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The future Internet will be connecting billions of low power embedded devices. This 

globally connected network of small embedded devices is thought to be generating most of 

the traffic carried over the future Internet backbone. This new Internet containing billions of 

small embedded devices are the Internet of Things (IoT). Furthermore, significant portion 

of the information data generated by the IoT networks will need to be stored in data centers 

contributing to the scalability issues already affecting the Internet. New and novel solutions 

need to be created to prevent this data explosion's impact on the Internet infrastructure. 

In view of this thesis, an uncommon dispersed cache solution was proposed to reduce 

the impact of the IoT traffic on the Internet backbone. In this solution, the generated data is 

processed and stored within the IoT network securely via a distributed storage solution. This 

solution utilizes the properties of Maximum Distance Separable codes (MDS) to create an 

agreement between the network bandwidth and storage area. This solution will enable 

storing the sensor data at the network edge trying to tackle the scalability challenges imposed 

on the Internet by billions of IoT devices. In this study, low power wireless device networks 

are partitioned into disjoint cliques with minimum overlap to reliably store the generated 

sensor data within these disjoint cliques in a distributed manner. Furthermore, the proposed 

wireless storage solution creates optimal clique coverage to boost the accuracies of the 

caching system. 
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Gelecekte Milyonlarca düşük enerjili gömülü aygıtlar internet ağına bağlanacaktır. 

Yeni global olan bu ağ ve buna bağlanan çok sayıdaki küçük aygıtlar sınırsız olarak veri 

oluşturacağı düşünülmektedir. Söz konusu olan bu yeni bağlantı şebekesine Nesneler 

İnterneti (IoT) adı verilmiştir. Nitekim Nesneler İnterneti adını taşıyan bu yeni ağlardan 

üretilen bu sınırsız verileri, veri merkezlerinde saklanması gerekecektir. Ancak yaşanacak 

olan veri patlaması internetin trafiğine olumsuz etkileyerek yoğunluğa sebep olacaktır. Söz 

konusu olan bu olumsuz etkinin yol açacağı problemleri ortadan kaldırılmasına yönelik 

çözümler üretilmesi gerekir. 

Bu çalışmada, IoT’nin yol açtığı yoğun trafiğinin internet üzerindeki olan olumsuz 

etkinin giderilmesi için yeni dağıtılmış bir depolama çözümü önerilmiştir. Bu çözümde, 

üretilen veriler IoT ağı içinde dağıtılmış depolama yöntem ile güvenli bir şekilde saklanır ve 

işlenecektir. Nitekim söz konusu olan bu çözümün asıl dayandığı temel, depolama alanı ile 

iletişim bant genişliği arasında denge oluşturmak suretiyle maksimum mesafe ayrılabilir 

özelliklerine sahip kodlardır. Çalışmada önerilen bu çözüm, milyarlarca IoT aygıtı 

tarafından internete getirilen ölçeklenebilirlik zorluklarının üstesinden gelmeye çalışırken, 

sensör verilerinin ağ kenarında depolanmasını sağlayacaktır. Bu çalışmada, düşük güçlü 

kablosuz aygıt ağları, üretilen sensör verilerini bu ayrık kliklerin içinde dağıtılmış bir şekilde 

güvenilir olarak saklamak için minimum örtüşme ile ayrık kliklere bölünmüştür. Ayrıca, 

önerilen kablosuz depolama çözümü, depolama sisteminin güvenilirliğini artırmak için en 

uygun klik kapsama alanını bu çalışmada oluşturulmuştur. 

 

 
Anahtar Kelimeler: Nesnelerin İnterneti, MDS Kodları, Dağıtılmış Depolama, klikler ve 

RPL
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1. INTRODUCTION 

 

1.1. Internet of Things 

 

Nowadays, Internet of Things (IoT) networks plays an essential role in human life. 

Over the most recent few years, the Internet of Things term has turned out to be a hot research 

subject in network fields. IoT networks consists of a globally connected network where 

sending and receiving data over the Internet is possible without needing any person to person 

or person to computer interaction [1]. There are two terms for the Internet of Things. The 

“Internet” term refers to a network oriented manner, while “Things” term refers to the object 

oriented manner.  

The first IoT machine was made in the mid-1980s 1980s. Several programmers created 

this device at Carnegie Mellon University [2]. The device used to report the machine's 

contents through the network [3]. The first explanation of the IoT is credited to The Auto-

ID Labs [4], which is a massive network of research centers that deal with networked RFID 

and sensing automation. The Auto-ID Labs in 1999 mentioned, for the first time, the IoT 

term. Their concept is about the object-oriented approach, and that object is a simple Radio-

Frequency Identification (RFID) tag. 

The main components of the IoT systems are the sensors, communication interfaces, 

data analyzing algorithms and the user interface respectively [5], [6]. Sensor device in the 

IoT networks gather the data from the environment that surround the sensors. Examples of 

the collected data can be room temperature or live video. In IoT networks, the aggregated 

data from the sensors are carried to the servers over a backbone communication 

infrastructure. Different communications mediums are used to deliver the aggregated data 

to the central network, generally placed in the Internet Cloud. Choosing the best medium, 

taking the trade-off between power consumption and bandwidth into account, is a 

momentous decision for such IoT network. The aggregated data are analyzed to define and 

reduce meaningful information from it, which may be transformed and displayed in a user 

interface (UI) so the client can cooperate with it. At times, the data from sensors are analyzed 

locally instead of analyzing it in the server, which may be necessary for scenarios with 

limited backhaul connectivity. 

Many applications may take advantage of IoT networks. Establishing a connection 

between devices, observing the environment for a superior personal satisfaction, and saving 
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time and money by automating several aspects of both industry and commerce are some of 

these advantages.  

Shortly, the IoT networks are estimated to include billions of network nodes all around 

the world. This exponential increase in the deployed IoT devices will be responsible for a 

significant portion of the future Internet traffic. Therefore, the large amount of data from 

these deployments need to be accommodated with minimal impact on the future Internet 

infrastructure. Complexity, privacy, and safety are additionally the challenges that should be 

addressed for making the IoT networks a reality. 

 

1.1.1. Internet of Things generic structure 

 

There is a generic architecture for the IoT networks. This generic architecture is 

classified into four layers: application layer, middleware layer, network layer and device 

layer respectively. IoT layers architecture are formed in a manner that can match the need 

for different application areas [7]. Figure 1 shows the generic architecture for the IoT 

network. The four layers are described below:   
 

 
 Figure 1. Generic IoT networks stack structure 

Device layer: This layer is the principal level in generic IoT structure, representing the 

OSI model’s physical layer [8]. There are various sorts of sensor nodes, such as Zigbee and 

RFID Infrared. Device layer is responsible for gathering the data (i.e., information) for the 
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sensor nodes. This information can be humidity, wind speed, temperature and dust 

percentage in the air. The information of this layer is moved upward to the second layer. 

Network layer: This layer takes a vital responsibility in the IoT network architecture 

[8]. It is in charge of deciding the route the data information to the upper layer [9].  

Middleware layer: This layer is lays down between second layer and last layer. It plays 

as an interface between the network and application layers. It runs in bidirectional mode [9]. 

The middleware layer has many functions; the main two functions are service management 

and storing the collected information from the device layer into a database [8]. This layer is 

capable to recover and compute the data information. 

Application layer: This layer is the last layer of the IoT structure, and its task is act as 

a user-interface between the client and the IoT network.  

 

1.1.2. Internet of Thongs Application 

 

The IoT networks an enormous number of utilizations in different scenarios. These 

enormous number of utilizations can be used in the public and the private sectors. These 

applications can be ranged from consumer IoT to industrial IoT networks. IoT applications 

can be classified into four main domains. These domains are transportation domain, 

healthcare domain, smart domain and social and personal domain [1]. These four domains 

are described below: 

Transportation domain: Modern vehicles like cars, buses, trains and also bicycles 

comes with many sensors and processing units. The sensors in modern vehicles are used to 

collect critical information about the vehicle itself or even collect information about the 

vehicles surrounding environment. Besides the vehicles, roads are also instrumented with 

sensors and tags. Sensing the pressure level of the tire and collision avoidance systems are 

simple examples of the transportation domain.  

