
KARADENİZ TECHNICAL UNIVERSITY

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

DEPARTMENT OF CIVIL ENGINEERING

ARTIFICIAL BEE COLONY (ABC), HARMONY SEARCH (HS) AND PARTICLE

SWARM OPTIMIZATION (PSO) BASED DISCRETE AND CONTINUOUS

OPTIMUM DESIGN OF STEEL TRUSSES

MASTER THESIS

Patrick Jean De Dieu OUEDRAOGO

JANUARY 2018

TRABZON

III

ACKNOWLEDGEMENTS

I would like, through this acknowledgement, to express my gratefulness to all the

persons who didn’t spare no effort to help me during the process of completing my master

degree.

 First of all, I wish to express my sincere thankfulness to my thesis advisor, Prof. Dr.

Ayşe DALOĞLU, who has never grown tireless of providing me invaluable guidance,

manifesting undeniable support or encouraging approaches, appreciating any single good

work done and showing enlightening guidance during the progress of the thesis, and finally

providing some constructive advices to my address.

My deepest gratitude to my beloved family, parents and all relatives, who have

always given to me unceasing encouragements, understanding, inspiration and constant

love. They have always been my source of motivation, and I acknowledge them for their

never-ending multiples and various supports and prayers. Words cannot describe how

proud I am for the belief they placed on me.

Special thanks to the university, Karadeniz Technical University, for allowing me

to pursue my master degree in their prestigious school. Great thanks to all the professors

and assistants who have shared their knowledge with me through the lectures and practical

words.

I am grateful to all my friends for their endless contributions to make my life more

colourful. In all the difficulties encountered in the accomplishment of my research work

they have always stand by my side to comfort and ensure me that I can come over

obstacles I am facing.

I could not end this acknowledgment without making a reference to my

grandfather, Sawadogo Landaogo Pierre, whose blessings for my success never leave me

in his lifetime. May him rest in peace.

Patrick Jean de Dieu OUEDRAOGO

Trabzon 2018

IV

THESIS STATEMENT

After an architectural conception of a structure, it has to go under structural design.

If the design is conducted by different engineers, many solutions could be proposed at the

end their studies. Among those studies that all satisfy common rules of engineering design,

some may appear to be better than others regarding the structural weight that directly

impacts on the execution cost. The design that will bring out the lightest structure is called

an optimum design. This is the aim of this thesis, to conduct optimization process on steel

trusses. Before starting the study, size optimization and optimization algorithms employed,

previous performance of well-known examples are analysed. Nevertheless, structural

design through the use of Finite Element Methods, the use of Matlab and Structural

analysis program Sap2000 should be mastered.

I hereby declare that “Artificial Bee Colony (ABC), Harmony Search (HS) and

Particle Swarm Optimization (PSO) based discrete and continuous optimum design of steel

trusses” thesis work has been presented in accordance with academic rules and ethical

conduct under the supervision of Prof. Dr. Ayşe DALOĞLU. I also declare that references

contain materials and results that are not original to this work.

Patrick Jean de Dieu OUEDRAOGO

V

TABLE OF CONTENTS

Page No

ACKNOWLEDGEMENTS .. III

THESIS STATEMENT .. IV

TABLE OF CONTENTS ... V

SUMMARY .. VIII

ÖZET………………………………………………………………………………………IX

LIST OF FIGURES ... X

LIST OF TABLES ... XII

ABBREVIATIONS AND SYMBOLS .. XIII

1. INTRODUCTION ..1

1.1. General Overview ...1

1.2. Research Objective ...3

1.3. Research Scope and Limitation ...4

1.4. Study Outline ..4

2. LITERATURE REVIEW ...6

2.1. Optimization ...6

2.2. Truss Size Optimization ..8

2.3. Design Variables ..9

2.4. Objective Function ... 10

2.5. Constraints.. 12

2.6. Constraint Handling/Penalty Function... 13

2.7. Traditional Structural Optimization Methods .. 16

2.7.1. Mathematical Programming .. 16

2.7.2. Optimality Criteria Approaches .. 17

2.8. Modern Structural Optimization Methods: Metaheuristic 20

2.8.1. Artificial Bee Colony (ABC) .. 21

VI

2.8.1.1. Honey Bee’s Colony ... 21

2.8.1.2. Steps of ABC Algorithm ... 23

2.8.2. Harmony Search (HS) ... 27

2.8.2.1. Harmony Search Parameters ... 29

2.8.2.2. Harmony Search Steps .. 30

2.8.3. Particle swarm optimization (PSO) ... 34

2.8.3.1. Control Parameters ... 36

2.8.3.2. Particle Swarm Algorithm’s Implementation .. 38

3. MATLAB BASED 2D TRUSS OPTIMIZATION 41

3.1. MATLAB ... 41

3.2. Finite Element Method (FEM) .. 42

3.2.1. Input Data ... 43

3.2.2. Stiffness Matrix Evaluation... 44

3.2.3. Structure Stiffness Matrix or Global Stiffness Matrix 45

3.2.4. Boundary Conditions .. 45

3.3. Implementation ... 46

3.4. Examples/ Case Studies .. 46

3.4.1. Ten-bar (10) Truss Structure ... 47

3.4.2. Seventeen-bar (17) Truss Structure ... 52

3.4.3. Forty-five-bar (45) Truss Structure ... 55

3.4.4. Fifty-two-bar (52) Truss Structure .. 58

4. OAPI BASED 3D TRUSS OPTIMIZATION 61

4.1. SAP2000 .. 61

4.2. Open Application Programming Interface (OAPI) 62

4.3. Implementation ... 63

4.4. Examples/ Case Studies .. 64

4.4.1. Twenty-five-bar (25) Spatial Truss Structure .. 64

VII

4.4.2. Seventy-two-bar (72) Spatial Truss Structure .. 68

4.4.3. One Hundred Twenty-bar (120) Spatial Truss Structure 71

5. CONCLUSION .. 76

5.1. Conclusion.. 76

5.2. Recommendations .. 77

6. REFERENCES ... 78

CURRICULUM VITAE

VIII

Master Thesis

SUMMARY

ARTIFICIAL BEE COLONY (ABC), HARMONY SEARCH (HS) AND PARTICLE

SWARM OPTIMIZATION (PSO) BASED DISCRETE AND CONTINUOUS OPTIMUM

DESIGN OF STEEL TRUSSES

Patrick Jean de Dieu OUEDRAOGO

Karadeniz Technical University

Graduate School of Natural and applied sciences

Civil Engineering graduate program

Supervisor: Prof. Dr. Ayşe DALOĞLU

2018, 83 pages

Steel structural designs are done based on many considerations that have been implemented

over past years by civil engineers and research organizations. In this study, the design verifications

assumed are based on prescriptions of American Institute of Steel Construction (AISC) that

proposes to main ways that are Allowable Stress Design (ASD) and Load Resistance Factor Design

(LRFD). Element internal forces used for the verifications are evaluated from different methods

among which Finite Element Method (FEM) is the most common and also implemented in usual

civil engineering programs. However structural design is not only limited in satisfying stability and

reliability conditions but also in finding the most efficient and economical design. In this thesis, 2D

and 3D steel trusses under discrete and non-discrete optimizations will be implemented using three

specific metaheuristic algorithms, namely Artificial Bee Colony (ABC), Harmony Search (HS) and

Particle Swarm Optimization (PSO). Given that analysis method is based on FEM, problems will

be solved using two joint procedures while applying stress and displacement constraints. The first

one consists of a script completely written in MATLAB that solves the whole problem, whereas the

second retrieves the analysis results from SAP2000 and performs the optimization on MATLAB

through the Open Application Programming Interface (OAPI) facility. The run of several examples

demonstrates the effectiveness, robustness and fast convergence of employed algorithms.

Keywords: Optimum design of trusses, Artificial bee colony (ABC), Harmony Search (HS),

Particle Swarm Optimization (PSO), Size optimization of steel trusses, Sap2000

OAPI, MATLAB, Discrete Variables, Non-Discrete

IX

Yüksek Lisans Tezi

ÖZET

YAPAY ARI KOLONİSİ (ABC), HARMONİ ARAMA (HS) VE PARÇACIK

SÜRÜSÜ OPTİMİZASYONU (PSO) İLE ÇELİK KAFES SİSTEMLERİN AYRIK VE

SÜREKLİ OPTİMUM TASARIMI

Patrick Jean de Dieu OUEDRAOGO

Karadeniz Teknik Üniversitesi

Fen Bilimleri Enstitüsü

İnşaat Mühendisliği Anabilim Dalı

Danışman : Prof. Dr. Ayşe DALOĞLU

2018, 83 pages

Çelik yapısal tasarımlar, inşaat mühendisleri ve ilgili alanda çalışan araştırma enstitüleri

tarafından gerçekleştirilen süren gözlemlere dayanarak yapılır. Bu tez çalışmasında, göz önünde

tutulan tasarım kuralları, Amerikan Çelik Konstrüksiyon Enstitüsü’nün (AISC) yayınladığı,

Güvenlik Katsayıları ile Tasarım Kuralları (GKT) ve Yük ve Dayanım Katsayıları ile Tasarımı

(YDKT), yönetmenliklerine uygun yapılmıştır. Yapıların dayanımını kontrol etmek için kullanılan

eleman iç kuvvetleri, inşaat mühendisliği alanında kullanılan farklı yöntemlerle yapılabilir ancak

Sonlu Elemanlar Yöntemi (SEY) bunlar arasında en yaygın olan ve inşaat mühendisliği alanındaki

geliştirilen bilgisayar programlarında da kullanılandır. Bununla birlikte, yapısal tasarım sadece

sağlamlık ve güvenilirlik koşullarını tatmin etmekle kalmaz, aynı zamanda en verimli ve ekonomik

tasarımı da bulmayı gerektirir. Bu tezde, 2 boyutlu ve 3 boyutlu çelik kafes sistemlerin ayrık ve

ayrık olmayan (sürekli) tasarım değişkenleri ile optimizasyonu üç farklı meta sezgisel algoritma

kullanılarak; Yapay arı Koloni (ABC), Harmoni Arama (HS) ve Parçacık Sürü Optimizasyonu

(PSO), gerçekleştirilmektedir. Analiz yöntemi için SEY kullanılmakta, gerilme ve yer değiştirme

sınırlayıcıları uygulanmakta ve problemler iki farklı yöntemle çözülmektedir. Birincisi, tamamen

MATLAB’de kodlanan bir program ile, ikincisi SAP2000'den analiz sonuçlarını alarak ve Açık

Uygulama Programlama Arayüzü (OAPI) özelliği aracılığıyla, MATLAB üzerinde optimizasyon

gerçekleştirir. Çeşitli örneklerle uygulanılan algoritmaların etkililiği, sağlamlığı ve yakınsama hızı

gösterilmektedir.

Anahtar Kelimeler: Kafes sistemlerin optimum tasarımı, Yapay arı koloni (ABC), Harmoni

Arama (HS), Parçacık Sürü Optimizasyonu (PSO), Çelik kafeslerin boyut
optimizasyonu, Sap2000 OAPI, MATLAB, Ayrık Değişkenler, Ayrık

Olmayan Değişkenler

X

LIST OF FIGURES

Page No

Figure 2.1. Optimization Scheme ..8

Figure 2.2. Local Optimum And Global Optimum ... 12

Figure 2.3. Optimality Criteria Code Levels And Constraint Inclusion Strategies 19

Figure 2.4. Waggle Dance ... 22

Figure 2.5. Honey Bees Foraging Behaviour ... 23

Figure 2.6. Connection Between Bees ... 24

Figure 2.7. Pseudo Code Of The Abc Algorithm ... 25

Figure 2.8. Flowchart Of Abc Algorithm ... 26

Figure 2.9. Analogy Between Music Improvisation And Engineering Optimization 28

Figure 2.10. Flowchart Of Harmony Search Algorithm ... 31

Figure 2.11. Pseudo Code Of Hs ... 31

Figure 2.12. Harmony Memory Form .. 32

Figure 2.13. New Harmony Improvisation Concept ... 33

Figure 2.14. New Harmony Improvisation Flowchart .. 33

Figure 2.15. Neighbourhood Topologies ... 35

Figure 2.16. Examples Of Swarm Intelligence ... 36

Figure 2.17. Pso Pseudo Code ... 39

Figure 2.18. Flowchart Of Pso Algorithm .. 40

Figure 3.1. Bar Element... 44

Figure 3.2. 10-Bar Planar Truss Structure .. 47

Figure 3.3. Convergence Histories For 10-Bar Planar Truss Structure (Case 1).............. 50

Figure 3.4. Convergence Histories For 10-Bar Planar Truss Structure (Case 2).............. 51

Figure 3.5. 17-Bar Planar Truss Structure, A = 254cm (100 In) 52

Figure 3.6. Convergence Histories For 17-Bar Planar Truss Structure 54

Figure 3.7. 45-Bar Planar Truss Structure, A = 508cm (200 In) 55

Figure 3.8. Convergence Histories For 45-Bar Planar Truss Structure 57

Figure 3. 9. 52-Bar Planar Truss Structure .. 58

Figure 3.10. Convergence Histories For 52-Bar Planar Truss Structure 60

Figure 4.1. Typical Data Flow Using The Sap2000 Api ... 63

Figure 4.2. 25-Bar Spatial Truss Structure ... 65

XI

Figure 4.3. Convergence Histories For 25-Bar Spatial Truss Structure........................... 67

Figure 4.4. 72-Bar Spatial Truss Structure ... 68

Figure 4.5. Convergence Histories For 72-Bar Spatial Truss Structure........................... 70

Figure 4.6. 120-Bar Spatial Truss Structure ... 72

Figure 4.7. Convergence Histories For 120-Bar Spatial Truss Structure (Case 1) 74

Figure 4.8. Convergence Histories For 120-Bar Spatial Truss Structure (Case 2) 75

XII

LIST OF TABLES

Page No

Table 3.1. Optimal Design For 10-Bar Planar Truss Structure (Case 1) 48

Table 3.2. Optimal Design For 10-Bar Planar Truss Structure (Case 2) 49

Table 3.3. Optimal Design For 17-Bar Planar Truss Structure 53

Table 3.4. Optimal Design For 45-Bar Planar Truss Structure 56

Table 3.5. Optimal Design For 52-Bar Planar Truss Structure 59

Table 4.1. Load Case For The 25-Bar Spatial Truss ... 65

Table 4.2. Optimal Design For 25-Bar Spatial Truss Structure 66

Table 4.3. Load Case For The 72-Bar Spatial Truss ... 69

Table 4.4. Optimal Design For 72-Bar Spatial Truss Structure 69

Table 4.5. Optimal Design For 120-Bar Spatial Truss Structure (Case 1) 73

Table 4.6. Optimal Design For 120-Bar Spatial Truss Structure (Case 2) 73

XIII

ABBREVIATIONS AND SYMBOLS

Abbreviations

2D 2-Dimensionnal

3D 3-Dimensionnal

ABC Artificial Bee Colony

AISC American Institute of Steel Construction

ARCGA Adaptive Real-Coded Genetic Algorithm

ASD Allowable Stress Design

BA Bees Algorithm

BW Band Width parameter

CA Cultural Algorithm

CS Cuckoo Search

CSI Computers and Structures, Inc.

