
 III

 III

ACKNOWLEDGEMENT

This thesis was submitted to the Karadeniz Technical University, Institute of Science,

as the final part of my computer engineering master's program and it was carried out between

September 2017 and December 2019. Moreover, it accounts for 30 ECTs towards the

completion of my MSc. in Engineering.

In view of this thesis, an uncommon dispersed cache solution was proposed to reduce

the IoT traffic impact on the Internet backbone. In this solution, the generated data is

processed and stored within the IoT network securely via a distributed storage solution. This

solution utilizes the properties of Maximum Distance Separable codes (MDS) to create an

agreement between the network bandwidth and storage area. This solution will enable

storing the sensor data at the network edge trying to tackle the scalability challenges imposed

on the Internet by billions of IoT devices. In this study, low power wireless device networks

are partitioned into disjoint cliques with minimum overlap to reliably store the generated

sensor data within these disjoint cliques in a distributed manner. Furthermore, the proposed

wireless storage solution creates optimal clique coverage to boost the accuracies of the

caching system.

Above all else, I might want to communicate my sincere thanks toward my regarded

thesis advisor, Asst. Prof. Dr. Sedat GÖRMÜŞ, for insightful conversations and

observations, as well as constructive feedback and recommendations during the process of

this thesis. This thesis would never have come into being without his help.

I might want to give my most profound gratitude to my family for all the sacrifices

they have made for me and their endless support. I might likewise want to thank my friends

which, throughout my studies, they provide me so much support, faith and confidence.

Thank you very much

Mustafa NAJMULDEEN

Trabzon 2020

 IV

DECLARATION

This is to proclaim that the research work in this proposition entitled “Distributed

Caching for Wireless IoT" is a record of a credible examination work done by me, Mustafa

NAJMULDEEN. Neither this thesis nor any part of it has been acknowledged to any other

Institute or University for the honor of any degree or certificate, except where due reference

acknowledgement has been given in the text. This thesis is defended in 21/08/2020.

Mustafa NAJMULDEEN

 V

CONTENT

Page Numbers

ACKNOWLEDGEMENT ... III

DECLARATION ... IV

CONTENT .. V

SUMMARY .. VII

ÖZET .. VIII

LIST OF FIGURES ... IX

LIST OF TABLES .. X

ABBREVIATIONS ... IX

1. INTRODUCTION .. 1

1.1. Internet of Things .. 1

1.1.1. Internet of Things generic structure ... 2

1.1.2. Internet of Thongs Application .. 3

1.1.3. Network of Wireless Sensors ... 4

1.1.3.1. WSN Hardware Component .. 5

1.1.3.2. WSN Architecture ... 6

1.2. Internet of Thing Protocols .. 7

1.2.1. Constrained Application Layer Protocol (CoAP) .. 9

1.2.2. Message Queuing Telemetry Transport (MQTT) 11

1.2.3. IPv6 over Low power Wireless Personal Area Network (6LoWPAN) 12

1.2.4. Routing Protocol for Low-Power and Lossy Networks (RPL) 13

1.2.5. IEEE 802.15.4 .. 15

1.3. Distributed Storage System ... 16

1.3.1. Replication Distributed Storage System .. 17

 VI

1.3.1.1. Passive and Active Replication Techniques .. 18

1.3.1.2. Static and Dynamic Replication Systems .. 18

1.3.2. Coded Distributed Storage System .. 18

1.3.2.1. Regenerating Codes ... 19

1.3.2.2. Types of repair ... 20

1.3.2.3. Maximum Distance Separable Code ... 20

1.4. Network Partitioning ... 21

1.5. Thesis Motivation and Goal ... 22

2. LITERATURE ANALYSIS ... 24

3. PRPOSED MODEL AND RESULT OVERVIEW 25

4. CONCLUSIONS AND FUTURE WORKS ... 38

5. REFERENCES ... 39

CURRICULUM VITAE

 VII

Master Thesis

SUMMARY
Distributed Caching for Wireless IoT

Mustafa NAJMULDEEN

Karadeniz Technical University
The Graduate School of Natural and Applied Sciences

Computer Engineering Graduate Program
Supervisor: Asst. Prof. Dr. Sedat GÖRMÜŞ

2020, 37 Pages

The future Internet will be connecting billions of low power embedded devices. This

globally connected network of small embedded devices is thought to be generating most of

the traffic carried over the future Internet backbone. This new Internet containing billions of

small embedded devices are the Internet of Things (IoT). Furthermore, significant portion

of the information data generated by the IoT networks will need to be stored in data centers

contributing to the scalability issues already affecting the Internet. New and novel solutions

need to be created to prevent this data explosion's impact on the Internet infrastructure.

In view of this thesis, an uncommon dispersed cache solution was proposed to reduce

the impact of the IoT traffic on the Internet backbone. In this solution, the generated data is

processed and stored within the IoT network securely via a distributed storage solution. This

solution utilizes the properties of Maximum Distance Separable codes (MDS) to create an

agreement between the network bandwidth and storage area. This solution will enable

storing the sensor data at the network edge trying to tackle the scalability challenges imposed

on the Internet by billions of IoT devices. In this study, low power wireless device networks

are partitioned into disjoint cliques with minimum overlap to reliably store the generated

sensor data within these disjoint cliques in a distributed manner. Furthermore, the proposed

wireless storage solution creates optimal clique coverage to boost the accuracies of the

caching system.

Key Words: Internet of Things, MDS Codes, Distributed Storage, Cliques and RPL

 VIII

Yüksek Lisans Tezi

ÖZET
Kablosuz IoT için Dağıtılmış Önbellekleme

Mustafa NAJMULDEEN

Karadeniz Teknik Üniversitesi
Fen Bilimleri Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı
Danışman: Dr. Öğr. Üyesi Sedat GÖRMÜŞ

2020, 37 Sayfa

Gelecekte Milyonlarca düşük enerjili gömülü aygıtlar internet ağına bağlanacaktır.

Yeni global olan bu ağ ve buna bağlanan çok sayıdaki küçük aygıtlar sınırsız olarak veri

oluşturacağı düşünülmektedir. Söz konusu olan bu yeni bağlantı şebekesine Nesneler

İnterneti (IoT) adı verilmiştir. Nitekim Nesneler İnterneti adını taşıyan bu yeni ağlardan

üretilen bu sınırsız verileri, veri merkezlerinde saklanması gerekecektir. Ancak yaşanacak

olan veri patlaması internetin trafiğine olumsuz etkileyerek yoğunluğa sebep olacaktır. Söz

konusu olan bu olumsuz etkinin yol açacağı problemleri ortadan kaldırılmasına yönelik

çözümler üretilmesi gerekir.

Bu çalışmada, IoT’nin yol açtığı yoğun trafiğinin internet üzerindeki olan olumsuz

etkinin giderilmesi için yeni dağıtılmış bir depolama çözümü önerilmiştir. Bu çözümde,

üretilen veriler IoT ağı içinde dağıtılmış depolama yöntem ile güvenli bir şekilde saklanır ve

işlenecektir. Nitekim söz konusu olan bu çözümün asıl dayandığı temel, depolama alanı ile

iletişim bant genişliği arasında denge oluşturmak suretiyle maksimum mesafe ayrılabilir

özelliklerine sahip kodlardır. Çalışmada önerilen bu çözüm, milyarlarca IoT aygıtı

tarafından internete getirilen ölçeklenebilirlik zorluklarının üstesinden gelmeye çalışırken,

sensör verilerinin ağ kenarında depolanmasını sağlayacaktır. Bu çalışmada, düşük güçlü

kablosuz aygıt ağları, üretilen sensör verilerini bu ayrık kliklerin içinde dağıtılmış bir şekilde

güvenilir olarak saklamak için minimum örtüşme ile ayrık kliklere bölünmüştür. Ayrıca,

önerilen kablosuz depolama çözümü, depolama sisteminin güvenilirliğini artırmak için en

uygun klik kapsama alanını bu çalışmada oluşturulmuştur.

Anahtar Kelimeler: Nesnelerin İnterneti, MDS Kodları, Dağıtılmış Depolama, klikler ve

RPL

 IX

LIST OF FIGURES

Page Numbers

Figure 1. Generic IoT networks stack structure .. 2

Figure 2. Wireless sensor component [13] .. 5

Figure 3. Architecture of WSNs [6] .. 6

Figure 4. Internet of Things protocols [20] ... 8

Figure 5. The functionality of the CoAP protocol [20] ... 9

Figure 6. Types of the CoAP message [20] .. 10

Figure 7. CoAP message format [20] .. 10

Figure 8. Publisher and subscribe process in the MQTT .. 11

Figure 9. Types of the 6LoWPAN header [20] ... 12

Figure 10. DODAG topology for all types of communication [32] 13

Figure 11. RPL messages [33] .. 14

Figure 12. Non-storing mode and storing mode for the routing protocol [34] 15

Figure 13. Topologies of IEEE 802.15.4 [20] ... 16

Figure 14. Active and passive replication techniques [39] ... 17

Figure 15. Structure of regenerating codes. a) Data reconstruction. b) Repair of a collapsed

node [45] .. 19

Figure 16. Type of the array codes: (a) Vertical codes and (b) Horizontal codes. 21

Figure 17. Cluster architecture .. 22

Figure 18. The implementation of the system model [65] .. 25

Figure 19. MDS coding [64]. .. 29

Figure 20. Percentage of the uncovered node for three different clique configurations 36

Figure 21. Percentage of the overlapped node for three different clique configurations 37

 X

LIST OF TABLES

Page Numbers

Table 1. Experimental results for 20 nodes, 𝑛 = 4 and 𝑟 = 2 for 100m × 100m network 32

Table 2. Simulation times ... 33

Table 3. Results for 1000m × 1000m network .. 34

Table 4. Average results for 1000m x 1000m three different networks 34

ABBREVIATIONS

IoT Internet of Things

RFID Radio-Frequency Identification

OSI Open Systems Interconnection

WSN Wireless Sensor Network

ADC Analog-to-Digital Converter

MAC Media Access Control

IEEE Institute of Electrical and Electronic Engineers

IETF Internet Engineering Task Force

W3C World Wide Web Consortium

ETSI European Telecommunications Standards Institute

CoAP Constrained Application Layer Protocol

DDS Data Distribution Service

MQTT Message Queue Telemetry Transport

XMPP Extensible Messaging and Presence Protocol

AMQP Advanced Message Queuing Protocol

IPv6 Internet Protocol version 6

6LoWPAN IPv6 over Low power Wireless Personal Area Network

TSCH Time Slotted Channel Hopping

6TiSCH IPv6 over the TSCH mode

RPL Routing Protocol for Low-Power and Lossy Networks

CORPL Cognitive Routing Protocol for Low-Power and Lossy Networks

CARP Channel-Aware Routing Protocol

EPCglobal Electronic Product Code global

LTE-A Long-Term Evolution-Advanced

HTTP HyperText Transfer Protocol

REST Representational State Transfer

UDP User Datagram Protocol

TCP Transmission Control Protocol

CON Confirmable

NON Non-Confirmable

RoLL Routing over Low-power and Lossy networks

LLN Low-power and Lossy Networks

DODAG Destination-Oriented Directed Acyclic Graphs

LBR Low-power and Lossy Networks Border Router

DIO DODAG Information Object (DIS)

DIS DODAG Information Solicitation

DAO Destination Advertisement Object

ACK Acknowledgment

MOP Modes of Operation

LR-WPAN Low Rate Wireless Private Area Networks

PHY Physical

DSSS Direct Sequence Spread Spectrum

CSMA/CA Carrier-Sense Multiple Access / Collision Avoidance

FFD Full Function Device

RFD Reduced Function Device

PAN Personal Area Network

DSS Distributed Storage System

GFS Google File System

MOE Multi-objective Evolutionary

MORM Multi-objective Optimized Replication Management

MDS Maximum Distance Separable

DC Data Collector

CH Clique Head

DEC Decentralized Erasure Codes

FSPL Free Space Path Loss

SNR Signal to Noise Ratio

gcd Greatest Common Divisor

GF Galois Field

BF Brute-Force

1. INTRODUCTION

1.1. Internet of Things

Nowadays, Internet of Things (IoT) networks plays an essential role in human life.