Healthcare domain: The IoT systems provide many benefits for this domain. The 

healthcare domain applications can be classified into automatically sensing and collecting 

vital data for patients, tracking of the patient's status, identification, and authentications. 

Patients surveillance is the most straightforward application if IoT technology. 

Smart domain: This domain can be partitioned further into subdomains. These 

subdomains are the smart animal farming, smart agriculture, smart metering and smart 

environment [10]. In the smart domain, the IoT systems can provide many applications to 

protect the environment and make it better. For example, IoT solution can define alert zone 
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by monitoring the burning gases, control the factories CO2 release, detect the earthquake 

early, monitor the level of water, oil, and gas in storage tanks, increase the production quality 

of the fruits and vegetables and also IoT solution can track the location of the animal. 

Social and personal domain: The applications offered by the IoT networks for this 

domain can help a person to get in touch with other people for building social relationships 

[11]. The most straightforward application for the domain is locating lost objects and 

updating the social status information in the social networks. 

 

1.1.3. Network of Wireless Sensors 
 

IoT networks can only be formed by connecting objects to each other to retrieve 

information about the environment. Many types of devices are used to make this vision 

reality. Sensors play a vital role in many IoT applications. These sensors must have a 

communication interface to hand over the sensed information data to the network through a 

medium wirelessly. Wireless Sensor Networks (WSNs) provide the necessary interface for 

all the "Things" to be an IoT device. Wireless Sensor Networks might be described as a 

group of devices in the network that can deliver the data through wireless connections [12].  

WSNs are made out of devices with information processing, data sensing and 

communicating components [13]. WSNs might have various sorts of sensors, for example, 

infrared, radar, seismic and thermal. These different types of these sensors can keep an eye 

on various kinds of environmental data like temperatures, pressure, noise levels and 

humidity [14]. WSNs it tends to be utilized in numerous application territories, for example, 

military, environment, health care and home area networks. 

The collaborations between countless devices are the main idea behind the network of 

sensors. In WSNs, the essential restriction of sensor devices is the low power consumption 

necessity. In a dense deployment scenario, connecting the devices to a central sink node 

directly over a single hop can consume more power than the multi-hop communication. The 

modern WSNs radio layer is mostly dependent on the standard IEEE 802.15.4. Furthermore, 

this standard supports multi-hop networking to enable low power WSNs. 

 Many factors should be considered to design a sensor network. These factors that 

should be carefully planned before deployment are network topology, power consumption, 

working environment, fault tolerance and manufacturing cost [13]. Two of these elements 

are quickly depicted below:  
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Fault tolerance: It is the wireless network’s ability for staying operational regardless 

of whether one or more sensor fails. The fault-tolerance requirement relies on the WSNs 

application, such as fault tolerance level for a sensor located inside a house is less than a 

sensor located on the battlefield. 

   Manufacturing cost: The expense of assembling sensing devices is an extremely 

challenging issue. WSNs utilize an enormous number of wireless sensor devices, the sensors 

deployed number could reach hundreds, thousands or even millions in an area. The cost of 

these devices should be under a certain threshold to make the sensor network cost-justified 

[13].  

 

1.1.3.1. WSN Hardware Component 
 

 
   Figure 2. Wireless sensor component [13] 

 
The component of a wireless sensor relies upon the application type. The primary 

wireless sensor contains four standard components. These are the sensing unit, processing 

unit, transceiver unit, and power unit. In a few applications, these four parts increase to six 

components. The other two units are location-finding systems and mobilizer units. Figure 2 

shows component of a wireless sensor.     

The first unit in the wireless sensor is the sensing unit. It is in general consist of two 

subunits: analog to digital converters (ADCs) and sensors. The signals that sensed form the 

sensors are analog signals and they have to be changed to digital signal by using (ADCs) to 

pass the signal to the processing unit. The sensors are interfaced with other parts of the sensor 

device via the processing unit. Inside this unit, a small cache space exists. Connecting the 
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sensor device to the network and carrying the sensed information to the central network are 

done by the transceiver unit. An essential part of the wireless sensor is the power supply. In 

some applications, the location finding system unit is used to inform the sensor devices about 

the network routing and the sensing tasks. In different circumstances, the mobilizer unit is 

utilized to change area of a sensor node when it is expected to accomplish the fundamental 

tasks [15]. 

 

1.1.3.2. WSN Architecture 
 

In Wireless Sensor Networks, the sensors devices can assemble the information from 

the environment and send the information back to main server (i.e., sink) by taking advantage 

of multi-hop communication architecture. Figure 3 shows the generic architecture for both 

the sink and the sensors.  
 

 
         Figure 3. Architecture of WSNs [6] 

 
This architecture defines how the data can be collected and transmitted through the 

communication medium and how the wireless sensor device should work to minimize its 

power consumption. WSNs architecture mostly act in accordance with the OSI model [16]. 

In wireless sensor networks, the architecture is mainly made up by five layers and they are: 
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the application layer, the transport layer, the network layer, the data link layer and the 

physical layer. Along with these layers, there are three cross layers of planes. These three 

cross layers are the task management plane, the mobility management plane and the power 

management plane [15]. The five layers of WSNs architecture are described below: 

Physical layer: The first principal layer of the WSN architecture is liable for 

transmitting or receiving the sequence of zeros and ones across communication medium, 

frequency selection and data encryption are other responsibilities of the physical layer [16]. 

Datalink layer: the second layer of the WSN architecture is accountable for error 

control, data frame detection and medium access control (MAC). Inside this layer, MAC 

protocol is needed to reduce the collision with neighboring nodes since the wireless medium 

is broadcast by nature and the environment of the wireless sensor device is noisy [15].   

Network layer: The essential role of the third layer is routing the frames along a 

selected route. In WSN, the network layer tries to find the reliable path that the data can be 

transferred through using a fixed scale called metric [16], [17].  

Transport layer: This layer is required when the information should convey to different 

networks. The third layer is utilized to give both blockage avoidance and blockage detection 

and ensure the delivery of the data. 

Application layer: the application layer carry out as an interface between user and 

sensors data [16]. In this layer, a different software application can produce for different 

sensor network applications. 

Task management plane, the mobility management plane and the power management 

planes: These planes are used to raise the efficiency and the network reliability by managing 

the protocol layers of the device and making them work with each other in collaboration to 

optimize the sensor performance the desired goal. 

 

1.2. Internet of Thing Protocols 
 

In general, the protocols are a group of rules used for routing and addressing the data 

packages [18]. In IoT networks, countless devices are relied upon to connect and understand 

each other without taking the environment or application of the devices into account. A 

standardized protocol is used to achieve communication between different devices to 

understand each other [19]. Different numbers of organizations are established to provide 

protocols for IoT networks. European Telecommunications Standards Institute (ETSI), 
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Internet Engineering Task Force (IETF), Institute of Electrical and Electronics Engineers 

(IEEE) and World Wide Web Consortium (W3C) are examples for these organizations [20]. 

IoT systems can be classified into two protocols: application protocols and 

infrastructure protocols. The application protocols consist of Extensible Messaging and 

Presence Protocol (XMPP), HTTP RESET, Constrained Application Layer Protocol 

(CoAP), Data Distribution Service (DDS), Advanced Message Queuing Protocol (AMQP) 

and Message Queue Telemetry Transport (MQTT) [20].  

The infrastructure protocols are the network protocols and device layer protocols. 

These network protocols can be separated into two subdivisions, and they are encapsulation 

and routing protocols [21]. IPv6 over the TSCH mode of IEEE 802.15.4e (6TiSCH) and 

IPv6 over Low power Wireless Personal Area Network (6LoWPAN) protocols are 

encapsulation protocol [22]. While the routing protocols in the network section are Channel-

Aware Routing Protocol (CARP), Cognitive Routing Protocol for Low-Power and Lossy 

Networks (CORPL) and Routing Protocol for Low-Power and Lossy Networks (RPL) [21]. 

On the other hand, the protocols that exist in the device layer are Electronic Product Code 

global (EPCglobal), IEEE 802.15.4 and Long-Term Evolution-Advanced (LTE-A). 
 

