGf4nRMInvIapnSfqMqJ&b=1
https://us11.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qUzwmEnQ%3D%3D&b=1
https://us11.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qc4QS%2Fg7q1GGO0f2goQiM%3D&b=1
https://us11.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qWzC2OvuCnHmafZnw3RW9e1ATpyOWfBA%3D%3D&b=1
https://us11.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qawSmKqf6nDjc%3D&b=1
https://us11.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qWzC2OvuCnHmafb2w1Sm9Y%2BQk%3D&b=1
https://us11.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qUzyeGqeanA2y2bVY7S21J6QLg&b=1
https://us11.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qUzyeGqeanA2y2bVY7S21J6QLg&b=1

7

is developed for syntactic and semantic structures of mathematical expressions, an

automatic code generation tool of JavaCC was used to generate AST as the object tree, and

finally the object tree was simplified before its evaluation and then the root finding

methods were used to find roots of equations. In this thesis, the designed application can

find roots for only equations that have only one variable.

In this thesis, Newton-Raphson method was used for finding multiple roots of multi

variate nonlinear equations [51]. There are many papers devoted to iterative methods for

root solver, the literature for previously implemented algorithms see, e.g., [52–62].

As a result, many problems have been solved throughout the history of symbolic

computation and it has been proved that some problems cannot be resolved algorithmically

and some problems needs for further research to get better performance and result.

With the emergence growth of symbolic computing tools, mathematicians began

using these tools to do proofs of theorems with computers and save time for mathematical

operation by hand. In later periods, these tools began to be used in high schools and

universities in support of mathematics education. Apart from the studies given here, many

studies have been done on computer science related to symbolic and algebraic

computations such as coding, modelling, computer animations, signal or image processing.

1.3. Nonlinear Equations

Nonlinear Equations are very important in science and engineering fields. They have

many real world applications. The solution of nonlinear equations is one of the most

difficult problems in scientific computation [63].

1.3.1. Nonlinear Equations Introduction

An equation related to a straight line is called linear equation, for example

𝑓(𝑥) = 𝑚𝑥 + 𝑐 (1)

The equation (Eq. 1) describes a straight line with slope 𝑚 and the linear equation

𝑓(𝑥) = 0, involving such an 𝑓, is easily solved to give 𝑥 = −𝑐/𝑚 (𝑚 ≠ 0). If the

function 𝑓(𝑥) = 0 is not a linear equation (do not relate a straight line) then it’s called

8

nonlinear equation. Algebraic equations and transcendental equations are nonlinear

equations.

Given a continuous function 𝑓(𝑥), finding the value of 𝑥1 such that 𝑓(𝑥1) = 0 is

called root finding problems, if 𝑥1 satisfies the equation of 𝑓(𝑥1) = 0 then 𝑥1 is the root of

the function 𝑓(𝑥1) = 0 or we can say 𝑥1 is a zero of the function of f.

The System of nonlinear equations is a set of simultaneous equations with multi

variable unknowns. Nonlinear equations may have just one solution, no solutions, or many

solutions.

 Figure 1. General form of multivariate nonlinear system of

 equations

1.3.2. Methods for Solving Nonlinear Equations

Finding an exact solution to nonlinear equations is very difficult because the change

of input is not proportional to the change of output [64]. Nonlinear systems may appear

chaotic, unpredictable or counter-intuitive.

Several ways are possible to solve System of nonlinear equations. We can divide

them into three main methods which are an analytical method, graphic method, and

numerical methods.

 Numerical methods can be further classified into bracketing and open methods,

many methods are available to solve nonlinear equations such as Bisection method,

Newton’s method, secant method, fixed point iterations, and Muller’s method. In this

thesis, we will use Newton’s method.

https://www.boundless.com/definition/system-of-equations/

9

In bracketing methods, the method starts with an interval that contains the root and

the solution is obtained in the smaller interval containing the root.

In the open methods, the method starts with one or more good initial guess points. In

each iteration, a new guess of the root is obtained.

 Figure 2. Nonlinear equation solvers

1.3.3. Newton-Raphson Method

Newton-Raphson method also known as Newton’s method is the most widely used

method to solve a nonlinear equation. It is based on Taylor series expansion. Given an

initial guess of the roots of (𝑥0, … , 𝑥𝑛) Newton Raphson method uses information of the

given function and its derivative at that point to find better guess of the root. The Newton

Raphson formula is showed in Eq. (2) where 𝑘,𝑖 is the number of iteration is.

 𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 −
𝑓(𝑥𝑖

𝑘)

𝑓′(𝑥𝑖
𝑘)

 (2)

Nonlinear
Equation
Solvers

Numerical Methods

Bracketing

e.g. Bisection and false
position methods

Open Methods

e.g. Newton's and secant
methods

Graphical
Methods

Analytical
Methods

10

1.3.3.1. Graphical Depiction of Newton-Raphson Method

Assumptions:

a) Given 𝑓(𝑥) is continuous and the first derivative of 𝑓is known.

b) Given an initial guess of 𝑥0 such that 𝑓′(𝑥0) ≠ 0.Where 𝑓′ denotes the

first derivate of 𝑓.

Let’s assume at 𝑥𝑖 is the initial guess, then a tangent to the function of 𝑥𝑖 that is

𝑓′(𝑥𝑖) is extrapolate down to the x-axis to provide an estimate of the root 𝑥𝑖+1.

 Figure 3. Graphical depiction of Newton-Raphson method

1.3.3.2. Derivation of Newton-Raphson Method

1.3.3.2.1. Derivation of Newton-Raphson Method Using Graph

Assumptions:

a) Given 𝑓(𝑥) is continuous and the first derivative 𝑓 is known.

b) Given an initial guess of 𝑥0 such that 𝑓′(𝑥0) ≠ 0.Where 𝑓′ denotes the

first derivate of 𝑓.

11

 Table 1. Derivation of Newton-Raphson method using graph

 f(x)

 f(xi)

xi+1 xi

 X

 B

 C A

tan(𝛼) =
𝐴𝐵

𝐴𝐶

𝑓′(𝑥𝑖) =
𝑓(𝑥𝑖)

𝑥𝑖− 𝑥𝑖+1

𝑥𝑖+1 = 𝑥𝑖 −
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)

1.3.3.2.2. Derivation of Newton-Raphson Method of 1-Dimension System

Consider Taylor series expansion of 𝑓(𝑥) at the value 𝑥 = 𝑥0.

𝑓(𝑥) = 𝑓(𝑥𝑜) + 𝑓′(𝑥𝑜)(𝑥 − 𝑥𝑜) + (𝑓"(𝑥𝑜)/2!)(𝑥 − 𝑥𝑜)2 + ⋯ (3)

First approximation to the root of the equation 𝑓(𝑥) = 0 can be found using only the

two first terms of the expansion in Eq. (3), obtaining the Eq. (4).

𝑓(𝑥) = 0 ≈ 𝑓(𝑥𝑜) + 𝑓′(𝑥𝑜)(𝑥1 − 𝑥𝑜) (4)

First approximation is given by:

𝑥1 = 𝑥𝑜 − 𝑓(𝑥𝑜)/𝑓′(𝑥𝑜).

Second approximation is given by:

𝑥2 = 𝑥1 − 𝑓(𝑥1)/𝑓′(𝑥1),

And third approximation is given by:

𝑥3 = 𝑥2 − 𝑓(𝑥2)/𝑓′(𝑥2),

This iteration procedure can be generalized by writing the below equation, where 𝑖 is

the iteration number.

𝑥𝑖 + 1 = 𝑥𝑖 − 𝑓(𝑥𝑖)/𝑓′(𝑥𝑖).

We start to check the Taylor series after each iteration, the program should check to

see if the convergence condition is satisfied.

12

1.3.3.2.3. Derivation of Newton-Raphson Method of N-Dimension System

We start the Taylor series expansion of n variables to obtain a form of Newton

Raphson method. E.g., we start two-dimensional system to obtain values of 𝑥1 and 𝑥2.

Given the below equations:

 𝑓1(𝑥1, 𝑥2) = 0

 (5)

 𝑓2(𝑥1, 𝑥2) = 0

We extend 𝑓1 and 𝑓2 equations into Taylor series into two dimension with respect to

iteration 𝑘.

𝑓1(𝑥1
𝑘+1, 𝑥2

𝑘+1) = 𝑓1(𝑥1
𝑘, 𝑥2

𝑘) +
Ə𝑓1(𝑥1

𝑘,𝑥2
𝑘)

Ə𝑥1
(𝑥1

𝑘+1 − 𝑥1
𝑘) +

Ə𝑓1(𝑥1
𝑘,𝑥2

𝑘)

Ə𝑥2
(𝑥2

𝑘+1 − 𝑥2
𝑘) + ⋯

. (6)

𝑓2(𝑥1
𝑘+1, 𝑥2

𝑘+1) = 𝑓2(𝑥1
𝑘 , 𝑥2

𝑘) +
Ə𝑓2(𝑥1

𝑘,𝑥2
𝑘)

Ə𝑥1
(𝑥1

𝑘+1 − 𝑥1
𝑘) +

Ə𝑓2(𝑥1
𝑘,𝑥2

𝑘)

Ə𝑥2
(𝑥2

𝑘+1 − 𝑥2
𝑘) +

⋯

After the first derivative terms, resulting equation expressed in terms of Newton

correction.

𝛥𝑥1
𝑘 = (𝑥1

𝑘+1 − 𝑥1
𝑘) (7)

 𝛥𝑥2
𝑘 = (𝑥2

𝑘+1 − 𝑥2
𝑘)

LHS of equation (6) are zero, gives

 Ə𝑓1(𝑥1

𝑘,𝑥2
𝑘)

Ə𝑥1
𝛥𝑥1

𝑘 +
Ə𝑓1(𝑥1

𝑘,𝑥2
𝑘)

Ə𝑥2
𝛥𝑥2

𝑘 = −𝑓1(𝑥1
𝑘 , 𝑥2

𝑘)

 (8)

Ə𝑓2(𝑥1

𝑘,𝑥2
𝑘)

Ə𝑥1
𝛥𝑥1

𝑘 +
Ə𝑓2(𝑥1

𝑘,𝑥2
𝑘)

Ə𝑥2
𝛥𝑥2

𝑘 = −𝑓2(𝑥1
𝑘 , 𝑥2

𝑘)

win7
Dikdörtgen

win7
Dikdörtgen

win7
Dikdörtgen

13

Eq. (8) can be generalized in 𝑛𝑥𝑛 case in Jacobian matrix form.

𝐽𝛥𝑥 = −𝑓 (9)

Where J is the Jacobian matrix and it can be generalized as:

𝐽𝑖𝑗 =
𝜕𝑓𝑖

𝜕𝑥𝑗

𝛥𝑥 = −𝐽−1𝑓

Eq. (9) is Newton’s Method for 𝑛𝑥𝑛 system, can be written in this form

[

Ə𝑓1(𝑥1

𝑘,𝑥2
𝑘,…,𝑥𝑛

𝑘)

Ə𝑥1

Ə𝑓1(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥2
…

Ə𝑓1(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥𝑛

Ə𝑓2(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥1

Ə𝑓2(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥2
…

Ə𝑓2(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥𝑛
.
. . .
Ə𝑓𝑛(𝑥1

𝑘,𝑥2
𝑘,…,𝑥𝑛

𝑘)

Ə𝑥1

Ə𝑓𝑛(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥2
…

Ə𝑓𝑛(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥𝑛]

.

[

 𝛥𝑥1

𝑘

𝛥𝑥2
𝑘

.

.

.
 𝛥𝑥𝑛

𝑘]

 = −

[

Ə𝑓1(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥

Ə𝑓2(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

...

Ə𝑓𝑛(𝑥1

𝑘,𝑥2
𝑘,…,𝑥𝑛

𝑘)

Ə𝑥]

 (10)

𝑥𝑛
𝑘+1 = 𝛥𝑥𝑛

𝑘 + 𝑥𝑛
𝑘 (11)

Where 𝑘 is the iteration number and 𝑘 = 0,1,2, … 𝑛

After each iteration, the program should check to see if the convergence condition is

satisfied. A stopping criteria is required for the iterations. E.g.

