
 
 

 

 

KARADENİZ TECHNICAL UNIVERSITY 

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

 

 

 

 

CIVIL ENGINEERING DEPARTMENT 

 

 

 

PARETO-FRONT PERFORMANCE OF MULTIOBJECTIVE TEACHING 

LEARNING BASED OPTIMIZATION ALGORITHM ON TIME-COST TRADE-

OFF OPTIMIZATION PROBLEMS 

 

 

 

 

 

 

MASTER OF SCIENCE THESIS 

 

 

 

Mohammad Azim EIRGASH 

 

 

 

 

JANUARY 2018 

TRABZON 







III 
 

 

ACKNOWLEDGEMENTS 

 

The memorable and the hardest snapshots of my Master's degree course have been 

successfully accomplished with the help of some people, and to whom I am deeply 

obliged. I feel a special privilege to spend valuable time of my academic career in the 

Construction Engineering and Management Division of Karadeniz Technical University. 

First of all, my heartfelt gratitudes go to my thesis advisor, Dr. Vedat Toğan, 

Associate Professor, Department of Civil Engineering, Karadeniz Technical University, 

Trabzon, for his guidance with skilled concomitance and continues support in bringing out 

this thesis work with creativity.  

Besides my advisor, I owe special thanks to Dr.Tayfun Dede, Associate Professor of 

Construction Management Division for his keen interest on me at every stage of my thesis. 

I wish to express our sincere acknowledgment to Dr.Hasan Basri Başağa, Assistant 

Professor, and Dr.Korhan Özgan, Associate Professor, the faculty members of Civil 

Engineering Department, KTU, for their direct or indirect suggestions on the thesis.  

Special thanks to my bachelor‘s degree lecturers, Prof. Dr. Garje Rajesh Kumar, 

Prof. Dr. Umamahesh Nanduri and Prof. Dr. Ramaseshu D Professors of Civil Engineering 

at National Institute of Technology Warangal, India for their advices, comments and 

believing in my determination on the subject. 

I really cannot find the right words that would express my deepest appreciation to my 

beloved parents and wife Doctors Sharifa Ruya Eirgash for their tremendous motivation 

and moral support during every part of my life. I am especially grateful to Mohammed 

Aslam Eirgash, Noor Mohammed Eirgash, Mohammed Akram Eirgash and Nasir Ahmed 

Eirgash brothers, my lovely sisters and my brother–in-lows Mohammed Ashraf Turani and 

Mohammed Jan Turani for the caring they provided. 

Importantly, a cordial thanks to my friends Mohammad Edris Rajaby, Mr. Saman 

Aminbakhsh, Ümit Bahadır, Ali Ahmed Ashoor, Xhensila Thomolları and Mohammed 

Shayeq Sharify for their valuable friendship and encouragement in the pieces of this thesis.  

Finally, May ALLAH accepts this humble work and I hope it will be beneficial to its 

readers. 

Mohammad Azim EIRGASH 

Trabzon 2017 





 
 

V 
 

 

CONTENTS 

 

Page No 

ACKNOWLEDGEMENTS................................................................................................ III 

THESIS ETHICS DECLARATION................................................................................... IV 

CONTENTS......................................................................................................................... V 

SUMMARY……............................................................................................................... VII 

ÖZET………...................................................................................................................... VIII 

LIST OF FIGURES............................................................................................................. IX 

LIST OF TABLES.............................................................................................................. XI 

LIST OF ABBREVIATIONS.......................................................................................... XIII 

1. INTRODUCTION ........................................................................................... 1 

1.1. Research Motivation ........................................................................................ 3 

1.1.1. The Complex Nature of TCT Problems ............................................................ 3 

1.1.2. Inefficiency of Traditional Methods for Optimizing Large-Scale Problems ...... 4 

1.2. Research Objectives ......................................................................................... 4 

1.3. Thesis Organization ......................................................................................... 5 

1.4. Literature Review ............................................................................................ 5 

1.4.1. Project Scheduling With Critical Path Method (CPM) ..................................... 6 

1.4.2. Logical Relationships in CPM ......................................................................... 7 

1.4.3. Time-Cost Trade-Off Problems (TCTP) ........................................................... 8 

1.4.4. TCT Optimization Challenges .......................................................................... 9 

1.4.5. Optimization Methods for TCTP ...................................................................... 9 

1.4.5.1. Exact Methods for TCTP ............................................................................... 11 

1.4.5.2. Heuristic Methods for TCTP .......................................................................... 11 

1.4.5.3. Metaheuristic Methods for TCTP ................................................................... 13 

2. OPTIMIZATION ALGORITHMS ................................................................ 18 

2.1. Teaching-Learning Based Optimization (TLBO)............................................ 19 

2.2. Time-Cost Trade-Off Optimization ................................................................ 20 

2.3. Optimum Solution of TCTP via MAWA-TLBO ............................................ 22 

 



 
 

VI 
 

2.4. Modified Adaptive Weight Approach (MAWA) in Multiobjective 

Optimization .................................................................................................. 24 

2.5. Non-dominated Sorting TLBO Algorithm for Multiobjective Optimization ... 26 

2.5.1. Optimum solution of TCTP via NDS-TLBO algorithm .................................. 28 

2.5.2. Crowding Distance Computation ................................................................... 31 

2.5.3. External Archive ............................................................................................ 31 

3. NUMERICAL EXAMPLES FOR TCTP ....................................................... 32 

3.1. Validating the Algorithms .............................................................................. 32 

3.2. Application of Teaching Learning Based Optimization for Time-Cost  

 Trade-off Problems in Construction Projects .................................................. 33 

3.3. Numerical Examples of MAWA-TLBO ......................................................... 34 

3.3.1. Empirical Example of 7-Activity Project........................................................ 34 

3.3.2. Empirical Example of 18-Activity Project With Five Modes .......................... 40 

3.3.3. Empirical Example of 18-Activity Project With Three Modes ........................ 44 

3.3.4. Empirical Example of 63-Activity Project ...................................................... 46 

3.4. Time-Cost Trade-off Optimization Using Non-Dominated Sorting TLBO 

Algorithm ...................................................................................................... 55 

3.5. Numerical Examples of NDS-TLBO .............................................................. 56 

3.5.1. Empirical Example of 18-Activity Project ...................................................... 56 

3.5.2. Medium-Scale Test Problem .......................................................................... 59 

3.5.3. Large-Scale Test Problems............................................................................. 63 

3.6. Effect of Partial Random Initial Population on NDS-TLBO ........................... 67 

3.6.1. Medium-Scale Test Instances ......................................................................... 68 

3.6.2. Large-Scale Test Instances ............................................................................. 78 

4. CONCLUSIONS ........................................................................................... 83 

4.1. Contributions ................................................................................................. 84 

4.2. Future Research ............................................................................................. 85 

5. REFERENCES ......................................................................................... 86-92 

CURRICULUM VITAE 

 

 



 
 

VII 
 

Master Thesis 

SUMMARY 

 

PARETO-FRONT PERFORMANCE OF MULTIOBJECTIVE TEACHING LEARNING 

BASED OPTIMIZATION ALGORITHM ON TIME-COST TRADE OFF 

OPTIMIZATION PROBLEMS 

 

Mohammad Azim Eirgash 

Karadeniz Technical University 

The Graduate School of Natural and Applied Sciences  

Civil Engineering Graduate Program 

Supervisor: Assoc. Prof. Dr. Vedat Toğan 

2018, 92 Pages 

 

In the real world, there are plenty of problems that require finding the best solution 

meeting many objectives. Multiobjective optimization models are needed to obtain this 

solution. For this purpose, in this study, to perform such a multiobjective optimization 

process, an efficient Teaching Learning-Based Optimization (TLBO) algorithm has been 

employed. Its performance is tested on several construction projects varying from an 18-

activity to 630-activity. The applied model integrates the modified adaptive weight as well 

as non-dominated sorting approaches to find out the Pareto front solution. Furthermore, a 

slight modification is made in the non-dominating sorting version of the classical sole-

TLBO algorithm by adding a certain portion of pre-known solutions to the initial 

population of model in order to achieve an enhancement in the exploration capacity of the 

proposed algorithm. Thus, the Pareto front performance of the utilized model is validated 

re-solving the benchmark optimization problems taken from the literature. Hence, the 

multiobjective optimization model based on TLBO developed in this study can be 

preferred another alternative tool to solve time-cost trade-off problem in construction 

engineering and management. Thereby, the main contribution of this study can be clearly 

seen from the application of TLBO for the first time to solve TCTP problems in the 

construction management field. 

 

Keywords: Teaching Learning-Based Optimization (TLBO), Multiobjective optimization, 

Metaheuristic algorithms, Time-cost trade-off problem (TCTP), Construction 

management. 
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Gerçek dünyada, birçok amacı karşılayan en iyi çözümü bulmayı gerektiren birçok 

problem bulunmaktadır. Bu çözümü elde etmek için çok amaçlı optimizasyon modellerine 

ihtiyaç duyulmaktadır. Bu amaçla, bu çalışmada, böyle bir, çok amaçlı optimizasyon 

sürecinin gerçekleştirilmesi için Öğretme Öğrenme Tabanlı Optimizasyon (ÖÖTO) 

algoritması kullanılmaktadır. Oluşturulan modelin performansı 18 etkinlikten 630 etkinliğe 

kadar değişen çeşitli yapım projelerinde denenmektedir. Model, Pareto-çözümleri elde 

etmek için değiştirilmiş uyarlanabilir ağırlık ve baskın olmayan sıralama yaklaşımlarını 

içermektedir. Ayrıca, modelin ÖÖTO algoritmasının baskın olmayan sıralamayı içeren 

versiyonunda, bir iyileştirme yapabilmek için önceden bilinen çözümlerin belirli bir 

miktarı başlangıç popülasyonuna eklenerek model de küçük bir değişim de yapılmaktadır. 

Böylece, kullanılan modelin Pareto-çözümleri belirleme performansı, literatürden alınan 

zaman-maliyet ödünleşim optimizasyon problemlerinin tekrardan çözülmesiyle 

doğrulanmaktadır. Dolayısıyla, bu çalışmada geliştirilen ÖÖTO'ya dayanan çok amaçlı 

optimizasyon modeli, inşaat mühendisliği ve yönetiminde zaman-maliyet 

ödünleşim(dengeleme) problemini çözmek için alternatif bir araç olarak tercih edilebilir. 

Bu nedenle, bu çalışmanın ana katkısının ÖÖTO'nun inşaat yönetimi alanındaki zaman-

maliyet ödünleşim(dengeleme) problemlerinin çözümünde ilk kez uygulanmasından açıkça 

görülebilir. 

 

Anahtar Kelimeler: Öğretme Öğrenme Tabanlı Optimizasyon (ÖÖTO), Çok amaçlı 

optimizasyon, Metasezgisel algoritmalar, Zaman-maliyet 

Ödünleşim Problemi, Yapım yönetimi. 
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1. INTRODUCTION 

 

During the civilization of the world, people had been carried out many engineering 

activities to construct somethings such as home, temple, building, bridge etc. combining of 

these activities which can be measured and quantified forms project. In other word, project is 

a series of activities to be performed to construct it. Construction is a series of activities 

undertaken by construction companies and consultants, which produce or alter buildings and 

infrastructure. Construction management is to ensure the construction activities handled 

effectively and efficiently. Considering the competitive environment in all industries, 

construction management is becoming vital for both the company and project management. 

The development and progress of the construction industry depends upon realization of the 

project management integrated with an equal concentration on company management. 

Construction management is relatively a young field in the construction industry [1]. 

However, its influence has been eminently considerable. It has become a significant practice 

for increasing the efficiency of construction operations around the world. Competition in the 

construction industry has been rising due to entrance new companies into the market. Hence, 

project management struggles to find the efficient schedule subjected to various parameters, 

for example, time, cost and other operation resources. In project scheduling, finishing a 

project with less time and cost is a crucial factor for planning a project. However, 

accelerating the schedule of the project causes extra cost because of the reduction in activity 

duration which requires the use of additional resources. Simultaneous optimization of direct 

and indirect project costs is known as TCT problem. If a project is lagging behind the 

schedule, decision makers can carry out time–cost trade-off problems (TCTP). TCTP helps 

to become more acquainted with the set of time–cost choices that will guarantee the ideal 

schedule under specific states. Project scheduling computations are dependent on CPM 

(Critical Path Method). An activity is said to be critical if there is no distinction between its 

earliest start time and latest finish times. As soon as the duration of all the activities in a 

project is evaluated, the project duration can be calculated with CPM. In other words, the 

sum of the durations of all activities on the critical path gives the project duration. 

Being in a highly competitive sector, construction project professionals are always 

kept on their toes to minimize the project time, cost and other resources, which affects their 

profitability and margins. Therefore, they try to identify the best balance between the 
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potentially conflicting objectives. In the field of construction management, optimization is 

a very useful tool to meet the desired objectives under the given constraints. Through 

optimization, it is possible to increase the productivity of different components of project. 

Importance of the optimization in construction project was noticed several decades and 

was used for finding the ideal plan and schedules to complete a project.  

Typically, activities may have different execution options (modes) that can contain 

possible combinations of: 1) construction methods, which denote possible construction 

technologies and/or materials; 2) subcontractors’ quotes, which represent the proposed 

duration and cost of performing the activities by subcontractors, 3) crew formations, which 

symbolize feasible arrangements of construction labor and equipment; and 4) overtime 

strategies, which define the length and time of work shifts [2].  

The selection of any mode of execution for each activity leads to a distinct time and 

cost for that activity and affects the overall duration and cost for the entire project. The 

combination of various possible execution modes of activities produces several project 

plans where each project plan has a unique duration and cost. For large projects, the 

enumeration of these alternative project plans is computationally hard, particularly because 

the number of alternatives grows exponentially with the increase in the number of 

activities of the project.  

The purpose of this research is to employ multiobjective based TLBO algorithms to 

deal with the time-cost trade-off problems in construction management field. To develop a 

flexible time-cost trade-off (TCT) model, critical path method (CPM) scheduling in 

MATLAB to be used for obtaining the objective functions of project duration and total 

cost. The software is developed in a way capable of performing CPM scheduling for the 

finish to start (FS) logical relationship. To this end, multiobjective approaches of modified 

adaptive weight approach (MAWA) as well as non-dominating sorting (NDS) concept with 

the mechanism of crowding distance computation is integrated with the proposed TLBO 

algorithm. NDS seeks the satisfactory solution from the non-dominated solutions 

depending on the experience and knowledge of decision-makers. However, MAWA 

converts multiobjective problem to a single-objective problem, and then utilizing a single 

objective optimization approach to find the satisfactory solution. MAWA approach 

provides unique solution as no further interaction with the decision-makers is necessary. 

Crowding distance operator is applied to maintain the diversity and to get out of the pre-

convergence solutions. Moreover, effect of partially randomly generated initial population 
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on NDS-TLBO algorithm with the crowding distance computation is also applied to further 

investigate the exploration capacity of the proposed algorithm. Main logic behind of 

partially randomly generated initial population concept is to add a certain portion of pre-

known solutions into the initial population, which was fully random, generated. This slight 

modification is made to the non-dominating sorting version of the classical sole-TLBO 

algorithm of the model. Thereby, contribution of this thesis can be clearly seen in the 

application of TLBO to this field and also the TLBO-based multiobjective model activated 

in this study provides a glamorous alternative to solving construction time–cost 

optimization. 

 

  Research Motivation 

 

This research has some main motivations: the complex nature of time-cost trade-off 

problems; the inefficiency of traditional optimization methods for solving large-scale TCT 

problems; and the potential use of advanced tools and novel techniques for overcoming the 

limitations of traditional optimization methods. These are briefly described as follows: 

 

1.1.1.  The Complex Nature of TCT Problems 

 

In the literature, De et al. [3] expresses that, discrete time-cost trade-off problem is 

classified as combinatorial NP-hard (Non-Polynomial hard) which is the category of 

problems with no efficient algorithm. The solution to this type of problems exhibit near 

optimum solution complexity and gets worse when the size of the problem grows, the 

computation time for solving it would grow as an exponential function of the problem size 

[3]. As a result, solving large combinatorial problems is very time-consuming and 

prohibitive. The goal in solving such type of problems typically is to find a satisfactory 

near optimum solution within an acceptable processing time, rather than finding the global 

optimum solution that may take a substantial impractical amount of time. 

 

 

 



4 
 

 

1.1.2.  Inefficiency of Traditional Methods for Optimizing Large-Scale Problems 

 

Many optimization models have been proposed to optimize the trade-off between 

time and cost in construction projects. Optimization methods based on mathematical theory 

like linear programming, integer programming, and dynamic programming are the first 

optimization method employed to solve TCT problems. The main features of these 

problems examined previously by using mentioned methods above are relatively small. 

Linear programming is an appropriate method for solving problems with linear time-

cost relationships, but fails to solve problems with discrete time-cost relationships [4]. 

Integer programming and dynamic programming require a lot of computational effort for 

solving more complex project networks or for solving projects with numerous activities. 

Metaheuristic optimization methods, as alternative methods of optimization were 

introduced to address the shortcoming of mathematical optimization methods for solving 

large TCT problems. In recent decades, various modern metaheuristic optimization 

methods including genetic algorithms, simulated annealing, particle swarm optimization, 

ant colony optimization, and shuffled frog leaping optimization have been applied for 

solving TCT problems. Although these alternative optimization methods have some 

advantages over the mathematical optimization methods, and they have been applied with 

success for optimization of many TCT problems.  

 

  Research Objectives 

 

In this study, a multiobjective Teaching-Learning Based Optimization (TLBO) 

algorithm is applied to show the Pareto front performance on solving TCTP problems in 

construction management field. To fulfil this procedure, multiobjective approaches of 

modified adaptive weight (MAWA) as well as non-dominated sorting (NDS) approaches 

are incorporated with the proposed algorithm. In addition to this, to develop a flexible 

time-cost trade-off (TCT) model, critical path method (CPM) scheduling in MATLAB to 

be used for obtaining the objective functions of project duration and total cost. 

Minimization of time and cost of the project are taken into account as the objective 

functions. In the developed software, the finish to start (FS) logical relationship is used to 

perform CPM scheduling. For the purpose of fulfilling the performance evaluation criteria 

on the construction management optimization problems, the Pareto front performance of 
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the basic as well as other version of NDS-TLBO algorithm is verified on the different 

benchmark optimization problems considering the Pareto front solutions. Hereby, the 

MAWA and NDS-TLBO algorithm works effectively and implies considerable 

performance for the optimization of time-cost problems.  

 

  Thesis Organization 

 

The consequence of the thesis is arranged as follows: 

Chapter 1 presents a short introduction about to CPM and followed by the literature 

review. Then the time-cost trade-off (TCT) analysis is mentioned. It discusses solution 

challenges, various categories, and used methods for TCTP, finally. 