 
      Figure 4. Internet of Things protocols [20] 

 Figure 4 reveals the IoT protocols [20]. Constrained Application Layer Protocol 

(CoAP), Message Queuing Telemetry Transport (MQTT), IPv6 over Low power Wireless 

Personal Area Network (6LoWPAN), Routing Protocol for Low-Power and Lossy Networks 

(RPL) and standard of IEEE 802.15.4 protocol are detailed in the upcoming sections. 



 

 

9 

1.2.1. Constrained Application Layer Protocol (CoAP) 
 

 The CoAP protocol is one of the IoT network’s application protocols developed for 

web transfer by the Internet Engineering Task Force (IETF) [23]. CoAP protocol is utilized 

amongst a limited network like a constrained environment, such as WSN nodes. The CoAP 

protocol is designed to make a version of the HTTP protocol to meet the Internet of Things 

requirement for operating in the lossy and noisy environments and for supporting the low 

power consumption [24]. This IoT network protocol rely upon REpresentational State 

Transfer (REST) [20], and it supports basics of the HTTP protocol, such as to delete, put, 

post and get methods. The REST method is a procedure used to ensure a secure, fault-tolerant 

and scalable system. This protocol takes advantage of the User Datagram Protocol (UDP) to 

create a secure communication between endpoints [25]. The UDP is beneficial for this 

protocol because the UDP gives the ability to transmit the data to multiple endpoints while 

it maintains the communication speed and low bandwidth usage. Fig. 5 illustrates the 

functionality of the CoAP [20] 

 
The CoAP protocol can be separated into two split layers. These layers are the message 

and response/request layer. The message layer of the CoAP is in charge of controlling the 

message transmissions between two endpoints. While the response/request layer tracks the 

request and response codes to bypass issues like the arrival of the messages and lost or 

duplicated messages. Both layers are also used to stop-or-wait retransmissions, duplicate 

detection, and multicast support.  

The message that transmits between two endpoints in the CoAP protocol can be four 

types. The four types are a piggy-backed response, confirmable (CON), non-confirmable 

Figure 5. The functionality of the CoAP protocol [20] 
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(NON) and separate response. CoAP protocol reliability is achieved by mixing both types 

of confirmable and non-confirmable. In confirmable type, the user sends the message to the 

cloud, and it waits the acknowledgment from the cloud. The non-confirmable type sends a 

message without waiting for the acknowledgment from the server. The piggy-backed 

response is when the user transmits the confirmable message to the cloud server, and the 

server sends the acknowledgment with the response to user at exact time. While in the 

separate response, the user transmits the confirmable type message to the server, and anyhow 

the server was not available to acknowledge immediately; the server sends an empty 

acknowledgment to the user. After some time, when the server is available to respond to the 

user, it sends the response with a confirmable message to the user, and the user should send 

back the acknowledgment. Each message in the CoAP has its ID and this is used to discover 

the duplicate messages.  Figure 6 showing the CoAP message types.  
 

 
 Figure 6. Types of the CoAP message [20] 

 

 
                            Figure 7. CoAP message format [20] 

 
Figure 7 illustrates the format of CoAP message [20]. The message size of the CoAP 

can be ranged from 10 bytes to 20 bytes [23]. In the format of CoAP message, "OC" is 

Option Count, "T" field is the type of the message and the "Ver" field is the version of the 

CoAP. 
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1.2.2. Message Queuing Telemetry Transport (MQTT) 
 

The MQTT protocol is an Internet of Things application protocol that is made-up by 

Dr. Andy Stanford-Clark of IBM and Arlen Nipper of Arcom (Eurotech) in 1999, while in 

2013 it was standardized at OASIS [26], [27]. This protocol is quite a simple type of 

messaging protocol. It is designed for restricted IoT devices and high latency or unstable 

networks. The preferred manner of this protocol is that it minimizes the bandwidth of the 

network, so the device resource requirements and the power consumption are low. Broker 

(server), the subscriber (user) and publisher (sensor) model are the base of the MQTT. The 

sensor's (publisher's) task is to bring together the data and transmit the data information to 

the user (subscriber) through the server (broker) [25]. The broker in the MQTT protocol is 

not only used for sending the data between publisher and subscriber, but it also ensures the 

security by examining the publisher and subscriber's authorization.   

 
  Figure 8. Publisher and subscribe process in the MQTT 

 
The publisher in MQTT has the ability to define the quality of the message. The 

publisher can choose message quality by sending it with or without the confirmation and 

with or without taking the duplicated message into account. MQTT protocol uses the TCP 

protocol as a transport layer to deliver the message [28]. Figure 8 shows the publish and 

subscribe process in the MQTT [20]. 
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1.2.3. IPv6 over Low power Wireless Personal Area Network (6LoWPAN) 
 

The Low power Wireless Personal Area Networks (LoWPANs) are IoT networks 

which allow wireless connectivity for applications requiring low power consumption [29]. 

Low bandwidth, countless number of devices, low power consumption and low cost, Small 

packet size and supporting many topologies are the LoWPANs characteristics. The 

LoWPANs are based on the standard of IEEE 802.15.4 protocol, that it has 127 bytes of a 

frame size [20]. A countless number of wireless nodes in LoWPANs presents the need for 

ample address space, and IPv6 is the suitable candidate for this need [20]. The minimum 

fragmentable IPv6 packets size is 1280 bytes, and it is not compatible with the IEEE 

802.15.4 protocol frame size [30]. An adjustment layer is needed to make the sizeable IPv6 

frame fit within the IEEE 802.15.4 frame. This adjustment layer is called IPv6 over Low 

power Wireless Personal Area Network (6LoWPAN) standard [20]. 

In 2007, the IETF has developed the standard 6LoWPAN [20]. The fundamental 

utilization of the 6LoWPAN is encapsulating the IPv6 frame into IEEE 802.15.4 frames. 

This protocol is used to minimize the transmission overhead by maintaining the header 

compression, and it also maintain both multi-hop delivery and the fragmentation to match 

the small 127-byte packet in IEEE 802.15.4 protocol and multi-hop delivery. 

     
     Figure 9. Types of the 6LoWPAN header [20] 

 
The 6LoWPAN’s encapsulation method implements different dispatch codes. These 

dispatch codes are represented by two bits and they are (00) NO 6LoWPAN, (01) Dispatch, 

(10) Mesh Addressing and (11) Fragmentation. The header of (00) is used to discard the data 

packet if it is not a 6LoWPAN frame. In (01) Dispatch header, the header of IPv6 is 
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compressed. The header of (10) allows the frames of the IEEE 802.15.4 protocol to be 

delivered to the link-layer. The last header, (11), utilized when the IPv6 frame was not 

capable to fit into the IEEE 802.15.4 standard frame. Figure 9 describes the 6LoWPAN 

header types. 

In 6LoWPAN, the greater part of the IPv6 overhead is detached in such a manner that 

small frames of IPv6 can be transmited through a particular IEEE 802.15.4 frame [31], [20]. 

 

1.2.4. Routing Protocol for Low-Power and Lossy Networks (RPL) 
 

The RPL protocol  is a tree-based routing protocol which is commonly used in IoT 

networks for routing between network devices [32]. This protocol is established and 

standardized by the IETF Routing over Low-power and Lossy networks (RoLL) working 

group. The primary function of the RPL is to hold up the requirement of minimal routing in 

the Low-power and Lossy Networks (LLNs).   
 

 

 
The RPL protocol supports all communication types, such as multipoint-to-point, 

point-to-multipoint, and point-to-point. This protocol arranges the network topology in a 

Destination-Oriented Directed Acyclic Graphs (DODAG). The DODAG graph is cited as a 

directed acyclic graph that has a particular LLN Border Router (LBR), root or sink node. 

Figure 10 shows the DODAG topology with all types of communication [32]. 

Routing metrics (link metrics) and node rank are used by the RPL to build up the 

DODAG. In the RPL protocol, there are three main variety of messages. These are: 

Destination Advertisement Object (DAO), DODAG Information Solicitation (DIS) and 

DODAG Information Object (DIO).  These messages contain vital information data, like 

metrics and rank of the node. 

Figure 10. DODAG topology for all types of communication [32] 



 

 

14 

The nodes initially create the DODAG in the RPL protocol. Thus, as the first thing, 

the DIO message is transmitted by the sink (i.e. root) device to its neighbors [20]. The node 

will receive the DIO message from the root node. Then it decides either it joins the DODAG 

or not according to the link metric. If the network device sorts out to join the DODAG, it 

computes its rank and rearranges the table of neighbor and selects the approved parent node 

which this parent will be utilized to send the message to the root node. Regularly the node’s 

parent is the lowest rank node. In case a new node enters the network, it transmits a DIS data 

message to ask for the DIO data message from nodes that already part of the DODAG. 
 

