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Master Thesis
SUMMARY

PARETO-FRONT PERFORMANCE OF MULTIOBJECTIVE TEACHING LEARNING
BASED OPTIMIZATION ALGORITHM ON TIME-COST TRADE OFF
OPTIMIZATION PROBLEMS
Mohammad Azim Eirgash

Karadeniz Technical University
The Graduate School of Natural and Applied Sciences
Civil Engineering Graduate Program
Supervisor: Assoc. Prof. Dr. Vedat Togan
2018, 92 Pages

In the real world, there are plenty of problems that require finding the best solution
meeting many objectives. Multiobjective optimization models are needed to obtain this
solution. For this purpose, in this study, to perform such a multiobjective optimization
process, an efficient Teaching Learning-Based Optimization (TLBO) algorithm has been
employed. Its performance is tested on several construction projects varying from an 18-
activity to 630-activity. The applied model integrates the modified adaptive weight as well
as non-dominated sorting approaches to find out the Pareto front solution. Furthermore, a
slight modification is made in the non-dominating sorting version of the classical sole-
TLBO algorithm by adding a certain portion of pre-known solutions to the initial
population of model in order to achieve an enhancement in the exploration capacity of the
proposed algorithm. Thus, the Pareto front performance of the utilized model is validated
re-solving the benchmark optimization problems taken from the literature. Hence, the
multiobjective optimization model based on TLBO developed in this study can be
preferred another alternative tool to solve time-cost trade-off problem in construction
engineering and management. Thereby, the main contribution of this study can be clearly
seen from the application of TLBO for the first time to solve TCTP problems in the

construction management field.

Keywords: Teaching Learning-Based Optimization (TLBO), Multiobjective optimization,
Metaheuristic algorithms, Time-cost trade-off problem (TCTP), Construction
management.
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Yiksek Lisans Tezi

OZET

OGRETME OGRENME TABANLI COK AMACLI OPTIMIZASYON
ALGORITMASININ ZAMAN-MALIYET ODUNLESIM PROBLEMLERININ
PARETO-COZUMLERINI BELIRLEME PERFORMANSI

Mohammad Azim Eirgash

Karadeniz Teknik Universitesi
Fen Bilimleri Enstitis(
Insaat Miihendisligi Anabilim Dali
Danigman: Dog. Dr. Vedat Togan
2018, 92 Sayfa

Gergek dunyada, bircok amaci karsilayan en iyi ¢6zimi bulmay:1 gerektiren birgok
problem bulunmaktadir. Bu ¢6ziimii elde etmek i¢in ¢ok amagli optimizasyon modellerine
ihtiya¢ duyulmaktadir. Bu amagla, bu c¢alismada, bdyle bir, ¢cok amagli optimizasyon
siirecinin  gerceklestirilmesi igin Ogretme Ogrenme Tabanli Optimizasyon (OOTO)
algoritmasi kullanilmaktadir. Olusturulan modelin performansi 18 etkinlikten 630 etkinlige
kadar degisen ¢esitli yapim projelerinde denenmektedir. Model, Pareto-¢oztmleri elde
etmek i¢cin degistirilmis uyarlanabilir agirlik ve baskin olmayan siralama yaklasimlarmi
icermektedir. Ayrica, modelin OOTO algoritmasmin baskin olmayan siralamay1 igeren
versiyonunda, bir iyilestirme yapabilmek icin onceden bilinen ¢ozumlerin belirli bir
miktar1 baslangi¢ popiilasyonuna eklenerck model de kiigiik bir degisim de yapilmaktadir.
Bdylece, kullanilan modelin Pareto-¢tzimleri belirleme performansi, literatiirden alinan
zaman-maliyet  Odiinlesim  optimizasyon problemlerinin  tekrardan  ¢6zllmesiyle
dogrulanmaktadir. Dolayisiyla, bu calismada gelistirilen OOTO'ya dayanan ¢ok amacl
optimizasyon  modeli, ingaat miihendisligi ve yoOnetiminde zaman-maliyet
odiinlesim(dengeleme) problemini ¢ozmek igin alternatif bir ara¢ olarak tercih edilebilir.
Bu nedenle, bu ¢alismanin ana katkisinin OOTO'nun insaat yonetimi alanindaki zaman-
maliyet 6diinlesim(dengeleme) problemlerinin ¢ozimunde ilk kez uygulanmasindan agikga

gordlebilir.

Anahtar Kelimeler: Ogretme Ogrenme Tabanli Optimizasyon (OOTO), Cok amagh
optimizasyon, ~ Metasezgisel  algoritmalar, ~ Zaman-maliyet
Odiinlesim Problemi, Yapim ydnetimi.
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1. INTRODUCTION

During the civilization of the world, people had been carried out many engineering
activities to construct somethings such as home, temple, building, bridge etc. combining of
these activities which can be measured and quantified forms project. In other word, project is
a series of activities to be performed to construct it. Construction is a series of activities
undertaken by construction companies and consultants, which produce or alter buildings and
infrastructure. Construction management is to ensure the construction activities handled
effectively and efficiently. Considering the competitive environment in all industries,
construction management is becoming vital for both the company and project management.
The development and progress of the construction industry depends upon realization of the
project management integrated with an equal concentration on company management.
Construction management is relatively a young field in the construction industry [1].
However, its influence has been eminently considerable. It has become a significant practice
for increasing the efficiency of construction operations around the world. Competition in the
construction industry has been rising due to entrance new companies into the market. Hence,
project management struggles to find the efficient schedule subjected to various parameters,
for example, time, cost and other operation resources. In project scheduling, finishing a
project with less time and cost is a crucial factor for planning a project. However,
accelerating the schedule of the project causes extra cost because of the reduction in activity
duration which requires the use of additional resources. Simultaneous optimization of direct
and indirect project costs is known as TCT problem. If a project is lagging behind the
schedule, decision makers can carry out time—cost trade-off problems (TCTP). TCTP helps
to become more acquainted with the set of time—cost choices that will guarantee the ideal
schedule under specific states. Project scheduling computations are dependent on CPM
(Critical Path Method). An activity is said to be critical if there is no distinction between its
earliest start time and latest finish times. As soon as the duration of all the activities in a
project is evaluated, the project duration can be calculated with CPM. In other words, the
sum of the durations of all activities on the critical path gives the project duration.

Being in a highly competitive sector, construction project professionals are always
kept on their toes to minimize the project time, cost and other resources, which affects their

profitability and margins. Therefore, they try to identify the best balance between the



potentially conflicting objectives. In the field of construction management, optimization is
a very useful tool to meet the desired objectives under the given constraints. Through
optimization, it is possible to increase the productivity of different components of project.
Importance of the optimization in construction project was noticed several decades and
was used for finding the ideal plan and schedules to complete a project.

Typically, activities may have different execution options (modes) that can contain
possible combinations of: 1) construction methods, which denote possible construction
technologies and/or materials; 2) subcontractors’ quotes, which represent the proposed
duration and cost of performing the activities by subcontractors, 3) crew formations, which
symbolize feasible arrangements of construction labor and equipment; and 4) overtime
strategies, which define the length and time of work shifts [2].

The selection of any mode of execution for each activity leads to a distinct time and
cost for that activity and affects the overall duration and cost for the entire project. The
combination of various possible execution modes of activities produces several project
plans where each project plan has a unique duration and cost. For large projects, the
enumeration of these alternative project plans is computationally hard, particularly because
the number of alternatives grows exponentially with the increase in the number of
activities of the project.

The purpose of this research is to employ multiobjective based TLBO algorithms to
deal with the time-cost trade-off problems in construction management field. To develop a
flexible time-cost trade-off (TCT) model, critical path method (CPM) scheduling in
MATLAB to be used for obtaining the objective functions of project duration and total
cost. The software is developed in a way capable of performing CPM scheduling for the
finish to start (FS) logical relationship. To this end, multiobjective approaches of modified
adaptive weight approach (MAWA) as well as non-dominating sorting (NDS) concept with
the mechanism of crowding distance computation is integrated with the proposed TLBO
algorithm. NDS seeks the satisfactory solution from the non-dominated solutions
depending on the experience and knowledge of decision-makers. However, MAWA
converts multiobjective problem to a single-objective problem, and then utilizing a single
objective optimization approach to find the satisfactory solution. MAWA approach
provides unique solution as no further interaction with the decision-makers is necessary.
Crowding distance operator is applied to maintain the diversity and to get out of the pre-

convergence solutions. Moreover, effect of partially randomly generated initial population



on NDS-TLBO algorithm with the crowding distance computation is also applied to further
investigate the exploration capacity of the proposed algorithm. Main logic behind of
partially randomly generated initial population concept is to add a certain portion of pre-
known solutions into the initial population, which was fully random, generated. This slight
modification is made to the non-dominating sorting version of the classical sole-TLBO
algorithm of the model. Thereby, contribution of this thesis can be clearly seen in the
application of TLBO to this field and also the TLBO-based multiobjective model activated
in this study provides a glamorous alternative to solving construction time—cost

optimization.

1.1. Research Motivation

This research has some main motivations: the complex nature of time-cost trade-off
problems; the inefficiency of traditional optimization methods for solving large-scale TCT
problems; and the potential use of advanced tools and novel techniques for overcoming the

limitations of traditional optimization methods. These are briefly described as follows:

1.1.1. The Complex Nature of TCT Problems

In the literature, De et al. [3] expresses that, discrete time-cost trade-off problem is
classified as combinatorial NP-hard (Non-Polynomial hard) which is the category of
problems with no efficient algorithm. The solution to this type of problems exhibit near
optimum solution complexity and gets worse when the size of the problem grows, the
computation time for solving it would grow as an exponential function of the problem size
[3]. As a result, solving large combinatorial problems is very time-consuming and
prohibitive. The goal in solving such type of problems typically is to find a satisfactory
near optimum solution within an acceptable processing time, rather than finding the global

optimum solution that may take a substantial impractical amount of time.



1.1.2. Inefficiency of Traditional Methods for Optimizing Large-Scale Problems

Many optimization models have been proposed to optimize the trade-off between
time and cost in construction projects. Optimization methods based on mathematical theory
like linear programming, integer programming, and dynamic programming are the first
optimization method employed to solve TCT problems. The main features of these
problems examined previously by using mentioned methods above are relatively small.

Linear programming is an appropriate method for solving problems with linear time-
cost relationships, but fails to solve problems with discrete time-cost relationships [4].
Integer programming and dynamic programming require a lot of computational effort for
solving more complex project networks or for solving projects with numerous activities.
Metaheuristic optimization methods, as alternative methods of optimization were
introduced to address the shortcoming of mathematical optimization methods for solving
large TCT problems. In recent decades, various modern metaheuristic optimization
methods including genetic algorithms, simulated annealing, particle swarm optimization,
ant colony optimization, and shuffled frog leaping optimization have been applied for
solving TCT problems. Although these alternative optimization methods have some
advantages over the mathematical optimization methods, and they have been applied with

success for optimization of many TCT problems.

1.2. Research Objectives

In this study, a multiobjective Teaching-Learning Based Optimization (TLBO)
algorithm is applied to show the Pareto front performance on solving TCTP problems in
construction management field. To fulfil this procedure, multiobjective approaches of
modified adaptive weight (MAWA) as well as non-dominated sorting (NDS) approaches
are incorporated with the proposed algorithm. In addition to this, to develop a flexible
time-cost trade-off (TCT) model, critical path method (CPM) scheduling in MATLAB to
be used for obtaining the objective functions of project duration and total cost.
Minimization of time and cost of the project are taken into account as the objective
functions. In the developed software, the finish to start (FS) logical relationship is used to
perform CPM scheduling. For the purpose of fulfilling the performance evaluation criteria

on the construction management optimization problems, the Pareto front performance of



the basic as well as other version of NDS-TLBO algorithm is verified on the different
benchmark optimization problems considering the Pareto front solutions. Hereby, the
MAWA and NDS-TLBO algorithm works effectively and implies considerable
performance for the optimization of time-cost problems.

1.3. Thesis Organization

The consequence of the thesis is arranged as follows:

Chapter 1 presents a short introduction about to CPM and followed by the literature
review. Then the time-cost trade-off (TCT) analysis is mentioned. It discusses solution
challenges, various categories, and used methods for TCTP, finally.

Chapter 2 presents the Teaching Learning Based Optimization (TLBO) algorithms,
and its implementation for solution of optimization problems. Also the modified adaptive
weight (MAWA) and non-dominated sorting approaches (NDS) are explained.

Chapter 3 presents TCT analyses of sample problem sets, followed by validation and
empirical analyses. The results of this chapter would be a basis for chapter 4, where the
results of metaheuristic methods are compared and discussed. Additionally, effect of
partial random initial population on NDS-TLBO version is also elaborated in this section.

Chapter 4 includes the final remarks obtained from the calculations on the solved

problems, contributions and some evaluations that can bring light on future work.

1.4. Literature Review

Some issues are addressed in this chapter to increase the intelligibility of formed
multiobjective model. Firstly, critical path method (CPM) are introduced to follow a
project scheduling process, then the time-cost trade-off (TCTP) problem is reviewed from
the point with of literature. Finally features of Teaching Learning Based Optimization

(TLBO) are explained which was proposed by [5].



1.4.1. Project Scheduling With Critical Path Method (CPM)

To complete a project all activities of project must be accomplished. Timing and
order of actions affects the project finishing time. Determination of timing and order of a
project's activities is known as scheduling, simply. Critical path method is one of the most
common techniques used for planning and scheduling of project. Through the planning and
scheduling of a project accomplished with any method developed for this purpose like
Critical Path Method (CPM) the amount and time of resources such as material,
equipment, workmanship etc., can be detected before the commencement of the project.
Some advantages to be achieved by using CPM are indicated in [6]:

« CPM detects the critical activities. Knowing of those has vital importance to keep
the project on schedule.

» CPM identifies ideal scheduling from the point of view of both time and cost in
choosing methods, equipment, materials, crews, and work hours.

» CPM effectively follows in association with network the changing on the activity
execution modes. Two distinct network types known as activity on arrow and activity on
node are performed in CPM. As their name implies, in the first, the activities are shown on
arrows connected to the nodes. However, in the second, the activities are directly
represented by nodes.

In this thesis, activity on node (AoN) is used as network type for the scheduling of
the construction activities. When both network types, activity on arrow (AoA) and activity
on node (AoN) are compared, it can be stated that AoA needs more effort than AoN to
generate of activities. Using of activity on node diagrams is more convenient way to define
the logical relationships and lags.

From the discussion of arrow and node diagrams, it can be found that AoN has some
substantial advantages over arrow networks:

v Easy drawing

v" Absence of dummy activities used to straighten out the logic.

v Ability of taking into account the lags between activities without the addition of
more activities.

v/ Easy applicability of three other relationships (start to start, finish to finish, and

start to finish) in contrast to arrow networks.



Some terms used when planning and scheduling of a project by CPM are briefly

explained as follow [7]:

Activity: refers to task which are discretely defined.

Critical Path: shows the sequence of activities taking the longest time, which
determines the project duration.

Duration: expresses the spent time for completion of an activity from the start of
its.

Early Start Date (ES): depending on the logical relationships among its
predecessors, demonstrates the earliest date that an activity can start.

Early Finish Date (EF): based on its duration, and logical relationships among its
predecessors, represents the earliest date that an activity can finish.

Late Start Date (LS): refers the latest start date allowed for an activity not to delay
the project completion date.

Late Finish (LF): refers the latest finish date allowed for an activity not to delay the
project completion date.

Total Float: demonstrates the amount of delay that an activity in the schedule
without adversely affecting the critical path.

Free Float: refers the amount of delay for an activity before it adversely affects
another activity.

Forward Pass: specifies the stage in which the early start and end dates of all
activities are calculated.

Backward Pass: specifies the stage in which the late start and end dates of all
activities are calculated starting from the project end date set by the forward pass

calculation.