DE Differential Evolution

DHPSACO Discrete Heuristic Particle Swarm Ant Colony Optimization

EA Evolutionary Algorithm

EF Employed Foragers

FEA Finite Element Analysis

FEM Finite Element Method

GA Genetic Algorithm

HM Harmony Memory

HMCR Harmony Memory Consideration Ratio

HMS Harmony Memory Size

HPSO Heuristic Particle Swarm Optimizer

HS Harmony Search

KKT Karush–Kuhn–Tucker

LRFD Load Resistance Factor Design

MABC Modified Artificial Bee Colony

OAPI Open Application Programming Interface

OC Optimality Criteria

XIV

PAR Pitch Adjusting Ratio

PSO Particle Swarm Optimization

PSOPC Particle Swarm Optimizer with Passive Congregation

R Recruit

S Scouts

SGA Steady-State Genetic Algorithms

RO Ray Optimization

TLBO Teaching Learning Based Optimization

UF Unemployed Foragers

VBA Visual Basic Applications

Symbols

Ai cross-section area of the ith member

Amin Lower bound of the design variables

Amax Upper bound of the design variables

C1 cognitive parameter

C2 social parameter

Cc Decision Coefficient

E Elasticity Modulus

𝑓1 External nodal forces at node 1

𝑓2 External nodal forces at node 2

fi Objective function of the food source Ai

fmin Lowest objective function

FW Fret Width (Bandwidth)

FW_damp Width Damp Ratio

Fpenalty Penalty Term

f (x) Objective function

Fy Yield stress

𝐾 Stiffness Matrix

𝐾𝐺 Stiffness matrix in global coordinates

k Effective length factor

Li Length of the ith member

XV

MaxIt Maximum Number of Iterations

n Number of variables

nNew Number of New Harmonies

nOnlooker Number of Onlooker Bees

NP Number of Particles

nPop Population number

nVar Number of design variables

pi probability of the food source i

r1j(t) , r2j(t) Stochastic components

ri Radius of gyration

T Transformation matrix

𝑢1 Displacement at node 1

𝑢2 Displacement at node 2

vij(t) Velocity in dimension j at time t

Vmax Maximum Velocity

W(A) Weight of the Structure

wdamp Weight Damping Ratio

xij(t) Position in dimension j at time t

yij(t) Personal best positions in dimension j

ŷj(t) Neighbourhood best positions in dimension j

ρ Weight density of material

𝜔 Inertia Weight

λi Slenderness ratio

σi Constraint

1

 INTRODUCTION

 General Overview

Steel has many desirable characteristics as one of the most common construction

materials in civil structure. Some of the properties of steel that make it desirable for

engineering are its malleability as well as high strength to mass ratio. Steel structures are

commonly used as warehouses, factories, and housings because they mainly provide

shelter and personal space for individuals. Their design conducted by committed engineers

applying common rules of steel construction needs to bring out variants of the structural

system that is some well-defined sense the “best” solution regarding to costs or weight

while satisfying all relevant engineering constraints, such as maximum allowable stress in

each member or displacements at elements end nodes. Undeniably the material cost

represents the foremost driving element in the construction of engineering structures and it

can be minimized by abating the structural system weight or volume through an

optimizations process.

Over the past several decades, due to its direct applicability to the design of

structures, structural design optimization has become a critical and challenging activity that

has gained substantial concern (Lee and Geem, 2004). Optimum design of truss structures

is an approach to find a minimum weight of truss structure with no violation of certain

constraints. Optimal designing of structures has a major role in reduction of material usage

which allows project constructors to save considerable money from the initial provisional

cost. This is one of the main objectives of each construction project, to complete the

construction with the least possible cost. In general, optimization of truss structures can be

considered as size optimization which deals with cross-sectional areas of members. Each

optimization problem requires a clearly defined objective function, design variables and

constraints for the states of problem formulation. Depending on the class of a given

problem and the specific needs several objective functions can be identified and a range of

design variables considered. In this present study, two types of optimizations will be

performed based on cross sections selection. When the variables are selected randomly

between an upper bound and a lower bound without any reference to commercialized steel

bars the optimization is called non-discrete or continuous. Because this optimization

2

method treats the design variables as continuous by ignoring their discreteness, solutions

produced may either be far from optimum, or sometimes result in infeasible values. But in

the optimisation of steel truss structures one of the most important considerations is that

the design variables have to be selected from a list of discrete values due to the reason that

member cross sections are only available in discrete standard sizes because of industrial

steel manufacturing practices. This leads to a discrete optimisation problem, in which

continuous optimisation techniques cannot be used, which makes it a more difficult task to

solve. Through implementing these optimizations, designers are able to yield better design

while saving time and money, therefore a number of optimization techniques has been

implemented to solve structural problems. Generally, structural optimization methods are

classified into two main groups that are modern techniques, recently developed and

traditional methods used by optimization pioneers. In traditional structural optimization

methods, optimality criteria approach and mathematical programming are explored,

whereas modern structural optimization methods regroup heuristics and metaheuristic

search techniques. Mathematical programming and metaheuristic techniques will get more

attention in this study.

Mathematical Optimization has been used through its multiple Numerical Methods

to solve recurrent engineering problems for many years. For weight and member sizing of

truss structures optimization problems, the objective functions are defined in the design

space, while the constraints imposition are made based on the behaviour response space,

and the structural analysis is in charge of relating the two spaces. Traditionally, the

optimisation problem solved by trial-and-error, is dictated by some design specifications

and guided by the practice and intuition of the designer, has worked well as evident from

the existence of many fine buildings and other structures. However, these technics have

shown some limits to researchers that were relying on the experienced results.

The recent development of high-speed electronic computers technology has made

the analysis and optimal design of problems much more accurate than ever before, which

in turn has led to an increased use of structural optimisation research to achieve more

efficient and economical design. The efficiency of metaheuristic’s performance relies on

their capability to balance intensification and diversification during the search. In order to

carry out global search, modern metaheuristic algorithms have been evolved, with three

main purposes: solving problem faster, solving large problem and obtaining robust

3

algorithm. Metaheuristic optimization techniques have received then considerable attention

from engineering researchers. The usage of optimization schemes in civil structure design

helps designers to save time, material and cost. Using optimization schemes, designers can

avoid the troublesome process of deriving designs through trial-and-error. Application of

optimization schemes to civil structures is a tedious process as a large amount of iteration

is required to be computed before the solution converges. These new metaheuristic

optimization technologies developed during past three decades enable designers, precisely

engineers, to find the most efficient and suitable solution amongst a multitude of design

alternatives. Research is still vigorously pursued for many reasons, based on the need to fix

a widened class of problems, take in consideration realistic definition of design variables,

find methods to locate the global optimum and to reduce the designing time, and finally

produce a continuous improvement of the technic’s efficiency. There exist several

optimization algorithms that have been developed over past years and these examples are

the illustration: Genetic Algorithm (GA) (Holland, 1975), Particle Swarm Optimization

(PSO) (Kennedy and Eberhart, 1997), Differential Evolution (DE) (Storn and Price, 1997),

Artificial Bee Colony (ABC) (Karaboga, 2005), Bees Algorithm (BA) (Pham et al., 2006),

Firefly Algorithm (Yang, 2009), Cuckoo Search (CS) (Yang and Deb, 2009), Water Cycle

Algorithm (Eskkandar et al., 2012).

 Research Objective

The main aim of the current study is to develop a computer design model which

implements a structural size optimization under stress and displacement constraints. The

objective of optimization procedure is to minimize the weight of the structure, such that the

stress is not over the allowable stress in any element of the structure and the displacement

at each single node does not exceed the maximum displacement allowed. The weight of the

structure is obtained by assigning a cross-sectional area for each structural member

satisfying the limitations as prescribed by AISC – LRFD and ASD specifications. This is

done by associating optimization algorithms, Artificial Bee Colony (ABC), Harmony

Search (HS) and Particle Swarm Optimization (PSO), chosen as the solution methods for

their great flexibility and versatility, and the structural analysis process conducted either by

MATLAB script or engineering software SAP2000. Upon completion of each case study,

the program will provide an optimized steel truss design for the prescribed loading

4

condition, bringing out the smallest mass and the graph of convergence history during

iterations.

The following sub-objectives were considered to achieve the main one:

• Review the existing methodologies to optimize truss structures.

• Develop a computer program to solve steel truss structures using FEM

based on a MATLAB script.

• Create a computer program to solve steel truss structures using SAP2000

OAPI an MATLAB.

• Build up ABC, HS and PSO algorithms and connect them to the two design

models enumerated above.

• Carry out validation and verification of the developed models.

• Compare the results obtained in this study with the established results

available from previous researches.

 Research Scope and Limitation

The scope area of this study is the weight optimization of 2D truss implemented in

a MATLAB script for structural analysis and metaheuristic algorithms ABC, HS and PSO

represented by 4 examples. Further into the thesis it is the optimization of 3D truss that

will be studied by employing MATLAB and SAP2000 OAPI tools considering 3 study

cases.

Limitation is mainly related to cross sectional optimization of truss elements. It is

not extended to shape and topology optimization that are also contribute to reduce the

structural weight.

 Study Outline

The study reported in this present thesis consists of four chapters as respectively

briefly described below:

Chapter 1 is a presentation of the thesis. It started with a general overview of the

topic followed by the research objective. Afterwards the research scope and limitation

were evoked with a final look at the study outline.

5

Chapter 2 will be dedicated to the literature review. It provides an overview of the

concept of optimization, and truss size optimization respectively. The optimization

problem of the structure is defined, in other words the objective function and the design

constraints are detailed with a particular attention to the penalty function considered in

constraint violation cases. After describing optimization by traditional method

(mathematical method and optimality criteria approaches), optimization by

metaheuristic algorithms is introduced with regards to ABC, HS and PSO.

Chapter 3 is an overview of 2D truss optimization based on codes entirely written

in MATLAB. Therefore, some explanations of FEM will be given before presenting the 4

numerical examples.

Chapter 4 is devoted to 3D truss optimization process done by combining

MATLAB and SAP2000 through OAPI. The description of OAPI principle will be

followed by the analysis of 3 study cases.

Finally, Conclusions and research findings are summarized in Chapter 5. Based on

the results of the study, recommendations for future work are also presented.

6

 LITERATURE REVIEW

In this chapter some common concepts will be defined. After explaining the global

comprehension of optimization and how it was introduced to human daily problems, the

following part will focus on truss size optimization. Afterwards the parameters governing

the optimization process such as design variables, objective function, constraints, penalty

function are described. Traditional structural optimization methods, and modern structural

optimization methods that contains Artificial bee colony (ABC), Harmony Search (HS)

and Particle Swarm Optimization (PSO) algorithms will be the last interest sub-topic of the

chapter.

 Optimization

Optimization is a concept integrated to our daily lives. It can be defined as the

science of evaluating the best solution of a problem defined mathematically, that

commonly refers to a physical reality model. Its concern is to increase a company profit

that implies an objective of economy and efficient use of available resources. It is the tool

used to achieve the best conception in a timely and economical way.

Since the earlier history, human beings have always sought to maximize their

profit. When from a time, they noticed that resources in the nature become limited, they

started to economize the available energy, keep its outgoings, discomforts and reduce pain

at minimum. This phenomenon is only possible if the best choice amongst all the feasible

ways to accomplish the day-to-day event tasks, is made. Therefore, the optimal pattern of a

process should be decided. The optimization process, from a mathematical point of view,

is an application committed to achieve the best outcome of an operation, with respect to

certain restrictions.

 The first problems of optimization would have been formulated by Euclid, in the

third century before our era, in his historical work « Elements ». Three hundred years later,

Heron of Alexandria in « Catoptrica » states the "principle of the shortest path" in the

context of optics. In the seventeenth century, the appearance of differential calculus led to

the invention of optimization techniques, or at least stimulated its necessity. Newton

developed then an iterative method to find the local extremums of a function by using the

7

notion of derivative, resulting from his collaboration with Leibniz. Problems are reduced to

the search of derivative roots, and this new concept allows great progress in the

optimization of functions. During the eighteenth century, the work of the mathematicians

Euler and Lagrange led to the calculation of variations, established a technique of

optimization under constraints called the "Lagrange multipliers". The nineteenth century

has seen the growing interest of economists in mathematics. They set up economic models

that should be optimized, which accelerated the development of mathematics. Since that

time, optimization has become a pillar of applied mathematics and the expansion of

techniques is such that many improvements have been made. This shows that the concept

of “better design” is very old and man has always wanted to do better. But even if the idea

of optimal design is probably very old, it is only possible in recent decades thanks to the

development of the computer technology.

 Optimization techniques are nowadays used in a very large number of interest

areas including logistics, production management, finance, bank and insurance, the

information transport protocols of computer networks, the transport of energy in power

grids, military strategies, air and rail transport among others. And of course, these tools are

used in mechanical engineering offices, in civil engineering, shipbuilding, aeronautics,

automotive and so on. It is no longer a task reserved to specialists as it was in the 1980s.

These methods can no longer be ignored and their understanding is getting more and more

essential. Some optimization tools are specific to a given problem and have been

developed to meet a singular need, while others are more general. Specific tools have seen

their scope expand progressively. It should be underlined that all the optimization tools

have one common characteristic: they are built on some mathematical fundaments and

their implementation is done according to the Figure 2.1. below (Bruyneel, 2014). On the

basis of an initial design defined by a number of variable values, called design variables,

the optimization aims to automatically determine which design suits the best to the Criteria

related to structural performance. The solution qualified of optimal design is found by this

iterative process, alternating structural analysis and application of a technique of

optimization. When applied to steel truss structures one can perform three main categories

of optimization, size, topology or shape optimization regarding the type of variables

considered. A size variable dictates the size of a member, which could be the area of the

cross-section, or the inertia moment. Topology variable are related to the presence or

8

absence of members in the structure. Shape variable dictates the joint coordinates of the

structure. In this study considerations are made for size optimization.

 Figure 2.1. Optimization scheme

 Truss Size Optimization

Truss structures is a part of skeletal constructions, a board category of man-made

structures, regrouping bridges, water tower, cranes, roof support trusses, temporary

construction and frameworks. Trusses distinctive look and utility are generated from their

simple construction: bar elements resisting to axial forces, connected concentrically with

joints.

The sizing optimization of these structures focuses on cross-sectional structural

elements that are the variables. In the size optimisation of truss structural problems, the

cross-sectional areas of all member elements are modified to meet the design requirements.

Size optimization is done by assuming fixed topology (nodes connectivity) and geometry

(nodes coordinates). Sizing optimization begins then at a structure in which the

geometrical configuration is already defined. It seeks the optimum combination of element

size specially the cross-sectional area. The geometry change is neglected when varying

9

these design variables, so it does not involve the redefinition of outer boundary shapes

neither structural inner holes. The sizing of the structural elements in this manner is

approached using methods such as performance-based design or strength-based design

(Connor, 2003).

Realise a size optimization is to determine the ideal thickness of each structural

element, regarding the performance goals and the forces that will be subjected to them

during their life time. In a more global optimization process, size optimization is generally

introduced after freeform optimization, that is to say, once the initial geometry of the all

components have been defined and interpreted. One of the primary disadvantages of sizing

optimization is that the topology of the structure remains fixed throughout the optimization

procedure. Therefore, if a sub-optimal topology is chosen when formulating the

optimization problem, the resulting structure will also be sub-optimal. The optimal design

of a size optimization is the best design that comes out of the predefined structural

geometry.

In structural design optimization, instead of defining the design variables by

continuous values, they should be described by discrete variables, since cross-sectional

areas usually belong to a certain predetermined set of values, provided by the

manufacturers. Both discrete and continuous optimization are performed in many examples

for the purpose of this study. The common formulation of size optimisation problems for

truss structures with discrete and continuous variables are performed with considerations

where the minimum weight is taken as the objective function, stress and displacement

limitations as constraints with a special consideration for a penalty function governing

constraints handling.

 Design Variables

Each single optimization problem includes a number n of design variables. Design

variables are quantities that appear in the problem definition and whose optimum value is

sought. These are the unknowns of the optimization problem, here size design variables

are considered and they can be related to a truss member’s cross-sectional area, an inertia

moment of a flexural element, an area of a beam, a thickness of a shell or a plate. This

study focuses on size optimization of trusses, hence relies on members cross section.

10

 Usually several ways may be employed differently to choose design variables in

an optimization problem, and the choice is done accordingly to the nature of the problem

and dictates which algorithm is applicable. The optimization problem is solved using the

well-known optimization methods by integrating two kinds of design variables. First of all,

there is discrete optimization (or combinatorial) that picks its values from a set of ready

commercial cross sections. In this optimum design process of steel trusses, steel profiles

are selected from an available list of practical sections. Even though optimization problems

with discrete design variables are more difficult to handle than those with

continuous design variables, they remain the most suitable solution for engineering design

problems.

 In the other hand, a design variable can generally be defined by a lower bound

and an upper bound, explicitly described in the problem statement. It is evident that the

lower bound is greater than zero, which, however, must be defined in the algorithms for

solving the problem. The limits of the interval where the values are chosen define the

boundary constraints of the optimization problem and they are related to the design

variables Ai. For a problem involving n variables, the relations are stated this way:

 Amin ≤ Ai ≤ Amax i = 1, …, n;

With Amin = lower bound and Amax = upper bound.

 Design variables are essential optimization parameters used to formulate the

objective function retrieved from the structural system definition. The objective function

depends on these design variables and is written as follows: f = f (x) = f (A1, A2, …, An).