 
 

          Figure 11. RPL messages [33] 

 
After the node that that already part of the DODAG or the new node receives the DIO 

from its neighbors, it starts to transmit the DAO data message to request from the root or 

node’s parent to join as a child node. If the root/parent accepts the node's DAO, it will 

respond with the DOA-ACK message. Figure 11 illustrating RPL messages [33]. 

In the RPL protocol, there are two types of modes of operation (MOP) that can be 

routing protocol (RPL) run on it [34]. These two types of modes are: non-storing mode and 

storing mode. In the storing mode, the node has the capability to keep a complete routing 

path for its sub DODAG nodes. When the MOP is storing mode, the node will forward the 

received message to the target device, if the target node route is accessible in its routing 

table. If the responsible node does not find the target node in its routing table, the message 

will be forwarded to its parent. 

In non-storing mode, the sink (i.e. root) node stores the information of the topology 

for the entire DODAG. Root node makes use of DAO messages to collect this information. 

It calculates the path to the target node according to the collected data, and it places this path 

of the routing inside the message header and then forwards it to the next hop. Each node that 
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located in the routing path will transmit the data message to the next hop according to the 

routing path in the header until it is delivered. 

Right now, The RPL protocol does not bolster a mixed-mode where some LLN device 

is working in non-storing mode, and the other is working in storing mode. If all the LLN 

devices are working in a non-storing mode in the network, they do not need to keep and 

know the routing path about the DODAG. So, each message needs to be sent up to the root 

to obtain the source path and then sent the data message down to the target node. Figure 12 

shows the non-storing mode and storing mode for the routing protocol [34]. 
 

 
   Figure 12. Non-storing mode and storing mode for the routing protocol [34] 

 

1.2.5. IEEE 802.15.4 

 

The standard of  IEEE 802.15.4 protocol is produced for the Low Rate Wireless Private 

Area Networks (LR-WPAN) to specify the physical layer (PHY) and the Medium Access 

Control (MAC) [35]. This protocol is the most frequently used protocol in IoT networks 

because of its particulars, such as low cost, low power consumption, high message 

throughput and low data rate. 

IEEE 802.15.4 protocol supports different channel bands for the physical layer. It 

utilizes a direct sequence spread spectrum (DSSS) approach in the PHY layer. According to 

these different frequency channel bands, the physical layer can receive and transmit the data 

at different rates: in 2.4 GHz frequency, the node can transfer data using 250 kbps data rate, 

in 915 MHz frequency, the data rate is 40-kbps data rate. In 868 MHz frequency, a 20-kbps 

data rate is typical [20]. Based on these different data rates and frequencies, the larger bands 

and higher frequencies can provide higher throughput and low latency while lower 

frequencies can produce the best sensitivity and it can cover broad areas. The IEEE 802.15.4 
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protocol uses the Carrier-Sense Multiple Access with Collision Avoidance (CSMA/CA) 

approach in the MAC layer to reduce collisions in the network. 
 
The IEEE 802.15.4 protocol bolsters two different categories of network devices (i.e., 

node). These devices are Reduced Function Device (RFD) and Full Function Device (FFD) 

[34]. The FFD device has the ability to serve as the coordinator of Personal Area Network 

(PAN). Moreover, RFD is a network device that does not have the capability of serving like 

FFD. 

The RFD device is created for uncomplicated applications such as a passive infrared 

sensor or a light switch [34]. RFD sends limited amounts of information data, and it only 

collaborates with a single FFD at a time. Fig. 13 shows the topologies of IEEE 802.15.4 

[34]. 

 

 

1.3. Distributed Storage System 
 

IoT network system is predicted to penetrate the Internet and increase the connected 

small-scale gadgets to billions by the introduction of a new application. Many of these IoT 

devices will be responsible for generating information such as patient's vital data. The 

information generated by IoT devices (i.e., devices deployed in harsh environments) may be 

lost before being sent to the central server. This risk can be reduced by utilizing a Distributed 

Storage System (DSS) in IoT networks [36].  

 Figure 13. Topologies of IEEE 802.15.4 [20] 



 

 

17 

The DSS is utilized in IoT Networks to store data belonging to a node in neighboring 

nodes. This distribution method can be achieved by copying the node's data into different 

node devices that located in the network. 

The DSS also has ability to repair information data when an erasure happens. When 

the node leaves the network or collapses, a new device node will be imported to network as 

a newcomer and gets the data from the nodes that survive to regenerate the correct data 

information and restore the failed device [37].  

  The uncomplicated approach in distributed storage is replication. Besides the 

replication method, network coding is also utilized in DSS.  

 

1.3.1. Replication Distributed Storage System 
 

In the last few years, data replication has become popular in many applications such 

as the sensor networking, peer-to-peer networks, World Wide Web and ad-hoc [38]. This 

method is used to generate various copies of the same data and store them at different sites. 

The primary explanation behind utilizing information replication is to guarantee the high 

accessibility of information and boost the scalability of the system [39]. In data replication, 

there are two procedures: passive replication and active procedures used to replicate the data 

[40]. Figure 14 shows these two procedures [39].  

 
  Figure 14. Active and passive replication techniques [39] 

Along with these two procedures, the information replication can be apportioned into 

two basic systems: dynamic replication and static replication systems. 
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1.3.1.1. Passive and Active Replication Techniques 

 

In the active replication technique, the operation requests are sent from the host to all 

replicas in an arranged order. The operations execution of all replicas agrees to be the same 

order by using some ordering protocol, such as Atomic Broadcast protocol. Then, every 

single replica runs the operations separately and finally, the result of these operations reaches 

a resulting state. 

In the passive replication technique, the master replica is selected from the replication 

group. The host sends the operation execution to the master replica. The resulting state of 

the operation execution of the master replica will be sent to all other replicas that exist in the 

replication group. The bandwidth utilization is predicted to be much higher for this technique 

when the capacity of the resulting state is considerable. 

 

1.3.1.2. Static and Dynamic Replication Systems 
 

In the static replication mechanism, the host number and the copies (i.e., replicas) 

number are prearranged and well defined. This Static replication mechanism is easy to 

execute, however it is not frequently used because it is not flexible [41]. Google File System 

(GFS), MinCopysets, Multi objective Optimized Replication Management (MORM) and 

Multi-objective Evolutionary (MOE) are examples of static replication mechanism. 

In the dynamic replication mechanism, the data replication will automatically generate 

and eliminate the replicas. The replica generation and elimination can be done according to 

the storage capacity, bandwidth and changes in the user entry pattern [41]. This mechanism 

makes its choices intelligently by taking advantage of the current environment information. 

There are some disadvantages, such as collecting the information of nodes in a complex 

infrastructure. Dynamic replication mechanism has some phases: creating and analyzing the 

connection between the system accessibility and the replicas number 

 

1.3.2. Coded Distributed Storage System 
 

In the distributed storage, the replication method is used for replicating the data to 

prevent data losses. Nevertheless, this replication is an unsophisticated method with low 
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performance. The coded distributed storage system is introduced to enhance the system's 

execution and to boost the throughput of entire system with less storage space [37]. In the 

coded distributed storage system, instead of storing a data 𝑀 on each node, the data 𝑀 is 

encoded into 𝑚 blocks, size of each one 𝑀/𝑚, such that the data 𝑀 be able to regenerated 

from all set of 𝑘 blocks [42]. One of the well-known technologies of the coded distributed 

storage is the erasure codes such as maximum distance separable (MDS) [43], [44].  

The erasure codes need less storage space if it is compared with simple replication in 

terms of storage. On the other hand, both erasure codes and the simple replication method 

requires the same repair bandwidth to repair the failed nodes [37]. 

In order to minimize the repair bandwidth used in the erasure code to regenerate the 

lost data, regenerating codes are proposed. 

 

1.3.2.1. Regenerating Codes 
 

In the MDS erasure codes, when a node fails in the system, the newcomer network 

device needs to collect entire data information files from all other surviving nodes to recreate 

the missing data. The repair bandwidth will be equal to the total data file size that collected 

by the newcomer node. 
 