1.4.2. Logical Relationships in CPM

In addition to traditional finish-to-start (FS) relationship which is generally adopted

for activities relationships, three other relationships, start-to-start (SS), finish-to-finish
(FF), and start-to-finish (SF), can be also handled in CPM to establish of networks.

a.

Finish-to-start (FS) relationship: The following examples clearly express the key
rationale behind the definition of FS relationship for the activities. :

The concrete cannot be placed (poured) until the formwork has been built.



b. Start-to-start (SS) relationship: Explanatory examples are given below for this type
of relationship.
Excavation for the foundation cannot start until clearing and grubbing begins
(usually with a certain lag; i.e., a certain percentage is completed).

c. Finish-to-finish (FF) relationship: Example of this type is as follows:
Backfilling a trench cannot finish until the pipe in the trench has been laid.

d. Start-to-finish (SF) relationship: Considering the construction projects, it can be

noted that SF relationship is very rare and even does not exist.

1.4.3. Time-Cost Trade-off Problems (TCTP)

As it is clear that, both the contractor and the client are willing to complete the
project on or ahead of the schedule. Also, completing on or under the targeted budget is
another desirable accomplishment. For this reason, concurrent minimization of time and
cost objectives is unavoidably favorable for both the contractor and client. Hence, the
Critical Path Method (CPM) is a useful scheduling technique only when the project
deadline is not fixed. To use CPM for a project with a fixed deadline or for a project which
is running behind schedule, the TCT analysis is implemented to meet the project deadline.
In the TCT analysis some of the activities on the critical path are substituted with their
shorter modes of construction to save time. In addition, non-critical activities are relaxed to
save cost [7].

Figure 1.1 indicates the relationship between the cost and time. It can be observed
from this figure that with increase in project duration direct cost decreases while indirect or

overhead cost increases.
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Figure 1.1. Project Time-Cost Relationship

1.4.4, TCT Optimization Challenges

Optimization is the process of trying to find the best solution to a problem that may
have many possible solutions. Once the search space of the problem becomes too large for
the calculating power of available computers, finding the optimal solution among all other
feasible solutions to the problem may take a substantial and an impractical amount of time.
Evaluating each alternative requires recalculation of the schedule using the critical path
method (CPM) and reassessment of total project cost. Exhaustive enumeration is,
therefore, not a feasible and practical solution even with very fast computers [8]. In fact,
this process can be shortened with existing methods for optimization to find best
combination of time and cost. However, although these methods were applied on solving
time-cost trade-off problems of various kind of small scale projects, for the TCTP of large

projects they require much more computational effort due to structures of their.

1.4.5. Optimization Methods for TCTP

To solve the TCT problem many multiobjective optimization models have been
developed in the literature since finding the optimal solution of it results in very
cumbersome computational effort, which requires heavier calculation. In parallel with the
developing in computers and numerical methods, different optimization techniques have

been applied to solve the TCTP. The common optimization algorithms methods employed
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for the solution of TCT problem are exact, heuristic, and metaheuristic. Exact algorithms,
as the name implies, seeks the all global optimal solutions in the solution space for the
defined problem. Likewise, they require huge amounts of calculations which, thus, require
super personal computer (PCs) and additionally mind boggling coding techniques. Due to
the ability of detecting the global optimum(s), they are preferred in order to show the
optimality of the obtained results for the problem although they need more computational
efforts. Linear programming, mixed-integer programming, dynamic programming, etc. are
some examples for the exact algorithms to be used to solve TCTP.

Heuristic algorithms apply simple rules unlike the exact algorithms to produce
solution(s) to the problems examined. Owing to this they can be used easily for the
complex problem with less effort. However, for these algorithms, globality of the obtained
result is always questionable since they can generally find the local global solutions or the
near global ones. This methods use an algorithm to generate the feasible solution. In
general, a feasible solution is not acquired over the span of the development heuristics
unless the conclusion of the procedure is achieved.

Nevertheless, the algorithms called as metaheuristics and based on the nature events
have been implementing to solve various problems in the distinct engineering fields. The
main features of these algorithms are to numerically represent the natural events [8]. Since
the metaheuristic algorithms improve the quality of the obtained solution iteratively due to
stochastic nature of their, they might not stuck into the local optimum. This latter feature
improves the detection chance of global optimum solution searched by the metaheuristic
algorithms. Like heuristics, metaheuristic algorithms cannot guarantee the optimality of the
achieved solution and requires substantial amount of computational efforts. As mentioned
above, the algorithms into this type of optimization methods simulate the evolutionary
computation and swarm intelligence. They are very useful tool for problems that achieving
the global solutions are very difficult, as they find the near optimal solutions instead of
global ones. Among others, genetic algorithms (GA), ant colony optimization (ACO),
particle swarm optimization (PSO), and simulated annealing (SA) are most known

metaheuristic algorithms.
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1.4.5.1. Exact Methods for TCTP

Mixed-integer programming was applied for the first time to solve the TCT problem
in a study carried out by Meyer and Shaffer [9]. Then, in another study, a flexible mixed-
integer model was proposed to minimize the time-cost objective function [10]. Their model
is able to deal different type of objective functions including linear, piecewise linear, or
discrete. Moreover, this model takes the completion deadline as constraint to obtain the
optimal total cost.

De et al. [3] addressed disadvantage of the models developed previously for the
solution of discrete TCT problem through literature review. Two solution models based on
dynamic programming, that were denoted as a centralized approach and modular
decomposition approach, were implemented in [3] to identify the solution of TCT
problems. Moreover, they also used parallel modules in the second solution models in their
optimization process.

Demeulemeester et al. [11] developed an exact solution model for discrete TCT
problem in Visual C++ platform subject a time restricted scheduling. Their model is based
on branch and bound optimization model improved by a horizon-varying approach. They
evaluated the qualities of convex piecewise linear underestimations that was calculated for
the discrete TCT curves by using two different rules they developed. The results obtained
from the numerical experiments carried out with their model were confirmed through the
factorial experiment, and were compared to those reported by Demeulemeester et al. [12].

Vanhoucke [14] examined the time/switch constrained discrete TCT problems
handled with by Yang and Chen [13] in advance. These constraints refer the specific start
time and inactive time-intervals enforced to the day, night, and weekend shifts of the
activities. In the point of light of the lower bound calculation approach developed by

Demeulemeester et al. [11], they offered a new variant of branch and bound algorithm. .

1.4.5.2. Heuristic Methods for TCTP

A logical systematic procedure based upon intuitive logic and analysis was
developed by Siemens [7]. He named the method as Siemens Approximation Method
(SAM), and denoted as a heuristic method. The model converts the convex nonlinear TCT

problems to linear that approximate them with multiple curvilinear parts. SAM begins with
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the establishment of the project network, and then follows a series of rules to accelerate the
activities having least additional cost. The results of this model show good harmony with
those obtained with exact algorithms. However, Siemens [7] indicated that since the model
ignores number of different paths the activities belong to, and works with the minimum
cost slope considerations, it might produce an over shortened project duration beyond the
intended amount.

The cost-slope method that is the other name for SAM is a simple heuristic approach
for solving TCT problems. This method shortens the project duration assuming that the
relationship between time and cost is linear.

According to this assumption, the cost slope of an activity is defined as the rate at
which the direct cost increases when its duration is shortened by a unit of time .The
detailed steps of the cost-slope method are as follows [6]:

1. Make use of normal durations and costs for all activities.

2. Construct the CPM and determine the critical path.

3. Eliminate all non-critical activities.

4. Obtain normal/crash durations and costs for all critical activities.

5

. Compute and obtain the “cost-slope” of each critical activity:

Crash Cost - Normal Cost

Cost Slope = - -
Crash Duration - Noraml Duration

6. ldentify the critical activity with the least cost slope and possible reduction in
duration.

7. Shorten the duration of the identified activity until its crash duration is achieved
or the critical path changes.

8. If the network has more than one critical path, we need to shorten both of them
simultaneously. This can be done by shortening a single activity that lies on all
paths or by shortening one activity from each path. The option to choose is
determined by comparing the cost slope of the single activity versus the sum of
cost slopes for the individual activities on all critical paths.

9. Calculate the direct cost increment due to activity crashing by multiplying the cost
slope by the time units crashed. Add the additional cost to the total direct cost.

10. If float times are introduced into any activity, relax them to reduce cost.
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11. Plot one point (project duration versus total direct cost) on a figure.
12. Continue from Step 2 until no further crashing is possible to the project.
13. Plot indirect project costs on the same figure. Add the direct cost + indirect cost
and plot the total cost curve.
14. Get the optimum TCT strategy as the one with minimum total cost. An example
of a complete case study solved based on the cost-slope heuristic method.
Vanhoucke and Debels [15] search three augmentation of the discrete TCT problem;
first is time / switch constraints [13], second is work continuity constraints [16], and the
third one is net present value maximization [17]. They give another metaheuristic
algorithm considering activity on arrow (AoA) network schedule programmed in the
Visual C++. The heuristic segment of the exerted algorithm includes an emphasis on
neighborhood hunt and maintain diversity attempt. The second part of their algorithms
incorporates a dynamic programming which rises the time span of non-critical activities
whilst, achieving the favorable finishing due date. The compared results reveals that, the
proposed algorithm is applicable on net present value versions of the discrete TCT
problem.
Mubarak [19] outlined 9 techniques among the others that was stated to be more than

90 [18] and that was used to shorten a project schedule.

1.4.5.3. Metaheuristic Methods for TCTP

Feng et al. [20] presenting the inadequacy of the current techniques in adapting to
large-scale TCT problems, developed a more effective model depending on the rule of
Holland’s [21] genetic algorithm (GA). They used two chromosomes containing the
information related to normal and crash options of the activities in own model. Hence, the
objective function values of solutions as per their insignificant distances to the convex hull
were determined.

Goldberg and Segrest [22] approve their algorithm later on improving computer
program (TCGA) with an interface outlined in Microsoft Excel. The results obtained by
using this algorithm indicates that it is capable of finding the optimal solutions with a high
percentage for the construction project with 18-activity forming a discrete TCT problem.

The GA demonstrate proposed by Zheng et al. [23] tries to trade-off the genetic drift
fact by decreasing the probability stalling out into the neighborhood optima.. Thus, Zheng
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et al. [23] combines a modified adaptive weight approach (MAWA) to calibrate the need
of fitness value regarding the nature of the previous generation. As the generations raise,
modified adaptive weight approach (MAWA) directs a diminishing formwork for the
mutation rate to counteract early stopping conditions. This model outperforms the past
algorithm particularly for the problems with bringing smaller overhead costs; On the other
hand, it does not have the competency of applying the complete Pareto front for any of the
observed conditions.

Being first introduced by Colorni et al. [24], Ng and Zhang [25] examined the
multiobjective TCT problem using the ant colony optimization (ACO). They adopted the
modified adaptive weight approach (MAWA) to assess the fitness function solutions. The
excellence of their algorithm is tried against other explanatory strategies that were
examined by Elbeltagi et al. [26] previously. The conclusion reveals that the applied ACS
algorithm provides a satisfactory solution for tackling the TCT problem with substantially
fewer necessities of computational assets.

Xiong and Kuang [28] made different endeavor toward integrating Zhang et al. [27]
modified adaptive weight approach (MAWA) with ant colony algorithm. In this technique,
two options are made to settle on conceivable choices. As per the enrolment of an arbitrary
variable, the main determination is made with respect to a maximization criterion, and
alternate includes a probability distribution function.

Afshar et al. [29] demonstrated the discrete TCT problem as a graph. They developed
an ant colony based multiobjective optimization model. Each solution in ant colonies
explored one of objective of TCT problem. Combining this information coming from an
ant colony, a multi-colony non-dominated archiving ACO was formed to solve the TCT
problems. Effectiveness of model was checked in terms of the results obtained by [20] and
[23]. The model significantly outperformed over the compared algorithms.

A strong algorithm in considering complex major scale problems was introduced by
[30]. Elbeltagi et al. [30] reviewed shuffled frog leaping (SFL) because of its adequacy in
combining particle swarm optimization (PSO). In [30], a search-acceleration parametric
study was carried out in order to better realize the results. Numerical problems are adopted
to implement modified SFL (MSFL) utilizing Visual Basic, Microsoft project, and
Microsoft Excel programs and are compared to basic SFL and GA algorithms. The results

of applied MSFL indicate its efficiency to solving this type of problems.
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Five forms of a simulated annealing algorithm employing activity on node (AoN)
scheduling network is analyzed by [31]. Anagnostopoulos and Kotsikas [31] look for
exerting an inquiry strategy practically equivalent to annealing procedure of dissolved
materials. Moreover, they use analysis of difference (ANOVA) and Duncan Multiple
Range Test (DMRT) to gauge quality and effectiveness of the solutions presented by many
problem factors. Test instance sets are produced randomly utilizing the RanGen2 program
for the SA algorithms coded in the Visual Basic programming language. In the end, they
rank the SA variations as per the results of the Duncan test and predict certainty interval of
the optimum solution for the generally advantageous and the most noticeably bad
algorithms.

The application of PSO algorithm to investigate crashing options of the cost and
deadline TCT problems is analyzed by [32]. The purposed Yang‘s [32] model is to produce
Pareto front solution, in order to help decision makers in running further “what if” analysis.
The coding of this model is performed in MATLAB optimization engine and is
implemented into a numerical simulation, also a real-life highway restoration project. The
study involves a numerical example of an 8-activty network, and the case-study including
28-activity. Average percent deviation (APD) per ten runs along with adopting suitable
parameters is taken into account to measure the performance of the proposed algorithm.
Eventually, the efficiency of PSO algorithm is approved satisfying a negligible percentage
deviation.

In a novel approach, a Fuzzy-based PSO for solving time-cost-quality trade-off
problems with nondeterministic input data are presented by [33]. Zhang and Xing [33]
unraveled the numerical example of fuzzy multi-attribute useful technique derived from
[34]. The model is installed in the restricted fuzzy arithmetic operations to improve the
PSO algorithm by creating solutions that ensure maximum quality whilst calling for
minimum time and cost. Assuming time, cost, and quality of the options as triangular fuzzy
numbers, coding of utilized PSO algorithm is performed in Visual C++. For each mode
combining, fuzzy multiobjective particle swarm optimization (FMOPSO) utilizes fuzzy
feature beneficial for producing composite fuzzy useful values. The proposed PSO
algorithm combines the mean integration representation (GMIR), in order to find the
solution with the substantial composite fuzzy benefit. The algorithm is investigated on a
three modal 13-activity network, and the compared results to fuzzy-GA algorithm illustrate
the effectiveness of the FMOPSO.
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Meyer and Sheffer [35] had unraveled time-cost trade-off problem taking into
account both linear and discrete relationship between time and cost, by utilizing mixed
integer programming. On the other hand, integer programming needs lot of process time
when the numbers of options to finish activity rises.

In addition to trade-off between the time and cost for a project planning, it is also
possible to adopt another criterion such as quality. Adding the quality into the TCT
problem as a new target introduces a new problem known as the time cost-quality trade-
off. Zhang and Xing [33], Babu and Suresh [36], Khang and Myint [37], Tareghian and
Taheri [38], Kim et al. [39], Mungle et al. [40], Tavana et al. [41], and Monghasemi et al.
[42] examined this type of trade-off problem via their models. Furthermore, keeping the
availability of resources in mind, Hegazy [8], Liu and Wang [43], Ghoddousiet al. [44],
Afruzi et al. [45] and Rostami et al. [46] solved TCT with restricted resource.

Sonmez and Bettemir [47] studied about hybrid methods for discrete time-cost trade-
off problem (DTCTP) analysis. They utilized different methods for DTCTP problem like
genetic algorithm (GA), hybrid metaheuristic (HMH), simulated annealing (SA), quantum
simulated annealing (QSA) and Hybrid algorithm (HA). Hybrid Algorithm (HA) was
utilized to ten benchmark optimization problems ranging from 18 to 630 activities. They
compared the results obtained by different methods and found that use of SA and QSA
advances the convergence of GA while HA enriches the DTCTP performance.