Chapter 2 presents the Teaching Learning Based Optimization (TLBO) algorithms, 

and its implementation for solution of optimization problems. Also the modified adaptive 

weight (MAWA) and non-dominated sorting approaches (NDS) are explained.  

Chapter 3 presents TCT analyses of sample problem sets, followed by validation and 

empirical analyses. The results of this chapter would be a basis for chapter 4, where the 

results of metaheuristic methods are compared and discussed. Additionally, effect of 

partial random initial population on NDS-TLBO version is also elaborated in this section. 

Chapter 4 includes the final remarks obtained from the calculations on the solved 

problems, contributions and some evaluations that can bring light on future work. 

 

  Literature Review 

 

Some issues are addressed in this chapter to increase the intelligibility of formed 

multiobjective model. Firstly, critical path method (CPM) are introduced to follow a 

project scheduling process, then  the time-cost trade-off (TCTP) problem is reviewed from 

the point with of literature. Finally features of Teaching Learning Based Optimization 

(TLBO) are explained which was proposed by [5]. 
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1.4.1.  Project Scheduling With Critical Path Method (CPM) 

 

To complete a project all activities of project must be accomplished. Timing and 

order of actions affects the project finishing time. Determination of timing and order of a 

project's activities is known as scheduling, simply. Critical path method is one of the most 

common techniques used for planning and scheduling of project. Through the planning and 

scheduling of a project accomplished with any method developed for this purpose like 

Critical Path Method (CPM) the amount and time of resources such as material, 

equipment, workmanship etc., can be detected before the commencement of the project. 

Some advantages to be achieved by using CPM are indicated in [6]: 

• CPM detects the critical activities. Knowing of those has vital importance to keep 

the project on schedule.   

• CPM identifies ideal scheduling from the point of view of both time and cost in 

choosing methods, equipment, materials, crews, and work hours. 

• CPM effectively follows in association with network the changing on the activity 

execution modes. Two distinct network types known as activity on arrow and activity on 

node are performed in CPM. As their name implies, in the first, the activities are shown on 

arrows connected to the nodes. However, in the second, the activities are directly 

represented by nodes. 

In this thesis, activity on node (AoN) is used as network type for the scheduling of 

the construction activities. When both network types, activity on arrow (AoA) and activity 

on node (AoN) are compared, it can be stated that AoA needs more effort than AoN to 

generate of activities. Using of activity on node diagrams is more convenient way to define 

the logical relationships and lags.  

From the discussion of arrow and node diagrams, it can be found that AoN has some 

substantial advantages over arrow networks:  

 Easy drawing  

 Absence of dummy activities used to straighten out the logic.  

  Ability of taking into account the lags between activities without the addition of 

more activities.  

  Easy applicability of three other relationships (start to start, finish to finish, and 

start to finish) in contrast to arrow networks.  
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Some terms used when planning and scheduling of a project by CPM are briefly 

explained as follow [7]: 

• Activity: refers to task which are discretely defined.  

• Critical Path: shows the sequence of activities taking the longest time, which 

determines the project duration.  

• Duration: expresses the spent time for completion of an activity from the start of 

its.  

• Early Start Date (ES): depending on the logical relationships among its 

predecessors, demonstrates the earliest date that an activity can start.  

• Early Finish Date (EF): based on its duration, and logical relationships among its 

predecessors, represents the earliest date that an activity can finish.  

• Late Start Date (LS): refers the latest start date allowed for an activity not to delay 

the project completion date.  

• Late Finish (LF): refers the latest finish date allowed for an activity not to delay the 

project completion date.  

• Total Float: demonstrates the amount of delay that an activity in the schedule 

without adversely affecting the critical path.  

• Free Float: refers the amount of delay for an activity before it adversely affects 

another activity.  

• Forward Pass: specifies the stage in which the early start and end dates of all 

activities are calculated.  

• Backward Pass: specifies the stage in which the late start and end dates of all 

activities are calculated starting from the project end date set by the forward pass 

calculation.  

 

1.4.2.  Logical Relationships in CPM 

 

In addition to traditional finish-to-start (FS) relationship which is generally adopted 

for activities relationships, three other relationships, start-to-start (SS), finish-to-finish 

(FF), and start-to-finish (SF), can be also handled in CPM to establish of networks.  

a. Finish-to-start (FS) relationship: The following examples clearly express the key 

rationale behind the definition of FS relationship for the activities. : 

The concrete cannot be placed (poured) until the formwork has been built. 
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b. Start-to-start (SS) relationship: Explanatory examples are given below for this type 

of relationship. 

Excavation for the foundation cannot start until clearing and grubbing begins 

(usually with a certain lag; i.e., a certain percentage is completed).  

c. Finish-to-finish (FF) relationship: Example of this type is as follows: 

Backfilling a trench cannot finish until the pipe in the trench has been laid. 

d. Start-to-finish (SF) relationship: Considering the construction projects, it can be 

noted that SF relationship is very rare and even does not exist.  

 

1.4.3.  Time-Cost Trade-off Problems (TCTP) 

 

As it is clear that, both the contractor and the client are willing to complete the 

project on or ahead of the schedule. Also, completing on or under the targeted budget is 

another desirable accomplishment. For this reason, concurrent minimization of time and 

cost objectives is unavoidably favorable for both the contractor and client. Hence, the 

Critical Path Method (CPM) is a useful scheduling technique only when the project 

deadline is not fixed. To use CPM for a project with a fixed deadline or for a project which 

is running behind schedule, the TCT analysis is implemented to meet the project deadline. 

In the TCT analysis some of the activities on the critical path are substituted with their 

shorter modes of construction to save time. In addition, non-critical activities are relaxed to 

save cost [7].  

Figure 1.1 indicates the relationship between the cost and time. It can be observed 

from this figure that with increase in project duration direct cost decreases while indirect or 

overhead cost increases. 
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Figure 1.1. Project Time-Cost Relationship 

 

 

1.4.4.  TCT Optimization Challenges 

 

Optimization is the process of trying to find the best solution to a problem that may 

have many possible solutions. Once the search space of the problem becomes too large for 

the calculating power of available computers, finding the optimal solution among all other 

feasible solutions to the problem may take a substantial and an impractical amount of time. 

Evaluating each alternative requires recalculation of the schedule using the critical path 

method (CPM) and reassessment of total project cost. Exhaustive enumeration is, 

therefore, not a feasible and practical solution even with very fast computers [8]. In fact, 

this process can be shortened with existing methods for optimization to find best 

combination of time and cost. However, although these methods were applied on solving 

time-cost trade-off problems of various kind of small scale projects, for the TCTP of large 

projects they require much more computational effort due to structures of their. 

 

1.4.5.  Optimization Methods for TCTP 

 

To solve the TCT problem many multiobjective optimization models have been 

developed in the literature since finding the optimal solution of it results in very 

cumbersome computational effort, which requires heavier calculation. In parallel with the 

developing in computers and numerical methods, different optimization techniques have 

been applied to solve the TCTP. The common optimization algorithms methods employed 
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for the solution of TCT problem are exact, heuristic, and metaheuristic. Exact algorithms, 

as the name implies, seeks the all global optimal solutions in the solution space for the 

defined problem. Likewise, they require huge amounts of calculations which, thus, require 

super personal computer (PCs) and additionally mind boggling coding techniques. Due to 

the ability of detecting the global optimum(s), they are preferred in order to show the 

optimality of the obtained results for the problem although they need more computational 

efforts. Linear programming, mixed-integer programming, dynamic programming, etc. are 

some examples for the exact algorithms to be used to solve TCTP.  

Heuristic algorithms apply simple rules unlike the exact algorithms to produce 

solution(s) to the problems examined. Owing to this they can be used easily for the 

complex problem with less effort. However, for these algorithms, globality of the obtained 

result is always questionable since they can generally find the local global solutions or the 

near global ones. This methods use an algorithm to generate the feasible solution. In 

general, a feasible solution is not acquired over the span of the development heuristics 

unless the conclusion of the procedure is achieved. 

 Nevertheless, the algorithms called as metaheuristics and based on the nature events 

have been implementing to solve various problems in the distinct engineering fields. The 

main features of these algorithms are to numerically represent the natural events [8]. Since 

the metaheuristic algorithms improve the quality of the obtained solution iteratively due to 

stochastic nature of their, they might not stuck into the local optimum. This latter feature 

improves the detection chance of global optimum solution searched by the metaheuristic 

algorithms. Like heuristics, metaheuristic algorithms cannot guarantee the optimality of the 

achieved solution and requires substantial amount of computational efforts. As mentioned 

above, the algorithms into this type of optimization methods simulate the evolutionary 

computation and swarm intelligence. They are very useful tool for problems that achieving 

the global solutions are very difficult, as they find the near optimal solutions instead of 

global ones. Among others, genetic algorithms (GA), ant colony optimization (ACO), 

particle swarm optimization (PSO), and simulated annealing (SA) are most known 

metaheuristic algorithms.  
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1.4.5.1. Exact Methods for TCTP 

 

Mixed-integer programming was applied for the first time to solve the TCT problem 

in a study carried out by Meyer and Shaffer [9]. Then, in another study, a flexible mixed-

integer model was proposed to minimize the time-cost objective function [10]. Their model 

is able to deal different type of objective functions including linear, piecewise linear, or 

discrete. Moreover, this model takes the completion deadline as constraint to obtain the 

optimal total cost.  

De et al. [3] addressed disadvantage of the models developed previously for the 

solution of discrete TCT problem through literature review. Two solution models based on 

dynamic programming, that were denoted as a centralized approach and modular 

decomposition approach, were implemented in [3] to identify the solution of TCT 

problems. Moreover, they also used parallel modules in the second solution models in their 

optimization process. 

Demeulemeester et al. [11] developed an exact solution model for discrete TCT 

problem in Visual C++ platform subject a time restricted scheduling. Their model is based 

on branch and bound optimization model improved by a horizon-varying approach. They 

evaluated the qualities of convex piecewise linear underestimations that was calculated for 

the discrete TCT curves by using two different rules they developed. The results obtained 

from the numerical experiments carried out with their model were confirmed through the 

factorial experiment, and were compared to those reported by Demeulemeester et al. [12].  

Vanhoucke [14] examined the time/switch constrained discrete TCT problems 

handled with by Yang and Chen [13] in advance. These constraints refer the specific start 

time and inactive time-intervals enforced to the day, night, and weekend shifts of the 

activities. In the point of light of the lower bound calculation approach developed by 

Demeulemeester et al. [11], they offered a new variant of branch and bound algorithm. . 

 

1.4.5.2. Heuristic Methods for TCTP 

 

A logical systematic procedure based upon intuitive logic and analysis was 

developed by Siemens [7]. He named the method as Siemens Approximation Method 

(SAM), and denoted as a heuristic method. The model converts the convex nonlinear TCT 

problems to linear that approximate them with multiple curvilinear parts. SAM begins with 
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the establishment of the project network, and then follows a series of rules to accelerate the 

activities having least additional cost. The results of this model show good harmony with 

those obtained with exact algorithms. However, Siemens [7] indicated that since the model 

ignores number of different paths the activities belong to, and works with the minimum 

cost slope considerations, it might produce an over shortened project duration beyond the 

intended amount. 

The cost-slope method that is the other name for SAM is a simple heuristic approach 

for solving TCT problems. This method shortens the project duration assuming that the 

relationship between time and cost is linear.  

According to this assumption, the cost slope of an activity is defined as the rate at 

which the direct cost increases when its duration is shortened by a unit of time .The 

detailed steps of the cost-slope method are as follows [6]: 

1. Make use of normal durations and costs for all activities. 

2. Construct the CPM and determine the critical path. 

3. Eliminate all non-critical activities. 

4. Obtain normal/crash durations and costs for all critical activities. 

5. Compute and obtain the “cost-slope” of each critical activity: 

 

Crash Cost - Normal Cost
Cost Slope =

Crash Duration - Noraml Duration
 

 

6. Identify the critical activity with the least cost slope and possible reduction in 

duration. 

7. Shorten the duration of the identified activity until its crash duration is achieved 

or the critical path changes. 

8. If the network has more than one critical path, we need to shorten both of them 

simultaneously. This can be done by shortening a single activity that lies on all 

paths or by shortening one activity from each path. The option to choose is 

determined by comparing the cost slope of the single activity versus the sum of 

cost slopes for the individual activities on all critical paths. 

9. Calculate the direct cost increment due to activity crashing by multiplying the cost 

slope by the time units crashed. Add the additional cost to the total direct cost. 

10. If float times are introduced into any activity, relax them to reduce cost. 
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11. Plot one point (project duration versus total direct cost) on a figure. 

12. Continue from Step 2 until no further crashing is possible to the project. 

13. Plot indirect project costs on the same figure. Add the direct cost + indirect cost 

and plot the total cost curve. 

14. Get the optimum TCT strategy as the one with minimum total cost. An example 

of a complete case study solved based on the cost-slope heuristic method. 

Vanhoucke and Debels [15] search three augmentation of the discrete TCT problem; 

first is time / switch constraints [13], second is work continuity constraints [16], and the 

third one is net present value maximization [17]. They give another metaheuristic 

algorithm considering activity on arrow (AoA) network schedule programmed in the 

Visual C++. The heuristic segment of the exerted algorithm includes an emphasis on 

neighborhood hunt and maintain diversity attempt. The second part of their algorithms 

incorporates a dynamic programming which rises the time span of non-critical activities 

whilst, achieving the favorable finishing due date. The compared results reveals that, the 

proposed algorithm is applicable on net present value versions of the discrete TCT 

problem. 

Mubarak [19] outlined 9 techniques among the others that was stated to be more than 

90 [18] and that was used to shorten a project schedule. 

 

1.4.5.3. Metaheuristic Methods for TCTP 

 

Feng et al. [20] presenting the inadequacy of the current techniques in adapting to 

large-scale TCT problems, developed a more effective model depending on the rule of 

Holland’s [21] genetic algorithm (GA). They used two chromosomes containing the 

information related to normal and crash options of the activities in own model. Hence, the 

objective function values of solutions as per their insignificant distances to the convex hull 

were determined.  

Goldberg and Segrest [22] approve their algorithm later on improving computer 

program (TCGA) with an interface outlined in Microsoft Excel. The results obtained by 

using this algorithm indicates that it is capable of finding the optimal solutions with a high 

percentage for the construction project with 18-activity forming a discrete TCT problem. 

The GA demonstrate proposed by Zheng et al. [23] tries to trade-off the genetic drift 

fact by decreasing the probability stalling out into the neighborhood optima.. Thus, Zheng 
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et al. [23] combines a modified adaptive weight approach (MAWA) to calibrate the need 

of fitness value regarding the nature of the previous generation. As the generations raise, 

modified adaptive weight approach (MAWA) directs a diminishing formwork for the 

mutation rate to counteract early stopping conditions. This model outperforms the past 

algorithm particularly for the problems with bringing smaller overhead costs; On the other 

hand, it does not have the competency of applying the complete Pareto front for any of the 

observed conditions. 

Being first introduced by Colorni et al. [24], Ng and Zhang [25] examined the 

multiobjective TCT problem using the ant colony optimization (ACO). They adopted the 

modified adaptive weight approach (MAWA) to assess the fitness function solutions. The 

excellence of their algorithm is tried against other explanatory strategies that were 

examined by Elbeltagi et al. [26] previously. The conclusion reveals that the applied ACS 

algorithm provides a satisfactory solution for tackling the TCT problem with substantially 

fewer necessities of computational assets. 

Xiong and Kuang [28] made different endeavor toward integrating Zhang et al. [27] 

modified adaptive weight approach (MAWA) with ant colony algorithm. In this technique, 

two options are made to settle on conceivable choices. As per the enrolment of an arbitrary 

variable, the main determination is made with respect to a maximization criterion, and 

alternate includes a probability distribution function.  

Afshar et al. [29] demonstrated the discrete TCT problem as a graph. They developed 

an ant colony based multiobjective optimization model. Each solution in ant colonies 

explored one of objective of TCT problem. Combining this information coming from an 

ant colony, a multi-colony non-dominated archiving ACO was formed to solve the TCT 

problems. Effectiveness of model was checked in terms of the results obtained by [20] and 

[23]. The model significantly outperformed over the compared algorithms. 

A strong algorithm in considering complex major scale problems was introduced by 

[30]. Elbeltagi et al. [30] reviewed shuffled frog leaping (SFL) because of its adequacy in 

combining particle swarm optimization (PSO). In [30], a search-acceleration parametric 

study was carried out in order to better realize the results. Numerical problems are adopted 

to implement modified SFL (MSFL) utilizing Visual Basic, Microsoft project, and 

Microsoft Excel programs and are compared to basic SFL and GA algorithms. The results 

of applied MSFL indicate its efficiency to solving this type of problems.  
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Five forms of a simulated annealing algorithm employing activity on node (AoN) 

scheduling network is analyzed by [31]. Anagnostopoulos and Kotsikas [31] look for 

exerting an inquiry strategy practically equivalent to annealing procedure of dissolved 

materials. Moreover, they use analysis of difference (ANOVA) and Duncan Multiple 

Range Test (DMRT) to gauge quality and effectiveness of the solutions presented by many 

problem factors. Test instance sets are produced randomly utilizing the RanGen2 program 

for the SA algorithms coded in the Visual Basic programming language. In the end, they 

rank the SA variations as per the results of the Duncan test and predict certainty interval of 

the optimum solution for the generally advantageous and the most noticeably bad 

algorithms. 

The application of PSO algorithm to investigate crashing options of the cost and 

deadline TCT problems is analyzed by [32]. The purposed Yang‘s [32] model is to produce 

Pareto front solution, in order to help decision makers in running further “what if” analysis. 

The coding of this model is performed in MATLAB optimization engine and is 

implemented into a numerical simulation, also a real-life highway restoration project. The 

study involves a numerical example of an 8-activty network, and the case-study including 

28-activity. Average percent deviation (APD) per ten runs along with adopting suitable 

parameters is taken into account to measure the performance of the proposed algorithm. 

Eventually, the efficiency of PSO algorithm is approved satisfying a negligible percentage 

deviation.  

In a novel approach, a Fuzzy-based PSO for solving time-cost-quality trade-off 

problems with nondeterministic input data are presented by [33]. Zhang and Xing [33] 

unraveled the numerical example of fuzzy multi-attribute useful technique derived from 

[34]. The model is installed in the restricted fuzzy arithmetic operations to improve the 

PSO algorithm by creating solutions that ensure maximum quality whilst calling for 

minimum time and cost. Assuming time, cost, and quality of the options as triangular fuzzy 

numbers, coding of utilized PSO algorithm is performed in Visual C++. For each mode 

combining, fuzzy multiobjective particle swarm optimization (FMOPSO) utilizes fuzzy 

feature beneficial for producing composite fuzzy useful values. The proposed PSO 

algorithm combines the mean integration representation (GMIR), in order to find the 

solution with the substantial composite fuzzy benefit. The algorithm is investigated on a 

three modal 13-activity network, and the compared results to fuzzy-GA algorithm illustrate 

the effectiveness of the FMOPSO. 
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Meyer and Sheffer [35] had unraveled time-cost trade-off problem taking into 

account both linear and discrete relationship between time and cost, by utilizing mixed 

integer programming.  On the other hand, integer programming needs lot of process time 

when the numbers of options to finish activity rises. 