 

Figure 15. Structure of regenerating codes. a) Data reconstruction. b) Repair of a collapsed 
node [45] 
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 Regenerating codes are proposed by Dimkis et al. to reduce this wasteful repair bandwidth 

[41]. The central concept of regenerating codes is the information flow graph. Figure 15 

illustrates the setup of the regenerating code [45]. 

In the regenerating codes, all 𝑛 nodes that exist in the network transmits their 

information to the data collector (𝐷𝐶). When any of these nodes fails, the newcomer node 

will collect the failed node’s data b form survived node 𝑑 to regenerate the lost data. 

The information flow graph in the regenerating codes is utilized to evaluate the 

information from the 𝑆 source data to the 𝐷𝐶 data collector. Single-source, data collectors 

and storage nodes are three categories of vertices that exists in the information flow graph. 

The source 𝑆 stands for the node where the data initially generated. 

 

1.3.2.2. Types of repair 
 

In the distributed storage, the failed node’s data information should get through the 

repair process to regenerate and store it in the newcomer node that will take the place of the 

failed one. There are many types of repair process used in the distributed storage system. 

These various types are exact repair of the systematic part, functional repair and exact repair 

[44]. In exact repair, the newcomer network device would produce the failed node's 

information without any change. In functional repair, the replacement node can generate the 

lost data in a functional way, in which the generated data may have different data as 

compared to the lost data. Exact repair of the systematic part is a combination type from 

functional and exact repair type. 

 

1.3.2.3. Maximum Distance Separable Code 
 

The code of Maximum Distance Separable (MDS) is one of the critical classes in error 

correcting codes that satisfy the Singleton bound. The MDS codes are established over a 

Finite field or Galois field 𝐺𝐹 [46]. The MDS codes are the conspicuous erasure codes 

used in network coding, and the famous code for the MDS is the Reed-Solomon codes [47]. 

The main job of the MDS code is to recover the lost information. So, to recover the lost 

information, the MDS codes will add some redundancy to the network. The MDS array 

codes are used to achieve this recovery. This array code is a two-dimensional array, and each 

column of this array represents the nodes inside the network. The array code will be 
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responsible for deciding how the redundancy should be kept in the network. There are two 

types of array codes that can be used in MDS code. These types are horizontal array code 

and vertical array code [48]. In the vertical array code, both data and parity (i.e., redundancy) 

are kept in the same node 𝑛. While in the horizontal code, both data and parity kept in 

different nodes 𝑛. Figure 16 shows the type of array codes, where the nodes that located 

inside the network is referred as 𝑛, 𝑚 and 𝑝 are data of the node and parity (i.e., redundancy) 

respectively [47].   
 

 
         Figure 16. Type of the array codes: (a) Vertical codes and (b) Horizontal codes. 

 

1.4. Network Partitioning 
 

Day by day, the IoT application areas are increasing. This increase is responsible for 

defining a new node deployment scenario. In these new scenarios, there is a universal key 

challenge. The energy consumption of the nodes is the fundamental challenge. For instance, 

in these new scenarios, because of the node distribution that is in unreachable to individual 

humans, it is difficult to recharge the batteries or replace the node [49], [50].  

The network partitioning is one of the assorted ways to reduce energy consumption on 

IoT devices [51]. The IoT network partitioning is done by partitioning the network into a 

group of IoT devices called clique/cluster. The node that has high energy inside this clique 

will act as a cluster head (CH) [52], [53].  

CH are in charge of coordinating nodes within their groups, partitioning node's data 

within their groups, and communicating with each other or/and with external cliques on 

behalf of its nodes. 
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There are two main approaches to form the cluster. These approaches are leader-first 

and cluster-first. In the leader-first approach, the network devices that performs as cluster 

heads are selected. While in the cluster-first approach, clusters are sorted then the cluster 

header is selected [50]. Figure 17 shows the cluster architecture.   
 

 
       Figure 17. Cluster architecture 

 

1.5. Thesis Motivation and Goal 
 

With the launch of new network applications, the IoT notion has become a trending 

research topic. 

It is imagined that billions of IoT low power devices will be deployed in the future, 

and these low power devices will be responsible for a large portion of future internet traffic. 

This considerable increase in the small data packet traffic is likely to put tremendous 

pressure on the Internet backbone. A solution of distributed storage is suggested in this work 

to reduce this effectiveness of the IoT network’s data traffic on the global Internet’s 

infrastructure. 

One solution to reduce the effectiveness of IoT network’s data traffic on the global 

Internet’s infrastructure can be achieved by storing the information generated by the sensor 

devices within the wireless IoT network utilizing erasure codes that have Maximum Distance 

Separable (MDS) code features.  
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The wireless IoT networks are partitioned into sub-networks of disjoint cliques with a 

minimum number of overlapped nodes to achieve this distributed storage solution. The 

distributed storage solution improves the reliability of the data storage by selecting the clique 

configuration in a way that the outage of the links is minimized. 

 



 

2. LITERATURE ANALYSIS 
 

Nowadays, the IoT network has earned massive popularity as a research topic with the 

introduction of new Internet-enabled applications. There is enormous literature about IoT. 

Many studies have been done in a network partitioning, such as Seema et al. [54] proposed 

an algorithm to partition the network into sub-networks randomly to diminish the total 

energy consumption.   

In another study, a weight-based network partitioning algorithm is proposed [55]. 

Storing the data and processing it in IoT have been mainly studied also recently by a large 

number of research studies [56], [57], [58] and [59]. Rodrigues et al. [60] suggested a hybrid 

design that can accurately renew the failed information block with fewer requirements such 

as bandwidth. They also compared, in the bandwidth-reliability space, the erasure codes with 

the normal data replication. 

Another study is proposed to validate the efficient replacement of the storage for 

distributed information storage. Their proposal is in the partial network coding approach 

[61]. Jianjiang et al. [62] proposed a solution for data storage reliability. Their approach is 

based on the checksum of the XOR, and their model is about partitioning the primary data 

block into two sub blocks (i.e., parts) then run the XOR process on these sub blocks to 

produce different block (third part). Each of these parts would be reserved in different 

network devices to remake the primary information when the data is needed. A distributed 

storage system based on Decentralized Erasure Codes (DEC) is proposed in [56]. Their 

model is designed to increase the level of tolerated failure without losing the data in the 

network. They also proposed two more approaches to drop off the needed energy to design 

the information storage system to keep the data locally.   

In another study, MDS erasure codes are utilized to improve reliability [63]. Magnus 

and his friend employed MDS codes in the Smart Meter networks to improve reliability. 

Their goal is to generate the MDS codes for any number of wireless network devices (𝑛	³		4) 

with any number of redundancy (i.e., erasure) (𝑟	³		2).  

Gormus et al. [64] suggested an approach to lower the traffic of the network by 

distributing the data between nodes. Their design aims to partition the network into sub-

network, each sub-network contains four nodes (i.e., four-node clique), with minimum 

overlapped node. The nodes of these sub-networks store redundant (i.e., parity) information 

for two of its neighboring nodes. Their network partitioning is done without considering the 

link characteristics. 



 

3. PROPOSED MODEL AND RESULT OVERVIEW 

A. Proposed Model  

 

 

The system model of this research is thought to be a query-based model where the sink 

node (i.e., root node) of the RPL network topology recovers the stored information from the 
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distributed data on demand. This study provides a reliable high-level medium in which the 

data of the failed node can be regenerated from the accessible clique members. 

 

• Implementation Details 
 

The implementation of the proposition of this study can be visualized in figure 18 [65], 

and it can be classified into four separate parts. In the first step (figure 18 (a)), a suitable 

MDS code configuration is generated for the desired clique configuration of the distributed 

storage solution as given in [63]. In the second step (figure 18 (b)), the RPL network is 

partitioned to non-overlapping cliques utilizing the proposed clique finding algorithm. Here, 

the clique finding algorithm starts with different initial nodes to find a configuration that 

minimizes the network outage. In the third step (figure 18 (c)), outage probability of a single 

clique is minimized so that information sharing phase of the proposed solution consumes the 

least amount of energy. Finally (figure 18 (d)), the outage probability of the network is 

minimized by taking into account different clique configurations. Here, the clique 

configuration that minimizes the overall network outage is selected. 