Aminbakhsh and S6nmez [48] introduce an efficient method based on particle swarm
optimization (PSO) for the solution of large-scale discrete time—cost trade-off problem
(DTCTP). In this study, Siemens method is initially used to produce a certain portion of
initial population and incorporated with PSO model to accelerate the searching process.
Numerical simulation results demonstrated that the introduced new model is able to
produce much better results in point of view of the quality of solution obtained, and the
time spent required to detect him as compared to the previous models, particularly for
medium and large-scale TCTP problems.

Bettemir and Birgonul [49] adopted minimum cost-slope method for solving the
discrete TCT problem. They addressed that for the discrete TCT problem, since crashing
modes are also discrete; they disrupt the linearity in the cost function. Due to this, the
application of the minimum cost slope method becomes not suitable for the discrete TCT

problem.
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Abdel Raheem and Khalafallah [50] have presented the development of a new
evolutionary algorithm, named “Electimize,” that is based on the simulation of the flow of
electric current in the branches of an electric circuit. The main motive in their research is to
provide the construction industry with a robust optimization tool that overcomes some of
the shortcomings of existing evolutionary algorithms.

Ahmet-Baykal Hafizoglu [51] first considered the deadline problem for the discrete
time/cost alternatives. Branch and Bound Algorithm and several heuristic procedures has
been proposed. All procedures are based on the Linear Programming Relaxations of
the problem. The properties of the Linear Programming Relaxation are defined and used
them in designing the proposed algorithms. Afterwards, a Discrete Time/Cost Curve
Problem is taken into account. This approach uses the successive solutions of the Deadline
Problem.

Aminbakhsh [52] generated a hybrid-PSO model integrating the benefits of the
modified-SAM method with PSO algorithm. Integration process of the required algorithms
was managed via C++ programming language through the Microsoft Visual Studio 2010.
To validate the potency of the PSO optimizer, benchmark optimization problems taken
from the literature were resolved using the proposed algorithm and a comparison was also
presented for the results obtained with the previous models. Moreover, mixed integer
programming using the AIMMS optimization software is applied to discover all the
optimal solutions of the example problems to assess the performance. To measure the
quality of the acquired solutions, optimal solutions and the average deviations are
evaluated for multiple experimental runs. The results indicate that the proposed algorithms
outperform the previously proposed models.

De et al. [56] demonstrate that any exact solution algorithm for the discrete TCT
problem would quite often show an exponential poor scenario adversity; in that, the
computational time would go up in an exponential way as the number of the problem gets
increased. It has been inferred that exact algorithms are inclined to get into stuck in
neighborhood optima in non-convex solution spaces [56, 20, 57, and 29]. Besides, the
researchers using heuristic algorithms recognize that they are similar to exact procedures,
however, can't deal with large-scale problems effectively [7]. Eventually, the main
shortcomings of the current metaheuristic algorithms are seen as the probability of

stagnated into local optima [23, 47].



2. OPTIMIZATION ALGORITHMS

This chapter is devoted to multiobjective teaching learning based optimizer (TLBO).
Initially, theoretical properties of contemporary TLBO algorithm is presented for solution
of time-cost trade-off benchmark optimization problems, contributing specific emphasis on
time-cost extension of these analyses. To develop a flexible time-cost trade-off (TCT)
model, critical path method (CPM) scheduling in MATLAB to be used for obtaining the
objective functions of project duration and total cost. Summation of all the activities on the
critical path is equal to the total project duration. The software is utilized to perform CPM
scheduling for the finish to start (FS) logical relationship to obtain the project duration
objective function. To this end, the purpose of this research is to employ multiobjective
TLBO algorithm to handle the time—cost trade-off problems. It also includes the
application of modified adaptive weight approach (MAWA) as well as non-dominating
sorting (NDS) concept with the mechanism of crowding distance computation. As it is
clear that, optimization techniques being used for single objective optimization for several
years. Afterwards, the unification of more than one objective in the fitness function has
finally become popular in the research studies. This unification of more than one objective
in the fitness function is called multiobjective function. In the present work, minimization
of time and total cost of the project is taken into account as bi / multiobjective functions.
For fulfilling time-cost trade-off optimization, a multiobjective optimization approach is in
need. Therefore, initially, a classic modified adaptive weight approach (MAWA) is utilized
to unravel the various benchmark optimization TCTP problems. In spite of being the most
simplistic approach, MAWA can achieve near optimum solutions as no further interaction
with the decision-makers is required. This approach simply assigns weights to each
objective function and combines them into a single objective function. However, the
performance of the modified weighting approach becomes worst and is not capable of
exploring the global optima whenever applied to more complex medium as well as large
scale problems. Hence, in this thesis, to overcome this deficiency of MAWA, an effective
and more promising non-dominating sorting (NDS) concept and the mechanism of
crowding distance computation is also adopted. As it is obvious, nowadays, instead of
MAWA approach, the NDS superior approach is broadly being acknowledged in solving

the mentioned TCTP problems. In contrast to MAWA approach, there is no unique
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solution provided by NDS approach, but Pareto front solutions are produced and selected
by comparing two solutions to each other. This NDS approach seeks the satisfactory
solution from the non-dominated solutions depending on the experience and knowledge of
decision-makers. The employed multiobjective TLBO algorithm can find out the Pareto
front solution which provides flexibility to planners and decision makers in making
efficient time-cost decisions. The concept of the Pareto front solution is the commonly
accepted tool for comparing two solutions in multiobjective optimization that have no
unified criterion with respect to optima. Considering the number of activities and selecting
options for each of the activities, usually the selection has not one unique solution, but it
consists of a set of solutions that are not preferred to each other and are known as Pareto
solutions. In addition to this, to develop a flexible time-cost trade-off (TCT) model, critical
path method (CPM) scheduling in MATLAB to be used for applying multiobjective TLBO
optimization engine. Thereby, contribution of this thesis can be clearly seen in TLBO
application on the construction management filed and also the development of the TLBO-
based multiobjective approach in this study secures superiority to solving construction
time—cost optimization. The Pareto front performance of MAWA-TLBO and NDS-TLBO
are compared to those previously presented models with regard to the average percent
deviation (APD) and optimality of the obtained solutions. The results reveal that NDS-
TLBO is more effective as compared to the original MAWA-TLBO and other state-of-the-
art algorithms. Furthermore, the effect of partial random initial population on NDS-TLBO
for time-cost trade-off optimization problems is investigated to demonstrate the variation
on exploration capacity of the proposed algorithm. This new approach is implemented on

the non-dominated sorting version of the classical core-TLBO algorithm.

2.1. Teaching-Learning Based Optimization (TLBO)

Like other metaheuristic algorithms, TLBO [60] was also proposed as a population-
based algorithm. "Teaching" phase, which is the first mode of TLBO, creates randomly
requested solutions of focuses called learners inside the inquiry space. Afterward, a learner
being the most qualified is taken into account as the teacher. He / she offers his or her
insight to the learners, in this way the others get huge information from the teacher. The
learners also learn by interacting among them. After various successive Teaching-Learning

cycles, where the teacher passes on information among the learners and raises their insight
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near her or his level, the dispersion of the arbitrariness inside the hunting space winds up
plainly smaller and smaller stretching around a point embraced as the teacher.
Convergence over a solution implies that the knowledge level of the entire class indicates
smoothness.

TLBO that was proposed by Rao et al. [60] and also Rao and Savsani [61] simulates
the influence of a teacher on the output of learners in a class. It has emerged as one of the
simple and efficient techniques for solving single-objective benchmark problems and real
life application problems in which it has been empirically shown to perform well on many
optimization problems [62-65]. These are precisely the characteristics of TLBO that make
it attractive to extend it to solve multiobjective problems (MOPs) [63, 64, 66-68].

TLBO algorithm has already been effectively exerted to numerous engineering
optimization problems. Among them, TLBO algorithm has been utilized in electric power
generators under various targets, for example, energy cost, emission, electrical energy
misfortunes, voltage deviations, and so forth [67, 69, and 70]. Cooling limit and efficiency
coefficient of cooler is taken as destinations to improve thermoelectric cooler by Rao and
Patel [71]. Optimization for some structural engineering problems, i.e., truss frameworks,
I-beams, grillage structures are done underweight obeying stress, deflection and frequency
constraints [65, 72-74].

TLBO algorithm proceeds with two basic modes; (i) teacher phase and (ii) learner
phase. In the former phase, the class learns through the teacher. However, in the latter,
learning is carried out with the interaction among the students in the class. Analogously, all
students (learners) represent the population for an optimization algorithm; the subjects to
be taught are considered as the design variables of the optimization problem; exam result

of the learners gives the ‘fitness’ value for that corresponding subject to be taught.

2.2. Time-Cost Trade-Off Optimization

The main goal of a discrete TCT optimization problem is to determine a set of time-
cost alternatives which provide an optimal balance between the time and cost for project
scheduling under the specific conditions. The TCT analysis is implemented to meet the
project deadline for a project with a fixed deadline or for a project which is running behind

schedule. As mentioned above, TCTP mainly concentrates on selecting appropriate options
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for every activity to obtain the objective of time and cost of a project. The objective of time

of a project can be calculated according to Eqns. (1)—(4).

ESy =0 (the subscript O represent zero) 1)
ES; =maxEF j=L--,n+1

EF, =ES; +tx®  i=0,--,n+1 3)
T=EFR (4)

Where, T is the total time duration of the project and maximization of which is one of the
objectives of TCTP. It represents the complete time of critical activities placed on the
critical path of the project activity network. ES; and EF; are earliest start time and earliest
finish time, respectively; p; is immediate predecessor of activity j; ti & is duration of
activity i for the kth option; and x; ¥ is index variable of activity i. If x; ¥ =1, then activity i
performs the kth option, while x; ® = 0 means not. The sum of index variables of all
options should be equal to 1. Activity 0 (n+1) is the only dummy activity.

The total cost of a project composes of direct cost and indirect cost. Sum of direct
cost of all activities within a project network gives the direct cost. Besides, indirect cost
depends on the project duration. Thus, indirect cost increases as the finishing date of a

project is getting longer. Afterwards, Eqns. (5)—(7) are applied to calculate the total cost of

a project.
n+l
_ (k) (k)
IC=TxICR (6)
C=DC+IC (7)

where DC and IC , respectively, are the total direct and indirect costs of a project; C is the
total cost of a project; dci ® x; @ shows the direct cost of activity i under the kth option; and

ICR is the indirect cost rate of a project.
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2.3. Optimum Solution of TCTP via MAWA-TLBO

The solution of TCTP employing TLBO process is summarized in five steps as
follows:

Step I: Define the number of learners (population size) in the class and the maximum
number of iterations (stopping criteria) to initialize the TLBO algorithm.

Step 11: Fill the initial matrix (class; CL) with pn (student or population size) number
of solution vectors that contains dn number of randomly generated design variables (X;)

between the upper ( X ™) and lower ( X ;“i”) limit of the solution range (Eqg. (8)).

X< X, < X max i=1.-,dn (8)

Thus, initial matrix (CL) can be written as:

I Xl,l X1,2 X1,dn
X2,1 X2,2 Xz,dn
CL — . . o : (9)
X pn-11 X pn-12 --- X pn-1,dn
L X pn1 X pn,2 X pndn |

In which each row of the matrix is a candidate solution of TCTP problem that is

corresponded two objective function values associated with time (f; (X)) and cost ((fc (X))).

fe (X1, fo(Xy)
fi(X2), fe(X3)
f(X)= 2 (10)
1:t (X pnfl)’ fc (X pnfl)

L ft(xpn)a fc(xpn) |

Step I11: Apply “teacher phase (tp)” of the TLBO algorithm. Due to teacher has the

best knowledge, the variables with minimum objective function is assigned as a teacher
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(Xteacher) Of the class. Because of the fact that TCTP problem is a multiobjective, to

determine the teacher, Eq. (19) is taken into consideration.
Xteacher = fmin (X) (11)

Then, knowledge of the teacher is used to increase the capacity of the whole class.
The main aim is to increase of the mean (Xmean) Of the class. For that reason the equation of

new students is found, according to teacher and mean of the class as seen in Eq. (12).
XPrew, i = Xog, i + rand (0, 1). (Xieacher ~Te. Xmean) (12)
where Tr represents teaching factor defined as
Te=round [1 +rand (0.1)] — {1-2} (13)

and it takes a value 1 or 2 depending on the uniformly distributed random numbers
that are within the range [0, 1]. If the new solution (X®new, i) is better than the old one in
point of the objective function (Eqg. (19)), the new solution is accepted.

Step 1V: Proceed with the “learner phase (lp)” of the TLBO algorithm. As it stated
above, students also have an important role in the learning process by communication,

interaction, investigation, etc. This interaction can be expressed as follows:

J
new,i —

N Xoai +1and(0) (X, -X;)  for  £(X;)>f(X;)
Xoqi +1and(0D) (X; -X;)  for  f(Xp)< (X)) (14)

where X; and X; are randomly selected learners that are different each other. If the new
solution (X'rew, i) is better, it is replaced with old one.

Step V: Check the stopping criterion. This criterion usually is defined as the
maximum iteration number. If the stopping criterion is satisfied, the optimization process is

terminated, otherwise the iteration process continues from the step I1I.
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2.4. Modified Adaptive Weight Approach (MAWA) in Multiobjective
Optimization

This approach simply assigns weights to each objective function and combines them
into a single objective function. It is the approach which has got the simplest formulation
and easy to be implemented. In spite of being simple one, is able to achieve optimum or
near optimum solutions as no further interaction with the decision-makers is needed.
Modified adaptive weight approach (MAWA) proposed by Zheng et al. [27] is utilized in
this study to solve the multiobjective problem. To identify adaptive weight for each
objective, MAWA benefits the information from the existing set of solutions. For MAWA,

the formulations are expressed through the following four conditions [4]:

1. fOf' Ztmax ;é Ztmin and Zcmax;b Zcmin

Vo= ZM" [ 2~ Zm

vi= ZMin/ zmax — z,min

V= Vit Ve (15)
We=Vi/ v

We=Vc/V

2. For Z{™ = z{"" and Z,™ = Z;""

We=wWe=0.5 (16)

3.Forz™ =z and Z"% Z""

w:=0.9
(17)
We = 0.1

4. For Z{™ # zMnand Z " = Zmn
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Wt = 0.1
(18)

We = 09

where Z™* and Z:™" are maximum and minimum values for the objective of project
duration, respectively, in the current iteration. Similarly, Z:™ and Z.™" are maximum and
minimum values for the objective of total direct cost, respectively, in the current iteration.
ve and ve are ratio between the minimum value and difference between maximum and
minimum points for the objective project duration and total direct cost, respectively. w is
weight for the objective of total direct cost, and w; is weight for the objective of time.
These weights adjust itself with adaptive manner. It means that their values changes
depending on the performance of the current population. According to MAWA, the

following equation is evaluated to assign fitness to each solution:

Z,—Z™mn 4 Z,—ZMn 4y
t t +W c c

. . .
2P -z ZP -z ey

f(x)=w, (19)
where x shows any candidate solution in the current generation; f(x) is the fitness of that
solution; Zc and Z; represent the total cost and the time of the xth solution, respectively. r is
a small positive random number between 0 and 1; we, and w; are the adaptive weights for
cost and time. To avoid a case of Z™ = Z,™" or /™ = Z;"n r is added in Eq. (19) [27].