In addition to trade-off between the time and cost for a project planning, it is also 

possible to adopt another criterion such as quality. Adding the quality into the TCT 

problem as a new target introduces a new problem known as the time cost-quality trade-

off. Zhang and Xing [33], Babu and Suresh [36], Khang and Myint [37], Tareghian and 

Taheri [38], Kim et al. [39], Mungle et al. [40], Tavana et al. [41], and Monghasemi et al. 

[42] examined this type of trade-off problem via their models. Furthermore, keeping the 

availability of resources in mind, Hegazy [8], Liu and Wang [43], Ghoddousiet al. [44], 

Afruzi et al. [45] and Rostami et al. [46] solved TCT with restricted resource.  

Sonmez and Bettemir [47] studied about hybrid methods for discrete time-cost trade-

off problem (DTCTP) analysis.  They utilized different methods for DTCTP problem like 

genetic algorithm (GA), hybrid metaheuristic (HMH), simulated annealing (SA), quantum 

simulated annealing (QSA) and Hybrid algorithm (HA). Hybrid Algorithm (HA) was 

utilized to ten benchmark optimization problems ranging from 18 to 630 activities. They 

compared the results obtained by different methods and found that use of SA and QSA 

advances the convergence of GA while HA enriches the DTCTP performance. 

Aminbakhsh and Sönmez [48] introduce an efficient method based on particle swarm 

optimization (PSO) for the solution of large-scale discrete time–cost trade-off problem 

(DTCTP). In this study, Siemens method is initially used to produce a certain portion of 

initial population and incorporated with PSO model to accelerate the searching process. 

Numerical simulation results demonstrated that the introduced new model is able to 

produce much better results in point of view of the quality of solution obtained, and the 

time spent required to detect him as compared to the previous models, particularly for 

medium and large-scale TCTP problems.  

Bettemir and Birgönül [49] adopted minimum cost-slope method for solving the 

discrete TCT problem. They addressed that for the discrete TCT problem, since crashing 

modes are also discrete; they disrupt the linearity in the cost function. Due to this, the 

application of the minimum cost slope method becomes not suitable for the discrete TCT 

problem. 
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Abdel Raheem and Khalafallah [50] have presented the development of a new 

evolutionary algorithm, named “Electimize,” that is based on the simulation of the flow of 

electric current in the branches of an electric circuit. The main motive in their research is to 

provide the construction industry with a robust optimization tool that overcomes some of 

the shortcomings of existing evolutionary algorithms. 

Ahmet-Baykal Hafizoğlu [51] first considered the deadline problem for the discrete 

time/cost alternatives. Branch and Bound Algorithm and several heuristic procedures has 

been proposed.  All  procedures  are  based  on  the  Linear  Programming Relaxations  of  

the  problem. The properties of the Linear Programming Relaxation are defined and used 

them in designing the proposed algorithms.  Afterwards, a Discrete Time/Cost Curve 

Problem is taken into account. This approach uses the successive solutions of the Deadline 

Problem. 

Aminbakhsh [52] generated a hybrid-PSO model integrating the benefits of the 

modified-SAM method with PSO algorithm. Integration process of the required algorithms 

was managed via C++ programming language through the Microsoft Visual Studio 2010. 

To validate the potency of the PSO optimizer, benchmark optimization problems taken 

from the literature were resolved using the proposed algorithm and a comparison was also 

presented for the results obtained with the previous models. Moreover, mixed integer 

programming using the AIMMS optimization software is applied to discover all the 

optimal solutions of the example problems to assess the performance. To measure the 

quality of the acquired solutions, optimal solutions and the average deviations are 

evaluated for multiple experimental runs. The results indicate that the proposed algorithms 

outperform the previously proposed models. 

De et al. [56] demonstrate that any exact solution algorithm for the discrete TCT 

problem would quite often show an exponential poor scenario adversity; in that, the 

computational time would go up in an exponential way as the number of the problem gets 

increased. It has been inferred that exact algorithms are inclined to get into stuck in 

neighborhood optima in non-convex solution spaces [56, 20, 57, and 29]. Besides, the 

researchers using heuristic algorithms recognize that they are similar to exact procedures, 

however, can't deal with large-scale problems effectively [7]. Eventually, the main 

shortcomings of the current metaheuristic algorithms are seen as the probability of 

stagnated into local optima [23, 47].  



 

 

 

2. OPTIMIZATION ALGORITHMS 

 

This chapter is devoted to multiobjective teaching learning based optimizer (TLBO). 

Initially, theoretical properties of contemporary TLBO algorithm is presented for solution 

of time-cost trade-off benchmark optimization problems, contributing specific emphasis on 

time-cost extension of these analyses. To develop a flexible time-cost trade-off (TCT) 

model, critical path method (CPM) scheduling in MATLAB to be used for obtaining the 

objective functions of project duration and total cost. Summation of all the activities on the 

critical path is equal to the total project duration. The software is utilized to perform CPM 

scheduling for the finish to start (FS) logical relationship to obtain the project duration 

objective function. To this end, the purpose of this research is to employ multiobjective 

TLBO algorithm to handle the time–cost trade-off problems. It also includes the 

application of modified adaptive weight approach (MAWA) as well as non-dominating 

sorting (NDS) concept with the mechanism of crowding distance computation. As it is 

clear that, optimization techniques being used for single objective optimization for several 

years. Afterwards, the unification of more than one objective in the fitness function has 

finally become popular in the research studies. This unification of more than one objective 

in the fitness function is called multiobjective function. In the present work, minimization 

of time and total cost of the project is taken into account as bi / multiobjective functions. 

For fulfilling time-cost trade-off optimization, a multiobjective optimization approach is in 

need. Therefore, initially, a classic modified adaptive weight approach (MAWA) is utilized 

to unravel the various benchmark optimization TCTP problems. In spite of being the most 

simplistic approach, MAWA can achieve near optimum solutions as no further interaction 

with the decision-makers is required. This approach simply assigns weights to each 

objective function and combines them into a single objective function. However, the 

performance of the modified weighting approach becomes worst and is not capable of 

exploring the global optima whenever applied to more complex medium as well as large 

scale problems. Hence, in this thesis, to overcome this deficiency of MAWA, an effective 

and more promising non-dominating sorting (NDS) concept and the mechanism of 

crowding distance computation is also adopted. As it is obvious, nowadays, instead of 

MAWA approach, the NDS superior approach is broadly being acknowledged in solving 

the mentioned TCTP problems. In contrast to MAWA approach, there is no unique 
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solution provided by NDS approach, but Pareto front solutions are produced and selected 

by comparing two solutions to each other. This NDS approach seeks the satisfactory 

solution from the non-dominated solutions depending on the experience and knowledge of 

decision-makers. The employed multiobjective TLBO algorithm can find out the Pareto 

front solution which provides flexibility to planners and decision makers in making 

efficient time-cost decisions. The concept of the Pareto front solution is the commonly 

accepted tool for comparing two solutions in multiobjective optimization that have no 

unified criterion with respect to optima. Considering the number of activities and selecting 

options for each of the activities, usually the selection has not one unique solution, but it 

consists of a set of solutions that are not preferred to each other and are known as Pareto 

solutions. In addition to this, to develop a flexible time-cost trade-off (TCT) model, critical 

path method (CPM) scheduling in MATLAB to be used for applying multiobjective TLBO 

optimization engine. Thereby, contribution of this thesis can be clearly seen in TLBO 

application on the construction management filed and also the development of the TLBO-

based multiobjective approach in this study secures superiority to solving construction 

time–cost optimization. The Pareto front performance of MAWA-TLBO and NDS-TLBO 

are compared to those previously presented models with regard to the average percent 

deviation (APD) and optimality of the obtained solutions. The results reveal that NDS-

TLBO is more effective as compared to the original MAWA-TLBO and other state-of-the-

art algorithms. Furthermore, the effect of partial random initial population on NDS-TLBO 

for time-cost trade-off optimization problems is investigated to demonstrate the variation 

on exploration capacity of the proposed algorithm. This new approach is implemented on 

the non-dominated sorting version of the classical core-TLBO algorithm. 

 

  Teaching-Learning Based Optimization (TLBO) 

 

Like other metaheuristic algorithms, TLBO [60] was also proposed as a population-

based algorithm. "Teaching" phase, which is the first mode of TLBO, creates randomly 

requested solutions of focuses called learners inside the inquiry space. Afterward, a learner 

being the most qualified is taken into account as the teacher. He / she offers his or her 

insight to the learners, in this way the others get huge information from the teacher. The 

learners also learn by interacting among them. After various successive Teaching-Learning 

cycles, where the teacher passes on information among the learners and raises their insight 
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near her or his level, the dispersion of the arbitrariness inside the hunting space winds up 

plainly smaller and smaller stretching around a point embraced as the teacher. 

Convergence over a solution implies that the knowledge level of the entire class indicates 

smoothness. 

TLBO that was proposed by Rao et al. [60] and also Rao and Savsani [61] simulates 

the influence of a teacher on the output of learners in a class. It has emerged as one of the 

simple and efficient techniques for solving single-objective benchmark problems and real 

life application problems in which it has been empirically shown to perform well on many 

optimization problems [62-65]. These are precisely the characteristics of TLBO that make 

it attractive to extend it to solve multiobjective problems (MOPs) [63, 64, 66-68]. 

TLBO algorithm has already been effectively exerted to numerous engineering 

optimization problems. Among them, TLBO algorithm has been utilized in electric power 

generators under various targets, for example, energy cost, emission, electrical energy 

misfortunes, voltage deviations, and so forth [67, 69, and 70]. Cooling limit and efficiency 

coefficient of cooler is taken as destinations to improve thermoelectric cooler by Rao and 

Patel [71]. Optimization for some structural engineering problems, i.e., truss frameworks, 

I-beams, grillage structures are done underweight obeying stress, deflection and frequency 

constraints [65, 72-74]. 

TLBO algorithm proceeds with two basic modes; (i) teacher phase and (ii) learner 

phase. In the former phase, the class learns through the teacher. However, in the latter, 

learning is carried out with the interaction among the students in the class. Analogously, all 

students (learners) represent the population for an optimization algorithm; the subjects to 

be taught are considered as the design variables of the optimization problem; exam result 

of the learners gives the ‘fitness’ value for that corresponding subject to be taught.  

 

  Time-Cost Trade-Off Optimization 

 

The main goal of a discrete TCT optimization problem is to determine a set of time-

cost alternatives which provide an optimal balance between the time and cost for project 

scheduling under the specific conditions. The TCT analysis is implemented to meet the 

project deadline for a project with a fixed deadline or for a project which is running behind 

schedule. As mentioned above, TCTP mainly concentrates on selecting appropriate options 
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for every activity to obtain the objective of time and cost of a project. The objective of time 

of a project can be calculated according to Eqns. (1)–(4). 
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Where, T is the total time duration of the project and maximization of which is one of the 

objectives of TCTP. It represents the complete time of critical activities placed on the 

critical path of the project activity network. ESj and EFj are earliest start time and earliest 

finish time, respectively; pj is immediate predecessor of activity j; ti 
(k) is duration of 

activity i for the kth option; and xi
 (k) is index variable of activity i. If xi

 (k) =1, then activity i 

performs the kth option, while xi
 (k) = 0 means not. The sum of index variables of all 

options should be equal to 1. Activity 0 (n+1) is the only dummy activity. 

The total cost of a project composes of direct cost and indirect cost. Sum of direct 

cost of all activities within a project network gives the direct cost. Besides, indirect cost 

depends on the project duration. Thus, indirect cost increases as the finishing date of a 

project is getting longer. Afterwards, Eqns. (5)–(7) are applied to calculate the total cost of 

a project. 
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where DC  and IC , respectively, are the total direct and indirect costs of a project; C is the 

total cost of a project; dci 
(k) xi 

(k) shows the direct cost of activity i under the kth option; and 

ICR is the indirect cost rate of a project. 
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  Optimum Solution of TCTP via MAWA-TLBO 

 

The solution of TCTP employing TLBO process is summarized in five steps as 

follows:  

Step I: Define the number of learners (population size) in the class and the maximum 

number of iterations (stopping criteria) to initialize the TLBO algorithm.  

Step II: Fill the initial matrix (class; CL) with pn (student or population size) number 

of solution vectors that contains dn number of randomly generated design variables (Xi) 

between the upper ( max
iX ) and lower ( min

X i ) limit of the solution range (Eq. (8)). 

 

dniXXX iii ,,maxmin 1  (8) 

 

Thus, initial matrix (CL) can be written as: 
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In which each row of the matrix is a candidate solution of TCTP problem that is 

corresponded two objective function values associated with time (ft (X)) and cost ((fc (X))). 

 



























)(),(

)(),(

)(),(

)(),(

)(

pncpnt

pncpnt

ct

ct

ff

ff

ff

ff

f

XX

XX

XX

XX

X

11

22

11

  (10) 

 

Step III: Apply “teacher phase (tp)” of the TLBO algorithm. Due to teacher has the 

best knowledge, the variables with minimum objective function is assigned as a teacher 
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(Xteacher) of the class. Because of the fact that TCTP problem is a multiobjective, to 

determine the teacher, Eq. (19) is taken into consideration. 

 

Xteacher = fmin (X)  (11) 

 

Then, knowledge of the teacher is used to increase the capacity of the whole class. 

The main aim is to increase of the mean (Xmean) of the class. For that reason the equation of 

new students is found, according to teacher and mean of the class as seen in Eq. (12). 

 

Xtp
new, i = Xold, i + rand (0, 1). (Xteacher -TF. Xmean) (12) 

 

where TF represents teaching factor defined as  

 

TF = round [1 + rand (0.1)]   → {1- 2} (13) 

 

and it takes a value 1 or 2 depending on the uniformly distributed random numbers 

that are within the range [0, 1]. If the new solution (Xtp
new, i) is better than the old one in 

point of the objective function (Eq. (19)), the new solution is accepted.  

Step IV: Proceed with the “learner phase (lp)” of the TLBO algorithm. As it stated 

above, students also have an important role in the learning process by communication, 

interaction, investigation, etc. This interaction can be expressed as follows: 
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where Xi and Xj are randomly selected learners that are different each other. If the new 

solution (Xlp
new, i) is better, it is replaced with old one.  

Step V: Check the stopping criterion. This criterion usually is defined as the 

maximum iteration number. If the stopping criterion is satisfied, the optimization process is 

terminated, otherwise the iteration process continues from the step III.  
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  Modified Adaptive Weight Approach (MAWA) in Multiobjective 

Optimization 

 

This approach simply assigns weights to each objective function and combines them 

into a single objective function. It is the approach which has got the simplest formulation 

and easy to be implemented. In spite of being simple one, is able to achieve optimum or 

near optimum solutions as no further interaction with the decision-makers is needed. 

Modified adaptive weight approach (MAWA) proposed by Zheng et al. [27] is utilized in 

this study to solve the multiobjective problem. To identify adaptive weight for each 

objective, MAWA benefits the information from the existing set of solutions. For MAWA, 

the formulations are expressed through the following four conditions [4]: 

 

1. for Zt
max ≠ Zt

min
 and Zc

max≠ Zc
min 

 

vc = Zc
min / Zc

max
 − Zc

min 

(15) 

vt = Zt
min

 / Zt
max − Zt

min 

v = vt + vc 

wt = vt / v 

wc = vc / v 

2. For Zt
max = Zt

min
 and Zc

max = Zc
min 

 

wt = wc = 0.5 (16) 

 

3. For Zt
max = Zt

min
 and Zc

max≠ Zc
min 

 

wt = 0.9 

(17) 

wc = 0.1 

 

4. For Zt
max ≠ Zt

min
 and Zc

max = Zc
min 
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wt = 0.1 
(18) 

wc = 0.9 

 

where Zt
max and Zt

min are maximum and minimum values for the objective of project 

duration, respectively, in the current iteration. Similarly, Zc
max and Zc

min are maximum and 

minimum values for the objective of total direct cost, respectively, in the current iteration. 

vt and vc are ratio between the minimum value and difference between maximum and 

minimum points for the objective project duration and total direct cost, respectively. wc is 

weight for the objective of total direct cost, and wt is weight for the objective of time. 

These weights adjust itself with adaptive manner. It means that their values changes 

depending on the performance of the current population. According to MAWA, the 

following equation is evaluated to assign fitness to each solution: 

 

where x shows any candidate solution in the current generation; f(x) is the fitness of that 

solution; Zc and Zt represent the total cost and the time of the xth solution, respectively. r is 

a small positive random number between 0 and 1; wc, and wt  are the adaptive weights for 

cost and time. To avoid a case of Zc
max

 = Zc
min

 or Zt
max

 = Zt
min, r is added in Eq. (19) [27]. 

The flowchart of the process can be seen in Figure. 2.1. 
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Figure. 2.1. Flowchart of the MAWA-TLBO algorithm for TCTP 

 

 

  Non-dominated Sorting TLBO Algorithm for Multiobjective Optimization 

 

As it is obvious, nowadays, instead of modified adaptive weight approach (MAWA) 

approach, this non-dominating sorting (NDS) superior approach is extensively being 

acknowledged in unraveling the different benchmark optimization TCTP problems. In 

contrast to MAWA approach, there is no unique solution provided by NDS approach, but 

Pareto front solutions are produced and selected by comparing two solutions to each other. 

This NDS approach seeks the satisfactory solution from the non-dominated solutions 

depending on the experience and knowledge of decision-makers. The domination concept 

defined as: design A dominates design B if it is better in at least one criterion and not 
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worse in all other objectives Deb et al. [75]. The process of sorting designs variables based 

on dominance is called non-dominated sorting (NDS). At any phase in an optimization run, 

a population or repository of "current" designs is kept up. At each progression, every 

feasible design that is not dominated by some other designs in the population (or archive) 

is given the rank of 1. These are the just non-dominated designs in the population. At that 

point, these designs are adroitly expelled from the repository, and the rest of the designs 

are judged for domination. Those that are not dominated by any of the rest of the designs 

are given the rank of 2. The method is repeated, re-positioning the rest of the designs after 

eliminating non-dominated designs, to build up ranks 3, 4, and so on. As the run 

progresses, new designs will dominate and replace other designs on a series of local Pareto 

fronts. The final result will regularly be a combination of variables that are not 

overwhelmed by any other designs and converge towards the Pareto front. From this bunch 

of designs, one can pick up the design that best suits the present requirements or those that 

move towards hunting. 