 Objective Function

Whatever the field studied and whatever the study is to improve the performance of

a structure or the optimization problem to be solved, several notions are systematically

present. In any problem improvement, more than one objective could be formulated,

because the designer may want to optimize many variants of the problem simultaneously,

and this process is called multiobjective or multicriterial optimization. Though,

multiobjective optimization algorithms are reputed to be more complex, computationally

time consuming and expensive. Therefore, single criterion optimization is performed in

most cases as it is for this present study. An optimization problem is defined as

research, among a set of solutions possible solutions (also called decision space or search

space), of the solution that minimizes (or maximizes) a function that measures the quality

11

of this solution. This function is called objective function or cost function. The objective

function of a mathematical problem is what an optimization procedure uses to select better

solutions over poorer solutions. Differently said, objective function will determine the

effectiveness of the design under certain considerations. Optimization problem becomes

then either a minimization or maximization depending on the problem’s objective. For

instance, if a structural design problem aims to bring out the smallest deflection of a beam,

it is imperative to carry out the maximization of the beam’s the stiffness. In such a

problem, the objective function will be maximized. In the other hand, if the problem

consists of making the project the least expensive, objective is to maximize the weight,

then the procedure tries to move in the direction of solutions that decrease weight while

still remaining feasible.

 When an optimization problem is to be solved, the best possible solution to this

problem is sought, which means the global optimum. However, there may be intermediates

solutions, which are also optimums, but only for a limited subspace of the search space:

these are called local optimums. This notion is illustrated in Figure 2.2. (Boussaid, 2013).

 The problem of sizing optimization of truss structures involves optimizing cross

sections Ai of the bars such that the structural weight W is minimized. Therefore, the

global optimum is considered as the objective function. The mathematical formulation of

the problem can be expressed as follows (Kirsch, 1982):

Find a design vector A = [A1, A2, …, An], (1)

To minimize f(x),

For weight optimization; W(A) = ∑ AiLi
n
i ρ (2)

Eq. (2) defines the weight of the truss structure, n is the total number of elements in

the structure, Ai and Li are, respectively, the cross-section area and length of the ith

member and ρ is the weight density of material.

The minimum design of weight should satisfy inequality constraints for the size of

design variables and structural responses limits (Lee et al., 2005).

12

Figure 2.2. Local optimum and Global optimum

 Constraints

Problems in the real world are often constrained. Several classical and evolutionary

methods have been developed to take some restrictions in consideration. The restrictions to

be satisfied for an acceptable design, formulated explicitly are called constraints.

Constraint is generally defined as a condition of an optimization problem that the solution

must satisfy. Constraints are functions that will restrict the search space. They will verify if

the solution is feasible, but will not measure its quality. There are several types of

constraints: firstly equality constraints, in second position integer constraints and lastly

inequality constraints that are considered in this study. The set of candidate solutions that

satisfy all constraints is called the feasible set.

 In structural optimization problems, constraints are categorized in two main

groups: design constraints also known as side constraints and behaviour constraints. Size

constraints refer to functionality, fabrication, or aesthetics limitations. They are especially

related to the lower and upper bounds of bars the cross sections.

 Behaviour constraints deal with the stability of the structural system. These

constraints may be limits upon parameters such as section stresses, nodal displacements,

natural frequencies, and stability. Constraints considerations are made here for both,

Global optimum

Local optimum
Local optimum

https://en.wikipedia.org/wiki/Optimization_(mathematics)
https://en.wikipedia.org/wiki/Equality_(mathematics)
https://en.wikipedia.org/wiki/Inequality_(mathematics)
https://en.wikipedia.org/wiki/Candidate_solution

13

displacements that are required not to be larger than fixed limits in order to preserve the

serviceability conditions and stresses so that element’s strength can be sufficient to resist

the internal forces.

 If a solution does not satisfy at least one of the constraints, it is said to be an

infeasible solution, unlike the feasible solutions, which verify the set of constraints. The set

of feasible solutions constitutes the eligible domain of the research space or the feasible

space. The ratio between the size of the feasible space and the search space can be used as

an index of difficulty for the problem (Michalewicz,1994).

The general constrained minimization design problem is defined as

Minimize W(A)

subject to Gi(A) ≤ 0, i = 1, 2, ..., p

where, W(A) is the objective function. Functions Gi(A) are the set of inequality

constraints.

 Constraint Handling/Penalty Function

 The greatest part of engineering design problems involves some constraints

prescription. Several techniques have been designed to resolve constrained optimization

problems. The challenge of engineers in these kind of problems is how to optimize the

objective function value avoiding at the same time its constraint violations. Thus, finding

the appropriate method to handle constraints is extremely important for any optimization

mechanism and design space exploration according to the studies conducted by (Coello

Coello, 1999; Gen and Cheng, 1996). This present work interest is based on evolutionary

algorithms, and because their operations do not always preserve feasibility, they consume

considerable computational energy to seek for infeasible solutions. Considerable research

has focused on constraint-handling techniques for evolutionary algorithms. Each of the

approaches developed falls into one special category, cause these approaches can be

grouped in four major categories (Michalewicz and Schouenauer, 1996). The categories

evoked are: Penalty functions, Special representations and operators also called preserving

feasibility of solutions, Separation of objectives and constraints or search of feasible

solutions, and Hybrid methods. There are other classification schemes of constraint

handling methods and Coello Coello (1999) state a fifth category that is, Repair

14

algorithms. Kicinger et al. (2005) have presented the advantages and disadvantages of

these constraint handling techniques in their review papers.

 The most recurrent approach in the evolutionary algorithm (EA) universe for

constraints handling (particularly, inequality constraints) remains the use of penalties.

Penalty functions have originally been proposed by Courant (1943) and were later more

explored by Carroll (1961). In the penalty-function implementation techniques, each

infeasible solution is penalized by the constraint violations magnitude. Many researchers

tried to manipulate penalty function coefficients with the aim to balance the objective

function with its constraint violations. The standing of penalty function methods as the

most popular approach is due to their simplicity and easiness of application. Furthermore,

they are functioning with a generic approach and have no limit (could be applied to linear

or nonlinear problems). In optimization problems the role of penalty functions is to

effectively transform into an unconstrained design a problem initially constrained, by

adding to the objective function a value that determines the percentage of constraint

violation in a particular solution namely a penalty term (Coello Coello 2000). The

objective function of the problem is then replaced by the following function to optimize:

 Fitness(A) = f(A) + Fpenalty (A)

In classical programming, exterior and interior penalty functions are considered. In

the case of exterior method, the optimization first value is an infeasible solution that moves

progressively to reach the feasible region. Evolutionary design has always exclusively

focused on exterior penalty functions in which the penalty term is a small value chosen at

some points distant from the constraint boundaries that will converge to infinity as the

constraint boundaries are approached.

The method proposed for penalty function application uses a tournament selection

operator, while comparing at the same time two solutions, with respect to the three rules

enumerated below:

• Rule 1: Any infeasible solution is neglected to the profit of feasible solution.

• Rule 2: Among two feasible solutions, the one with the best objective function is

selected.

• Rule 3: Among two infeasible solutions, the one that violates less the constraints is

preferred.

15

By using the first and second rules, the search tends to the feasible region than

infeasible region, and by employing second rule, the research tends to the feasible region

with good solutions.

After engineers have studied multiple penalty functions, a general classification of the

common used ones is presented as follows:

• Static penalty functions which have a constant value during an entire optimization

process (Carlson, 1995).

• Dynamic penalty functions which are changing constantly throughout the runs

(usually increase over time) (Joines and Houck, 1994).

• Annealing penalty functions which base its techniques on simulated annealing

(Michalewicz and Attia, 1994).

• Adaptive penalty functions which operate change regarding the feedback retrieved

from the optimum global search (Nanakorn and Meesomklin, 2001).

• Coevolutionary penalty functions which principle is to evolve solutions and penalty

factors in different populations (Coello Coello, 2000).

• Death penalty functions which do not take in consideration infeasible solutions

(Schwefel, 1981).

In this present thesis both static and death penalty functions are implemented because

the examples studied are all relevant from previous works and the convergence of the

results leading to similar values.

All these constraints handling processes are an integral part of the large repertory of

optimization techniques that are going to be analysed in the following lines.

There is large amount of optimization techniques developed that can be used to

determine the optimum design of structural systems. These are in general classified in two

categories. The first one is the analytical methods, based on theory of calculus and

variational methods. They can provide the exact optimal design solution by solving the

system of equations that represent the optimality conditions. However, they are not suitable

for solving large scale structures but are more convenient for studying a single structural

component, reason why they are not considered in this study.

16

The second one is the numerical optimization techniques that are divided into

traditional structural optimization methods and modern structural optimization methods

also known as metaheuristic. They are adapted to computer programming and applicable to

solve any kind of optimization problem. The optimization process starts with a selected

initial design which is iteratively improved until reaching an objective value without any

violation of the constraints. The process ends when the convergence criteria is satisfied

bringing out the optimum design found.

 Traditional Structural Optimization Methods

 In this category of optimization methods two sub categories exist and they both use

continuous design variables and the objective function as well as constraints are expressed

as functions of the variables, however, they can also solve discrete optimization problems

with a couple of alterations. These traditional methods are enumerated as follows:

 Mathematical Programming

 Mathematical programming techniques are amongst the well-known classes of

structural optimization techniques which work based on gradient vector and the first

derivatives of the objective function and the constraints regarding the design variables.

This optimization approach, pioneered by Schmit et al. (1960), has actually enjoyed

considerable success in a wide range of practical design problems. Many studies were done

on the concern of employment of mathematical programming methods in the field so

called, design optimization of engineering structures (Erbatur and Al-Hussainy, 1992). The

basic idea of its implementation is to move to the left when the gradient of the objective

function moves to the right and vice versa, to find a more convenient design and its most

attractive feature is drawn from its generality in the sense that a broad class of structural

optimization problems can, in principle, be treated in a unified manner.

Mathematical programming techniques can be globally classified as linear programming

and nonlinear programming. The particular characteristic of linear programming is that the

constraints and the objective function are expressed as linear functions of design variables

whereas for nonlinear programming either constraints and/or the objective function are

nonlinear functions of design variables. In nonlinear programming, for a solution to

be optimal, the Karush–Kuhn–Tucker (KKT) conditions, generally described as the Kuhn–

17

Tucker conditions, are necessary conditions that should be provided to satisfy

some regularities, furthermore it is an approach used in theoretical models to obtain

qualitative results. With the necessity to allow inequality constraints in nonlinear

programming, The Lagrange multipliers method which works only with equality

constraints has been generalized into the KKT approach. The mixed system of equations

and inequalities of the KKT conditions can’t usually be solved directly, except in certain

cases where a closed-form result is found by an analytical derivation (Leu and Huang,

2000).

Mathematical programming has been used by many researchers however; by about

1970 it became apparent that the application of this method, in combination with finite

element structural analysis, to large scale structural optimization problems, required a large

number of analyses and long run times to solve problems of only modest proportions

(Saka, 2007). This situation led some investigators to abandon the mathematical

programming approach and direct renewed effort toward implementing recursive redesign

procedures based on optimality criteria.

 Optimality Criteria Approaches

One of the most important research efforts to focus attention on the optimality

criteria approach was reported by Venkaya et al. (1973). Other Early works are due to

Venkayya et al. (1968). These early efforts have in recent years been followed by several

notable studies, which pursue this same basic line of investigation. At approximately the

same period, this design concept relatively simpler, based on a Lagrange multiplier

technique and more specialized for structural design applications, got increasing interest in

solving certain types of structural optimization problems (Berke and Khot, 1974). These

studies have shown that the optimality criteria approach, including fully stressed design

concepts, is well suited to achieving high efficiency in appropriate specialized situations.

This has motivated for example the application of multiple variants of the optimality

criteria approach to optimize the design of pin-jointed and frame structures.

The optimality criteria technique is an alternative way to produce optimum design.

The rational use of optimality criteria is investigated for a class of structural synthesis

problems where materials, configuration and applied load conditions are specified, and the

minimum weight design is to be determined. Typically, in optimality criteria methods first

18

some derivatives are generated for a general case and then modified for each type of

constraint. Next, in order to obtain an optimum design, the structural analysis is reduced by

using first order Taylor series expansions to approximately evaluate the interdependence of

the constraints. The optimality criteria update both the Lagrange multipliers and design

variables by applying several iterative procedures. The update rules integrate some

modifications to make more general the original formulas for frequency, displacement, and

stress constraint (Berke and Khot, 1987). These rules are known as the Lagrange multiplier

update rule, the design variable update rule and finally the hybrid design variable update

rule.

The optimality criteria computer code has been developed based on already existing

interfaces of routines analysis and was integrated into an optimally structural design test

bed that is CometBoards. This code is composed of three modules and represented in

Figure 2.3. (Patnaik et al., 1993):

• The optimization module,

• The analysis module,

• The interface module.

Gradient based formulations methods evoked above connote the use of different kind

of approximations which do not reflect always the reality. Therefore, due to the drawbacks

of these traditional methods to handle real world optimization design, the area of

metaheuristics has considerably grown in the last two decades and became an unavoidable

solution to optimize design problems. They have the ability to perform well in some

contexts where exact optimisation techniques could not produce expected results.

19

Figure 2.3. Optimality criteria code levels and constraint inclusion strategies

Initial Design

Frequency

constraints

only

Displacement

constraints only

Stress

constraints

only

Le

ve

l I

0 1 2 3

Design from Level I

Stress and

displacement

constraints only

Stress and

frequency

constraints

only

Displacement

and frequency

constraints

only

Le

vel

II

0 1 2 3

Design from Level II

Stress

Displacement,

and frequency

constraints only

Final design

Le

ve

l

III

0 1

L
ev

el
 I

II

L
ev

el
 I

I
L

ev
el

 I

20

 Modern Structural Optimization Methods: Metaheuristic

The word metaheuristic is derived from the composition of two words: meta, from

the Greek “πέρα” meaning "beyond" (or "at a higher level") and heuristic from Greek

“ευρισκειν” which means "to find" from where the famous Eureka of Archimedes. The

term metaheuristics was introduced by Glover (1986). Metaheuristics are not problem or

domain specific and can be applied to any optimisation problem. In fact, the algorithms

based on this concept are elaborated as methods that can optimize a wide range of different

problems, without important changes in the algorithm employed. Metaheuristics are in

general non-deterministic, that means they are based on probabilistic transition rules and

are optimisation methods that deliver reasonably good solution in a reasonable amount of

time (Osman and Laporte, 1996).

Metaheuristics are stochastic search algorithms that use the ideas taken from the

nature and do not implicate gradient computations of the constraints and the objective

function. Most metaheuristics use random and iterative processes as a means of gathering

information, exploring space research and deal with combinatorial problems. They can

make use of the accumulated experience during the search for the optimum, for a better

guide of the remaining research process. Hence many successful applications have

demonstrated that metaheuristics is reliable in various contexts, either through comparison

with other algorithms and/or applications to recurrent problems.

A wide range of metaheuristic algorithms have been developed over the past two

decades and one of the stakes of the conception of metaheuristics is thus to facilitate the

choice of a method and the adjustment of the parameters to suit a problem. There are

different ways to classify metaheuristic algorithms based on characteristics but the most

common one is “Population-based versus Single-solution-based”. Single-solution-based

methods, also called trajectory methods, manipulate a single solution and are

intensification oriented while population-based methods iterate and manipulate a whole

family of solutions and are more focused on exploration of search space.

21

 Artificial Bee Colony (ABC)

The Artificial Bee Colony (ABC) algorithm is a swarm based meta-heuristic

algorithm that was first presented by Karaboga (2005) to optimize numerical problems.

Later on, some modifications and improvements have been carried out by Karaboga and

Basturk (2007) that detailed the main outlines of the ABC algorithm. Further applications

have been presented by Karaboga and Basturk (2008) followed by Karaboga and Akay

(2009). Later Hadidi and Kazemzadeh (2010) also studied some specific aspects of the

algorithm.

ABC is a part of the most recently improved algorithms. The fundaments of the

algorithm are specifically retrieved from the model proposed by inspired by the

intelligence of honey bee colonies foraging behaviour and has demonstrated sustainable

search abilities on many optimization examples. ABC algorithm tries to establish the

natural behaviour of food foraging process from the honey bees. Honey bees base their

search mechanisms on waggle dance to locate the optimal food source and permanently

identify new ones.