Over the most recent few years, the Internet of Things term has turned out to be a hot research

subject in network fields. IoT networks consists of a globally connected network where

sending and receiving data over the Internet is possible without needing any person to person

or person to computer interaction [1]. There are two terms for the Internet of Things. The

“Internet” term refers to a network oriented manner, while “Things” term refers to the object

oriented manner.

The first IoT machine was made in the mid-1980s 1980s. Several programmers created

this device at Carnegie Mellon University [2]. The device used to report the machine's

contents through the network [3]. The first explanation of the IoT is credited to The Auto-

ID Labs [4], which is a massive network of research centers that deal with networked RFID

and sensing automation. The Auto-ID Labs in 1999 mentioned, for the first time, the IoT

term. Their concept is about the object-oriented approach, and that object is a simple Radio-

Frequency Identification (RFID) tag.

The main components of the IoT systems are the sensors, communication interfaces,

data analyzing algorithms and the user interface respectively [5], [6]. Sensor device in the

IoT networks gather the data from the environment that surround the sensors. Examples of

the collected data can be room temperature or live video. In IoT networks, the aggregated

data from the sensors are carried to the servers over a backbone communication

infrastructure. Different communications mediums are used to deliver the aggregated data

to the central network, generally placed in the Internet Cloud. Choosing the best medium,

taking the trade-off between power consumption and bandwidth into account, is a

momentous decision for such IoT network. The aggregated data are analyzed to define and

reduce meaningful information from it, which may be transformed and displayed in a user

interface (UI) so the client can cooperate with it. At times, the data from sensors are analyzed

locally instead of analyzing it in the server, which may be necessary for scenarios with

limited backhaul connectivity.

Many applications may take advantage of IoT networks. Establishing a connection

between devices, observing the environment for a superior personal satisfaction, and saving

2

time and money by automating several aspects of both industry and commerce are some of

these advantages.

Shortly, the IoT networks are estimated to include billions of network nodes all around

the world. This exponential increase in the deployed IoT devices will be responsible for a

significant portion of the future Internet traffic. Therefore, the large amount of data from

these deployments need to be accommodated with minimal impact on the future Internet

infrastructure. Complexity, privacy, and safety are additionally the challenges that should be

addressed for making the IoT networks a reality.

1.1.1. Internet of Things generic structure

There is a generic architecture for the IoT networks. This generic architecture is

classified into four layers: application layer, middleware layer, network layer and device

layer respectively. IoT layers architecture are formed in a manner that can match the need

for different application areas [7]. Figure 1 shows the generic architecture for the IoT

network. The four layers are described below:

 Figure 1. Generic IoT networks stack structure

Device layer: This layer is the principal level in generic IoT structure, representing the

OSI model’s physical layer [8]. There are various sorts of sensor nodes, such as Zigbee and

RFID Infrared. Device layer is responsible for gathering the data (i.e., information) for the

Device

Network

Middleware

Application
Layer

Middleware
Layer

Network
Layer

Device
Layer

Application

3

sensor nodes. This information can be humidity, wind speed, temperature and dust

percentage in the air. The information of this layer is moved upward to the second layer.

Network layer: This layer takes a vital responsibility in the IoT network architecture

[8]. It is in charge of deciding the route the data information to the upper layer [9].

Middleware layer: This layer is lays down between second layer and last layer. It plays

as an interface between the network and application layers. It runs in bidirectional mode [9].

The middleware layer has many functions; the main two functions are service management

and storing the collected information from the device layer into a database [8]. This layer is

capable to recover and compute the data information.

Application layer: This layer is the last layer of the IoT structure, and its task is act as

a user-interface between the client and the IoT network.

1.1.2. Internet of Thongs Application

The IoT networks an enormous number of utilizations in different scenarios. These

enormous number of utilizations can be used in the public and the private sectors. These

applications can be ranged from consumer IoT to industrial IoT networks. IoT applications

can be classified into four main domains. These domains are transportation domain,

healthcare domain, smart domain and social and personal domain [1]. These four domains

are described below:

Transportation domain: Modern vehicles like cars, buses, trains and also bicycles

comes with many sensors and processing units. The sensors in modern vehicles are used to

collect critical information about the vehicle itself or even collect information about the

vehicles surrounding environment. Besides the vehicles, roads are also instrumented with

sensors and tags. Sensing the pressure level of the tire and collision avoidance systems are

simple examples of the transportation domain.

Healthcare domain: The IoT systems provide many benefits for this domain. The

healthcare domain applications can be classified into automatically sensing and collecting

vital data for patients, tracking of the patient's status, identification, and authentications.

Patients surveillance is the most straightforward application if IoT technology.

Smart domain: This domain can be partitioned further into subdomains. These

subdomains are the smart animal farming, smart agriculture, smart metering and smart

environment [10]. In the smart domain, the IoT systems can provide many applications to

protect the environment and make it better. For example, IoT solution can define alert zone

4

by monitoring the burning gases, control the factories CO2 release, detect the earthquake

early, monitor the level of water, oil, and gas in storage tanks, increase the production quality

of the fruits and vegetables and also IoT solution can track the location of the animal.

Social and personal domain: The applications offered by the IoT networks for this

domain can help a person to get in touch with other people for building social relationships

[11]. The most straightforward application for the domain is locating lost objects and

updating the social status information in the social networks.

1.1.3. Network of Wireless Sensors

IoT networks can only be formed by connecting objects to each other to retrieve

information about the environment. Many types of devices are used to make this vision

reality. Sensors play a vital role in many IoT applications. These sensors must have a

communication interface to hand over the sensed information data to the network through a

medium wirelessly. Wireless Sensor Networks (WSNs) provide the necessary interface for

all the "Things" to be an IoT device. Wireless Sensor Networks might be described as a

group of devices in the network that can deliver the data through wireless connections [12].

WSNs are made out of devices with information processing, data sensing and

communicating components [13]. WSNs might have various sorts of sensors, for example,

infrared, radar, seismic and thermal. These different types of these sensors can keep an eye

on various kinds of environmental data like temperatures, pressure, noise levels and

humidity [14]. WSNs it tends to be utilized in numerous application territories, for example,

military, environment, health care and home area networks.

The collaborations between countless devices are the main idea behind the network of

sensors. In WSNs, the essential restriction of sensor devices is the low power consumption

necessity. In a dense deployment scenario, connecting the devices to a central sink node

directly over a single hop can consume more power than the multi-hop communication. The

modern WSNs radio layer is mostly dependent on the standard IEEE 802.15.4. Furthermore,

this standard supports multi-hop networking to enable low power WSNs.

 Many factors should be considered to design a sensor network. These factors that

should be carefully planned before deployment are network topology, power consumption,

working environment, fault tolerance and manufacturing cost [13]. Two of these elements

are quickly depicted below:

5

Fault tolerance: It is the wireless network’s ability for staying operational regardless

of whether one or more sensor fails. The fault-tolerance requirement relies on the WSNs

application, such as fault tolerance level for a sensor located inside a house is less than a

sensor located on the battlefield.

 Manufacturing cost: The expense of assembling sensing devices is an extremely

challenging issue. WSNs utilize an enormous number of wireless sensor devices, the sensors

deployed number could reach hundreds, thousands or even millions in an area. The cost of

these devices should be under a certain threshold to make the sensor network cost-justified

[13].

1.1.3.1. WSN Hardware Component

 Figure 2. Wireless sensor component [13]

The component of a wireless sensor relies upon the application type. The primary

wireless sensor contains four standard components. These are the sensing unit, processing

unit, transceiver unit, and power unit. In a few applications, these four parts increase to six

components. The other two units are location-finding systems and mobilizer units. Figure 2

shows component of a wireless sensor.

The first unit in the wireless sensor is the sensing unit. It is in general consist of two

subunits: analog to digital converters (ADCs) and sensors. The signals that sensed form the

sensors are analog signals and they have to be changed to digital signal by using (ADCs) to

pass the signal to the processing unit. The sensors are interfaced with other parts of the sensor

device via the processing unit. Inside this unit, a small cache space exists. Connecting the

6

sensor device to the network and carrying the sensed information to the central network are

done by the transceiver unit. An essential part of the wireless sensor is the power supply. In

some applications, the location finding system unit is used to inform the sensor devices about

the network routing and the sensing tasks. In different circumstances, the mobilizer unit is

utilized to change area of a sensor node when it is expected to accomplish the fundamental

tasks [15].

1.1.3.2. WSN Architecture

In Wireless Sensor Networks, the sensors devices can assemble the information from

the environment and send the information back to main server (i.e., sink) by taking advantage

of multi-hop communication architecture. Figure 3 shows the generic architecture for both

the sink and the sensors.

 Figure 3. Architecture of WSNs [6]

This architecture defines how the data can be collected and transmitted through the

communication medium and how the wireless sensor device should work to minimize its

power consumption. WSNs architecture mostly act in accordance with the OSI model [16].

In wireless sensor networks, the architecture is mainly made up by five layers and they are:

7

the application layer, the transport layer, the network layer, the data link layer and the

physical layer. Along with these layers, there are three cross layers of planes. These three

cross layers are the task management plane, the mobility management plane and the power

management plane [15]. The five layers of WSNs architecture are described below:

Physical layer: The first principal layer of the WSN architecture is liable for

transmitting or receiving the sequence of zeros and ones across communication medium,

frequency selection and data encryption are other responsibilities of the physical layer [16].

Datalink layer: the second layer of the WSN architecture is accountable for error

control, data frame detection and medium access control (MAC). Inside this layer, MAC

protocol is needed to reduce the collision with neighboring nodes since the wireless medium

is broadcast by nature and the environment of the wireless sensor device is noisy [15].