NDS-TLBO algorithm comprises remarkable features of NDS approach and TLBO 

algorithm to unravel multiobjective optimization problems and to find out a bunch of 

diverse solutions. NDS approach and crowding distance computation mechanism proposed 

by Deb et al. [75] are responsible to handle objectives effective and efficiently in NDS-

TLBO model. Besides, the teacher and learner phases of TLBO guarantee the exploration 

and exploitation of the searched solution space.  

The initial population including predefined P number of students is arranged with the 

non-dominance concept. Application of NDS approach assigns a rank value to the each 

solution. The higher rank implies the higher superiority in accordance with the non-

dominance concept. However, it cannot be stated anything about the dominance among the 

solutions which are into the same rank. To describe the excellency of these solutions 

crowding distance metric is utilized. Ultimately, all solutions are kept up in the external 

archive and the learner with the highest value of rank and crowding distance is adopted as 

the teacher of the class. Once the teacher is chosen the process continues according to the 

teacher phase of the TLBO algorithm. At the end of the teacher phase process of TLBO P 

updated solutions are created. Combining these updated solutions with P solutions in the 

external produces 2P solutions. To go on the learning phase of TLBO, P numbers of best 

learners are chosen from the 2P solutions according to the non-dominating sorting concept 

and the crowding distance metric. Then, these learners are further updated depending on 



28 
 

 

the learner phase of the TLBO algorithm. These steps are continuously repeated until 

satisfying a pre-defined criterion. 

 

2.5.1.  Optimum Solution of TCTP via NDS-TLBO Algorithm 

 

The solution of TCTP employing NDS-TLBO process detailed in above is 

summarized in five main steps as follows:  

Step I: Define the number of learners (population size) in the class and the maximum 

number of iterations (stopping criteria) to initialize the TLBO algorithm.  

Step II: Fill the initial matrix (class; CL) with pn (student or population size) number 

of solution vectors that contains dn number of randomly generated design variables (Xi) 

between the upper (
max
iX ) and lower (

min
iX ) limit of the solution range (Eq. (20)). 
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Thus, initial matrix (CL) can be written as: 
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In which each row of the matrix is a candidate solution of TCTP problem that is 

corresponded two objective function values associated with time (ft (X)) and cost ((fc (X))). 
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Perform a non-dominated sorting on CL. Then calculate the crowded distance values 

of solutions in the front(s) and sort them. Keep the sorted solution in an external archive.  

Step III: Apply “teaching phase (tp)” of the TLBO algorithm. Due to the fact that 

teacher has the best knowledge, the best learner in the class is assigned as a teacher 

(Xteacher) of the class based on non-dominated sorting and crowding distance metric. 

 

 Xteacher = Xi | in front 1 and max. crowded distance (23) 

 

Then, knowledge of the teacher is used to increase the capacity of the whole class. 

The main aim is to increase of the mean (Xmean) of the class. For that reason the equation of 

new students is found, according to teacher and mean of the class as seen in Eq. (24). 

 

Xtp
new, i = Xold, i + rand (0, 1). (Xteacher -TF. Xmean) (24) 

 

where TF represents teaching factor defined as  

 

TF = round [1 + rand (0.1)]   → {1- 2} (25) 

 

And it takes a value 1 or 2 based on the uniformly distributed random numbers that 

are within the range [0, 1]. If the new solution (Xtp
new, i) is better than the old one in point 

of the objective function, the new solution is accepted.  

After employing the teaching phase, combine the current population with the 

archived one. Perform a non-dominated sorting on the combined population. Then 

calculate the crowded distance values of solutions in the front(s) and sort them. Select N 

individual from it. 

Step IV: Proceed with the “learning phase (lp)” of the TLBO algorithm. As it stated 

above, students also have an important role in the learning process by communication, 

interaction, investigation, etc. This interaction can be expressed as follows: 
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where Xi and Xj are randomly selected learners that are different each other. If the new 

solution (Xlp
new, i) is better, it is replaced with old one.  

Combine the current population with the one that is used at the starting of the phase. 

Perform a non-dominated sorting on the combined population. Then calculate the crowded 

distance values of solutions in the front(s) and sort them. Select N individual from it. 

 Step V: Check the stopping criterion. This criterion usually is defined as the maximum 

iteration number. If the stopping is satisfied, the optimization process is terminated, 

otherwise the iteration process continues from the step III. The flowchart of the process 

can be seen in Figure 2.2. 

 

 

 

 

Figure 2.2. Flowchart of the NDS-TLBO algorithm for TCTP 
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2.5.2.  Crowding Distance Computation 

 

This function sorts the current population based on non-domination concept. All the 

individuals in the first front are given a rank of 1, the second front individuals are assigned 

rank 2 and so on. After assigning the rank the crowding in each front is computed. The 

crowding measure is a secondary measure used to favor an even distribution of points 

along the Pareto front. The crowding distance computation needs sorting the population 

according to each objective function value in ascending order of magnitude Deb et al. [75]. 

Thereafter, an infinite distance value is assigned to the solutions being at the top and the 

bottom places for each objective function. For all others, a distance value equal to the 

absolute normalized difference in the function values of two adjacent solutions is assigned. 

Crowding distance value is the sum of individual distance values calculated for each 

objective that was normalized. Crowed comparison assist in achieving more diversely 

distributed solutions. If the algorithm is already able to locate diverse solutions along the 

front, so no need to use a diversifier. 

 

2.5.3.  External Archive 

 

In NDS-TLBO process, the best solutions obtained until that moment are kept in a 

place called external archive. At the beginning of the process of NDS-TLBO, all 

individuals, NP, in the initial population are put into the external archive. As NDS-TLBO 

progresses NP new solutions are obtained. These are, as well, kept into the external 

archive. Then, depending on the non-domination rank and crowding distance rank NP 

solutions are picked up from the external archive that includes 2NP solutions to go on next 

process of NDS-TLBO. This operation continues until obtaining a convergence or reaching 

a termination criterion.  

 



 

 

 

3. NUMERICAL EXAMPLES FOR TCTP  

 

In this chapter, validation and performance measurement of the TLBO algorithm are 

demonstrated on the examples examined. The instances to be studied to validate the 

proposed model are previously solved from many researchers. A small and more complex 

medium scale as well as a large scale instances are adopted in order to show the 

performance evaluation of the utilized model based on TLBO.  

 

  Validating the Algorithms 

 

In this thesis, two approaches are proposed combining with TLBO algorithm. Firstly, 

MAWA-TLBO performance is investigated. This approach converts the multiobjective 

problem to a single-objective problem, and then utilizing a single-objective optimization 

approach to find the satisfactory solution which is known as modified adaptive weighted 

approach. Second approach investigated is NDS-TLBO. This approach seeks the 

satisfactory solution from the non-inferior solutions based on the experiences and 

knowledge of decision makers, whereas the determination of the non-dominating solution 

is a bit more sophisticated and complicated. The utilized multiobjective algorithms can 

ascertain the Pareto front solution which provides flexibility to planners and decision 

makers in making efficient time-cost decisions. Thereby, contribution of this thesis can be 

clearly seen in TLBO application on this field.  

Four examples of construction projects taken from the technical literature ranging 

from 7 to 630 activities are investigated to show the performance of the MAWA-TLBO. 

The MAWA-TLBO model is initially tested against the model developed by Zhang et al. 

[23], Afshar et al. [29] and Ng and Zhang. [25]. To this end, an 18-activity TCT problem is 

adopted to solve time-cost trade-off problem, treating various overhead cost values. 

Application of MAWA-TLBO in solution of 63-activity problem derived from Bettemir 

[79] is experimented. Since 63-activity problem has not been solved with the application of 

MAWA, the results obtained in this study by utilizing MAWA-TLBO are compared with 

the solutions acquired through NDS-GA, NDS-ACO, and NDS-PSO models of Bettemir 

[79]. The results prove that, MAWA-TLBO model developed in this study produces 

https://www.civilica.com/modules.php?name=ENCivilicaPapers&op=SearchResults&queryWr=A.%20Afshar&simoradv=ADV
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satisfactory results. It is also observed that the quality of the obtained solutions for 18-

activity with five modes and large example problem of 63-activity slightly deteriorate as 

they are prone to smaller daily indirect costs as well as with mode increments. More 

specifically, the diversity in population can’t be preserved and staging to local optima 

because of the MAWA‘s drawback. The reason of this can be also explained by the 

complexity of the problem and the premature stopping condition. Moreover, the utilized 

model requires the decision-makers to determine the final best solution. Therefore, to 

overcome this issue an effective and more promising approach, called non-dominating 

sorting approach is adopted combining with TLBO algorithm. 

Throughout the validation process, ten experimental runs are implemented for 

analysis of any of the example problems. The average percent deviations from the optima, 

obtained using exact procedure, are evaluated accordingly. Details of all the implemented 

TCT problems, selected parameter values, and the results of the numerical simulations for 

MAWA-TLBO as well as NDS-TLBO algorithms are presented in the ongoing section. 

 

 Application of Teaching Learning Based Optimization for Time-Cost 

Trade-off Problems in Construction Projects 

 

In this study, to find a set of Pareto front solutions, a multiobjective optimization 

model which is based on the teaching learning based optimization (TLBO) incorporated 

with the modified adaptive weight approach (MAWA) is proposed. Four examples of 

construction projects taken from the technical literature ranging from 7 to 63 activities are 

investigated to show the performance of the MAWA-TLBO. The results are compared 

with those obtained using previously proposed models considering the optimal or near 

optimal solutions. It was found that, the MAWA-TLBO algorithm works effectively for the 

TCTP problems in construction engineering and management field. 

The well-known problems taken from the literature are ranging from 18 to 63 activity 

projects. The larger part of the preceding DTCTP research [4, 8, 25, 27, 29, 30, 32, 33, 57, 

59, 76] utilized small example problems involving up to 18-activity to assess the efficiency 

of the suggested metaheuristics. However, 63-activity projects have been practiced by [47, 

48]. This MAWA-TLBO algorithm is also tested on the solution of a more complex 

problem to minimize trade-off between time and cost. Hence, the example problem of 63-

activity project derived from Bettemir [79] is also resolved with the model proposed in this 
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study. The obtained results demonstrate the potency of the proposed algorithm comparing 

the solutions reported by the previous metaheuristic algorithms. 

 

  Numerical Examples of MAWA-TLBO 

 

To demonstrate the performance of the utilized MAWA-TLBO model for obtaining 

Pareto front solutions of the TCTP, small and medium scale problems taken from the 

technical literature are investigated. The utilized algorithm was coded in MATLAB and 

runs were executed from a personal computer having Intel (R) Core (TM) i3 CPU 2.40 

GHz and 3GB RAM. Consecutive experimental run number is adopted as 10 for the entire 

instances. 

 

3.3.1.  Empirical Example of 7-Activity Project  

 

The network introduced by Feng et al [4] and shown in Figure 3.1 contains 7 

activities with logical relationship of Finish to Start (FS) with 3 to 5 possible options 

(alternatives). Possible activity options are presented in Table 3.1 in association with the 

corresponding durations and costs. The problem complexity will be [35 x 41 x 51] = 4860 

possible solutions with a daily indirect cost of $1500. 

 

 

 

 

 

 

 

 

 

Figure 3.1. Network configuration of 7-activity test example 
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Table 3.1. Options for 7- activity project 

 

Activity 

Description 

Activity 

number 

Precedent 

activity 

Option / 

Mode 

Duration 

(days) 

Direct 

cost ($) 

Site Preparation 1 - 

1 

2 

3 

14 

20 

24 

23000 

18000 

12000 

Forms and rebar 2 1 

1 

2 

3 

4 

5 

15 

18 

20 

23 

25 

3000 

2400 

1800 

1500 

1000 

Excavation 3 1 

1 

2 

3 

15 

22 

33 

4500 

4000 

3200 

Precast concrete 

girder 
4 1 

1 

2 

3 

12 

16 

20 

45000 

35000 

30000 

Pour foundation 

and piers 
5 2,3 

1 

2 

3 

4 

22 

24 

28 

30 

20000 

17500 

15000 

10000 

Deliver PC 

girders 
6 4 

1 

2 

3 

14 

18 

24 

40000 

32000 

18000 

Erect girders 7 5,6 

1 

2 

3 

9 

15 

18 

30000 

24000 

22000 

 

 

The complete solution space of the 4860 solution acquired for assumed indirect cost 

of $1500/day is illustrated in Figure 3.2. In addition, all the minimum cost versus 

minimum duration of complete solution space for the current problem is presented in 

Figure 3.3. 
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Figure 3.2. Complete solution space (4860 solution) of 7-activity problem  

 

 

 
 

Figure 3.3. The entire minimum cost versus minimum duration of solution space for 7-

activity problem 

 

 

Table 3.2 summarizes the results of the TLBO along with the performance of four 

previous metaheuristics for the 7-activity problem. Solutions obtained by Gen and Cheng 

[76], Zheng et al. [23] and Magalhães-Mendes [54] are not better than those achieved by 

TLBO and did not propose any Pareto front. MAWA-TLBO’s results offer less cost 0.9% 

to 1.55% than that obtained by MAWA-GA's. The Pareto front solutions reported for the 

MAWA of Xiong et al. [77], Surajit and Sultana [55] and Azeez [58] are same with the 

results obtained by the MAWA-TLBO method. The comparison of TLBO with the 

previous methods reveals that utilized TLBO works well or as good as the previously 

proposed algorithms for the small-scale TCTPs. Additionally, it can also be stated that the 
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MAWA-TLBO algorithm produces high-quality solutions quickly once needed only 1 

seconds to complete 10 generations. 

 

 

Table 3.2. Comparison of Pareto fronts located for small-scale 7-activity problem 

 

Authors 

Best 

generation 

number 

Criteria 
Calculation 

Time Time 

(Day) 

Cost 

($) 

Gen and Cheng [76], MAWA-

GA 
5 79 256400 Not reported 

Zheng et al. [27], MAWA-GA 5 66 236500 Not reported 

Magalhães-Mendes [54],  

MAWA-GA 
2 63 225500 

5 seconds for 50 

generations 

Xiong et al. [77], MAWA-

ACO 

Surajit  and Sultana [55],  

MAWA-GA 

Azeez [58], MAWA-ACS 

Not 

reported 

60 233500 

Not reported 

62 233000 

63 225500 

67 224000 

68 220500 

This paper (MAWA-TLBO) 

2 

60 233500 

1 second for 10 

generations 

62 233000 

63 225500 

66 227500 

67 224000 

68 220500 

Pop size:  5 

Generation Number:  10 

f-count (NFE):  105 

 

 

The graphical representation of the results (Pareto front solutions) obtained by 

employing MAWA-TLBO is illustrated in Figure 3.4 while Table 3.3 presents details for 

the associated solutions.  
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Figure 3.4. Pareto optimal solutions of 7-activity problem obtained by MAWA-TLBO 

 

 

Table 3.3. Solution obtained for 7-activity TCTP problem using MAWA-TLBO along 
with selected options 

 

Pareto-

front 

solutions 

Project 

time 

(days) 

Project 

total cost 

($) 

Options selected by the mode to execute 

the corresponding activity 

1 2 3 4 5 6 7 

1 60 233500 1 1 1 1 1 3 1 

2 62 233000 1 1 1 2 1 3 1 

3 63 225500 1 1 1 2 2 2 1 

4 66 227500 1 1 1 2 3 3 1 

5 67 224000 1 1 1 3 3 3 1 

6 68 220500 1 1 1 3 4 3 1 

 

 

The convergence history of the solved problem is presented in Figure3.5. The figure 

implies that the considered generations are a bit more and it is redundantly cycling after the 

5th iteration which is optimum value. Therefore, both population and number of generation 

values can be taken as 5 for the current TCT problem. 
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Figure 3.5. Convergence history of 7-activity TCTP problem using MAWA-TLBO 

 

 

Time-cost optimization have a great effect on lowering the time and cost of 

construction project and overcome the delays and cost excess that could take place during 

the execution of any construction project. The project critical path calculated first using 

forward planning to find the normal duration and for that the options selected were the 

normal time/normal cost, and the project time was 105 days, and $253700. After using 

TCO model the highest value of time was 68 days, and the cost was $220500. From the 

total cost 15%, and 54.4% of the project time were saved by using optimized values. This 

is achieved by using the saved the indirect cost to allocate the more resources and increase 

the number of the crews or labors in the construction works or any different construction 

method used. The MAWA-TLBO searched 105 (= 10 x 5 x 2 + 5) possible different 

schedules, only searching a small portion of 2.17% of the solution space (105/4860) could 

generate the global optimal solutions where number of population and iteration are 5 and 

10, respectively. Therefore, the number of function evaluations can be taken as 105 (f-

count = 10x5x2+5). 
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3.3.2.  Empirical Example of 18-Activity Project with Five Modes 

 

A case of study is a project of eighteen activities originally introduced by Feng et al. 

[20]. The network with logical relationship of FS is shown in Figure 3.6. The activity 

relationships for the model project, the five modes of construction for each activity and 

their associated time and cost are presented in Table 3.4. Indirect cost rate adopted in this 

problem is $1500/day. 

 

 

 
 

Figure 3.6.  Activity relationships for the model project of 18-activity 
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Table 3.4 Options for 18- activity project with five modes 
 

Description Mode1 Mode2 Mode3 Mode4 Mode5 

A
ct
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y 
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D
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$)
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$)

 

D
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(d

ay
) 

D
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t 

C
os

t (
$)

 

1 - 14 2400 15 2150 16 2400 21 1500 24 1200 
2 - 15 300 18 2400 20 1900 23 1500 25 1000 
3 - 15 4500 22 4000 33 1800        
4 - 12 45000 16 35000 20 3200        
5 1 22 20000 24 17500 28 30000 30 10000    
6 1 14 40000 18 32000 24 15000        
7 5 9 30000 15 24000 18 18000        
8 6 14 220 15 21 16 22000 21   24  
9 6 15 300 18 240 20 200 23 208 25 120 
10 2 , 6 15 450 22 400 33 180   150   100 
11 7 , 8 12 450 16 350 20 320        
12 5 , 9 , 10 22 2000 24 1750 28 1500 30      
13 3 14 4000 18 3200 24 1800        
14 4 , 10 9 3000 15 2400 18 2200        
15 12  12 4500 16 3500            
16 13 , 14 20 3000 22 2000 24 1750 28 1500 30 1000 
17 11,14,15 14 4000 18 3200 24 1800       1200 
18 16,17 9 3000 15 2400 18 2200       1000 

 
 
A comparison amongst the MAWA-TLBO algorithm, MAWA-GA based TCO 

model Zheng et al. [23], MAWA-AS Afshar et al. [29] and also MAWA- SGPU algorithm 

Ng and Zhang [25] utilizing the same project is shown in Table 3.5 and Figure 3.7. It can 

be seen from Table 3.5, MAWA-TLBO based model is executed with less size of 

population and number of iteration than those of the MAWA-GA and MAWA-AS models. 