 Honey Bee’s Colony

It is a well-known fact that honey bees are social insects that live in colonies

consisting of thousands semi-sterile female workers, few thousand males (drones) and only

one single queen. In the colony, everyone’s task is clearly defined. The queen creates a

new colony by mating with the males. All the other tasks are reserved to female workers

that have the responsibility to process and store food, clean cells, feed larvae, secret wax

and construct comb, and finally they are responsible of guarding the entrance (Ministry of

Agriculture and Lands of British Colombia 2010). When the new born workers are about 3

weeks of age, the female workers previously in charge of the tasks within the hive

enumerated above, will stop performing them and be reconverted to foraging duty for the

rest of their lives (Honey Bee Biology 2010). These bees are the ones considered in ABC

algorithm. Foragers as they are called search for promising nectar sources from different

flowers in diverse directions up to 12 km from the hive, but their average fly radius is

about 3km. When the foragers discover a food source, they load up the nectar and unload it

once they return to the hive. This interactive behaviour of bees during food procuring is the

waggle dance represented in Figure 2.4. (Lemmens et al., 2007) and Figure 2-5. By

22

performing this dance, successful foragers share with their hive mates the information

about the amount of nectar within a flower, the direction to patches of flower and finally

the distance between the hive and the food source. Most of the bees who watch the waggle

dancers will decide to take the path of their nest mates, while some will independently

leave the hive to an unknown direction, in the aim of finding a better food source than the

one advertised in the dance. When foraging bees are performing the waggle dance, their

direction reveals the position of the food source with a certain correlation to the Sun

movement; the dance time indicates the nectar amount on the related food source and the

waggles intensity, how far away it is.

Figure 2.4. Waggle dance

23

 Figure 2.5. Honey bees foraging behaviour

 Steps of ABC Algorithm

The ABC algorithm model consists of two essential components: employed bees,

and unemployed bees divided into onlooker bees, and scout bees. In the ABC algorithm

implementation, first half of the population represents the employed artificial bees and the

second half, the unemployed bees (especially onlookers). The assumption is made such

that the employed bees in the colony be equal to the number of food sources explorable

around the hive. The employed bees are committed to seek for food in the food source

memory meanwhile they share the available information to the onlooker bees. The

onlooker bees then tend to choose from food sources found by the employed bees a good

food source that suits them. When a food source has a high quality (fitness), it gets more

attention from the onlooker bees than the one with lower quality left with an infinitesimal

chance to be selected. The employed bees whose food sources have been abandoned

become the scout bees that start investigating for new food source. The dances executed by

employed bees are the food sources selection criteria for onlookers because after food

foraging process employed bees come back to dance on the hive area. Karaboga (2005)

described Tereshko model as Behaviour of real bees shown in Figure 2.6. to explain the

24

connection of the aforementioned models. It is Assumed that there are two discovered food

sources: A and B. Employed bees are represented by EF (Employed Foragers),

unemployed bees by UF (Unemployed Foragers), S is used for Scouts and R for Recruit

(after watching the waggle dances they start searching for a food source).

 Figure 2.6. Connection between bees

 Since ABC proved to perform well in different optimization problems, it has been

used as an optimization algorithm in this study. Many parameters control the good

performance of the algorithm. In total five parameters are necessary to the algorithm for

finding optimum solutions. First there is the “number of bees in the colony” that

determines the number of investigated simultaneous solutions. In second position comes

the “improvement limit for a solution”, a very sensitive parameter, which affects how deep

a bee tries to search the vicinity of a given solution and is used to escape from being stuck

at local minimums. Third the “maximum number of iterations” is used to set the upper

most limit of single studies that should be performed. Fourth an importance is given to

“variable changing percentage” that indicates the total number of variables modified in

25

each iteration to bring out an improved solution. Last and none the least “number of

independent runs” is used when large design spaces are involved.

The main steps of the algorithm defined by (Hadidi and Kazemzadeh, 2010) for solving

optimization problems are stated as follows:

• Initialization.

• Repeat stage.

✓ Place the employed bees on the food sources and determine their nectar

amounts.

✓ Place the onlooker bees on the food sources and determine their nectar

amounts.

✓ Scouts bees are sent to search new food sources.

✓ The best food source found so far is memorized.

• Stopping stage (when requirements are met).

Figure 2.7. Pseudo code of the ABC Algorithm

The main steps of the algorithm mentioned above are expressed through a MATLAB

scripts in accordance with the pseudo code of the ABC Algorithm in Figure 2.7. and also, a

26

global outline of ABC is presented Figure 2.8. An important parameter governing the food

source selection in this process is the probability (pi) of the food source i determined by

Karaboga (2005). The unemployed bees pick a food source in accordance to the quality

and quantity of the nectar found by the employed bees that visited that site. This means

that there is a principle governing the food selection of unemployed bees that is based on

the probability of nectar amount in the food source. The probability pi for ith food source

is evaluated according to the following formula:

Pi = 0.9 ×
𝑓𝑚𝑖𝑛

𝑓𝑖
+ 0.1 (3)

Where fi represents the objective function, more precisely weight (W), of the food

source Ai and fmin is the lowest objective function value between all the evaluated

solutions. So far, the higher the quality of a solution, the lower the weight and the higher

the value of the resulting probability. After selecting a food source, the onlooker bee

automatically creates a new food source that is evaluated and a greedy selection will be

applied, in the same way the employed bees do.

Figure 2.8. Flowchart of ABC algorithm

27

 Harmony Search (HS)

While Harmony in nature is the emanation of a special relationship between several

sound waves that are spreading with different frequencies and the human ears accept these

musical tones reflexively, music harmony is considered as a combinatorial creation of

sounds evaluated as pleasing to a group of listeners. This relationship was first developed

by Pythagoras (582 BC-497 BC) a Greek philosopher and mathematician, in his famous

experiment on stretched string, and later many researchers have focused on this

phenomenon. Jean-Philippe Rameau (1683-1764), a well-known French composer and

musicologist established the classical harmony theory (Kirkpatrick et al., 1983) and later

the musicologist Tirro (1977) has produced a documentation on the history of American

jazz.

Harmony search (HS) Algorithm, was introduced by Lee and Geem (2004) as a

new metaheuristic algorithm that bases its operation on the music improvisation process, a

search for a perfect state of harmony. HS is one of the most recent methods derived from

the natural phenomena of musician’s behaviour during a collective performance with

their musical instruments considered as population members, to bring out some pleasing

harmonies represented by optimal solutions. The considerations are made for a jazz

improvisation during which a musician searches for a better state of notes combination.

The major aim of a Jazz improvisation is to find musically pleasing harmony, the perfect

state determined by each pitch of a musical instrument based on an aesthetic standard.

Recently, HS has become a popular algorithm in the evolutionary

computation field and has successfully been applied to a wide variety of optimization

problems due to its superiority to many other algorithms regarding its easiness of

implementation, few parameters considered in adjusting and finally the simplicity of the

concept. Some of its advantages are also summarized by Geem (2007), make it very

suitable engineering applications. HS algorithm has been employed to solve large scale of

problems, such as water distribution and games, and was revelled to have better

performances while compared to other optimization techniques. During the recent years,

HS was used in interest areas such as function optimization, pipe network optimization,

mechanical structure design (Lee and Geem, 2004), stochastic equilibrium network design,

and optimization of data classification systems (Wang et al., 2009).

28

Harmony is characterised by the simultaneous production of sounded musical notes

regarding some chords with the unique objective to provide a pleasing effect to ears. Do,

Re, Mi, Fa, Sol, La, and Si are the notes from which combinations are made in with any

music instrument to produce a specific melody. Musicians are always striving to find a

better harmony, and they only succeed by accomplishing numerous practices of changing

the notes that are played. The improvisations of all the musicians on a given project are

considered as a single harmony vector. During a trial performance if the pitches are

evaluated to be a good harmony, it is stored in each player’s memory with a high

probability to produce a better harmony in their next try. This principle is similarly applied

in civil engineering optimization. Within a range of values, each decision variable makes a

choice, and all the chosen values are stored as a solution vector in each variable’s memory

as long as this vector is evaluated as a good solution. The probability in getting a better

solution is increased during the next experience. This analogy between music

improvisation and engineering optimization is described in Figure 2.9. (Alatas, 20010) and

the comments below.

Figure 2.9. Analogy between music improvisation and engineering optimization

29

The figure above illustrates the analogy once again and the details stated can be

understood through the explanations gave by Lee and Geem (2005) based on this

illustration of a trio playing jazz music. The method employed by jazz musicians to select

their notes is partitioned into three different phases: first select a pitch from the memory,

second generate a nearby pitch to an existing one or finally play a random pitch from

possible sounds range. These three processes constitute the fundament of the harmony

search algorithm. The example established on a trio that is considered here, gives to each

musician a certain amount pitches as it follows: guitarist {Mi, Fa, Sol}, saxophonist {La,

Si, Do} and {Do, Re, Mi} for the double bassist. Out of the musical harmonies that are

assigned to them, if the guitar brings out {Mi Sharp}, the saxophone produces {Sol}, and

the double bass releases {Do}, {Do, Mi Sharp, Sol} is the new harmony vector. In the case

this new harmony vector is better than another harmony in the Harmony Memory(HM), the

new one is integrated in the HM while the existing worst one is simply excluded from the

HM. The process is repeated until the best harmony is found.

In real optimization problem, musicians are replaced by the decision population and

the sounds pitches replaced by the design variables. This study optimizes the cross-

sectional areas of the truss bar elements; therefore, the design variables are the areas. If the

first design variable selected is {1.2}, the second is {3.0} and the third one {1.6}, the new

solution vector is {1.2, 3.0, 1.6}. And in accordance with principle employed for the sound

pitches if the new solution vector is better than an existing one, the worst vector is just

replaced by the new one. The process is performed many times until the best solution is

obtained.

 Harmony Search Parameters

The harmony search performance is tightly depending on many parameters as:

harmony memory consideration ratio (HMCR), harmony memory size (HMS), pitch

adjusting ratio (PAR), and a band width parameter (BW). Another parameter to take in

consideration is the harmony memory (HM) that was employed earlier in the redaction.

HM is the set of sounds combinations (designs variables) that are stored and will be used

for generating new chords (designs variables). HMS is a parameter that represents the

number of chords (designs variables) that are found in the memory. Depending on the

problem to optimize, most examples in literature, made HMS vary between 10 and 50. The

30

HMCR is a parameter picked from the interval [0,1] that indicates the probability to be

drawn a design variable from the HM. For instance, a HMCR value of 0.70 means that the

probability of selecting a value from the HM is 70% and the probability for the variable to

be randomly picked out of the HM is 30%. Once a decision is made to pick a value (pitch)

from the HM, another test is needed to see whether the picked value should be pitch-

adjusted or not. PAR is responsible of pitch adjustment which seeks for better design in the

neighbourhood of the current design. The process of adjustment depends on a probability

evaluated according to the formulas 𝐻𝑀𝐶𝑅× 𝑃𝐴𝑅 if a new design variable is to be

selected, and 𝐻𝑀𝐶𝑅× (1 − 𝑃𝐴𝑅) when the design value is to be kept. PAR is also a value

between 0 and 1. BW is an important factor that influences considerably the convergence

rate toward optimal solutions.

 Harmony Search Steps

Harmony search consists of five main steps as represented by the flowchart in

Figure 2.10. (Lee and Geem, 2005) and are implemented trough computer algorithms

following descriptions of the pseudo code in Figure 2.11.:

1. Formulate the optimization problem and Initialize the algorithm parameters

values (HMCR, PAR, HMS, BW).

2. Initialize the harmony memory.

3. Improvise a new harmony and evaluate its performance.

4. Update the harmony memory as far as it is necessary.

5. Check for the termination criteria.

All these steps are reviewed in details in the following lines.

Step 1: Optimization problem formulation and HS parameters specification.

The HS algorithm parameters stated above are chosen in this step and their

selection is made depending on the type of problem. The objective problem is to minimize

f(x) with the variables limited by a lower bound and an upper bound. Harmony search

parameters should be specified with care, especially for HMCR and PAR that are very

important in improving the solution vectors. For example, a relatively high HMCR value

that gets closer to one reduces the probability of generating new values in the HM.

31

Conversely a small HMCR value close to zero reduces the exploitation of the combinations

stored in HM. Therefore, a good set of parameters will increase the capacities of the

algorithm to look for the optimal solution.

 Figure 2.10. Flowchart of Harmony Search algorithm

Figure 2.11. Pseudo code of HS

32

Step 2: Initialize the harmony memory.

 After the parameters are set the matrix of harmony memory is generated and filled

with some specific solutions that are either randomly generated or selected from a

population of discrete values with a total number equal to the harmony memory size. Each

row of the HM matrix contains the values affected to the design variables. The harmony

memory matrix is represented in Figure 2-12 (Lee and Geem, 2005).

 Figure 2.12. Harmony memory form

The design variables stored in the HM matrix are analysed to produce the results of

the corresponding objective functions that are shorted in descending order according to the

solution.

Step 3: Improvise a new harmony.

 In this third step, a new harmony vector will be generated on the basis of three rules

as specified in the concept of jazz music players: memory considerations, pitch adjustment

ratio and selection done randomly. For instance, the first value of the new vector can be

chosen from the existing HM and so on for the other variables. This process has a

governing factor named HMCR that is also responsible for determining if the value has to

be generated randomly. If the component’s value comes from the HM it may be pitch

adjusted depending on the value of the PAR. The pitch adjustment is different for

continuous variables and discrete variables. The concept of improvement is described in

Figure 2.13.

33

 Figure 2.13. New harmony improvisation concept

The explanation of the process in which new harmony is generated is referred in Figure

2.14.

 Figure 2.14. New harmony improvisation flowchart

34

Step 4: Update the harmony memory.

 If the improvised harmony has a better performance than the old harmony regarding

the objective function value, and the prescribed constraints violation, this newest harmony

takes place in the HM while the old harmony considered as worst is excluded from the

HM. Otherwise the improvised harmony is simply neglected.

Step 5: Termination criteria.

 In the final step, steps 3 and 4 of the harmony search are repeated until the

termination criteria are satisfied. In the early formulations of HS algorithm only one

termination criterion was used and relies on the maximum number of iterations. With the

progress, a new factor initiated by Cheng et al (2007) is integrated to stop the computation

process. This second criterion stops the algorithm before reaching the imposed iteration

number if and only there are no improvements in the solution.

 Particle swarm optimization (PSO)

Particle swarm optimization (PSO) is a population-based stochastic random search

algorithm that was established by Kennedy and Eberhart (1997) and later modifications

suggested by Pedersen (2010) were integrated. PSO was developed as a search and

optimization method that is a biologically and sociologically inspired swarm intelligence

method, based on a simulation of some social animal’s behaviours and dynamic

movements such as insect communications, birds flocking and fish schooling. In the PSO

algorithm, each particle represents a candidate solution to the optimization and the

population individuals are considered as weightless and volumeless particles that move at a

given speed. Each particle can adjust its speed dynamically according to other particles and

also referring to the group experience to progress in synergy so that they all can reach the

optimal location gradually. The velocity of a particle is evaluated based on its attraction

towards two main positions in the research space that are the best position localized by the

particle and the best position in its neighbourhood. The original PSO algorithm can be

implemented through several swarm neighbourhood topologies constructed based on the

index of each particle. Six main categories are stated to be used in general cases (Medina et

al., 2009): ring, fully connected, mesh, toroidal, tree, and star topology as shown in Figure

2.15. This present study focuses on two strategies, namely a star topology and a ring

topology. In the star topology neighbourhood is the entire swarm, whereas in the ring

https://fr.mathworks.com/help/gads/particle-swarm-optimization-algorithm.html#mw_562fd42b-3ce0-4fdc-935b-2c60c3b53d6c

35

topology neighbourhood consists of a restrained group made of the immediate neighbours.

The two topologies evoked above are respectively determined as global best and local best,

and no significant difference is noticed regarding their performances when evaluated with a

sample of benchmark functions. For the purposes of this study, the methodology employed

is a global-best topology. The PSO algorithm is well known for its ability to avoid

difficulties faced in traditional optimization algorithms, to achieve a better optimization

solution within a small-time amount when solving high dimensional complex functions

(Tunchan, 2009). The concern of PSO behaviour is to use social forces to make some

grouping depending on the memory of each individual particle as well as the knowledge of

the whole swarm gained through the years. Swarm intelligence is defined as the

phenomenon leading this behaviour.

 Figure 2.15. Neighbourhood topologies

Swarm intelligence has been marked as a multidisciplinary character since it was

first used in cellular robotic systems by Hackwood and Wang (1988). It’s a discipline that

makes a focus on the collective behaviour of individuals with each other and with their

environment. School of fish, flock of birds, herd of land animals are some examples of

swarm intelligence that are illustrated in Figure 2.16. Swarm intelligence is built up with

four basic principles. The first principle, so called proximity principle, sustains that space

and time computations are elementary tasks swarm should be able to accomplish. The

second one is the quality principle that admits that the swarm is capable of responding to

quality factors such as food stuffs or safety of the location. The third principle is diverse

principle that makes the swarm distribute resources along many modes. And finally, the

stability principle with its declaration that the swarm’s behaviour should not undergo some

changes from one mode to another upon every fluctuation of the environment.