The RPL network protocol is utilized to design a tree-based topology where each 

network device connects to its neighboring network devices according to the Free Space 

Path Loss (FSPL) formula given in equation 1 where 𝐷 and l are the distance between two 

network devices and the wavelength respectively.  

 
𝐹𝑆𝑃𝐿 = log9:

4𝜋𝐷
𝜆  (1) 

every single device in the IoT network creates a neighborhood table where each 

device stores an indicator about its distance to its neighbors and the value of RPL rank for 

its neighbors. The distance between network devices is inferred from the received signal of 

the Signal to Noise Ratio (𝑆𝑁𝑅) and it is determined using calculated according to the 

equation 2 and 3  

 𝑃𝑟𝑥@AB = 𝑃𝑡𝑥@AB + 𝐺𝑎𝑖𝑛 − 𝐹𝑆𝑃𝐿 (2) 
 𝑆𝑁𝑅 = 𝑃𝑟𝑥@AB − (𝑆𝑦𝑠𝑡𝑒𝑚@AB) (3) 

In equations 2, 𝑃𝑡𝑥@AB, 𝑃𝑟𝑥@AB and 𝐺𝑎𝑖𝑛 are the power of the transmitted signal, the 

received signal power and the system gain respectively. In equation 3 the 𝑆𝑦𝑠𝑡𝑒𝑚@AB  is the 

sensitivity of the receiver for the receiving node (the value of the 𝑆𝑦𝑠𝑡𝑒𝑚@AB used in the 

simulations is −85	𝑑𝐵𝑚). The 𝑆𝑁𝑅 is utilized to configure the link's success between the 
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neighboring nodes. This link metric is used for determining the outage probabilities of the 

isomorphic sub-graphs of all clique to make the performance of the network better. The 

parameter of 𝐺𝑎𝑖𝑛 is set to one since the antenna is assumed to by the isotropic antenna. 

After finding the link quality and the path loss, the network is partitioned into 𝑛-clique 

sub-networks. The adjacency matrix that found from the MDS code utilized to configure the 

topology of the sub-networks (i.e., cliques). The outage probability of the configured cliques 

can be determined by 

• Generalized MDS Code 

 
In the second step of the system model, the MDS codes were generated utilizing the 

approach proposed in [63]. Their MDS code is working for all network node number 𝑛 and 

all erasures number 𝑟. The generated MDS codes for appropriate network configuration 

determine the way that the data and the parity symbols are stored. From this perspective, the 

nodes located inside the clique are needed to store additional 𝑝 parity symbols in their local 

data memory for 𝑚 information symbols belonging to their neighbors. The overlaps between 

neighboring cliques should be kept low to reduce the parity symbols stored number in all 

nodes.   

The generated MDS code can retrieve all 𝑚𝑛 information symbols up to 𝑟 network 

device loss, by linking to 𝑘 = 𝑛 − 𝑟 network device (𝑘 is the node number that utilized to 

recreate the failed node’s information). The array code used in the MDS code is a vertical 

code type. It can store both the information and the parity symbols in each node, and the size 

array code is (𝑚 + 𝑝) × 𝑛. Equation 4 is the vertical array code, and equation 5 is the 

generator matrix for such array code.  

 

⎝

⎜
⎜
⎛

𝑑:,: ⋯ 𝑑:,TU9
⋮ ⋱ ⋮

𝑑BU9,:
𝑓:,:
⋮

𝑓YU9,:

⋯
⋯
⋱
⋯

𝑑BU9,TU9
𝑓:,TU9
⋮

𝑓YU9,TU9 ⎠

⎟
⎟
⎞

(B]Y)×T

 (4) 

 𝐺 = (𝐼TB|𝐴), (5) 

where matrix A in equation 5 is the non-systematic part, and its size is 𝑛𝑚 × 𝑛𝑝. The 

information is encoded as a vector matric multiplication, where the array of data 𝑑 symbols 

of size 𝑛𝑚 and the codeword 𝑐 of size 𝑛(𝑚 + 𝑝)  
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𝐺 = b

𝐼B 0 ⋯ 0
0 𝐼B ⋯ 0
⋮
0

⋮
⋯

⋱
⋯

⋮
𝐼B

dd

𝐴:,: ⋯ 𝐴:,TU9
𝐴9,: ⋯ 𝐴9,TU9
⋮

𝐴TU9,:
⋱
⋯

⋮
𝐴TU9,TU9

e (6) 

The matrix of A in equation 6, can be separated into 𝑛 × 𝑛 blocks with size 𝑚 × 𝑝 

where 𝐴 = [𝐴g,h]g,hj:TU9 . The value of 𝑚 information symbols and 𝑝 parity symbols can be 

found by using the equations given in 

 
𝑚 =

𝑘
𝑔𝑐𝑑	(𝑘, 𝑟) & 𝑝 =

𝑟
𝑔𝑐𝑑	(𝑘, 𝑟)	 , 

(7) 

where the 𝑔𝑐𝑑	in equation 7 is the greatest common divisor. The MDS array code can be 

enounce as a Kronecker product  

 𝐴 = 𝐴m⨂𝐷𝜖𝔽q
TB×TY, 𝜖𝔽qr×s (8) 

 𝐷𝜖𝔽q
	(B]Y)×(B]Y) , (9) 

where 𝐷 is the antidiagonal matrix.  

 For example, let assume we have a network with 𝑛 = 4 wireless device that capable 

of retrieving 𝑟 = 2 erased wireless device. We can calculate the information number and the 

parity symbols number for each node after calculating the 𝑘 = 𝑛 − 𝑟. The value of 𝑚 and 𝑝 

are: 𝑚 = t
uvw	(t,t)

= 1 , 𝑝 = t
uvw	(t,t)

= 1. The array code for this network would be: 

 
z
𝑑:,: 𝑓:,9 𝑑:,t 𝑓:,{
𝑓:,: 𝑑:,9 𝑓:,t 𝑑:,{

| (10) 

From the network's array code, it can be seen that in each row, there are one parity 

(𝑝 = 1) symbols, which is determined from (4,2) MDS code. The array code of this network 

can be generated utilizing a generalized Reed-Solomon code. A Cauchy (Singleton) matric 

is used in the array code as its generator matrix [66]. In equation 5, the generator matrix that 

given as a Kronecker product could be expressed in the following forms 

 𝐺 = (𝐼t|𝐴) ∈ 	𝔽{t×t (11) 

 𝐴m = ~1 1
1 2� ∈ 	𝔽{t×t (12) 

 
𝐴 = ~1 1

1 2� ⨂ ~0 1
1 0� = �

0 1 0 1
1
0
1

0
1
0

1
0
2

0
2
0

� (13) 
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𝑓 = �𝑑:,:𝑑:,9𝑑:,t𝑑:,{� 				× 					�

0 1 0 1
1
0
1

0
1
0

1
0
2

0
2
0

� (14) 

Equation 14 shows that node 0 and node 2 do not require to be connected, and it is also 

showing that node 1 and node 3 do not need to be connected too. Thus, the generated MDS 

code will work for complete and incomplete networks with minimal degree 2. From equation 

10 the parity symbols for each network device can be determined by the following formulas 

which can be found in 2-dimensional Galois Field 𝐺𝐹(2)  

 𝑓:,: = 𝑑:,9 + 𝑑:,{ (15) 

 𝑓:,9 = 𝑑:,: + 𝑑:,t (16) 

 𝑓:,t = 𝑑:,9 + 2𝑑:,{ (17) 

 𝑓:,{ = 𝑑:,: + 2𝑑:,t (18) 

These equations are showing that the node one and node three would only be 

connected to node two and node four, while the node two and node four would only be 

connected to node one and node three. Fig 19. shows the MDS coding [64]. 

 

  

   Figure 19. MDS coding [64]. 

• Network Partitioning  

 
In the second part of the system model, the wireless IoT network is partitioned into 

sub-networks (Cliques). In this case, each wireless device creates a neighborhood table 

where each node keeps an indicator about its distance to its neighbors and its neighbor’s 
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RPL rank values. The distance between the nodes is inferred from the received Signal to 

Noise Ratio.  