𝛥𝑥𝑖
𝑘 < ℇ𝑖, 𝑖 = 1,2, … , 𝑛

𝛥𝑥𝑖
𝑘+1 − 𝛥𝑥𝑖

𝑘 < ℇ𝑖, 𝑖 = 1,2, …,n

𝑓𝑖(𝑥𝑖
𝑘) < ℇ𝑖, 𝑖 = 1,2, … , 𝑛

𝑓𝑖(𝑥𝑖
𝑘+1 − 𝑥𝑖

𝑘) < ℇ𝑖, 𝑖 = 1,2, … , 𝑛

Where ℇ is a pre-specified error tolerance.

Comparing to other numerical methods, Newton-Raphson method is a faster and

better method to find roots of nonlinear equations with a condition that is required to fulfil;

a good initial guess near to the root is given to converge to the root point. If the initial

14

guess is not a good guess or close to the inflection point of the function, Newton-Raphson

method diverges away from the root. When the initial guess is close enough to a simple

root of the function then Newton’s method is guaranteed to converge quadratically.

Quadratic convergence means that the number of correct digits is nearly doubled at each

iteration.

1.4. Language Processors

The Computer is capable of executing instructions of object code. An object code is a

string of binary bits (0, 1) stored in computer’s memory. A human can’t understand low-

level languages. They write source program in one of the high-level languages. Therefore,

it’s necessary to find a tool that maps between high-level languages and low-level

languages. Language processor is a software program that maps an input of a source

language into an output a target language. There are different types of language processors

such as assemblers, compilers, pre-processors, interpreters, and disassemblers. In this part,

we will explain the most widely used language processors which are compilers and

interpreters.

1.4.1. Compilers

The Compiler is a type of language processor that translates a source code of high-

level language into a machine code of a low-level language to create an executable

program. Delphi, Visual, C/C++, COBOL, and Java languages are examples of such

language processor.

Modern compilers are used to generate codes that are platform dependent from any

source code. In the process of creating these codes, the compilers create intermediate codes

that dependent on environment.

In compilers, the amount of memory used by the underlying code is small and the

fast operation is considered as compilers do variable allocation without need variable

lookup at runtime. Therefore, compilers perform code optimization in order to get the best

efficiency from the generated code and exploit hardware features. In case of errors in the

source program, compilers catch and report these errors in the compilation process.

15

 Figure 4. Compilation and execution process

1.4.2. Interpreters

Interpreters are another type of language processor, such as compilers, but the goal of

interpreters are different from compilers. Interpreters, instead of translating the source

program into a machine code (target program), it interprets each command in user’s

program into a result. No target program is saved, instead, it analyse the user commands

and produces a binary code for the voltages carrying out operation of the computer

hardware component. Interpreters; run source code in a programming language, translate

and represent it into intermediate code, and execute and interpret the compiled code when

it arrives. Examples of interpreter languages include Python, Ruby, Lisp, and Pascal.

Interpreters use one of three strategies for program execution [65].

1) Parsing the source code and performs directly its behaviour. E.g., Lisp

Programming

2) Translate the source program into an intermediate representation (IR)

then execute this IR. E.g., Python, MATLAB, PHP, and JavaScript.

3) Mixed type, the complier is a part of the interpreter system, and the

interpreter execute precompiled source code made by the compiler. UCSD Pascal is

an example of this type.

16

 Figure 5. Interpreter process

1.4.3. Mixed Compilation and Interpretation Systems

There are some mixed systems which combines both compilers and interprets.

Compiler translates source program in a high-level language into an intermediate code,

then the interpreter executes the intermediate code to low-level language. Java language

which combines the two strategies of compilation and interpretation is an example of such

system. Source files in Java languages compiles into Java Virtual machine (JVM)

bytecodes, then these JVM bytecodes can be interpreted over the JVM on the hosting

computer. Frequently executed code is loaded by Just-in-time compiler which enables to

optimize the code and then runs that code to increase the interpretation speed.

 Figure 6. Mixed systems execution architecture

17

1.4.4. Comparison between Compilers and Interpreters

Compilers and interpreters do the same job in general, translating source program

into target program but there are many difference between them.

 Compilers creates machine code for later evaluation but interpreters

don’t, instead they directly maps a source program into a result.

 Compilers translates all source code at once no need for re-compilation

unless we change the source code while interprets are very slow because every time

the programs starts running, all the source code lines should be translated again.

 Every time the source program is starting, the interpreter needs to be

loaded into memory, this causes the source code to allocate less space in memory.

In the compiler, more space is allocated to the source code in memory, the compiler

loads only the source code at compile time, and it is not loaded at the next run time.

 Running programs translated into machine language faster than programs

interpreted.

 Interpreters perform better error detection than compilers, the reason for

this is that the compiler shows a list of many errors in the whole program while

interpreter shows errors in each instruction. In compilers, some mistakes that

cannot be detected at compile time can be detected at the time of interpretation.

 Making changes to the code of compiled programs is slower and more

difficult than modifying the code of interpreted programs.

1.4.5. Basic Compiler Phases

Compilation process can be grouped into two phases, front-end and back-end.

1.4.5.1. Front-End

Front-end reads the source program and analysis it. It is primarily dependent on the

source language. The front end phase consists of lexical analysis, syntax analysis and

semantic analysis, and intermediate code representation, sometimes some of the code

optimization can be done in the front end.

18

1.4.5.2. Back-End

Back-end generates target program. It is independent of the source code and is

dependent on the target code. The back end, however, includes code generation and code

optimization.

Symbol table and error handler is part of the compilation process.

Compilers and interpreters can share the same front-end but they have different back-

end as the output the two is different.

 Figure 7. Complier phases

1.5. Mathematical Expressions Interpretation.

Mathematical expressions contain all mathematical symbols such as numbers,

operators (like add and subtract), functions (like sin and cos), constants, and variables (like

x and y) in algebraic operations. Mathematical expressions computation in the computer is

needed for efficiency computation and time-saving. Mathematical expressions are given

based on the structure and rules of the interpreters as input data to the interpret software,

the output of this expression is the result of the mathematical expression.

Mathematical expressions interpretation is the process of analysing the source

program of mathematical expressions to represent it in an intermediate code and evaluating

Source code

Token

Stream

Lexical Analyzer (Lexer)

 Abstract Syntax

(valid) Abstarct Syntax

Intermediate Code (IR)

(better) IR

Object code

Syntactic Analysis (Parser)

 Semantic Analyzer

 Intermediate Code

Representation

 Code Optimization

 Code Generator

19

the IR of the mathematical expressions to print a final. The interpretation contains two

phases which are analysis and execution phases. The analysis phase consists lexical

analysis, syntax analysis, and semantic analysis. The analysis phase produces an

intermediate code representation as an output in the form of tree data structure. The next

phase is the execution of the IR code into a final result, this phase translates the IR code by

evaluating the data tree structure and then print the result. The general process of

interpreting mathematical expressions is given in Figure 8.

 Figure 8. Process of mathematical expressions interpretation

1.5.1. Lexical Analyser (Scanner)

The task of lexical analyser also called lexer or scanner is to read a stream of

characters from a source program, converts it into series of tokens by grouping the

characters into a meaningful sequences called lexemes and removing any white space or

comments in the source program [66]. Lexical analyser breaks up the program into a

sequence of pieces called tokens in accordance with the word structure of the relevant

programming language. Tokens, which is a stream of characters, are traditionally written

using regular expressions. The pattern in Table 3, is an example of predefined regular

expression rules that identify the lexeme to be a valid token or not. In programming

languages, integral literals, string literals, keywords, identifiers, symbols, punctuations, and

operators are types of tokens. Lexical analysis reports error if the token is invalid. Lexical

errors include misspellings of identifiers, operators, or keywords. The output of lexical

analyser is a stream of tokens that are passed to the parser for syntax analyser. Lexical

Analysis
Intermediate Code Representation Execution

Mathematical Expression Result

Lexical

Analysis

Syntax

Analysis

Semantic

Analysis

Evaluation and

Print

Process

Symbol

Table

Error

Detection

&

20

analyser output is a token of the form (token name, attribute-value), the first component

token-name is an abstract symbol that is used during syntax analysis, and the second

component attribute-value points to an entry in the symbol table for this token. Information

from the symbol-table entry is needed for semantic analysis and code generation [66]. To

produce lexical analysers from a regular expression description of the tokens of a language

a software tool that is called scanner generator is used.

 Figure 9. Lexical analyser process

There are several types of token such as variables, numbers, and keywords, each of

these expressions is defined by its own regular expression. Further reading for regular

expressions can be referenced by Mogensen, and Torben Ægidius book [67].

 Table 2. Example of tokens definition

TOKEN

REGULAR EXPRESSION OF TOKEN

DEFINITION

 ID

NUMBER

ASSIGN

TIMES

DIVIDE

["a"-"z"](["a"-"z"]|["0"-"9"])*

(["0"-"9"])+("."(["0"-"9"])+)?>

“=”

 “*”

“/”

21

For example, we have the below equation as source program, the lexical analyser

will read the source program as a stream of characters and breaks up into pieces of a

stream of tokens as in Table 3.

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑃𝑟𝑜𝑓𝑖𝑡 =
𝑝𝑟𝑜𝑓𝑖𝑡

𝑐𝑜𝑠𝑡𝑃𝑟𝑖𝑐𝑒
∗ 100 (12)

 Table 3. Stream of tokens of Eq. (12)

ID, ASSIGN, ID DIVIDE, ID, TIMES, NUMBER

The identifier profit is a lexeme that would be mapped into a token (ID, 2), where ID

is an abstract symbol standing for identifier and 1 points to the symbol table entry for

profit. The symbol table entry for an identifier holds information about the identifier, such

as its name and type. The assignment symbol = is a lexeme that is mapped into the token

(ASSIGN). We have omitted the second component since this token needs no attribute-

value. The remaining tokens follow the same logic of the previous two tokens.

1.5.2. Syntax Analyser (Parser)

The next phase is syntax analysis (also called parser). The parser has two main tasks;

first parser checks the grammatical structure of the stream of tokens produced by the

lexical analyser and then generates a data structure called parser tree or syntax tree. The

output of syntax analyser is an intermediate representation also called AST. The interior

nodes of this tree represent an operation and the children of the nodes represent the

arguments of the operation produced by the lexical analyser.

Formal grammars are used to specify the syntax of the representative language of

equations. The Backus Norm Form (BNF) presents a special notation for CFG describing

the syntax of formal languages. A formal language is a set of strings over a finite set of

symbols in programming languages and natural languages, which can be defined by a

context-free grammar given according to the specifications of parser generator tool [68]. A

software tool that is called parser generator is used to automatically produce syntax

analysers from a grammatical description of a programming language. JavaCC tool is an

example of parser generators and it will be explained in the end of this section. In addition

22

according the specified syntax rules, the syntax analysis must also reject invalid tokens by

reporting syntax errors.

 Figure 10. Syntax analyzer process

1.5.2.1. Context-Free Grammar

The hierarchical structure of programming languages is defined the combination of

its syntax and semantics and it is described by grammars. Semantics add meaning and

interpretation to the syntax of programming language structure.

In 1956, Noam Chomsky formalized generative grammars and classified into four

types that are called Chomsky hierarchy [69]. In general, CFG is a more powerful notation

than regular expression. Every regular expression is context free grammar and every

construct that can be described by a regular expression can be described by a grammar, but

not vice-versa. In Table 4, we defined the four types of Chomsky hierarchy. CFG is type-2

grammar that is used to describe the syntax structure of most programming languages.

Syntactic categories are statements, expressions, and declarations. These are defined by

rules of the form of A → γ. A is a nonterminal and γ is a string of terminals and

nonterminal (it can be empty). CFG is a set of production rules that is used to generate the

parse tree.

 Table 4. Chomsky hierarchy

Type-0 Recursively enumerable grammars

Type-1 Context-sensitive grammars

Type-2 Context-free grammars

Type-3 Regular grammars

23

CFG are made up of finite set of grammar rules and G it is a 4-tuple (N,T,P,S)

which are nonterminal (syntactic categories of sets sentences), terminals (the basic symbols

from which sentences are formed), production rules (rules specifying how the terminals

and nonterminal combine to form sentence) , and starting symbol respectively.

 N is a fine set of non-terminal symbols.

 T is a fine set of terminals where 𝐍 ∩ 𝐓 = 𝐍𝐔𝐋𝐋.

 P is a set of rules, 𝐏: 𝐍 → (𝐍 ∪ 𝐓) ∗, i.e., the asterisk represents the

Kleene start operation.

 S is the start symbol, it is used to represent the whole sentence. It must

be an element of N.