Network layer: The essential role of the third layer is routing the frames along a

selected route. In WSN, the network layer tries to find the reliable path that the data can be

transferred through using a fixed scale called metric [16], [17].

Transport layer: This layer is required when the information should convey to different

networks. The third layer is utilized to give both blockage avoidance and blockage detection

and ensure the delivery of the data.

Application layer: the application layer carry out as an interface between user and

sensors data [16]. In this layer, a different software application can produce for different

sensor network applications.

Task management plane, the mobility management plane and the power management

planes: These planes are used to raise the efficiency and the network reliability by managing

the protocol layers of the device and making them work with each other in collaboration to

optimize the sensor performance the desired goal.

1.2. Internet of Thing Protocols

In general, the protocols are a group of rules used for routing and addressing the data

packages [18]. In IoT networks, countless devices are relied upon to connect and understand

each other without taking the environment or application of the devices into account. A

standardized protocol is used to achieve communication between different devices to

understand each other [19]. Different numbers of organizations are established to provide

protocols for IoT networks. European Telecommunications Standards Institute (ETSI),

8

Internet Engineering Task Force (IETF), Institute of Electrical and Electronics Engineers

(IEEE) and World Wide Web Consortium (W3C) are examples for these organizations [20].

IoT systems can be classified into two protocols: application protocols and

infrastructure protocols. The application protocols consist of Extensible Messaging and

Presence Protocol (XMPP), HTTP RESET, Constrained Application Layer Protocol

(CoAP), Data Distribution Service (DDS), Advanced Message Queuing Protocol (AMQP)

and Message Queue Telemetry Transport (MQTT) [20].

The infrastructure protocols are the network protocols and device layer protocols.

These network protocols can be separated into two subdivisions, and they are encapsulation

and routing protocols [21]. IPv6 over the TSCH mode of IEEE 802.15.4e (6TiSCH) and

IPv6 over Low power Wireless Personal Area Network (6LoWPAN) protocols are

encapsulation protocol [22]. While the routing protocols in the network section are Channel-

Aware Routing Protocol (CARP), Cognitive Routing Protocol for Low-Power and Lossy

Networks (CORPL) and Routing Protocol for Low-Power and Lossy Networks (RPL) [21].

On the other hand, the protocols that exist in the device layer are Electronic Product Code

global (EPCglobal), IEEE 802.15.4 and Long-Term Evolution-Advanced (LTE-A).

 Figure 4. Internet of Things protocols [20]

 Figure 4 reveals the IoT protocols [20]. Constrained Application Layer Protocol

(CoAP), Message Queuing Telemetry Transport (MQTT), IPv6 over Low power Wireless

Personal Area Network (6LoWPAN), Routing Protocol for Low-Power and Lossy Networks

(RPL) and standard of IEEE 802.15.4 protocol are detailed in the upcoming sections.

9

1.2.1. Constrained Application Layer Protocol (CoAP)

 The CoAP protocol is one of the IoT network’s application protocols developed for

web transfer by the Internet Engineering Task Force (IETF) [23]. CoAP protocol is utilized

amongst a limited network like a constrained environment, such as WSN nodes. The CoAP

protocol is designed to make a version of the HTTP protocol to meet the Internet of Things

requirement for operating in the lossy and noisy environments and for supporting the low

power consumption [24]. This IoT network protocol rely upon REpresentational State

Transfer (REST) [20], and it supports basics of the HTTP protocol, such as to delete, put,

post and get methods. The REST method is a procedure used to ensure a secure, fault-tolerant

and scalable system. This protocol takes advantage of the User Datagram Protocol (UDP) to

create a secure communication between endpoints [25]. The UDP is beneficial for this

protocol because the UDP gives the ability to transmit the data to multiple endpoints while

it maintains the communication speed and low bandwidth usage. Fig. 5 illustrates the

functionality of the CoAP [20]

The CoAP protocol can be separated into two split layers. These layers are the message

and response/request layer. The message layer of the CoAP is in charge of controlling the

message transmissions between two endpoints. While the response/request layer tracks the

request and response codes to bypass issues like the arrival of the messages and lost or

duplicated messages. Both layers are also used to stop-or-wait retransmissions, duplicate

detection, and multicast support.

The message that transmits between two endpoints in the CoAP protocol can be four

types. The four types are a piggy-backed response, confirmable (CON), non-confirmable

Figure 5. The functionality of the CoAP protocol [20]

10

(NON) and separate response. CoAP protocol reliability is achieved by mixing both types

of confirmable and non-confirmable. In confirmable type, the user sends the message to the

cloud, and it waits the acknowledgment from the cloud. The non-confirmable type sends a

message without waiting for the acknowledgment from the server. The piggy-backed

response is when the user transmits the confirmable message to the cloud server, and the

server sends the acknowledgment with the response to user at exact time. While in the

separate response, the user transmits the confirmable type message to the server, and anyhow

the server was not available to acknowledge immediately; the server sends an empty

acknowledgment to the user. After some time, when the server is available to respond to the

user, it sends the response with a confirmable message to the user, and the user should send

back the acknowledgment. Each message in the CoAP has its ID and this is used to discover

the duplicate messages. Figure 6 showing the CoAP message types.

 Figure 6. Types of the CoAP message [20]

 Figure 7. CoAP message format [20]

Figure 7 illustrates the format of CoAP message [20]. The message size of the CoAP

can be ranged from 10 bytes to 20 bytes [23]. In the format of CoAP message, "OC" is

Option Count, "T" field is the type of the message and the "Ver" field is the version of the

CoAP.

11

1.2.2. Message Queuing Telemetry Transport (MQTT)

The MQTT protocol is an Internet of Things application protocol that is made-up by

Dr. Andy Stanford-Clark of IBM and Arlen Nipper of Arcom (Eurotech) in 1999, while in

2013 it was standardized at OASIS [26], [27]. This protocol is quite a simple type of

messaging protocol. It is designed for restricted IoT devices and high latency or unstable

networks. The preferred manner of this protocol is that it minimizes the bandwidth of the

network, so the device resource requirements and the power consumption are low. Broker

(server), the subscriber (user) and publisher (sensor) model are the base of the MQTT. The

sensor's (publisher's) task is to bring together the data and transmit the data information to

the user (subscriber) through the server (broker) [25]. The broker in the MQTT protocol is

not only used for sending the data between publisher and subscriber, but it also ensures the

security by examining the publisher and subscriber's authorization.

 Figure 8. Publisher and subscribe process in the MQTT

The publisher in MQTT has the ability to define the quality of the message. The

publisher can choose message quality by sending it with or without the confirmation and

with or without taking the duplicated message into account. MQTT protocol uses the TCP

protocol as a transport layer to deliver the message [28]. Figure 8 shows the publish and

subscribe process in the MQTT [20].

12

1.2.3. IPv6 over Low power Wireless Personal Area Network (6LoWPAN)

The Low power Wireless Personal Area Networks (LoWPANs) are IoT networks

which allow wireless connectivity for applications requiring low power consumption [29].

Low bandwidth, countless number of devices, low power consumption and low cost, Small

packet size and supporting many topologies are the LoWPANs characteristics. The

LoWPANs are based on the standard of IEEE 802.15.4 protocol, that it has 127 bytes of a

frame size [20]. A countless number of wireless nodes in LoWPANs presents the need for

ample address space, and IPv6 is the suitable candidate for this need [20]. The minimum

fragmentable IPv6 packets size is 1280 bytes, and it is not compatible with the IEEE

802.15.4 protocol frame size [30]. An adjustment layer is needed to make the sizeable IPv6

frame fit within the IEEE 802.15.4 frame. This adjustment layer is called IPv6 over Low

power Wireless Personal Area Network (6LoWPAN) standard [20].

In 2007, the IETF has developed the standard 6LoWPAN [20]. The fundamental

utilization of the 6LoWPAN is encapsulating the IPv6 frame into IEEE 802.15.4 frames.

This protocol is used to minimize the transmission overhead by maintaining the header

compression, and it also maintain both multi-hop delivery and the fragmentation to match

the small 127-byte packet in IEEE 802.15.4 protocol and multi-hop delivery.

 Figure 9. Types of the 6LoWPAN header [20]

The 6LoWPAN’s encapsulation method implements different dispatch codes. These

dispatch codes are represented by two bits and they are (00) NO 6LoWPAN, (01) Dispatch,

(10) Mesh Addressing and (11) Fragmentation. The header of (00) is used to discard the data

packet if it is not a 6LoWPAN frame. In (01) Dispatch header, the header of IPv6 is

13

compressed. The header of (10) allows the frames of the IEEE 802.15.4 protocol to be

delivered to the link-layer. The last header, (11), utilized when the IPv6 frame was not

capable to fit into the IEEE 802.15.4 standard frame. Figure 9 describes the 6LoWPAN

header types.

In 6LoWPAN, the greater part of the IPv6 overhead is detached in such a manner that

small frames of IPv6 can be transmited through a particular IEEE 802.15.4 frame [31], [20].

1.2.4. Routing Protocol for Low-Power and Lossy Networks (RPL)

The RPL protocol is a tree-based routing protocol which is commonly used in IoT

networks for routing between network devices [32]. This protocol is established and

standardized by the IETF Routing over Low-power and Lossy networks (RoLL) working

group. The primary function of the RPL is to hold up the requirement of minimal routing in

the Low-power and Lossy Networks (LLNs).

The RPL protocol supports all communication types, such as multipoint-to-point,

point-to-multipoint, and point-to-point. This protocol arranges the network topology in a

Destination-Oriented Directed Acyclic Graphs (DODAG). The DODAG graph is cited as a

directed acyclic graph that has a particular LLN Border Router (LBR), root or sink node.

Figure 10 shows the DODAG topology with all types of communication [32].

Routing metrics (link metrics) and node rank are used by the RPL to build up the

DODAG. In the RPL protocol, there are three main variety of messages. These are:

Destination Advertisement Object (DAO), DODAG Information Solicitation (DIS) and

DODAG Information Object (DIO). These messages contain vital information data, like

metrics and rank of the node.

Figure 10. DODAG topology for all types of communication [32]

14

The nodes initially create the DODAG in the RPL protocol. Thus, as the first thing,

the DIO message is transmitted by the sink (i.e. root) device to its neighbors [20]. The node

will receive the DIO message from the root node. Then it decides either it joins the DODAG

or not according to the link metric. If the network device sorts out to join the DODAG, it

computes its rank and rearranges the table of neighbor and selects the approved parent node

which this parent will be utilized to send the message to the root node. Regularly the node’s

parent is the lowest rank node. In case a new node enters the network, it transmits a DIS data

message to ask for the DIO data message from nodes that already part of the DODAG.

 Figure 11. RPL messages [33]

After the node that that already part of the DODAG or the new node receives the DIO

from its neighbors, it starts to transmit the DAO data message to request from the root or

node’s parent to join as a child node. If the root/parent accepts the node's DAO, it will

respond with the DOA-ACK message. Figure 11 illustrating RPL messages [33].