Besides, examining the time and cost results for the case project, it can be noticed that the 

MAWA-TLBO based model offers a more optimal cost value with the same project 

completion time. For example, for 100 days, the cost of solution obtained by the MAWA-

TLBO is $283420 while MAWA-GA model cost is to $287720. This results in a saving of 

$4300 which is equivalent to 1.50% of the total cost. In the situation of ACS-SGPU and AS-

MAWA model the total cost is $285400, $286670 which is in between the MAWA-GA 

and MAWA-TLBO models. However, the iterations of ACS-SGPU and MAWA-TLBO 

are less than that of MAWA-GA and MAWA-AS. Even though the quality of solutions 
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generated by ACS-SGPU is not as good as MAWA-TLBO, it is superior to the MAWA-

GA and MAWA-AS models and can generate better Pareto front solutions. 

The Pareto fronts as well as selected duration of corresponding activity for 18-

activity with five modes problem is given in Table 3.6. The convergence history 

representation of the current solved problem is presented in Figure 3.8. As in this case of 

the MAWA-TLBO, convergence history graphs demonstrates that the applied MAWA-

TLBO converges to optimal or near optimal solutions after 55th iterations. Therefore, 

population and generation number can be taken as 40 and 60, respectively. 

 

 

Table 3.5. Comparison between different algorithms of 18-activity project with five modes 

using MAWA-TLBO 

 

Description 

MAWA–GA        

Zhang et al. 

[27] 

MAWA-ACS-

SGPU  

Ng and Zhang 

et al. [25] 

MAWA-AS       

Afshar et al. [29] 

MAWA-TLBO    

(this study) 

Time 
(day) 

Cost ($) 
Time 
(day) 

Cost ($) 
Time 
(day) 

Cost ($) 
Time 
(day) 

Cost ($) 

Best results 

obtained from 

the models 
(with indirect 

cost =$1500) 

100 287720 100 285400 100 286670 100 283420 

101 284020 101 282508 101 281300 101 281200 

104 280020 104 277200 104 277265 104 277170 

110 273720 110 273165 110 272265 110 273470 

Pop. Size 50 10 50 40 

Num. of 
iterations 

500 200 400 70 

NFE 25000 2000 20000 5640 

 

 

 
 

Figure 3.7. Comparison of Pareto front between different algorithms for 18-

activity TCTP
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3.3.3.  Empirical Example of 18-Activity Project with Three Modes 

 

This example problem was initially presented by Feng et al. [4]. Table 3.7 shows the 

detail of the model project such as the activity relationships, modes of construction for each activity 

and their associated time and cost. In addition, cost rate for indirect cost is $1000/day. 

 

 

Table 3.7 Options for 18-activity project with three modes 

 

Activity 

Number 

Precedent 

Activity 

Option /Mode1 Option /Mode2 Option /Mode3 

Dur. 

(day) 

Direct 

Cost ($) 

Dur. 

(day) 

Direct 

Cost ($) 

Dur. 

(day) 

Direct 

Cost ($) 

1 - 14 2400 24 1200 21 1500 

2 - 15 3000 25 1000 23 1500 

3 - 15 4500 33 3200 33 3200 

4 - 12 45000 20 30000 20 30000 

5 1 22 20000 30 10000 30 10000 

6 1 14 40000 24 18000 24 18000 

7 5 9 30000 18 22000 18 22000 

8 6 14 220 24 120 21 208 

9 6 15 300 25 100 23 150 

10 2 , 6 15 450 33 320 33 320 

11 7 , 8 12 450 20 300 20 300 

12 5 , 9 , 10 22 2000 30 1000 30 1000 

13 3 14 4000 24 1800 24 1800 

14 4 , 10 9 3000 18 2200 18 2200 

15 12 , 14 12 4500 16 3500 16 3500 

16 13 , 14 20 3000 30 1000 28 1500 

17 11,17,15 14 4000 24 1800 24 1800 

18 16 9 2400 18 1200 18 2200 

 

 

Table 3.8 demonstrates the results for comparison of several mathematical and 

evolutionary-based methods with meta-heuristic MAWA-TLBO. The proposed MAWA-

TLBO algorithm confirms better and identical optimal solution as good as the other GA-

based RKV-TCO and Constraint Programming (CP) using optimization engines. 

Furthermore, the algorithm TLBO reaches the optimal solution quickly, i.e., in 63 sec. This 

utilized algorithm implies its efficiency and accuracy by searching only a small fraction of 

the total search space. In this example, there are 4.72x109 possible schedules. The MAWA-

TLBO searched 5640(= 40x70x2+40) possible different schedules, only a small portion 

(0.00012%) of the solution space where number of population is 40, iteration number is 70. 
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Therefore, number of function evaluation is 5640 (f-count =70x40x2+40) which reveals a 

remarkable reduction in iteration comparing Feng et al. [4] model. 

 

 

Table 3.8. Comparison between different algorithms of 18-activity project with three 

modes 

 

Approaches 
Deviation

*** 

Criteria 
Calculation 

Time 
Time 

(days) 

Cost 

($) 

Optimal Solution 0% 110 216270 - 

Excel Solver* 18% 110 254620 2 minutes 

Risk Solver Platform Standard 

SLGRG Nonlinear* 
0% 110 216270 1.5 minutes 

Risk Solver Platform Standard 

Largescale GRG Solver* 
0% 110 216270 1.5 minutes 

TCT Optimization Using 

Evolver (includes an 

evolutionary engine)* 

10% 110 238070 30 minutes 

Risk Solver Platform Standard 

Evolutionary Solver* 
27% 110 275320 18 minutes 

Optimization Results using 

CPLEX CP Optimizer* 
0% 110 216270 9 minutes 

IBM ILOG Optimization 

Studio* 
0% 110 216270 9 minutes 

Random  Key  Variant  for  

Time-Cost Optimization (RKV-

TCO)** 

0% 110 216270 

5 (five) 

Seconds for 50 

generations 

Feng et al. [4] model 0% 

110 216270 

Not reported 

Pop size:   400 

Generation 

Number:  50 

f-count (NFE):   

20000 

This paper (MAWA-TLBO) 0% 

110 216270 

1 minute for 

50 generations 

Pop size:   40 

Generation 

Number:  70 

f-count (NFE):   

5640 
*Reported by Behrooz Golzarpoor [53]        **Reported by Jorge Magalhães-Mendes [54] 

***Percentage of deviation of the result from optimal solution 
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Figure 3.9. Convergence history of 18-activity TCTP problem with three modes 

 

 

The convergence history of the optimization engine used in this study is presented in 

Figure 3.9. It shows that the considered generations are a bit large and it is unnecessarily 

running after the 48th iteration which is optimum value and prolonged the searching 

computational time. So for the present TCT problem population and number of generations 

can be adopted as 40 and 50, respectively. Therefore, the fast convergence rate of MAWA-

TLBO seems to demonstrate its efficiency and stability in handling this type of small scale 

TCTP optimization problems. 

 

3.3.4.  Empirical Example of 63-Activity Project  

 

Based on the literature findings the well-practiced 7 and 18 activities problems are 

also unraveled to validate the performance of the employed algorithm. These problems 

have been practiced in wide-spread studies using various meta-heuristic algorithms 

incorporating with non-dominating sorting (NDS) and modified adaptive weighting 

(MAW) approaches. It is firmly believed that MAWA is inferior compared to non-
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construction project consisting more than 18-activity, in this study, a project with 63-

activity taken from Bettemir [79] is reinvestigated by MAWA-TLBO. 

The activity-on-node diagram for the project is presented in Figure 3.10, and time–

cost optional modes are given in Table 3.9. The costs in Table 3.9 are given in US Dollars, 

and the durations are given in days.  

 

 

 
 

Figure 3.10. Network representation of the 63-activity network 

 

Critical 
Path 



 
 

 
 

 
 

T
ab

le
 3

.9
. 

D
at

a 
fo

r 
th

e 
6
3

-a
ct

iv
it

y
 T

C
T

 p
ro

b
le

m
 

 

A
ct

iv
it

y
 N

u
m

b
e
r
 

P
r
ec

e
d

e
n

t 
A

ct
iv

it
y

 

M
o
d

e 
1

 
M

o
d

e 
2

 
M

o
d

e 
3

 
M

o
d

e 
4

 
M

o
d

e 
5

 

D
u

r 

(d
a
y
s)

 
C

o
st

 (
$
) 

D
u

r 

(d
a
y
s)

 
C

o
st

 (
$
) 

D
u

r 

(d
a
y
s)

 
C

o
st

 (
$

) 
D

u
r 

(d
a
y

s)
 

C
o

st
 (

$
) 

D
u

r 

(d
a
y

s)
 

C
o

st
 (

$
) 

1
 

- 
1
4
 

3
7
0
0

 
1
2
 

4
2
5
0

 
1
0
 

5
4

0
0
 

9
 

6
2

5
0
 

 
 

2
 

- 
2
1
 

1
1
2
5
0

 
1
8
 

1
4
8
0
0

 
1
7
 

1
6

2
0

0
 

1
5
 

1
9

6
5

0
 

 
 

3
 

- 
2
4
 

2
2
4
5
0

 
2
2
 

2
4
9
0
0

 
1
9
 

2
7

9
5

0
 

1
7
 

3
1

6
5

0
 

 
 

4
 

- 
1
9
 

1
7
8
0
0

 
1
7
 

1
9
4
0
0

 
1
5
 

2
1

6
0

0
 

- 
 

 
 

5
 

- 
2
8
 

3
1
1
8
0

 
2
6
 

3
4
2
0
0

 
2
3
 

3
8

2
5

0
 

2
1
 

4
1

4
0

0
 

 
 

6
 

1
 

4
4
 

5
4
2
6
0

 
4
2
 

5
8
4
5
0

 
3
8
 

6
3

2
2

5
 

3
5
 

6
8

1
5

0
 

 
 

7
 

1
 

3
9
 

4
7
6
0
0

 
3
6
 

5
0
7
5
0

 
3
3
 

5
4

8
0

0
 

3
0
 

5
9

7
5

0
 

 
 

8
 

2
 

5
2
 

6
2
1
4
0

 
4
7
 

6
9
7
0
0

 
4
4
 

7
2

6
0

0
 

3
9
 

8
1

7
5

0
 

 
 

9
 

3
 

6
3
 

7
2
7
5
0

 
5
9
 

7
9
4
5
0

 
5
5
 

8
6

2
5

0
 

5
1
 

9
1

5
0

0
 

4
9
 

9
9

5
0

0
 

1
0
 

4
 

5
7
 

6
6
5
0
0

 
5
3
 

7
0
2
5
0

 
5
0
 

7
5

8
0

0
 

4
6
 

8
0

7
5

0
 

4
1
 

8
6

4
5

0
 

1
1
 

5
 

6
3
 

8
3
1
0
0

 
5
9
 

8
9
4
5
0

 
5
5
 

9
7

8
0

0
 

5
0
 

1
0

4
2

5
0
 

4
5
 

1
1

2
4

0
0
 

1
2
 

6
 

6
8
 

7
5
5
0
0

 
6
2
 

8
2
0
0
0

 
5
8
 

8
7

5
0

0
 

5
3
 

9
1

8
0
0

 
4

9
 

9
6

5
5

0
 

1
3
 

7
 

4
0
 

3
4
2
5
0

 
3
7
 

3
8
5
0
0

 
3
3
 

4
3

9
5

0
 

3
1
 

4
8

7
5

0
 

 
 

1
4
 

8
 

3
3
 

5
2
7
5
0

 
3
0
 

5
8
4
5
0

 
2
7
 

6
3

4
0

0
 

2
5
 

6
6

2
5

0
 

 
 

1
5
 

9
 

4
7
 

3
8
1
4
0

 
4
0
 

4
1
5
0
0

 
3
5
 

4
7

6
5

0
 

3
2
 

5
4

1
0

0
 

 
 

1
6
 

9
 ,
 1

0
 

7
5
 

9
4
6
0
0

 
7
0
 

1
0
1
2
5
0
 

6
6
 

1
1
2

7
5

0
 

6
1
 

1
2

4
5

0
0
 

5
7
 

1
3

2
8

5
0
 

1
7
 

1
0

 
6
0
 

7
8
4
5
0

 
5
5
 

8
4
5
0
0

 
4
9
 

9
1

2
5

0
 

4
7
 

9
4

6
4

0
 

 
 

1
8
 

1
0

, 
1

1
 

8
1
 

1
2
7
1
5
0
 

7
3
 

1
4
3
2
5
0
 

6
6
 

1
5
4

6
0

0
 

4
7
 

1
6

1
9

0
0
 

 
 

1
9
 

1
1

 
3
6
 

8
2
5
0
0

 
3
4
 

9
4
8
0
0

 
3
0
 

1
0
1

7
0

0
 

- 
 

 
 

2
0
 

1
2

 
4
1
 

4
8
3
5
0

 
3
7
 

5
3
2
5
0

 
3
4
 

5
9

4
5

0
 

3
2
 

6
6

8
0

0
 

 
 

2
1
 

1
3

 
6
4
 

8
5
2
5
0

 
6
0
 

9
2
6
0
0

 
5
7
 

9
9

8
0

0
 

5
3
 

1
0

7
5

0
0
 

4
9
 

1
1

3
7

5
0
 

2
2
 

1
4

 
5
8
 

7
4
2
5
0

 
5
3
 

7
9
1
0
0

 
5
0
 

8
6

7
0

0
 

4
7
 

9
1

5
0

0
 

4
2
 

9
7

4
0

0
 

2
3
 

1
5

 
4
3
 

6
6
4
5
0

 
4
1
 

6
9
8
0
0

 
3
7
 

7
5

8
0

0
 

3
3
 

8
1

4
0

0
 

3
0
 

8
8

4
5

0
 

2
4
 

1
6

 
6
6
 

7
2
5
0
0

 
6
2
 

7
8
5
0
0

 
5
8
 

8
3

7
0

0
 

5
3
 

8
9

3
5

0
 

4
9
 

9
6

4
0

0
 

2
5
 

1
7

 
5
4
 

6
6
6
5
0

 
5
0
 

7
0
1
0
0

 
4
7
 

7
4

8
0

0
 

4
3
 

7
9

5
0

0
 

4
0
 

8
6

8
0

0
 

2
6
 

1
8

 
8
4
 

9
3
5
0
0

 
7
9
 

1
0
2
5
0
0
 

7
3
 

1
1
1

2
5

0
 

6
8
 

1
1

9
7

5
0
 

6
2
 

1
2

8
5

0
0
 

2
7
 

2
0

 
6
7
 

7
8
5
0
0

 
6
0
 

8
6
4
5
0

 
5
7
 

8
9

1
0

0
 

5
6
 

9
1

5
0

0
 

5
3
 

9
4

7
5

0
 

2
8
 

2
1

 
6
6
 

8
5

0
0
0

 
6
3
 

8
9
7
5
0

 
6
0
 

9
2

5
0

0
 

5
8
 

9
6

8
0

0
 

5
4
 

1
0

0
5

0
0
 

48 



 
 

 
 

 
 

T
ab

le
 3

.9
. 

C
o

n
ti

n
u
ed

 

A
ct

iv
it

y
 N

u
m

b
e
r
 

P
r
ec

e
d

e
n

t 
A

ct
iv

it
y

 

M
o
d

e 
1

 
M

o
d

e 
2

 
M

o
d

e 
3

 
M

o
d

e 
4

 
M

o
d

e 
5

 

D
u

r 

(d
a
y
s)

 
C

o
st

 (
$
) 

D
u

r 

(d
a
y
s)

 
C

o
st

 (
$
) 

D
u

r 

(d
a
y
s)

 
C

o
st

 (
$

) 
D

u
r 

(d
a
y

s)
 

C
o

st
 (

$
) 

D
u

r 

(d
a
y

s)
 

C
o

st
 (

$
) 

2
9
 

2
2

 
7
6
 

9
2
7
0
0

 
7
1
 

9
8
5
0
0

 
6
7
 

1
0
4

6
0

0
 

6
4
 

1
0

9
9

0
0
 

6
0
 

1
1

5
6

0
0
 

3
0
 

2
3

 
3
4
 

2
7
5
0
0

 
3
2
 

2
9
8
0
0

 
2
9
 

3
1

7
5

0
 

2
7
 

3
3

8
0

0
 

2
6
 

3
6

2
0

0
 

3
1
 

1
9

, 
2

5
 

9
6
 

1
4
5
0
0
0
 

8
9
 

1
5
4
8
0
0
 

8
3
 

1
6
8

6
5

0
 

7
7
 

1
7

9
5

0
0
 

7
2
 

1
8

9
1

0
0
 

3
2
 

2
6

 
4
3
 

4
3
1
5
0

 
4
0
 

4
8
3
0
0

 
3
7
 

5
1

4
5

0
 

3
5
 

5
4

6
0

0
 

3
3
 

6
1

4
5

0
 

3
3
 

2
6

 
5
2
 

6
1
2
5
0

 
4
9
 

6
4
3
5
0

 
4
4
 

6
8

7
5

0
 

4
1
 

7
4

5
0

0
 

3
8
 

7
9

5
0

0
 

3
4
 

2
8

, 
3

0
 

7
4
 

8
9
2
5
0

 
7
1
 

9
3
8
0
0

 
6
6
 

9
9

7
5

0
 

6
2
 

1
0

5
1

0
0
 

5
7
 

1
1

4
2

5
0
 

3
5
 

2
4

, 
2

7
, 
2

9
 

1
3
8

 
1
8
3
0
0
0
 

1
2
6

 
2
0
1
5
0
0
 

1
1
5

 
2
3
8

0
0

0
 

1
0

3
 

2
8

3
7

5
0
 

9
8
 

2
9

7
5

0
0
 

3
6
 

2
4

 
5
4
 

4
7
5
0
0

 
4
9
 

5
0
7
5
0

 
4
2
 

5
6

8
0

0
 

3
8
 

6
2

7
5

0
 

3
3
 

6
8

2
5

0
 

3
7
 

3
1

 
3
4
 

2
2
5
0
0

 
3
2
 

2
4
1
0
0

 
2
9
 

2
6

7
5

0
 

2
7
 

2
9

8
0

0
 

2
4
 

3
1

6
0

0
 

3
8
 

3
2

 
5
1
 

6
1
2
5
0

 
4
7
 

6
5
8
0
0

 
4
4
 

7
1

2
5

0
 

4
1
 

7
6

5
0

0
 

3
8
 

8
0

4
0

0
 

3
9
 

3
3

 
6
7
 

8
1
1
5
0

 
6
1
 

8
7
6
0
0

 
5
7
 

9
2

1
0

0
 

5
2
 

9
7

4
5

0
 

4
9
 

1
0

2
8

0
0
 

4
0
 

3
4

 
4
1
 

4
5
2
5
0

 
3
9
 

4
8
4
0
0

 
3
6
 

5
1

2
0

0
 

3
3
 

5
4

7
0

0
 

3
1
 

5
8

2
0

0
 

4
1
 

3
5

 
3
7
 

1
7
5
0
0

 
3
1
 

2
1
2
0
0

 
2
7
 

2
6

8
5

0
 

2
3
 

3
2

3
0

0
 

 
 

