
KARADENİZ TECHNICAL UNIVRSITY

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCE

COMPUTER ENGINEERING GRADUATE PROGRAM

QUALITY OF SERVICE FOR IETF 6T�SH PROTOCOL

MASTER THESIS

D�l�ara İBRAHİMOVA

MAY 2018
TRABZON

KARADENİZ TECHNICAL UNIVERSITY

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

Supervisor

The Date of Submission
The Date of Examination

/ /
/ /

Trabzon

:

This thesis is accepted to give the degree of

By
The Graduate School of Natural and Applied Sciences at

Karadeniz Technical University

:
:

III

FOREWORD

This thesis is written as the completion of the master of Computer engineering, at

Karadeniz Technical University. The subject of this thesis is focused on implementing

three different qualities of service mechanisms in 6TiSCH.

I would like to express my gratitude to my master thesis Asst. Prof. Sedat GÖRMÜŞ.

without his help, support, patience this work would not be completed. I am also grateful for

my classmate Hakan AYDIN for his valuable help.

I would also like to thank my family and friends for being there for me in every time

that I face challenges during the preparation of my thesis. I could not do it without them

and I express my deepest gratitutes to them.

 Diliara IBRAHIMOVA

Trabzon 2018

IV

THESIS STATEMENT

I declare that this Master Thesis, I have submitted with the title “Quality of Service

for IETF 6TiSCH Protocol” has been completed under the guidance of my Master

supervisor Asst. Prof. Sedat GÖRMÜŞ. All data used in this master thesis are obtained by

simulation and experimental work done as part of this work in our research labs. All

referred information used in the thesis has been indicated in the text and cited in a

reference list. I have obeyed all research and rules during my research, and I accept all

responsibilities if proven otherwise. 25/05/2018

V

TABLE OF CONTENTS

Page No

FOREWORD ... III

THESIS STATEMENT ... IV

TABLE OF CONTENTS ... V

ÖZET .. IX

LIST OF FIGURES .. X

LIST OF TABLES ... XII

LIST OF ABBREVEATIONS ... XIII

1. INTRODUCTION ... 1

2. OVERVIEW .. 4

2.1. WSN ... 5

2.2. Application Areas of WSN ... 6

2.3. IEEE 802.15.4 Standard ... 7

2.3.1. The Network Model .. 8

2.3.1.1. Node Types ... 8

2.3.1.2. Network Topologies ... 8

2.3.2. The IEEE 802.15.4 Architecture .. 9

2.3.2.1. IEEE 802.15.4 PHY Layer ... 10

2.3.2.2. IEEE 802.15.4 MAC Layer .. 12

2.3.2.2.1. CSMA/CA .. 13

2.3.2.2.2. Acces Points.. 14

2.3.2.2.3. The Network Establishing .. 15

2.3.2.2.4. Message Transmit ... 17

2.4. New Developments for MAC Layer Design .. 17

VI

2.4.1. IEEE 802.15.4 TSCH ... 17

2.5. Data Link Layer .. 19

2.5.1. 6LoWPAN Protocol.. 19

2.5.2. 6top ... 21

2.5.2.1. Centralized Scheduling ... 22

2.5.2.2. Distributed Scheduling ... 23

2.5.2.2.1. Flows .. 24

2.5.2.2.2. Cell Types ... 25

2.5.2.2.2.1. A Hard Cell ... 25

2.5.2.2.2.2. A Soft Cell .. 25

2.6. Network Layer .. 26

2.6.1. 6TiSCH ... 26

2.6.1.1. The 6tisch Stack .. 27

2.6.2. RPL ... 27

2.6.2.1. Messages in the RPL. ... 28

2.6.2.2. The Process of Constructing the DODAG Graph for RPL............................... 29

2.6.2.3. RPL Security. ... 30

2.7. Application Layer ... 31

2.7.1. IETF CoAP ... 31

2.7.2. CoAP Features .. 31

2.8. Related Work .. 35

3. QUALITY OF SERVICE .. 37

4. IMPLEMENTING QoS ALGORITHMS TO 6TISCH 40

4.1. Development Platform .. 40

4.1.1. Contiki OS .. 40

4.1.1.1. The Contiki’s Kernel Architecture ... 46

4.1.1.2. The Power Saving in Contiki. ... 47

VII

4.1.1.3. Services and Libraries in Contiki OS ... 48

4.1.1.4. Communication in Contiki ... 48

4.1.1.5. The Loosely Coupled Communication Stack in Contiki. 49

4.1.1.6. Protothread .. 49

4.1.2. Cooja Simulator .. 51

4.2. System Model ... 53

4.2.1. Greedy Priority Queuing... 55

2.1.2. WFQ…… .. 57

4.2.2. Fairness ... 59

4.2.3. Jain’s Index ... 60

5. EXPEREMIMENTAL RESULTS ... 61

6. CONCLUSION AND FUTURE WORK ... 65

7. REFERENCES ... 66

CURRICULUM VIATE

VIII

Master Thesis

SUMMARY

QUALITY OF SERVICE FOR IETF 6TiSCH PROTOCOL

Diliara Ibrahimova

Karadeniz Technical University

The Graduate School of Natural and Applied Sciences

Computer Engineering Graduate Program

Supervisor: Assoc. Prof. Sedat GÖRMÜŞ

2018, 86 Pages

Internet of Things (IoT) has become a hot research topic recently. There are many

research efforts aiming to tackle the challenges posed by IoT ranging from new protocol

developments to Fog Computing for reducing the impact of IoT traffic on the Internet

backbone. 6TiSCH is a new protocol being standardized by Internet Engineering Task

Force (IETF) that aims to address many challenges that are inherited by IoT due to use of

low power wireless devices. In this paper, analyze and report preliminary performance

results of several well-known Quality of Service (QoS) routines for the 6TiSCH protocol.

The QoS mechanisms are realized using the available 6TiSCH protocol stack within

Contiki Operating System.

Key Words: Wireless Sensor Networks, Internet Of Things, IEEE, IETF, 6LoWPAN,

6TiSCH, QoS, Fairness, WFQ, GPQ.

IX

Yüksek Lisans Tezi

ÖZET

IETF 6TiSH PROTOKOLÜNDE HİZMET KALİTESİ

Diliara Ibrahimova

Karadeniz Teknik Üniversitesi

Fen Bilimleri Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Danışman: Dr.Öğr.Üyesi Sedat GÖRMÜŞ

2018,86 Sayfa

Nesnelerin İnterneti günümüzün popüler araştırma konularından biridir. Bu

teknolojinin internet omurgası üzerine bindireceği ekstra veri trafiğinin oluşturacağı

zorlukları ortadan kaldırmaya yönelik olarak yeni protokol geliştirilmesinden kenar

hesaplamaya (Fog-Edge Computing) kadar birçok alanda araştırmalar yürütülmektedir.

Internet Engineering Task Force (IETF) 6TiSCH protokolü, düşük güçlü kablosuz

aygıtların Nesnelerin İnternetinde kullanılması ile birlikte ortaya çıkan problemlerin bir

çoğunu ortadan kaldırmayı hedefleyen bir protokoldür. Bu tezde, literatürde daha önce

uygulanmış üç servis kalitesi (Quality of Service - QoS) mekanizmasını 6TiSCH

protokolü için uygulayarak bu mekanizmaların performansı irdelenmiştir. Bu çalışmadaki

servis kalitesi mekanizmaları tarafımızdan Contiki işletim sistemi için geliştirilen 6TiSCH

protokol yığınına entegre edilerek test edilmiştir.

Anahtar Kelimeler: Kablosuz Duyarga Ağlar, Nesnelerin İnterneti, Hizmet kalitesi,

IEEE, IETF, 6LoWPAN, 6TiSCH, WFQ, GPQ.

X

LIST OF FIGURES

Page No

Figure 1. The proposed protocol model for WSN ... 4

Figure 2. WSN Architecture .. 5

Figure 3. The seven-layer ISO-OSI and IEEE 802 standards models. 7

Figure 4. IEEE 802.15.4 Topologies. ... 9

Figure 5. LR-WPAN device architecture .. 10

Figure 6. Physical Layer Operating Frequency Bands .. 11

Figure 7. PHY Layer Packet Structure .. 12

Figure 8. CSMA/CA mechanism... 14

Figure 9. Network establishing .. 16

Figure 10. Messages transmitting .. 17

Figure 11. Diagram of a standard TSCH timeslot and example slotframe. 18

Figure 12. IPv6 network with a 6LoWPAN mesh network .. 20

Figure 13. 6top functionalities ... 22

Figure 14. The centralized scheduling ... 23

Figure 15. The distributed scheduling ... 24

Figure 16. IETF 6tisch: Routing over 802.15.4e MAC ... 25

Figure 17. 6TiSCH IPv6-enabled protocol stack for LLNs .. 27

Figure 18. RPL ... 28

Figure 19. Abstract Layering of CoAP .. 32

Figure 20. The CoAP message Header (4 bytes),.. 32

Figure 21. DTLS in Protocol Stack ... 34

Figure 22. Parametrs of QoS ... 38

Figure 23. Contiki OS network stack .. 41

Figure 24. Contiki network stack .. 43

Figure 25. The Contiki OS: the system programs are partitioned into core services and

loaded programs.. 44

Figure 26. A structure of a process in Contiki ... 45

Figure 27. Example of process. “Hello world” ... 46

Figure 28. Example of sealed code of protothread .. 50

XI

Figure 29. The interface of Cooja simulator.. 52

Figure 30. Comparison of simulators for wireless sensor networks.................................... 53