The flowchart of the process can be seen in Figure. 2.1.
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Figure. 2.1. Flowchart of the MAWA-TLBO algorithm for TCTP

2.5. Non-dominated Sorting TLBO Algorithm for Multiobjective Optimization

As it is obvious, nowadays, instead of modified adaptive weight approach (MAWA)
approach, this non-dominating sorting (NDS) superior approach is extensively being
acknowledged in unraveling the different benchmark optimization TCTP problems. In
contrast to MAWA approach, there is no unique solution provided by NDS approach, but
Pareto front solutions are produced and selected by comparing two solutions to each other.
This NDS approach seeks the satisfactory solution from the non-dominated solutions
depending on the experience and knowledge of decision-makers. The domination concept

defined as: design A dominates design B if it is better in at least one criterion and not
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worse in all other objectives Deb et al. [75]. The process of sorting designs variables based
on dominance is called non-dominated sorting (NDS). At any phase in an optimization run,
a population or repository of "current” designs is kept up. At each progression, every
feasible design that is not dominated by some other designs in the population (or archive)
is given the rank of 1. These are the just non-dominated designs in the population. At that
point, these designs are adroitly expelled from the repository, and the rest of the designs
are judged for domination. Those that are not dominated by any of the rest of the designs
are given the rank of 2. The method is repeated, re-positioning the rest of the designs after
eliminating non-dominated designs, to build up ranks 3, 4, and so on. As the run
progresses, new designs will dominate and replace other designs on a series of local Pareto
fronts. The final result will regularly be a combination of variables that are not
overwhelmed by any other designs and converge towards the Pareto front. From this bunch
of designs, one can pick up the design that best suits the present requirements or those that
move towards hunting.

NDS-TLBO algorithm comprises remarkable features of NDS approach and TLBO
algorithm to unravel multiobjective optimization problems and to find out a bunch of
diverse solutions. NDS approach and crowding distance computation mechanism proposed
by Deb et al. [75] are responsible to handle objectives effective and efficiently in NDS-
TLBO model. Besides, the teacher and learner phases of TLBO guarantee the exploration
and exploitation of the searched solution space.

The initial population including predefined P number of students is arranged with the
non-dominance concept. Application of NDS approach assigns a rank value to the each
solution. The higher rank implies the higher superiority in accordance with the non-
dominance concept. However, it cannot be stated anything about the dominance among the
solutions which are into the same rank. To describe the excellency of these solutions
crowding distance metric is utilized. Ultimately, all solutions are kept up in the external
archive and the learner with the highest value of rank and crowding distance is adopted as
the teacher of the class. Once the teacher is chosen the process continues according to the
teacher phase of the TLBO algorithm. At the end of the teacher phase process of TLBO P
updated solutions are created. Combining these updated solutions with P solutions in the
external produces 2P solutions. To go on the learning phase of TLBO, P numbers of best
learners are chosen from the 2P solutions according to the non-dominating sorting concept

and the crowding distance metric. Then, these learners are further updated depending on
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the learner phase of the TLBO algorithm. These steps are continuously repeated until
satisfying a pre-defined criterion.

2.5.1. Optimum Solution of TCTP via NDS-TLBO Algorithm

The solution of TCTP employing NDS-TLBO process detailed in above is
summarized in five main steps as follows:

Step I: Define the number of learners (population size) in the class and the maximum
number of iterations (stopping criteria) to initialize the TLBO algorithm.

Step I1: Fill the initial matrix (class; CL) with pn (student or population size) number

of solution vectors that contains dn number of randomly generated design variables (X;)

between the upper ( X ™) and lower ( X" ) limit of the solution range (Eq. (20)).

X< X, < X max i=1--,dn (20)

Thus, initial matrix (CL) can be written as:

i Xl,l X1,2 X1,dn
X2,1 X2,2 X2,dn
CL — . : . : (21)
X pn-11 X pn-12 --- X pn-1,dn
L X pn1 X pn,2 X pndn |

In which each row of the matrix is a candidate solution of TCTP problem that is

corresponded two objective function values associated with time (f; (X)) and cost ((fc (X))).

fr(Xp), fe(Xp)
fi(X2), fe(X3)
f(X)= 2 (22)
ft (X pn-1 ), fc (X pn—l)

L ft(xpn)a fc(xpn) |
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Perform a non-dominated sorting on CL. Then calculate the crowded distance values
of solutions in the front(s) and sort them. Keep the sorted solution in an external archive.

Step Ill: Apply “teaching phase (tp)” of the TLBO algorithm. Due to the fact that
teacher has the best knowledge, the best learner in the class is assigned as a teacher
(Xteacher) Of the class based on non-dominated sorting and crowding distance metric.

Xteacher = Xi | in front 1 and max. crowded distance (23)

Then, knowledge of the teacher is used to increase the capacity of the whole class.
The main aim is to increase of the mean (Xmean) Of the class. For that reason the equation of
new students is found, according to teacher and mean of the class as seen in Eq. (24).

tinew,i = Xoig,i + rand (0, 1). (Xteacher ~Tr. Xmean) (24)
where Tr represents teaching factor defined as
Te=round [1 +rand (0.1)] — {1-2} (25)

And it takes a value 1 or 2 based on the uniformly distributed random numbers that
are within the range [0, 1]. If the new solution (X™rew, i) is better than the old one in point
of the objective function, the new solution is accepted.

After employing the teaching phase, combine the current population with the
archived one. Perform a non-dominated sorting on the combined population. Then
calculate the crowded distance values of solutions in the front(s) and sort them. Select N
individual from it.

Step 1V: Proceed with the “learning phase (lp)” of the TLBO algorithm. As it stated
above, students also have an important role in the learning process by communication,

interaction, investigation, etc. This interaction can be expressed as follows:

XP

new,i

| {Xold’i +rand(0,1) (X, —X;) if X; lies on a better non-dominated front than X,
= (26)

Xqa,; +1and(0,1) (X; —X;) if X; lies on a better non-dominated front than X,



where Xi and X are randomly selected learners that are different each other. If the new

solution (X'Prew, i) is better, it is replaced with old one.

Combine the current population with the one that is used at the starting of the phase.

Perform a non-dominated sorting on the combined population. Then calculate the crowded

distance values of solutions in the front(s) and sort them. Select N individual from it.

Step V: Check the stopping criterion. This criterion usually is defined as the maximum

iteration number. If the stopping is satisfied, the optimization process is terminated,

otherwise the iteration process continues from the step Ill. The flowchart of the process

can be seen in Figure 2.2.
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2.5.2. Crowding Distance Computation

This function sorts the current population based on non-domination concept. All the
individuals in the first front are given a rank of 1, the second front individuals are assigned
rank 2 and so on. After assigning the rank the crowding in each front is computed. The
crowding measure is a secondary measure used to favor an even distribution of points
along the Pareto front. The crowding distance computation needs sorting the population
according to each objective function value in ascending order of magnitude Deb et al. [75].
Thereafter, an infinite distance value is assigned to the solutions being at the top and the
bottom places for each objective function. For all others, a distance value equal to the
absolute normalized difference in the function values of two adjacent solutions is assigned.
Crowding distance value is the sum of individual distance values calculated for each
objective that was normalized. Crowed comparison assist in achieving more diversely
distributed solutions. If the algorithm is already able to locate diverse solutions along the

front, so no need to use a diversifier.

2.5.3. External Archive

In NDS-TLBO process, the best solutions obtained until that moment are kept in a
place called external archive. At the beginning of the process of NDS-TLBO, all
individuals, NP, in the initial population are put into the external archive. As NDS-TLBO
progresses NP new solutions are obtained. These are, as well, kept into the external
archive. Then, depending on the non-domination rank and crowding distance rank NP
solutions are picked up from the external archive that includes 2NP solutions to go on next
process of NDS-TLBO. This operation continues until obtaining a convergence or reaching

a termination criterion.



3. NUMERICAL EXAMPLES FOR TCTP

In this chapter, validation and performance measurement of the TLBO algorithm are
demonstrated on the examples examined. The instances to be studied to validate the
proposed model are previously solved from many researchers. A small and more complex
medium scale as well as a large scale instances are adopted in order to show the

performance evaluation of the utilized model based on TLBO.

3.1. Validating the Algorithms

In this thesis, two approaches are proposed combining with TLBO algorithm. Firstly,
MAWA-TLBO performance is investigated. This approach converts the multiobjective
problem to a single-objective problem, and then utilizing a single-objective optimization
approach to find the satisfactory solution which is known as modified adaptive weighted
approach. Second approach investigated is NDS-TLBO. This approach seeks the
satisfactory solution from the non-inferior solutions based on the experiences and
knowledge of decision makers, whereas the determination of the non-dominating solution
is a bit more sophisticated and complicated. The utilized multiobjective algorithms can
ascertain the Pareto front solution which provides flexibility to planners and decision
makers in making efficient time-cost decisions. Thereby, contribution of this thesis can be
clearly seen in TLBO application on this field.

Four examples of construction projects taken from the technical literature ranging
from 7 to 630 activities are investigated to show the performance of the MAWA-TLBO.
The MAWA-TLBO model is initially tested against the model developed by Zhang et al.
[23], Afshar et al. [29] and Ng and Zhang. [25]. To this end, an 18-activity TCT problem is
adopted to solve time-cost trade-off problem, treating various overhead cost values.
Application of MAWA-TLBO in solution of 63-activity problem derived from Bettemir
[79] is experimented. Since 63-activity problem has not been solved with the application of
MAWA, the results obtained in this study by utilizing MAWA-TLBO are compared with
the solutions acquired through NDS-GA, NDS-ACO, and NDS-PSO models of Bettemir
[79]. The results prove that, MAWA-TLBO model developed in this study produces


https://www.civilica.com/modules.php?name=ENCivilicaPapers&op=SearchResults&queryWr=A.%20Afshar&simoradv=ADV
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satisfactory results. It is also observed that the quality of the obtained solutions for 18-
activity with five modes and large example problem of 63-activity slightly deteriorate as
they are prone to smaller daily indirect costs as well as with mode increments. More
specifically, the diversity in population can’t be preserved and staging to local optima
because of the MAWA'‘s drawback. The reason of this can be also explained by the
complexity of the problem and the premature stopping condition. Moreover, the utilized
model requires the decision-makers to determine the final best solution. Therefore, to
overcome this issue an effective and more promising approach, called non-dominating
sorting approach is adopted combining with TLBO algorithm.

Throughout the validation process, ten experimental runs are implemented for
analysis of any of the example problems. The average percent deviations from the optima,
obtained using exact procedure, are evaluated accordingly. Details of all the implemented
TCT problems, selected parameter values, and the results of the numerical simulations for
MAWA-TLBO as well as NDS-TLBO algorithms are presented in the ongoing section.

3.2. Application of Teaching Learning Based Optimization for Time-Cost
Trade-off Problems in Construction Projects

In this study, to find a set of Pareto front solutions, a multiobjective optimization
model which is based on the teaching learning based optimization (TLBO) incorporated
with the modified adaptive weight approach (MAWA) is proposed. Four examples of
construction projects taken from the technical literature ranging from 7 to 63 activities are
investigated to show the performance of the MAWA-TLBO. The results are compared
with those obtained using previously proposed models considering the optimal or near
optimal solutions. It was found that, the MAWA-TLBO algorithm works effectively for the
TCTP problems in construction engineering and management field.

The well-known problems taken from the literature are ranging from 18 to 63 activity
projects. The larger part of the preceding DTCTP research [4, 8, 25, 27, 29, 30, 32, 33, 57,
59, 76] utilized small example problems involving up to 18-activity to assess the efficiency
of the suggested metaheuristics. However, 63-activity projects have been practiced by [47,
48]. This MAWA-TLBO algorithm is also tested on the solution of a more complex
problem to minimize trade-off between time and cost. Hence, the example problem of 63-

activity project derived from Bettemir [79] is also resolved with the model proposed in this
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study. The obtained results demonstrate the potency of the proposed algorithm comparing

the solutions reported by the previous metaheuristic algorithms.

3.3. Numerical Examples of MAWA-TLBO

To demonstrate the performance of the utilized MAWA-TLBO model for obtaining
Pareto front solutions of the TCTP, small and medium scale problems taken from the
technical literature are investigated. The utilized algorithm was coded in MATLAB and
runs were executed from a personal computer having Intel (R) Core (TM) i3 CPU 2.40
GHz and 3GB RAM. Consecutive experimental run number is adopted as 10 for the entire

instances.

3.3.1. Empirical Example of 7-Activity Project

The network introduced by Feng et al [4] and shown in Figure 3.1 contains 7
activities with logical relationship of Finish to Start (FS) with 3 to 5 possible options
(alternatives). Possible activity options are presented in Table 3.1 in association with the
corresponding durations and costs. The problem complexity will be [3° x 4! x 5] = 4860

possible solutions with a daily indirect cost of $1500.

2 5
Forms & Rebars Pour foundation
1 3 A
Site preparation Excavation Erect girders
4 6
Precast concrete Deliver PC

Activity number
Activity description

Figure 3.1. Network configuration of 7-activity test example
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Table 3.1. Options for 7- activity project

Activity Activity | Precedent | Option/ | Duration | Direct
Description number | activity Mode (days) cost ($)
1 14 23000
Site Preparation 1 - 2 20 18000
3 24 12000
1 15 3000
2 18 2400
Forms and rebar 2 1 3 20 1800
4 23 1500
5 25 1000
1 15 4500
Excavation 3 1 2 22 4000
3 33 3200
Precast concrete L 12 45000
irder 4 1 2 16 35000
g 3 20 30000
1 22 20000
Pour foundation 5 23 2 24 17500
and piers ’ 3 28 15000
4 30 10000
. 1 14 40000
DZ'i'r‘aegrEC 6 4 2 18 32000
3 24 18000
1 9 30000
Erect girders 7 5,6 2 15 24000
3 18 22000

The complete solution space of the 4860 solution acquired for assumed indirect cost
of $1500/day is illustrated in Figure 3.2. In addition, all the minimum cost versus
minimum duration of complete solution space for the current problem is presented in

Figure 3.3.
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Figure 3.3. The entire minimum cost versus minimum duration of solution space for 7-
activity problem

Table 3.2 summarizes the results of the TLBO along with the performance of four
previous metaheuristics for the 7-activity problem. Solutions obtained by Gen and Cheng
[76], Zheng et al. [23] and Magalhdes-Mendes [54] are not better than those achieved by
TLBO and did not propose any Pareto front. MAWA-TLBO’s results offer less cost 0.9%
to 1.55% than that obtained by MAWA-GA's. The Pareto front solutions reported for the
MAWA of Xiong et al. [77], Surajit and Sultana [55] and Azeez [58] are same with the
results obtained by the MAWA-TLBO method. The comparison of TLBO with the
previous methods reveals that utilized TLBO works well or as good as the previously

proposed algorithms for the small-scale TCTPs. Additionally, it can also be stated that the
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MAWA-TLBO algorithm produces high-quality solutions quickly once needed only 1

seconds to complete 10 generations.