In Table 5, E, and F, are nonterminal. Terminals are id, num, and (). Start symbol is

E. One Production rule is E→ E + E.

 Table 5. Ambiguous grammar

E→ E + E

E→ E - E

E→ E * E

E→ E / E

E→ F

F→ num

F→ id

F→ (E)

1.5.2.2. Derivation and Parsing Context-Free Grammar

Derivation is carried out starting with the start symbol, and repeatedly replacing any

non-terminal on the right-hand side. There are two types of derivation methods. The first

method is the leftmost derivation, in each step of derivation, apply production to leftmost

nonterminal. The second derivation is the right most derivation and in each step of

derivation, apply production to rightmost nonterminal. For every leftmost derivation, there

is a right most derivation, and vice versa.

24

1.5.2.3. Parser Tree

A parser serves as a tree constructor that transforms the token sequence in the source

data into an object tree in accordance with the syntactic structure [70]. CFG can be

represented using a parser tree. Each internal node is labelled by a nonterminal. Each leaf

is terminal symbol. The construction of a parse tree can be made by rewriting the

production rules. Beginning with the start symbol, each rewriting step replaces a

nonterminal by the body of one of its Productions.

There are some issues that we have to deal with when parsing CFG to generate parse

tree or AST such as ambiguity, recursive rules, and left factoring.

1.5.2.3.1. Ambiguity

Ambiguity is happened when it is possible to derive several parse trees for the same

string. Ideally there should be only one parse tree for each string (unambiguous). A

grammar is said to be ambiguous if it generates an ambiguous string.

Example: if we have a source input of mathematical expression

𝑥 + 6 ∗ 7/5 (13)

The grammar sentence of expression (13) according straight line programming

grammar rules is as following. id + num ∗ num/num.

The parser tree of expression (13) has different parse tree in the leftmost derivation

and in the rightmost derivation therefore; it is an ambiguous as shown Figure 11. The

problem of ambiguity is that there is no high operator precedence in mathematical

expressions.

 Figure 11. Ambiguous parser tree of expression” 𝑥 + 6 ∗ 7/5"

25

We can rewrite ambiguous grammar in Table 5 to remove ambiguity as in Table 6:

 Table 6. Unambiguous grammar example

E→ E + T

E→ E - T

E→ T

T→ T * F

T→ T / F

T → F

F→ num

F→ id

F→ (E)

.

Now if we try to derive expression (13), it will have one parse tree both in leftmost

derivation and in rightmost derivation.

 Figure 12. Unambiguous parser tree of expression “𝑥 + 6 ∗ 7/5"

1.5.2.3.2. Left Recursion

In general, when the function calls its self is said to be recursion. A grammar is said

to have direct left recursion if the leftmost symbol on the right side of a production rule is

the same as the non-terminal on its left side, for example, 𝐴 → 𝐴𝜶 or indirect left

recursion if it can be made itself some sequence of substitutions, for example 𝐴 → 𝛽𝐴𝛼

where 𝛽 can be yielded in an empty string. Left recursion is problem because parser

cannot make decision which rule should be applied as rules have common symbol. Top-

down parsers can go infinite recursion in case of left recursion. Example, In Table 7, the

grammar has left recursive because expression E has three different production rules that

26

start the same symbol of T and the parser can’t made an immediate decision about which

rule has to be read.

 Table 7. Left recursion grammar

We can eliminate the left recursion by re-writing production rules without changing

the syntax structure of the grammar. As shown in Table 8. Sometimes we may have

hidden left-factors when a rule may not appear to have left factor.

 Table 8. Eliminated left recursion grammar

E → TE`

E`→ + TE` | -TE` | Ԑ

T → FT`

T → *FT`| /FT` | Ԑ

F → (E) | id | num

1.5.2.3.3. Left Factoring.

Sometimes two productions have the same start symbol .Production rules have

common left factor that define in terms of themselves, removing the common left factor

that appears in two productions of the same nonterminal is called left factoring.

E → E + T | E + T | T

E → T * F | T * F | F

F → (E) | id | num.

27

Example

𝐴 → 𝑓𝐵 | 𝑓𝐶 (14)

Where A, B, C are non-terminals and 𝑓 is a terminal. In this case, the parser will be

confused as to which of the two productions to choose and it might have to back-trace.

After left factoring, the grammar is left factored

 𝐴 → 𝑓𝐿 (15)

 𝐿 → 𝐵 | 𝐶

1.5.3. Semantic Analyser.

After the construction of a parser tree, the interpreter uses semantic analyser to cover

the meaning of a program by analysing its parse tree. Semantic analysis checks whether

the syntax structure constructed in the source program derives any meaning or not.

Semantic analysis is performed during run time of the program.

In semantic analysis, many operations such as type checking, scope resolution,

array-bound checking, and subroutines arguments calls is performed. Semantic errors

include type mismatch, undeclared variable, arithmetic errors, and multiple declaration of

variable. At the time these errors is detected an exception about the error is raised.

Example 𝑖𝑛𝑡 𝑎 = "5"; cannot be detected during lexical and syntax analysis.

1.5.4. Symbol Table

Symbol table is a data structure used to record information about the identifiers used

in the program and various attributes of identifiers. It stores type, scope, storage location,

procedure name, return type, and other relevant information. Symbol tables information is

collected and created in the analysis phase and later it used by the evaluation phase

(synthesis phase) of the interpreter (compiler). Example the token 𝑥, in symbol table its

stored information such as (x,1) where x is the token-name and 1 is the attribute value that

point the entry of this token in the symbol table. Detailed information about symbols is

referenced [66].

28

1.6. Parsing Techniques

Syntax analysers follow the syntax structure defined by means of a context-free

grammar. The way the structure syntax is implemented (derivation) divides parsing into

two types: top-down parsing and bottom-up parsing [71].

 Figure 13. Parsing types

1.6.1. Top-Down Parsing

Top-Down Parsing constructs parse tree for input sentence by parsing from the start

symbol using leftmost derivation to the input sentence. The key objective of Top-Down

parsing is determining which production rule to be applied for a nonterminal. Recursive

parsing is a top-down parser that uses recursive procedures to process the input sentence

and determine the production rule to be applied. Recursive descent may require back-

tracing or may not require. Predictive parsing is a recursive descent parser that doesn’t

require back-tracing, the problem is a recursive parser which suffers from back-tracing,

means a bad pack, the production rule is not matched and fails, it starts again to process the

input using different rules of the same production. In general, Top-Down parsers can’t

handle left recursion and left factoring, therefore; we have to eliminate the left recursion

and left factoring before the parsing begins.

Parsing

Top-down Pasring Bottom-up parsing

29

 Figure 14. Top-Down parsing types

1.6.1.1. LL Parsers

LL (k) parsers analyses the input from left to right performing left most derivation,

where k is the number of tokens when parser parses a sentence. When 𝑘 = 1 the grammar

is called LL (1) grammar LL (1) grammar will not work with left recursion and left-

factoring grammars because the grammar can read one symbol at one time.

 Figure 15. LL (k) definition

The grammar in Table 9 is LL (1) grammar, the parser can read enough information

from right-hand side symbols to choose which production rule is to be applied.

Top-Down Parsing

Recursive Descent

Back-Tracing Non-Back-Tracing

Predictive Parser

LL Parser

30

 Table 9. An example of LL (1) grammar

S → T

S → (S * T)

S → number

 Figure 16. LL parser process example

1.6.1.2. First and Follow Sets

Predictive parsing requires the grammar should have left recursion or left factoring to

enable that the first terminal symbol of each production right-hand side provides enough

31

information to choose a production, therefore; predictive parsing requires two functions to

aid getting this information.

1.6.1.2.1. First Sets

𝐹𝐼𝑅𝑆𝑇(𝜶)

If 𝛼 is a string of non-terminals and terminals then 𝐹𝐼𝑅𝑆𝑇(𝜶) is the all terminal

symbols that begin any string derived from 𝛼. If 𝛼 → ℇ the ℇ is included 𝐹𝐼𝑅𝑆𝑇(𝜶).

For 𝑋𝜶1 and 𝑋𝜶2, 𝐹𝐼𝑅𝑆𝑇(𝜶𝟏) and 𝐹𝐼𝑅𝑆𝑇(𝜶𝟐) cannot be overlapped.

 Table 10. Algorithm to compute first sets

1. If A is a terminal then First(A) is A!

2. If A → ε is a production then add ε to first(A)

3. If A is nonterminal and there is a Production A → B1B2,… , Bk

then add First(B1B2. . Bk) to first(A)

4. First(B1B2. . Bk) is one of the following cases.

1. First(B1) if First(B1) doesn't contain ε

2. If First(B1) does contain ε then First(B1B2. . Bk) is everything

in First(B1) except for ε as well as everything in First(B2. . Bk)

1.6.1.2.2. Follow Sets

 𝐹𝑂𝐿𝐿𝑂𝑊(𝑨)

For nonterminal A, if A can derive empty string 𝐹𝑂𝐿𝐿𝑂𝑊(𝑨) is defined to be the

set of terminals that can appear immediately to the right of A.

𝐴 → 𝐴𝑏𝛽𝛼 . Here 𝑏 is 𝐹𝑂𝐿𝐿𝑂𝑊(𝐴)

𝐴 → 𝐴𝛽𝛼𝑏 . Here if 𝛼 𝑎𝑛𝑑 𝜷 are produced an empty string then 𝑏 is 𝐹𝑂𝐿𝐿𝑂𝑊(𝐴)

$ representing the input right end marker is in 𝐹𝑂𝐿𝐿𝑂𝑊(𝑨)

32

 Table 12. First and follow sets of the grammar in Table 8

 Table 11. Algorithm to compute follow sets

1. First, put $ (the end of input marker) in Follow(S) (S is the start

symbol)

2. If there is a production A → DBF, then everything in FIRST(F)except

for ε is placed in FOLLOW(B).

3. If there is a production A → DB, then everything in

FOLLOW(A) is in FOLLOW(B).

4. If there is a production A → DBF, where FIRST(F) contains

ε, then everything in FOLLOW(A) is in FOLLOW(B).

Null?

First Sets

Follow Sets

no { (id, num } {$,)}

E’ yes {+, -, Ԑ} {$,)}

T no {(id, num} {+, -, $,)}

T’ Yes { *, /,

Ԑ}

{+, -, $,)}

F no {(, id, num} { *, /, +, -,

$,)}

33

1.6.2. Bottom-Up Parsing

Bottom-up construct parse tree for input sentence by parsing from the input using

leftmost derivation to the start symbol. Shift-Reduce parsing is a technique used Bottom-

UP parsers making a shift and reduce action. At the beginning of parsing, the stack is

empty and the parsing process finishes with success if (EOF) the end of file maker is

shifted. Stack action pushes the first input token top onto the stack and the reduce action is

when the grammar right-hand side (𝐴 → 𝐵𝐶𝐷) replaces left-hand side grammar using pop

function (pop B, C, and D from top of the stack).

 Figure 17. Bottom-Up parsing types

1.6.2.1. LR Parsers

LR also called LR(k) parsers analyse the input from left to right performing right

most derivation, where k is the number of look ahead tokens symbols. LR parser is the

most general bottom-up parsing methods. LR parsing starts with an empty stack and ends

with the root of non-terminal on the stack.

Three algorithms for LR are LR (1) parsing, SLR (1) parsing, and LALR (1) parsing.

Simple LR (SLR) parsing is a simple that works on small size grammars and makes a

fast construction. Look Ahead LR (LALR) works on intermediate size grammars. More

information about LL and LR parsing algorithms can be referenced [72].

Bottom-Up parsing

Shift-Reduce

LR Parsing

SLR Parsing LR Parsing LALR Parsing

34

 Figure18. LR parser process example

1.7. Automatic Parser Generator Tools

In this section, automatic parser generator tools are presented. A compiler-compiler

generates scanner and parser for particular language from its grammar. Compiler-compiler

takes grammars as input and produces a compiler as an output. As we mentioned before

scanner and parser analysers use grammars to analyse the input data, these grammars

should follow the compiler-compiler rules. There are many automatic code generation

tools that are used to day. These tools are different depending the programming language

code to be generated. Some of these tools are JavaCC [12], javaCup [74] for object

oriented languages, and YACC [75], and bison [76] for imperative languages. In this

thesis, we are using Java programming language so we will discuss automatic code

generation tool for java Language and some other important tools.