The level of the SNR that received is mapped to link success probabilities for the 

purpose of calculating the outage probability within the clique. Here, the lowest outage 

probability configuration is chosen to minimize the outage probability of the entire wireless 

IoT network. Following the path loss and link quality modeling, the network is partitioned 

into n-clique sub-networks. Finally, the adjacency matrix from the MDS code is used to 

configure the topology of the cliques. The configured clique’s outage probabilities can be 

determined by this formula, 

 

 𝑝��� = 1 − � (1 − 𝑝g,h)
(g,h)∈�

≈ � 𝑝g,h
(g,h)∈�

 (19) 

while the 𝜀 in equation 19 is the set of edges in the undirected connectedness graph [66]. 

Naturally, the isomorphic subgraph with the lowest outage probability, which is suitable for 

the MDS code configuration, is used for each clique. Here, the goal is to optimize the outage 

probability for the entire network by partitioning the network in such a way that the 

cumulative outage probabilities of the cliques are minimized. 

 

• Minimizing the outage of IoT Network 
 

           In the last step of the proposed solution, the outage of the network is minimized using 

the equation 20 

           

 
𝑁��� =

∑ 𝑥��
�j9

𝑢  (19) 

 

          where 𝑢 and 𝑥� are the number of clique formations and the outage of the clique 

formations respectively. Here, the clique formation that minimizes the average network 

outage is selected. The clique finding mechanism uses a heuristic approach to identify the 

cliques with minimum overlap. As a result, it starts with the minimum degree nodes which 

are placed at the corner of the network. This approach indeed minimizes the node overlaps 

as supported by the simulation results. Nevertheless, there generally are several network 

devices at the edge of the network with same minimum node degree. In this case, it is of 

interest to find the clique coverage with the minimum overlap providing the lowest average 
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network outage. For example, in (figure 18 (b)), there are two different clique formations 

that have different initial nodes providing minimum node degree criteria. If we apply 

equation (20) to these clique formations, we get the average network outage probabilities of 

𝑁���	(𝐶𝐹1) =
:.9���]:.9���]:.9�{9

{
= 0.1942  and 𝑁���	(𝐶𝐹2) =

:.t:9{]:.t{:9]:.9���
{

=

0.2101 respectively. According to these results, the formation that minimizes the network 

outage is the clique formation 1 in (figure 18 (b)).  

 
B. Proposed Algorithm 
 

A heuristic algorithm is proposed in this study that offers a generalized n- clique 

finding algorithm with minimal outage probability for a given configuration of the MDS 

code.  

In the proposed heuristic algorithm, the network is partitioned by starting from the 

nodes that have minimum node degree. Generally, the nodes that placed at the boundary of 

the network are supposed to have the lowest degree (i.e., the lowest connections number). 

According to this, partitioning the network for the network's edge heuristically minimized 

the uncovered nodes number after the operation of the clique forming. 

 In this algorithm, the nodes are arranged according to their degrees, starting from the 

lowest degree. The nodes that match the connectivity criteria are involved in the clique. In 

the clique process, the process starts with the clique that has the least neighbor number.   

Partitioning the network from a random degree node is the second approach proposed 

in this study. The second proposed approach partitions the network randomly instead of 

partitioning the network, starting from the lowest degree node. This random generalized 

clique finding algorithm begins to form a randomly selected node to start the process of the 

clique formation. 

Obviously, starting the generalized clique finding algorithm from a random degree 

node may result in a more significant number of overlapping at the network's edge. 

Nevertheless, it may be possible to repeat this clique finding process to make better network 

outage probability. The outage performance results for the proposed generalized heuristic 

algorithms is compared with the Brute-Force (BF) algorithm to site their efficacy. 

The Brute-Force algorithm’ process starts by listing all the possible cliques in the 

network as an initial step. The created list by the BF algorithm utilized to create an adjacency 

matrix. After the initial step, all configurations of the possible clique are tried that covers the 

entire network with zero overlaps. Since the BF algorithm lists all the possible clique and 
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tries all of it, it takes a longer time to finish, and it is not practical for real-time running 

implementation. 

 

C. Performance Resilts  
 
The system of the distributed storage that suggested in this study is implemented in 

MATLAB version 9.2 (R2017a) [67]. The tests are run on a processor type 2.9GHz Intel 

CORE i5 with RAM of 8 GB. The results of the suggested algorithms are set against each 

other, where Brute-Force algorithm is utilized as a benchmark. 

In this study, two different network scenarios are used where 100 meters by 100 meters 

and 1000 meters by 1000 meters network configurations are simulated with increasing the 

node's number in the network. 

 The proposed generalized clique finding algorithms are tested for 𝑟 erasures (i.e., 

redundancy) and 𝑛-cliques where the nodes inside these cliques are grouped in fully 

connected groups. The BF algorithm and the heuristic algorithm are analyzed for five 

different network topologies for both network scenarios (i.e., 1000m × 1000m and 100m × 

100m network).  

Table 1. Experimental results for 20 nodes, 𝑛 = 4 and 𝑟 = 2 for 100m × 100m network 

 

The network at the first step is formed by 20 nodes, and the configuration of the clique 

is selected as 𝑛 = 4 and 𝑟 = 2. The configuration of the 20-node network is selected so that 

the BF clique finding algorithm finishes in a reasonable time. Besides these simulations, 

Topolog
-y 

Brute-Force Min-Degree Random-Degree 

Outage 
Probab

-ility 
Clique 
Found 

Uncove
-red 

Nodes 

Outage 
Probab

-ility 

Outage 
Probabi

-lity 
[64] 

Cliques 
Found 

Uncove
-red 

Nodes 

Outage 
Probab

-ility 

Outage 
Probabi

-lity 
[64] 

Clique 
Found 

Uncov
-ered 
Nodes 

01 0.0423 5 0 0.0675 0.1025 5 0 0.0549 0.0978 6 0 

02 0.0489 5 0 0.0569 0.1125 5 0 0.0574 0.1139 6 0 

03 0.0481 5 0 0.0549 0.0961 5 0 0.0669 0.0907 5 0 

04 0.0512 5 0 0.0625 0.1023 5 0 0.0522 0.1008 6 0 

05 0.0473 5 0 0.0691 0.1087 5 0 0.0615 0.1071 5 0 

Avg. 0.0476 5 0 0.0622 0.1044 5 0 0.0586 0.1021 5.2 0 
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other simulations are done for different network sizes with different clique configurations 

(𝑛 > 4).  

The result of simulations for the 20 nodes network showed that the BF algorithm 

outperforms in terms of clique coverage of all of the proposed heuristic algorithms. Table 

(1) is summarizing the result for different five networks with 20 nodes. From the results, it 

is possible to realize that the heuristic algorithm with the lowest node degree criteria 

outperforms the random node degree selection algorithm for the simulated topologies. On 

the other hand, all of the heuristic algorithms can cover the network with some overlaps. 

 In the table (1), the results are also showing that the average of the network outage 

performance of the suggested heuristic clique finding approach is better than the approach 

that proposed in [64]. In this case, it is concluded that the distributed storage system of the 

data-sharing part presented in this study will need fewer data transmissions number within 

the network, which improves both energy efficiency and reliability for the proposed solution. 

In table (2), we can see that the proposed heuristic algorithms outperform Brute-Force 

algorithm in terms of simulation time. Table (2) is also proves that the heuristic algorithms 

can execute in real time.  

 Table 2. Simulation times 

Topology Brute-Force 
Algorithm 

Heuristic 
Algorithms 

01 4  Hours 1.1  Seconds 
02 1  Hours 1.5  Seconds 
03 6  Hours 1.0  Seconds 
04 9  Hours 1.9  Seconds 
05 3  Hours 1.5  Seconds 

 

Table (3) is about the network outage results for various network sizes with different 

clique configurations for the proposed heuristic approaches. Tested simulations are done in 

a rectangular area 1000m by 1000m, where nodes inside the network are selected to be 100, 

300 and 500. 

As expected, the uncovered nodes in the network will increase with increasing the 

size of the clique for low-density networks (i.e., 𝑁 = 100). In case the network density is 

higher (i.e., 𝑁 = 300 and 500 node networks), it is possible to form cliques for all nodes 
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that locates inside the topology. Of course, the clique size may negatively impact the 

coverage of the node in such a higher density scenario too. 