36

a) Bird flocking

b) Fish schooling

c) Animal herding

Figure 2.16. examples of swarm intelligence

 Control Parameters

The basic parameters of PSO algorithm are divided into many parts but only the most

important are explained as follows:

• Cognitive and social parameters, C1 and C2

Also called acceleration constant, they represent "trust" settings that indicate the

confidence degree, and are very important when it comes to identifying the trajectory of

37

particles. In the process of finding the best solution C1 (cognitive parameter) indicates the

percentage of the confidence the particle places in itself, while the percentage of

confidence by the whole swarm is expressed by C2(social parameter). Usually C1 and C2

are taken equal 2, but diverse values could also be considered, with respect to 0 < C1+ C2<

4 (Perez and Behdinan, 2007)

• Vector containing the maximum allowable velocity for each dimension during

one iteration, Vmax

The velocity of the particles is calculated based on the inertia weight model of Shi

and Eberhart (1998) expressed by the formula below.

vij(t + 1) = ωvij(t) + c1r1j(t) (yij(t) − xij(t)) + c2r2j(t) (ŷj(t) − xi(t)),

where

 vij(t) : the velocity in dimension j at time t,

 xij(t) : the position in dimension j at time t,

 𝜔 : the inertia weight,

 𝑐1 , 𝑐2 : the cognitive and social coefficients, respectively.

r1j(t) , r2j(t): the stochastic components of the algorithm and

 yij(t), ŷj(t) : personal and neighbourhood best positions in dimension j,

respectively.

The maximum velocity value is usually defined as the equivalent of half the length

of the search dimension’s interval that is the mean value of the lower bound and the upper

bound. It is very useful to regulate the trajectory modifications of each particle during the

consecutive iterations, and also represents a mean to prevent particles wider expansions in

the problem search space. To adjust exploration and prevent probable explosions in the

particle’s search, it’s better to assign small values to Vmax. Implementation of velocity

clamping is represented as follows:

vij(t + 1) = {

−vmax if vij(t + 1) < −vmax
vmax if vij(t + 1) > vmax

vij(t + 1) otherwise

38

• Inertia weight, w

The inertia weight is generally defined as a scale factor linked to the velocity during

the previous steps in the velocity update equation and is usually set to be less than 1 but

can also be updated during iterations. In other words, it is required to control the impacts of

previous velocities on the current iteration’s velocity. The field of inertia weight control

strategies is very large, with no clear declaration on which strategy has the best

performance. The previous studies conducted on the inertia weight were not able to point

out which strategy indicates how and when each of the multiple control strategies, adhere

the most to the theoretical convergence criterion the best. 18 inertia weight control

strategies have been examined and dissected analytically to determine their convergence

behaviour through empirically investigations on a suite of 60 boundary-constrained

benchmark problems. Commonly, PSO with a decreasing inertia weight is used by major

searchers. All the strategies have revealed that if a large inertia weight is employed the

global exploration is made easier, whereas a small inertia weight facilitates local

exploration. An appropriate selection of inertia weight parameter performs the

optimization process with less iteration.

• Number of particles, NP

Typically, values vary from 10 to 40, but for most problems 10 particles are

sufficient to produce good results. For complex problems, the number can be increased to

50-100.

 Particle Swarm Algorithm’s Implementation

The PSO algorithm steps can be outlined in accordance with the pseudo code in

Figure 2.17. and the flowchart of the basic particle swarm optimization technique given in

Figure 2.18.

39

 Figure 2.17. PSO pseudo code

Optimization starts from a feasible initial population, positions and velocities

randomly distributed throughout the design space by a process called swarm initialization.

The next step consists of evaluating the objective function values, using the design space

positions. Afterwards the optimum particle position at each iteration and the global

optimum particle position have to be updated. After the optimum particle position is

updated the positions of all the other particles is updated as well. The last step concerns

velocity vector update for each particle. As a result, optimization is terminated after

convergence check.

40

 Figure 2.18. Flowchart of PSO algorithm

41

 MATLAB BASED 2D TRUSS OPTIMIZATION

Chapter 3 is dedicated to show the plane trusses optimization using MATLAB

program. Therefore, the use of MATLAB program will be briefly developed and the Finite

Element Method (FEM), fundament of the structural analysis is also evoked. In total four

case studies will be implemented and the results compared with previous studies after the

whole program working pattern has been defined.

 MATLAB

MATLAB is a high-level programming language and an interactive environment

for numerical computations, graphics, and visualization that has been commercially

available since 1984 and is widely used for teaching and research in industry and

academia. Furthermore, MATLAB is modern programming software with an easy-to-use

editing system, powerful data structures, customizable graphics, debugging tools that

expresses problems and solutions in familiar mathematical notation. In addition to these

previous factors that make MATLAB an excellent tool, it has many more advantages

compared to conventional computer languages such as C, C++, Java or FORTRAN for

solving technical problems. One of its distinguishing features is that It has literally

hundreds of built-in functions and many toolboxes with concise Codes for solving specific

problems, including statistics, partial differential equations, data analysis, optimization and

several other fields of applied science and engineering. By using MATLAB, one can also

develop algorithms, or create models and applications.

The name MATLAB stands for MATrix LABoratory, and the program was initially

designed for matrix computations as well as providing easy access to matrix softwares

LINPACK and EISPACK. MATLAB has grown greatly over its existence to become a

general tool but at the beginning it was a system for solving matrices quickly and

accurately. The storage of all data is made in matrix form and each single data refers to a

scalar, a vector or a matrix. This makes the information manipulation easier and that is

from where MATLAB picks its real power. MATLAB programming language is therefore

useful in solving structural design problems implemented through the finite element

method due to the existence of the extremely robust and vast predefined built-in functions.

42

Although MATLAB is very complete with respect to its mathematical functions some few

finite element specific tasks need to be develop as additional functions. Before computing

the finite elements method, one must know the fundaments of the technique and the

different steps to implement.

 Finite Element Method (FEM)

 The finite element procedures are nowadays present and widely used as the most

reliable computational tool, in science and engineering applications. The finite element

literature is very large, either called Finite Element Analysis (FEA) or Finite Element

Method (FEM), it is established as a powerful and popular analysis tool for solving

numerical problems of continua related to solids, structures, heat transfer and fluids. The

finite element procedure is based on mathematically defined differential equations and

integral expressions that constitute simultaneous algebraic equations to be solved on a

digital computer. In this study the term FEM is used to refer to Finite Element.

The FEM began with the advent of digital computer but it is rather difficult to give

an exact date of invention. FEM as it is known today has its origin in a mathematical

lecture delivered in 1941 and published in 1943. It was introduced by Courant (1943), that

used the principle of stationary potential energy and piecewise polynomial interpolation to

evaluate the Saint-Venant torsion by applying triangular sub-regions. The method was

latter improved by engineers Argyris (1965) and Clough (1960). Since then many

researchers have been devoted to the technique and large general-purpose computer

programs emerged, ANSYS, ASKA, NASTRAN, ABAQUS.

The basic concept of the FEM is to solve a problem by discretizing it, in other

words it’s a method based on piecewise approximation functions defined over small and

manageable pieces (element) obtained by dividing a complicated object. This process is

called element mesh and the considerations made for it have a great importance regarding

the effectiveness and the reliability of the results. A good discretization would typically

lead to good solutions, while bad mesh topologies would lead to bad solutions.

The use of FEM in a structural analysis typically involves six (6) steps with the first

one that has been developed above. The five (5) others are enumerated as follows:

• Evaluate each single element’s stiffness matrix.

43

• Assemble all the matrices to get the global matrix of the whole structure.

• Apply the system’s boundary conditions.

• Solve the global matrix equations obtained.

• Determine the secondary variables.

While considering FEM implementation in a computer program two (2) more steps are

integrated. The first one should be executed after discretizing the model and the second

one is the last step of computed program, there are both defined below:

• Read input data and allocate proper array sizes.

• Print or plot the desired results.

Some important steps that need more understanding are developed in the following lines.

 Input Data

 Generally, a truss structure possesses all the attributes necessary to illustrate a finite

analysis without the need to proceed to the discretization of the model. Therefore, every

bar of the structure has to be considered as an element. A member of a truss represents the

simplest solid element, an elastic bar with two end nodes, referred as node 1 and 2 in

Figure 3.1. These elements are connected by pin joints, only support the applied external

nodal loads through axial forces and are defined by their length L, cross section A, and

material’s Young Modulus E as represented in Figure 3.1. a and b. Thereby after

identifying the total number of elements in the system (nel) and the number of connectivity

nodes (nnodes), the major input parameters needed to solve a two-dimensional steel truss

are respectively inputted:

• The node coordinates: It is simply a matrix of 2×nnodes where the values of the

nodes positions are stored.

• Element connectivity matrix: It is a matrix of node numbers according to the order

they have been stored in the node coordinates matrix, where each line contains two

rows representing the first node and the second node of an element.

• The nodal forces: They are stored in a matrix with the same dimension as node

coordinates expressed by fx and fy.

The boundary conditions are input data as well but they will be developed latter.

44

 Figure 3.1. Bar element

 Stiffness Matrix Evaluation

In most general cases, the elements of truss structures are considered to behave like

linear elastic material that leads to the use of constant strain bar technique to extract the

stiffness matrix with calculations based on the shape functions. The expression obtained is

function of the length, area and elasticity modulus of each element.

[𝐾] =
𝐸𝐴

𝐿
[
1 −1
−1 1

] (4)

Ultimately for all finite element programs the form of the linear algebraic system

stated below is to be solved after collecting all the information.

[𝐾]{𝑈} = {𝐹} (5)

[
𝑘 −𝑘
−𝑘 𝑘

] {𝑢1
𝑢2
} = {𝑓1

𝑓2
} (6)

Equation (5) represents the shorter form while equation (6) is more detailed, and in

both equations [𝐾] is the stiffness matrix with 𝑘 =
𝐸𝐴

𝐿
 , {𝑈} represents the displacements

vector with 𝑢1 (respectively 𝑢2) displacement at node 1 (respectively at node 2), {𝐹} is

employed for the external nodal forces with 𝑓1 (respectively 𝑓2) applied force at node 1

(respectively at node 2).

The considerations made above in all the formula are only applicable to uniaxial

bars conformably to Figure 3.1. a), in the case a truss bar configuration is similar to Figure

3.1. b) a transformation matrix is employed to convert the stiffness matrix from local

coordinates to global coordinates.

b)

EA

EA

a)

45

T = [
𝑐 𝑠 0 0
0 0 𝑐 𝑠

] (7)

In expression (7) T is the transformation matrix with c = cos 𝜃, and s = sin 𝜃, 𝜃 is

the angle between the bar and the horizontal.

The new stiffness matrix [𝐾𝐺] is calculated according to equation (8), while

displacements and forces are decomposed as follows:

[𝐾𝐺] = [𝑇]
𝑡[𝐾][𝑇] (8)

𝑈1 = {
𝑢1
𝑣1
} , 𝑓 = {

𝑓𝑥
𝑓𝑦
}

 Structure Stiffness Matrix or Global Stiffness Matrix

 Once, the elements matrices and vectors are computed, they need to be assembled

into the global stiffness matrix and vector. To achieve that, the best method is to expand

first the element stiffness matrices and vector to the full size of the structure. That means

that if the structure’s nnodes equals 5, each stiffness will be a 10x10 matrix filled with

zeros (0) at the positions of the nodes its element doesn’t include. The second step is just a

regular addition operation of all the expanded matrices.

 Boundary Conditions

In the finite element method, natural (Neumann) boundary conditions are used to

form force vectors while essential (Dirichlet) boundary conditions are used to specify the

value of the unknown field on a boundary state. In a more specific way, boundary

considerations for truss structures are made on the fixed nodes. For plane trusses where the

assembled [𝐾𝐺] matrix operates with 𝑢1 and 𝑣1, after applying the boundaries its

dimension will reduce because of some columns and lines suppression. When some

displacements are prescribed to be zero, the lines in the equation (6) containing that

displacements are purely and simply deleted and the corresponding columns in the stiffness

matrix also neglected. This is the formal way for solving manually reduced models, but it

can also be used for computing when it comes to large scale problems. Other methods, as

Lagrange multipliers and penalty, are preferred in many books to assign the boundaries in

FEM computer codes.

46

 Implementation

The entirety of this study is conducted using one computational tool, MATLAB, to

solve the optimization study cases through automate processes of iterations. The process

consists of two main parts. The first one performs the structural static analysis of the truss

and the second one has the responsibility to execute optimization loop.

 Practically the structural analysis performed in the first step, is governed by a script

called “truss” that retrieves information it needs from some connected functions to come

over expected results. The functions referred are named “inputdata”, containing nodal

coordinates and connectivity, the elasticity modulus, and “loadforce” containing forces

applied at the nodes.

The optimization algorithm will generate at its first steps some variables that will

be assigned to the elements as cross section, in the “truss” script. When the results are

ready, they are taken back to the optimization algorithm that evaluates the objective

function, here represented by the structural weight. This process is repeated until the best

weight is obtained.

 Examples/ Case Studies

In this present case four (4) examples will be performed by employing three (3)

different algorithms ABC, HM and PSO. The final results will be compared to demonstrate

the efficiency of each approach by also having a look at some previous works conducted

on the same topic. The parameters set for each optimization algorithm are as follows:

ABC: Number of Onlooker Bees nOnlooker=nPop, Abandonment Limit Parameter

L=round(0.6*nVar*nPop), Acceleration Coefficient Upper Bound a=1. Maximum Number

of Iterations (MaxIt) and Population Size (nPop) are varying according to the example but

most of the time the values in parenthesis are used.

HMS: Harmony Memory Consideration Rate HMCR=0.9, Pitch Adjustment Rate

PAR=0.1, Fret Width (Bandwidth) FW=0.02*(VarMax-VarMin), Width Damp Ratio

FW_damp=0.995. Maximum Number of Iterations (MaxIt), Harmony Memory Size

(HMS) and Number of New Harmonies (nNew) are varying according to the example but

most of the time the values in parenthesis are used.

47

PSO: Inertia Weight w=1, Inertia Weight Damping Ratio wdamp=0.99, Personal

Learning Coefficient c1=1.5, Global Learning Coefficient c2=2.0. Maximum Number of

Iterations (MaxIt) and Population Size (nPop) are varying according to the example but

most of the time the values in parenthesis are used.

 Ten-bar (10) Truss Structure

The 10-bar truss structure has been one of the most popular test problems in the

field of structural design for evaluating and verifying the efficiency of many different

optimization methods. Therefore, many researchers have worked on the topic, such as,

Camp et al. (1998), Camp and Farshchin (2014), Ringertz (1988), Rajeev and

Krishnamoorthy (1992), Li et al. (2009). The geometry, support conditions and loading

conditions for this 2-dimensional truss example are shown in Figure 3.2. The density of the

material is 2767,990 kg/m3 (0,1 lb/in 3) and the elasticity modulus is 68 950 MPa (10 000

ksi). The allowable vertical and horizontal displacements for all nodes are equal to ±5,08

cm (2,0 in). The members stress limitations in both tension and compression are equal to ±

172,375 MPa (25 ksi). There is one load combination that is considered for the two cases

in this example, 𝑃1 = 444,82 kN (100 kips), 𝑃2 = 0. The 10 design variables considered

have to be picked from the variable range below:

 Figure 3.2. 10-bar planar truss structure

48

Case 1 is considered as a discrete optimization with the variable set:

D = [1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63,

3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50,

13.90, 14.20, 15.50, 16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 30.00, 33.50] (in2).

Case 2 is considered differently by two previous studies that bring out the same result. In

the first one, it is solved as a continuous optimization with cross-sectional areas varying

from 0.1 in2 to 35.0 in2, whereas in the second one it is considered as discrete optimization

with the set of variables below.

D = [0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0,

9.5, 10.0, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 16.0, 16.5, 17.0,

17.5, 18.0, 18.5, 19.0, 19.5, 20.0, 20.5, 21.0, 21.5, 22.0, 22.5, 23.0, 23.5, 24.0, 24.5, 25.0,

25.5, 26.0, 26.5, 27.0, 27.5, 28.0, 28.5, 29.0, 29.5, 30.0, 30.5, 31.0, 31.5] (in2).

Results of the current study and previous studies are compared in Table 3.1. and 3.2., and

Figure 3.3. a) to c), Figure 3.4. a) to c) show the convergence history of ABC, HM and

PSO algorithms.