Figure 31. Simulation Network ... 54

Figure 32. Buffer Priorities .. 55

Figure 33. Priorities based on TCP/UDP port ... 56

Figure 34. Scheme of using GPQ QoS mechanism ... 57

Figure 35. WFQ priority queuing. ... 58

Figure 36. Scheme of using WFQ QoS mechanism .. 59

XII

LIST OF TABLES

Page No

Table 1. The comparison of the basic characteristics of IEEE 802.15.4 7

Table 2. Characteristics of PHY layer ... 10

Table 3. TSCH primitives .. 16

Table 4 Parameters used in the study. ... 55

Table 5. GPQ average amount packets .. 62

Table 6. FIFO average amount packets ... 62

Table 7. WFQ average amount packets ... 63

Table 8. Jain's index .. 63

XIII

LIST OF ABBREVEATIONS

6LowPAN IPv6 over Low power Wireless Personal Area Networks

6TiSCH IPv6 over the TSCH mode of IEEE 802.15.4e

AES Advanced Encryption Standard

BBR Backbone router

CoAP Constrained Application Protocol

CSMA/CA Carrier Sense Multiple Access / Collision Avoidance

DAO Destination Advertisement Object

DIO DODAG Information Object

DODAG Destination Oriented Directed Acyclic Graph

EB Enhanced Beacon

IoT Internet of Things

IEEE Institute of Electrical & Electronic Engineers

IETF Internet Engineering Task Force

IP Internet Protocol

IPHC IP Header Compression

IPv6 Internet Protocol Version 6

KB Kilobyte

LLN Low-Power and Lossy Networks

LowPAN Low-Power Wireless Personal Area Network

MAC Media Access Control

OF Objective Function

PAN Personal Area Network

PHY Physical Layer

PKC Public Key Cryptography

PSK Pre-Shared Key

RAM Random Access Memory

ROM Read Only Memory

RPL IPv6 Routing Protocol for Low-Power and Lossy Networks

RFD Reduced Function Device

Rx Received

XIV

TCP Transmission Control Protocol

TSCH Time Slot Channel Hopping

Tx Transmit

TLS Transport Layer Security

UDP User Datagram Protocol

WSN Wireless Sensor Network

1. INTRODUCTION

One of the main components of the modern world is information and computer

networks. Power consumption of a network is defined by the network size and the ability

of protocols to effectively use the inherent capabilities. Network capabilities are used in

many fields of activity, for example, in Wireless Sensor Network (WSN) monitoring and

management of objects, collection, transfer and primary processing of data. In this

scenario, network nodes can have significant differences in computing, communication and

memory resources. One of the main challenges faced by WSN is to integrate different

devices with different capabilities and resources to form a functioning network. A decisive

role in this is played by network protocols i.e. - the protocol stack. A striking example of

this is the TCP/IP protocol stack, which is the basis of the vast majority of modern

networks of different levels, scale, and purpose. The largest and most used of them is the

Internet, which provides global communications and services. The most important factor in

TCP/IP’s success is that standard is simple to use and provides a flexible medium for

different application scenarios. The Internet already includes several billions of nodes and

is on the verge of moving to a new version of the IP namely IPv6 protocol, which provides

a more flexible addressing scheme and a decent amount of address space. The widespread

introduction of Internet enabled automation systems has shown how effective is IPv6

networking. This type of applications is based on branched networks of sensors,

controllable nodes, and mechanisms. Even for a small automated system, the number of

IPv6 enabled small objects can exceed several hundreds. In such a scenario, nodes

generally are wireless devices connecting to each other using narrow band radios creating a

WSN. With the introduction of new application areas, WSNs are increasingly employed to

automate various aspects of daily lives. Applications such as Smart Grid, Smart City and

Smart Health require low power operations with limited energy resources. Often such

applications require operating using batteries. Furthermore, nodes used in WSN

applications connect to each other and to the Internet creating a connected Internet of

Things (IoT) [1]. IoT devices are expected to meet stringent power budgets with high

reliability and need to operate autonomously without user interaction.

The working cycle of any WSN can be categorized into 3 phases [2]. The first phase

is the birth which includes initial organization, optimization and configuration. The second

2

phase is life which includes detection, sensing, data transmission and reporting. And

the final phase is death when the failure occurs within the WSN in more than one device

lowering the Quality of Service (QoS).

One of the most popular physical layer standards for WSNs is the IEEE 802.15.4

standard [3]. It is considered as the de-facto physical layer standard for the IoT stack. The

IEEE 802.15.4 integration with the upper layers (such as 6LowPAN [4], RPL [5] and

CoAP [6]) has not been inspected the umpteen issues, and they are not solved yet. The

802.15.4 has been extended with a Time Slotted Channel Hopping (TSCH) Medium

Access Control named as 802.15.4-e TSCH [7] to support scenarios such as Industrial

Internet that requires high reliability and deterministic delay. While, deterministic delay

and reliability are the primary design goals of TSCH MAC, the 802.15.4e standard does

not explicitly indicate how QoS mechanisms are to be implemented within TSCH context

[8].

The basic principle of IEEE802.15.4e TSCH is that the nodes in the Low-power

Lossy Network (LLN) communicate by following a schedule. A Time Division Multiple

Access (TDMA) [9] schedule describes each node’s behavior in each time slot: within the

time-slot the node can be active and transmitting, or the node can be listening for receive,

or it can be in inactive mode turning off its radio. The way this schedule is constructed

dictates the amount of traffic that the LLN can produce and hence the latency of the

network. The schedule also indirectly controls the amount of energy each node consumes.

Recently, 6TiSCH is being developed at the IETF to enable IPv6 routing over the TSCH

mode of the IEEE802.15.4e standard [10]. 6TiSCH [11] presents an architecture in which

low-power wireless devices form a multi-hop LLN. This LLN connects to the traditional

Internet through one or more LLN Border Routers(LBRs).

The main aim of 6TiSCH is to evolve a standard approach to manage the TSCH

schedule and match it in opposition to the traffic needs in the network [12]. 6TiSCH

protocol dynamically assume bandwidth resources to the nodes in the network according to

the application requirements [12]. 6TiSCH does not specify explicit algorithms for QoS.

Quality-of-Service is a set of requirements to provide better networking services over

current technologies. They are used by the network while moving a packet stream from the

source to the destination.

In this study, we implement several QoS algorithms for 6TiSCH. The proposed

mechanisms aim to create fair queuing for a finite capacity queue with time-stamp index

3

and service priority where the smart devices performance with varying traffic conditions

are analyzed. Based on the analytical model and taking into account such important

parameters of performance measures such as mean queue length, packet loss, and service

delay, we conduct various simulation experiments using the Cooja emulator of Contiki OS

[14].

This dissertation is organized as follows. In Section 2, each layer of WSN protocol

stack is briefly discussed and also the section contains a review of new developments for

MAC layer. QoS is briefly discussed in Section 3. Section 4 discusses development

platform and system model, and implementing QoS algorithms in 6tisch. In Section 5, the

conclusion is presented and finally, in Section 6, conclusion and future research are

presented.

2. OVERVIEW

At the end of the twentieth century, Kristofer Pister, a professor of IT science from

the University of CA, USA, formulated the concept of "Smart Dust" [13] - a system of an

arbitrary finite set of electromechanical motes capable of exchanging information in an

independent spatial configuration. The implementation of this concept in practice led to the

emergence of wireless sensor networks (WSN) [14].

 The architecture for WSN is created with the following protocol stack model. The

protocol model is composed of 5 layers as shown in Figure 1.

The main aim of the power management, mobility management and task

management planes is to optimize the network performance by collecting data across

different layers.

A step-by-step description of each layer of the WSN protocol stack is briefly

discussed in this section. Furthermore, the section includes a review of new developments

in WSN research where the main aim is to bring Internet connectivity to small devices for

applications such as Smart Grid and Industrial automation.

Figure 1. The proposed protocol model for WSN

5

2.1. WSN

Wireless sensor networks are broadly used for automation and control systems in

modern computing. Interacting with control devices, the sensors create a distributed, self-

organizing network for collecting, processing, and transmitting information. The

architecture of WSN is given in Figure 2. The concept of a "self-organizing network" is

defined as a system in which devices "know how" to find each other and create a network

in the event of a failure of any of the nodes. The technology of sensor networks does not

require expensive cables for the construction of the network with auxiliary equipment.

Since the sensor network, supports the main interfaces and protocols that are currently in

use, it is possible to integrate it into an existing network without a large-scale

reconstruction. Small low-power sensors are used in hard-to-reach places covering large

deployments areas. Development and introduction of sensory networks in all spheres of

life will provide a huge number of benefits to humanity. There are several of unresolved

challenges in WSNs, but the deployment and ease of use advantages of WSNs make them

attractive to companies requiring sensors in their applications.

Figure 2. WSN Architecture

6

There are several standardization efforts in the field of WSNs tackling challenges at

each layer of the protocol stack. Institute of Electrical and Electronics Engineers (IEEE),

the International Telecommunication Union (ITU), the Internet Engineering Task Force

(IETF) and the International Organization for Standardization (ISO) are just a few of such

organizations that aim to bring standard solutions to WSNs.

2.2. Application Areas of WSN

One of the first areas of WSN application began in the military sphere for

surveillance in a combat situation. Nowadays using wireless sensor networks became

popular in many areas of human life, such as industrial monitoring, health, defense,

monitoring environment, control of the movement of objects, etc. Such flexible wireless

networks can be deployed in challenging environments. The steady downward trend in the

cost of the organization WSNs and improving their operational parameters make it possible

to position the WSN as highly effective and promising solutions for telemetry data

collection systems, remote diagnostics, process monitoring and information exchange. The

WSN technology is implemented in different tasks and applications, such as:

 Monitoring and detection of smoke, fires of forests;

 Seismic monitoring and identification of potential tension in tectonic plates;

 Status monitoring and remote control of the perimeter of objects in security

systems;

 Environmental monitoring (identification and forecasting of natural disasters);

 Automatic remote control settings with radioactive, gas - storage of oil and other

potentially dangerous industrial facilities;

 Monitoring of traffic and transport infrastructure (bridges, crossings, overpasses,

etc.);

 Monitoring of buildings and structures;

 Site monitoring, notification, and organization of reliable communication during

rescue operations;

 Monitoring of industrial facilities and characteristics technological processes;

 Monitoring of medical and biological parameters of living organisms.

7

2.3. IEEE 802.15.4 Standard

IEEE 802.15.4 [15] is the low-rate and low-duty cycle standard that determines the

physical layer and medium access control within the network 7-level OSI model (Figure

3).

Figure 3. The seven-layer ISO-OSI and IEEE 802 standards models.

The network and application layers are left undefined. The IEEE 802.15.4 standard is

aimed at creating networks for managing and monitoring autonomous devices with low

power consumption. It can be used to build a wide variety of networks of various

topologies with a packet or streaming information, as well as various levels and parameters

of security. The standard is supported by the IEEE 802.15 workgroup.

Table 1. The comparison of the basic characteristics of IEEE 802.15.4

802.11g (Wi-Fi)

WLAN

802.15.1

(Bluetooth) WPAN
802.15.4 LR-WPAN

Range 100 m 10-100 m 10 m

Raw Data Rate 11 Mbps 1 Mbps <=0,25 Mbps

8

Table 1. (continued)

Power

Consumption
Medium Low Ultra low

Cost/Complexity Up Low Ultra low

Table 1 shows a comparison of the basic characteristics of low-rate wireless personal

networks IEEE 802.15.4 (LR-WPAN), with the WLAN standard and the WPAN standard.

As can be seen from the table, IEEE 802.15.4 low-rate networks are designed for

applications where using Wi-Fi is too expensive and there is no need for the performance

that Bluetooth has.