Table 3. Results for 1000m × 1000m network 

 

Another satisfying result in the table (3) is that the clique finding an algorithm with 

a random degree of node selection outperforms the heuristic algorithm with lowest degree 

node selection for higher density networks in terms of network's outage probability at the 

expense of more node overlaps. These results can be illustrated by the fact that having many 

nodes that participating in more than one clique may make the outage of the clique lower. 

Nevertheless, the storage need of such a solution may be unreasonable for such limited 

power Internet of Things networks.  

Table 4. Average results for 1000m x 1000m three different networks 

N = 200					n = 4, r = 2 n = 6, r = 3 n = 8, r = 4 

Try 
Outage 

Probability 
Clique 
Found 

Uncover-
ed Node 

Outage 
Probability 

Clique 
Found 

Uncover-
ed Node 

Outage 
Probability 

Clique 
Found 

Uncover-
ed Node 

Minimum degree 
0.1498 55 0 0.1047 44 22 0.0783 14 114 

Random degree 
0.1528 59 0 0.0984 35 38 0.0721 14 114 1 
0.1513 59 0 0.0994 38 30 0.0716 13 120 2 
0.1591 59 1 0.0990 38 24 0.0716 13 120 3 
0.1535 58 0 0.0981 36 30 0.0730 14 114 4 
0.1554 60 2 0.1020 36 31 0.0750 13 118 5 
0.1504 62 0 0.0999 37 28 0.0643 12 125 6 
0.1445 56 0 0.1014 37 21 0.0760 13 115 7 

𝑵 
𝒏-

Clique 
𝒓 

Heuristic Algorithm Min-Degree Heuristic Algorithm Random-Degree 

Network 
Outage 

Cliques 
Found 

Uncovered 
Nodes 

Network 
Outage 

Cliques 
Found 

Uncovered 
Nodes 

100 

4 2 0.1555 23 13 0.1546 27 14 

6 3 0.1081 11 50 0.1032 8 63 

8 4 0.0819 4 75 0.0799 4 75 

        

300 

4 2 0.1392 79 0 0.1309 87 0 

6 3 0.0998 54 7 0.0942 62 8 

8 4 0.0764 44 20 0.0751 44 37 

        

500 

4 2 0.1198 127 0 0.1151 134 0 

6 3 0.0909 88 0 0.0929 101 0 

8 4 0.0726 67 0 0.0713 80 2 
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0.1559 61 0 0.1007 39 26 0.0716 13 113 8 
0.1426 57 0 0.0978 38 26 0.0688 14 116 9 
0.1495 59 1 0.1013 40 28 0.0706 12 128 10 

 
N = 400					n = 4, r = 2 n = 6, r = 3 n = 8, r = 4 

Try 
Outage 

Probability 
Clique 
Found 

Uncover-
ed Node 

Outage 
Probability 

Clique 
Found 

Uncover-
ed Node 

Outage 
Probability 

Clique 
Found 

Uncover-
ed Node 

Minimum degree 
0.1309 102 0 0.0975 71 0 0.0759 57 2 

Random degree 
0.1558 112 0 0.0976 79 2 0.0729 70 5 1 
0.1616 110 0 0.0992 78 0 0.0740 65 7 2 
0.1536 111 0 0.0988 81 1 0.0722 64 9 3 
0.1582 110 0 0.0990 81 0 0.0739 60 5 4 
0.1498 111 0 0.0946 80 0 0.0739 65 6 5 
0.1563 108 0 0.0975 82 0 0.0719 67 5 6 
0.1593 112 0 0.0994 83 0 0.0709 63 10 7 
0.1569 111 0 0.0977 81 0 0.0711 65 9 8 
0.1555 109 0 0.1015 79 0 0.0740 65 10 9 
0.1472 112 0 0.0993 77 1 0.0735 61 7 10 

 
N = 600					n = 4, r = 2 n = 6, r = 3 n = 8, r = 4 

Try 
Outage 

Probability 
Clique 
Found 

Uncover-
ed Node 

Outage 
Probability 

Clique 
Found 

Uncover-
ed Node 

Outage 
Probability 

Clique 
Found 

Uncover-
ed Node 

Minimum degree 
0.1141 153 0 0.0893 104 0 0.0697 78 0 

Random degree 
0.1221 165 0 0.0918 113 0 0.0721 91 0 1 
0.1120 162 0 0.0926 117 0 0.0688 93 0 2 
0.1188 163 0 0.0862 115 0 0.0709 92 1 3 
0.1099 158 0 0.0892 118 0 0.0659 96 1 4 
0.1191 161 0 0.0799 113 0 0.0689 94 4 5 
0.1257 162 0 0.0998 114 0 0.0729 95 1 6 
0.1219 162 0 0.0968 114 0 0.0747 91 2 7 
0.1175 160 0 0.0813 113 0 0.0673 91 1 8 
0.1102 161 0 0.0973 113 0 0.0661 94 2 9 
0.1263 159 0 0.0884 116 0 0.0707 90 1 10 

 

 The third table is the result of the further investigations done on the performance of 

the heuristic algorithms. These simulations are run for three various network sizes (200, 400, 

and 600 nodes respectively) with different clique configurations (4, 6 and 8 respectively) 

and different erasures. The simulations are done for three different random network 

topologies, and table (4) summarizes the averaged results.  

 For the heuristic clique finding an algorithm with random node selection, 10 

simulations are done starting from a different node degree randomly in the network for each 

Table 4. Average results for 1000m x 1000m three different networks (Continue) 
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network size. The purpose form these simulations is to determine if it is possible to 

outperform the clique finding algorithm with minimum node degree selection.  

The results show that there is a chance to find better network settings utilizing a 

random node degree algorithm in terms of network's outage probabilities at the cost of a bit 

larger clique overlap for the networks with low density (i.e., 200 node network). Here, the 

results form table (4) shown that the random node degree selection algorithm can get closer 

to the algorithm with minimum node degree selection performance with only 10 iterations 

for low network density (i.e., 200 nodes). 

For the higher densities, it has been noticed that the algorithm with minimum node 

degree selection outperforms the random node degree selection algorithm. This result shows 

that the networks with higher density may require a higher iterations number to optimize the 

performance of the random node degree approach. This approach can be parallelized easily, 

and the performance of this approach can be improved at the cost of a higher computation 

cost. 

It is noticeable from these results that the outage for any network size reduces as the 

clique size increases. The outage of the network for each heuristic clique finding approach 

proposed in this study have similar value with increasing the clique sizes. 

Figure 20 and Figure 21 are showing the percentage of the uncovered node for three 

different clique configurations and the percentage of the overlapped node for three different 

clique configurations, respectively. 

 
Figure 20. Percentage of the uncovered node for three different clique 

configurations 
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Figure 21. Percentage of the overlapped node for three different clique 

configurations 

 
From these figures, it very well may be seen that the percentage of both of the 

overlapped nodes and the uncovered node decreases as the wireless IoT network densities 

increase. 

In the simulated network deployment for this study, some of the nodes of the network 

may be located far from other nodes, preventing them from becoming inside the clique. In 

this case, the node that locates far from nodes can choose to act as an independent clique 

with a fewer number of clique members. 
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4. CONCLUSIONS AND FUTURE WORKS 
 

Large number of IoT network devices are expected to be utilized everywhere shortly. 

This deployment will be responsible for a massive Internet’s traffic. In this study, a solution 

of a distributed storage for wireless IoT network is proposed with the purpose of lowering 

the effect of IoT network’s traffic on the Internet infrastructure. 

The goal is to design reliable storage and retrieval of the IoT device information within 

the network that reduces this IoT network traffic. An MDS based erasure code model is 

utilized to store the information of the IoT devices inside the network locally. 

Two heuristic algorithms are proposed in this study are about partitioning the network 

to sub-network to reduce the traffic of the network.  Conclusion of this study show that it is 

probable to get a suitable coverage of n-cliques with a suitable network outage utilizing a 

heuristic approach. The MDS erasure code for a distributed storage has been shown to make 

the retrieval of the information generated in the network better. 

As a future works, it may be possible to decrease the outage of the network further by 

improving the clique finding algorithm by creating a machine learning-based algorithm that 

starts the clique search from different locations with a suitable node in the IoT network.
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