Table 3.1. Optimal design for 10-bar planar truss structure (Case 1)

GA PSOPC HPSO TLBO ABC HS PSO

33.00 30.00 30.00 33.50 33.50 30.00 30.00

1.62 1.80 1.62 1.62 1.62 1.62 1.62

22.00 26.50 22.90 22.90 22.90 22.00 22.90

15.50 15.50 13.50 14.20 14.20 16.00 16.90

1.62 1.62 1.62 1.62 1.62 1.62 1.62

1.62 1.62 1.62 1.62 1.62 1.62 1.62

14.20 11.50 7.97 7.97 7.97 11.50 7.97

19.90 18.80 26.50 22.90 22.90 22.00 22.90

19.90 22.00 22.00 22.00 22.00 22.00 22.90

2.62 3.09 1.80 1.62 1.62 1.62 1.62

(lb) 5613,84 5593,44 5531,98 5490,74 5490,74 5531,04 5507,76

(kg) 2546,39 2537,1 2509,26 2490,56 2490,56 2508,84 2498,28

Previous studies This study

Weight

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

Variables

(in
2
)

49

Table 3.2. Optimal design for 10-bar planar truss structure (Case 2)

Ringertz PSOPC GA TLBO ABC HS PSO

30.50 25.50 28.92 30.6684 31.60 31.20 30.50

0.10 0.10 0.10 0.10 0.33 0.10 0.10

23.00 23.50 24.07 23.1584 24.10 25.20 23.20

15.50 18.50 13.96 15.2226 14.50 14.60 15.30

0.10 0.10 0.10 0.10 0.15 0.10 0.10

0.50 0.50 0.56 0.5421 0.33 0.34 0.55

7.50 7.50 7.69 7.4654 8.29 7.75 7.49

21.00 21.50 21.95 21.0255 20.90 20.70 21.30

21.50 23.50 22.09 21.4660 21.00 20.60 21.20

0.10 0.10 0.10 0.10 0.11 0.10 0.10

(lb) 5059,90 5133,16 5076,31 5060,97 5116,20 5078,53 5061,43

(kg) 2295,13 2328,36 2302,58 2295,62 2320,67 2303,58 2295,83

Previous studies This studyVariables

(in
2
)

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

Weight

The results of case 1 show that TLBO algorithm had the best performance with a

total weight of 2490,56 kg (5490,74 lb). The best result obtained in this study is performed

by the ABC algorithm with a structural weight of 2490,56 kg (5490,74 lb). The parameters

used for the runs are respectively, MaxIt=1000 and nPop=300 for ABC, MaxIt=1000,

HMS=15 and nNew=10 for HS and finally, MaxIt=500 and nPop=25 for PSO. More

importantly, the PSO algorithm exhibits improved computational efficiency when

compared to other heuristic methods of this study because with a small MaxIt and nPop, it

provides a result closed to the best one produced by ABC algorithm.

The results of case 2 reveal that the lightest structure is generated by the Ringertz

implementation and brings out a total weight of 2295,13 kg (5059,9 lb) comparatively to

the present study’s lightest structure that have a weight of 2295,83 kg (5061,43 lb)

performed by PSO algorithm. The parameters used for the runs are respectively,

MaxIt=1000 and nPop=300 for ABC, MaxIt=500, HMS=50 and nNew=50 for HS and

finally, MaxIt=500 and nPop=50 for PSO. Here again PSO algorithm is the most efficient

between all employed algorithms.

50

 Figure 3.3. Convergence histories for 10-bar planar truss structure (case 1)

a) ABC algorithm

b) HS algorithm

c) PSO algorithm

51

 Figure 3.4. Convergence histories for 10-bar planar truss structure (case 2)

a) ABC algorithm

b) HS algorithm

c) PSO algorithm

52

 Seventeen-bar (17) Truss Structure

The 17-bar truss structure, with the detailed geometry in Figure 3.5., is the second

weight optimization example to be performed. Only a single vertical load of 444,82 kN

(100 kips) is applied at the extreme free node. The material density is 7418,214 kg/m3

(0,268 lb/in3) and the elasticity modulus is 20 6842,8 MPa (30 000 ksi). Stress limitations of

± 344,738 MPa (50 ksi) are subjected to all members and displacements of the free nodes

in both horizontal and vertical directions should not exceed to ± 5.08 cm (2.0 in). This

problem is a continuous optimization that 17 variables, generated randomly by the

algorithm which the minimum allowable value of 0.6452 cm2 (0.1 in2). Previous studies

have been done by Khot and Berke (1984) using Optimality Criteria (OC), Li et al. (2007)

with Heuristic Particle Swarm Optimizer (HPSO), Koohestani and Kazemzadeh (2009)

Adaptive Real-Coded Genetic Algorithm (ARCGA) and finally Modified Artificial Bee

Colony (MABC) applied by Hadidi et al. (2010).

 Figure 3.5. 17-bar planar truss structure, a = 254cm (100 in)

Table 3.3. shows the optimal results of 7 algorithms, while Figure 3.6. a) to c) are

the representation of the convergence history of ABC, HM and PSO.

The optimization results obtained by both previous and current studies presented in

Table 3.3. confirm that, all previous results are nearly the same with a rounded weight of

1171,18 kg (2582 lb), while in present study PSO yields lighter structural weight than other

methods with the same value of 1171,18 kg (2582 lb). Here again the parameters employed

for ABC are MaxIt=1000 and nPop=300, while for HS it is MaxIt=500, HMS=200 and

nNew=200 and finally, for PSO MaxIt=500 and nPop=100.

53

 Table 3.3. Optimal design for 17-bar planar truss structure

OC MABC HPSO ARCGA ABC HS PSO

15.93 15.6762 15.896 15.891 15.00 15.30 16.00

0.10 0.10 0.103 0.105 0.66 1.56 0.10

12.07 12.0491 12.092 12.101 12.90 13.20 12.10

0.10 0.10 0.10 0.10 0.10 0.10 0.10

8.067 8.1312 8.075 8.075 8.78 8.91 8.08

5.562 5.6202 5.541 5.541 4.58 4.11 5.58

11.933 11.8822 11.97 11.97 12.00 11.50 12.00

0.10 0.10 0.10 0.10 0.17 0.32 0.10

7.945 8.0517 7.955 7.955 7.60 7.63 7.92

0.10 0.10 0.10 0.10 0.57 0.93 0.10

4.055 4.0912 4.07 4.07 4.28 4.85 4.11

0.10 0.10 0.10 0.1 0.83 0.59 0.10

5.657 5.6746 5.67 5.705 5.83 5.46 5.60

4.00 3.9864 3.998 3.975 3.88 4.10 4.02

5.558 5.6729 5.548 5.516 5.06 4.06 5.51

0.10 0.10 0.103 0.10 0.56 1.43 0.10

5.579 5.4907 5.537 5.563 5.26 4.76 5.53

 (lb) 2581,89 2582,27 2581,94 2581,95 2611,90 2630,00 2582,00

 (kg) 1171,1 1171,3 1171,1 1171,15 1184,74 1192,95 1171,18

A17

A12

A13

A14

A15

A16

Previous studies This study

Weight

Variables

(in
2
)

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

54

 Figure 3.6. Convergence histories for 17-bar planar truss structure

a) ABC algorithm

b) HS algorithm

c) PSO algorithm

55

 Forty-five-bar (45) Truss Structure

Figure 3.7. shows the geometry and the loading condition of a 45-bar that has been

studied by Hadidi et al. (2010) for further investigation of the performance of MABC

algorithm. Nine vertical loads of 44,48 kN (10 kips) are applied at the unrestricted bottom

nodes. The displacement of all nodes in both horizontal and vertical directions must not

exceed ± 5,08 cm (2,0 in) and the maximum absolute value of each element’s stress is

limited to 206,843 MPa (30 ksi). The material density is 7833,41 kg/m3(0,283 lb/in3) and

the modulus of elasticity is 20 6842,8 MPa (30 000 ksi). This example deals with 23

design variables that have been grouped according to the symmetry of the structure. The

lower bound of all variables considered in this optimization is 0,6452 cm2 (0,1 in2).

 Figure 3.7. 45-bar planar truss structure, a = 508cm (200 in)

Table 3.4. shows the optimal results of employed algorithms, conformably to their

convergence histories materialized in Figure 3.8. a) to c).

The results listed in Table 3.4. indicate that the lighter structure obtained in this

study has come from PSO iterations and its weight is very closed the best design found by

MABC. The weight difference between these two is less than 1 kg (2 lb). The parameters

used to perform the study are MaxIt=500 and nPop=100 for ABC, MaxIt=500, HMS=100

and nNew=100 for HS and finally, MaxIt=500 and nPop=100 for PSO.

56

Table 3.4. Optimal design for 45-bar planar truss structure

ABC MABC ABC HS PSO

A1 5.4746 4.5996 5.0200 4.4600 4.5500

A2 4.5989 3.7966 4.0100 4.2000 3.8100

A3 4.1703 3.0497 3.1600 2.0700 2.0900

A4 3.7872 3.2841 3.8300 4.6100 4.3400

A5 0.10 0.1069 0.6830 1.8000 1.5900

A6 4.1735 3.9279 3.6800 2.4200 2.4400

A7 0.9497 0.9649 1.1700 2.4500 2.0500

A8 1.5902 1.2133 0.9650 0.3030 0.1930

A9 6.2656 7.6553 6.7600 7.3000 7.5900

A10 2.2039 2.1993 1.6100 1.8900 2.1500

A11 1.3925 1.1929 1.8300 1.4400 1.2500

A12 0.10 0.1001 0.1380 0.10 0.1010

A13 0.10 0.1008 0.2850 0.5770 0.10

A14 9.0689 9.5360 10.1000 9.2300 9.3300

A15 1.5310 1.2173 1.9800 1.4700 1.2700

A16 1.6245 1.4190 0.9190 1.3800 1.3300

A17 2.9146 2.5513 2.3000 2.3200 2.5600

A18 0.10 0.10 0.2370 0.10 0.10

A19 9.0685 11.5439 11.6000 11.4000 11.8000

A20 1.6352 1.2807 1.0800 1.3300 1.2700

A21 0.10 0.101 0.3080 0.10 0.10

A22 4.4798 3.7598 3.82000 3.3700 3.7100

A23 0.10 0.10017 0.7780 0.2000 0.10

(lb) 8267,21 7968,95 8256,10 8097,20 7970,30

Weight (kg) 3749,94 3614,65 3744,90 3672,83 3615,27

Previous study This studyVariables

(in
2
)

57

 Figure 3.8. Convergence histories for 45-bar planar truss structure

a) ABC algorithm

b) HS algorithm

c) PSO algorithm

58

 Fifty-two-bar (52) Truss Structure

Figure 3.9. is the geometrical representation of a 52-planar bar structure. This

problem has been studied previously by Wu and Chow (1995), Lee at al. (2005), and Li et

al. (2009). Vertical and horizontal loads, respectively 100 kN and 200 kN are applied at the

four top nodes of structure. While no displacement constraint is considered, stress

constraint is applied with the maximum absolute value of each element’s stress limited to

180 MPa. The material density is 7860.00 kg/m3 and the elasticity modulus is 2.07 × 105

MPa. The structural elements have been classified into 12 design variables groups as A 1

(1 –4), A 2 (5 – 10), A 3 (11 – 13), A 4 (14 – 17), A 5 (18 – 23), A 6 (24 – 26), A 7 (27 –

30), A 8 (31– 36), A 9 (37 – 39), A 10 (40 – 43), A 11 (44 – 49), A 12 (50 – 52). The

discrete variables are selected from the set of D matrix.

 Figure 3. 9. 52-bar planar truss structure

59

D = [0.111, 0.141, 0.196, 0.250, 0.307, 0.391, 0.442, 0.563, 0.602, 0.766, 0.785, 0.994,

1.000, 1.228, 1.266, 1.457, 1.563, 1.620, 1.800, 1.990, 2.130, 2.380, 2.620, 2.630, 2.880,

2.930, 3.090, 3.130, 3.380, 3.470, 3.550, 3.630, 3.840, 3.870, 3.880, 4.180, 4.220, 4.490,

4.590, 4.800, 4.970, 5.120, 5.740, 7.220, 7.970, 8.530, 9.300, 10.850, 11.500, 13.500,

13.900, 14.200, 15.500, 16.000, 16.900, 18.800, 19.900, 22.000, 22.900, 24.500, 26.500,

28.000, 30.000, 33.500](in2).

In Table 3.5. the optimal results are concise, and their convergence histories

displayed in Figure 3-10 a) to c). When results of previous studies are compared to these

present ones, it shows that the lightest structure is delivered by PSO and ABC with a

corresponding weight that is 1902.88 lb. The corresponding parameters are respectively,

MaxIt=500 and nPop=100 for ABC, MaxIt=500, HMS=50 and nNew=50 for HS and

finally, MaxIt=200 and nPop=100 for PSO.

Table 3.5. Optimal design for 52-bar planar truss structure

Variables

(in
2
) DHPSACO PSOPC HPSO GA ABC HS PSO

A1 7.220 9.300 7.220 7.220 7.220 7.220 7.220

A2 1.800 1.563 1.800 1.800 1.800 1.800 1.800

A3 0.766 4.180 0.563 1.00 0.766 0.563 0.766

A4 5.120 4.970 5.120 5.120 5.120 5.120 5.120

A5 1.563 1.800 1.457 1.620 1.460 1.460 1.460

A6 0.442 1.228 0.766 0.766 0.766 0.766 0.766

A7 3.550 3.470 3.470 3.840 3.470 3.470 3.470

A8 1.563 1.563 1.563 1.620 1.560 1.560 1.560

A9 0.602 0.766 0.602 0.442 0.766 0.766 0.766

A10 1.990 1.990 1.990 2.630 1.990 1.990 1.990

A11 1.800 1.800 1.800 1.620 1.800 1.800 1.800

A12 0.785 0.766 1.228 0.994 0.766 0.994 0.766

Weight (kg) 1904.830 2146.630 1905.495 1970.142 1902.88 1903.64 1902.88

Previous studies This study

60

 Figure 3.10. Convergence histories for 52-bar planar truss structure

a) ABC algorithm

b) HS algorithm

c) PSO algorithm

61

 OAPI BASED 3D TRUSS OPTIMIZATION

The combination of SAP2000 structural analysis program and MATLAB is the

prior task of this chapter. The Open Application Program Interface (OAPI) of SAP200 that

allows its biding with MATLAB is clearly explained and the implementation process

reviewed. This study will finally compare then the results generated by the employed

algorithms.

 SAP2000

SAP2000 is the first version of SAP series programs having a complete integration

with Microsoft Windows. Since its release date over 30 years ago, it has proven to be one

of the most sophisticated and user-friendly computer programs. Since the first programs

published, SAP, SOLIDSAP, SAPIV and so on, the name SAP was defined to be state-of-

the-art analytical solutions. Over the years SAP2000 program has been strengthened with

some futures such as a powerful graphical user interface powered by an ease-of-use

engine, powerful design capabilities and finally easy and efficiency solution productivity

for all structural analysis and design purposes, to the benefit of thousands of engineering

companies around the world.

SAP2000 is a structural program that refers to the Finite Element Method for

analysing civil engineering structures with integrated advanced analytical techniques. Its

intuitive user interface and multitude of tools are very helpful for fast and accurate

structural model construction without long learning detour delays. Not only the model

creation but also its probable modifications, analysis run, design checking, and results

output generation are made possible thanks to this single interface. The worldwide design

codes integrated, allow the user to automatically generate snow, wind, or seismic loads

with the possibility to check the design performance applying for instance US steel

standards or Eurocodes for a given steel structure. SAP2000 is object-based program,

therefore analysing an element in SAP2000 is a huge task divided into small parts

possesses as follows:

• Geometry: The model representation.

• Material: Constitutive law.

62

• Essential boundary conditions considered as supports.

• Natural boundary conditions standing for applied Loads.

After the Structural analysis has been done and the design performed, all SAP2000 data,

including model prescriptions, analysis and design results, are available through tabular

data structure. These data can either be displayed in the interface by the engineer to

determine the reliability of the results, or exported to a Microsoft Excel spreadsheet file, a

Microsoft Access database file, or a simple text file. A model can also be opened into

SAP2000 for further modifications or analysis by importing data file into the program.

SAP2000 has many Import and export capabilities, especially for CSI programs but also

for other well-known design programs as well as programming tools such as MATLAB.

 Open Application Programming Interface (OAPI)

The fast evolution of computer technology and the large availability of increasing

computational systems have motivated researchers to conduct some investigations on new

structural optimization techniques that will reduce the long and tedious work of engineers,

therefore avoid writing thousands of lines in a single script. This recently led to the

introduction of the SAP2000 Open Application Programming Interface (OAPI), which

allows a developer to create a rich and tight two-way links with SAP2000 and an external

programming language. This tool has the responsibility to transfer model information from

external application to SAP2000, analyse and design model, and finally extract the results

back to the third-party application. Clearly defined, OAPI is a software library constituting

the functions responsible of controlling SAP2000 from a different software.