2.3.1. The Network Model

2.3.1.1. Node Types

The wireless network is built on the foundations of the IEEE 802.15.4 standard and

includes two types of physical devices as shown in Figure 4: The Full Function Devices

(FFDs) and devices with light functions (RFD-Reduced-Function Device) [16]. A FFD acts

as a Personal Area Network (PAN) coordinator [17] or a coordinator, or just as end node

(device). An RFD is a physical device, which isn't able of serving as a PAN coordinator or

a coordinator. An RFD is supposed to work for applications that perform simple tasks, for

instance, a passive infrared sensor or a light switch. An RFD does not have the necessity to

transmit a large number of data packets and only associates with a one FFD at a time. For

implementing RFD minimal resources and memory capacity is needed.

2.3.1.2. Network Topologies

The IEEE 802.15.4 standard provides guidance on possible network types, some of

them are the star network topology and the peer-to-peer network topology. Figure 4 shows

a network diagram with both of them. Any network, regardless of topology, should have

one coordinator. Each device in the network uses a unique 64-bit identifier, which is

9

determined by the network coordinator. Also, in some cases, a 16-bit identifier within a

restricted network can be used.

Networks with a star topology are great for covering small areas where the

communication is set between devices and a single central controller, the referred the PAN

coordinator. In such a network, all devices interact only with the PAN coordinator. All

devices in a network have unique addresses, called as extended addresses. During the

association process, a short address also can be assigned to devices. Depending on the

target network a device will use the extended address inside PAN use the short address.

RFD devices do not need the sending of the extended and short address fields. The PAN is

often mains powered, while the remaining devices are generally battery powered.

Figure 4. IEEE 802.15.4 Topologies.

2.3.2. The IEEE 802.15.4 Architecture

The IEEE 802.15.4 architecture is designed with a number of layers in order to

simplify the standard. In Figure 5 these layers are shown as blocks in a graphical

representation. Every layer is in control of the strict set of standard's functions and

10

proposes services to the higher layers. Use of interfaces between layers is necessary to

determine the logical links which are represented in IEEE 802.15.4 standard.

Figure 5. LR-WPAN device architecture

2.3.2.1. IEEE 802.15.4 PHY Layer

PHY layer includes specifications which control the radio channel and packet data

flow. Table 2 shows basic characteristics of PHY layer. The Carrier Sense Multiple Access

(CSMA) [20] with Collision Avoidance (CA) is used by the PHY layer for having access

to the radio channel.

Table 2. Characteristics of PHY layer

PHY

(MHz)

Frequency

band

(MHz)

Spreading parameters Data parameters

Chip

(kchip/s)
Modulation

Bite

rate

(kb/s)

Symbol

rate

(ksymbol/s)

Symbols

868/915
868-868.6 300 BPSK 20 20 Binary

902-928 600 BPSK 40 40 Binary

11

Table 2. (continued)

2450
2400-

2483.5
2000 O-QPSK 250 62.5

16-ary

Orthogonal

There are some features of the IEEE 802.15.4 PHY layer:

 Activation and Deactivation of radio transceiver,

 Energy Detection (ED),

 Link Quality Indication (LQI),

 Channel Selection,

 Clear Channel Assessment (CCA),

 Transmission or Reception of packets over physical medium [18].

The IEEE 802.15.4 standard identifies three different frequency bands which consist

27 channels are spread across them, as shown in Figure 6 [19]. The 868.3MHz frequency

band with 300kHz bandwidth and 0,6MHz channel space is used in Europe; the 902-

928MHz frequency band 600kHz bandwidth and with 2MHz channel space is used in

America; the 2,4-2,4835GHz frequency band with 2000kHz bandwidth and 5MHz channel

space is used in worldwide [20].

Figure 6. Physical Layer Operating Frequency Bands

Four different frames (Data, Acknowledgement, Beacon and MAC Command) are

defined by PHY layer. Each of them has a unique function.

PHY Packet Fields is shown in Figure 7 and contains

12

 Synchronization header. (SHR) is a preamble sequence (4 octets) – The function

of this part is synchronizing. The receiver is synchronizing the incoming signal and a start

of the frame delimiter, which signals the end of the preamble

 Start of Packet Delimiter (1 octet)

 PHY – Header (1 octet) – It carries the frame length byte, that indicates the PSDU

length

 PSDU (0 to 1016 bits) – Data field

Figure 7. PHY Layer Packet Structure

2.3.2.2. IEEE 802.15.4 MAC Layer

The data service and the management service constitute the Medium Access Control

sublayer. The MAC sublayer provides a beacon management and channel access.

Providing hooks for implementing application-appropriate security mechanisms, GTS

management, frame validation, association/disassociation, acknowledged frame delivery,

are also features of the MAC sublayer. The CSMA-CA algorithm is used in the IEEE

802.15.4 standard. The CSMA-CA algorithm requires checking the channel before starting

transmission in order to avoid collisions with the current transmission from another

network device.

Features of IEEE 802.15.4 MAC Layer

 The MAC Layer is a simple and flexible protocol

 Cost is extremely low

 The implementation of MAC layer is ease

 Short range operation and reliable data transfer

 The MAC layer has very low power consumption

13

2.3.2.2.1. CSMA/CA

The probability of hidden terminal collision becomes higher when the transmitted

packet size is large. This problem is addressed by a mechanism called as Collision

Avoidance (CA). Carrier Sense Multiple Access With Collision Avoidance (CSMA/CA)

[21] is a MAC protocol in which:

 The virtual carrier sense mechanics is used

 A station that is about to start transmitting sends a jam signal

 After a long wait for all stations that can send a jam signal, the station starts

transmitting the frame

 If during transmission the station detects a jam signal from another station, it stops

the transmission for a random period of time and then retries

The slotted CSMA/CA algorithm uses a Back-off Period (BP). BP is basic time unit

and it is equal to 80 bits that is 0,32ms. The operations which can occur are channel access,

back-off count and CCA. Each of them can occur at the boundary of a BP (that must be

aligned with the super frame time slot boundaries) [22].

The difference between CSMA and CSMA/CA is the transmission of two reservation

packets namely RTS and CTS. A node, ready to send a frame, listens to the communication

medium. In the absence of a carrier, it sends a short RTS request signal and a certain time

waits for a CTS from the destination. In the absence of an answer (the possibility of

collision is implied), the transfer attempt is postponed, when a response is received, a

frame is sent to the medium. When a broadcast request is sent (RTS contains address 255),

the CTS is not expected. The method does not completely avoid collisions, but it

considerably reduces the probability of collisions. The method is characterized by the

simplicity and low cost of access chains. The CSMA/CA mechanism is illustrated in

Figure 8 [23]. Generally, the operation of exchanging four messages in CSMA/CA is

named as four-way handshaking.

14

Figure 8. CSMA/CA mechanism

Avoidance of collisions is used to make the performance of CSMA higher by giving

the network to a single transmitter. This function is assigned to the jam signal in

CSMA/CA [22]. Improving the efficiency is achieved by reducing the likelihood of

collisions and repeated attempts to transfer. But waiting for the jam signal creates

additional delays, so with other methods more easy to achieve better results. Avoidance of

collisions is useful in practice in situations where timely detection of a collision is

impossible - for example, when using radio transmitters.

In the best case, when all stations in the system can hear each other, CSMA-CA can

guarantee a 36% of channel utilization.

2.3.2.2.2. Acces Points

Communication between network protocols is exchanged via Service Access Point

(SAP). The MAC layer provides two services for communication with the upper layers:

 MLME - MAC Layer Management Entity

 MCPS - MAC common part sublayer

There are 4 types of messages:

 request - request from the top layer to the MAC layer;

 confirm - the MAC layer response to the top layer request;

 indication - the message from the MAC layer to the top layer, which indicates the

internal event of the layer;

15

 response - is sent from the top layer to the MAC layer to complete the procedure

previously caused by the primitive indication.

2.3.2.2.3. The Network Establishing

Through the MAC layer functions, each physical device has an ability to find a

network and connect to it. When a device is on, the transceiver receives a command from

an upper layer entity to start a scan. In a case when a device cannot find the network and if

device based upon FFD, it may try to create its own network. If the network is found, the

node will attempt to connect to this network. After the device has received the permission

from the network to associate, the message is sent through the MLME-SAP to the upper

layer, and in this part the device’s 64-bit IEEE address (each network device is given a

unique serial number at the time of manufacture, which is then used for unambiguous

detection on the network among other networks in the world) changing to a right short

address according to the PAN Coordinator’s requirements. When a device wants to

separate itself from the network, it will get a Disassociate command from the PAN

Coordinator.

In order to establish the network, a PAN coordinator is needed to be selected. Each

network must have one coordinator. Figure 9 shows the network establishing, which begins

when the top layer sends the MLME-SCAN.request primitive to the MLME-MAC

Management Service or MAC Layer Management Entity, requesting an active channel

scan. For example in Table 3 TSCH primitives is shown [24].

 After the channel scan is completed, the results are sent back through the MLME-

SCAN.confirm primitive. If the results are acceptable, then the top layer selects the

identifier of the personal network and sends the MLME-START.request primitive to the

MAC layer control object.

The MLME-START.request primitive requires the MAC layer to put the identifier of

the personal network in the PIB. After this, the MAC layer sends the MLME-

START.confirm primitive to the top layer. This device becomes the coordinator of the

personal network and the network is formed.

16

Table 3. TSCH primitives

Name Request Indication Response Confirm

MLME-SET-

SLOTFRAME
8.2.19.1 - - 8.2.19.2

MLME-SET-LINK 8.2.19.3 - - 8.2.19.4

MLME-TSCH-MODE 8.2.19.5 - - 8.2.19.6

MLME-KEEP-ALIVE 8.2.19.7 - - 8.2.19.8

Attributes of the network are stored in the PIB-PAN information base. PIB, an

MLME-GET request is needed to be sent to the MAC layer with its index. To change a

meaningful MLME-SET request.

Figure 9. Network establishing

17

2.3.2.2.4. Message Transmit

To send a message to another network device, the sender application sends the

MCPS-DATA.request request to the MAC layer. The MCPS-DATA.request request

contains a message, the recipient's address, the length of messages and other parameters.

The MAC layer of the sender transmits the message over the radio channel to the recipient

MAC layer, which in response sends a delivery confirmation (Acknowledgement-ACK), if

it was requested. The MAC layer of the receiver sends a message to the top layer of

MCPS-DATA.indication, reporting the received message. Figure 10shows the process of

messages transmitting from one network device to another.