4
2
 

3
6

 
4
4
 

3
6
4
0
0

 
4
1
 

3
9
7
5
0

 
3
8
 

4
2

8
0

0
 

3
2
 

4
8

3
0

0
 

3
0
 

5
0

2
5

0
 

4
3
 

3
6

 
7
5
 

6
6
8
0
0

 
6
9
 

7
1
2
0
0

 
6
3
 

7
6

4
0

0
 

5
9
 

8
1

3
0

0
 

5
4
 

8
6

2
0

0
 

4
4
 

3
7

 
8
2
 

1
0
2
7
5
0
 

7
6
 

1
0
9
5
0
0
 

7
0
 

1
2
7

0
0

0
 

6
6
 

1
3

6
8

0
0
 

6
3
 

1
4

6
0

0
0
 

4
5
 

3
9

 
5
9
 

8
4
7
5
0
0
 

5
5
 

9
1
4
0
0

 
5
1
 

1
0
1

3
0

0
 

4
7
 

1
2

6
5

0
0
 

4
3
 

1
4

2
7

5
0
 

4
6
 

3
9

 
6
6
 

9
4
2
5
0

 
6
3
 

9
9
5
0
0

 
5
9
 

1
0
8

2
5

0
 

5
5
 

1
1

8
5

0
0
 

5
0
 

1
3

6
0

0
0
 

4
7
 

4
0

 
5
4
 

7
3
5
0
0

 
5
1
 

7
8
5
0
0

 
4
7
 

8
3

6
0

0
 

4
4
 

8
8

7
0

0
 

4
1
 

9
3

4
0

0
 

4
8
 

4
2

 
4
1
 

3
6
7
5
0

 
3
9
 

3
9
8
0
0

 
3
7
 

4
3

8
0

0
 

3
4
 

4
8

5
0

0
 

3
1
 

5
3

9
5

0
 

4
9
 

3
8

, 
4

1
, 
4

4
 

1
7
3

 
2
6
7
5
0
0
 

1
5
9

 
2
8
9
7
0
0
 

1
4
7

 
3
1
2

0
0

0
 

1
3

8
 

3
5

2
5

0
0
 

1
2

1
 

3
9

7
7

5
0
 

5
0
 

4
5

 
1
0
1

 
4
7
8
0
0

 
7
4
 

6
1
3
0
0

 
6
3
 

7
6

8
0

0
 

4
9
 

9
1

5
0

0
 

 
 

5
1
 

4
6

 
8
3
 

8
4
6
0
0

 
7
7
 

9
3
6
5
0

 
7
2
 

9
8

5
0

0
 

6
5
 

1
0

4
6

0
0
 

6
1
 

1
1

3
2

0
0
 

5
2
 

4
7

 
3
1
 

2
3
1
5
0

 
2
8
 

2
7
6
0
0

 
2
6
 

2
9

8
0

0
 

2
4
 

3
2

7
5

0
 

2
1
 

3
5

2
0

0
 

5
3
 

4
3

, 
4

8
 

3
9
 

3
1
5
0
0

 
3
6
 

3
4
2
5
0

 
3
3
 

3
7

8
0

0
 

2
9
 

4
1

2
5

0
 

2
6
 

4
4

6
0

0
 

5
4
 

4
9

 
2
3
 

1
6
5
0
0

 
2
2
 

1
7
8
0
0

 
2
1
 

1
9

7
5

0
 

2
0
 

2
1

2
0

0
 

1
8
 

2
4

3
0

0
 

5
5
 

5
2

, 
5

3
 

2
9
 

2
3
4
0
0

 
2
7
 

2
5
2
5
0

 
2
6
 

2
6

9
0

0
 

2
4
 

2
9

4
0

0
 

2
2
 

3
2

5
0

0
 

5
6
 

5
0

, 
5

3
 

3
8
 

4
1
2
5
0

 
3
5
 

4
4
6
5
0

 
3
3
 

4
7

8
0

0
 

3
1
 

5
1

4
0

0
 

2
9
 

5
5

4
5

0
 



 
 

 
 

 
 

T
ab

le
 3

.9
. 

C
o

n
ti

n
u
ed

 

  

A
ct

iv
it

y
 N

u
m

b
e
r
 

P
r
ec

e
d

e
n

t 
A

ct
iv

it
y

 

M
o
d

e 
1

 
M

o
d

e 
2

 
M

o
d

e 
3

 
M

o
d

e 
4

 
M

o
d

e 
5

 

D
u

r 

(d
a
y
s)

 
C

o
st

 (
$
) 

D
u

r 

(d
a
y
s)

 
C

o
st

 (
$
) 

D
u

r 

(d
a
y
s)

 
C

o
st

 (
$

) 
D

u
r 

(d
a
y

s)
 

C
o

st
 (

$
) 

D
u

r 

(d
a
y

s)
 

C
o

st
 (

$
) 

5
7
 

5
1

, 
5

4
 

4
1
 

3
7
8
0
0

 
3
8
 

4
1
2
5
0

 
3
5
 

4
5

6
0

0
 

3
2
 

4
9

7
5

0
 

3
0
 

5
3

4
0

0
 

5
8
 

5
2

 
2
4
 

1
2
5
0
0

 
2
2
 

1
3
6
0
0

 
2
0
 

1
5

2
5

0
 

1
8
 

1
6

8
0

0
 

1
6
 

1
9

4
5

0
 

5
9
 

5
5

 
2
7
 

3
4
6
0
0

 
2
4
 

3
7
5
0
0

 
2
2
 

4
1

2
5

0
 

1
9
 

4
6

7
5

0
 

1
7
 

5
0

7
5

0
 

6
0
 

5
6

 
3
1
 

2
8
5
0
0

 
2
9
 

3
0
5
0
0

 
2
7
 

3
3

2
5

0
 

2
5
 

3
8

0
0

0
 

2
1
 

4
3

8
0

0
 

6
1
 

5
6

, 
5

7
 

2
9
 

2
2
5
0
0

 
2
7
 

2
4
7
5
0

 
2
5
 

2
7

2
5

0
 

2
2
 

2
9

8
0

0
 

2
0
 

3
3

5
0

0
 

6
2
 

6
0

 
2
5
 

3
8
7
5
0

 
2
3
 

4
1
2
0
0

 
2
1
 

4
4

7
5

0
 

1
9
 

4
9

8
0

0
 

1
7
 

5
1

1
0

0
 

6
3
 

6
1

 
2
7
 

9
5
0
0

 
2
6
 

9
7
0
0

 
2
5
 

1
0

1
0
0

 
2

4
 

1
0

8
0

0
 

2
2
 

1
2

7
0

0
 



51 
 

 
   

The project includes two activities consist of three modes, 15 activities have four 

modes, and 46 activities have five modes. The number of total possible time–cost 

alternatives for the project is 1.4E+42. The project was investigated under the two cases: in 

the first case (63a), the indirect cost is taken as $2300/day, while it is adopted as $3500/day 

in the second case (63b). The optimal solutions of 630days, $5,421,120 for 63a and 

621days, $6,176,170 for 63b had been originally provided by Bettemir [79] using integer 

programming. Bettemir [79] utilized eight metaheuristic algorithms out of which three core 

algorithms and five hybrid algorithms incorporating with the non-dominating sorting 

approach to solve the mentioned TCTP problem.  

As previously mentioned, since 63-activity problem has not been solved with the 

application of MAWA, the results obtained in this study by utilizing MAWA-TLBO are 

compared with the solutions acquired through NDS-GA, NDS-ACO, and NDS-PSO 

models of Bettemir [79]. The compared results of 63a and 63b activity problems are 

tabulated in Table 3.10 and 3.11, respectively. In addition, Table 3.12 illustrates Pareto 

front results of ten consecutive experimental runs with corresponding average percent 

deviations (%APD) from the optima. Graphical representations of the Pareto front 

solutions of the current solved problems are given in Figure 3.11 and 3.12.  

 

 

Table 3.10. Analysis results of 63-Activity project for the Case 1 (IC= $2300) using 

MAWA-TLBO 

 

Sr.No 
Bettemir [79] 

MAWA-TLBO 
NDS-GA NDS-ACO NDS-PSO 

 Dur Cost Dur Cost Dur Cost Dur Cost 

1 641 5704200 635 5490120 637 5421620 629 5613820 

2 661 5712485 653 5494410 644 5428920 614 5644640 

3 650 5722260 638 5491180 651 5439620 630 5600190 

4 653 5713450 657 5491620 634 5422920 616 5623260 

5 645 5699650 644 5494920 651 5440570 630 5642405 

6 639 5684295 626 5486630 633 5421320 637 5637290 

7 640 5695655 664 5495080 633 5421320 639 5503940 

8 621 5707600 661 5490350 633 5421620 630 5696820 

9 641 5693015 643 5490680 633 5421320 627 5588485 

10 623 5690790 635 5492210 633 5421320 632 5625310 

Pop. size - 180 

Num. of Iteration  - 450 

NFE 250000 162180 
Note: Dur = Duration 
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The MAWA-TLBO searched 162180 (= 180 x 450 x 2 + 180) possible different 

schedules, only searching a negligible portion of the solution space [162180/1.4E+42] 

could generate the Pareto front solutions where population and number of iterations are 

180 and 450, respectively. 

 

 

Table 3.11. Analysis results of 63-Activity project for the Case 2 (IC= $3500) using 

MAWA-TLBO 

 

Sr.No 
Bettemir [79] 

MAWA-TLBO 
NDS-GA NDS-ACO NDS-PSO 

 Dur Cost Dur Cost Dur Cost Dur Cost 

1 617 6462580 631 6219220 644 6201720 630 6291540 

2 651 6411540 632 6205850 629 6217470 628 6264970 

3 647 6442440 626 6234520 644 6210170 630 6280170 

4 639 6420500 640 6223830 648 6218170 637 6262570 

5 648 6447900 617 6231440 649 6216020 625 6292850 

6 627 6433810 627 6197070 647 6207870 613 6261820 

7 618 6439240 604 6247850 651 6216220 624 6289790 

8 623 6449790 635 6231860 649 6215420 622 6280170 

9 630 6443805 623 6198650 645 6208920 636 6280750 

10 629 6450065 651 6262830 642 6198520 634 6263980 

Pop. size - 180 

Num. of Iteration - 450 

NFE 250000 162180 

 

 

Therefore, number of function evaluation is 162180, and the APD values are %3.528 

and %1.172 respectively. It can be stated that the proposed MAWA-TLBO model requires 

less the size of population and number of iteration than those of the Bettemirs’ [79] 

models. 

Even though it is known that, generally the model utilizing NDS outperforms the 

model employing the MAWA, considering this phenomenon it can be concluded that the 

proposed MAWA-TLBO model in this study produces satisfactory results for both 63a and 

63b Cases. Depending up on this output, and referring on Tables 11-13, it might be stated 

that MAWA-TLBO could achieve better solutions than NDS-GA, however, the proposed 

model find the slightly better solutions having less project duration and more cost than 

NDS-ACO and NDS-PSO for 63a. However, for 63b, MAWA-TLBO model produces 

alternatives Pareto front solutions as good as Bettemirs’ [79] models although they have 

been incorporated with non-dominating sorting approach. 
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Table 3.12. Average deviations from the optimal for problems 63a and 63b using MAWA-

TLBO 

 

Algorithms 
63a 

APD (%) 
63b 

APD (%) 
No of  Runs No of  Runs 

GA, Bettemir [79] 10 5.86 10 5.16 

ACO, Bettemir [79] 10 1.2 10 0.7 

PSO, Bettemir [79] 10 0.152 10 0.2 

MAWA-TLBO 10 3.528 10 1.172 

 

 

 
 

Figure 3.11. Pareto solutions of 63a-activity problem obtained by MAWA-TLBO 
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Figure 3.12. Pareto solutions of 63b-activity problem obtained by MAWA-TLBO 

 

In the current study, a multiobjective optimization model called as MAWA-TLBO 

has been proposed to handle the discrete time-cost trade off problems, in order to optimize 

the total project duration and total cost concurrently. The largest model project examined 

with using metaheuristic algorithms and MAWA approach was the project with 18-

activity. In addition, a more complex TCTP problem including 63-activity is also solved to 

validate the performance of the proposed MAWA-TLBO algorithm. From the results, it is 

clear that the applied MAWA-TLBO algorithm is proficient of finding optimum or near-

optimum solutions for the small 7-activity and 18-activity with three and five modes 

problems. Furthermore, it was demonstrated that this algorithm exploits computational 

effort by searching just small fraction of the search space. On the other hand, it is observed 

that the quality of the obtained solutions for 18-activity with five modes and large example 

problem of 63 activities slightly deteriorate as they are prone to smaller daily indirect costs 

as well as with the mode increments. More specifically, the diversity in population can’t be 

preserved. The reason of this can be also explained by the complexity of the problem and 

smoothness of the solution space. In case of solving this type of TCT problems, main 

shortcoming of the current modified method is realized as the probability of stagnating into 
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with better performance because of premature convergence of the search. Furthermore, it is 

observed that further refinements are necessary to ensure a steady performance of the 

model when applying to large-scale projects. 

Consequently, optimization results clearly reveal the applicability and efficiency of 

the TLBO application for the first time on solving TCTP Problems in construction 

management field. The results also indicate that the TLBO has a great potential for solving 

simultaneous optimization of large TCTP problems e.g. 63-activity project. 

 

  Time-Cost Trade-off Optimization Using Non-Dominated Sorting TLBO 

Algorithm 

 

In a project schedule, it is possible to reduce the time required to complete a project 

by assigning extra resources to critical activities. However, accelerating a project causes 

additional expense. This issue is addressed by finding optimal set of time-cost alternatives 

and is known as time-cost trade-off problem in the literature. Another aim of this study is 

to determine the optimal set of time-cost alternatives using a multiobjective teaching-

learning-based optimization (TLBO) algorithm integrated with the non-dominated sorting 

concept and the mechanism of crowding distance. This algorithm is applied to successfully 

optimize the projects ranging from a small to medium large projects. Numerical 

simulations indicates that the utilized model search and identify optimal / near optimal 

trade-offs between project time and cost in construction engineering and management. 

Therefore, it is concluded that the developed TLBO-based multiobjective approach offers 

satisfactorily solutions for time–cost trade-off optimization problems.  

By reviewing the recent models, it can be recognized that many researchers have 

investigated various benchmark time-cost trade-off (TCT) optimization problems using 

different metaheuristic algorithms incorporated with modified adaptive weighting 

(MAWA) approach. This approach is converting multiobjective problem to a single-

objective problem, and then utilizing a single-objective optimization approach to find the 

satisfactory solution. However, the performance of the modified weighting approach 

becomes worst and is not able to explore the global optima whenever utilized to more 

complex medium scale problems. Hence, in this study, to overcome this drawback of 

MAWA, NDS concept and the mechanism of crowding distance are incorporated with 

TLBO algorithm. As it is obvious, today instead of MAWA approach, this superior 
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approach (NDS and crowding distance metric) is broadly being acknowledged in solving 

the mentioned TCTP problems. 

 

  Numerical Examples of NDS-TLBO 

 

To demonstrate the performance of the utilized NDS-TLBO model for obtaining 

Pareto front solutions of the TCTP, medium and large scale problems taken from the 

technical literature are investigated. The utilized algorithm was executed in MATLAB 

environment and implemented on a personal computer having Intel (R) Core (TM) i3 CPU 

2.40 GHz and 3GB RAM. Consecutive experimental run number is adopted as 10 for the 

entire instances. 

 

3.5.1.  Empirical Example of 18-Activity Project  

 

The first problem includes the 18-activity network. Details of network were given in 

Feng et al. [4] using the time-cost options presented in Hegazy [8]. Most of the previous 

studies [27, 25, 29, 59 and 78] utilized this test problem to assess the efficiency of the 

proposed multiobjective metaheuristics. This problem with a total of 4.72x109 possible 

schedules is examined with a daily indirect cost of $1500. The network with logical 

relationship of FS as well as time–cost optional modes detailing of the problem is given in 

section 3.3.2. 

Table 3.13 presents the results of the TLBO along with those reported by other five 

previous metaheuristics for the 18-activity problem. Solutions obtained by Zheng et al. 

[27] are of poor quality compared to the results of TLBO. For 110 D days, ACS-TCO of 

Ng and Zhang [25] and ACS of Zhang and Ng [78] provide a solution which costs more 

than the proposed TLBO’s result. The Pareto front solutions reported for NA-ACO of 

Afshar et al. [29] as well as NDS- PSO of Aminbakhsh [48] are identical to the results 

acquired by the TLBO method. However, the utilized algorithm exhibit its competency and 

accuracy by exploring a tiny bit portion [5640/4.72x109 =0.00012%] of the solution space. 

This reveals a remarkable reduction in number of function evaluations of administered 

algorithm comparing NA-ACO of Afshar et al. [29] and NDS- PSO of Aminbakhsh [48]. 
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Furthermore, the fast convergence rate of NDS-TLBO seems to demonstrate its efficiency 

and stability in solving of the time-cost trade-off optimization problems. So, these findings 

strictly confirm the applicability of the proposed NDS-TLBO model in the field of 

construction management. 

 

Table 3.13. Comparison of Pareto fronts located for 18-activity problem using NDS-

TLBO 

 

Duration 

(days) 

Zhang 

et al.  

[27] 

Ng and 

Zhang 

[25] 

Afshar 

et al. 

[29] 

Zhang 

and 

Ng 

 [78] 

Aminbakhsh 

and Sonmez 

[48] 

NDS-TLBO 

(This paper) 

100 287720 283320 283320 285400 283320 283320 

101 284020 279820 279820 282508 279820 279820 

104 280020 276320 276320 277200 276320 276320 

110 273720 271320 271270 273165 271270 271270 

Pop. size 50 10 50 10 80 40 

Num. of 

iterations 
500 200 300 200 100 100 

NFE 25000 2000 15000 2000 8000 8040 

 

 

 
 

Figure 3.13. Pareto optimal solutions of 18-activity problem obtained by NDS-TLBO 
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Table 3.14. Options selected and solution generated for 18-activity TCTP problem using 

NDS TLBO 

 

 
 

Pareto front graphical representations of the current examined problem are given in 

Figure 3.13 and 3.14. From the Figure 3.14, it is clear that the global optimum solutions 

are achieved in the 1st run analysis and could explore 100 days, $283320 six times, 

101days, $279820 five times, 104 day, $276320 four times and 110 days, $271270 three 

times. This can be considered as strong potency of the applied algorithm. The comparison 

of TLBO with the contemporary methods discloses that proposed NDS-TLBO is among 

the most fitting algorithms for Pareto front optimization of the more complex small-scale 

TCTPs. The Pareto front along with selected duration of corresponding activity for 18-

activity is illustrated in Table 3.14. 