The SAP2000 OAPI is a powerful tool which main aim is to provide efficient

access to the analysis and design technology of the SAP2000 structural analysis software.

SAP2000 can then be associated with most of the languages. The functioning mode of this

process is represented by Figure 4.1. (Sextos and Balafas, 2011). An interesting part of this

innovation in computational engineering is that some plug-ins can be developed to extend

the program's usability. The OAPI features are enumerated as follows (Sextos and Balafas,

2011):

• A robust imbedding of SAP2000 in third-party application is direct and very fast.

• Both pre and post-processing routines are facilitated by the two-way data flow.

63

• Data exchange time is considerably reduced on large model implementation using

most major programming languages, because no intermediate files are needed.

• Many third-party applications can ensure the data transfer and analysis control.

• An easy development and guaranty of third-party applications compatibility with

future releases of SAP2000.

• Development of a calibrated custom interfaces for SAP2000 that feats the user's

needs.

Developing a new computing tool that employs the above SAP2000 OAPI features is a

laborious task requiring solid programming background. However, it may be sometimes

less tedious when the necessity is based on simple computing tasks. OAPI is compatible

with a wide range of programming languages, including Visual Basic Applications (VBA),

Visual Basic.NET, Visual C#, Visual C++, Fortran and MATLAB. As a general assistant

for the SAP2000 OAPI, a concise and detailed documentation is provided along with the

installation (CSi_OAPI_Documentation, located in the install directory) containing the

information that will help someone to get used to the programming.

 Figure 4.1. Typical data flow using the SAP2000 API

 Implementation

The 3D steel truss examples studied in this chapter are implemented by binding two

modern programs known as MATLAB Ra2015 and SAP2000 version V15. The structural

analysis part is performed by SAP2000 that latter transfers the results to MATLAB for the

64

optimization process. This is repeated as many times as necessary to obtain the optimum

way of each run.

 There are several ways to do structural analysis in MATLAB Trough SAP2000

software. The first possibility is to write all structural information in MATLAB, concretely

OAPI functions will govern the study from elements modelling to retrieving results,

without any need to perform a single step by opening SAP2000 program. The second one

consists in reproducing the entire model in SAP2000, after application of material

proprieties, node supports and loads, the model is saved as a “. sdb file”. For every

iteration process MATLAB will just open the model file, run the analysis and extract

results. In this thesis the second programming solution has been preferred to the first one

as it is less complex, faster and makes shorter program script.

The design variables generated by the optimization algorithm will be assigned as

elements cross section, in SAP2000. When the results are ready, the optimization

algorithm evaluates the objective function and displays the best weight of the structure.

 Examples/ Case Studies

In this present case tree (3) examples will be performed by employing tree (3)

different algorithms ABC, HM and PSO. The final results of this study are compared with

some previous works to demonstrate the efficiency of each approach. The parameters set

for the optimization algorithms are similar to what has been defined in the previous

chapter.

 Twenty-five-bar (25) Spatial Truss Structure

Figure 4.2. represents a 25-bar transmission tower that has been studied in this

example. In available literature, WU and Chow (1995), Rajeev and Krishnamoorthy

(1992), Ringertz (1988), has considered this structure for research purpose employing

some innovative algorithms. The material used in the model construction has a mass

density of 2767,990 kg/m3 (0,1 lb/in3) and a modulus of elasticity E = 68 950 MPa (10 000

ksi). Stresses constrains are applied for each member with an allowable value of ± 275,8

MPa (40 000 psi) and displacements for each node are constrained in x, y, and z directions

with limit value of ± 0,889 cm (0,35 in). The 25 elements of the structure are organized

into eight (8) groups, considering symmetries with respect to both the y-z and the x-z

65

planes. These groups are as follows: A 1 (1), A 2 (2 – 5), A 3 (6 – 9), A 4 (10 – 11), A 5

(12 – 13), A 6 (14 – 17), A 7 (18 – 21), and A 8 (22 – 25). The discrete cross-sectional

areas are selected from the set D while the load condition is showed in Table 4.1.

 D = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9,

2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.8, 3.0, 3.2, 3.4] (in2).

Table 4.1. Load case for the 25-bar spatial truss

Px Py Pz

1 4,448 (-)44,48 (-)44,48

2 0.0 (-)44,48 (-)44,48

3 2,22 0.0 0.0

6 2,69 0.0 0.0

Nodes
Load case (kN)

 Figure 4.2. 25-bar spatial truss structure

Table 4.2. summarizes the optimal results of employed algorithms, and their

convergence histories are represented in Figure 4.3. a) to c).

Table 4.2. shows that the HPSO algorithm has reported the best result 219,92 kg

(484,85 lb) the category of previous studies while from algorithms referred in this present

66

work, PSO has brought out the best design 220,73 kg (486,63 lb). The parameters of the

different algorithms are respectively, MaxIt=100 and nPop=25 for ABC, MaxIt=100,

HMS=25 and nNew=20 for HS and finally, MaxIt=100 and nPop=25 for PSO.

Table 4.2. Optimal design for 25-bar spatial truss structure

PSOPC HPSO SGA GA ABC HS PSO

0.1 0.1 0.1 0.1 0.1 0.1 0.1

1.1 0.3 0.5 1.8 0.6 1.6 0.2

3.1 3.4 3.4 2.3 3.4 3.2 3.4

0.1 0.1 0.1 0.2 0.9 0.1 0.1

2.1 2.1 1.5 0.1 1.6 1.5 1.6

1.0 1.0 0.9 0.8 0.9 0.8 0.9

0.1 0.5 0.6 1.8 0.5 0.2 0.8

3.5 3.4 3.4 3.0 3.4 3.4 3.4

(lb) 490,16 484,85 486,29 546,01 497,77 498,94 486,63

(kg) 222,333 219,924 220,577 247,666 225,78 226,32 220,73

Previous studies This study

Weight

Variables

(in
2
)

A1

A2

A3

A4

A5

A6

A7

A8

67

Figure 4.3. Convergence histories for 25-bar spatial truss structure

a) ABC algorithm

b) HS algorithm

c) PSO algorithm

68

 Seventy-two-bar (72) Spatial Truss Structure

The 72-bar four level skeletal tower has been studied by different researchers: WU

and Chow (1995), Li et al. (2009) and Erbatur et al. (2000). The geometry definition of the

structure is shown in Figure 4.4. For the design, the material density and the elasticity

modulus are respectively equal to 2767,990 kg/m3 (0.1 lb/in3) and 68 950 MPa (10 000

ksi). The Constraints imposed to structure are of two kinds. Displacements in x and y

directions at the uppermost joints are limited to ± 0,635 cm (0.25 in) and the elements

stress should not exceed ± 172,375 MPa (25 ksi). The structural loading condition is given

in Table 4.3. The 72 members of this spatial truss are symmetrically divided into 16 groups

as follows: A 1 (1 – 4), A 2 (5 –12), A 3 (13 – 16), A 4 (17 – 18), A 5 (19 – 22), A 6 (20 –

30), A 7 (31 – 34), A 8 (35 – 36), A 9 (37 – 40), A 10 (41 – 48), A 11 (49 – 52), A 12 (53 –

54), A 13 (55 – 58), A 14 (59 – 62), A 15 (63 – 70), A 16 (71 – 72). The discrete variables

are selected from D.

D = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9,

2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2] (in2).

Figure 4.4. 72-bar spatial truss structure

69

Table 4.3. Load case for the 72-bar spatial truss

Px Py Pz

17 22,24 22,24 (-)22,24

18 0.0 0.0 0.0

19 0.0 0.0 0.0

20 0.0 0.0 0.0

Nodes
Load case (kN)

Table 4.5. compares optimization results of different algorithms, with their

convergence histories represented in Figure 4.5. a) to c).

The lightest truss weight obtained in this thesis work by ABC that equals 172,64 kg

(380,60 lb) which is slightly lighter than the best design value generated in referred

literature that is 174,84 kg (385,54 lb). Here the following parameters were considered,

MaxIt=200 and nPop=25 for ABC, MaxIt=200, HMS=25 and nNew=50 for HS and

finally, MaxIt=200 and nPop=25 for PSO.

Table 4.4. Optimal design for 72-bar spatial truss structure

PSOPC HPSO GA DHPSACO ABC HS PSO

3.0 2.1 1.5 1.9 2.0 1.9 1.8

1.4 0.6 0.7 0.5 0.5 0.5 0.6

0.2 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1

2.7 1.4 1.3 1.3 1.4 1.5 1.3

1.9 0.5 0.5 0.5 0.5 0.6 0.4

0.7 0.1 0.2 0.1 0.1 0.1 0.1

0.8 0.1 0.1 0.1 0.1 0.1 0.1

1.4 0.5 0.5 0.6 0.6 0.5 0.7

1.2 0.5 0.5 0.5 0.5 0.4 0.5

0.8 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.2 0.1 0.2 0.1 0.1

0.4 0.2 0.2 0.2 0.1 0.1 0.1

1.9 0.5 0.5 0.6 0.5 0.6 0.6

0.9 0.3 0.5 0.4 0.4 0.4 0.4

1.3 0.7 0.7 0.6 0.6 0.6 0.6

(lb) 1069,79 388,94 400,66 385,54 380,60 385,54 383,14

(kg) 485,25 176,4 181,7 174,88 172,64 174,88 173,79

A12

A13

A14

A15

A16

Previous studies This study

Weight

Variables

(in
2
)

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

70

Figure 4.5. Convergence histories for 72-bar spatial truss structure

a) ABC algorithm

b) HS algorithm

c) PSO algorithm

71

 One Hundred Twenty-bar (120) Spatial Truss Structure

The last optimization example is conducted on a 120-bar dome truss shown in

Figure 4.6., previously studied by Kaveh and Talatahari (2009). Based on structure’s

symmetry considerations, elements have been split into seven (7) main groups as it is

noticeable on the figure. The material has an elasticity modulus of 209 952,75 MPa (30

450 ksi), a density of 7971,81 kg/m3 (0,288 lb/in3), and a yield stress of 399,91 MPa (58,0

ksi). All unsupported nodes are subjected to vertical forces that are equal to – 60 kN (13.49

kips) at node 1, − 29,98 (6.744 kips) at nodes 2 to 14, and −2.248 kips at the rest of the

nodes. The optimization carried out is continuous and the minimum allowable cross

section of members is limited to 0.775 in with a maximum of 20.0 in 2. Two cases are

implemented with displacement constraints and stress constraints used according to the

ASD code (AISC, 2011), as follows:

{
σi
+ = 0.6Fy For σi ≥ 0

σi
− For σi ≤ 0

σi
− is evaluated according the formula below:

{

 [(1 −

λi
2

2Cc
2) Fy]

5

3

3λi
8Cc

λi
3

8Cc
3 For λi < Cc⁄

12π2E

23λi
2 For λi ≥ Cc

where E represents the elasticity modulus, Fy the yield stress, λi the slenderness

ratio (λi = kLi / ri), k the effective length factor, Li the length of the member, ri the radius

of gyration (ri = 0.4993A0.6777). The value of Cc is determined by Cc = √(2π
2 E Fy)⁄ .

The two study cases invoked earlier above are described as follows:

Case 1: stress constraints imposed, without displacement constraints,

Case 2: stress constraints imposed, with displacement constraints at all nodes in x, y

and z directions, limited to ∓ 0,50 cm (0.1969 in).

Table 4.6. compares optimization results of different algorithms for the first case

with their convergence histories represented in Figure 4.7. a) to c), while Table 4.7. is

affected to case 2, with their convergence histories represented in Figure 4.8. a) to c).

72

In this example the parameters considered are, MaxIt=200 and nPop=50 for ABC,

MaxIt=200, HMS=50 and nNew=50 for HS and finally, MaxIt=200 and nPop=50 for PSO.

In case 1 the best design obtained from the previous studies is 8824,41 kg

(19454.49 lb) which is a bit bigger than the best design value generated in this thesis work

by PSO that equals 8820,54 kg (19445.97 lb).

In case 2 the best design obtained from the previous studies is 15083,74 kg

(33253.95 lb) which is a bit bigger than the best design value generated in this thesis work

by PSO that equals 14942,72 kg (32943.06 lb).

 Figure 4.6. 120-bar spatial truss structure

a = 694,08 cm; b = 1249,98 cm; c = 1589cm; d = 700 cm; e = 500 cm; f = 300 cm.

a
b

c

d

e

f

73

Table 4.5. Optimal design for 120-bar spatial truss structure (case 1)

CA PSOPC RO MABC ABC HS PSO

A1 3.122897 3.235 3.128 3.2976 3.15 3.15 3.15

A2 3.353849 3.37 3.357 2.3964 3.36 3.35 3.34

A3 4.111981 4.116 4.114 3.8736 4.13 4.11 4.11

A4 2.782138 2.784 2.783 2.5710 2.78 2.77 2.77

A5 0.775000 0.777 0.775 1.1513 0.795 0.775 0.775

A6 3.300503 3.343 3.302 3.3323 3.31 3.31 3.30

A7 2.445793 2.454 2.453 2.7848 2.45 2.45 2.44

(lb) 19454,49 19618,70 19476,19 19706,62 19534,61 19458,21 19445,97

Weight (kg) 8824,41 8898,89 8834,25 8938,77 8860,75 8826,10 8820,54

Previous studies This studyVariables

(in2)

Table 4.6. Optimal design for 120-bar spatial truss structure (case 2)

CA PSOPC RO ICA ABC HS PSO

A1 3.02591 3.040 3.030 3.02750 3.07 3.04 3.04

A2 14.7652 13.149 14.806 14.45960 14.20 15.00 14.10

A3 5.08463 5.646 5.440 5.24460 5.05 4.56 5.44

A4 3.13569 3.143 3.124 3.14130 3.20 2.78 2.72

A5 8.43852 8.759 8.021 8.45410 8.67 8.84 8.79

A6 3.35678 3.758 3.614 3.35670 3.45 3.93 3.57

A7 2.49627 2.502 2.487 2.49447 2.53 2.53 2.50

(lb) 33253,95 33481,20 33317,80 33256,20 33407,51 33101,71 32943,06

Weight (kg) 15083,74 15186,82 15112,70 15084,76 15153,39 15014,68 14942,72

Previous studies This studyVariables

(in2)

74

 Figure 4.7. Convergence histories for 120-bar spatial truss structure (case 1)

a) ABC algorithm

b) HS algorithm

c) PSO algorithm

75

 Figure 4.8. Convergence histories for 120-bar spatial truss structure (case 2)

c) PSO algorithm

a) ABC algorithm

b) HS algorithm

76

 CONCLUSION

This last chapter presents and makes a comparison of obtained results to draw some

Conclusions. Moreover, recommendations will be suggested for future studies.

 Conclusion

In this thesis study, three (3) optimization algorithms have been employed to

evaluate the optimal weight of steel trusses. These algorithms Artificial Bee Colony

(ABC), Harmony Search (HS) and Particle Swarm Optimization (PSO), were tested on

discrete as well as continuous problems. In total, nine (9) design problems have been used

to evaluate the performance of the selected algorithms. The implementation of structural

weight optimization, with imposed constraints on member stresses and/or nodal

displacements was principally relying on determining the minimal cross-sectional areas of

truss bars that are considered as design variables. Problems were solved using two different

programming ways. Planar truss structures were solved entirely in MATLAB by

combining structural analysis scripts based on FEM and the optimization algorithms. On

the other hand, due to the fact that generally structural configuration may be very complex

and they implementation trough MATLAB codes require a considerable work time, the

integration of SAP2000 structural analysis program has been preferred for solving spatial

truss problems.

As indicated above, the examples were studied using either continuous or discrete

design variables. Considering the first study case where both continuous and discrete

optimizations were performed for the same structure with the same load case and

constraints limitations, the most effective solutions have been produced by continuous

variables. Despite its easy implementation, mathematically feasible solutions, and the non-

negligible gap with discrete optimization results, continuous optimization is not preferred

as the cross sections generated do not correspond to available commercial member sizes.

For research purposes, optimization with continuous variables can be performed, but for

real problems, discrete design variable although harder to set, should be preferred because

of its practical and reliable solutions. Moreover, the optimization scheme is considered to

be more robust.