Figure 10. Messages transmitting

2.4. New Developments for MAC Layer Design

2.4.1. IEEE 802.15.4 TSCH

In 2012 the TSCH (Time-Slotted Channel Hopping) [25] was introduced. It was

designed as an amendment to the MAC layer of IEEE 802.15.4 standard. TSCH is

designed to increase the efficiency of motes synchronization. TSCH can be divided into

Time Slot and Channel Hopping parts. Time Slot is a part where time is slicing up into

slots (as shown in Fig 11).

18

Figure 11. Diagram of a standard TSCH timeslot and example slotframe [26].

A slot is a time period is intended for transmitting. The time slot’s duration is not

determined by the standard. For example, sending a maximum-length frame (for IEEE

802.15.4) takes about 4 ms, but sending ACK takes about 1 Ms. When time is sliced into

time slots the next step is coming, where time slots grouped into slot frames. Slot frames

continuously repeat time slots over time. TSCH creates a schedule, using this schedule

each node knows when it’s time to transmit, time to receive and time to sleep. For each

scheduled cell, the schedule specifies a slotOffset and a channelOffset. The channelOffset

is using for Channel Hopping. Nodes use Eq. 1 for selecting a frequency.

 (1)

where:

 F is the function which consists of a lookup table containing the set of available

channels;

 nFreq is the number of available frequencies;

 ASN is Absolute Slot Number

Time Offset

C
h

a
n

n
e

l
O

ff
s
e

t

S
L

O
T

F
R

A
M

E
T

IM
E

S
L

O
T Tx

Rx

19

The channelOffset for both is the same and it is written in their schedule, the ASN

counter is also the same, therefore they compute the same frequency. Consequently, even

with a static schedule pair of nodes hop between channels. This is called channel hopping.

TSCH creates a synchronized mesh network. Each node joins the network after it

hears a beacon from another node. TSCH network needs to have strict synchronization.

Generally, to keep track of time, each node is equipped with a real-time clock. However,

time in a node can drift in relation to the other neighboring nodes. Therefore periodical re-

synchronization with neighbor node’s clock is needed. Each node sends its own network

time to its neighbors. The synchronization is updated when a node gets a data or ACK

frame from its time source. In IEEE802.15.4 standard two mechanisms for synchronization

in TSCH network are defined [27]. These are:

 AB - Acknowledgment-Based synchronization. This method assumes transmitting

information about the difference in time between the supposed time of frame arrival and its

factual arrival time by the receiver to the sender node in acknowledgment. The sender

node is a node which synchronizes with the clock of the receiver.

 FB - Frame-Based synchronization. The principle of this method is exactly the

opposite. The computed delta is used by the receiver node for mounting its own clock. So,

the receiver synchronizes with the senders’ clock.

2.5. Data Link Layer

2.5.1. 6LoWPAN Protocol

The Internet Engineering Task Force (IETF) released the 6LoWPAN standard (IPv6

over Low-Power Wireless Personal Area Networks) in 2007 which is an open standard,

specific to the RFC 6282 (IETF) [28]. Protocol acts as an additional layer for making the

IPv6 suitable for the lower-power and lossy networks. A remarkable feature of 6LoWPAN

is that it was originally created to support low-power 2.4 GHz wireless networks built on

IEEE 802.15.4, but now this standard is realized and used in many other networks,

including wireless networks in the bands below 1 GHz, Smart Bluetooth, data transmission

over power lines (PLC) and low-power Wi-Fi networks [29].

In Figure 12 an example of an IPv6 network, including a mesh 6LoWPAN network

is showed. The uplink to the Internet is provided by an access point (AP) acting as an IPv6

20

router. In a typical configuration, several different devices are connected to the access

point, such as PCs, servers, and so on. The 6LoWPAN network connects to the IPv6

network using the edge router. A boundary router provides three actions: data exchange

between 6LoWPAN devices and the Internet (or other IPv6 networks), local data exchange

between devices in the 6LoWPAN-network and the formation and service of the radio

network (6LoWPAN-network).

Figure 12. IPv6 network with a 6LoWPAN mesh network

The IETF 6LoWPAN working group was created to address the problem of

transmitting IP data packets over IEEE 802.15.4 channels in a manner that satisfies open

standards and provides interaction with other IP channels and devices in the same way as

with IEEE802.15.4 devices.

This solution has many advantages. Each sensor in the 6loWPAN network has a

individual IPv6 address. This allows many companies to produce LR-WPAN devices that

can work together on the same network, allows them to communicate with these devices.

Each node of the sensor network is accessible from external networks by IP address. This

eliminates the need for complex gateways for each local IEEE 802.15.4 protocol, the many

21

adapters used by existing applications to communicate through these gateways, simplifies

gateway-specific authentication and security procedures.

Many well-established IP-based software tools such as ping, traceroute, SNMP can

be immediately used to network and service LR-WPAN devices. Also on the IP-based

NAT functions (address substitution), load balancing, caching can be easily implemented.

Existing models of data transmission at the program level and services based on HTTP /

XML / SOAP make it possible to simplify the development of applications for LR-WPAN

networks and unify the integration of devices into the existing corporate network using

6LoWPAN. The Routing Protocol for Low Energy and Lossy Networks (RPL) [5]

supports multiple graphs and there is the possibility of sending packets over connections

with different parameters. RPL is a protocol for low power and lossy networks. It is based

on destination oriented directed acyclic graphs (DODAG) [30]. This protocol provides

paths from the router to the receiving node, while the routers require the storage of a small

amount of overhead and routing tables containing information about the parent nodes in

DODAG. A more detail description of RPL will be given in Section 2.6.2.

2.5.2. 6top

6TiSCH Operation Sublayer (6top) is a logical link layer in the 6TiSCH architecture.

6TiSCH is discussed in more details in Section 2.6.1. As shown in Figure 13 the 6top layer

provides to the upper protocol layers management and data interfaces, it also simplifies

observing and statistics collection. The main goal of 6top is to let the bandwidth

negotiation with one-hop neighbors. Based on the bandwidth need a scheduling function

[31] in the 6 top layer will start the slots to be deleted or added.

22

Figure 13. 6top functionalities [18].

6top can be used with centralized and decentralized scheduling approaches. The

centralized approach is suggesting collecting topology and traffic requirements by a central

PCE (Path Computation Element), which create a communication schedule and through the

network transmit it to other nodes. The decentralized approach is suggesting computing

node's schedule according to local information strict by nodes.

2.5.2.1. Centralized Scheduling

The main role in centralized planning belongs to PCE-node protocol (e.g. CoAp).

Cenrtralized scheduling is shown in Figure 14. It collects the network state information and

also the traffic requirement of the nodes. Having this information help PCE to have global

view of the network and create a schedule for each node in the network. The created

schedule is then transmitted to each divece within the network. Each node in the network

periodically transmits information to the PCE. The PCE after analyzing information of all

nodes as a Management Entity (ME) creates a TSCH schedule for all network and send it

23

back to nodes [32]. While building the schedule PCE checks the QoS requirements of the

nodes in the network and assign resources to each node acording to its QoS need.

For installing a track in the network PCE can use two various approaches.There are

 PCE can commune to every node on the track individually. This approach is

easier to maintain and it can better ensure the correct track installation.

 PCE can commonly just to the source node. In addition to installing the resources

along the track, the source node uses a separate protocol. This approach minimizes the

number of control traffic between the PCE and the LLN in the network.

Figure 14. The centralized scheduling

2.5.2.2. Distributed Scheduling

The distributed scheduling is akin to creating a set of routes between nodes in the

network. Each node determines their schedule themselves by performing local processing.

Every node usually needs information from neighbor nodes to be able to determine their

position. Neighbors schedule bandwidth with each other by scheduling unassigned cells

24

i.e., soft cells. The 6top monitoring process checks performance of the scheduled cells and

reschedules the ones that perform badly.

 A protocol is required to reserve MAC-layer resources for the multi-hop route

created by RPL, to meet certain QoS constraints.

In this study a distributed scheduler is used. Accordingly, a protocol is needed to

reserve MAC-layers resources along the multi-hop path identified by RPL routing

protocol, to satisfy certain QoS requirements. After reception of application QoS request,

the 6top layer configures the appropriate MAC layer resources.

Figure15 The distributed scheduling

2.5.2.2.1. Flows

 Label Switching: the task of 6top is to map input cells and output cells in the same

route in a specific node.

 3 routing can be keep away from by doing this layer (similar to MPLS).

 Each flow can have multiple input and output cells associated with it.

 The 6top layer is responsible for forwarding the incoming frames belonging to a

“Track” to the destination (incoming cells are mapped to outgoing cells).

25

Figure 16. IETF 6tisch: Routing over 802.15.4e MAC

2.5.2.2.2. Cell Types

Four types of cells condition are defined in IEEE 802.15.4e standard: Transmit (TX),

Receive (RX), Shared and Timekeeping [32]. Each cell can be configured to be either a TX

or RX or Shared cell.

Upper layers can manage a part of a slotframe, this part is called chunk. Generally in

centralized scheduling chunk is delegated by the PCE to a node, but when a decentralized

approach is used chunk is claimed automatically by any participated node. Given this

mechanism, cell is qualified as soft or hard cell.

2.5.2.2.2.1. A Hard Cell

A cell which has been requested specifically and it cannot be dynamically reallocated

by 6top is called a hard cell. Generally, hard cells are used in centralized scheduling,

because there are scheduled by a PCE (after installing only PCE can move node inside and

delete it from the schedule). The cell is installed by PCE given exact slotOffset, slotframe

ID, and channelOffset.

2.5.2.2.2.2. A Soft Cell

A cell which can be relocated dynamically by 6top is called a soft cell .Generally,

soft cells are using in the upper layer of 6top by decentralized (distributed) scheduling .In

contrast to hard cells soft cells is installed by a certain bandwidth requirement. Soft cells

are installed through the negotiation procedure, the information about how many cells

26

must be scheduled to a given neighbors is indicated by scheduling entity The performance

of every cell to the same neighbor in the same network is monitoring by the 6top keeps

tracking. If 6top monitoring noticed that a cell performs significantly worse than others

scheduled cells toward the same neighbor, it relocates this cell at different slotOffset and

channelOffset inside the TSCH schedule.

2.6. Network Layer

2.6.1. 6TiSCH

In October 2013, the IETF 6TiSCH Working Group was created to combine TSCH

and IPv6. The main idea of 6TiSCH is to link IEEE802.15.4e TSCH (“industrial”

performance) with IPv6 through the IETF 6LoWPAN and ROLL standardization efforts

and recommendations. 6TiSCH creates a network whose resources are allocated using a

mix of centralized and distributed scheduling. The basic principle of 6TiSCH is putting

together an architecture binding existing standards (RPL, 6LoWPAN, COMAN,

ForCES/OpenFlow, NSIS/RSVP, and Diffserv) over 802.15.4e TSCH. 6Tisch Work Group

works on different aspects of routing over 802.15.4e MAC:

 6top (6TiSCH Operation Sublayer): Responsible for scheduling of resources in a

distributed manner.