In the RPL protocol, there are two types of modes of operation (MOP) that can be

routing protocol (RPL) run on it [34]. These two types of modes are: non-storing mode and

storing mode. In the storing mode, the node has the capability to keep a complete routing

path for its sub DODAG nodes. When the MOP is storing mode, the node will forward the

received message to the target device, if the target node route is accessible in its routing

table. If the responsible node does not find the target node in its routing table, the message

will be forwarded to its parent.

In non-storing mode, the sink (i.e. root) node stores the information of the topology

for the entire DODAG. Root node makes use of DAO messages to collect this information.

It calculates the path to the target node according to the collected data, and it places this path

of the routing inside the message header and then forwards it to the next hop. Each node that

New Node Sink Node

DIS

DIO

DAO

DAO-ACK

15

located in the routing path will transmit the data message to the next hop according to the

routing path in the header until it is delivered.

Right now, The RPL protocol does not bolster a mixed-mode where some LLN device

is working in non-storing mode, and the other is working in storing mode. If all the LLN

devices are working in a non-storing mode in the network, they do not need to keep and

know the routing path about the DODAG. So, each message needs to be sent up to the root

to obtain the source path and then sent the data message down to the target node. Figure 12

shows the non-storing mode and storing mode for the routing protocol [34].

 Figure 12. Non-storing mode and storing mode for the routing protocol [34]

1.2.5. IEEE 802.15.4

The standard of IEEE 802.15.4 protocol is produced for the Low Rate Wireless Private

Area Networks (LR-WPAN) to specify the physical layer (PHY) and the Medium Access

Control (MAC) [35]. This protocol is the most frequently used protocol in IoT networks

because of its particulars, such as low cost, low power consumption, high message

throughput and low data rate.

IEEE 802.15.4 protocol supports different channel bands for the physical layer. It

utilizes a direct sequence spread spectrum (DSSS) approach in the PHY layer. According to

these different frequency channel bands, the physical layer can receive and transmit the data

at different rates: in 2.4 GHz frequency, the node can transfer data using 250 kbps data rate,

in 915 MHz frequency, the data rate is 40-kbps data rate. In 868 MHz frequency, a 20-kbps

data rate is typical [20]. Based on these different data rates and frequencies, the larger bands

and higher frequencies can provide higher throughput and low latency while lower

frequencies can produce the best sensitivity and it can cover broad areas. The IEEE 802.15.4

16

protocol uses the Carrier-Sense Multiple Access with Collision Avoidance (CSMA/CA)

approach in the MAC layer to reduce collisions in the network.

The IEEE 802.15.4 protocol bolsters two different categories of network devices (i.e.,

node). These devices are Reduced Function Device (RFD) and Full Function Device (FFD)

[34]. The FFD device has the ability to serve as the coordinator of Personal Area Network

(PAN). Moreover, RFD is a network device that does not have the capability of serving like

FFD.

The RFD device is created for uncomplicated applications such as a passive infrared

sensor or a light switch [34]. RFD sends limited amounts of information data, and it only

collaborates with a single FFD at a time. Fig. 13 shows the topologies of IEEE 802.15.4

[34].

1.3. Distributed Storage System

IoT network system is predicted to penetrate the Internet and increase the connected

small-scale gadgets to billions by the introduction of a new application. Many of these IoT

devices will be responsible for generating information such as patient's vital data. The

information generated by IoT devices (i.e., devices deployed in harsh environments) may be

lost before being sent to the central server. This risk can be reduced by utilizing a Distributed

Storage System (DSS) in IoT networks [36].

 Figure 13. Topologies of IEEE 802.15.4 [20]

17

The DSS is utilized in IoT Networks to store data belonging to a node in neighboring

nodes. This distribution method can be achieved by copying the node's data into different

node devices that located in the network.

The DSS also has ability to repair information data when an erasure happens. When

the node leaves the network or collapses, a new device node will be imported to network as

a newcomer and gets the data from the nodes that survive to regenerate the correct data

information and restore the failed device [37].

 The uncomplicated approach in distributed storage is replication. Besides the

replication method, network coding is also utilized in DSS.

1.3.1. Replication Distributed Storage System

In the last few years, data replication has become popular in many applications such

as the sensor networking, peer-to-peer networks, World Wide Web and ad-hoc [38]. This

method is used to generate various copies of the same data and store them at different sites.

The primary explanation behind utilizing information replication is to guarantee the high

accessibility of information and boost the scalability of the system [39]. In data replication,

there are two procedures: passive replication and active procedures used to replicate the data

[40]. Figure 14 shows these two procedures [39].

 Figure 14. Active and passive replication techniques [39]

Along with these two procedures, the information replication can be apportioned into

two basic systems: dynamic replication and static replication systems.

18

1.3.1.1. Passive and Active Replication Techniques

In the active replication technique, the operation requests are sent from the host to all

replicas in an arranged order. The operations execution of all replicas agrees to be the same

order by using some ordering protocol, such as Atomic Broadcast protocol. Then, every

single replica runs the operations separately and finally, the result of these operations reaches

a resulting state.

In the passive replication technique, the master replica is selected from the replication

group. The host sends the operation execution to the master replica. The resulting state of

the operation execution of the master replica will be sent to all other replicas that exist in the

replication group. The bandwidth utilization is predicted to be much higher for this technique

when the capacity of the resulting state is considerable.

1.3.1.2. Static and Dynamic Replication Systems

In the static replication mechanism, the host number and the copies (i.e., replicas)

number are prearranged and well defined. This Static replication mechanism is easy to

execute, however it is not frequently used because it is not flexible [41]. Google File System

(GFS), MinCopysets, Multi objective Optimized Replication Management (MORM) and

Multi-objective Evolutionary (MOE) are examples of static replication mechanism.

In the dynamic replication mechanism, the data replication will automatically generate

and eliminate the replicas. The replica generation and elimination can be done according to

the storage capacity, bandwidth and changes in the user entry pattern [41]. This mechanism

makes its choices intelligently by taking advantage of the current environment information.

There are some disadvantages, such as collecting the information of nodes in a complex

infrastructure. Dynamic replication mechanism has some phases: creating and analyzing the

connection between the system accessibility and the replicas number

1.3.2. Coded Distributed Storage System

In the distributed storage, the replication method is used for replicating the data to

prevent data losses. Nevertheless, this replication is an unsophisticated method with low

19

performance. The coded distributed storage system is introduced to enhance the system's

execution and to boost the throughput of entire system with less storage space [37]. In the

coded distributed storage system, instead of storing a data 𝑀 on each node, the data 𝑀 is

encoded into 𝑚 blocks, size of each one 𝑀/𝑚, such that the data 𝑀 be able to regenerated

from all set of 𝑘 blocks [42]. One of the well-known technologies of the coded distributed

storage is the erasure codes such as maximum distance separable (MDS) [43], [44].

The erasure codes need less storage space if it is compared with simple replication in

terms of storage. On the other hand, both erasure codes and the simple replication method

requires the same repair bandwidth to repair the failed nodes [37].

In order to minimize the repair bandwidth used in the erasure code to regenerate the

lost data, regenerating codes are proposed.

1.3.2.1. Regenerating Codes

In the MDS erasure codes, when a node fails in the system, the newcomer network

device needs to collect entire data information files from all other surviving nodes to recreate

the missing data. The repair bandwidth will be equal to the total data file size that collected

by the newcomer node.

Figure 15. Structure of regenerating codes. a) Data reconstruction. b) Repair of a collapsed
node [45]

20

 Regenerating codes are proposed by Dimkis et al. to reduce this wasteful repair bandwidth

[41]. The central concept of regenerating codes is the information flow graph. Figure 15

illustrates the setup of the regenerating code [45].

In the regenerating codes, all 𝑛 nodes that exist in the network transmits their

information to the data collector (𝐷𝐶). When any of these nodes fails, the newcomer node

will collect the failed node’s data b form survived node 𝑑 to regenerate the lost data.

The information flow graph in the regenerating codes is utilized to evaluate the

information from the 𝑆 source data to the 𝐷𝐶 data collector. Single-source, data collectors

and storage nodes are three categories of vertices that exists in the information flow graph.

The source 𝑆 stands for the node where the data initially generated.

1.3.2.2. Types of repair

In the distributed storage, the failed node’s data information should get through the

repair process to regenerate and store it in the newcomer node that will take the place of the

failed one. There are many types of repair process used in the distributed storage system.

These various types are exact repair of the systematic part, functional repair and exact repair

[44]. In exact repair, the newcomer network device would produce the failed node's

information without any change. In functional repair, the replacement node can generate the

lost data in a functional way, in which the generated data may have different data as

compared to the lost data. Exact repair of the systematic part is a combination type from

functional and exact repair type.

1.3.2.3. Maximum Distance Separable Code

The code of Maximum Distance Separable (MDS) is one of the critical classes in error

correcting codes that satisfy the Singleton bound. The MDS codes are established over a

Finite field or Galois field 𝐺𝐹 [46]. The MDS codes are the conspicuous erasure codes

used in network coding, and the famous code for the MDS is the Reed-Solomon codes [47].

The main job of the MDS code is to recover the lost information. So, to recover the lost

information, the MDS codes will add some redundancy to the network. The MDS array

codes are used to achieve this recovery. This array code is a two-dimensional array, and each

column of this array represents the nodes inside the network. The array code will be

21

responsible for deciding how the redundancy should be kept in the network. There are two

types of array codes that can be used in MDS code. These types are horizontal array code

and vertical array code [48]. In the vertical array code, both data and parity (i.e., redundancy)

are kept in the same node 𝑛. While in the horizontal code, both data and parity kept in

different nodes 𝑛. Figure 16 shows the type of array codes, where the nodes that located

inside the network is referred as 𝑛, 𝑚 and 𝑝 are data of the node and parity (i.e., redundancy)

respectively [47].

 Figure 16. Type of the array codes: (a) Vertical codes and (b) Horizontal codes.

1.4. Network Partitioning

Day by day, the IoT application areas are increasing. This increase is responsible for

defining a new node deployment scenario. In these new scenarios, there is a universal key

challenge. The energy consumption of the nodes is the fundamental challenge. For instance,

in these new scenarios, because of the node distribution that is in unreachable to individual

humans, it is difficult to recharge the batteries or replace the node [49], [50].

The network partitioning is one of the assorted ways to reduce energy consumption on

IoT devices [51]. The IoT network partitioning is done by partitioning the network into a

group of IoT devices called clique/cluster. The node that has high energy inside this clique

will act as a cluster head (CH) [52], [53].

CH are in charge of coordinating nodes within their groups, partitioning node's data

within their groups, and communicating with each other or/and with external cliques on

behalf of its nodes.

22

There are two main approaches to form the cluster. These approaches are leader-first

and cluster-first. In the leader-first approach, the network devices that performs as cluster

heads are selected. While in the cluster-first approach, clusters are sorted then the cluster

header is selected [50]. Figure 17 shows the cluster architecture.

 Figure 17. Cluster architecture

1.5. Thesis Motivation and Goal

With the launch of new network applications, the IoT notion has become a trending

research topic.