35

1.7.1. JavaCC

JavaCC is a java-based parser generator and lexical analyser generator from context-

free grammar and regular expressions respectively.

JavaCC uses a configuration file with the extension ".jj". This file starts with setting

options. Among these options are the number of tokens to be looked at when making

predictive production, whether to activate or deactivate the debug mode, and to specify the

target folder of the files to be created.

Next, the body of the parser to be produced is defined. This can be done between the

PARSER_BEGIN and PARSER_END tags by defining the main parser class. Any code to

be added to this field will be recognized exactly as the class will be created by JavaCC.

As a third step, the skip character and the token list required for lexical analysis are

defined using regular expressions. The token list is identified using the regular expressions,

if necessary, under the TOKEN tag. Skipped characters are identified by the SKIP tag, and

are usually space and end-of-line characters. These can be added to other characters

according to the application.

 Figure 19. Javacc file structure

36

1.8. Parse Tree Evaluation Approaches

Syntax classes are implemented using the object-oriented concepts of Java in case of

java programming language. As a result of syntactic analysis of the source data, syntax

classes are used to generate object trees via the JavaCC generator tool. Each grammar rule

is generally defined by a syntax class which is then used to evaluate mathematical

expressions. The AST structure holds the essential sections of syntax classes in the form of

a tree. An object tree can be evaluated using one of three approaches from the inner most

nodes towards the root node. The three approaches are instanceof and type cast, dedicated

methods, and visitor design pattern, In Table 13, comparison about each one’s advantage

and disadvantage are presented.

 Table 13. Comparison of syntax tree evaluation approaches

Method Object derivations Class Compilation

Instanceof Operator Yes No

Interpreter Methods No Yes

Visitor Design Pattern No No

1.8.1. Instanceof Operator

In this method, the type (class or subclass or interface) of an object (instance)

belonging to a node can be determined using the intanceof operator. In order to be able to

perform the represented operation after determining the object type of the node, it is

necessary to derive the subclass object from the super class. In this type, the disadvantages

are that code constantly uses type cast and instanceof to determine the type of an object.

1.8.2. Interpreter () Methods

In this method, an interpreter () method is added to each class of the syntax, which

can perform the operation represented by the class. To evaluate an object tree node, it is

sufficient to call the eval () method of the object that contains the node. Therefore, it is not

37

necessary to determine the node object type to be evaluated. The disadvantages of this

method are that for each new operation on objects, new dedicated methods have to be

added and all classes must be recompiled.

1.8.3. Visitor Design Pattern

We can see from the comparison in Table 7 that visitor pattern is a good approach to

evaluate the syntax tree compared to other parser tree evaluation approaches. Visitor

Design Pattern is defined to operate on the object tree structure. Visitor pattern comes

under behaviour pattern category, we use a visitor interface and a visitor class which

changes the executing algorithm of an element class. When the visitor algorithm varies, the

execution algorithm of the element also vary. As per the syntax class, element object has to

accept the visitor object so that visitor object handles the operation on the element object.

A visit () and accept () method is added to each syntax classes. To evaluate nodes of syntax

tree visit () method is used. In this way, visit () and accept () methods call each other until

all the nodes of the object tree are visited. The Visitor class serves as an interface with a

visit () method declaration for each syntactic class. The definition of the visit () methods is

done in a class that implements the Visitor interface. A different evaluation of syntactic

class objects requires the definition of another Visitor interface.

In visitor design, we can add new operations on an object without touching the other

code, visitor pattern also gathers same operations More detailed information about visitor

design pattern is referenced by the book “Design Patterns: Elements of Reusable Object-

Oriented Software” [73].

38

 Table 14. Syntax classes with accept () methods

abstract class Exp {

public abstract Object accept(Visitor v);

}

class Plus extends Exp {

 Exp a, b;

 public Plus(Exp x, Exp y) {

 a = x;

 b = y;

 }

 public Object accept(Visitor v) {

 return v.visit(this);

 }

 }

class Minus extends Exp {

 Exp a, b;

 public Minus(Exp x, Exp y) {

 a = x;

 b = y;

 }

 public Object accept(Visitor v) {

 return v.visit(this);

 }

 }

2. STEP-BY-STEP SOLUTIONS FOR NONLINEAR SYSTEM OF

EQUATIONS.

2.1. Introduction

There is a need for the use of different computational methodologies and

programming methods to solve mathematical problems with computer programs. In

general, there are two main computational methods which are numerical and symbolic

approaches.

Numerical methods find an approximate solution to mathematical problems.

Numerical computations often propagate of errors from round-off and truncation.

Symbolic computation methods have been developed against this disadvantage of

numerical methods. Symbolic computation is the development and manipulation of

mathematical expressions. Symbolic computation or algebra computation solves

mathematical problems without error and finds the exact value using computer technology.

In this thesis, using a hybrid method with symbolic-numeric computation which

combines symbolic and numeric methods, an interpreter software tool is implemented for

step-by- step solving of a multivariate nonlinear system of equations. Symbolic approaches

are used to analyse the source data and represent it in an intermediate structure for later

evaluation. Numerical computation method, i.e., Newton-Raphson iteration is employed to

obtain better approximations to solutions of nonlinear systems.

2.2. General Structure of the Implemented Mathematical Expression

Interpreter

In this study, solving nonlinear system of equations undergoes two main phases,

source data analysis, and interpreter phases. In the source data analysis, lexical analysis,

syntax analysis, and semantic analysis are carried out. In case of any error in any of these

stages, the expression which is the source of the error is reported without passing to the

next stage. JavaCC tool is used for analysing the source data, which generates automatic

source code in the Java programming language. A token generator takes the general source

expression, analyses the source data using regular expressions, and transforms it into a

token sequence. In the syntax analysis, JavaCC parser generates a syntax tree from the

40

token array according to an Extended Backus Naur Form (EBNF) grammatical form that is

suitable for the syntactic and semantic structure of mathematical expressions and

transformed into the LL (k) grammar, which is a left-to-right grammatical structure. In

addition, syntax classes in the form of syntax tree are defined to represent operators and

functions that can be included in a mathematical expression. The analysis phase produces

an intermediate code representation as an output in the form of tree data structure.

The source expression is evaluated with the help of an interpreter developed based on

the syntax tree (object trees). In the other stage, the evaluation process is started and the

object tree is interpreted with the evaluation method of visitor design pattern. In the

interpreter phase, many intermediate operations such as derivation, function

transformations, matrix calculations, and simplification for the solution of a system of

mathematical equations is done. The interpretation phase produces a final result by

evaluating the object trees using visitor design pattern and shows all intermediate steps

carried out to solve these expressions. Newton-Raphson method is implemented to obtain

better approximations to solutions of nonlinear systems. In the Newton-Raphson method,

functions are transformed into linear equations in the form of matrices equations. Cramer’s

rule is employed to solve these matrices and find new solutions. In the Newton-Raphson

method, the root is not bracketed. In fact, some initial guesses of the root are needed to get

the iterative processes started to find the roots of a system of equations. Convergence in

open methods is not guaranteed but if the given initial guesses are good enough Newton-

Raphson does convergence, faster compared to other numerical methods. All the

programming processes from the source expression analysis and the interpretation of this

source expression to the production of the final result are presented in detail. In the

following sections, the General structure of solving nonlinear system of equations is shown

in Figure 20.

To display the solution steps of a nonlinear system of equations, the expressions on

the object tree after each evaluation is printed. The main components of the expression

analyser and expression interpreter can be listed as follows:

 Lexical Analysis

 Syntax Analysis

 Semantic Analysis

 Nonlinear Equations Evaluation methods

 Implementing of Newton Raphson Method

41

 Partial Derivatives

 Function Evaluations

 Transformation of Nonlinear Equations into linear equations

 Solving linear Equations using Cramer’s Rule

 Newton Raphson Iterations and Stopping criteria

 Simplification

 Printing Solution Values and Intermediate Steps

 Figure 20. Architecture of the Implemented Interpreter

LEXICAL

ANALYSIS

SYNTAX

ANALYSIS

SEMANTIC

ANALYSIS

INPUT

SOURCE

EXPRESSION

DATA

REGULAR

EXPRESSION

CFG AST

TOKEN

STREAM

AST

2. INTERPRETER

PHASE

SYMBOL

TABLE

ERROR

DETECTION &

REPORTING

FUNCTION

EVALUATION

PARTIAL

DIFFERENTIATION

FUNCTION

TRANSFORMATIONS

INTO MATRIX FORM

NEWTON-RAPHSON

METHOD

SIMPLIFICATION

PRINT FINAL

RESULT

OUTPUT

42

2.2.1. Lexical Analysis

The first step in the analysis process of the source program, which is taken a system

of nonlinear equations, initial guess values and absolute error as the input data and the

nonlinear equations are subjected to the lexical analysis. In this section, the source program

is divided into a sequence of pieces called token which is suitable for the syntax structure

of the Java programming language which is the coding language used in the application.

Each possible token is defined by means of regular expressions. The compiler compiler

JavaCC tool uses regular expressions for token definitions. The definitions are declared

into the JavaCC tool in a file with the extension .jj.

2.2.1.1. Token Declaration

As we mentioned earlier, the JavaCC file consists of several subdivisions, such as

options, the main parser body, token list in terms of regular expressions, skipped tokens

such as white spaces, and syntax related methods in terms of CFG according to JavaCC

rules. In this section, the token definitions for nonlinear equations are presented.

Table 15. JavaCC token declaration for the application

TOKEN:{

 <PLUS: ”+”> | <MINUS: ”-”> | <TIMES: ”*”> | <DIVIDE: ”/”>

| <POWER: ”^”> |<ASSIGN: ”=”> | <COMMA: ”,”> | <SEMI: ”;”>

| <LPAREN: ”(”> | <RPAREN: ”)”> | <SIN: ”sin”> | <COS: ”cos”>

| <TAN: ”tan”> | <LOG: ”log”> | <LN: ”ln”> | <EXP: ”exp”>

| <ID: (["a"-"z","A"-"Z"])(["a"-"z","A"-"Z","0"-"9"])*>

| <NUM :([”0”-”9”])+(”.”([”0”-”9”])+)?>

}

SKIP: { " " | "\n" | "\t" | "\r" | "\r\n" }

Example: Given input source data (Nonlinear equations):

f(x, y) = x2 + y − 3 = 0 ; (16)

43

The characters could be grouped into the lexemes which are then mapped into a

sequence of tokens passed on to the syntax analyser, as shown in Table 16.

Table 16. Token sequence of Eq. (16)

ID LPAREN ID COMMA ID RPAREN ASSIGN ID POWER NUM PLUS ID MINUS NUM ASSIGN

NUM <SEMI>

Scanner reports errors in the case that invalid token is detected. Lexical errors

include misspellings of identifiers, operators, or keywords. The output of scanner is passed

to the parser for syntax analysis. Lexical analyser output is a sequence of pairs of the form

(token name, attribute-value), the token-name is an abstract symbol that is used during

syntax analysis, and the attribute-value points to an entry in the symbol table for this token.

Information from the symbol-table entry is needed for semantic analysis.

2.2.2. Syntax Analysis

In general, every programming language needs predefined elements in a proper way

and has a defined sequence of the language component combinations. The output of

Lexical analyser is a sequence of predefined tokens (words, operators, symbols, functions)

but it does not have a defined format. In this section, the syntax structure (format) of the

tokens is declared using CFG.

The JavaCC parser, which performs syntax operations, has two main tasks; to

perform the formal check of the syntax structure of the source input data and to carry out

the production process of the object tree. For formal check, grammar types such as BNF

and CFG, which define the syntax structure of the data, are used, and expressions that

generate the object tree are added to these definitions. Using the JavaCC tool, it quite easy

to define the syntax structure of nonlinear equations and generate abstract object trees for

nonlinear equations.

Syntax classes and methods are defined for each rule of a grammar that represents

the source data. After the grammatical structure is determined for the syntax analysis stage,

this grammatical structure must be adapted to LL (k) because JavaCC works with the LL

(k) algorithm. Therefore, in order to be able to comply with the LL (k) algorithm of the

grammar structure, left factoring has been performed by eliminating the recursive states

44

from the left. After all these processes, the related grammatical structure was transferred to

JavaCC environment and Java code is produced, which can perform syntax analysis

processes for the developed application.

In this section, the grammar structure developed for the application and the JavaCC

code structure, which generates automatic code in the Java programming language of this

grammar are discussed.