Table 3.2. Comparison of Pareto fronts located for small-scale 7-activity problem

Best Criteria Calculation
Authors generation | Time Cost Ti
ime
number | (Day) ($)
Gen and Cherg A[\76]’ MAWA- 5 79 | 256400 Not reported
Zheng et al. [27], MAWA-GA 5 66 236500 Not reported
Magalhdes-Mendes [54], 5 seconds for 50
MAWA-GA 2 63 225500 generations
Xiong et al. [77], MAWA.- 60 233500
ACO Not 62 233000
Surajit and Sultana [55], reported 63 225500 Not reported
MAWA-GA 67 224000
Azeez [58], MAWA-ACS 68 220500
60 233500
62 233000
5 63 225500 | 1 second for 10
66 227500 generations
This paper (MAWA-TLBO) 67 224000
68 220500
Pop size: 5
Generation Number: 10
f-count (NFE): 105

The graphical representation of the results (Pareto front solutions) obtained by
employing MAWA-TLBO is illustrated in Figure 3.4 while Table 3.3 presents details for

the associated solutions.
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Figure 3.4. Pareto optimal solutions of 7-activity problem obtained by MAWA-TLBO

Table 3.3. Solution obtained for 7-activity TCTP problem using MAWA-TLBO along
with selected options

Pareto- | Project | Project Options selected by the mode to execute
front time total cost the corresponding activity

solutions | (days) ($) 1 2 3 4 5 6 7
1 60 233500 1 1 1 1 1 3 1

2 62 233000 1 1 1 2 1 3 1

3 63 225500 1 1 1 2 2 2 1

4 66 227500 1 1 1 2 3 3 1

5 67 224000 1 1 1 3 3 3 1

6 68 220500 1 1 1 3 4 3 1

The convergence history of the solved problem is presented in Figure3.5. The figure

implies that the considered generations are a bit more and it is redundantly cycling after the

51 jteration which is optimum value. Therefore, both population and number of generation

values can be taken as 5 for the current TCT problem.
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Figure 3.5. Convergence history of 7-activity TCTP problem using MAWA-TLBO

Time-cost optimization have a great effect on lowering the time and cost of
construction project and overcome the delays and cost excess that could take place during
the execution of any construction project. The project critical path calculated first using
forward planning to find the normal duration and for that the options selected were the
normal time/normal cost, and the project time was 105 days, and $253700. After using
TCO model the highest value of time was 68 days, and the cost was $220500. From the
total cost 15%, and 54.4% of the project time were saved by using optimized values. This
is achieved by using the saved the indirect cost to allocate the more resources and increase
the number of the crews or labors in the construction works or any different construction
method used. The MAWA-TLBO searched 105 (= 10 x 5 x 2 + 5) possible different
schedules, only searching a small portion of 2.17% of the solution space (105/4860) could
generate the global optimal solutions where number of population and iteration are 5 and
10, respectively. Therefore, the number of function evaluations can be taken as 105 (f-
count = 10x5x2+5).
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3.3.2. Empirical Example of 18-Activity Project with Five Modes

A case of study is a project of eighteen activities originally introduced by Feng et al.
[20]. The network with logical relationship of FS is shown in Figure 3.6. The activity
relationships for the model project, the five modes of construction for each activity and
their associated time and cost are presented in Table 3.4. Indirect cost rate adopted in this
problem is $1500/day.

1 6 !

v

Figure 3.6. Activity relationships for the model project of 18-activity
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Table 3.4 Options for 18- activity project with five modes

Description Model Mode2 Mode3 Mode4 Mode5
28 Sz| | s2 | s2| |2 |52 |8
55 S5 |53 22|53 fZ |53 £%|53 £E2|538 £%
<Z A< AT A0|AT QAU AT A0 AT AU AT QA0
1 - 14 | 2400 | 15| 2150 | 16 | 2400 | 21 | 1500 | 24 | 1200
2 - 15 | 300 | 18 | 2400 |20 | 1900 | 23 | 1500 | 25 | 1000
3 - 15 | 4500 | 22 | 4000 | 33 | 1800

4 - 12 [ 45000 | 16 | 35000 | 20 | 3200

5 1 22 {20000 | 24 | 17500 | 28 | 30000 | 30 | 10000

6 1 14 | 40000 | 18 | 32000 | 24 | 15000

7 5 9 30000 | 15 | 24000 | 18 | 18000

8 6 14 | 220 | 15 21 16 | 22000 | 21 24

9 6 15 300 | 18 | 240 |20 | 200 | 23| 208 | 25| 120
10 2,6 | 15| 450 [ 22| 400 |33 180 150 100
11 7,8 | 12| 450 [ 16 | 350 |20 | 320

12 [5,9,10] 22 | 2000 | 24 | 1750 | 28 | 1500 | 30

13 3 14 | 4000 | 18 | 3200 | 24 | 1800

14 | 4,10 | 9 | 3000 | 15 | 2400 | 18 | 2200

15 12 12 | 4500 | 16 | 3500

16 | 13,14 [ 20 | 3000 | 22 | 2000 |24 | 1750 | 28 | 1500 | 30 | 1000
17 [ 11,14,15 | 14 | 4000 | 18 | 3200 | 24 | 1800 1200
18 | 16,17 | 9 | 3000 | 15 | 2400 | 18 | 2200 1000

A comparison amongst the MAWA-TLBO algorithm, MAWA-GA based TCO
model Zheng et al. [23], MAWA-AS Afshar et al. [29] and also MAWA- SGPU algorithm
Ng and Zhang [25] utilizing the same project is shown in Table 3.5 and Figure 3.7. It can
be seen from Table 3.5, MAWA-TLBO based model is executed with less size of
population and number of iteration than those of the MAWA-GA and MAWA-AS models.
Besides, examining the time and cost results for the case project, it can be noticed that the
MAWA-TLBO based model offers a more optimal cost value with the same project
completion time. For example, for 100 days, the cost of solution obtained by the MAWA-
TLBO is $283420 while MAWA-GA model cost is to $287720. This results in a saving of
$4300 which is equivalent to 1.50% of the total cost. In the situation of ACS-SGPU and AS-
MAWA model the total cost is $285400, $286670 which is in between the MAWA-GA
and MAWA-TLBO models. However, the iterations of ACS-SGPU and MAWA-TLBO
are less than that of MAWA-GA and MAWA-AS. Even though the quality of solutions
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generated by ACS-SGPU is not as good as MAWA-TLBO, it is superior to the MAWA-
GA and MAWA-AS models and can generate better Pareto front solutions.

The Pareto fronts as well as selected duration of corresponding activity for 18-
activity with five modes problem is given in Table 3.6. The convergence history
representation of the current solved problem is presented in Figure 3.8. As in this case of
the MAWA-TLBO, convergence history graphs demonstrates that the applied MAWA-
TLBO converges to optimal or near optimal solutions after 55" iterations. Therefore,
population and generation number can be taken as 40 and 60, respectively.

Table 3.5. Comparison between different algorithms of 18-activity project with five modes
using MAWA-TLBO

MAWA-ACS-
'\Z/Itg\avp\e_ti'lo\ SGPU MAWA-AS MAWA-TLBO
Description [297] ' Ng and Zhang | Afshar et al. [29] (this study)
P et al. [25]
Time Time Time Time
Cost ($ Cost ($ Cost ($ Cost ($
(day) | “®'® | (gay) | “®'® | (gay) ® | (day) ®)
Best results 100 287720 100 285400 100 286670 100 283420
obtained from 101 284020 101 282508 101 281300 101 281200
the models 104 280020 104 277200 104 277265 104 277170
(withindirect |} | 273750 | 110 | 273165 | 110 | 272265 | 110 | 273470
cost =$1500)
Pop. Size 50 10 50 40
Num. of 500 200 400 70
iterations
NFE 25000 2000 20000 5640
292,500
0 MAWA- GA-Model
288,000 s + ACS-SGPU
o AS-MAWA
Yy A TLBO - MAWA
283,500 A N
& S
2 (o]
8 279,000
c_j ‘
2 274,500
g
270,000
98 100 102 104 106 108 110 112
Duration (days)

Figure 3.7. Comparison of Pareto front between different algorithms for 18-
activity TCTP
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3.3.3. Empirical Example of 18-Activity Project with Three Modes

This example problem was initially presented by Feng et al. [4]. Table 3.7 shows the
detail of the model project such as the activity relationships, modes of construction for each activity
and their associated time and cost. In addition, cost rate for indirect cost is $1000/day.

Table 3.7 Options for 18-activity project with three modes

. Option /Model | Option /Mode2 Option /Mode3
ﬁ S?:\Vt:g P Lii?&i;t Dur. Direct Dur. Direct Dur. Direct
(day) | Cost($) | (day) | Cost($) | (day) | Cost (%)
1 - 14 2400 24 1200 21 1500
2 - 15 3000 25 1000 23 1500
3 - 15 4500 33 3200 33 3200
4 - 12 45000 20 30000 20 30000
5 1 22 20000 30 10000 30 10000
6 1 14 40000 24 18000 24 18000
7 5 9 30000 18 22000 18 22000
8 6 14 220 24 120 21 208
9 6 15 300 25 100 23 150
10 2,6 15 450 33 320 33 320
11 7,8 12 450 20 300 20 300
12 5,9,10 22 2000 30 1000 30 1000
13 3 14 4000 24 1800 24 1800
14 4,10 9 3000 18 2200 18 2200
15 12,14 12 4500 16 3500 16 3500
16 13,14 20 3000 30 1000 28 1500
17 11,17,15 14 4000 24 1800 24 1800
18 16 9 2400 18 1200 18 2200

Table 3.8 demonstrates the results for comparison of several mathematical and
evolutionary-based methods with meta-heuristic MAWA-TLBO. The proposed MAWA-
TLBO algorithm confirms better and identical optimal solution as good as the other GA-
based RKV-TCO and Constraint Programming (CP) using optimization engines.
Furthermore, the algorithm TLBO reaches the optimal solution quickly, i.e., in 63 sec. This
utilized algorithm implies its efficiency and accuracy by searching only a small fraction of
the total search space. In this example, there are 4.72x10° possible schedules. The MAWA-
TLBO searched 5640(= 40x70x2+40) possible different schedules, only a small portion

(0.00012%) of the solution space where number of population is 40, iteration number is 70.
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Therefore, number of function evaluation is 5640 (f-count =70x40x2+40) which reveals a

remarkable reduction in iteration comparing Feng et al. [4] model.

Table 3.8. Comparison between different algorithms of 18-activity project with three

modes
. Criteria .
Approaches De\gﬂlon Time Cost Cal.?_lijrﬁglon
(days) | ($)
Optimal Solution 0% 110 | 216270 -
Excel Solver* 18% 110 | 254620 2 minutes
Risk goL'(‘;eF:g 'Ii‘ltg‘r’]:mes;ri”dard 0% 110 | 216270 | 1.5 minutes
R'Sfafggfs’gglg'gt;"é”; glt\fgﬂard 0% 110 | 216270 | 1.5 minutes
TCT Optimization Using
Evolver (includes an 10% 110 | 238070 30 minutes
evolutionary engine)*
R'SkES’\?C:‘I’lftri;::ﬁ;OgIS;fﬂdard 27% | 110 | 275320 | 18 minutes
Optimization Results usin .
E’:PLEX CP Optimizer* g 0% 110 | 216270 | 9 minutes
IBMILOG Optimization 0% 110 | 216270 | 9 minutes
Studio*
Random Key Variant for 5 (five)
Time-Cost Optimization (RKV- 0% 110 | 216270 | Seconds for 50
TCO)** generations
110 | 216270
Pop size: 400
Feng et al. [4] model 0% l\ﬁj er?lﬁgt;logo Not reported
f-count (NFE):
20000
110 | 216270
Pop size: 40
This paper (MAWA-TLBO) 0% Generation 1 minute for
Number: 70 50 generations
f-count (NFE):
5640
*Reported by Behrooz Golzarpoor [53] **Reported by Jorge Magalhdes-Mendes [54]
***Percentage of deviation of the result from optimal solution
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Figure 3.9. Convergence history of 18-activity TCTP problem with three modes

The convergence history of the optimization engine used in this study is presented in
Figure 3.9. It shows that the considered generations are a bit large and it is unnecessarily
running after the 48™ iteration which is optimum value and prolonged the searching
computational time. So for the present TCT problem population and number of generations
can be adopted as 40 and 50, respectively. Therefore, the fast convergence rate of MAWA-
TLBO seems to demonstrate its efficiency and stability in handling this type of small scale

TCTP optimization problems.

3.3.4. Empirical Example of 63-Activity Project

Based on the literature findings the well-practiced 7 and 18 activities problems are
also unraveled to validate the performance of the employed algorithm. These problems
have been practiced in wide-spread studies using various meta-heuristic algorithms
incorporating with non-dominating sorting (NDS) and modified adaptive weighting
(MAW) approaches. It is firmly believed that MAWA is inferior compared to non-
dominated sorting approach. However, it has not been encountered any project in the
literature involving more activities that is examined with MAWA. To exhibit the

performance of sole TLBO integrated with modified adaptive weighting approach on a
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construction project consisting more than 18-activity, in this study, a project with 63-
activity taken from Bettemir [79] is reinvestigated by MAWA-TLBO.

The activity-on-node diagram for the project is presented in Figure 3.10, and time—

cost optional modes are given in Table 3.9. The costs in Table 3.9 are given in US Dollars,
and the durations are given in days.
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Figure 3.10. Network representation of the 63-activity network
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The project includes two activities consist of three modes, 15 activities have four
modes, and 46 activities have five modes. The number of total possible time—cost
alternatives for the project is 1.4E+42. The project was investigated under the two cases: in
the first case (63a), the indirect cost is taken as $2300/day, while it is adopted as $3500/day
in the second case (63b). The optimal solutions of 630days, $5,421,120 for 63a and
621days, $6,176,170 for 63b had been originally provided by Bettemir [79] using integer
programming. Bettemir [79] utilized eight metaheuristic algorithms out of which three core
algorithms and five hybrid algorithms incorporating with the non-dominating sorting
approach to solve the mentioned TCTP problem.

As previously mentioned, since 63-activity problem has not been solved with the
application of MAWA, the results obtained in this study by utilizing MAWA-TLBO are
compared with the solutions acquired through NDS-GA, NDS-ACO, and NDS-PSO
models of Bettemir [79]. The compared results of 63a and 63b activity problems are
tabulated in Table 3.10 and 3.11, respectively. In addition, Table 3.12 illustrates Pareto
front results of ten consecutive experimental runs with corresponding average percent
deviations (%APD) from the optima. Graphical representations of the Pareto front

solutions of the current solved problems are given in Figure 3.11 and 3.12.

Table 3.10. Analysis results of 63-Activity project for the Case 1 (IC= $2300) using

MAWA-TLBO
Bettemir [79]
Sr:-No NDS-GA NDS-ACO NDS-PSO MAWA-TLBO
Dur Cost Dur Cost Dur Cost Dur Cost

1 641 | 5704200 | 635 | 5490120 | 637 | 5421620 | 629 5613820
2 661 | 5712485 | 653 | 5494410 | 644 | 5428920 | 614 5644640
3 650 | 5722260 | 638 | 5491180 | 651 | 5439620 | 630 5600190
4 653 | 5713450 | 657 | 5491620 | 634 | 5422920 | 616 5623260
5 645 | 5699650 | 644 | 5494920 | 651 | 5440570 | 630 5642405
6 639 | 5684295 | 626 | 5486630 | 633 | 5421320 | 637 5637290
7 640 | 5695655 | 664 | 5495080 | 633 | 5421320 | 639 5503940
8 621 | 5707600 | 661 | 5490350 | 633 | 5421620 | 630 5696820
9 641 | 5693015 | 643 | 5490680 | 633 | 5421320 | 627 5588485
10 623 | 5690790 | 635 | 5492210 | 633 | 5421320 | 632 5625310

Pop. size - 180

Num. of Iteration - 450

NFE 250000 162180
Note: Dur = Duration
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The MAWA-TLBO searched 162180 (= 180 x 450 x 2 + 180) possible different
schedules, only searching a negligible portion of the solution space [162180/1.4E+42]
could generate the Pareto front solutions where population and number of iterations are
180 and 450, respectively.

Table 3.11. Analysis results of 63-Activity project for the Case 2 (1C= $3500) using

MAWA-TLBO
Bettemir [79]
Sr-No NDS-GA NDS-ACO NDs-pso | MAWA-TLBO
Dur Cost Dur Cost Dur Cost Dur Cost
1 617 6462580 | 631 6219220 644 | 6201720 | 630 | 6291540
2 651 6411540 | 632 6205850 629 | 6217470 | 628 | 6264970
3 647 6442440 | 626 6234520 644 | 6210170 | 630 | 6280170
4 639 6420500 | 640 6223830 648 | 6218170 | 637 | 6262570
5 648 6447900 | 617 6231440 649 | 6216020 | 625 | 6292850
6 627 6433810 | 627 6197070 647 | 6207870 | 613 | 6261820
7 618 6439240 | 604 6247850 651 | 6216220 | 624 | 6289790
8 623 6449790 | 635 6231860 649 | 6215420 | 622 | 6280170
9 630 6443805 | 623 6198650 645 | 6208920 | 636 | 6280750
10 629 6450065 | 651 6262830 642 | 6198520 | 634 | 6263980
Pop. size - 180
Num. of Iteration - 450
NFE 250000 162180

Therefore, number of function evaluation is 162180, and the APD values are %3.528
and %1.172 respectively. It can be stated that the proposed MAWA-TLBO model requires
less the size of population and number of iteration than those of the Bettemirs’ [79]
models.