It is imagined that billions of IoT low power devices will be deployed in the future,

and these low power devices will be responsible for a large portion of future internet traffic.

This considerable increase in the small data packet traffic is likely to put tremendous

pressure on the Internet backbone. A solution of distributed storage is suggested in this work

to reduce this effectiveness of the IoT network’s data traffic on the global Internet’s

infrastructure.

One solution to reduce the effectiveness of IoT network’s data traffic on the global

Internet’s infrastructure can be achieved by storing the information generated by the sensor

devices within the wireless IoT network utilizing erasure codes that have Maximum Distance

Separable (MDS) code features.

23

The wireless IoT networks are partitioned into sub-networks of disjoint cliques with a

minimum number of overlapped nodes to achieve this distributed storage solution. The

distributed storage solution improves the reliability of the data storage by selecting the clique

configuration in a way that the outage of the links is minimized.

2. LITERATURE ANALYSIS

Nowadays, the IoT network has earned massive popularity as a research topic with the

introduction of new Internet-enabled applications. There is enormous literature about IoT.

Many studies have been done in a network partitioning, such as Seema et al. [54] proposed

an algorithm to partition the network into sub-networks randomly to diminish the total

energy consumption.

In another study, a weight-based network partitioning algorithm is proposed [55].

Storing the data and processing it in IoT have been mainly studied also recently by a large

number of research studies [56], [57], [58] and [59]. Rodrigues et al. [60] suggested a hybrid

design that can accurately renew the failed information block with fewer requirements such

as bandwidth. They also compared, in the bandwidth-reliability space, the erasure codes with

the normal data replication.

Another study is proposed to validate the efficient replacement of the storage for

distributed information storage. Their proposal is in the partial network coding approach

[61]. Jianjiang et al. [62] proposed a solution for data storage reliability. Their approach is

based on the checksum of the XOR, and their model is about partitioning the primary data

block into two sub blocks (i.e., parts) then run the XOR process on these sub blocks to

produce different block (third part). Each of these parts would be reserved in different

network devices to remake the primary information when the data is needed. A distributed

storage system based on Decentralized Erasure Codes (DEC) is proposed in [56]. Their

model is designed to increase the level of tolerated failure without losing the data in the

network. They also proposed two more approaches to drop off the needed energy to design

the information storage system to keep the data locally.

In another study, MDS erasure codes are utilized to improve reliability [63]. Magnus

and his friend employed MDS codes in the Smart Meter networks to improve reliability.

Their goal is to generate the MDS codes for any number of wireless network devices (𝑛	³		4)

with any number of redundancy (i.e., erasure) (𝑟	³		2).

Gormus et al. [64] suggested an approach to lower the traffic of the network by

distributing the data between nodes. Their design aims to partition the network into sub-

network, each sub-network contains four nodes (i.e., four-node clique), with minimum

overlapped node. The nodes of these sub-networks store redundant (i.e., parity) information

for two of its neighboring nodes. Their network partitioning is done without considering the

link characteristics.

3. PROPOSED MODEL AND RESULT OVERVIEW

A. Proposed Model

The system model of this research is thought to be a query-based model where the sink

node (i.e., root node) of the RPL network topology recovers the stored information from the

MDS CodesNode inside clique= 4
Node failure = 2

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 Adjacency Matrix

Main Graph

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

Sub-Graphs

2

3

4

5

2

3

4

5

2

3

4

5

Main Graph &
Clique 1 Topology Outage

Sub-Graphs
Probability
Equation

0.7

0.8

0.8

0.7

0.7

0.8

0.6

0.7

0.8

0.8

0.8

0.6

Clique
Outage

Probability

0.1889

0.1969

0.2108

Minimum
Outage

Probability

0.1889

2

3

4

5

a. Determining adjacency matrix form MDS codes

Clique Configuration

1 2

3

4

5
6

7

8

9

10

11
12

R

 Clique
 Finding
Algorithm
 (With
 different
 initial
 node)

RPL Network

b. Clique finding algorithm

c. Minimizing the outage for a single clique

Adjacency Matrix
(Main Graph and

Sub-Graphs)
+

3

4

5

2

5

4

3

2

3

2

4

5

1 2

3

4

5
6

7

9

10

11
12

Adjacency Matrix

1 2

3

4

5
6

7

8

9

10

11
12

R

Name Nodes inside clique
Table of Discovered Cliques (CF1)R

2

3

4

5

9

10

11
12

8

7
6

1

1 2

3

4

5
6

7

8

9

10

11
12

RR

2

3

4

5

9

10

11
12

8

7
6

1

Clique 2

Clique 3

Clique 1

Clique 1

Clique 2

Clique 3

1, 6, 7 and 8

4, 3, 2 and 5

9, 10, 11 and 12

Clique 1

Clique 2

Clique 3

Name Nodes inside clique
Table of Discovered Cliques (CF2)

4, 2, 5 and 10

1, 3, 6 and 7

8, 9, 11 and 12

Clique 1

Clique 2

Clique 3

Clique formation (CF1) in case
of node 4 is initial node

Clique formation (CF2) in case
of node 1 is initial node

Initial Node

Clique 1 of discovered
 cliques in (CF1)

Network
 Outage

Clique formation (CF1)

Clique formation (CF2)

Network Outage
 Equation

0.19423

0.21011

Minimum
Network
 Outage

d. Minimizing the Network outage

Discovered Clique

Sensor Node

Root Node

=
1

N o
ut

1 2

3

4

5
6

7

8

9

10

11
12

R

1 2

3

4

5
6

7

9

10

11
12

Root Node

0.19423

Degree=4

Degree=4
Degree=6

&

Figure 18. The implementation of the system model [65]

26

distributed data on demand. This study provides a reliable high-level medium in which the

data of the failed node can be regenerated from the accessible clique members.

• Implementation Details

The implementation of the proposition of this study can be visualized in figure 18 [65],

and it can be classified into four separate parts. In the first step (figure 18 (a)), a suitable

MDS code configuration is generated for the desired clique configuration of the distributed

storage solution as given in [63]. In the second step (figure 18 (b)), the RPL network is

partitioned to non-overlapping cliques utilizing the proposed clique finding algorithm. Here,

the clique finding algorithm starts with different initial nodes to find a configuration that

minimizes the network outage. In the third step (figure 18 (c)), outage probability of a single

clique is minimized so that information sharing phase of the proposed solution consumes the

least amount of energy. Finally (figure 18 (d)), the outage probability of the network is

minimized by taking into account different clique configurations. Here, the clique

configuration that minimizes the overall network outage is selected.

The RPL network protocol is utilized to design a tree-based topology where each

network device connects to its neighboring network devices according to the Free Space

Path Loss (FSPL) formula given in equation 1 where 𝐷 and l are the distance between two

network devices and the wavelength respectively.

𝐹𝑆𝑃𝐿 = log9:

4𝜋𝐷
𝜆 (1)

every single device in the IoT network creates a neighborhood table where each

device stores an indicator about its distance to its neighbors and the value of RPL rank for

its neighbors. The distance between network devices is inferred from the received signal of

the Signal to Noise Ratio (𝑆𝑁𝑅) and it is determined using calculated according to the

equation 2 and 3

 𝑃𝑟𝑥@AB = 𝑃𝑡𝑥@AB + 𝐺𝑎𝑖𝑛 − 𝐹𝑆𝑃𝐿 (2)
 𝑆𝑁𝑅 = 𝑃𝑟𝑥@AB − (𝑆𝑦𝑠𝑡𝑒𝑚@AB) (3)

In equations 2, 𝑃𝑡𝑥@AB, 𝑃𝑟𝑥@AB and 𝐺𝑎𝑖𝑛 are the power of the transmitted signal, the

received signal power and the system gain respectively. In equation 3 the 𝑆𝑦𝑠𝑡𝑒𝑚@AB is the

sensitivity of the receiver for the receiving node (the value of the 𝑆𝑦𝑠𝑡𝑒𝑚@AB used in the

simulations is −85	𝑑𝐵𝑚). The 𝑆𝑁𝑅 is utilized to configure the link's success between the

27

neighboring nodes. This link metric is used for determining the outage probabilities of the

isomorphic sub-graphs of all clique to make the performance of the network better. The

parameter of 𝐺𝑎𝑖𝑛 is set to one since the antenna is assumed to by the isotropic antenna.

After finding the link quality and the path loss, the network is partitioned into 𝑛-clique

sub-networks. The adjacency matrix that found from the MDS code utilized to configure the

topology of the sub-networks (i.e., cliques). The outage probability of the configured cliques

can be determined by

• Generalized MDS Code

In the second step of the system model, the MDS codes were generated utilizing the

approach proposed in [63]. Their MDS code is working for all network node number 𝑛 and

all erasures number 𝑟. The generated MDS codes for appropriate network configuration

determine the way that the data and the parity symbols are stored. From this perspective, the

nodes located inside the clique are needed to store additional 𝑝 parity symbols in their local

data memory for 𝑚 information symbols belonging to their neighbors. The overlaps between

neighboring cliques should be kept low to reduce the parity symbols stored number in all

nodes.

The generated MDS code can retrieve all 𝑚𝑛 information symbols up to 𝑟 network

device loss, by linking to 𝑘 = 𝑛 − 𝑟 network device (𝑘 is the node number that utilized to

recreate the failed node’s information). The array code used in the MDS code is a vertical

code type. It can store both the information and the parity symbols in each node, and the size

array code is (𝑚 + 𝑝) × 𝑛. Equation 4 is the vertical array code, and equation 5 is the

generator matrix for such array code.

⎝

⎜
⎜
⎛

𝑑:,: ⋯ 𝑑:,TU9
⋮ ⋱ ⋮

𝑑BU9,:
𝑓:,:
⋮

𝑓YU9,:

⋯
⋯
⋱
⋯

𝑑BU9,TU9
𝑓:,TU9
⋮

𝑓YU9,TU9 ⎠

⎟
⎟
⎞

(B]Y)×T

 (4)

 𝐺 = (𝐼TB|𝐴), (5)

where matrix A in equation 5 is the non-systematic part, and its size is 𝑛𝑚 × 𝑛𝑝. The

information is encoded as a vector matric multiplication, where the array of data 𝑑 symbols

of size 𝑛𝑚 and the codeword 𝑐 of size 𝑛(𝑚 + 𝑝)

28

𝐺 = b

𝐼B 0 ⋯ 0
0 𝐼B ⋯ 0
⋮
0

⋮
⋯

⋱
⋯

⋮
𝐼B

dd

𝐴:,: ⋯ 𝐴:,TU9
𝐴9,: ⋯ 𝐴9,TU9
⋮

𝐴TU9,:
⋱
⋯

⋮
𝐴TU9,TU9

e (6)

The matrix of A in equation 6, can be separated into 𝑛 × 𝑛 blocks with size 𝑚 × 𝑝

where 𝐴 = [𝐴g,h]g,hj:TU9 . The value of 𝑚 information symbols and 𝑝 parity symbols can be

found by using the equations given in

𝑚 =

𝑘
𝑔𝑐𝑑	(𝑘, 𝑟) & 𝑝 =

𝑟
𝑔𝑐𝑑	(𝑘, 𝑟)	 ,

(7)

where the 𝑔𝑐𝑑	in equation 7 is the greatest common divisor. The MDS array code can be

enounce as a Kronecker product

 𝐴 = 𝐴m⨂𝐷𝜖𝔽q
TB×TY, 𝜖𝔽qr×s (8)

 𝐷𝜖𝔽q
	(B]Y)×(B]Y) , (9)

where 𝐷 is the antidiagonal matrix.