2.2.2.1. Syntax Structure of Nonlinear Equations

In order to use the compiler compiler tool JavaCC, some operations have to be made

on EBNF grammar such as eliminating the ambiguity and left factoring to produce an LL

(1) grammar as shown in Table 17.

 Table 17. LL (1) grammar definition for nonlinear equations

G={Σ, T, V, P, S}

V={Eq, Eq2, ArgL, Exp, Term, Power, Elem, Func, Num,

 Id }⊆ 𝛴

T={sin, cos, tan, log, Ln, exp, (,), +, -, *, /, ^, =,

, , ;}⊆ 𝛴

Σ=𝑇 ∪ 𝑉

S={Eq}

Productions

<Eq> → <Eq2> (;<Eq>)?

<Eq2> → <id>(<ArgL>) = <Exp> = <num>

<ArgL> → <id> (, <ArgL>)?

<Exp> → ("+"│"-")? <term> [("+"│"-") <term>]*

<Term> → <power> [("*"│"/") <power>]*

<Power> → <element> ("^"<power>)?

<Elem> → <func> "(" <Exp> ")" | <num> | <id>

<Func> → "Sin" | "Cos" | "Tan" | "log" | "ln" | "e"

<Num> → "-"? ["0"-"9"] + ("."["0"-"9"]+)?

<Id> → ["a"-"z","A"-"Z"](["a"-"z","A"-"Z","0"-"9"])*

Parsing an expression is processing the expression according to the grammar

production rules. The name of methods in JavaCC syntax description of nonlinear

expressions is determined according to the nonterminal set in Table 17 as shown in Table

18. All JavaCC methods are defined according to the grammar structure, then the JavaCC

parser generator tool is used to generate syntax classes from the JavaCC methods in the

form of object trees for interpreter process.

45

 Table 18. JavaCC grammar definition for nonlinear equations

Equation Prog() :{ Equation eq; }{

 eq = Eq() <EOF> { return eq; }

}

Equation Eq() :{ Equation eq1, eq2; }{

 eq1=Eq2 () (<SEMI> eq2=Eq () {eq1 = new CompoundEquation

 (eq1, eq2) ;})? { return eq1; }

}

Equation Eq2() :

{ Token t1,t2; Exp e; Exp args[] = new Exp[26]; }

{

 t1 = <ID> <LPAREN>(ArgL(args, 0)) <RPAREN> <ASSIGN> e=E()

 <ASSIGN> <NUM>

 { return new Function(t1.image,args,e); }

}

...

Exp E() :{ Exp e1, e2; int n=1; }{

(<PLUS> | <MINUS> {n=-1 ;})? e1=T() { if (n<0) e1=new

Times(new Num(-1), e1); } (<PLUS> e2=T()

{ e1 = new Plus(e1, e2); }

 | <MINUS> e2=T() { e1 = new Minus(e1, e2); }

)* { return e1; }

}

...

Exp F() :{ Token t1,t2; Exp e;}{

 t1=<ID> { return new Var(t1.image); }

 | t2=<NUM> { return new Num(Double.parseDouble(t2.image)); }

 | <LPAREN> e=E() <RPAREN> { return e; }

 | <SIN> <LPAREN> e=E() <RPAREN> { return new Sin(e); }

 ...

}

46

2.2.2.2. Generating Abstract Syntax Tree

There are many parser generating tools. In this thesis, Object-Oriented based JavaCC

parser generator tool is used to create the object trees. Each rule of a CFG grammar is

represented as a syntax class. The formation of the hierarchical structure of the

grammatical object tree depends on the execution of the grammar rules used to form the

source data. A syntax tree (object tree) consists of several nodes linked together in a

hierarchical structure. From these nodes on the object tree, each node is derived from

syntax classes and contains an object that represents a process or data.

 Table 19. Abstract syntax tree for the application

abstract class Equation {

}

class CompoundEquation extends Equation {

 Equation eq1, eq2;

 public CompoundEquation(Equation a, Equation b) {

 eq1 = a;

 eq2 = b;

 }

}

…

abstract class Exp {

public abstract Object accept(Visitor v);

public abstract double eval(double x);

}

class Plus extends Exp {

 Exp a, b;

 public Plus(Exp x, Exp y) {

 a = x;

 b = y;

 }

 public double eval(double x) {

 return a.eval(x) + b.eval(x);

 }

 }

class Sin extends Exp {

 Exp a;

 public Sin(Exp x) {

 a = x;

 }

 public double eval(double x) {

 return Math.sin(a.eval(x));

 }

}

...

47

2.2.3. Semantic Analysis

In the analysis phase, the syntax tree created in the syntax analysis phase is subjected

to the semantic analysis process. The semantic process works on the token structures on

the leaves of the tree to make sense for the interpreter. For example; a double variable is a

double token, and the string variable is a string variable. As mentioned earlier, the most

important operations in this phase include type checking, scope resolution, and array-

bound. Faults that may occur at this stage are called semantic errors. For example; an

integer variable and a string variable cannot be directly equalized because their token types

are different. In this phase, semantic errors in the source code are checked and data type

information is specified for the interpreter. The creation of the symbol table and the

implementation of the type check are the most important parts of the semantic analysis.

The semantic information is not displayed in the context-free language. The CFG used in

the syntactic analysis is combined with semantic rules.

 In this thesis, the symbol table is created to record the information of some

identifiers to retrieve later in the evaluation process. For example; the initial guesses values

of the Newton-Raphson method and the absolute error data are recorded in the symbol

table (hash table) and the interpreter uses the table to look up easily these values in the

evaluation process. Symbol tables are mostly implemented as hash tables, where the source

code symbol itself is treated as a key for the hash function and the return value is the

information about the symbol.

 Table 20. Hash table usage for Newton-Raphson initial guess values

--Hash tables for initial guess values in the form of

(var_name,var_value)

class Table {

 Hashtable table = new Hashtable();

 public void put(String id, String d) {

 table.put(id, new String(d));

 }

 public String get(String id) {

 return table.get(id).toString();

}

}

48

2.2.4. Nonlinear Equations Evaluation Methods

The output of the analysis phase is a meaningful and error free syntax classes in the

form of object trees. These syntax classes represent grammar rules in the JavaCC grammar

methods. The next phase is to interpret the nodes (process or data) on the object tree

according to the implemented interpreter algorithm. The interpreter phase uses Newton-

Raphson algorithm to interpret the nodes on the object trees. Visitor design pattern and

interpreter methods are used to operating on the object tree, each of which is explained in

Section 1.8. Visitor design pattern is a useful pattern that enables to add new operations to

the system without changing other classes or methods. The eval () method is also added to

each syntax class, which can perform the operation represented by the class. To evaluate an

object tree node, it is sufficient to call the eval () method of the object that contains the

node.

 Table 21. Adding visitor and eval methods to the syntax classes

abstract class Equation {

public abstract Object accept(Visitor v);

}

class CompoundEquation extends Equation {

 Equation eq1, eq2;

 public CompoundEquation(Equation a, Equation b) {

 eq1 = a;

 eq2 = b;

 }

 public Object accept(Visitor v) {

 return v.visit(this);

 }

}

...

abstract class Exp {

public abstract Object accept(Visitor v);

public abstract double eval(double x);

}

class Plus extends Exp {

 Exp a, b;

 public Plus(Exp x, Exp y) {

 a = x;

 b = y;

 }

public Object accept(Visitor v) {

 return v.visit(this);

 }

}

 public double eval(double x) {

 return a.eval(x) + b.eval(x);

 }

 }…

49

2.2.5. Newton-Raphson Implementation

In the interpreter phase, we implement the Newton-Raphson algorithm to solve the

nonlinear expressions and obtain better approximation solutions. We have the input data in

the form of object trees. The interpretation process includes partial derivatives, function

evaluations, function transformations into linear equations in matrix form, solving the

linear equations using Cramer’s rule, Newton-Raphson iterations and stopping criteria,

simplifications, controlling of step-by-step solutions, and finally printing the result with all

intermediate solution steps.

 First, the NLEParser class (Nonlinear Equations Parser) is called to read and parse

the input source data and represent it in the form of object tree in the case that no error is

detected during the analysis phase as shown in Table 22.

 Table 22. Parsing input source data operation

public class EQSolver {

 static Equation eq = null;

 static Function f = null;

 static boolean endEq = false;

 public static void solveEquations(){

 try{

 eq = new NLEParser(System.in).Eq();

 ...

 while (!endEq)

 {

 if (eq instanceof CompoundEquation)

 {

 f = (Function)(((CompoundEquation)eq).eq1);

 eq = ((CompoundEquation)eq).eq2;

 }

 else

 {

 f = (Function)eq;

 endEq = true;

 }

 }

 catch(ParseException ex) {

 System.out.println("Fail!\n" + ex.getMessage());

 }

 ...

}

50

2.2.5.1. Partial Derivative

Given a system of nonlinear equations, initial guess values, and absolute error

tolerance as input data, as mentioned in Section 1.3, the first step of Newton-Raphson

method is to find the derivative of the given functions with respect to specific variables

(partial derivative). For a given function 𝑓1 with 𝑥𝑛 variables, the partial derivative of this

function is shown below and the code is given in Table 23. Derivative processing is done

by evaluating the AST tree. For this, a class doing partial derivatives of nonlinear functions

is created with visitor design template and it is used general derivative rules.

 𝑓1(𝑥1
𝑘+1, 𝑥2

𝑘+1) = 𝑓1(𝑥1
𝑘, 𝑥2

𝑘) +
Ə𝑓1(𝑥1

𝑘,𝑥2
𝑘)

Ə𝑥1
(𝑥1

𝑘+1 − 𝑥1
𝑘) +

Ə𝑓1(𝑥1
𝑘,𝑥2

𝑘)

Ə𝑥2
(𝑥2

𝑘+1 − 𝑥2
𝑘) + ⋯

 Table 23. Partial derivative of nonlinear equations

class EQSolver {

 ...

 for (int i=0; i<f.args.length; i++)

 {

 if (f.args[i]==null)

 break;

 var = f.args[i].toString();

 derives{row][column] = (Exp)(new EQDerive().visit(f.e));

 ...

 }

 class EQDerive implements Visitor {

 public Object visit(Equation equ){

 equ.accept(this);

 return null;

 }

 ...

 public Object visit(Plus e) {

 Exp a = (Exp)(e.a.accept(this));

 Exp b = (Exp)(e.b.accept(this));

 return new Plus(a, b);

 }

...

 public Object visit(Sin e) {

 Exp a = (Exp)(e.a.accept(this));

 return new Times(a, new Cos(e.a));

 }

 public Object visit(Var e) {

 if(EQSolver.var.equals(e.id))

 return new Num(1);

 else

 return new Num(0);

 }

 public Object visit(Num e) {

 return new Num(0);}}

51

2.2.5.2. Function Evaluations

The next step after partial derivative is to evaluate the derived functions and the

normal functions using the initial guesses of the Newton-Raphson method as shown in

Table 24. The implemented application can evaluate every nonlinear function that with n

variables, as we mentioned earlier, we look up the initial values from the hash table and

update them after each iteration.

 Table 24. Nonlinear function evaluations

public class EQEval implements Visitor {

public Object visit(Equation equ){

 equ.accept(this);

 return null;

 }...

 public Object visit(Function eq) {

 eq.e.accept(this);

 return null;

 }

 public Object visit(Exp e) {

 return e.accept(this);

 }

 public Object visit(Plus e) {

 double a = ((Double)(e.a.accept(this))).doubleValue();

 double b = ((Double)(e.b.accept(this))).doubleValue();

 return new Double(a+b);

 }...

 public Object visit(Sin e) {

 double a = ((Double)(e.a.accept(this))).doubleValue();

 return new Double(Math.sin(a));

 }...

 public Object visit(Var e) {

 String id = e.id;

 return Double.parseDouble(EQSolver.t.get(id));

 }

 public Object visit(Num e) {

 return new Double(e.n);

 }

}

52

2.2.5.3. Transformation of Nonlinear Equations into Linear Equations

The next step is to represent the derived functions in the form of a Jacobian matrix

and evaluate them, then the unknowns is represented as 𝑥𝑛vector and the functions is

represented in the another vector as 𝑓𝑛 as shown in the next page.