 PCE (Path computation element): Scheduling of resources that will enable

forming of the network.

 Security: responsible for letting nodes to securely join the sensor network and

communicate.

 Distributing of configuration information using light-weight protocols.

6TiSCH is supported not just by open-source implementations (OpenWSN, Contiki,

RIOT, and TinyOS) but also by several companies, that are building commercial product

lines with it. The last version of Contiki OS maintains a basic 6TiSCH configuration

including 6Top layer with RPL as the default routing protocol.

27

2.6.1.1. The 6tisch Stack

The 6TiSCH stack is a reference stack that implemented as middle layer between

lower (MAC) and upper levels (6LowPAN) of the protocol stack. The main purpose of

which is to help implement an IPv6-based IOT stack on top of a TSCH MAC easier. There

are a few functions proposed by the IETF that related to transport, routing, or security.

Figure 17. 6TiSCH IPv6-enabled protocol stack for LLNs

2.6.2. RPL

Each connection in the IPv6 Routing Protocol for Low-Power and Lossy Networks

(RPL) network is represented by a set of indicators, such as speed, power consumption,

encryption support, etc., which are the basis for building the acyclic DODAG graphs. An

example of a graph in RPL is shown in

Figure 18, the nodes are arranged in the form of a tree, each of them has a rank (from

1 to 3 in the figure), on the basis of which they select the route of sending messages to the

root node. In a converged sensor network, each RPL router defines a set of parent nodes,

28

each of which is a potential target for the next hop on the path to the "root nodes" in

DODAG, and the preferred parent node [33].

Figure 18. RPL

The advantage of RPL is that it supports several types of messages, there are point-

to-point, point-to-multi-point, multi-point-to-point, and multiple graphs are also supported.

In the network, multiple graphs are created and the node selects a graph that is suitable for

data transfer, depending on the type of data or application for which they are required.

2.6.2.1. Messages in the RPL.

There are three types of control messages to create and maintain the RPL topology

and the routing table are used in RPL. There are

 DIO - DODAG Information Object,

 DIS - DODAG Information Solicitation,

 DAO - DODAG Destination Advertisement Object.

RPL uses DIO messages to form, support, and detect DODAG. When the RPL

network starts, nodes begin to exchange information about the DODAG using DIO

29

messages that contain information about the DODAG configuration. These messages help

nodes get information about DODAG and select their parent nodes.

DIS Messages - any node uses DIS messages to request DIO messages from

neighboring nodes. The latter is required for a node in the case where it cannot get the DIO

through a predetermined time interval.

DAO Messages - The RPL protocol uses DAO messages to distribute the node prefix

to the predecessor nodes in support of downstream traffic. The DAO message can also be

used to distribute availability information and to record routes for areas that include

unsaved nodes.

2.6.2.2. The Process of Constructing the DODAG Graph for RPL.

 Each node is assigned a certain rank in such a way that it grows with the node’s

hope distance from the edge router. Forwarding of the packet to the border router is done

by sending it to the parent node with the lowest cost toward the root node.

The formation of DODAG is regulated by several components such as DODAG

rank, the objective function (OF), the path metrics and the node settings. A node can be

part of several graphs, and a DODAG instance can have multiple root DODAGs with a

different set of nodes.

When the flow timer expires the DIO message is sent. The main idea is to transmit

DIO messages when there are discrepancies in the DODAG, for example, when a node

receives a DIO message with new DODAG parameters such as an OF, a new serial

DODAG number or a change in the rank of the parent node, etc . Another example about

when to send a DIO message could be loops; when a node gets a data packet from a child

node that is intended to be sent down along the same child node according to its routing

table, this creates a discrepancy resulting in sending a DIO with an infinite rank. Sending a

DIO with an infinite rank within the network is done to initiate a local repair. If a

discrepancy is detected, the node resets its DIO timer to increase the frequency of the DIO

message announcement. After stabilizing the graph, the frequency of sending DIO

messages is reduced, in order to reduce the amount of signaling traffic.

When a node starts the initialization process on the network, it can suspend the

process of sending messages until it hears the DIO declaration from the existing graph. In

30

addition, a node can distribute a DIS message to interrogate its neighbors and speed up the

reception of a DIO message from them.

Another choice is to initialize your own floating DODAG graph and send multicast

DIO messages to the new DODAG graph (note that this may be preferable if the graph is

needed to establish and maintain an internal connection between the set of nodes in the

absence of the target DODAG). Uni-directional DIO communications are transmitted in

response to unidirectional DIS messages and includes a complete set of DODAG

configuration options.

After receiving the DIO message, the node must determine whether it needs to

process the received message. If the DIO message has errors in the format, the node

discards it without notifications. If not, the node must determine whether the DIO message

was sent from the candidate node for the connection. The concept of a candidate in the

neighborhood is closely related to the notion of local trust, depends on the concrete

implementation and is used to determine if the node is suitable for the selected parent node.

At the time a node learns a neighbor, it takes a period of time to control if that the link is

dependable.

The node then determines whether the DIO message is associated with the DODAG,

to which it already is a member. If the rank of the source node of the DIO message is less

than the rank of the recipient node and some value configured by the RPL protocol called

DAGMaxRankIncrease, the DIO is processed. This rule is referred the maximum depth

rule.

2.6.2.3. RPL Security.

RPL security is available as additional extensions. There are three security modes, in

which the RPL nodes can operate. When the first mode, named "unsecured" control of the

RPL message, is used the RPL messages are transmitted without any extra security

measures. Unsecured mode means that RPL networks can use other simple security

features (for example, a data link layer) to meet the security requirements of the

application. In the preinstalled mode the nodes join RPL network using pre-shared keys.

For example, there are predefined keys that allow them to process and create protected

RPL messages. When the authenticated mode is used, nodes can go into network as end

nodes using a predefined key to a pre-set mode, or join as a node redirection to obtain an

31

authentication key. Each message has a secure version of the RPL. Security level (32-bit

and 64-bit MAC and ENC-MAC modes are supported), and algorithms (CCM and AES-

128) are supported using the messages specified in the protocol. Secure options ensure the

integrity and reproduction of protection, as well as confidentiality and protection.

2.7. Application Layer

2.7.1. IETF CoAP

The Constrained Application Protocol (CoAP) is a RESTful web transfer protocol for

resource-constrained networks and nodes [34]. The protocol is designed taking the strict

band-width requirements of LLNs into account. CoAP easily interfaces HTTP for

integration with the web while meeting the mentioned requirements. But the main goal of

protocol is not to blindly compress HTTP, CoAP is not a replacement for HTTP. Messages

in CoAP work well for small payloads whereas HTTP does not work well with small data

payloads.

2.7.2. CoAP Features

There are 2 basic CoAP features:

 Embedded web transfer protocol

 Asynchronous message exchanges [35].

The UDP transport protocol helps send and receive messages in out-of-order.

Requests and responses are processed asynchronously (independently of each other), this

function makes the task of client and server software implementation with high message

throughput easy. A CoAP messaging layer is used to deal with the request/response

interactions using Method and Response Codes as shown in Figure 19 [36].

32

Figure 19. Abstract Layering of CoAP

 UDP binding with optional reliability.

 Group communication and multicast:

Sending a message to an IP multicast group is supported by CoAP. One message can

be sent to a group of clients and also enables an easy-to-implement group communication.

The detail about group communication capabilities of CoAP is described in [37].

 Content-type and URI support

The "coap" and "coaps" URI schemes are used for identifying CoAP resources and

for supplying a way of discovering the resources [34].

 Low header overhead

Short fixed-length binary headers (4 bytes) in messages are used by CoAP. Example

of CoAP message header is shown in Figure 20 [34],

Figure 20. The CoAP message Header (4 bytes),

33

where:

Ver – Version

T – Message Type (Four different message types are used in CoAP transactions,

there are Confirmable - if no packets are lost, then each Confirmable message calls one

return message of Acknowledgment or Reset type.; or Non-Confirmable,

Acknowledgement, Reset), with its help, the application developer can control the

reliability of packet delivery.

TKL – Token Length, if any, the number of Token bytes after this header,

Code – request method or Response Code,

Message ID – 16-bit identifier for matching responses,

Token – Optional response matching token [38].

 GET, POST, PUT, DELETE requests

The server provides its resources to URL addresses, and clients access them through

these standard methods. The GET method is protected; therefore it must take on a resource

just a recover action. The GET and DELETE methods are idempotent (no matter how

many times method is used, the result will be the same), unlike PUT, POST is not

idempotent [39].

 DTLS based PSK, RPK and Certificate security.

The security theme for the "Internet of things" is especially relevant. CoAP supports

encryption, but without TCP standard TLS (Transport Layer Security) cannot be used to

ensure communication security. Therefore, CoAP uses DTLS (Datagram Transport Layer

Security). Figure 21 shows where DTLS is in the protocol stack. The following mechanism

is implemented in DTLS to address security issues:

a. packet retransmission

b. assigning sequence number within the handshake

c. replay detection

34

Figure 21. DTLS in Protocol Stack

 Subset of MIME types and response codes

There are 3 classes of response codes in CoAP:

 Success is the response code represents the request was successfully accepted,

conceived, and received,

 Client Error is the response represents the request include or bad syntax or cannot

be fulfilled,

 Server Error is response code represents the server failed to fulfill an evidently

valid request.

 Built-in discovery [35]

A built-in resource discovery function is available in the CoAP protocol. With this

function, clients can automatically detect all the resources of the CoAP server. This

mechanism is used especially for M2M scenarios.

 Optional observation and block transfer

There is a CoAP extension that allows customers to monitor resources. Once the

Observe request is sent and the client receives the corresponding grant, all updates are

automatically pushed by the server to the client. In the case where resources are

infrequently updated the client doesn't need to poll for updates. When resources are

updated infrequently the observable resources are an efficient mechanism for retrieving the

updated information from the target device.

35

2.8. Related Work

As identified in [40], the IEEE.802.15.4 specification does not determine the use of

queues to handle upper-layer data. For improving 6TiSCH QoS authors of [40] propose

the following rules: 1. the node is presented to keep in the queues a configurable number of

upper-layer data packets per link for a configurable time which needs to cover the high

priority data. 2. Frames are presented by the 802.15.4 layer are added to a queue with a

priority that is higher than a priority of frames coming from the upper layers. A frame type

Beacon is added to a queue with a higher priority as compared to data frame types.