 For example, let assume we have a network with 𝑛 = 4 wireless device that capable

of retrieving 𝑟 = 2 erased wireless device. We can calculate the information number and the

parity symbols number for each node after calculating the 𝑘 = 𝑛 − 𝑟. The value of 𝑚 and 𝑝

are: 𝑚 = t
uvw	(t,t)

= 1 , 𝑝 = t
uvw	(t,t)

= 1. The array code for this network would be:

z
𝑑:,: 𝑓:,9 𝑑:,t 𝑓:,{
𝑓:,: 𝑑:,9 𝑓:,t 𝑑:,{

| (10)

From the network's array code, it can be seen that in each row, there are one parity

(𝑝 = 1) symbols, which is determined from (4,2) MDS code. The array code of this network

can be generated utilizing a generalized Reed-Solomon code. A Cauchy (Singleton) matric

is used in the array code as its generator matrix [66]. In equation 5, the generator matrix that

given as a Kronecker product could be expressed in the following forms

 𝐺 = (𝐼t|𝐴) ∈ 	𝔽{t×t (11)

 𝐴m = ~1 1
1 2� ∈ 	𝔽{t×t (12)

𝐴 = ~1 1

1 2� ⨂ ~0 1
1 0� = �

0 1 0 1
1
0
1

0
1
0

1
0
2

0
2
0

� (13)

29

𝑓 = �𝑑:,:𝑑:,9𝑑:,t𝑑:,{� 				× 					�

0 1 0 1
1
0
1

0
1
0

1
0
2

0
2
0

� (14)

Equation 14 shows that node 0 and node 2 do not require to be connected, and it is also

showing that node 1 and node 3 do not need to be connected too. Thus, the generated MDS

code will work for complete and incomplete networks with minimal degree 2. From equation

10 the parity symbols for each network device can be determined by the following formulas

which can be found in 2-dimensional Galois Field 𝐺𝐹(2)

 𝑓:,: = 𝑑:,9 + 𝑑:,{ (15)

 𝑓:,9 = 𝑑:,: + 𝑑:,t (16)

 𝑓:,t = 𝑑:,9 + 2𝑑:,{ (17)

 𝑓:,{ = 𝑑:,: + 2𝑑:,t (18)

These equations are showing that the node one and node three would only be

connected to node two and node four, while the node two and node four would only be

connected to node one and node three. Fig 19. shows the MDS coding [64].

 Figure 19. MDS coding [64].

• Network Partitioning

In the second part of the system model, the wireless IoT network is partitioned into

sub-networks (Cliques). In this case, each wireless device creates a neighborhood table

where each node keeps an indicator about its distance to its neighbors and its neighbor’s

30

RPL rank values. The distance between the nodes is inferred from the received Signal to

Noise Ratio.

The level of the SNR that received is mapped to link success probabilities for the

purpose of calculating the outage probability within the clique. Here, the lowest outage

probability configuration is chosen to minimize the outage probability of the entire wireless

IoT network. Following the path loss and link quality modeling, the network is partitioned

into n-clique sub-networks. Finally, the adjacency matrix from the MDS code is used to

configure the topology of the cliques. The configured clique’s outage probabilities can be

determined by this formula,

 𝑝��� = 1 − � (1 − 𝑝g,h)
(g,h)∈�

≈ � 𝑝g,h
(g,h)∈�

 (19)

while the 𝜀 in equation 19 is the set of edges in the undirected connectedness graph [66].

Naturally, the isomorphic subgraph with the lowest outage probability, which is suitable for

the MDS code configuration, is used for each clique. Here, the goal is to optimize the outage

probability for the entire network by partitioning the network in such a way that the

cumulative outage probabilities of the cliques are minimized.

• Minimizing the outage of IoT Network

 In the last step of the proposed solution, the outage of the network is minimized using

the equation 20

𝑁��� =

∑ 𝑥��
�j9

𝑢 (19)

 where 𝑢 and 𝑥� are the number of clique formations and the outage of the clique

formations respectively. Here, the clique formation that minimizes the average network

outage is selected. The clique finding mechanism uses a heuristic approach to identify the

cliques with minimum overlap. As a result, it starts with the minimum degree nodes which

are placed at the corner of the network. This approach indeed minimizes the node overlaps

as supported by the simulation results. Nevertheless, there generally are several network

devices at the edge of the network with same minimum node degree. In this case, it is of

interest to find the clique coverage with the minimum overlap providing the lowest average

31

network outage. For example, in (figure 18 (b)), there are two different clique formations

that have different initial nodes providing minimum node degree criteria. If we apply

equation (20) to these clique formations, we get the average network outage probabilities of

𝑁���	(𝐶𝐹1) =
:.9���]:.9���]:.9�{9

{
= 0.1942 and 𝑁���	(𝐶𝐹2) =

:.t:9{]:.t{:9]:.9���
{

=

0.2101 respectively. According to these results, the formation that minimizes the network

outage is the clique formation 1 in (figure 18 (b)).

B. Proposed Algorithm

A heuristic algorithm is proposed in this study that offers a generalized n- clique

finding algorithm with minimal outage probability for a given configuration of the MDS

code.

In the proposed heuristic algorithm, the network is partitioned by starting from the

nodes that have minimum node degree. Generally, the nodes that placed at the boundary of

the network are supposed to have the lowest degree (i.e., the lowest connections number).

According to this, partitioning the network for the network's edge heuristically minimized

the uncovered nodes number after the operation of the clique forming.

 In this algorithm, the nodes are arranged according to their degrees, starting from the

lowest degree. The nodes that match the connectivity criteria are involved in the clique. In

the clique process, the process starts with the clique that has the least neighbor number.

Partitioning the network from a random degree node is the second approach proposed

in this study. The second proposed approach partitions the network randomly instead of

partitioning the network, starting from the lowest degree node. This random generalized

clique finding algorithm begins to form a randomly selected node to start the process of the

clique formation.

Obviously, starting the generalized clique finding algorithm from a random degree

node may result in a more significant number of overlapping at the network's edge.

Nevertheless, it may be possible to repeat this clique finding process to make better network

outage probability. The outage performance results for the proposed generalized heuristic

algorithms is compared with the Brute-Force (BF) algorithm to site their efficacy.

The Brute-Force algorithm’ process starts by listing all the possible cliques in the

network as an initial step. The created list by the BF algorithm utilized to create an adjacency

matrix. After the initial step, all configurations of the possible clique are tried that covers the

entire network with zero overlaps. Since the BF algorithm lists all the possible clique and

32

tries all of it, it takes a longer time to finish, and it is not practical for real-time running

implementation.

C. Performance Resilts

The system of the distributed storage that suggested in this study is implemented in

MATLAB version 9.2 (R2017a) [67]. The tests are run on a processor type 2.9GHz Intel

CORE i5 with RAM of 8 GB. The results of the suggested algorithms are set against each

other, where Brute-Force algorithm is utilized as a benchmark.

In this study, two different network scenarios are used where 100 meters by 100 meters

and 1000 meters by 1000 meters network configurations are simulated with increasing the

node's number in the network.

 The proposed generalized clique finding algorithms are tested for 𝑟 erasures (i.e.,

redundancy) and 𝑛-cliques where the nodes inside these cliques are grouped in fully

connected groups. The BF algorithm and the heuristic algorithm are analyzed for five

different network topologies for both network scenarios (i.e., 1000m × 1000m and 100m ×

100m network).

Table 1. Experimental results for 20 nodes, 𝑛 = 4 and 𝑟 = 2 for 100m × 100m network

The network at the first step is formed by 20 nodes, and the configuration of the clique

is selected as 𝑛 = 4 and 𝑟 = 2. The configuration of the 20-node network is selected so that

the BF clique finding algorithm finishes in a reasonable time. Besides these simulations,

Topolog
-y

Brute-Force Min-Degree Random-Degree

Outage
Probab

-ility
Clique
Found

Uncove
-red

Nodes

Outage
Probab

-ility

Outage
Probabi

-lity
[64]

Cliques
Found

Uncove
-red

Nodes

Outage
Probab

-ility

Outage
Probabi

-lity
[64]

Clique
Found

Uncov
-ered
Nodes

01 0.0423 5 0 0.0675 0.1025 5 0 0.0549 0.0978 6 0

02 0.0489 5 0 0.0569 0.1125 5 0 0.0574 0.1139 6 0

03 0.0481 5 0 0.0549 0.0961 5 0 0.0669 0.0907 5 0

04 0.0512 5 0 0.0625 0.1023 5 0 0.0522 0.1008 6 0

05 0.0473 5 0 0.0691 0.1087 5 0 0.0615 0.1071 5 0

Avg. 0.0476 5 0 0.0622 0.1044 5 0 0.0586 0.1021 5.2 0

33

other simulations are done for different network sizes with different clique configurations

(𝑛 > 4).

The result of simulations for the 20 nodes network showed that the BF algorithm

outperforms in terms of clique coverage of all of the proposed heuristic algorithms. Table

(1) is summarizing the result for different five networks with 20 nodes. From the results, it

is possible to realize that the heuristic algorithm with the lowest node degree criteria

outperforms the random node degree selection algorithm for the simulated topologies. On

the other hand, all of the heuristic algorithms can cover the network with some overlaps.

 In the table (1), the results are also showing that the average of the network outage

performance of the suggested heuristic clique finding approach is better than the approach

that proposed in [64]. In this case, it is concluded that the distributed storage system of the

data-sharing part presented in this study will need fewer data transmissions number within

the network, which improves both energy efficiency and reliability for the proposed solution.

In table (2), we can see that the proposed heuristic algorithms outperform Brute-Force

algorithm in terms of simulation time. Table (2) is also proves that the heuristic algorithms

can execute in real time.

 Table 2. Simulation times

Topology Brute-Force
Algorithm

Heuristic
Algorithms

01 4 Hours 1.1 Seconds
02 1 Hours 1.5 Seconds
03 6 Hours 1.0 Seconds
04 9 Hours 1.9 Seconds
05 3 Hours 1.5 Seconds

Table (3) is about the network outage results for various network sizes with different

clique configurations for the proposed heuristic approaches. Tested simulations are done in

a rectangular area 1000m by 1000m, where nodes inside the network are selected to be 100,

300 and 500.