[

Ə𝑓1(𝑥1

𝑘,𝑥2
𝑘,…,𝑥𝑛

𝑘)

Ə𝑥1

Ə𝑓1(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥2
…

Ə𝑓1(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥𝑛

Ə𝑓2(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥1

Ə𝑓2(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥2
…

Ə𝑓2(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥𝑛
.
. . .
Ə𝑓𝑛(𝑥1

𝑘,𝑥2
𝑘,…,𝑥𝑛

𝑘)

Ə𝑥1

Ə𝑓𝑛(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥2
…

Ə𝑓𝑛(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥𝑛]

.

[

 𝛥𝑥1

𝑘

𝛥𝑥2
𝑘

.

.

.
 𝛥𝑥𝑛

𝑘]

 = −

[

Ə𝑓1(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

Ə𝑥

Ə𝑓2(𝑥1
𝑘,𝑥2

𝑘,…,𝑥𝑛
𝑘)

...

Ə𝑓𝑛(𝑥1

𝑘,𝑥2
𝑘,…,𝑥𝑛

𝑘)

Ə𝑥]

In Newton Raphson method, nonlinear Equations is simplified as linear equations in

the form of a matrix as 𝐴𝑋 = 𝐵, where 𝐴 is the Jacobean matrix, 𝑋 is the unknown vector,

and 𝐵 is the functions vector. The linear equations in the form of matrix and their solution

is explained in the next section

2.2.5.4. Solving Linear Equations Using Cramer’s Rule

 Cramer's rule is used to solve a system of linear equations with 𝑛 unknowns, It uses

to find the solution by finding the determinants of the square coefficient matrix and it a

way to solve for just one variable at each time by replacing the corresponding column on

the left hand side by the variable vector of right hand side of the equations. This method is

valid whenever the system has a unique solution (𝐷 ≠ 0).The general form of 𝑛 linear

equations is defined as below:

First, we have to calculate the determinant of the coefficient matrix and it is

represented as 𝐷

https://eu3.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qE2Tmfuf%2BZGGOfZGA0Qmte1BXw2OuZFFf5iA%3D%3D&b=1
https://eu3.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qTxT6Orv%2BvGWSufA%3D%3D&b=1
https://eu3.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qawT6ZteqZX2ihfGE%2FSmtY4hPyhA%3D%3D&b=1

53

Second, we calculate the determinant of each column in the coefficient matrix

Finally, the solution of each unknown is computed as:

𝑥
𝑘=

𝐷𝑘
𝐷⁄

 Table 25. Solving linear equations using Cramer’s rule

public void cramers(double lhsEvaluation[][],double rhs[])

 {

 double temp[][] = new double[N][N];

 for(int i=0;i<N;i++) {

 for(int j=0;j<N;j++){

 for(int k=0;k<N;k++){

 if(k == i)

 temp[j][k] = (-1)*rhs[j];

 else

 temp[j][k] = lhsEvaluation[j][k];

 }

 }

deltaValues[i]=determinant(temp,N)/determinant(lhsEvaluation,N);

 String s = t2.get(i);

 solutionValues[i] = Double.parseDouble(t.get(s)) +

deltaValues[i];

 }

2.2.5.5. Newton-Raphson Iterations and Stopping Criteria

Comparing to other numerical methods, Newton-Raphson method is a faster to

converge to the solution (root point) with a condition that is a good initial guess near to the

root. Newton-Raphson method diverges away from the root if the initial guess is not a

good guess. When the initial guess is close enough to a simple root of the function then

54

Newton’s method is guaranteed to converge quadratically (the number of correct digits is

nearly doubled at each iteration).

Newton Raphson Method Iterations needs stopping criteria to terminate the iterations

for one of two results; better approximation (success) or the solution diverges for the root

point (failure). There are four stopping criteria as we mentioned in Section 1.3.3. In our

system, we used a stopping criteria to check if we meet a given condition (absolute error).

First, we compare the value of each 𝛥𝑥𝑛 with a given ℇ (absolute error), if all the

values of 𝛥𝑥𝑛 are less than the absolute error, then the iterations are terminated and the

final solutions are calculated. Sometimes, the given initial guess may not good enough to

converge to the root point and in other cases, recursive iterations may happen. To handle

the above and similar situations, we have used to check the iteration number (25

maximum). For example, More than 25 iterations, the iterations are terminated with failure.

 Table 26. Newton-Raphson stopping criteria

public static boolean controlDeltaValues() {

 for(int k = 0; k < N; k++){

 if (deltaValues[k] > errorValue)

 return false;

 }

 return true;

 }

2.2.5.6. Simplification

It may be necessary to simplify the expression during the intermediate steps of the

evaluation process or before the printing process. There is no a common definition of

simplicity for every situation, the simplification must be defined according to the

expression or problem.

The simplification is normally done by rewriting the rules. To this end, there are a lot

of things to consider and a lot of rules that need to be rewritten. In simplest terms,

simplification rules should be arranged to reduce the size of the expression or algebraic and

trigonometric transformations is applied to an expression as part of the evaluation process.

In our system, after derivation of mathematical functions, it may be necessary to

simplify the function expression. The reason for this is that the generated function after the

55

derivation process has some expressions necessary to simplify because the structure of the

function may contain a lot of data which is complicated and unnecessary and this makes

the readability of the related function less. To avoid possible problems, the derived

expression is subjected to simplification.

In this phase, some basic transformations for simplifications such as numerical,

distributive, associative, commutative transformations are performed. In the evaluation

process, some special cases needed to be simplified as shown in Table 27. Simplification

operations can be performed according to the syntax class of the node accessed by these

methods. More details about these transformations can be referenced in [17].

Example. Some cases that need to be simplified are showed below:

0 + 𝑎 → 𝑎

1 ∗ 𝑎 → 𝑎

0 − 𝑎 → −𝑎

𝑎 + (−1) → 𝑎 − 1

 2 + 𝑎 + 5 → 𝑎 + 7

 𝑎0→1

 𝑎1 → 𝑎

 Table 27. Simplification rules for some basic transformations

exp+ 0

+

exp 0

exp

Plus(exp,Num(0))

exp ∗ 0

*

exp 0

0

Times(exp, Num(0))

0
𝑒𝑥𝑝⁄

/

0 exp

0

Divide(Num(0), exp)

𝑒𝑥𝑝0

^

exp 0

1

Power(exp, Num(0),)

56

In our system, after derivation of mathematical functions, some function expressions

is simplified. The reason for this is that some expressions don’t need read from the AST to

calculate their values. As shown in Table 27, any number multiplied by zero is equal to

zero so we automatically simplify like these expressions to zero.

 Table 28. Simplification methods implementation

public class EquationSimplify implements Visitor {

 public Object visit(CompoundEquation equ){

 equ.eq1.accept(this);

 equ.eq2.accept(this);

 return null;

 }

 public Object visit(Plus e) {

 Exp a = (Exp)(e.a.accept(this));

 Exp b = (Exp)(e.b.accept(this));

 if (a instanceof Num && ((Num)a).n == 0.0)

 a = null;

 if (b instanceof Num && ((Num)b).n == 0.0)

 b = null;

 if (a == null && b == null)

 return new Num(0);

 if (a == null)

 return b;

 if (b == null)

 return a;

 return new Plus(a, b);

 }

 public Object visit(Sin e) {

 Exp a = (Exp)(e.a.accept(this));

 if (a instanceof Num && ((Num)a).n == 0.0)

 return new Num(0);

 return e;

 }...

57

2.2.5.7. Printing Solution Values and Intermediate Steps

One of the major goals of this work is to help students and users to show all

intermediate steps and final solution. During the calculations and evaluation process of

Newton-Raphson Method, all intermediate steps are stored in an Array list. For example,

derived functions are simplified and stored in the AST for speed up the evaluation process.

In the print process, print class looks up the derived functions from AST to print them as

shown in Table 29. Other intermediate solution steps are stored in Java arrays and update

in each iteration.

 Table 29. Print derived functions

public class EquationPrint implements Visitor {

 public Object visit(Equation equ){

 equ.accept(this);

 return null;

 }

 public Object visit(Times e) {

 String a;

 if (e.a instanceof Num && ((Num)(e.a)).n==-1)

 a = "-";

 else

 a = (String)(e.a.accept(this));

 String b = (String)(e.b.accept(this));

 if (e.a instanceof Plus || e.a instanceof Minus)

 a = "(" + a + ")";

 if (e.b instanceof Plus || e.b instanceof Minus)

 b = "(" + b + ")";

 Return new String (a + (a.equals ("-")? "" : "*") + b);

 }

 public Object visit(Sin e) {

 String a = (String)(e.a.accept(this));

 return new String("sin(" + a + ")");

 }

...

58

 After the final solution is obtained. All intermediate and final solution is presented

as shown in Table 30.

 Table 30. Print final solution values and intermediate steps

Public class EQSolver {

 public static void main(String[] args) {

...

 while(proceed){

 ...

 flag = controlDeltaValues();

 if(flag){

 for(int i=0;i<N;i++){

 System.out.println("FinalDelta("+ t2.get(i) + ")=" +

 deltaValues[i]);

 }

 System.out.println("all Deltavalue is less than the given

 absolute error ");

 for(int i=0;i<N;i++){

 System.out.println("Final solution value of("+ t2.get(i) +

 ")=" +solutionValues[i]);

 }

 proceed=false;

 }

 else {

 for(int i=0;i<N;i++){

 System.out.println("Delta("+ t2.get(i) + ")=" +

 deltaValues[i]);

 }

 System.out.println("all Deltavalue is not less than the given

 absolute error ");

...

3. APPLICATION OF THE METHODOLOGY

In this section, a sample application for the Newton-Raphson method is illustrated.

The functions to perform the root calculation and other Source data are entered in the

interface in the specified format. The Newton-Raphson numerical method is used to

calculate the root values of the respective function and display it in the interface.

3.1. Source Data Format

The format of the source data is illustrated the LL (1) Grammar Definition for

Nonlinear Equations in Table 17. First, in brackets, all initial values such as Newton-

Raphson initial guesses, and absolute error value are entered by the user. Second, the

nonlinear functions to calculate the root of the application are entered separated by semi

colon.

General structure of source data format is shown in Table 31:

 Table 31. Source data format

(𝑖𝑛𝑖𝑡𝑉𝑎𝑟1 = 𝑣𝑎𝑙𝑢𝑒, 𝑖𝑛𝑖𝑡𝑉𝑎𝑟2 = 𝑣𝑎𝑙𝑢𝑒,⋯ , 𝑖𝑛𝑖𝑡𝑉𝑎𝑟𝑛 = 𝑣𝑎𝑙𝑢𝑒);

𝑎𝑏𝑠𝐸𝑟𝑟𝑜𝑟𝑉𝑎𝑙𝑢𝑒;

𝑓1(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛,) = 0;

𝑓2(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛,) = 0;

𝑓3(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛,) = 0;

 …

𝑓𝑛(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛,) = 0

3.2. Step-by-Step Solving of a Given Nonlinear Equation Application

In this section, to illustrate the methodology of our system, we explain all

intermediate steps needed to solve a given nonlinear equations in Table 32.

60

 Table 32. Input source data of the application

 (𝑥0 = 0.6, 𝑦0 = 1.5);

0.08;

𝑓1(𝑥, 𝑦) = 𝑥2 + 𝑦 − 3 = 0;

𝑓2(𝑥, 𝑦) = 𝑦2 + 𝑥 − 5 = 0

The given input source data in Table 32, the initial Newton-Raphson guess of 𝑥0 and

𝑦0 is 0.6 and 1.5 respectively. The absolute error is 0.08. We have two given functions 𝑓1

and 𝑓2. Using Newton-Raphson iterations, we solve these equations to get a better

approximation to the roots of the given functions. First, the system analyzes the given input

source data format using the analysis phase, in case of no error is detected, the source data

is generated as AST. Secondly, the generated AST nodes (data or operator) is interpreted

using the interpretation phase. In this section, the methodology of the given application is

illustrated.

3.2.1. Analysis Phase of the Application

The given source data (nonlinear equations) in Table 32 undergoes lexical analysis

according to the JavaCC Token Declaration for the Application in Table 15. There is no

error in the format of the given input source data, therefore; the generated token sequence

the given input source data is given in Table 33.

Table 33. Token sequence of the given application source data

ID LPAREN ID COMMA ID RPAREN ASSIGN ID POWER NUM PLUS ID MINUS NUM

ASSIGN NUM <SEMI>

ID LPAREN ID COMMA ID RPAREN ASSIGN ID POWER NUM PLUS ID MINUS NUM

ASSIGN NUM

After the sequence of tokens is generated, the syntax analyser first task is to control

the token component combinations according to the LL (1) grammar defined in Table 17.