In [41], Quality of Service for Wireless Body Area Sensor Network is investigated.

The Quality of Service is increases with a suitable time slot allocation scheme. The scheme

is based on improving the energy efficiency by reducing the number of packet drops.

Another aspect of the research addresses the optimization to reduce the node’s duty cycle.

The proposed protocol assumes the calculation of the time slot duration based on payload

size and the slot’s schedule that depends on the packet’s priority and its lifetime.

In [42], the authors propose another method for improving the QoS by processing

information in real time. Adaptive QoS approach involves the use of open-source Contiki

OS, a flexible and lightweight OS for tiny networked sensors. The system’s main

environment involve a database for keeping linked historical data, a mathematical

modeling of environment for hosting QoS valuation models, and network simulator tools

for modeling the virtual sensor clouds and utilizing real-life history data of sensor clouds.

Authors of [43] implement a mechanism which improving the QoS by dividing all

the data into three distinct queues with different priorities. The proposed solution has a

better performance as compared to a First In First Out (FIFO) queuing method in terms of

end-to-end delay. Furthermore, the proposed approach also outperforms multi-level queue

scheduler scheme. But, implementing a QoS mechanism with three separate queues

requires a large amount of data memory which is a scarce resource in a low power device.

The memory where the queue buffers are implemented deemed to be one of the important

criteria affecting the QoS of a WSN. Due to lack of buffer size, some information may

have to be dropped. On the other hand, implementing large buffers increases the cost of the

WSN node and also the energy consumption. In [44], experiments were conducted for

different MAC layer queue sizes where the aim is to analyze the impact of varying size

queue buffers on the QoS of the network. In the area of improving QoS, there exists a large

36

body of literature. However, the fairness of the proposed QoS schemes for WSNs is not

analyzed as comprehensively. In WSNs, we need to implement different QoS routines

targeting different applications. Each application depending on its QoS requirement may

need a different QoS approach. In [45], a mechanism for prioritizing a selected set of nodes

in the network, which was originally proposed for 802.11 devices in [46], is implemented

for 802.15.4. The mechanism can be used by a certain set of nodes to jam the network for a

pre-defined interval. This enables the selected set of nodes to access the network with a

higher priority. But, such QoS approaches prioritizing nodes may starve the rest of the

network where the nodes have a lower priority. Furthermore, the extra messaging to enable

channel access can have a negative impact on the network throughput. To the best of our

knowledge, this work presents the first QoS study for IETF 6TiSCH protocol. The study

will make use of the TSCH MAC's [47] ability to allocate new resources to the high

priority data on demand via the 6Top protocol. The main aim of this study is to improve

the fairness among the traffic flows having different priorities.

3. QUALITY OF SERVICE

With the introduction of Internet enabled low power devices, WSNs solutions need

to deal with the challenges of the Internet leading to creation of complex networks of small

devices. Many applications with different quality requirements are emerging, which makes

the QoS as one of the key area of research for low power wireless IoT networks. QoS is

discussed as a measure of service quality that the network offers to the end user through

the application.

The QoS is introduced in networks to determine the network's ability to meet the

requirements and characteristics. The quality of service determines whether the network

can provide a data transmission service under the specified conditions. In other words, the

quality of service is an integral characteristic and is described by a set of parameters. In

classic networks, such parameters are used bandwidth, packet delay, jitter or delay spread,

as well as the probability of packet delivery. Unlike classic networks, wireless sensor

networks are not only a service for data transmission, but also for the collection and

processing of data. Accordingly, the quality of service in wireless sensor networks and its

provider will also differ from the classical view [48]. In Figure 22 Parameters of QoS are

shown [49]. These are:

 Bandwidth (BW) - This indicator shows how many data packets can be

transmitted per unit of time.

 Delay – This indicator shows sending data packet delay

 Jitter - This indicator shows the variation of the delay with respect to neighboring

data packets

 Packet Loss - This indicator determines the number of packets lost on the network

during the transmitting.

38

Figure 22. Parametrs of QoS

Quality of service parameters are often interrelated. In [48] two main approaches for

QoS provisioning in WSNs are surveyed. There are:

 The Layered approach. This approach considers QoS for each level (as MAC,

network, and transport layers) separately.

 The Cross-layer approach. This approach considers QoS through all layers of the

communication protocol stack. That means that it can dispose of information from the

entire network.

The QoS is necessary in the case when there traffic arrival pattern in the network is

variable and the instantaneous capacity of the network is not adequate for this

instantaneous traffic leading to a temporary o permanent bottle-neck. The temporary

congestions in the communication networks generally handled via queuing mechanisms.

Basic QoS queuing mechanisms are:

 FIFO - The FIFO is the simplest line queuing. The data packet that comes first is

processed first, regardless of its priority.

 Priority Queuing: the Priority Queuing is a queue that arranges the packets in the

queue according to their priorities. A data packet with the highest priority will be

processed first.

 Fair Queuing: The Fair Queuing is a queue mechanism, which allocated each

traffic class equal access opportunities to the wireless channel. For every data packet, an

appropriate fraction of the bandwidth is allocated. FQ guarantees an equitable distribution

of resources for all packets. That means that a larger packet gets a larger share of the

bandwidth of the line. However, this mechanism does not take into account the priority of

the data packages.

39

 Weighted Fair Queuing: The technology that provides different classes of traffic

with different rights (the "weight" for different queues is different), but simultaneously

serves all queues.

This study presents performance results of FIFO, Priority Queuing and WFQ

mechanisms that are implemented for IETF 6TiSCH protocol.

4. IMPLEMENTING QoS ALGORITHMS TO 6TISCH

4.1. Development Platform

There are quite a few open-source operating systems for microprocessor systems of

nodes, such as Contiki OS [50], TinyOS and FreeTos. Nowadays Contiki is one of the

most popular open source embedded operating systems. Contiki OS is expected to be one

of the main operating systems that will be used to connect billions of the Internet of Things

devices. Various OS functions cover program/process management, resource management,

memory management and communication control.

4.1.1. Contiki OS

Contiki OS is designed for embedded network systems, in particular, for smart

devices. The first version of Contiki OS was released by a team of developers in the field

of industry and scientific centers, in 2003 [51].

Contiki OS supports a complete IP stack with standard protocols such as UDP, TCP,

and HTTP, as well as standards for low-power networks such as 6lowpan, RPL and CoAP.

The stack of Contiki IPv6 software was developed for Contiki by Cisco, fully certified

within the framework of the ReadyLogoIPv6 program. Contiki is the first operating system

for sensor networks that provides TCP / IP communication (using the uIP stack (microIP) -

an open TCP / IP stack/module that is designed for microcontrollers with 8- and 16-bit

architectures). The Contiki network stack is approximate in Figure 23.

41

Figure 23. Contiki OS network stack

The Contiki OS is a hybrid operating system. Contiki can be discussed as an example

of a modular kernel design, combining features from monolithic and microkernel. This

allows it to inherit some advantages of both systems. Contiki implements a hybrid model

through an event-driven kernel. Contiki implements multithreading as an application

library. It is not necessary to link with the program if the program requires no multi-

threading features. There are two key benefits when building a system like this. First, the

per-thread stacks and the locking mechanisms are not needed for concurrency. This benefit

is evident by looking at why per-thread stacks are not suitable for embedded devices. Per-

thread stack approach allocates a stack for each thread. When a thread has created the

memory for stack must be assigned or allocated. This creates a problem because memory

assigned to a specific task cannot be used by another concurrent thread. The second benefit

is that event-driven model with the state-driven programming is difficult for programmers

to manage. In addition, not all programs can be expressed as state machines. A purely

event-driven OS is providing a task could consume the full CPU time completely. When

the task is complex and requires a long CPU time, the system cannot respond to external

42

events sometime. A preemptive multi-threaded system overcomes the problem in such

situation. Hence, a hybrid system can be considered as the most suitable for such kind of

problems.

Similar to microkernel design, Contiki also uses messaging mechanism for

communication between services and the kernel. However, instead of using the peer

messages discussed in microkernel lesson, Contiki uses posting events. The only difference

between pure messages and event posting is formatting. There is no hardware abstraction

layer or HAL [52] in Contiki. Therefore, applications and drivers can directly

communicate with the hardware. The hardware abstraction layer is a layer between

application, component code, and hardware. This is mean that device drivers and

applications communicate straight with the hardware.

The Contiki OS executable system has two parts - the core and the user programs.

These services can be updated or replaced dynamically independently of each other at

runtime, which, according to the developers, leads to a flexible system structure. Based on

a modular kernel approach, in Contiki, loading and unloading models at runtime abilities

are realized. This allows Contiki to load only the necessary services, consequently

allowing it to have a reduced kernel size. Almost all abstractions are implemented as

libraries and services, except for CPU multiplexing, which is the only obstruction provided

by the core system. The implementation is almost similar to a schedule of a microkernel.

Looking at this implementation, Contiki is developed in C language, and it's applications

are also written in C. Therefore, it is easy to develop an application, reprogram, and

replace services. Contiki is easily portable. This implies that it possible to run it on various

microcontroller architectures such as the CC2538 [53], CC2650 [54], and the MSP430

[55], and so on. It is easy to add support for new microcontrollers using the built-in

libraries and existing Contiki platform. For example, Contiki can be easily ported to their

own board by creating configuration files for the specific microcontroller and edit existing

general configuration files of Contiki.

43

Figure 24. Contiki network stack

Contiki OS supports all popular microcontrollers and embedded devices. It provides

IPv4 and IPv6 connectivity through the uIP and uIPv6 protocol stacks. In Figure 24, the

IPv6 protocol stack is exchanged.

The IPv6 stack is for smart devices that have been certified with IPv6 Ready. Thus,

Contiki offers modules for solving various tasks at the required network level. With a

default configuration, Contiki uses 2 kb of RAM and 40 kb of ROM in Figure 25 [56].

44

Figure 25. The Contiki OS: the system programs are partitioned into core services and

loaded programs

Contiki consists of a kernel that manages events; the program is loaded and unloaded

dynamically at runtime. Protothreads, which provide a linear streaming style of kernel

initialization are used processes.

One address space is shared by all processes and they execute in the same protection

domain. This enables Contiki to run in memory constrained devices. A process in Contiki

is a piece of program code which is executed by Contiki's system. A process is started in

two ways. The first is when Contiki starts, and the second when the module loaded into the

memory. A process runs when an event related to the process occurs, such as a timer or an

external event.