As expected, the uncovered nodes in the network will increase with increasing the

size of the clique for low-density networks (i.e., 𝑁 = 100). In case the network density is

higher (i.e., 𝑁 = 300 and 500 node networks), it is possible to form cliques for all nodes

34

that locates inside the topology. Of course, the clique size may negatively impact the

coverage of the node in such a higher density scenario too.

Table 3. Results for 1000m × 1000m network

Another satisfying result in the table (3) is that the clique finding an algorithm with

a random degree of node selection outperforms the heuristic algorithm with lowest degree

node selection for higher density networks in terms of network's outage probability at the

expense of more node overlaps. These results can be illustrated by the fact that having many

nodes that participating in more than one clique may make the outage of the clique lower.

Nevertheless, the storage need of such a solution may be unreasonable for such limited

power Internet of Things networks.

Table 4. Average results for 1000m x 1000m three different networks

N = 200					n = 4, r = 2 n = 6, r = 3 n = 8, r = 4

Try
Outage

Probability
Clique
Found

Uncover-
ed Node

Outage
Probability

Clique
Found

Uncover-
ed Node

Outage
Probability

Clique
Found

Uncover-
ed Node

Minimum degree
0.1498 55 0 0.1047 44 22 0.0783 14 114

Random degree
0.1528 59 0 0.0984 35 38 0.0721 14 114 1
0.1513 59 0 0.0994 38 30 0.0716 13 120 2
0.1591 59 1 0.0990 38 24 0.0716 13 120 3
0.1535 58 0 0.0981 36 30 0.0730 14 114 4
0.1554 60 2 0.1020 36 31 0.0750 13 118 5
0.1504 62 0 0.0999 37 28 0.0643 12 125 6
0.1445 56 0 0.1014 37 21 0.0760 13 115 7

𝑵
𝒏-

Clique
𝒓

Heuristic Algorithm Min-Degree Heuristic Algorithm Random-Degree

Network
Outage

Cliques
Found

Uncovered
Nodes

Network
Outage

Cliques
Found

Uncovered
Nodes

100

4 2 0.1555 23 13 0.1546 27 14

6 3 0.1081 11 50 0.1032 8 63

8 4 0.0819 4 75 0.0799 4 75

300

4 2 0.1392 79 0 0.1309 87 0

6 3 0.0998 54 7 0.0942 62 8

8 4 0.0764 44 20 0.0751 44 37

500

4 2 0.1198 127 0 0.1151 134 0

6 3 0.0909 88 0 0.0929 101 0

8 4 0.0726 67 0 0.0713 80 2

35

0.1559 61 0 0.1007 39 26 0.0716 13 113 8
0.1426 57 0 0.0978 38 26 0.0688 14 116 9
0.1495 59 1 0.1013 40 28 0.0706 12 128 10

N = 400					n = 4, r = 2 n = 6, r = 3 n = 8, r = 4

Try
Outage

Probability
Clique
Found

Uncover-
ed Node

Outage
Probability

Clique
Found

Uncover-
ed Node

Outage
Probability

Clique
Found

Uncover-
ed Node

Minimum degree
0.1309 102 0 0.0975 71 0 0.0759 57 2

Random degree
0.1558 112 0 0.0976 79 2 0.0729 70 5 1
0.1616 110 0 0.0992 78 0 0.0740 65 7 2
0.1536 111 0 0.0988 81 1 0.0722 64 9 3
0.1582 110 0 0.0990 81 0 0.0739 60 5 4
0.1498 111 0 0.0946 80 0 0.0739 65 6 5
0.1563 108 0 0.0975 82 0 0.0719 67 5 6
0.1593 112 0 0.0994 83 0 0.0709 63 10 7
0.1569 111 0 0.0977 81 0 0.0711 65 9 8
0.1555 109 0 0.1015 79 0 0.0740 65 10 9
0.1472 112 0 0.0993 77 1 0.0735 61 7 10

N = 600					n = 4, r = 2 n = 6, r = 3 n = 8, r = 4

Try
Outage

Probability
Clique
Found

Uncover-
ed Node

Outage
Probability

Clique
Found

Uncover-
ed Node

Outage
Probability

Clique
Found

Uncover-
ed Node

Minimum degree
0.1141 153 0 0.0893 104 0 0.0697 78 0

Random degree
0.1221 165 0 0.0918 113 0 0.0721 91 0 1
0.1120 162 0 0.0926 117 0 0.0688 93 0 2
0.1188 163 0 0.0862 115 0 0.0709 92 1 3
0.1099 158 0 0.0892 118 0 0.0659 96 1 4
0.1191 161 0 0.0799 113 0 0.0689 94 4 5
0.1257 162 0 0.0998 114 0 0.0729 95 1 6
0.1219 162 0 0.0968 114 0 0.0747 91 2 7
0.1175 160 0 0.0813 113 0 0.0673 91 1 8
0.1102 161 0 0.0973 113 0 0.0661 94 2 9
0.1263 159 0 0.0884 116 0 0.0707 90 1 10

 The third table is the result of the further investigations done on the performance of

the heuristic algorithms. These simulations are run for three various network sizes (200, 400,

and 600 nodes respectively) with different clique configurations (4, 6 and 8 respectively)

and different erasures. The simulations are done for three different random network

topologies, and table (4) summarizes the averaged results.

 For the heuristic clique finding an algorithm with random node selection, 10

simulations are done starting from a different node degree randomly in the network for each

Table 4. Average results for 1000m x 1000m three different networks (Continue)

36

network size. The purpose form these simulations is to determine if it is possible to

outperform the clique finding algorithm with minimum node degree selection.

The results show that there is a chance to find better network settings utilizing a

random node degree algorithm in terms of network's outage probabilities at the cost of a bit

larger clique overlap for the networks with low density (i.e., 200 node network). Here, the

results form table (4) shown that the random node degree selection algorithm can get closer

to the algorithm with minimum node degree selection performance with only 10 iterations

for low network density (i.e., 200 nodes).

For the higher densities, it has been noticed that the algorithm with minimum node

degree selection outperforms the random node degree selection algorithm. This result shows

that the networks with higher density may require a higher iterations number to optimize the

performance of the random node degree approach. This approach can be parallelized easily,

and the performance of this approach can be improved at the cost of a higher computation

cost.

It is noticeable from these results that the outage for any network size reduces as the

clique size increases. The outage of the network for each heuristic clique finding approach

proposed in this study have similar value with increasing the clique sizes.

Figure 20 and Figure 21 are showing the percentage of the uncovered node for three

different clique configurations and the percentage of the overlapped node for three different

clique configurations, respectively.

Figure 20. Percentage of the uncovered node for three different clique

configurations

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.0003 0.0004 0.0005 0.0006 0.0007 0.0008

Pe
rc
en
ta
ge

of
un
co
ve
re
d
no
de

(%
)

Network Density (node/m2)

4-Clique
6-Clique
8-Clique

37

Figure 21. Percentage of the overlapped node for three different clique

configurations

From these figures, it very well may be seen that the percentage of both of the

overlapped nodes and the uncovered node decreases as the wireless IoT network densities

increase.

In the simulated network deployment for this study, some of the nodes of the network

may be located far from other nodes, preventing them from becoming inside the clique. In

this case, the node that locates far from nodes can choose to act as an independent clique

with a fewer number of clique members.

0

0.5

1

1.5

2

2.5

0.0003 0.0004 0.0005 0.0006 0.0007 0.0008

Pe
rc
en
ta
ge

of
ov
er
la
pp
ed

no
de

(%
)

Network Density (node/m2)

4-Clique
6-Clique
8-Clique

4. CONCLUSIONS AND FUTURE WORKS

Large number of IoT network devices are expected to be utilized everywhere shortly.

This deployment will be responsible for a massive Internet’s traffic. In this study, a solution

of a distributed storage for wireless IoT network is proposed with the purpose of lowering

the effect of IoT network’s traffic on the Internet infrastructure.

The goal is to design reliable storage and retrieval of the IoT device information within

the network that reduces this IoT network traffic. An MDS based erasure code model is

utilized to store the information of the IoT devices inside the network locally.

Two heuristic algorithms are proposed in this study are about partitioning the network

to sub-network to reduce the traffic of the network. Conclusion of this study show that it is

probable to get a suitable coverage of n-cliques with a suitable network outage utilizing a

heuristic approach. The MDS erasure code for a distributed storage has been shown to make

the retrieval of the information generated in the network better.

As a future works, it may be possible to decrease the outage of the network further by

improving the clique finding algorithm by creating a machine learning-based algorithm that

starts the clique search from different locations with a suitable node in the IoT network.

5. REFERENCES

1. https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT

Definition of Internet of Things. 1 December 2019.

2. Atzori, L., Iera, A. ve Morabito, G., The Internet of things: A survey, Computer

Networks,15 (2010) 2787-2805.

3. https://www.ibm.com/blogs/industries/little-known-story-first-iot-device/ IBM The

little-known story of the first IoT device. 1 December 2019.

4. https://www.autoidlabs.org Auto-ID Labs 2 December 2019.

5. Zameel, A., Najmuldeen, M. ve Gormus, S., Context-Aware Caching in Wireless IoT

Networks, 2019 11th International Conference on Electrical and Electronics
Engineering (ELECO), (2019) 712-717.

6. https://data-flair.training/blogs/how-iot-works/ Data Flair How IoT works. 2

December 2019.

7. Soumyalatha, S.G.H., Study of IoT: Understanding IoT architecture, applications, is-

sues and challenges, 1st International Conference on Innovations in Computing &
Networking (ICICN16), (2016).

8. Kraijak, S. ve Tuwanut, P., A survey on IoT architectures, protocols, applications,

security, privacy, real-world implementation and future trends, (2015).

9. Bandyopadhyay, D. ve Sen, J., Internet of things: Applications and challenges in

technology and standardization, Wireless personal communications, 58,1 (2011) 49-
69.

10. Smith, I.G., Vermesan, O., Friess, P. ve Furness, A., The Internet of Things New

Horizons, 2012.
11. Welbourne, E., Battle, L., Cole, G., Gould, K., Rector, K., Raymer, S., Balazinska,

M. ve Borriello, G., Building the Internet of things using RFID: the RFID ecosystem
experience, IEEE Internet computing, 13,3 (2009) 48-55.

12. https://www.elprocus.com/introduction-to-wireless-sensor-networks-types-and-

applications/ Elprocus Wireless Sensor Networks and their Applications. 1
December 2019.

13. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y. ve Cayirci, E., Wireless sensor

networks: a survey, Computer Networks, 38,4 (2002) 393-422.

14. Estrin, D., Govindan, R., Heidemann, J. ve Kumar, S., Next century challenges:

Scalable coordination in sensor networks, Proceedings of the 5th annual ACM/IEEE
international conference on Mobile computing and networking, (1999) 263-270.

15. Matin, M.A. ve Islam, M., Overview of wireless sensor network, Wireless Sensor

Networks-Technology and Protocols, (2012) 1-3.

40

16. Alkhatib, A.A.A. ve Baicher, G.S., Wireless sensor network architecture,

International Conference on Computer Networks and Communication Systems,
(2012).