The given input source data structure is correct according to the defined LL (1) grammar.

61

The next task is to generate the AST of the given source data as illustrated in Table 34.

Hash table is used to store the information of the given initial values in the form of

(𝑣𝑎𝑟𝑁𝑎𝑚𝑒, 𝑣𝑎𝑟𝑉𝑎𝑙𝑢𝑒) so that in our application the hash table is stored as (𝑥 = 0.6, 𝑦 =

1.5). The last step of the analysis phase after the syntax analysis is the semantic analysis to

make type checking, scope resolution, and array-bound that we have used in the JavaCC

file.

 Table 34. The object tree for the input source data (nonlinear equations) in Table 32.

Eq(new CompundEq(

 new Function(

 new Minus(new Power(new Var(x),new Num(2)

), new Minus

 (new Var(y), new Num(3)))),

 new Function(new Minus(new Power(new Var(y),new Num(2)),

 new Minus(new Var(x), new Num(5))))

)

In the analysis phase, an intermediate representation object tree (AST) in Table 34

was created. The next interpreting phase, the AST nodes are interpreted using the

implemented Newton-Raphson algorithm. As we explained in Section 2.2.5. The

implemented Newton-Raphson undergoes the below steps and the output is shown in Table

35.

1) Calculate the partial derivative of the given function.

2) Evaluate the derived functions using the given initial guess values.

3) Represent (2) result in Jacobin matrix form.

4) Evaluate the original functions using the given initial values.

5) Convert the nonlinear equations into linear equations in the form of

𝐴𝑋 = 𝐵 where 𝐴 is the Jacobean matrix, 𝑋 is the unknowns vector, and 𝐵 is the

evaluated original functions.

6) Solve the linear equations using Cramer’s rule.

7) Control the stopping criteria, if it is met calculate the final solution else

go back step (2).

62

3.2.2. Interpretation Phase of the Application

In the interpretation phase, several operations are done according to the Newton-

Raphson steps illustrated in Section 3.2.1. The process starts with the partial differentiation

of the given function, then evaluating the derived function and to represent it in the

Jacobian matrix form, the normal functions are evaluated according to the initial guess

value, the process converts into linear equations in the form of 𝐴𝑋 = 𝐵 , we solve this

linear equations using Cramer’s rule and finally, Newton-Raphson iterations are carried out

until the stopping criteria is met with success finding the solution or failure with exceeding

the iteration number.

 Table 35. Newton-Raphson interpretation process of object tree in Table 34. (Iter. 1)

1) Partial Derivative of 𝑓1 𝑎𝑛𝑑 𝑓2 With Respect to 𝑥 2𝑥 1

With Respect to 𝑦 2𝑦 1

2) Evaluating Results in Step (1)

using initial values(0.6,1.5)

1.2 1

3 1

3) Evaluating 𝑓1 𝑎𝑛𝑑 𝑓2 -1.1400 and -2.15 respectively

4) Represent the result of (2) in

Jacobian matrix form.

[
1.2 1
1 3

]

5) Convert into 𝐴𝑋 = 𝐵

[
1.2 1
1 3

] . [
𝛥𝑥
𝛥𝑦

]= -[
−1.1400
−2.15

]

6) Solving the linear equations using

Cramer’s rule

D = 2.6, Dx = 1.27, Dy = 1.44

𝛥𝑥 = 𝐷𝑥
𝐷⁄ = 0.488

 𝛥𝑦 =
𝐷𝑦

𝐷⁄ = 0.554

7) Both 𝛥𝑥 and 𝛥𝑥 is greater than the

absolute error 0.08. Update initail

value and go (2)

x1 = 𝑥0 + 𝛥𝑥 =1.088

y1 = 𝑦0 + 𝛥𝑦 =2.054

63

 Table 36. Newton-Raphson interpretation process of object tree in Table 34. (Iter. 2)

1) Partial Derivative of

𝑓1 𝑎𝑛𝑑 𝑓2

With Respect to 𝑥 2𝑥 1

With Respect to 𝑦 2𝑦 1

2) Evaluating Results in Step

(1) using updated initial

values(1.088,2.054)

2.177 1

4.108 1

3) Evaluating 𝑓1 𝑎𝑛𝑑 𝑓2 0.239 and 0.307 respectively

4) Represent the result of (2) in

Jacobian matrix form.

[
1.2 1
1 3

]

5) Convert into 𝐴𝑋 = 𝐵

[
2.177 1

1 4.108
] . [

𝛥𝑥
𝛥𝑦

]= -[
0.239
0.307

]

6) Solving the linear equations

using Cramer’s rule

D = 7.94,

Dx = −0.673,

Dy = −0.429.

𝛥𝑥 = −0.085

 𝛥𝑦 = −0.054

7) Both 𝛥𝑥 and 𝛥𝑥 is less than

the absolute error 0.08. The

stopping criteria was met.

x2 = 𝑥1 + 𝛥𝑥 =1.003

y2 = 𝑦1 + 𝛥𝑦 =2.000

Where 𝐷 is the determinant of the coefficient matrix, 𝐷𝑥 and 𝐷𝑦 are the

determinants of the unknowns vectors of 𝑥 𝑎𝑛𝑑 𝑦 respectively. The given application is

solved in two iterations using the implemented Newton-Raphson method. The final

solution is:

x2 = 𝑥1 + 𝛥𝑥 =1.003

y2 = 𝑦1 + 𝛥𝑦 =2.000

The exact root of the given functions are (1, 2), we can clearly see that Newton-

Raphson is a good method to solve nonlinear equations.

We have developed an interface for simplification of the usage of the program.

It’s simple interface to use.

64

 Figure 21. Application Interface (1)

65

 Figure 22. Application Interface (2)

4. RESULTS AND DISCUSSIONS

Our work can produce solutions for 𝑛𝑥𝑛 nonlinear equations, Although Newton-

Raphson method is the most useful method for finding function roots and it is the fastest

convergence method compared to other numerical methods with a condition of a good

initial guess values. Initial values near a root, the number of significant digits

approximately doubles with each step (converges on the root quadratically), there are some

situations need to discuss and solve.

The Newton-Raphson iteration may have a unique solution, no solution or infinite

solutions. In our system, we are using Cramer’s rule to solve the Newton-Raphson

iterations and this method is valid whenever there is a unique solution(𝐷 ≠ 0), When

(𝐷 = 0) means there is no a unique solution and there are two possible situations.

 The system may be inconsistent (no solution at all) if 𝐷 = 0 and at least

one of 𝐷𝑘 ≠ 0.

 The system may be dependent (an infinite solutions) if 𝐷 = 0 and all of

𝐷𝑘 = 0.

 In case of there is no unique solution, Cramer’s rule is not valid and other methods

can be used to solve the linear equations (infinite solutions) such as matrix row operations.

The Newton-Raphson iteration may sometimes go recursive solution or the solution

may diverge from the root points, in such cases, we defined maximum iteration number

(maximum iteration number = 25), the programs automatically terminate the iterations if

the program iterations exceed the defined maximum iterations.

In general, the features of the system developed are as follows:

 Nonlinear equations can be parsed.

 Performs step-by-step solution of a nonlinear system of equations by

applying Newton-Raphson Method.

 It can solve linear equations by applying Cramer’s Rule.

 It can calculate the derivatives of mathematical expressions.

 It can calculate the partial derivatives of mathematical expressions.

 It can evaluate mathematical functions.

 It can do mathematical simplifications.

67

 It can display mathematical expressions.

 It may be integrated into other projects as a framework.

Nonlinear equations are one of the most complicated subjects in science and

engineering. It’s very difficult to solve these equations by hand. As a result, symbolic

programming systems have contributed significantly to computer aided education as

well as providing considerable convenience in research because long and complicated

calculations can produce definite results. In this respect, it is obvious that the field of

usage will increase gradually.

 In our work, the implemented system is an example of a symbolic computation

work on the computer aided step-by-step solution of a system of nonlinear equations

using automatic code generation tools. For these reasons, our study has been

considered to contribute to further research and to the field of computer-aided

education.

As an example, we will solve a system of nonlinear equations as shown in Table

37 and Table 38.

 Table 37. Input data of example (2) of the application.

Input Data of Example (2)

(𝑥0 = 1.6, 𝑦0 = 3.5);

 0.01;

𝑓1(𝑥, 𝑦) = 𝑥2 + 𝑥 ∗ 𝑦 − 10 = 0;

𝑓2(𝑥, 𝑦) = 𝑦2 + 3 ∗ 𝑥 ∗ 𝑦^2 − 57 = 0

 Table 38. Solution of example (2) of the application

𝑥(𝑘) 𝑦(𝑘) 𝑥(𝑘+1) 𝑦(𝑘+1) |(𝑥(𝑘+1) − 𝑥(𝑘))| and|(𝑦(𝑘+1) − 𝑦(𝑘)) < ℇ ?

1.6 3.5 2.016 2.904 0.416 and 0.596 > ℇ

2.016 2.904 1.999 3.001 0.017 and 0.097 > ℇ

1.999 3.001 1.999 2.999 0.000 and 0.002 < ℇ

Where k is the number of iterations.

5. CONCLUSION

In this study, a hybrid symbolic-numeric approach for step-by-step solving of system

of nonlinear equations was implemented. Formal grammar rules of the related language

were determined by using JavaCC, which automatically generates code from Java

programming language, so that the developed application, numerical methods are

calculated symbolically. In the developed application, there are two main phases that the

system follows for finding the roots of nonlinear equations. First the analysis phase, a

grammar structure was prepared in the EBNF notation for expressions of mathematical

functions, and this structure was used to define according the JavaCC structure. The

analysis phase consists of lexical analysis, syntax analysis, and semantic analysis. Lexical

analysis is to read the source input as a stream of characters representing them as token

sequences according regular expression and JavaCC rules. The combinations of the token

sequence is controlled by the syntax structure according to the defined CFG. The syntax

analyser (parser) also generates an intermediate code representation. JavaCC parser was

generated the object tree (Abstract Syntax Tree). An object tree that can represent all the

mathematical expressions was generated with the aid of the CFG grammar. This object tree

consists of token structures (data or operator) that are understood by the defined grammar.

Using these node structures, the next phase of the system that is the interpretation phase is

performed operations such as partial derivation, simplification, printing expression, and

root computation operations.

In this work, we show how to solve system of nonlinear equations with all

intermediate steps using Newton-Raphson method with automatic code generation tools.

The Newton-Raphson method uses visitor design pattern technique to operate on the object

trees. The programming process of Newton-Raphson consists of various symbolic

programming activities such as partial derivation, function evaluations, nonlinear

transformations into linear equations, solving linear equations using Cramer’s rule,

generation of iteration solutions, and stopping criteria the iterations. An input mathematical

expression to be performed on the root calculation is first passed through several analysis

processes using the JavaCC tool, which generates automatic code in the Java programming

language according the predefined grammar rules, and is then each grammar rule is

69

Represented by syntax class in the form of object structures. All computations required by

the Newton-Raphson method for solving the problem are carried out through these object

structures.

Visitor Design pattern and interpreter methods are added into the syntax classes to

operate and evaluate the token node structures on the object tree. The visitor design pattern

simplifies to add new operations to the system without changing the other operations.

In our system, we have some issues need to be considered when solving nonlinear

system of equations. Nonlinear equations may have a unique solution, no solution or

infinite solutions. In our system, we are using Cramer’s rule to solve the Newton-Raphson

iterations and this method is valid whenever there is a unique solution (𝐷 ≠ 0), When

(𝐷 = 0) means there is no a unique solution and there are two possible situations.The first

possible situation is that the system may be inconsistent (no solution at all) if 𝐷 = 0 and at

least one of 𝐷𝑘 ≠ 0. The second possible situation is that the system may be dependent (an

infinite solutions) if 𝐷 = 0 and all of 𝐷𝑘 = 0. In case of there is no a unique solution,

Cramer’s rule is not valid and other methods can be used to solve the linear equations

(infinite solutions) such as matrix row operations. The Newton-Raphson iteration may

sometimes go recursive solution or the solution may diverge from the root points, in such

cases we defined maximum iteration number, the programs automatically terminates the

iterations if the program iterations exceeds the defined maximum iterations.