77

Based on the three (3) optimization algorithms used in this present work, some

important conclusions can be retrieved. The comparisons of this study’s numerical results

with those of previous studies are made not only to demonstrate and verify the efficiency

of the work done, but also to show the robustness of each algorithm. The algorithm’s

parameters such as population size and the maximum iteration number were set after many

trial studies, observing the convergence history. In all the considered examples PSO

generally offers the best performance compared to the two others, in both convergence and

optimal result. PSO revealed to bring out good results with the least population number

and reaches the optimal result in less structural analyses. After PSO, ABC was the second-

best algorithm, generating in some examples the same result with PSO or a better result

than PSO with small difference. However, a bigger population size must be set to

produces favourable results. Regarding now the HS, although the proposed method has

yielded to optimal or got closer to optimal result, its performance has shown to be less

efficient than ABC and PSO in this study. It must be underlined that there is not a

metaheuristic algorithm elected as the best one in all cases of numerical design problems,

because they offer no guaranty for the quality of the final result. A given algorithm may

work well for an example and give a bad result in another example depending on the

parameters assigned to the study.

 Recommendations

The study carried out here, has revealed its part of success but many other considerations

could be done in further research, by integrating promising interest areas in the field of

design optimisation. They are summarized in form of recommendations as follows:

• Structural optimisation using linear analysis may result in a bad design because of

the non-linear behaviour of some structures. Non-linear analysis should be

considered regarding the geometry of the structure and assumptions made on

geometric imperfections.

• In the present work only size optimization was developed, but it could also be

extended to shape and topology optimization. The problem’s fitness function will

then have the character of multi-objective function.

• At last, more complex structural problems such as plane and space frames could be

optimized to deal with bending moments, story drifts and dynamic loads.

78

 REFERENCES

Alatas, B., 2010. Chaotic Harmon Search Algorithms, Applied Mathematics and

Computation, 216, 2687-2699.

American Institute of Steel Construction, 2011, AISC, Steel Construction Manual, 14th

ed., AISC, United States of America.

Argyris, J.H., 1965. Matrix Displacement Analysis of Anisotropic Shells by Triangular

Elements, Journal of the Royal Aeronautical Society, 69, 801–805.

Bathe, K.J., 1982, Finite Element Procedures in Engineering Analysis, Prentice-Hall,

Englewood Cliffs, NJ.

Berke, L. and Khot, N.S., 1974. Use of Optimality Criteria Approach to Structural

Optimization for Large Scale Systems, Structural Optimization, AGARD LS, 70, 1-

29.

Berke, L. and Khot, N.S., 1987. Structural Optimization Using Optimality Criteria, NATO,

AS1 Series, Springer-Verlag Berlin, Heidelberg, vol. F27, 271-311.

Boussaid, I., 2013, Perfectionnement de Métaheuristiques pour l’Optimisation Continue,

Thèse de Doctorat, Université Paris-Est Créteil, Paris.

Bruyneel, M., Craveur, J.-C. and Gourmelen, P., 2014, Optimisation des Structures

Mécaniques – Méthodes Numériques et Eléments Finis, Dunod, Paris.

Camp, C., Pezeshk, S. and Cao, G., 1998. Optimized Design of Two-Dimensional

Structures Using a Genetic Algorithm, Journal of Structural Engineering,124, 551–

559.

Camp, C.V. and Farshchin, M., 2014. Design of Space Trusses Using Modified Teaching–

Learning Based Optimization, Engineering Structures, 62–63, 87–97.

Carlson, S.E., 1995. A General Method for Handling Constraints in Genetic Algorithms. In

Proceedings of the Second Annual Joint Conference on Information Science, 663-

667.

Carroll, C.W., 1961. The Created Response Surface Technique for Optimizing Nonlinear

Restrained Systems, Operations Research, 9, 169-184.

Cheng, Y.M., Li, L. and Chi, S.C., 2007. Performance Studies on Six Heuristic Global

Optimization Methods in the Location of Critical Slip Surface, Computers and

Geotechnics, 34, 462-484.

Clough, R.W., 1960. The finite Element Method in Plane Stress Analysis. Proceedings of

the 2nd A.S.C.E. Conference in Electronic Computation, Pittsburgh, PA.

79

Coello Coello, C.A., 1999. A Survey of Constraint Handling Techniques Used with

Evolutionary Algorithms, Laboratorio Nacional de Informática Avanzada.

Coello Coello, C.A, 2000. Use of a Self-Adaptive Penalty Approach for Engineering

Optimization Problems, Computers in Industry, 41, 113-127.

Connor, J.J., 2003, Introduction to Structural Motion Control, Prentice Hall Pearson

Education, Inc., Michigan University.

Courant, R., 1943. Variational Methods for the Solution of Problems of Equilibrium and

Vibrations, Bulletin of the American Mathematical Society, 49, 1-23.

Erbatur, F. and Al-Hussainy, M.M., 1992. Optimum Design of Frames, Computers and

Structures, 45, 887–891.

Erbatur F., Hasancebi O., Tutuncu I., and Kilic H., 2000. Optimal Design of Planar and

Space Structures with Genetic Algorithms, Computers and Structures, 75, 209–232.

Eskkandar H., Sadollah A., Bahreininejad A. and Hamdi M. 2012. Water Cycle Algorithm-

A Novel Metaheuristic Optimization Method for Solving Constrained Engineering

Optimization Problems, Computers and Structures, 110-111, 151-166.

Geem, Z.W., 2007, Harmony Search Algorithm for Solving Sudoku, in Proceedings of the

11th International Conference, KES 2007 and XVII Italian Workshop on Neural

Networks Conference on Knowledge-Based Intelligent Information and

Engineering Systems: Part I. Springer-Verlag, Vietrisul Mare, Italy.

Glover, F., 1986. Future Paths for Integer Programming and Links to Artificial

Intelligence, Computers and Operation Research, 13, 533–549.

Hackwood, S. and Wang, J., 1988. The Engineering of Cellular Robotic Systems,

Proceedings of Institute of Electrical and Electronics Engineers

International Symposium, Arlington, Virginia, USA.

Hadidi, A. and Kazemzadeh, S., 2010. Structural Optimization Using Artificial Bee

Colony Algorithm, 2nd international conference on engineering optimization.

Hadidi, A., Kazemzadeh, A.S. and Kazemzadeh, A.S., 2010. Structural Optimization

Using Artificial Bee Colony Algorithm, 2nd International Conference on

Engineering Optimization, Lisbon, Portugal.

Holland, J.H., 1975. Adaptation in Natural and Artificial System, University of Michigan

Press.

Joines, J.A. and Houck, C.R., 1994. On the Use of Non-Stationary Penalty Functions to

Solve Nonlinear Constrained Optimization Problems with GA's. In Z. Michalewicz,

J. D. Schaffer, H.-P. Schwefel, D. B. Fogel & H. Kitano (Eds.), Proceedings of the

First IEEE International Conference on Evolutionary Computation (ICEC'94),

Orlando, FL, USA, 579-584.

80

Karaboga, D., 2005. An Idea Based on Honey Bee Swarm for Numerical

Optimization, Technical Report TR06, Erciyes University, Engineering Faculty,

Computer Engineering Department.

Karaboga, D. and Basturk, B., 2007. A Powerful and Efficient Algorithm for Numerical

Function Optimization: Artificial Bee Colony (ABC) Algorithm, Journal of Global

Optimization, 39, 459-471.

Karaboga, D. and Basturk, B., 2008. Artificial Bee Colony (ABC) Optimization Algorithm

for Solving Constrained Optimization Problems, Adv Soft Comput 4529, 687–697.

Karaboga, D. and Akay, B., 2009. A comparative Study of Artificial Bee Colony

Algorithm, Applied Mathematics and Computation, 214, 108-132.

Kaveh A. and Talatahari S., 2009. Size Optimization of Space Trusses Using Big Bang-

Big Crunch Algorithm, Computers and Structures, 87, 1129-1140.

Kennedy, J. and Eberhart, R.C., 1997. A Discrete Binary Version of the Particle Swarm

Algorithm, Proceedings of the World Multi-Conference on Systemic, Cybernetics

and Informatics, NJ, USA.

Khot, N.S. and Berke, L., 1984. Structural Optimization Using Optimality Criteria

Methods, New Directions in Optimum Structural Design, E. Atrek, R.H. Gallagher,

K.M. Ragsdell, O.C. Zienkiewicz, (Eds), John Wiley, New York.

Kicinger, R., Arciszewki, T. and Jong, K.D., 2005. Evolutionary computation and

Structural Design: A Survey of The State-of-the-art, Computers and Structures,

83,1943–1978.

Kirkpatrick, S., Gelatt, C., and Vecchi, M., 1983. Optimization by Simulated Annealing,

Science, Vol. 220, 4598, 671-680.

Kirsch, U., 1982. Optimal Design Based on Approximate Scaling, J. Struct. Div., ASCE

108, 888-910.

Koohestani, K. and Kazemzadeh, A.S., 2009. An Adaptive Real-Coded Genetic Algorithm

for Size and Shape Optimization of Truss Structures, The First International

Conference on Soft Computing Technology in Civil, Structural and Environmental

Engineering, Civil-Comp Press, Stirlingshire, UK.

Lee, K.S. and Geem, Z.W., 2004. A New Structural Optimization Method Based on The

Harmony Search Algorithm, Computers and Structures, 82, 781-798.

Lee, K.S. and Geem, Z., 2005. A New Meta-Heuristic Algorithm for Continuous

Engineering Optimization: Harmony Search Theory and Practice, Computer

Methods in Applied Mechanics and Engineering, 194, 36-38, 3902-3933.

Lee, K.S., Geem, Z.W., Lee, S.-H. and Bae, K.W., 2005. The Harmony Search Heuristic

Algorithm for Discrete Structural Optimization, Engineering Optimization, 37, 663-

684.

81

Lemmens, N., Jong, S., Tuyls, K. and Nowe, A., 2007. A Bee Algorithm for Multi-Agent

Systems: Recruitment and Navigation Combined, Proceeding of ALAG 2007, an

AAMAS’07 workshop, Honolulu, Hawaii.

Leu, L. J. and Huang, C.W., 2000. Optimized Design of Two Dimensional Structures

Using a Genetic Algorithm, J. Struct. Engrg., 5, 551-559.

Li, L.J., Huang, Z.B. and Liu, F., 2009. A Heuristic Particle Swarm Optimization Method

for Truss Structures with Discrete Variables, Computers and Structures, 87, 435-

443.

Li, L.J., Huang, Z.B., Liu, F. and Wu, Q.H., 2007. A Heuristic Particle Swarm Optimizer

for Optimization of Pin Connected Structures, Computers and Structures, 85 (7-8),

340-349.

Medina, A.J.R., Pulido, G.T. and Torres, J.G.R., 2009. A Comparative Study of

Neighbourhood Topologies for Particle Swarm Optimizers, Proceedings of the

International Joint Conference on Computational Intelligence, Funchal, Madeira,

Portugal.

Michalewicz, Z., 1994, 1994. Genetic Algorithms + Data Structures = Evolution

Programs, 2nd, Extended ed., Springer-Verlag New York, Inc., New York.

Michalewicz, Z. and Attia, N.F., 1994. Evolutionary Optimization of Constrained

Problems. In A. V. Sebald & L. J. Fogel (Eds.), Proceedings of the Third Annual

Conference on Evolutionary Programming, San Diego, CA, USA, 98-108.

Nanakorn, P. and Meesomklin, K., 2001. An Adaptive Penalty Function in Genetic

Algorithms for Structural Design Optimization, Computers and Structures, 79,

2527-2539.

Patnaik, S.N., Guptill, J.D. and Berke, L., 1993. Merits and Limitations of Optimality

Criteria Method for Structural Optimization, NASA Technical Paper 3373.

Pedersen, M.E., 2010. Good Parameters for Particle Swarm Optimization, Luxembourg:

Hvass Laboratories.

Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S. and Zaidi, M. 2006. The Bees

Algorithm, a Novel Tool for Complex Optimisation Problems. Proceedings of the

2nd International Virtual Conference on Intelligent Production Machines and

Systems (IPROMS 2006), Oxford, Elsevier, 454-459.

Rajeev, S. and Krishnamoorthy, C., 1992.Discrete Optimization of Structures Using

Genetic Algorithms, Journal of Structural Engineering, 118, 1233-1250.

Ringertz, U.T., 1988. On Methods for Discrete Structural Constraints, Engineering

Optimization, 13, 47-64.

Saka, M.P., 2007. Optimum Design of Steel Frames using Stochastic Search Techniques

Based on Natural Phenomena, A Review Civil Engineering Computations:

Tools and Techniques Saxe-Coburg Publications.

82

Schmit, L.A., 1960. Structural Design by Systematic Synthesis, Proceedings of the Second

Conference on Electronic Computation, ASCE, New York.

Schwefel, H.-P., 1981, Numerical Optimization of Computer Models, John Wiley & Sons,

Chichester, UK.

Sextos, A.G. and Balafas, G.K., 2011. Using the New Sap2000 Open Application

Programming Interface to Develop an Interactive Front-End for the Modal

Pushover Analysis of Bridges, 3rd ECCOMAS Thematic Conference on

Computational Methods in Structural Dynamics and Earthquake Engineering,

Corfu, Greece.

Shi, Y. and Eberhart, R., 1998. A Modified Particle Swarm Optimizer. Proceedings of the

International Conference on Evolutionary Computation, 69–73.

Storn, R. and Price, K., 1997. Differential Evolution – A Simple and Efficient Heuristic for

Global Optimization Over Continuous Spaces, Journal of Global Optimization, 11,

341-359.

Tirro, F., 1977, Jazz: A History, W. W. Norton and Company.

Tunchan, C., 2009. Particle Swarm Optimization Approach to Portfolio Optimization,

Nonlinear Analysis Real World, 10, 2396-2406.

Venkayya, V. B., Khot, N.S., and Berke, L., 1973. Application of Optimality Criteria

Approaches to Automated Design of Large Practical Structures, Proceedings of the

2nd Symposium on Structural Optimization, AGARD-CP-123, 3-1–3-19.

Venkaya, V.B., Knot, N.S. and Reddy, V.S., 1968. Optimization of Structures Based on

the Study of Strain Energy Distribution, Proceedings of the Second Conference on

Matrix Methods in Structural Mechanics, WPAFB, AFFDL-TR-68-150.

Wang, X., Gao, X.Z. and Ovaska, S.J., 2009. Fusion of Clonal Selection Algorithm and

Harmony Search Method in Optimization of Fuzzy Classification Systems,

International Journal of Bio-Inspired Computation, 1, 1–2, 80–88.

Wu C. Y. and Chow P.-T., 1995. Steady State Genetic Algorithms for Discrete

Optimization of Trusses, Computers and Structures, 56, 979-991.

Yang, X.-S., 2009. Firefly Algorithms for Multimodal Optimization. Proceedings of the 5th

International Conference on Stochastic Algorithms: Foundations and Applications,

Springer-Verlag, Sapporo, Japan.

Yang X.-S. and Deb S., 2009, Cuckoo Search via Levy Flights. Nature and Biologically

Inspired Computing, 2009. NaBIC 2009, World Congress on, 210-214.

Yeniay, O., 2005. Penalty Function Methods for Constrained Optimization with Genetic

Algorithms, Math. Comput. Applic., 10, 45-56.

Honey Bee Biology, http://honeybee.tamu.edu. Texas A&M University. Accessed, 2 June

2010.

http://honeybee.tamu.edu/

83

Ministry of Agriculture and Lands of British Colombia, Apiary Fact Sheets.

http://www.al.gov.bc.ca., Accessed 2 June 2010.

Mathworks MATLAB, http://www.Mathworks.com.

Yarpiz Metaheuristics. http://www.yarpiz.com/category/metaheuristics.

Csi Computers and Structures Inc. http://www.csiamerica.com/products/spa2000.

Wikipedia research tool. http://www.wikipedia.fr.

http://www.al.gov.bc.ca/
http://www.mathworks.com/
http://www.yarpiz.com/category/metaheuristics
http://www.csiamerica.com/products/spa2000
http://www.wikipedia.fr/

84

CURRICULUM VITAE

My name is Patrick Jean de Dieu Ouedraogo, I was born in Port-Bouët in1991 and I

am from Burkina Faso. I have completed my previous degrees in Ouagadougou my home

town, in Ecole Supérieure Polytechnique de la Jeunesse, where I got my bachelor in 2014,

then I came to Karadeniz Technical University in Trabzon to pursue my master degree as a

Turkish government scholarship holder. I studied Turkish language during one year before

I start civil engineering courses. I also spend one semester in Ruhr University Bochum, in

Germany with the Erasmus exchange program. Beside English and Turkish, I also speak

French and Moore, my mother tongue. Now I am willing to publish some articles in

collaboration with my thesis supervisor.