 

 

 
 

Figure 3.14. Graphical representation of first run analysis of 18-activity TCTP problem 

with 0.3 Pareto fraction 
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4 110 271270 14 25 33 20 30 24 18 24 15 15 20 22 24 18 12 30 14 9 
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3.5.2.  Medium-Scale Test Problem 

 

To further exhibit the performance of sole TLBO integrated with non-dominating 

sorting concept and crowding distance computation on a project with 63-activity taken 

from Bettemir [79] is reinvestigated by the proposed algorithm. The activity-on-node 

diagram for the project and time–cost optional modes detailing of the problem is illustrated 

in section 3.3.4. The project was tested under the two cases: in the first case (63a), the 

indirect cost is taken as $2300/day, whereas it is adopted as $3500/day in the second case 

(63b). The optimal solutions of 630 days with $5,421,120 as cost for 63a and 621 days 

with $6,176,170 as cost for 63b had been originally provided by Bettemir [79] using 

integer programming. Bettemir [79] utilized eight meta-heuristic algorithms out of which 

three core algorithms and five hybrid algorithms incorporating with the non-dominating 

sorting approach to solve the mentioned TCTP problem. Aminbakhsh [48] has also 

reported best Pareto front solutions of the same 63-activity problem applying the modified 

discrete particle swarm optimization method. 

As previously mentioned, since 63-activity problem has not been practiced more by 

the researchers, the results obtained in this study by utilizing NDS-TLBO are compared 

with the solutions acquired through core NDS-GA, NDS-ACO, and NDS-PSO models of 

Bettemir [79] only. The results are not compared with Aminbakhsh’s [48] model although; 

Aminbakhsh [48] has also reported the best Pareto front solutions of the same 63-activity 

problem. Because, Aminbakhsh [48] has applied the hybrid discrete particle swarm 

optimization algorithms. Moreover, a certain portion of initial population is fed into 

models to accelerate the searching process. 

The compared results of 63a and 63b activity problems are tabulated in Tables 3.15 

and 3.17, respectively. In addition Table 3.18 illustrates Pareto front results of ten 

consecutive experimental runs with corresponding average percent deviations (%APD) 

from the optima. Graphical representations of the Pareto front solution of the current 

solved problems are given in Figure 3.15 and 3.16. The selected duration of corresponding 

activities is given in Table 3.16. 
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Table 3.15. Analysis results of 63-Activity project for the Case 1 (IC= $2300) using NDS-

TLBO 
 

Sr. 

No 

Bettemir [79] (This paper) 

NDS-GA NDS-ACO NDS-PSO NDS-TLBO 

Dur Cost Dur Cost Dur Cost Dur Cost 

1 641 5704200 635 5490120 637 5421620 630 5428870 

2 661 5712485 653 5494410 644 5428920 630 5428120 

3 650 5722260 638 5491180 651 5439620 630 5427770 

4 653 5713450 657 5491620 634 5422920 630 5428120 

5 645 5699650 644 5494920 651 5440570 630 5428920 

6 639 5684295 626 5486630 633 5421320 637 5428220 

7 640 5695655 664 5495080 633 5421320 633 5428870 

8 621 5707600 661 5490350 633 5421620 628 5428170 

9 641 5693015 643 5490680 633 5421320 633 5428470 

10 623 5690790 635 5492210 633 5421320 633 5428720 

Pop. size - - - 180 

Num. of 

iterations 
- - - 450 

NFE 250000 250000 250000 162180 

 

 

Table 3.16. Options selected and solution generated for 63-activity TCTP problem of NDS 

approach (IC=$2300/day) 

 

 
 

 

The NDS-TLBO searched 162180 (= 180 x 450 x 2 + 180) possible different 

schedules, only searching a negligible portion of the solution space [162180/1.4E+42]. 

Population and number of iterations are adopted as 180 and 450, respectively. 

 

 

 

 
P-F 

Sol. 

Project 

time 

(days) 

Project 

total 

cost ($) 

Selected duration of the corresponding activity (days) 

1 2 3 4 5 6 ------------------- 57 58 59 60 61 63 

1 630 6427770 

12 18 24 19 28 44 39 52 63 57 63 68 40 33 47 75 

60 81 36 41 64 53 43 66 50 84 67 66 76 34 96 43 

52 74 138 54 29 51 67 41 23 44 75 82 55 66 54 41 

147 101 83 31 39 18 29 38 30 24 27 31 20 25 22  

The underlined activities show the critical path activities for the current solution 
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Figure 3.15. Pareto front solution of 63a-activity problem  

using NDS-TLBO 

 

 

Table 3.17. Analysis results of 63b-Activity project for the Case 2 (IC=$3500) using 

NDS-TLBO 
 

Sr. 

No 

Bettemir [79] (This paper) 

NDS-GA NDS-ACO NDS-PSO NDS-TLBO 

Dur Cost Dur Cost Dur Cost Dur Cost 

1 617 6462580 631 6219220 644 6201720 612 6192140 

2 651 6411540 632 6205850 629 6217470 617 6184820 

3 647 6442440 626 6234520 644 6210170 590 6188690 

4 639 6420500 640 6223830 648 6218170 588 6195910 

5 648 6447900 617 6231440 649 6216020 591 6191490 

6 627 6433810 627 6197070 647 6207870 586 6196840 

7 618 6439240 604 6247850 651 6216220 592 6189140 

8 623 6449790 635 6231860 649 6215420 589 6199870 

9 630 6443805 623 6198650 645 6208920 617 6187390 

10 629 6450065 651 6262830 642 6198520 616 6190570 

Pop. size - - - 180 

Num. of 

iterations  
- - - 450 

NFE 250000 250000 250000 162180 
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Figure 3.16. Pareto front solution of 63b-activity problem 

using NDS-TLBO 

 

 

Table 3.18. Average deviations from the optima for problems 63a and 63b using NDS-

TLBO 
 

Algorithms 

63a 

APD (%) 

63b 
APD 

(%) No of  

Runs 
No of  Runs 

GA, Bettemir [79] 10 5.86 10 5.16 

ACO, Bettemir [79] 10 1.2 10 0.7 

PSO, Bettemir [79] 10 0.152 10 0.2 

NDS-TLBO (This paper) 10 0.128 10 0.14 

 

 

The APD values are %0.128 and %0.14 respectively. This implies that both the 

number of function evaluation as well as average percent deviation of the NDS-TLBO 

based model are less than those of the Bettemir s’ [79] models. Thereby, it was found that, 

the proposed algorithm has more exploration capability and more promising in solving 

medium scale time-cost trade-off problems as compared previous model. 
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3.5.3.  Large-Scale Test Problems 

 

To investigate the efficiency of core TLBO integrated with non-dominating sorting 

approach on a large-scale project with 630-activity is also resolved by the proposed 

algorithm. The model project was formed by duplicating the 63-Activity project 9 times 

[79]. The project model includes two example cases: Case 1 with $2300 and Case 2 with 

$3500 daily indirect costs are solved. Global optimums obtained by Bettemir [79] using 

mixed integer programming for Case1 and Case 2 are $54.211.200 and $61.761.700, 

respectively.  

As mentioned before, ten consecutive experimental runs are conducted for this 

project also. Best results of ten runs are presented in Table 3.19 and 3.20 for Case 1 and 

Case 2 with corresponding average percent deviations (%APD) from the optima. Also 

corresponding rank and crowding distance of the best results are provided in Table 3.19. 

Graphical representations of the Pareto front solution obtained by the proposed NDS-

TLBO are demonstrated in Figure 17 and 18. 

 

 

Table 3.19. Best results for 630-activity project (Case 1: daily indirect cost of 

$2300) 

 

This paper 

%PD Rank Crowding Distance NDS-TLBO 

Dur Cost ($) 

6373 54611340 0.74 1 0.0423 

6387 54775880 1.04 1 0.0397 

6383 54805960 1.09 1 0.0154 

6364 54829460 1.14 1 0.0250 

6360 54856620 1.19 1 0.0126 

6302 54943070 1.35 1 0.0119 

6377 54692200 0.88 1 0.0451 

6388 54705310 0.91 1 0.0416 

6346 54849940 1.17 1 0.0119 

6300 54992260 1.44 3 0.0137 

Pop. size 250 

%APD =1.10 
Num. of 

iterations 
450 

NFE 225250 
NFE= Number of Function Evaluations 
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Table 3.20. Best results for 630-Activity project (Case 2: daily indirect cost of  

$3500) 
 

This paper 

%PD Rank 
Crowding 

Distance NDS-TLBO 

Dur Cost ($) 

6212 62793865 1.67 1 0.0649 

6220 62750580 1.60 1 0.0621   

6204 62591490 1.34 1 0.1022   

6232 62692340 1.50 1 Inf (∞) 

6236 62741130 1.58 1 Inf (∞) 

6225 62586260 1.33 1 Inf (∞) 

6201 62744310 1.59 1 0.0418 

6127 62650570 1.43 1 0.0876 

6190 62699400 1.51 1 Inf (∞) 

6279 62734550 1.57 1 Inf (∞) 

Pop. size 250 

%APD =1.51 
Num. of 

iterations 
450 

NFE 225250 
NFE= Number of Function Evaluations 

 

 

 
 

Figure 3.17. Pareto front solutions of 630 activity problem obtained by 

NDS-TLBO algorithm for Case 1 
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Figure 3.18. Pareto front solutions of 630-activity problem  

obtained by NDS-TLBO algorithm for Case 2 

 

 

The compared mean values of ten runs for Case 1 and Case 2 are presented in Tables 

3.21 and 3.22, respectively. In addition, Table 3.23 shows the compared %APD of Case 1 

and Case 2 with the previous models.  

 

 

Table 3.21. Comparison of mean values of 10 runs for Case 1 (daily indirect cost=$2300) 

 

Descriptions 
Bettemir [79] This paper 

NDS-GA NDS-ACO NDS-PSO NDS-TLBO 

Mean value 58983147 56703583 54815790 54806204 

Pop. size - - - 250 

Num. of 

iterations 
- - - 450 

NFE 250000 250000 250000 225250 
NFE = Number of Function Evaluations 

 



66 
 

 
   

Table 3.22. Comparison of mean values of 10 runs for Case 2 (daily indirect cost=$3500) 

  

Desrciptions 
Bettemir [79] This paper 

NDS-GA NDS-ACO NDS-PSO NDS-TLBO 

Mean value 66395840 64574989 63121500 62698449 

Pop. size - - - 250 

Num. of iterations - - - 450 

NFE 250000 250000 250000 225250 
NFE= Number of Function Evaluations 

 

 

Table 3.23. Average deviations of 630- activity problem from the optimal solutions for the 

models obtained by NDS-TLBO 
 

Algorithms 
Case 1 Case 2 

No of  Runs APD (%) No of  Runs APD (%) 

GA, Bettemir [47] 10 8.83 10 7.5 

ACO, Bettemir [47] 10 4.59 10 4.55 

PSO, Bettemir [47] 10 1.11 10 2.21 

NDS-TLBO (This paper) 10 1.10 10 1.51 

 

 

The APD values of NDS-TLBO for two cases are 1.10 and 1.51 and these values are 

smaller than the APD values of NDS-GA, NDS-ACO and NDS-PSO models proposed by 

Sonmez and Bettemir [47]. Considering Tables 9-13, the results of NDS-TLBO for large 

networks indicate that NDS-TLBO as a rule provides adequate optimal and near-optimal 

solutions for the TCTP problems. Hence, NDS-TLBO model is among the top performing 

algorithms, providing a powerful alternative for the time-cost trade-off problems. 

Time-cost trade-off optimization problems encountered in the construction 

management field cannot be solved by linear programming or other analytical methods. 

Therefore, different metaheuristic optimization algorithms have been applied to optimize 

those problems. This study describes a newly developed Pareto-based NDS-TLBO 

algorithm and mechanism of crowding distance computation to confirm the suitability of 

the proposed model for solving multiobjective optimization problems. The Pareto front of 

the solutions is guided by the teacher which is the best learner and the mean of learners 

achieved so far. Validation of NDS-TLBO algorithm is tested on a small test project 

consisting of 18-activity, medium-scale project with 63-activity and more complex large-

scale problem with 630-activity. Based on the numerical results, it can be indicated that 

NDS-TLBO based model produces alternative Pareto front solution with less both the total 
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number of function evaluations and average percent deviation than those of the previously 

proposed models. Consequently, optimization results clearly demonstrate the applicability 

and efficiency of the TLBO application for the first time on solving TCTP problems in 

construction management field. The results also indicate that the TLBO has a great 

potential for solving simultaneous optimization of large TCTP problems e.g. 630-activity 

project. Moreover, the simplicity can be taken into account as strength point of existing 

method.  

 

  Effect of Partial Random Initial Population on NDS-TLBO 

 

By reviewing the recent models, it can be stated that many researchers have 

investigated various benchmark time-cost trade-off (TCT) optimization problems using 

new concepts such as initial population, niche formation and acceleration approaches. And 

also, in order to enhance the convergence capability of the algorithms, hybrid metaheuristic 

algorithms were developed in the previous studies. Aminbakhsh [48] has applied the 

hybrid discrete particle swarm optimization algorithm. Additionally, produces a certain 

portion of initial population by means of Siemens algorithm and fed into models to 

accelerate the searching process. In the Siemens algorithm as a rule, activities with the 

least costs are identified and crashed with the minimum cost slope considerations. Sonmez 

and Bettemir [47] have used hybrid genetic algorithm (HA) to unravel the eight well-

known benchmark TCTP problems.  

As in the previous sections it is observed that the proposed sole TLBO algorithms are 

a bit weak to compete with the hybrid algorithms. Thereby, to assess the overall efficiency 

of competitive algorithm, in the present study, effect of partial random initial population on 

NDS-TLBO algorithm for TCTP problems is also applied to further investigate the 

exploration capacity of the proposed algorithm. Inspiring the initial population concept of 

Aminbakhsh‘s [48] model, slight modification is made to the non-dominating sorting 

version of the classical sole-TLBO algorithm by introducing a definite portion of initial 

population. To this end, instead of Siemens algorithm which requires additional efforts, the 

proposed model combines complementary strengths of the min-min (minimum of the 

minimum) approach which is the single objective version of TLBO algorithm. To increase 

the quality a superior portion of the initial population is generated by means of the single 
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objective TLBO method, with the remaining initial seeds being generated randomly. This 

min-min approach is the simplest algorithm having bi-objective functions. The objective 

functions are either minimization of project duration or cost. And this approach, in place of 

Pareto front provides a unique solution. For performing of this approach, in the present 

study, initially, project cost is taken into account as the objective function and obtain the 

unique optimum solution. However, there are plenty of solutions based on the project 

duration for the corresponding single project cost in the solution pool. Astonishingly, in the 

solution space, there is such a duration which is the minimum of the minimum solutions 

based on the duration for the particular cost. So, this minimum of the minimum duration 

for the particular cost is taken as the optimum solution in each iteration. This process 

continues until the stopping criteria met and is called min-min approach. Therefore, 

numerical simulations of medium and large scale projects are presented to demonstrate the 

Pareto front performance of the proposed algorithm. In order to further verify the effect of 

partial random initial population on the NDS-TLBO algorithm, alternative initial 

populations are taken as in Table 3.24. 

In the ongoing sections, the applied algorithm, as wells as various adopted initial 

populations and graphical representations are elaborated.  

 

 

Table 3.24. Alternative percentages of pre-known and randomly generated solutions 

for the population 

 

Indices 

Percentage of pre-known 

solutions in the 

population (%) 

Percentage of randomly 

generated solutions in 

the population (%) 

E1 60 40 

E2 40 60 

E3 30 70 

E4 50 50 

 

 

3.6.1.  Medium-Scale Test Instances 

 

To investigate the Pareto front performance of the proposed algorithm on projects 

with 63-activity taken from the literature is re-solved. The project was tested under the two 

cases: in the first case (63a), the indirect cost is adopted as $2300/day, whereas it is taken 

as $3500/day in the second case (63b). The optimal solutions of 630 days with $5.421.120 
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as cost for 63a and 621 days with $6.176.170 as cost for 63b has been originally provided 

by Sonmez and Bettemir [47] using integer programming. The detailing of the problem is 

given in section 3.3.4. 

In this method, with this new improvement, ten consecutive experimental runs are 

also conducted for this project. Pareto front solutions of 63-activity TCTP problem with E1 

to E4 indices for both Cases are illustrated in Tables 3.25-3.28. In addition to this, to 

clearly observe the distinct performance of the proposed algorithm, best results of superior 

initial population are presented in Table 3.29 and 3.30 for Case 1 and Case 2 with 

corresponding average percent deviations (%APD) from the optima. Table 3.29 and 3.30 

demonstrate the results for comparison of hybrid optimization-based methods with partial 

random initial population based NDS-TLBO algorithm. The selected duration of 

corresponding activities for the optimal solution of Case 2 is given in Table 3.31. In 

addition, Table 3.32 shows the compared %APD of Case 1 and Case 2 with the previous 

models.  

 

 

Table 3.25. Pareto front solutions of 63-activity TCTP problem with E1 index for both 

the Cases 

 

Partial Random Initial population based NDS- TLBO 

Case 1 ( Indirect cost = 2300 $/day) Case 2 ( Indirect cost = 3500 $/day) 

Dur Cost ($) Dur Cost ($) 

633 5427920 621 6179720 

634 5448920 622 6183820 

635 5430670 623 6188920 

636 5438370 624 6184220    

637 5428220 625 6181020 

638 5432270 626 6186070    

639 5431570 627 6193420 

640 5441670 628 6197070   

641 5430070 629 6192260 

642 5436520 630 6198570 

Pop. size 100 

Num. of iterations 250 

NFE 50000 
NFE = Number of Function Evaluations 
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Table 3.26. Pareto front solutions of 63-activity TCTP problem with E2 index for both 

the Cases 
 

Partial Random Initial population based NDS- TLBO 

Case 1 ( Indirect cost = 2300 $/day) Case 2 ( Indirect cost = 3500 $/day) 

Dur Cost ($) Dur Cost ($) 

633 5427920 621 6180020 

628 5428170 621 6179720 

637 5428220 621 6181820 

630 5427770 621 6182640 

633 5427920 622 6179470 

630 5427770 625 6180070 

628 5428170 621 6179720 

630 5428870 618 6182020 

630 5427770 621 6182640 

630 5428120 623 6182070 

Pop. size 100 

Num. of iterations 250 

NFE 50000 

 

 

Table 3.27. Pareto front solutions of 63-activity TCTP problem with E3 index both 

the Cases 

 

Partial Random Initial population based NDS- TLBO 

Case 1 ( Indirect cost = 2300 $/day) Case 2 ( Indirect cost = 3500 $/day) 

Dur Cost ($) Dur Cost ($) 

630 5428170 626 6186070 

631 5433170 629 6192260 

634 5428220 627 6193420 

637 5436520 621 6179720 

638 5428970 612 6192270 

639 5429920 623 6191170 

640 5434770 620 6196270    

641 5431420 622 6183820 

644 5438220 625 6181020 

645 5438720 624 6184220 

Pop. size 100 

Num. of iterations 250 

NFE 50000 
NFE = Number of Function Evaluations 
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Table 3.28.  Pareto front solutions of 63-activity TCTP problem with E4 index both the 

Cases 
 

Partial Random Initial population based NDS- TLBO 

Case 1 ( Indirect cost = 2300 $/day) Case 2 ( Indirect cost = 3500 $/day) 

Dur Cost ($) Dur Cost ($) 

630 5427770   621 6180020 

639 5429920   625 6190070 

634 5428070    627 6189770 

642 5436520 624 6188170   

633 5427920 628 6197070 

631 5433170 631 6210010 

638 5428970 630 6198570 

635 5442370 629 6188670 

637 5428220 626 6186070 

640 5430570   632 6212020 

Pop. size 100 

Num. of iterations 250 

NFE 50000 

 

 

Table 3.29. Best results for 63-Activity project (Case 1: daily indirect cost of $2300) 

using partial random initial population based NDS-TLBO 

 

Sr. 