Even though it is known that, generally the model utilizing NDS outperforms the
model employing the MAWA, considering this phenomenon it can be concluded that the
proposed MAWA-TLBO model in this study produces satisfactory results for both 63a and
63b Cases. Depending up on this output, and referring on Tables 11-13, it might be stated
that MAWA-TLBO could achieve better solutions than NDS-GA, however, the proposed
model find the slightly better solutions having less project duration and more cost than
NDS-ACO and NDS-PSO for 63a. However, for 63b, MAWA-TLBO model produces
alternatives Pareto front solutions as good as Bettemirs’ [79] models although they have

been incorporated with non-dominating sorting approach.
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Table 3.12. Average deviations from the optimal for problems 63a and 63b using MAWA.-

TLBO
63a 63b
Algorithms APD (% APD (%
g No of Runs (%6) No of Runs (%0)
GA, Bettemir [79] 10 5.86 10 5.16
ACO, Bettemir [79] 10 1.2 10 0.7
PSO, Bettemir [79] 10 0.152 10 0.2
MAWA-TLBO 10 3.528 10 1.172
645 -
640 - , 5503940, 639
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Figure 3.11. Pareto solutions of 63a-activity problem obtained by MAWA-TLBO
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Figure 3.12. Pareto solutions of 63b-activity problem obtained by MAWA-TLBO

In the current study, a multiobjective optimization model called as MAWA-TLBO
has been proposed to handle the discrete time-cost trade off problems, in order to optimize
the total project duration and total cost concurrently. The largest model project examined
with using metaheuristic algorithms and MAWA approach was the project with 18-
activity. In addition, a more complex TCTP problem including 63-activity is also solved to
validate the performance of the proposed MAWA-TLBO algorithm. From the results, it is
clear that the applied MAWA-TLBO algorithm is proficient of finding optimum or near-
optimum solutions for the small 7-activity and 18-activity with three and five modes
problems. Furthermore, it was demonstrated that this algorithm exploits computational
effort by searching just small fraction of the search space. On the other hand, it is observed
that the quality of the obtained solutions for 18-activity with five modes and large example
problem of 63 activities slightly deteriorate as they are prone to smaller daily indirect costs
as well as with the mode increments. More specifically, the diversity in population can’t be
preserved. The reason of this can be also explained by the complexity of the problem and
smoothness of the solution space. In case of solving this type of TCT problems, main
shortcoming of the current modified method is realized as the probability of stagnating into

local optima, due to the MAWA s drawback. Also that can avoid losing some solutions
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with better performance because of premature convergence of the search. Furthermore, it is
observed that further refinements are necessary to ensure a steady performance of the
model when applying to large-scale projects.

Consequently, optimization results clearly reveal the applicability and efficiency of
the TLBO application for the first time on solving TCTP Problems in construction
management field. The results also indicate that the TLBO has a great potential for solving

simultaneous optimization of large TCTP problems e.g. 63-activity project.

3.4. Time-Cost Trade-off Optimization Using Non-Dominated Sorting TLBO
Algorithm

In a project schedule, it is possible to reduce the time required to complete a project
by assigning extra resources to critical activities. However, accelerating a project causes
additional expense. This issue is addressed by finding optimal set of time-cost alternatives
and is known as time-cost trade-off problem in the literature. Another aim of this study is
to determine the optimal set of time-cost alternatives using a multiobjective teaching-
learning-based optimization (TLBO) algorithm integrated with the non-dominated sorting
concept and the mechanism of crowding distance. This algorithm is applied to successfully
optimize the projects ranging from a small to medium large projects. Numerical
simulations indicates that the utilized model search and identify optimal / near optimal
trade-offs between project time and cost in construction engineering and management.
Therefore, it is concluded that the developed TLBO-based multiobjective approach offers
satisfactorily solutions for time—cost trade-off optimization problems.

By reviewing the recent models, it can be recognized that many researchers have
investigated various benchmark time-cost trade-off (TCT) optimization problems using
different metaheuristic algorithms incorporated with modified adaptive weighting
(MAWA) approach. This approach is converting multiobjective problem to a single-
objective problem, and then utilizing a single-objective optimization approach to find the
satisfactory solution. However, the performance of the modified weighting approach
becomes worst and is not able to explore the global optima whenever utilized to more
complex medium scale problems. Hence, in this study, to overcome this drawback of
MAWA, NDS concept and the mechanism of crowding distance are incorporated with

TLBO algorithm. As it is obvious, today instead of MAWA approach, this superior
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approach (NDS and crowding distance metric) is broadly being acknowledged in solving
the mentioned TCTP problems.

3.5. Numerical Examples of NDS-TLBO

To demonstrate the performance of the utilized NDS-TLBO model for obtaining
Pareto front solutions of the TCTP, medium and large scale problems taken from the
technical literature are investigated. The utilized algorithm was executed in MATLAB
environment and implemented on a personal computer having Intel (R) Core (TM) i3 CPU
2.40 GHz and 3GB RAM. Consecutive experimental run number is adopted as 10 for the

entire instances.

3.5.1. Empirical Example of 18-Activity Project

The first problem includes the 18-activity network. Details of network were given in
Feng et al. [4] using the time-cost options presented in Hegazy [8]. Most of the previous
studies [27, 25, 29, 59 and 78] utilized this test problem to assess the efficiency of the
proposed multiobjective metaheuristics. This problem with a total of 4.72x10° possible
schedules is examined with a daily indirect cost of $1500. The network with logical
relationship of FS as well as time—cost optional modes detailing of the problem is given in
section 3.3.2.

Table 3.13 presents the results of the TLBO along with those reported by other five
previous metaheuristics for the 18-activity problem. Solutions obtained by Zheng et al.
[27] are of poor quality compared to the results of TLBO. For 110 D days, ACS-TCO of
Ng and Zhang [25] and ACS of Zhang and Ng [78] provide a solution which costs more
than the proposed TLBO’s result. The Pareto front solutions reported for NA-ACO of
Afshar et al. [29] as well as NDS- PSO of Aminbakhsh [48] are identical to the results
acquired by the TLBO method. However, the utilized algorithm exhibit its competency and
accuracy by exploring a tiny bit portion [5640/4.72x10° =0.00012%] of the solution space.
This reveals a remarkable reduction in number of function evaluations of administered
algorithm comparing NA-ACO of Afshar et al. [29] and NDS- PSO of Aminbakhsh [48].
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Furthermore, the fast convergence rate of NDS-TLBO seems to demonstrate its efficiency
and stability in solving of the time-cost trade-off optimization problems. So, these findings
strictly confirm the applicability of the proposed NDS-TLBO model in the field of

construction management.

Table 3.13. Comparison of Pareto fronts located for 18-activity problem using NDS-

TLBO
Zhang | Ng and | Afshar Zhang Aminbakhsh
Duration | h I and NDS-TLBO
(days) et2 ? .| Z 2ang et2 g . Ng and 84%nmez (This paper)
[27] [25] [29] [78] [48]
100 287720 | 283320 | 283320 | 285400 283320 283320
101 284020 | 279820 | 279820 | 282508 279820 279820
104 280020 | 276320 | 276320 | 277200 276320 276320
110 273720 | 271320 | 271270 | 273165 271270 271270
Pop. size 50 10 50 10 80 40
_Num_. of 500 200 300 200 100 100
iterations
NFE 25000 2000 15000 2000 8000 8040
112
110 - 271270, 110
= 108 -
)
S 106 -
IS
g 104 | 276320, 104
& 102 - 279820, 101
273320, 100
100
98 T T T T T 1
270000 272000 274000 276000 278000 280000 282000
Project Cost (3)

Figure 3.13. Pareto optimal solutions of 18-activity problem obtained by NDS-TLBO
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Table 3.14. Options selected and solution generated for 18-activity TCTP problem using

NDS TLBO
g g % % selected duration of the corresponding activity (days)
o [F 3 3 1|2 |3|4|5|6|7|8]9|10(11|12|13|14|15|16| 17|18
1 | 100 | 283320 |14 | 25|33 |20 |28 |14 | 18 |24 | 15| 15|16 |22 |24 | 18|12 (30| 14| 9
2 | 101 | 279820 | 14 | 25|33 (20|30 |14 |18 |24 | 15|15 |16 |22 |24 |18 |12|30|14| 9
3 | 104 | 276320 | 14 | 25|33 |20 |30 |18 (18|24 | 15| 15|16 |22 |24 |18 |12 (30|14 | 9
4 | 110 | 271270 | 14 | 25|33 |20 |30 |24 | 18|24 | 15| 15|20 |22 |24 |18 |12 (30|14 | 9

Pareto front graphical representations of the current examined problem are given in
Figure 3.13 and 3.14. From the Figure 3.14, it is clear that the global optimum solutions
are achieved in the 1% run analysis and could explore 100 days, $283320 six times,
101days, $279820 five times, 104 day, $276320 four times and 110 days, $271270 three
times. This can be considered as strong potency of the applied algorithm. The comparison
of TLBO with the contemporary methods discloses that proposed NDS-TLBO is among
the most fitting algorithms for Pareto front optimization of the more complex small-scale
TCTPs. The Pareto front along with selected duration of corresponding activity for 18-

activity is illustrated in Table 3.14.

284000 | 283320 28332
< 8983320 o 283320 283320 283320 - 283320
282000 -
~ 280000 - 279820 279820
D s70800" ¥ 279820 279820
8
S 278000 -
[&]
[<5)
2, 276320 276320
274000 -
272000 - 271270
+ = 271270 271270
270000 T T T T T T T T T 1
0 2 4 6 8 10 12 14 16 18 20

Number of archived Pareto fronts

Figure 3.14. Graphical representation of first run analysis of 18-activity TCTP problem
with 0.3 Pareto fraction
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3.5.2. Medium-Scale Test Problem

To further exhibit the performance of sole TLBO integrated with non-dominating
sorting concept and crowding distance computation on a project with 63-activity taken
from Bettemir [79] is reinvestigated by the proposed algorithm. The activity-on-node
diagram for the project and time—cost optional modes detailing of the problem is illustrated
in section 3.3.4. The project was tested under the two cases: in the first case (63a), the
indirect cost is taken as $2300/day, whereas it is adopted as $3500/day in the second case
(63b). The optimal solutions of 630 days with $5,421,120 as cost for 63a and 621 days
with $6,176,170 as cost for 63b had been originally provided by Bettemir [79] using
integer programming. Bettemir [79] utilized eight meta-heuristic algorithms out of which
three core algorithms and five hybrid algorithms incorporating with the non-dominating
sorting approach to solve the mentioned TCTP problem. Aminbakhsh [48] has also
reported best Pareto front solutions of the same 63-activity problem applying the modified
discrete particle swarm optimization method.

As previously mentioned, since 63-activity problem has not been practiced more by
the researchers, the results obtained in this study by utilizing NDS-TLBO are compared
with the solutions acquired through core NDS-GA, NDS-ACO, and NDS-PSO models of
Bettemir [79] only. The results are not compared with Aminbakhsh’s [48] model although;
Aminbakhsh [48] has also reported the best Pareto front solutions of the same 63-activity
problem. Because, Aminbakhsh [48] has applied the hybrid discrete particle swarm
optimization algorithms. Moreover, a certain portion of initial population is fed into
models to accelerate the searching process.

The compared results of 63a and 63b activity problems are tabulated in Tables 3.15
and 3.17, respectively. In addition Table 3.18 illustrates Pareto front results of ten
consecutive experimental runs with corresponding average percent deviations (%APD)
from the optima. Graphical representations of the Pareto front solution of the current
solved problems are given in Figure 3.15 and 3.16. The selected duration of corresponding

activities is given in Table 3.16.
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Table 3.15. Analysis results of 63-Activity project for the Case 1 (IC= $2300) using NDS-

TLBO
S Bettemir [79] (This paper)
Nrc; NDS-GA NDS-ACO NDS-PSO NDS-TLBO
Dur Cost Dur Cost Dur Cost Dur Cost
1 | 641 | 5704200 | 635 5490120 637 | 5421620 630 | 5428870
2 | 661 | 5712485 | 653 5494410 644 | 5428920 630 | 5428120
3 | 650 | 5722260 | 638 5491180 651 | 5439620 630 | 5427770
4 | 653 | 5713450 | 657 5491620 634 | 5422920 630 | 5428120
5 | 645 | 5699650 | 644 5494920 651 | 5440570 630 | 5428920
6 | 639 | 5684295 | 626 5486630 633 | 5421320 637 | 5428220
7 | 640 | 5695655 | 664 5495080 633 | 5421320 633 | 5428870
8 | 621 | 5707600 | 661 5490350 633 | 5421620 628 | 5428170
9 | 641 | 5693015 | 643 5490680 633 | 5421320 633 | 5428470
10 | 623 | 5690790 | 635 5492210 633 | 5421320 633 | 5428720
Pop. size - - - 180
Num. of
iterations ) d i 450
NFE 250000 250000 250000 162180

Table 3.16. Options selected and solution generated for 63-activity TCTP problem of NDS
approach (1C=$2300/day)

P-F P{i?f]?t P{gg’aelct Selected duration of the corresponding activity (days)
Sol- | (days) | cost(®) [T 1 2 13 [4[5]6 ] s 57 [ 58 [ 59 [ 60 | 61 ] 63
12 | 18 | 24 11928 |44 |39 52|63 |57|63|68 40|33 47|75
60 | 81 | 36 41|64 |53|43|66|50(84|67|66|76|34|96]|43
1 630 | 6427770
52 | 74 | 138 |54 129 |51 |67 412344 |75|82|55|66 |54 |41
147 1101| 83 |31(39|18(29|38|30|24|27|31|20|25]|22
The underlined activities show the critical path activities for the current solution

The NDS-TLBO searched 162180 (= 180 x 450 x 2 + 180) possible different
schedules, only searching a negligible portion of the solution space [162180/1.4E+42].