There are two types of execution modes in Contiki. These are cooperative and

preemptive modes. Cooperative process code runs sequentially in a queue. This means that

the first process has the right to use the CPU, while other processors wait for their turn to

access the CPU. After the process occupying the CPU finishes, then the next waiting

45

process in the queue gets the right to use the CPU. In contrast, preemptive mode handles

process differently. In the preemptive context, a running process can be stopped by an

interrupt, and the higher priority test immediately takes over the right to use the CPU.

After finishing its job, it returns the right to access the CPU resources to the interrupted

process. The Contiki process is determined by control block and the process threat. The

process control blog is composed of information about each process such as the state of the

process, the pointer to the next process, name of the process, a pointer to a process thread,

the state of the protothread and internal flags. Figure 26 shows a structure of a process in

Contiki.

Figure 26. A structure of a process in Contiki

The process Control Block is only used by the kernel. Therefore, users do not have

any right to access the Control Block directly. This helps the system protect the process

and avoid unexpected mistakes or bugs caused by programmers. Actually, the kernel only

keeps a pointer to the process of state which is health in the process' private memory. This

means that every process has its own state, and the state cannot be accessed by other

processes. The Process Control Block's structure is simple, and it does not contain complex

information. Therefore, it is lightweight, and it just occupies a few bytes of memory.

In Contiki, a Process Control Block cannot be announced or defined directly. The

block is defined via the process macro. As shown in Figure 27 the process macro has two

parameters, the name of the Process Control Block and the textual description.

46

Figure 27. Example of process. “Hello world”

The variable name of the Process Control Block is used for accessing the process,

while the description text of the process is used by programmers for debugging. Contiki

uses posting events for inter-process communication. This mechanism is also similar to the

messaging mechanism in Microkernel described before. Contiki's system is partitioned in

two parts as show in Figure 25. The first part is the core, and the second is the loaded

program section. The partitioning is specific to the deployment in which Contiki is used

and it is made at the compile time.

Multithreaded mode with priorities in the Contiki OS is implemented using an

application library that runs on a kernel, managed by events. Applications that provide

multithreaded processing are linked to the running application as needed, i.e. if it explicitly

requires a multithreaded model of computation.

4.1.1.1. The Contiki’s Kernel Architecture

In the heart of the Contiki OS is a modular kernel architecture. Therefore, the kernel

is minimal. Due to this reason, the kernel comprises only a few lines of code that perform

vital functions. For example, the kernel consists of an event scheduler, which is light in

terms of code size. In Contiki, all program execution is triggered either through the polling

mechanism or by events which are sent by the kernel. In Contiki, the kernel supports two

types of events, synchronous and asynchronous. Asynchronous events are not delivered to

the receiving process immediately after being posted. Instead, they are stored in an event

queue. The events in the queue are delivered to the receiving process by the kernel. The

kernel delivers an event from the event queue by looping through it. The role of the

asynchronous event receiver can perform or a specific process or all running processes. In

case if the receiver is a specific process, then this process is invoked by the kernel to

deliver the event. If the receiver of the event is established to be processed in the system,

then step-by-step the same event is delivered by the kernel to all processes. The process

post function is used for posting an asynchronous event. First, the size of the event queue is

PROCESS(hello_world_process, “Hello world process”);

47

evaluated and if there is room for the new event, then the event is added to the queue.

Otherwise, the function will return zero.

Synchronous events work differently from asynchronous events. In the sense that

when a synchronous event is dispatched, it is delivered to the receiving process

immediately. Another difference between asynchronous and synchronous events is the type

of receiver. While asynchronous events can be received either by a specific process or all

running processes, a synchronous event can only be received by a specific process. The

mechanism for invoking a synchronous receiver is similar to calling a function. A

synchronous receiver is called, so it performs its task, after which it returns control to the

posting process. Besides events, the kernel supports a polling mechanism. The polling

mechanism behaves like a high priority event which is scheduled between asynchronous

events. Typically, processes operating close to the hardware level use polling for

evaluating hardware status. In a case, if a poll is scheduled, each process which

implements a poll handler is named sequentially according to priority. In a similar way to

event posting functions, Contiki also provides a process poll function for posting a poll.

Posting a poll has a similar effect as an interrupt. It causes the receiving process to be

scheduled as soon as possible. A single shared stack is used in Contiki for each process

execution. A stack's space requirements are reduced by uses of asynchronous events. An

event identifier is an 8-bit number used as a unique identifier for an event. When a process

receives an event It uses the event identifier to determine the actions to perform. There are

several event identifiers reserved by the Contiki kernel to handle process control, inter-

process communication, and peripheral access.

Contiki schedules all events using a single level hierarchy, and events cannot be

preempted by other events. The only way to preempt an event is using interrupts. It is

important to notice the interrupt must be supported by an underlying real-time executive.

Correspondingly, interrupt handlers cannot post any event. For a poll event's requesting a

polling flag is used. The interrupt handlers in a manner to request instant polling are

provided by this flag.

4.1.1.2. The Power Saving in Contiki.

In general, power can be saved by putting inactive nodes to sleep. In some cases,

choosing appropriate level protocols may also reduce power consumption. Contiki also

48

provides a mechanism for reducing power consumption even though there is no explicit

abstraction for it. The mechanism works by checking the size of the systems event queue.

If the event queue is empty, the micro-controller goes into a sleep mode until it's woken up

by an interrupt.

4.1.1.3. Services and Libraries in Contiki OS

The services in Contiki are implemented as modules. When a particular service is

required the corresponding module is loaded thus making Contiki run efficiently. From a

certain point of view, a service is different from other application programs since a service

can be used by several application programs. A service is a type of shared library. One of

the benefits of Contiki Services is that they can be dynamically replaced at random. With

this strategy Contiki minimizes the number of modules to be loaded during booting time.

As a result, memory researches can be used more efficiently.

In every operating system, each service should have a unique identifier, defined by

the system or users. The format of the identifier depends on the particular operating

system. In Contiki, a service identifier is a textual string which presents the functionality of

the service. Identifiers are used when application programs invoke a service. When a

service is requested, ordinary string matching is used by the service layer for request

installed services.

4.1.1.4. Communication in Contiki

Communication plays an essential role in any wireless sensor network system.

Basically, communication in wireless sensor network architecture includes three parts.

Sensor nodes, a gateway, and the backend system. Sensors collect data and send it to the

gateway wirelessly. Depending on the network characteristics, a particular communication

protocol is used. For example, Wi-Fi or Bluetooth can be used for sending data from

sensor nodes to a getaway. Then the data is forward via the internet and reach the cloud.

Finally end-users can access data or use services offered by the cloud. Contiki,

implementers communication as a service. Therefore it has all the features of Contiki

services, such as runtime replacement. As a result, it allows to simultaneously load

49

multiple communication stacks. This helps to reduce the latency of loading modules one by

one. In addition, this feature can be used for comparing different communication protocols.

4.1.1.5. The Loosely Coupled Communication Stack in Contiki.

Communication in Contiki may be divided into different services. The

communication stack uses synchronous events to communicate with a program application.

Synchronous events is used instead of asynchronous events or polling because that for all

communication processing, a just single buffer can be used since it is necessary that

synchronous event handlers run to completion. This approach ensures that there is no need

to copy data to intermediate buffers. The bias drivers operate between the communication

stack and the hardware. When the communication service is awaken, it inspects the packet

in the buffer. Based on the content of the packet header, the service searches for the

application which is the destination of the packet. When it finds the exact application, it

put a synchronous event up to that application program. After receiving the event

generated by the communication stack, the application program proceeds to process the

packet. In some cases, it is necessary for the application program to replay by posting some

data to the communication stack before returning the control to it. Then, when the

communication stack takes control, it places the reply in the communication buffer and

appends its header to the outgoing packet. Finally, it gives control to the device driver, so

that the packet can be transmitted.

4.1.1.6. Protothread

The most important features of Contiki is Contiki protothreads. In order to provide

sequential flow of control, Contiki provides protothreads. Protothreads are lightweight and

stand as stackless threads with only two bytes of memory per thread. One of the benefits of

using Contiki's protothreads is that systems overhead can be small compared to other

kernels. This comes as a result of sharing the stack by old protothreads. This has the

additional benefit that context switching can be done easily by stack rewinding. It is more

efficient to implement Contiki protothreads than applying traditional ways of

multithreading on wireless sensor network applications. Contiki's protothreads are

50

extremely lightweight. Similar to other modules and processes in Contiki, protothreads are

completely written in standard C. This avoids any extra requirement for using and

compiling protothreads. A protothread basically works within a single function and cannot

span over other functions. It is possible for a protothread to call another function; however

it cannot plug the flow inside the called function.

Protothreads are implemented using local continuations, which are used to present

the current execution state of a program at the specific places. A local continuation can be

implemented using or the machine specific assembler code, or the standard C constructs, or

the compiler extensions. The machine specific assembler code can be done when the

processor state is saved or restored. As a result, each proto-thread uses around 16 to 32

bytes of memory. The second way of using a standard C requires only 2 bytes of state

information per each protothread. Although this approach has slower memory overhead it

still has some challenges and restrictions. The last method is to use certain C compilers

which have a specific C extensions for implementing protothreads. For example, a GCC

version supporting label pointers can be a good candidate to perform this. As a result, only

four bytes of RAM per protothread are required. Figure 28 shows an example of sealed

code of protothread.

Figure 28. Example of sealed code of protothread

 There are some strict requirements for an operating system of embedded wireless

sensor network devices. These requirements arise due to resource constraints. Memory,

which is one of the most precious resources of embedded devices, must be considered

51

when choosing a suitable OS. The minimum RAM and ROM required to run a simple

wireless sensor network application. Note that RAM and ROM usage varies depending on

the actual application. For instance, a simple wireless sensor network application takes less

than 2 kilobytes and 30 kilobytes respectively.

4.1.2. Cooja Simulator

Devices with Contiki often operate in accordance with basic wireless networks. The

development and debugging of software for such networks is a time-consuming task. Since

2.0 version Contiki application includes COOJA simulator. COOJA is the simulator that

specifically designed for Wireless Sensor Networks. Cooja provides functions for

modeling devices and networks [57].

The simulated node in COOJA has three main properties: data in memory, node type,

and its components. The node type defines the general properties for the nodes. For

example, the nodes of the same type run the same program code on the same simulated

hardware architecture.

tools/cooja/ - Cooja Simulator source code is located in this folder.

The interface of Cooja simulator shown in Figure 29. The window of Cooja

simulator is filled with the main simulating tools:

 The Network window - the window is populated by sensors node, the

functionality of this tool is the showing the location of each node in the network and the

visualization of the status of each node.

 Script editor - this panel shows a code of test script.