17. Akyildiz, I.F., Melodia, T. ve Chowdhury, K.R., A survey on wireless multimedia

sensor networks, Computer Networks, 51,4 (2007) 921-960.

18. Sethi, P. ve Sarangi, S.R., Internet of Things: Architectures, Protocols, and

Applications, Journal of Electrical and Computer Engineering, (2017) 25.

19. https://www.cloudflare.com/learning/ddos/glossary/internet-protocol/ Cloud Flare

What is the Internet Protocol. 2 December 2019.

20. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M. ve Ayyash, M., Internet

of things: A survey on enabling technologies, protocols, and applications, IEEE
communications surveys & tutorials, 17,4 (2015) 2347-2376.

21. Salman, T. ve Jain, R., Networking protocols and standards for Internet of things,

Internet of Things and Data Analytics Handbook, 7 (2015).

22. https://iot6.eu/6tisch IoT6 6TiSCh. 1 December 2019.

23. Bormann, C., Castellani, A.P. ve Shelby, Z., Coap: An application protocol for

billions of tiny internet nodes, IEEE Internet computing,2 (2012) 62-67.

24. B., V.J.a.R.M., Internet of Things (IoT): Security Analysis & Security Protocol

CoAP, International Journal of Recent Trends in Engineering & Research (IJRTER),
3,3 (2017) 417-425.

25. https://www.avsystem.com/blog/iot-protocols-and-standards/ AVSystem IoT

Standards and Protocols Guide—Protocols of the Internet of Things., 1 December
(2019).

26. http://mqtt.org MQTT Internet of Things protocol. 4 December 2019.

27. Schmitt, A., Carlier, F. ve Renault, V., Dynamic bridge generation for IoT data

exchange via the MQTT protocol, Procedia computer science, 130, (2018) 90-97.

28. Luzuriaga, J.E., Perez, M., Boronat, P., Cano, J.C., Calafate, C. ve Manzoni, P.,

Improving mqtt data delivery in mobile scenarios: Results from a realistic testbed,
Mobile Information Systems, (2016).

29. Kushalnagar, N., Montenegro, G. ve Schumacher, C., IPv6 over low-power wireless

personal area networks (6LoWPANs), 2007.

30. Hinden, R., Internet protocol version 6 (IPv6) specification, 1998.

31. Hui, J.W. ve Culler, D.E., Extending IP to low-power, wireless personal area

networks, IEEE Internet computing, 4 (2008) 37-45.

41

32. Sharma, C. ve Gondhi, N.K., Communication Protocol Stack for Constrained IoT
Systems, 3rd International Conference On Internet of Things: Smart Innovation and
Usages (IoT-SIU), (2018) 1-6.

33. Mehmood, T., COOJA Network Simulator: Exploring the Infinite Possible Ways to

Compute the Performance Metrics of IOT Based Smart Devices to Understand the
Working of IOT Based Compression & Routing Protocols, arXiv preprint
arXiv:1712.08303, (2017).

34. Gan, W., Shi, Z., Zhang, C., Sun, L. ve Ionescu, D., MERPL: A more memory-

efficient storing mode in RPL, 19th IEEE International Conference on Networks
(ICON), (2013) 1-5.

35. Association, I.S., 802.15. 4-2011 IEEE Standard for Local and Metropolitan Area

Networks-Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs),
2011.

36. Techel, J., Zhao, X., Talasila, P., Zhang, Q. ve Lucani, D.E., Demonstration of

Reliable IoT Distributed Storage using Network Codes, 16th IEEE Annual
Consumer Communications & Networking Conference (CCNC), (2019) 1-2.

37. Zhang, Q., Sun, Y., Qu, S., Zhang, J. ve Wang, X., Performance analysis on

distributed storage systems in ring networks, IEEE/CIC International Conference on
Communications in China (ICCC), (2017) 1-6.

38. Milani, B.A. ve Navimipour, N.J., A comprehensive review of the data replication

techniques in the cloud environments: Major trends and future directions, Journal of
Network and Computer Applications, 64 (2016) 229-238.

39. Liu, Y. ve Vlassov, V., Replication in distributed storage systems: State of the art,

possible directions, and open issues, International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery, (2013) 225-232.

40. Gill, N.K. ve Singh, S., Dynamic cost-aware re-replication and rebalancing strategy
in cloud system, Proceedings of the 3rd International Conference on Frontiers of
Intelligent Computing: Theory and Applications (FICTA), (2015) 39-47.

41. Dimakis, A.G., Godfrey, P.B., Wu, Y., Wainwright, M.J. ve Ramchandran, K.,

Network coding for distributed storage systems, IEEE transactions on information
theory, 56,9 (2010) 4539-4551.

42. Dutta, P., Guerraoui, R. ve Levy, R.R., Optimistic erasure-coded distributed storage,

International Symposium on Distributed Computing, (2008) 182-196.

43. Li, J. ve Li, B., Erasure coding for cloud storage systems: a survey, Tsinghua Science

and Technology, 18,3 (2013) 259-272.

44. Dimakis, A.G., Ramchandran, K., Wu, Y. ve Suh, C., A survey on network codes for

distributed storage, Proceedings of the IEEE, 99,3 (2011) 476-489.

42

45. Shah, N.B., Rashmi, K., Kumar, P.V. ve Ramchandran, K., Interference alignment
in regenerating codes for distributed storage: Necessity and code constructions, IEEE
transactions on information theory, 58,4 (2011) 2134-2158.

46. https://wiki.cse.buffalo.edu/cse545/content/mds-codes MDS Codes. 5 December

2019.

47. https://www.cs.cmu.edu/~guyb/realworld/reedsolomon/reed_solomon_codes.html An

introduction to Reed-Solomon codes: principles, architecture and implementation. 5
December 2019.

48. Sandell, M. ve Tosato, F., Lowest‐density MDS array codes for reliable Smart Meter

networks, Transactions on Emerging Telecommunications Technologies, 26,11
(2015) 1251-1264.

49. Yang, S., Gao, Z., Huang, R. ve Qiu, X., A data correlation-based virtual clustering

algorithm for wireless sensor network, Seventh International Conference on Mobile
Ad-hoc and Sensor Networks, (2011) 335-336.

50. Deshpande, V.V. ve Patil, A.R.B., Energy efficient clustering in wireless sensor

network using cluster of cluster heads, tenth international conference on wireless and
optical communications networks (WOCN), (2013) 1-5.

51. Ebadi, S., Ghasembaglou, M., Navin, A.H. ve Mirnia, M.K., Energy balancing in

wireless sensor networks with selecting two cluster-heads in hierarchical clustering,
International Conference on Computational Intelligence and Communication
Networks, (2010) 230-233.

52. Soni, S. ve Dey, B., Dynamic selection of cluster head in cluster of cluster heads

within the cluster in Heterogeneous Wireless Sensor Network, IEEE International
Conference on Advanced Communications, Control and Computing Technologies,
(2014) 877-881.

53. Sun, K., Peng, P., Ning, P. ve Wang, C., Secure distributed cluster formation in

wireless sensor networks, 22nd Annual Computer Security Applications Conference
(ACSAC'06) (2006) 131-140.

54. Bandyopadhyay, S. ve Coyle, E.J., An energy efficient hierarchical clustering

algorithm for wireless sensor networks, IEEE INFOCOM. Twenty-second Annual
Joint Conference of the IEEE Computer and Communications Societies, (2003)
1713-1723.

55. Chatterjee, M., Das, S.K. ve Turgut, D., WCA: A weighted clustering algorithm for

mobile ad hoc networks, Cluster computing, 5,2 (2002) 193-204.

56. Al-Awami, L. ve Hassanein, H.S., Robust decentralized data storage and retrieval

for wireless networks, Computer Networks, 128 (2017) 41-50.
57. Xing, J., Dai, H. ve Yu, Z., A distributed multi-level model with dynamic

replacement for the storage of smart edge computing, Journal of Systems
Architecture, 83 (2018) 1-11.

43

58. Talari, A. ve Rahnavard, N., CStorage: Decentralized compressive data storage in
wireless sensor networks, Ad Hoc Networks, 37 (2016) 475-485.

59. Itani, M., Sharafeddine, S. ve ElKabani, I., Dynamic multiple node failure recovery

in distributed storage systems, Ad Hoc Networks, 72 (2018) 1-13.

60. Hendricks, J., Ganger, G.R. ve Reiter, M.K., Verifying distributed erasure-coded

data, Proceedings of the twenty-sixth annual ACM symposium on Principles of
distributed computing, (2007) 139-146.

61. Chou, P.A. ve Wu, Y., Network coding for the Internet and wireless networks, IEEE

Signal Processing Magazine, 24,5 (2007) 77.

62. Li, J., Zhang, P., Li, Y., Chen, W., Liu, Y. ve Wang, L., A data-check based

distributed storage model for storing hot temporary data, Future Generation
Computer Systems, 73 (2017) 13-21.

63. Sandell, M. ve Tosato, F., Lowest density MDS array codes on incomplete graphs,

51st Annual Allerton Conference on Communication, Control, and Computing
(Allerton), (2013) 645-652.

64. Gormus, S., Koc, A.G., Jin, Y. ve Sooriyabandara, M., A storage centric approach to

scalable sensor networks, IEEE 81st Vehicular Technology Conference (VTC
Spring), (2015) 1-7.

65. Najmuldeen, M. ve Gormus, S., A Generic Clique Based Distributed Caching

Approach For Wireless IoT Networks, 4th International Conference on Computer
Science and Engineering (UBMK), (2019) 1-5.

66. Roth, R.M. ve Seroussi, G., On generator matrices of MDS codes (corresp.), IEEE

transactions on information theory, 31,6 (1985) 826-830.

67. https://www.mathworks.com/products/matlab.html MathWorks MATLAB. 10

December 2019.

CURRICULUM VITAE

Mustafa NAJMULDEEN was born on the 16th of December 1994 in Kirkuk, Iraq.

After finishing his primary education at Ata TERZİBAŞI primary school and his secondary

education at Parlak secondary school, NAJMULDEEN got his B.Sc. from the Computer

Engineering department at Al Qalam University, Kirkuk, Iraq in 2016. In 2017, he started

his master’s studies in Computer Engineering at Karadeniz Technical University in Trabzon,

Turkey. NAJMULDEEN speaks English and Arabic very well as well as his mother

language, which is Turkish.

Publications

1. M. Najmuldeen and S. Gormus, "A Generic Clique Based Distributed Caching

Approach For Wireless IoT Networks," 2019 4th International Conference on

Computer Science and Engineering (UBMK), Samsun, Turkey, 2019, pp. 1-5,

doi: 10.1109/UBMK.2019.8907052.

2. A. Zameel, M. Najmuldeen and S. Gormus, "Context-Aware Caching in

Wireless IoT Networks," 2019 11th International Conference on Electrical

and Electronics Engineering (ELECO), Bursa, Turkey, 2019, pp. 712-717, doi:

10.23919/ELECO47770.2019.8990647.