The developed interpreter can easily be extended to cover other numerical methods,

only describing the related iterative computation steps. On the other hand, integrating into

their own interactive development environments, researchers can input any system of non-

linear equations directly into the interpreter and get the approximating solution as an

output. Generally, many common and special purpose symbolic systems commonly used

today don’t show intermediate steps but show only the final result of the process. With our

system to help students and users, symbolic analysis processes of various nonlinear

equations systems, such as differential equations, function evaluations, solving of linear

equations can be realized in areas where all engineering and scientific calculations used in

mathematical operations are made. In addition, each calculation step leading to the solution

of the problem can be shown.

6. FUTURE WORKS

Other Numerical methods for step-by-step solving nonlinear equations can be

integrated to our system.

In our application, we have used Cramer’s rule to solve the linear equations but it can

solve only nonlinear equations with unique solutions. It can be implement matrix row

operations technique to find other possible solutions (no solution and infinity solution)

rather than unique solution.

.

7. REFERENCES

1. Papadimitriou, S., Scientific programming with Java classes supported with a

scripting interpreter, IET software, 1, 2 (2007) 48-56.

2. Monagan, M. B., Geddes, K. O., Heal, K. M., Labahn, G., Vorkoetter, S. M.,

McCarron, J., and DeMarco, P., Maple 10 Introductory (Advanced) Programming

Guide, Waterloo Maple, Waterloo, 2005.

3. Trott, M., The Mathematica guidebook for symbolics. Springer Science & Business

Media, 2007.

4. Guide, M.U.S., The mathworks. Inc., Natick, MA 5 (1998) 333.

5. Eaton, John W., GNU Octave Manual, Network Theory Limited., URL:

http://www. Octave. Org (2002).

6. Cohen, Joel S., Computer algebra and symbolic computation: Mathematical

methods. Universities Press, 2003.

7. Von Zur Gathen, J., and Gerhard, J. Modern computer algebra, Cambridge

University press, 2013.

8. Buchberger, B., Collins, G. E., and Loos, R., Computer algebra: symbolic and

algebraic computation, 1985.

9. Parr, T., and Fisher K., LL (*): The foundation of the ANTLR parser

generator, ACM SIGPLAN Notices, 46, 6 (2011) 425-436.

10. Gagnon, E., Menking, B., Nowostawski, M., Agbakpem, K. K., and Gergely, K.,

SableCC. An Object-Oriented Compiler Framework, Master of Science, School of

Computer Science, McGill University, Montreal, 2002.

11. Tao, K., Wang, W., and Palsberg, J., Java Tree Builder JTB, 2000.

12. Kodaganallur, V., Incorporating language processing into java applications: A

javacc tutorial, IEEE software, 21, 4 (2004) 70-77.

13. Berk, E., and Ananian, C.S., JLex: A lexical analyser generator for Java

(TM), Department of Computer Science, Princeton University. Version 1, 2005.

14. Gerwin, K., JFlex User’s Manual, (2005) 12-42.

15. Petković, I., and Herceg, Ð., Symbolic computation and computer graphics as tools

for developing and studying new root-finding methods, Applied Mathematics and

Computation, 295 (2017) 95-113.

72

16. Boyle, A., and Caviness, B.F., Future directions for research in symbolic

computation, Report of a Workshop on Symbolic and Algebraic Computation,

1990.

17. Milani, M., Design and Applications of Grammar-based Methodologies for

Automatic Generation and Step-by-step Solving of Mathematical Expressions,

Doctoral dissertion, Karadeniz Technical University, The graduate school of

Natural and applied science, Trabzon, 2015.

18. https://www.coursera.org/Coursea. 27 May 2017.

19. https://ntulearn.ntu.edu.sg/Edventure. 27 May 2017.

20. Singh, R., Gulwani, S., and Rajamani, S. K., Automatically generating algebra

problems, Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.

21. Rasila, A., Harjula, M., and Zenger, K., Automatic assessment of mathematics

exercises: Experiences and future prospects, ReflekTori 2007, (2007) 70-80.

22. Motzkin, T., The euclidean algorithm, Bull. Amer. Math Soc, 55, 12 (1949) 1142-

1146.

23. Berlekamp, E. R., Factoring polynomials over finite fields, Bell System Technical

Journal, 46, 8 (1967) 1853-1859.

24. Zassenhaus, H., On Hensel Factorization, I., Journal of Number Theory , 1,3(1969),

291-311.

25. Musser, D., Multivariate Polynomial Factorization, Journal of the ACM (JACM) ,

22,2 (1975), 291-308.

26. Wang, P. S., Automatic Computation of Limits, Proceedings of the Second ACM

Symposium on Symbolic and Algebraic Manipulation. Los Angeles, Mart 1971

Bildiriler Kitabı, 128-133.

27. Griesmer, J.H., Symbolic mathematical computation: a survey, ACM SIGSAM

Bulletin, 10, 2 (1976): 30-32.

28. Nolan, J.F., Analytical differentiation on a digital computer, Diss. Massachusetts

Institute of Technology, 1953.

29. Kahrimanian, H. G., Analytical Differentiation by a Digital Computer, MA Thesis,

Temple University, May 1953.

30. McCarthy, J., Recursive functions of symbolic expressions and their computation

by machine, Part I., Communications of the ACM, 3,4 (1960) 184-195.

73

31. Slagle, J.R., A heuristic program that solves symbolic integration problems in

freshman calculus, Journal of the ACM (JACM), 10, 4 (1963) 507-520.

32. Sammet, J.E., and Bond, E. R., Introduction to FORMAC, IEEE Transactions on

Electronic Computers, 4 (1964) 386-394.

33. Hearn, A.C., REDUCE: A user-oriented interactive system for algebraic

simplification, Symposium on Interactive Systems for Experimental Applied

Mathematics: Proceedings of the Association for Computing Machinery Inc.

Symposium. ACM, (1967), 79-90.

34. Martin, W. A., ands Fateman, R. J., The MACSYMA system, Proceedings of the

second ACM symposium on Symbolic and algebraic manipulation. ACM, (1971),

59-75.

35. Hearn, A.C., REDUCE 2: A system and language for algebraic manipulation,

Proceedings of the second ACM symposium on Symbolic and algebraic

manipulation ACM, (1971), 128-133.

36. Blair, F., Griesmar, J. H., and Jenks, R. D., SCRATCHPAD/1: An interactive

facility for symbolic mathematics, Proceedings of the second ACM symposium on

Symbolic and algebraic manipulation, Los Angeles, 1971.

37. Rich, A. D., and Stoutemyer, D. R., Capabilities of the muMATH-79 computer

algebra system for the INTEL-8080 microprocessor, Symbolic and Algebraic

Computation, Springer, Berlin, Heidelberg, (1979) 241-248.

38. http://maxima.sourceforge.net/SourceForge. 28-08-2017.

39. http://www.sagemath.org/SageMath. 28-08-2017.

40. http://www.axiom-developer.org/Axiom. 28-08-2017.

41. http://magma.maths.usyd.edu.au/magma/Magma. 28-08-2017.

42. https://www.mathworks.com/products/symbolic/ MATLAB28-08-2017.

43. http://cocoa.dima.unige.it/Cocoa. 28-08-2017.

44. http://home.bway.net/lewis/. Femat. 28-08-2017.

45. http://page.math.tu-berlin.de/~kant/kash. Kant/Kash. 28-08-2017

46. http://www.math.uiuc.edu/Macaulay2/Macaulay. 28-08-2017

47. Bauer, C., Frink, A., and Kreckel, R., Introduction to the GiNaC framework for

symbolic computation within the C++ programming language, Journal of Symbolic

Computation, 33, 1 (2002) 1-12.

74

48. Park, H., Symbolic computation and signal processing, Journal of Symbolic

Computation, 37, 2 (2004) 209-226.

49. Tekbaş, Y., Code Production Tools Using Automatic Calculation of Derivatives

and Simplification of Mathematical Expressions, Master thesis, Karadeniz

Technical University, The graduate school of Natural and applied science, Trabzon,

2013.

50. GÖKGÖZ, B., Design and Implementation of a General Interpreter for Numerical

Root Finding Methods Using symbolic Approaches, Master Thesis, Karadeniz

Technical University, The graduate school of Natural and applied science, Trabzon,

2016.

51. HASSAN, M.Y. and PEHLIVAN, H., Design and Implementation of a General

Interpreter for Automatic Generation and Step-by-Step solving of Nonlinear

System of Equations, International Symposium of mathematical methods in

engineering, April 2017 Ankara, Proceeding Book, 78.

52. Chun, C., and Neta, B., A third-order modification of Newton’s method for

multiple roots, Applied Mathematics and Computation, 211, 2 (2009) 474-479.

53. Li, S. G., Cheng, L. Z., and Neta, B., Some fourth-order nonlinear solvers with

closed formulae for multiple roots, Computers & Mathematics with Applications,

59,1 (2010) 126-135.

54. Shengguo, L., Xiangke, L., and Lizhi, C., A new fourth-order iterative method for

finding multiple roots of nonlinear equations, Applied Mathematics and

Computation, 215,3 (2009) 1288-1292.

55. Neta, B., and Johnson, A. N., High-order nonlinear solver for multiple

roots, Computers & Mathematics with Applications, 55, 9 (2008) 2012-2017.

56. Sharma, J. R., and Sharma, R., Modified Jarratt method for computing multiple

roots, Applied Mathematics and Computation, 217,2 (2010) 878-881.

57. Zhou, X., Chen, X., & Song, Y., Constructing higher-order methods for obtaining

the multiple roots of nonlinear equations, Journal of Computational and Applied

Mathematics, 235,14 (2011) 4199-4206.

58. Petković, I., and Herceg, Ð., Symbolic computation and computer graphics as tools

for developing and studying new root-finding methods, Applied Mathematics and

Computation, 295 (2017) 95-113.

59. Yun, Beong In. "A non-iterative method for solving non-linear equations." Applied

Mathematics and Computation 198, 2 (2008) 691-699.

60. Yun, B.I., Transformation methods for finding multiple roots of nonlinear

equations, Applied Mathematics and Computation, 217, 2 (2010) 599-606.

75

61. Neta, B., and Changbum C., On a family of Laguerre methods to find multiple

roots of nonlinear equations, Applied Mathematics and Computation, 219,23

(2013) 10987-11004.

62. Li, S. G., Cheng, L. Z., and Neta, B., Some fourth-order nonlinear solvers with

closed formulae for multiple roots, Computers & Mathematics with Applications,

59,1 (2010) 126-135.

63. Gallopoulos, E., Elias H., and John R. R., Computer as thinker/doer: Problem-

solving environments for computational science, IEEE Computational Science and

Engineering, 1, 2 (1994) 11-23.

64. Boeing, G., Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals,

Self-Similarity and the Limits of Prediction, Systems, 4, 4 (2016) 37.

65. https://en.wikipedia.org/wiki/Interprete. 31 May 2017.

66. Aho, A.V., Ravi S., and Jeffrey D.U., Compilers, Principles, Techniques. Boston:

Addison Wesley, 1986.

67. Mogensen, T.Æ., Basics of compiler design, Torben Ægidius Mogensen, 2009.

68. Earley, J., An efficient context-free parsing algorithm, Communications of the

ACM, 13, 2 (1970) 94-102.

69. Chomsky, N., Three models for the description of language, IRE Transactions on

information theory, 2, 3 (1956: 113-124.

70. Appel, Modern Compiler Implementation in Java, Cambridge University Press,

Revised Edition, New Delhi, 2007.

71. https://www.tutorialspoint.com/compiler_design. Parser types. 31 May 2017.

72. Dick, G., and Ceriel, H., Parsing techniques, a practical guide, Technical Report,

Tech. Rep, 1990.

73. Gamma E., Helm, R., Johnson, R. and Vlissides, J., Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley, 1995.

74. Hudson, S., Flannery, F., Ananian, S., Wang, D., and Appel, A., JavaCup User’s

Manual, 1998.

75. Johnson, S.C., Yacc: Yet another compiler-compiler. Vol. 32, Murray Hill, NJ: Bell

Laboratories, 1975.

76. Aaby, A.A., Compiler construction using flex and bison, Walla Walla College,

2003.

CURRICULUM VIATE

Mohamed Yusuf HASSAN was born in Mogadishu in December 1989. He graduated

from Jabir Bin Hayan Primary and Secondary School, Mogadishu, Somalia in 2008. He got

his B.Sc. from the computer science department at Hadhramout University of Science and

technology, Mukalla, Yemen in 2013. He knows Arabic, English, and Turkish languages

well.