Population and number of iterations are adopted as 180 and 450, respectively.
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Figure 3.15. Pareto front solution of 63a-activity problem
using NDS-TLBO

Table 3.17. Analysis results of 63b-Activity project for the Case 2 (IC=$3500) using

NDS-TLBO
S Bettemir [79] (This paper)
N:)' NDS-GA NDS-ACO NDS-PSO NDS-TLBO
Dur Cost Dur Cost Dur Cost Dur Cost
1 617 | 6462580 | 631 | 6219220 | 644 | 6201720 | 612 | 6192140
2 651 | 6411540 | 632 | 6205850 | 629 | 6217470 | 617 | 6184820
3 647 | 6442440 | 626 | 6234520 | 644 | 6210170 | 590 | 6188690
4 639 | 6420500 | 640 | 6223830 | 648 | 6218170 | 588 | 6195910
5 648 | 6447900 | 617 | 6231440 | 649 | 6216020 | 591 | 6191490
6 627 | 6433810 | 627 | 6197070 | 647 | 6207870 | 586 | 6196840
7 618 | 6439240 | 604 | 6247850 | 651 | 6216220 | 592 | 6189140
8 623 | 6449790 | 635 | 6231860 | 649 | 6215420 | 589 | 6199870
9 630 | 6443805 | 623 | 6198650 | 645 | 6208920 | 617 | 6187390
10 | 629 | 6450065 | 651 | 6262830 | 642 | 6198520 | 616 | 6190570
Pop. size - - - 180
_Num_. of i i i 450
iterations
NFE 250000 250000 250000 162180
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Figure 3.16. Pareto front solution of 63b-activity problem
using NDS-TLBO

Table 3.18. Average deviations from the optima for problems 63a and 63b using NDS-

TLBO
63a 63b
Algorithms APD (%) APD
No of (%0)
No of Runs
Runs
GA, Bettemir [79] 10 5.86 10 5.16
ACO, Bettemir [79] 10 1.2 10 0.7
PSO, Bettemir [79] 10 0.152 10 0.2
NDS-TLBO (This paper) 10 0.128 10 0.14

The APD values are %0.128 and %0.14 respectively. This implies that both the
number of function evaluation as well as average percent deviation of the NDS-TLBO
based model are less than those of the Bettemir s” [79] models. Thereby, it was found that,
the proposed algorithm has more exploration capability and more promising in solving

medium scale time-cost trade-off problems as compared previous model.
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3.5.3. Large-Scale Test Problems

To investigate the efficiency of core TLBO integrated with non-dominating sorting
approach on a large-scale project with 630-activity is also resolved by the proposed
algorithm. The model project was formed by duplicating the 63-Activity project 9 times
[79]. The project model includes two example cases: Case 1 with $2300 and Case 2 with
$3500 daily indirect costs are solved. Global optimums obtained by Bettemir [79] using
mixed integer programming for Casel and Case 2 are $54.211.200 and $61.761.700,
respectively.

As mentioned before, ten consecutive experimental runs are conducted for this
project also. Best results of ten runs are presented in Table 3.19 and 3.20 for Case 1 and
Case 2 with corresponding average percent deviations (%APD) from the optima. Also
corresponding rank and crowding distance of the best results are provided in Table 3.19.
Graphical representations of the Pareto front solution obtained by the proposed NDS-
TLBO are demonstrated in Figure 17 and 18.

Table 3.19. Best results for 630-activity project (Case 1: daily indirect cost of

$2300)
This paper
NDS-TLBO %PD | Rank | Crowding Distance
Dur Cost (%)
6373 54611340 0.74 1 0.0423
6387 54775880 1.04 1 0.0397
6383 54805960 1.09 1 0.0154
6364 54829460 1.14 1 0.0250
6360 54856620 1.19 1 0.0126
6302 54943070 1.35 1 0.0119
6377 54692200 0.88 1 0.0451
6388 54705310 0.91 1 0.0416
6346 54849940 1.17 1 0.0119
6300 54992260 1.44 3 0.0137
Pop. size 250
Num. of 450 %APD =1.10
iterations
NFE 225250
NFE= Number of Function Evaluations
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Table 3.20. Best results for 630-Activity project (Case 2: daily indirect cost of

$3500)
This paper Crowding
(o)
NDS-TLBO %PD | Rank Distance

Dur Cost ($)
6212 62793865 1.67 1 0.0649
6220 62750580 1.60 1 0.0621
6204 62591490 1.34 1 0.1022
6232 62692340 1.50 1 Inf (o)
6236 62741130 1.58 1 Inf (o)
6225 62586260 1.33 1 Inf (o0)
6201 62744310 1.59 1 0.0418
6127 62650570 1.43 1 0.0876
6190 62699400 1.51 1 Inf (o)
6279 62734550 1.57 1 Inf (c0)

Pop. size 250

Num. of 0 _

iterations 450 Y0APD =1.51
NFE 225250

NFE= Number of Function Evaluations
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Figure 3.17. Pareto front solutions of 630 activity problem obtained by
NDS-TLBO algorithm for Case 1
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Figure 3.18. Pareto front solutions of 630-activity problem
obtained by NDS-TLBO algorithm for Case 2

The compared mean values of ten runs for Case 1 and Case 2 are presented in Tables
3.21 and 3.22, respectively. In addition, Table 3.23 shows the compared %APD of Case 1
and Case 2 with the previous models.

Table 3.21. Comparison of mean values of 10 runs for Case 1 (daily indirect cost=$2300)

. Bettemir [79] This paper
Descriptions
NDS-GA NDS-ACO NDS-PSO NDS-TLBO
Mean value 58983147 56703583 54815790 54806204
Pop. size - - - 250
Num. of i i i 450
iterations
NFE 250000 250000 250000 225250
NFE = Number of Function Evaluations
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Table 3.22. Comparison of mean values of 10 runs for Case 2 (daily indirect cost=$3500)

L Bettemir [79] This paper
Desrciptions
NDS-GA NDS-ACO NDS-PSO NDS-TLBO
Mean value 66395840 64574989 63121500 62698449
Pop. size - - - 250
Num. of iterations - - - 450
NFE 250000 250000 250000 225250
NFE= Number of Function Evaluations

Table 3.23. Average deviations of 630- activity problem from the optimal solutions for the
models obtained by NDS-TLBO

Algorith Case 1 Case 2
9o No of Runs | APD (%) | Noof Runs | APD (%)
GA, Bettemir [47] 10 8.83 10 7.5
ACO, Bettemir [47] 10 4,59 10 4,55
PSO, Bettemir [47] 10 1.11 10 2.21
NDS-TLBO (This paper) 10 1.10 10 1.51

The APD values of NDS-TLBO for two cases are 1.10 and 1.51 and these values are
smaller than the APD values of NDS-GA, NDS-ACO and NDS-PSO models proposed by
Sonmez and Bettemir [47]. Considering Tables 9-13, the results of NDS-TLBO for large
networks indicate that NDS-TLBO as a rule provides adequate optimal and near-optimal
solutions for the TCTP problems. Hence, NDS-TLBO model is among the top performing
algorithms, providing a powerful alternative for the time-cost trade-off problems.

Time-cost trade-off optimization problems encountered in the construction
management field cannot be solved by linear programming or other analytical methods.
Therefore, different metaheuristic optimization algorithms have been applied to optimize
those problems. This study describes a newly developed Pareto-based NDS-TLBO
algorithm and mechanism of crowding distance computation to confirm the suitability of
the proposed model for solving multiobjective optimization problems. The Pareto front of
the solutions is guided by the teacher which is the best learner and the mean of learners
achieved so far. Validation of NDS-TLBO algorithm is tested on a small test project
consisting of 18-activity, medium-scale project with 63-activity and more complex large-
scale problem with 630-activity. Based on the numerical results, it can be indicated that

NDS-TLBO based model produces alternative Pareto front solution with less both the total
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number of function evaluations and average percent deviation than those of the previously
proposed models. Consequently, optimization results clearly demonstrate the applicability
and efficiency of the TLBO application for the first time on solving TCTP problems in
construction management field. The results also indicate that the TLBO has a great
potential for solving simultaneous optimization of large TCTP problems e.g. 630-activity
project. Moreover, the simplicity can be taken into account as strength point of existing
method.

3.6. Effect of Partial Random Initial Population on NDS-TLBO

By reviewing the recent models, it can be stated that many researchers have
investigated various benchmark time-cost trade-off (TCT) optimization problems using
new concepts such as initial population, niche formation and acceleration approaches. And
also, in order to enhance the convergence capability of the algorithms, hybrid metaheuristic
algorithms were developed in the previous studies. Aminbakhsh [48] has applied the
hybrid discrete particle swarm optimization algorithm. Additionally, produces a certain
portion of initial population by means of Siemens algorithm and fed into models to
accelerate the searching process. In the Siemens algorithm as a rule, activities with the
least costs are identified and crashed with the minimum cost slope considerations. Sonmez
and Bettemir [47] have used hybrid genetic algorithm (HA) to unravel the eight well-
known benchmark TCTP problems.

As in the previous sections it is observed that the proposed sole TLBO algorithms are
a bit weak to compete with the hybrid algorithms. Thereby, to assess the overall efficiency
of competitive algorithm, in the present study, effect of partial random initial population on
NDS-TLBO algorithm for TCTP problems is also applied to further investigate the
exploration capacity of the proposed algorithm. Inspiring the initial population concept of
Aminbakhsh‘s [48] model, slight modification is made to the non-dominating sorting
version of the classical sole-TLBO algorithm by introducing a definite portion of initial
population. To this end, instead of Siemens algorithm which requires additional efforts, the
proposed model combines complementary strengths of the min-min (minimum of the
minimum) approach which is the single objective version of TLBO algorithm. To increase

the quality a superior portion of the initial population is generated by means of the single
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objective TLBO method, with the remaining initial seeds being generated randomly. This
min-min approach is the simplest algorithm having bi-objective functions. The objective
functions are either minimization of project duration or cost. And this approach, in place of
Pareto front provides a unique solution. For performing of this approach, in the present
study, initially, project cost is taken into account as the objective function and obtain the
unique optimum solution. However, there are plenty of solutions based on the project
duration for the corresponding single project cost in the solution pool. Astonishingly, in the
solution space, there is such a duration which is the minimum of the minimum solutions
based on the duration for the particular cost. So, this minimum of the minimum duration
for the particular cost is taken as the optimum solution in each iteration. This process
continues until the stopping criteria met and is called min-min approach. Therefore,
numerical simulations of medium and large scale projects are presented to demonstrate the
Pareto front performance of the proposed algorithm. In order to further verify the effect of
partial random initial population on the NDS-TLBO algorithm, alternative initial
populations are taken as in Table 3.24.

In the ongoing sections, the applied algorithm, as wells as various adopted initial

populations and graphical representations are elaborated.

Table 3.24. Alternative percentages of pre-known and randomly generated solutions
for the population

Percentage of pre-known | Percentage of randomly
Indices solutions in the generated solutions in
population (%) the population (%0)
E: 60 40
E> 40 60
Es 30 70
= 50 50

3.6.1. Medium-Scale Test Instances

To investigate the Pareto front performance of the proposed algorithm on projects
with 63-activity taken from the literature is re-solved. The project was tested under the two
cases: in the first case (63a), the indirect cost is adopted as $2300/day, whereas it is taken
as $3500/day in the second case (63b). The optimal solutions of 630 days with $5.421.120
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as cost for 63a and 621 days with $6.176.170 as cost for 63b has been originally provided
by Sonmez and Bettemir [47] using integer programming. The detailing of the problem is
given in section 3.3.4.

In this method, with this new improvement, ten consecutive experimental runs are
also conducted for this project. Pareto front solutions of 63-activity TCTP problem with Ex
to Es4 indices for both Cases are illustrated in Tables 3.25-3.28. In addition to this, to
clearly observe the distinct performance of the proposed algorithm, best results of superior
initial population are presented in Table 3.29 and 3.30 for Case 1 and Case 2 with
corresponding average percent deviations (%APD) from the optima. Table 3.29 and 3.30
demonstrate the results for comparison of hybrid optimization-based methods with partial
random initial population based NDS-TLBO algorithm. The selected duration of
corresponding activities for the optimal solution of Case 2 is given in Table 3.31. In
addition, Table 3.32 shows the compared %APD of Case 1 and Case 2 with the previous

models.

Table 3.25. Pareto front solutions of 63-activity TCTP problem with E; index for both

the Cases
Partial Random Initial population based NDS- TLBO

Case 1 ( Indirect cost = 2300 $/day) | Case 2 ( Indirect cost = 3500 $/day)
Dur Cost (%) Dur Cost (%)
633 5427920 621 6179720
634 5448920 622 6183820
635 5430670 623 6188920
636 5438370 624 6184220
637 5428220 625 6181020
638 5432270 626 6186070
639 5431570 627 6193420
640 5441670 628 6197070
641 5430070 629 6192260
642 5436520 630 6198570

Pop. size 100

Num. of iterations 250
NFE 50000

NFE = Number of Function Evaluations
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Table 3.26. Pareto front solutions of 63-activity TCTP problem with E> index for both

the Cases
Partial Random Initial population based NDS- TLBO

Case 1 ( Indirect cost = 2300 $/day) | Case 2 ( Indirect cost = 3500 $/day)
Dur Cost ($) Dur Cost ($)
633 5427920 621 6180020
628 5428170 621 6179720
637 5428220 621 6181820
630 5427770 621 6182640
633 5427920 622 6179470
630 5427770 625 6180070
628 5428170 621 6179720
630 5428870 618 6182020
630 5427770 621 6182640
630 5428120 623 6182070

Pop. size 100

Num. of iterations 250

NFE 50000

Table 3.27. Pareto front solutions of 63-activity TCTP problem with E3 index both

the Cases
Partial Random Initial population based NDS- TLBO

Case 1 ( Indirect cost = 2300 $/day) Case 2 ( Indirect cost = 3500 $/day)
Dur Cost (%) Dur Cost (%)
630 5428170 626 6186070
631 5433170 629 6192260
634 5428220 627 6193420
637 5436520 621 6179720
638 5428970 612 6192270
639 5429920 623 6191170
640 5434770 620 6196270
641 5431420 622 6183820
644 5438220 625 6181020
645 5438720 624 6184220

Pop. size 100

Num. of iterations 250
NFE 50000

NFE = Number of Function Evaluations
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Table 3.28. Pareto front solutions of 63-activity TCTP problem with E4 index both the

Cases
Partial Random Initial population based NDS- TLBO

Case 1 ( Indirect cost = 2300 $/day) | Case 2 ( Indirect cost = 3500 $/day)
Dur Cost ($) Dur Cost ($)
630 5427770 621 6180020
639 5429920 625 6190070
634 5428070 627 6189770
642 5436520 624 6188170
633 5427920 628 6197070
631 5433170 631 6210010
638 5428970 630 6198570
635 5442370 629 6188670
637 5428220 626 6186070
640 5430570 632 6212020

Pop. size 100

Num. of iterations 250

NFE 50000

Table 3.29. Best results for 63-Activity project (Case 1: daily indirect cost of $2300)
using partial random initial population based NDS-TLBO

Sonmez and Aminbakhsh (This paper)
Sr. Bettemir [47] [48]
%PD
No GASA D-PSO TLBO
Dur Cost Dur Cost Dur Cost
1 633 | 5421320 | 630 | 5421120 | 633 | 5427920 0.125
2 633 | 5421320 | 630 | 5422420 | 628 | 5428170 0.130
3 633 | 5421620 | 630 | 5421120 | 637 | 5428220 0.130
4 633 | 5421320 | 630 | 5421120 | 630 | 5427770 0.122
5 633 | 5421620 | 633 | 5421320 | 633 | 5427920 0.125
6 633 | 5421620 | 636 | 5422970 | 630 | 5427770 0.122
7 633 | 5421620 | 631 | 5424420 | 628 | 5428170 0.130
8 633 | 5421620 | 633 | 5421320 | 630 | 5428870 0.142
9 633 | 5421620 | 633 | 5421320 | 630 | 5427770 0.122
10 629 | 6450065 | 629 | 5423270 | 630 | 5428120 0.142
Pop. size 200 200 100
Num. of
iterations 250 250 250 APD% = 0.128
NFE 50000 50000 50000
NFE = Number of Function Evaluations
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using partial random initial population based NDS-TLBO

Sonmez and Aminbakhsh .
sr. | Bettemir [47] [48] (This paper)
%PD
No GASA D-PSO TLBO
Dur Cost Dur Cost Dur Cost
1 | 629 | 6181270 | 616 | 6177820 | 621 | 6180020 0.062
2 | 630 | 6177570 | 626 | 6177370 | 621 | 6179720 0.057
3 | 633 | 6184670 | 621 | 6176220 | 621 | 6181820 0.062
4 | 631 | 6183320 | 621 | 6178020 | 621 | 6182640 0.104
5 | 618 | 6180420 | 629 | 6177270 | 622 | 6179470 0.053
6 | 629 | 6180520 | 621 | 6177120 | 625 | 6180070 0.061
7 | 629 | 6179870 | 621 | 6176170 | 621 | 6179720 0.057
8 | 621 | 6180620 | 618 | 6177570 | 618 | 6182020 0.094
9 | 629 | 6177270 | 618 | 6177670 | 621 | 6182640 0.104
10 | 630 | 6182020 | 618 | 6177570 | 623 | 6182070 0.095
Pop. size 200 200 100
Num. of
iterations R0 &) 280 APD% = 0.075
NFE 50000 50000 50000
NFE = Number of Function Evaluations

Table 3.31. Options selected and solution generated for 63-activity TCTP problem
obtained by partial random initial population based NDS-TLBO approach

(1C=%$3500/day)

P-F Pr.u ject | Project Selected duration of the corresponding activity (days)
Sol. time | total cost
(days) % 1 2 3 | 4 5|6 —--—r 57|58| 59| 60| 61|63
12 | 18 | 24 |19 28 |44 )39 |52 |63 (57|63 68403347175
1 630 6427770 | 60 | 81 | 36 | 41| 64|53 |43 |66 |50 |84 |67|66| 76| 34| 96|43
52 | 74 | 138 | 54|29 51|67 (4123|4475 |82 |55|66]54|41
147 | 101 83 | 31|39 |18 (29 (38 (30(24|27|31|20| 25|22

The red colored bars show the critical path actrvities for the current solution.
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Table 3.32. Average deviations of 63-activity problem from the optimal solutions for the
models obtained by partial random initial population based NDS-TLBO

Case 1 Case 2

Algorithms No of APD No of APD
Runs (%) Runs (%)
GA, Sonmez and Bettemir [47] 10 5.86 10 5.16
HA, Sonmez and Bettemir [47] 10 2.61 10 2.50
DPSO, Aminbakhsh and Bettemir [48] 10 0.02 10 0.05
NDS-TLBO 10 0.128 10 0.14

Partial random initial population based
NDS-TLBO (This study) 10 | ol ] 10 ] 007

Considering Tables 3.25-3.32, the results of partial random initial population based
NDS-TLBO for medium networks indicate that the proposed algorithm normally provides
adequate optimal and near-optimal solutions for the TCTP problems.