No 

Sonmez and 

Bettemir [47] 

Aminbakhsh 

[48] 
 (This paper) 

%PD 
GASA D-PSO TLBO 

Dur Cost Dur Cost Dur Cost 

1 633 5421320 630 5421120 633 5427920 0.125 

2 633 5421320 630 5422420 628 5428170 0.130 

3 633 5421620 630 5421120   637 5428220 0.130 

4 633 5421320 630 5421120 630 5427770 0.122 

5 633 5421620 633 5421320 633 5427920 0.125 

6 633 5421620 636 5422970 630 5427770 0.122 

7 633 5421620 631 5424420 628 5428170 0.130 

8 633 5421620 633 5421320 630 5428870 0.142 

9 633 5421620 633 5421320 630 5427770 0.122 

10 629 6450065 629 5423270 630 5428120 0.142 

Pop. size 200 200 100  

 

APD% = 0.128 

 

Num. of 

iterations  
250 250 250 

NFE 50000 50000 50000 
NFE = Number of Function Evaluations 
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Table 3.30. Best results for 63-Activity project (Case 2: daily indirect cost of $3500) 

using partial random initial population based NDS-TLBO 

 

Sr. 

No 

Sonmez and 

Bettemir [47] 
Aminbakhsh 

[48] 
 (This paper) 

%PD 
GASA D-PSO TLBO 

Dur Cost Dur Cost Dur Cost 

1 629 6181270 616 6177820 621 6180020 0.062 

2 630 6177570 626 6177370 621 6179720 0.057 

3 633 6184670 621 6176220 621 6181820 0.062 

4 631 6183320 621 6178020 621 6182640 0.104 

5 618 6180420 629 6177270 622 6179470 0.053 

6 629 6180520 621 6177120 625 6180070 0.061 

7 629 6179870 621 6176170 621 6179720 0.057 

8 621 6180620 618 6177570 618 6182020 0.094 

9 629 6177270 618 6177670 621 6182640 0.104 

10 630 6182020 618 6177570 623 6182070 0.095 

Pop. size 200 200 100  

 

APD% = 0.075 

 

Num. of 

iterations  
250 250 250 

NFE 50000 50000 50000 
NFE = Number of Function Evaluations 

 

 

Table 3.31. Options selected and solution generated for 63-activity TCTP problem 

obtained by partial random initial population based NDS-TLBO approach 

(IC=$3500/day) 
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Table 3.32. Average deviations of 63-activity problem from the optimal solutions for the 

models obtained by partial random initial population based NDS-TLBO 

 

Algorithms 

Case 1 Case 2 

No of  

Runs 

APD 

(%) 

No of  

Runs 

APD 

(%) 

GA, Sonmez and Bettemir [47] 10 5.86 10 5.16 

HA, Sonmez and Bettemir [47] 10 2.61 10 2.50 

DPSO, Aminbakhsh and Bettemir [48] 10 0.02 10 0.05 

NDS-TLBO  10 0.128 10 0.14 

Partial random initial population based 

NDS-TLBO (This study) 
10 0.128 10 0.075 

 

Considering Tables 3.25-3.32, the results of partial random initial population based 

NDS-TLBO for medium networks indicate that the proposed algorithm normally provides 

adequate optimal and near-optimal solutions for the TCTP problems. 

Also, the effect of partial random initial population on the convergence of the NDS-

TLBO algorithm with E2 (40% pre-known + 60% randomly generated solutions in the initial 

population) which is providing better solution and the smoothened convergence history of the same 

is demonstrated in Figure 3.19 and 3.20 for Case 1 and Case 2. These figures illustrate that 

the implemented generation converges after the 150th iteration which is the optimum value 

for Case 1. Similarly, it converges the optimum solution after the 120th iteration for Case 2. 

Therefore, for both cases, population and number of iterations can be adopted as 100 and 

150, respectively. 

In this manner, the convergence history of the proposed algorithm with E1 (60% pre-

known + 40% randomly generated solutions in the initial population) is presented in Figure 3.21 

and 3.22. 

At the same time, Figure 3.23 and 3.24 display the convergence history of 63-activity 

TCTP problem with E4 (50% pre-known + 50% randomly generated solutions in the initial 

population) for Case 1 and Case 2. Furthermore, Figure 3.25 and 3.26 indicate the 

convergence history of 63-activity TCTP problem with E3 (30% pre-known + 70% randomly 

generated solutions in the initial population) for Case 1 and Case 2. Thereby, convergence 

histories graphs indicate that the utilized NDS-TLBO converges much faster than the 

original TLBO and converges to better solutions. 
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Figure 3.19. Convergence history of 63-activity TCTP problem with E2 (40% pre-

known + 60% randomly generated solutions in the initial population) for 

Case 1 

 

 

 
 

Figure 3.20. Convergence history of 63-activity TCTP problem with E2 (40% pre-

known + 60% randomly generated solutions in the initial population) for 

Case 2 
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Figure 3.21. Convergence history of 63-activity TCTP problem with E1 (60% pre-known 

+ 40% randomly generated solutions in the initial population) for Case 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22. Convergence history of 63-activity TCTP problem with E1 (60% pre-

known + 40% randomly generated solutions in the initial population) for 

Case 2 
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Figure 3.23. Convergence history of 63-activity TCTP problem with E4 (50% pre-

known + 50% randomly generated solutions in the initial population) for 

Case 1 

 

 

 
 

Figure 3.24. Convergence history of 63-activity TCTP problem with E4 (50% pre-

known + 50% randomly generated solutions in the initial population) for 

Case 2 
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Figure 3.25. Convergence history of 63-activity TCTP problem with E3 (30% pre-

known + 70% randomly generated solutions in the initial population) for 

Case 1 

 

 

 
 

Figure 3.26. Convergence history of 63-activity TCTP problem with E3 (30% pre-

known + 70% randomly generated solutions in the initial population) for 

Case 2 

 

Performance of the partial random initial population based NDS-TLBO algorithm 

was compared with the performance of the Pareto front solutions reported for genetic 
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algorithm simulated annealing (GASA), Sonmez and Bettemir [47] as well as discrete particle 

swarm optimization (D-PSO) of Aminbakhsh [48]. As 50.000 schedules (objective 

function evaluations) are used as the stopping criteria in all of the experiments [47, 48]. 

The results acquired by the proposed TLBO method indicate better solutions as compared 

to the Sonmez and Bettemir [47].  

On the other hand, it is apparent from the results that the applied algorithm could 

evolve potential improvement when exposed to large daily indirect cost. In contrast, it 

could achieve identical solution as exposed to smaller daily indirect cost. Therefore, this 

can easily be programmed by utilizing levy flight (a random walk) model and can 

systematically surf through the search space to avoid local minimum. However, being 

simple as well as relatively young algorithm, the proposed algorithm could achieve almost 

identical solution as compared to the Aminbakhsh‘s [48] model with the half of objective 

function evaluations of the previous models. That means, the applied algorithm reaches the 

optimality within the 25000 schedules. This reveals a remarkable reduction in number of 

function evaluations of the proposed algorithm as compared to the previous models. Even 

though, the applied meta-heuristic algorithm (TLBO) could not obtain global optima in any 

of the trials. However, by searching merely 25,000 solutions out of 1.37×1042 potential 

solutions, proposed algorithm was able to determine very high quality solutions that are 

either optimal or very close to the optimal. The reason of not achieving the global optima 

can be referred to the complex nature of the problem and the early stopping condition. 

Therefore, the initial population based NDS-TLBO provides a user-friendly and efficient 

concept to support time-cost optimization of medium scale problems. 

 

3.6.2.  Large-Scale Test Instances 

 

As it is obvious that, the study concentrating on generation of large-scale complex 

TCTP problems that involves more activities and modes, would enable a better 

understanding of the performance of heuristic and meta-heuristic methods for real world 

projects. To this end, in this section, to investigate further the performance of the proposed 

algorithm on a large scale 630-activity project adopted from the literature is unraveled. In 

this project two overhead costs are taken into account in two cases: The overhead costs for 

Case 1 (630a) and Case 2 (630b) are 2300$/day and 3500$/day, respectively. The optimal 
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solutions of 6300 days with $54.211.200 as cost for 630a and 6210 days with $61.761.700 

as cost for 630b had been originally provided by Sonmez and Bettemir [47] using integer 

programming. The detailing of the problem is given in section 3.5.3. To solve the current 

problem, it is found out that, the best combination of partial random initial population (E2) 

produces effective solution for the medium scale problem. Therefore, this suitable 

combination is adopted to unravel the large scale problem as well. To obtain the best 

Pareto front solutions ten consecutive experimental runs are implemented on this project. 

Best results of ten runs are demonstrated in Table 3.33 and 3.34 for Case 1 and Case 2 

along with corresponding average percent deviations (%APD) from the optima and also 

rank and crowding distances are provided.  

 

 

Table 3.33. Best results for 630-Activity project (Case 1: IC=$2300/day) using 

partial random initial population based NDS-TLBO 

 

This paper 

%PD Rank 
Crowding 

Distance NDS-TLBO 

Dur Cost ($) 

6387 54775880 0.01 1 0.0640 

6447 54682080 0.86 1 0.0498 

6480 54684970 0.87 1 0.0486 

6417 54687510 0.87 1 0.0434 

6458 54695920 0.89 1 0.0416 

6433 54697060 0.89 1 0.0354 

6473 54697450 0.89 1 0.0352 

6424 54702050 0.90 2 0.0349 

6475 54711350 0.92 1 0.0345 

6342 54720110 0.93 1 0.0336 

Pop. size 100 

%APD =0.911 
Num. of 

iterations 
250 

NFE 50000 
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Table 3.34. Best results for 630-Activity project (Case 2: IC=$3500/day) partial 

random using initial population based NDS-TLBO 

 

This paper 

%PD Rank 
Crowding 

Distance 
NDS-TLBO 

Dur Cost ($) 

6204 62591490 1.34 1 0.0857 

6127 62650570 1.43 1 0.0834 

6114 62680270 1.48 1 0.0786 

6094 62691570 1.50 1 0.0742 

6060 62696280 1.51 2 0.0316 

6043 62697220 1.51 1 0.0315 

6137 62702240 1.52 1 0.0312 

6030 62704580 1.52 1 0.0301 

6159 62711150 1.53 1 0.0300 

6130 62723120 1.56 3 0.0294 

Pop. size 100 

%APD =1.49 
Num. of 

iterations 
250 

NFE 50000 

 

The compared mean values of ten runs for Case 1 and Case 2 are presented in Tables 

3.35 and 3.36, respectively. In addition, Table 3.37 represents the compared %APD of 

Case 1 and Case 2 with the previous and basic TLBO algorithms.  

 

 

Table 3.35. Comparison of mean values of 10 runs for Case 1 (IC=$2300/day) using 

partial random initial population based NDS-TLBO 

 

Descriptions 
Bettemir [79] This paper 

NDS-GA NDS-ACO NDS-PSO NDS-TLBO 

Mean value 58983147 56703583 54815790 54705438 
Pop. size - - - 100 

Num. of 

iterations 
- - - 250 

NFE 250000 250000 250000 50000 

NFE = number of function evaluations 
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Table 3.36. Comparison of mean values of 10 runs for Case 2 (daily indirect cost=$3500) 

using initial population based NDS-TLBO 

 

Descriptions 
Bettemir [79] This paper 

NDS-GA NDS-ACO NDS-PSO NDS-TLBO 

Mean value 66395840 64574989 63121500 62684849 

Pop. size - - - 100 

Num. of iterations - - - 250 

NFE 50000 50000 50000 50000 

 

 

Table 3.37. Average deviations from the optimal solutions for the models obtained using 

initial population based NDS-TLBO 

 

Algorithms 

Case 1 Case 2 

No of  

Runs 

APD 

(%) 

No of  

Runs 

APD 

(%) 

GA, Sonmez and Bettemir [47] 10 8.83 10 7.50 

HA, Sonmez and Bettemir [47] 10 2.41 10 2.47 

DPSO, Aminbakhsh and Bettemir [48] 10 0.33 10 0.34 

Core NDS-TLBO  10 1.10 10 1.51 

Partial random initial population based NDS-

TLBO (This paper) 
10 0.91 10 1.49 

 

Partial random initial population based NDS-TLBO algorithm achieved very 

successful results and outperformed the hybrid genetic algorithm (HA) Sonmez and 

Bettemir, [47] as well as basic TLBO algorithms for large-scale instances. The acquired 

APD values for instances 630a and 630b are 0.91% and 1.49 %, respectively. By searching 

only 50.000 solutions out of 2.38 ×1042 potential solutions, partial random initial 

population based NDS-TLBO was able to obtain high quality solutions for the largescale 

problems. Hybrid algorithm of Sonmez and Bettemir [47] was able to achieve APD values 

of 2.41% and 2.47% within 50.000 schedules. Therefore, it can be seen from the result 

summary that performance of TLBO has improved due to the partial random initial 

population based modification. It is mentionable that, in this study also, the applied 

metaheuristic algorithm (TLBO) could not obtain global optima in any of the trials. 

However, by searching merely 25.000 solutions out of 1.37×1042 potential solutions, 

proposed algorithm was able to detect the solutions very close to the optimal. The reason 

of not achieving the global optima can be referred to the complex nature of the problem 

and premature convergence condition. Therefore, the partial random initial population 
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based NDS-TLBO provides a user-friendly and efficient concept to support time-cost 

optimization of medium scale problems. Importantly, the simplicity of the proposed TLBO 

algorithm can be taken into account as strength point of it. 



 

 

 

4. CONCLUSIONS 

 

In this thesis, significance of sufficient schedules for construction projects has been 

discussed to validate and assess the proposed algorithms. Well-known 7, 18, 63 and 630-

activity benchmark problems have been solved to validate the performance of the TLBO 

algorithm. The adequate values required to operate the algorithms have been assumed after 

series of trial and error, with regard to the solutions given for these examples within the 

literature. The robustness and potency of the applied algorithms have been investigated 

through the results obtained from these studies. The discrete basic-TLBO algorithm 

presented in this thesis has been established in the classical version proposed by the [5]. 

However, a minor change has been made to the NDS-TLBO algorithm to enhance the 

efficiency of the search process by introducing the partial random initial population based 

concept.  

In this research, the computational result is with up to about 630-activity and 5 

modes have revealed the satisfactory behavior of the teaching learning based optimization 

algorithm used to solve the TCT Problem. It is observed that the efficiency of the 

algorithm is affected by the number of activities and the tightness of the indirect cost value. 

This metaheuristic procedure generates solutions that deviate from the optimal solutions by 

no more than ten percent on average. 

It has been seen that the solutions produced via NDS phase of the model have 

reasonably good fit compared to the MAWA phase of the model, furthermore, it is resulted 

that the partial random initial population based version of NDS-TLBO algorithm 

outperforms the both non-dominating sorting approach as well as modified adaptive weight 

approach of the current research. However, it has been observed that the quality of the 

acquired solutions have been somehow deteriorated for test problems with smaller daily 

indirect costs. Robustness of this model in regards to its proficiency in locating the non-

dominated front for the medium-sized problems has been confirmed. Consequently, the 

utilized algorithm has been proven to outperform the results of the previous studies 

reported in the literature. Because of the strong convergence capabilities of the applied 

algorithm in locating the Pareto fronts of the represented TCTP problems, it would be 

taken into account as a surpassing technique in the construction management field. 
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Consequently, partial random initial population based NDS-TLBO presents better results 

than the other sole TLBO algorithms, so it is the most suitable algorithm for time-cost 

trade-off optimization problem. 

 

  Contributions 

 

This research contributes considerably to improve the limitations of solving large-

scale discrete time-cost trade-off (DTCT) problems. While the solution methods for 

solving DTCT problems in the literature are limited to 63-activity [48], using the proposed 

algorithm, the number of activities increases to 630-activity without compromising the 

quality of solution, within an acceptable range of less than 7% deviation from the global 

optimum. 

The following are a summary of contributions of the research: 

 Developed a flexible time-cost trade-off (TCT) model in MATLAB environment 

to be used for applying multiobjective TLBO for the first time on solving TCTP 

Problems in construction management field of civil engineering. 

 Investigated various multiobjective optimization approaches such modified 

adaptive weight (MAWA), non-dominating sorting (NDS) and partial random 

initial population version of NDS-TLBO for solving large-scale TCT optimization 

problems. Suitable methods for modeling and solving TCT problems were chosen 

and their efficiency in solving large size problems was examined. 

 The developed partial random initial population NDS-TLBO based TCT model 

proved its ability to solve very large-scale TCT problems. The solutions are 

satisfactory near optimum (mostly with less than 7% deviation from the optimal 

solution) with an acceptable processing time. 

 Concluded on the superiority of the applied multiobjective TLBO approaches 

comparing to the previous optimization methods. 
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  Future Research 

 

In spite of the significant improvements on the time and cost optimization of large-

scale construction projects presented in this research, various other enhancements are 

offered for the future extensions of the current research, including: 

 Investigating the performance of other optimization packages for optimization of 

time and cost in construction projects which have the integer programming using 

the AIMMS optimization software.   

 Extending the number of objective functions of problems to more than two such 

as quality, productivity, safety, and environmental effects etc., will also be an 

investigation area that deserves further devotion. Consequently, the model would 

turn into a more complicated combinatorial optimization problem which would 

be harder and more time consuming to solve. 

 Expanding the optimization model to include resource allocation and resource 

leveling constraints, in order to perform resource utilization while optimizing 

time and cost. This would provide a more complete optimization strategy for 

construction projects. 

 Applying modified version of TLBO by introducing concept of number teachers 

(NT) and adaptive teaching factor. 

 Providing an interface to project management software such as Primavera 

packages and Microsoft Project in order to import and export model data to/from 

project management software directly. 
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