Also, the effect of partial random initial population on the convergence of the NDS-
TLBO algorithm with E, (40% pre-known + 60% randomly generated solutions in the initial
population) which is providing better solution and the smoothened convergence history of the same
is demonstrated in Figure 3.19 and 3.20 for Case 1 and Case 2. These figures illustrate that
the implemented generation converges after the 150" iteration which is the optimum value
for Case 1. Similarly, it converges the optimum solution after the 120" iteration for Case 2.
Therefore, for both cases, population and number of iterations can be adopted as 100 and
150, respectively.

In this manner, the convergence history of the proposed algorithm with E; (60% pre-
known + 40% randomly generated solutions in the initial population) is presented in Figure 3.21
and 3.22.

At the same time, Figure 3.23 and 3.24 display the convergence history of 63-activity
TCTP problem with Es (50% pre-known + 50% randomly generated solutions in the initial
population) for Case 1 and Case 2. Furthermore, Figure 3.25 and 3.26 indicate the
convergence history of 63-activity TCTP problem with Es (30% pre-known + 70% randomly
generated solutions in the initial population) for Case 1 and Case 2. Thereby, convergence
histories graphs indicate that the utilized NDS-TLBO converges much faster than the

original TLBO and converges to better solutions.
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Figure 3.19. Convergence history of 63-activity TCTP problem with E> (40% pre-

known + 60% randomly generated solutions in the initial population) for

Case 1
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Figure 3.20. Convergence history of 63-activity TCTP problem with E; (40% pre-

known + 60% randomly generated solutions in the initial population) for
Case 2
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Figure 3.21. Convergence history of 63-activity TCTP problem with E; (60% pre-known
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Figure 3.22. Convergence history of 63-activity TCTP problem with E; (60% pre-

known + 40% randomly generated solutions in the initial population) for
Case 2
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Figure 3.23. Convergence history of 63-activity TCTP problem with E4 (50% pre-
known + 50% randomly generated solutions in the initial population) for
Case 1

6600000
6500000
6400000

6300000

Total Cost($)

6200000

6100000
0 50 100 150 200 250

Iteration number

Figure 3.24. Convergence history of 63-activity TCTP problem with E4 (50% pre-

known + 50% randomly generated solutions in the initial population) for
Case 2
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Figure 3.25. Convergence history of 63-activity TCTP problem with E3 (30% pre-

known + 70% randomly generated solutions in the initial population) for
Case 1
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Figure 3.26. Convergence history of 63-activity TCTP problem with E3 (30% pre-

known + 70% randomly generated solutions in the initial population) for
Case 2

Performance of the partial random initial population based NDS-TLBO algorithm

was compared with the performance of the Pareto front solutions reported for genetic
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algorithm simulated annealing (GASA), Sonmez and Bettemir [47] as well as discrete particle
swarm optimization (D-PSO) of Aminbakhsh [48]. As 50.000 schedules (objective
function evaluations) are used as the stopping criteria in all of the experiments [47, 48].
The results acquired by the proposed TLBO method indicate better solutions as compared
to the Sonmez and Bettemir [47].

On the other hand, it is apparent from the results that the applied algorithm could
evolve potential improvement when exposed to large daily indirect cost. In contrast, it
could achieve identical solution as exposed to smaller daily indirect cost. Therefore, this
can easily be programmed by utilizing levy flight (a random walk) model and can
systematically surf through the search space to avoid local minimum. However, being
simple as well as relatively young algorithm, the proposed algorithm could achieve almost
identical solution as compared to the Aminbakhsh‘s [48] model with the half of objective
function evaluations of the previous models. That means, the applied algorithm reaches the
optimality within the 25000 schedules. This reveals a remarkable reduction in number of
function evaluations of the proposed algorithm as compared to the previous models. Even
though, the applied meta-heuristic algorithm (TLBO) could not obtain global optima in any
of the trials. However, by searching merely 25,000 solutions out of 1.37x10*? potential
solutions, proposed algorithm was able to determine very high quality solutions that are
either optimal or very close to the optimal. The reason of not achieving the global optima
can be referred to the complex nature of the problem and the early stopping condition.
Therefore, the initial population based NDS-TLBO provides a user-friendly and efficient

concept to support time-cost optimization of medium scale problems.

3.6.2. Large-Scale Test Instances

As it is obvious that, the study concentrating on generation of large-scale complex
TCTP problems that involves more activities and modes, would enable a better
understanding of the performance of heuristic and meta-heuristic methods for real world
projects. To this end, in this section, to investigate further the performance of the proposed
algorithm on a large scale 630-activity project adopted from the literature is unraveled. In
this project two overhead costs are taken into account in two cases: The overhead costs for
Case 1 (630a) and Case 2 (630b) are 2300%/day and 3500%/day, respectively. The optimal
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solutions of 6300 days with $54.211.200 as cost for 630a and 6210 days with $61.761.700
as cost for 630b had been originally provided by Sonmez and Bettemir [47] using integer
programming. The detailing of the problem is given in section 3.5.3. To solve the current
problem, it is found out that, the best combination of partial random initial population (Ez)
produces effective solution for the medium scale problem. Therefore, this suitable
combination is adopted to unravel the large scale problem as well. To obtain the best
Pareto front solutions ten consecutive experimental runs are implemented on this project.
Best results of ten runs are demonstrated in Table 3.33 and 3.34 for Case 1 and Case 2
along with corresponding average percent deviations (%APD) from the optima and also
rank and crowding distances are provided.

Table 3.33. Best results for 630-Activity project (Case 1: 1C=$2300/day) using
partial random initial population based NDS-TLBO

This paper Crowding
NDS-TLBO YRS Rank Distance
Dur Cost ($)
6387 54775880 0.01 1 0.0640
6447 54682080 0.86 1 0.0498
6480 54684970 0.87 1 0.0486
6417 54687510 0.87 1 0.0434
6458 54695920 0.89 1 0.0416
6433 54697060 0.89 1 0.0354
6473 54697450 0.89 1 0.0352
6424 54702050 0.90 2 0.0349
6475 54711350 0.92 1 0.0345
6342 54720110 0.93 1 0.0336
Pop. size 100
Num. of 250 %APD =0.911
iterations
NFE 50000
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Table 3.34. Best results for 630-Activity project (Case 2: 1C=$3500/day) partial
random using initial population based NDS-TLBO

This paper
Crowding
NDS-TLBO %PD Rank )
Distance
Dur Cost ($)
6204 62591490 1.34 1 0.0857
6127 62650570 1.43 1 0.0834
6114 62680270 1.48 1 0.0786
6094 62691570 1.50 1 0.0742
6060 62696280 1.51 2 0.0316
6043 62697220 1.51 1 0.0315
6137 62702240 1.52 1 0.0312
6030 62704580 1.52 i 0.0301
6159 62711150 1.53 1 0.0300
6130 62723120 1.56 3 0.0294
Pop. size 100
Num. of
iteration 250 %APD =1.49
NFE 50000

The compared mean values of ten runs for Case 1 and Case 2 are presented in Tables
3.35 and 3.36, respectively. In addition, Table 3.37 represents the compared %APD of

Case 1 and Case 2 with the previous and basic TLBO algorithms.

Table 3.35. Comparison of mean values of 10 runs for Case 1 (IC=$2300/day) using
partial random initial population based NDS-TLBO

. Bettemir [79] This paper
Descriptions
NDS-GA NDS-ACO NDS-PSO NDS-TLBO
Mean value 58983147 56703583 54815790 54705438
Pop. size - - - 100
_Num_. of i i i 950
iterations
NFE 250000 250000 250000 50000
NFE = number of function evaluations
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Table 3.36. Comparison of mean values of 10 runs for Case 2 (daily indirect cost=$3500)
using initial population based NDS-TLBO

. Bettemir [79] This paper
Descriptions
NDS-GA NDS-ACO | NDS-PSO NDS-TLBO
Mean value 66395840 64574989 63121500 62684849
Pop. size - - - 100
Num. of iterations - - - 250
NFE 50000 50000 50000 50000

Table 3.37. Average deviations from the optimal solutions for the models obtained using
initial population based NDS-TLBO

Case 1 Case 2

Algorithms Noof | APD | Noof | APD

Runs (%) Runs (%)

GA, Sonmez and Bettemir [47] 10 8.83 10 7.50

HA, Sonmez and Bettemir [47] 10 241 10 2.47

DPSO, Aminbakhsh and Bettemir [48] 10 0.33 10 0.34

Core NDS-TLBO 10 1.10 10 1.51
Partial random initial population based NDS-

TLBO (This paper) 10 Q.91 1 1.49

Partial random initial population based NDS-TLBO algorithm achieved very
successful results and outperformed the hybrid genetic algorithm (HA) Sonmez and
Bettemir, [47] as well as basic TLBO algorithms for large-scale instances. The acquired
APD values for instances 630a and 630b are 0.91% and 1.49 %, respectively. By searching
only 50.000 solutions out of 2.38 x10% potential solutions, partial random initial
population based NDS-TLBO was able to obtain high quality solutions for the largescale
problems. Hybrid algorithm of Sonmez and Bettemir [47] was able to achieve APD values
of 2.41% and 2.47% within 50.000 schedules. Therefore, it can be seen from the result
summary that performance of TLBO has improved due to the partial random initial
population based modification. It is mentionable that, in this study also, the applied
metaheuristic algorithm (TLBO) could not obtain global optima in any of the trials.
However, by searching merely 25.000 solutions out of 1.37x10* potential solutions,
proposed algorithm was able to detect the solutions very close to the optimal. The reason
of not achieving the global optima can be referred to the complex nature of the problem

and premature convergence condition. Therefore, the partial random initial population
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based NDS-TLBO provides a user-friendly and efficient concept to support time-cost
optimization of medium scale problems. Importantly, the simplicity of the proposed TLBO
algorithm can be taken into account as strength point of it.



4. CONCLUSIONS

In this thesis, significance of sufficient schedules for construction projects has been
discussed to validate and assess the proposed algorithms. Well-known 7, 18, 63 and 630-
activity benchmark problems have been solved to validate the performance of the TLBO
algorithm. The adequate values required to operate the algorithms have been assumed after
series of trial and error, with regard to the solutions given for these examples within the
literature. The robustness and potency of the applied algorithms have been investigated
through the results obtained from these studies. The discrete basic-TLBO algorithm
presented in this thesis has been established in the classical version proposed by the [5].
However, a minor change has been made to the NDS-TLBO algorithm to enhance the
efficiency of the search process by introducing the partial random initial population based
concept.

In this research, the computational result is with up to about 630-activity and 5
modes have revealed the satisfactory behavior of the teaching learning based optimization
algorithm used to solve the TCT Problem. It is observed that the efficiency of the
algorithm is affected by the number of activities and the tightness of the indirect cost value.
This metaheuristic procedure generates solutions that deviate from the optimal solutions by
no more than ten percent on average.

It has been seen that the solutions produced via NDS phase of the model have
reasonably good fit compared to the MAWA phase of the model, furthermore, it is resulted
that the partial random initial population based version of NDS-TLBO algorithm
outperforms the both non-dominating sorting approach as well as modified adaptive weight
approach of the current research. However, it has been observed that the quality of the
acquired solutions have been somehow deteriorated for test problems with smaller daily
indirect costs. Robustness of this model in regards to its proficiency in locating the non-
dominated front for the medium-sized problems has been confirmed. Consequently, the
utilized algorithm has been proven to outperform the results of the previous studies
reported in the literature. Because of the strong convergence capabilities of the applied
algorithm in locating the Pareto fronts of the represented TCTP problems, it would be

taken into account as a surpassing technique in the construction management field.
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Consequently, partial random initial population based NDS-TLBO presents better results

than the other sole TLBO algorithms, so it is the most suitable algorithm for time-cost

trade-off optimization problem.

4.1. Contributions

This research contributes considerably to improve the limitations of solving large-

scale discrete time-cost trade-off (DTCT) problems. While the solution methods for

solving DTCT problems in the literature are limited to 63-activity [48], using the proposed

algorithm, the number of activities increases to 630-activity without compromising the

quality of solution, within an acceptable range of less than 7% deviation from the global

optimum.

The following are a summary of contributions of the research:

Developed a flexible time-cost trade-off (TCT) model in MATLAB environment
to be used for applying multiobjective TLBO for the first time on solving TCTP
Problems in construction management field of civil engineering.

Investigated various multiobjective optimization approaches such modified
adaptive weight (MAWA), non-dominating sorting (NDS) and partial random
initial population version of NDS-TLBO for solving large-scale TCT optimization
problems. Suitable methods for modeling and solving TCT problems were chosen
and their efficiency in solving large size problems was examined.

The developed partial random initial population NDS-TLBO based TCT model
proved its ability to solve very large-scale TCT problems. The solutions are
satisfactory near optimum (mostly with less than 7% deviation from the optimal
solution) with an acceptable processing time.

Concluded on the superiority of the applied multiobjective TLBO approaches

comparing to the previous optimization methods.
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4.2. Future Research

In spite of the significant improvements on the time and cost optimization of large-

scale construction projects presented in this research, various other enhancements are

offered for the future extensions of the current research, including:

>

Investigating the performance of other optimization packages for optimization of
time and cost in construction projects which have the integer programming using
the AIMMS optimization software.

Extending the number of objective functions of problems to more than two such
as quality, productivity, safety, and environmental effects etc., will also be an
investigation area that deserves further devotion. Consequently, the model would
turn into a more complicated combinatorial optimization problem which would
be harder and more time consuming to solve.

Expanding the optimization model to include resource allocation and resource
leveling constraints, in order to perform resource utilization while optimizing
time and cost. This would provide a more complete optimization strategy for
construction projects.

Applying modified version of TLBO by introducing concept of number teachers
(NT) and adaptive teaching factor.

Providing an interface to project management software such as Primavera
packages and Microsoft Project in order to import and export model data to/from

project management software directly.
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