 The Simulation Control window - with this panel the simulation can be started,

paused, reloaded or executed. The time of execution and the speed of simulation are shown

in this panel.

 The Mote Output window - all output of serial interface of the nodes are shown in

this window.

 The Timeline window - the simulation timeline that show messages and events

(channel change, log outputs, LEDs change).

Also Cooja simulator has Notes window for temporary notes in simulation.

52

Figure 29. The interface of Cooja simulator

The Cooja simulator's authors in [58] claim that the simulator can work on three

layers: the network layer, layer of OS (operating. system) and the layer of set machine code

instruction. The compare of simulators for wireless sensor networks is given in

Figure 30. Therefore Cooja is the cross level simulations and it can perform Contiki

programs and other options: either as a compiled code right on the host of the CPU, or

launching on the emulator of the TIMSP430 microprocessor.

53

Figure 30. Comparison of simulators for wireless sensor networks

 The network layer is used mainly by protocol developers, where hardware

reporting is omitted (the proper simulation of the behavior of some specific hardware is not

such an important issue). The layer controls the radio devices and propagation of the

sensor. Also in this layer, Heterogeneous network written in Java can be implemented in

Cooja.

 In the operating system level, the main aim is to simulate the execution native

operating system code. Especially for Contiki developers is important to have ability to

testing and assessment of changes in libraries of Contiki.

 The machine code instruction set level can be used as an alternative method.

Using Java-based microcontroller emulator nodes having various structures may be

simulated instead of a compiled Contiki OS.

 Cooja supports everything necessary to support IoT protocols such as 6LoWPAN,

6TiSCH and RPL.

4.2. System Model

The goal of this work is to implement different QoS mechanisms for 6TiSCH

protocols. QoS components were designed and integrated into the 6TiSCH protocol stack

seamlessly to enable the performance comparison of several QoS approaches. All

experiments are conducted using Contiki OS. Network consists of 20 TI exp5438 [59]

54

motes. They are used to simulate the implemented QoS mechanisms. The modes are

uniformly distributed in a 300m by 250m rectangular area as indicated in Figure 31.

Figure 31. Simulation Network

The testbed includes the scripting editor which provided by Cooja simulator. The

scripting editor is designed and used as a tool for the collection of simulation results.

Each mote at the same time sent 3 messages with different priorities into the 6TiSCH

buffer simultaneously. As shown in Figure 33 three different ports are used. The priority

class of the packet depends on the port the data originates from. Therefore three priority

classes namely HIGH, NORMAL and LOW are defined for three different applications

represented by three different ports. Weights of priority are given as 4, 2 and 1 respectively

as shown in Figure 32. The performance results are averaged over 5 runs. Each

experiment is run for 35 minutes with a message interval of 5 seconds. During this 35

minutes period, every mote inserts around 300 messages into the TSCH buffer.

55

Table 4. Parameters used in the study.

Parameters Value

Number of nodes 20

Startup delay(minute) 35

Packet amount of each node 300

number of experiments 5

Propagation mode Cooja UDGM [14]

4.2.1. Greedy Priority Queuing

Greedy Priority Queuing (GPQ) was studied in 1954 in [60] study and also was

known as Head-of-Line priority. GPQ is an abstract data structure like a stack or a queue,

where each element has priority. GPQ mechanism schedules traffic such that A higher-

priority data gets serviced before low-priority data. If the elements have the same

priorities, they are located depending on their position in the queue. The main problem of

GPQ mechanism is that this kind of traffic scheduling can cause the data of other lower-

priority to not send. In our study GPQ mechanism uses 3 different data priority - High,

Normal and Low as shown in Figure 32.

Figure 32. Buffer Priorities

56

The mechanism of priority traffic processing enables the separation of all traffic

into a small number of classes, assigning to each class a certain numerical priority.

Classification can be done in different ways and represents a separate task. Packets can be

prioritized according to the type of network protocol. For example in our study, priorities

are assigned according to the TCP/UDP port number as shown in Figure 33.

 Figure 33. Priorities based on TCP/UDP port

In data packets, a special field is supposed where the specified priority value can be

recorded, for example, HIGH, NORMAL and LOW priority. Using the priority field within

the packet, high priority data is inserted into the beginning of the queue, followed by data

with medium priority, and then with low priority as shown in Figure 34. GPQ provides a

high quality service for the packets with the highest priority. As for the other priority

classes, the quality of their service is lower than that of the high priority packets.

57

Figure 34. Scheme of using GPQ QoS mechanism

2.1.2. WFQ

Weighted Fair Queuing (WFQ) [61] was presented by Lixia Zhang, Alan Demers,

Srinivas Keshav, and Scott Schenke in 1989. WFQ provides fair data sending according to

assigned weights. WFQ provides different traffic classes with different rights, but

simultaneously serves all data. In our study when implementing this algorithm in the

Contiki OS, time-stamp and priority are used as input parameters. The weight of each

packet is determined by the formula (2.1.2.2) and shown in Figure 35.

.

CoAP

UDP

IPv6

6LowPAN

6TiSCH 6 top

4 eMAC

IEEE 802.15.4

output

58

Figure 35. WFQ priority queuing.

 D t/(1 P) (2.1.2.2)

DW - data weight;

T - the different between the current time and the timestamp of the instance when the

packet is inserted to the TSCH buffer;

P - the priority of the packet.

The packet with the smallest finish weight is chosen for transmitting. WFQ

mechanism guaranties that each data regardless of priority gets access to the transmitting

and sends proportional to the assigned data weights. The algorithm of the WFQ mechanism

work is shown in Figure 36.

.

T

P1

P2

P3

59

Figure 36. Scheme of using WFQ QoS mechanism

4.2.2. Fairness

Fairness is one of the most important challenges of wireless sensor networks. Each

node and each application need to be assigned with the right bandwidth, as well as QoS.

The QoS requirements of the nodes needed to be fairly satisfied. When the traffic loads of

the nodes are similar, energy consumption also might turn out to be similar. Also, the link

quality, cost, throughput and other performance aspects might be taken into account when

the fairness of the node is considered. These issues show the significance and diversity of

fairness issues in wireless networks.

In Wireless Networking area, the consequence of an unfair resource allocation

among different node may cause resource starvation, resource wastage or redundant

allocation, so we can overcome this problem to attribute resource sharing or allocation

CoAP

UDP

IPv6

6LowPAN

6TiSCH 6 top

4 eMAC

IEEE 802.15.4

output

60

fairly. It is not simple to make a common definition of fairness since it is subjective. Most

of the fairness research is around assigning a value to the shared resource. The definition of

fairness is influenced by the value assigned to the resources by the designer of the system

or by the nodes of the system.

4.2.3. Jain’s Index

One of the fairness indexes is Jain’s index. It was first proposed by Rajendra K. Jain

in [62]. In his study he proposed four desired properties of the fairness index:

 Independent of population size is. It is mean that no matter how population size

is, it needs to be independent and the index should be scalable with the number of users.

 Independent of scale and metric: It is meant that no matter which measures or

metrics are used the index has not changed and it shows that the variance also can play the

role of a fairness index too.

 Boundedness: The index can be between 0 and 1 and should be finite.

 Continuity: It is mean that the index function must be continuous on allotments

and must have the capability to measure different allotments.

The Jain’s Index is given as;

 (3)

where 0) 1 is called as Jain's index and is one of the widely studied fairness

measures in the literature [63]. In the equation, represents the data points and

represents the population size. For having 100% fairness, all users should get the same

amount. Jain’s index always lies between 0 and 1. If the system is 100% fair the fairness

index is 1.

Specifically, the value of Jain’s index can be interpreted as the fraction of received

data. Therefore, a bigger Jain’s index matches to a fairer data transmission. Especially, the

fairest case shows up when all the data with different priority get the same weight, which

makes the Jain’s index equal to one another, so we utilize here Jain’s index to evaluate

fairness in the network.

5. EXPEREMIMENTAL RESULTS

The implemented queuing mechanisms are analyzed using the network setup

described in System Model section. Each of the queuing mechanisms performance is

tested via 5 experiments with different random seed values. This section summarizes the

averaged performance results of the experiments for each queuing mechanisms with their

respective standard deviation values. Standard deviation values are calculated using the

equation given in (4) and given in Table 5, Table 6 and Table 7.

 (4)

STD - Standard deviation value,

n - number of observations

x - observed values of the sample items.

As it can be seen from the result tables, the average number of sent and dropped

packets for all three algorithms is approximately the same. This is expected as the 6TiSCH

protocol was configured to service the incoming traffic with only 3 TSCH slots which is

barely adequate for the generated traffic. Hence, some of the generated data cannot be

services by the radio. The relative receive performances of all priority classes amount to

around 72% for all of the evaluated QoS queuing mechanisms. However, if the results for

each queuing mechanism are analyzed, it can be seen that different queuing mechanisms

transmit different amount of data packets belonging to different priority classes.

When GPQ mechanism is used as the QoS mechanism in 6TiSCH node, it is

observed that highest priority data packets are given precedence as expected. The GPQ

average amount packets are shown in Table 5. In this case, 98% of the data packets

belonging to high priority class are successfully transmitted over the network. But, the low

priority data packets mostly dropped from the transmit queue resulting in a poor quality of

service for this type of traffic.

62

Table 5. GPQ average amount packets

GPQ

 Send Receive % STD

 High priority 1928 1894 98% 10.1

 Normal priority 1910 1639 86% 4.47

 Low priority 2142 769 36% 4.9

 Total 5980 4302 72% -

On the other hand, the FIFO queuing represents a fair treatment of all the data

packets without any distinction. The FIFO average amount packets are shown in Table 6.

In this case, all the data packets are treated equally and there is almost no distinction

between the priority classes. Since the packets belonging to each priority class are

generated randomly with equal probabilities, the results show a similar delivery ratio for all

the priority classes. Of course, this represents almost 100% fairness as given in Table 8.

Although, a high fairness value is desired for a queuing algorithm, it is desirable to give

precedence to high priority class traffic as compared to other priority classes in 6TiSCH

protocol. This observation is especially correct for high priority traffic class which

generally is made up of protocol messages for maintaining the network.

Table 6. FIFO average amount packets

FIFO

 Send Receive % STD

 High priority 1962 1290 66% 4

 Normal priority 1937 1424 74% 2,77

 Low priority 2067 1591 76 % 4,35

 Total 5966 4305 72% -

WFQ algorithm treats each traffic class according to the weights calculated using the

equation given in Eq. (2.1.2.2). The WFQ average amount packets are shown in Table 7. In

63

this case, although the highest priority traffic is given precedence as compared to the other

priority classes, the weights are used to make sure that the high priority traffic does not

throttle the traffic with low priority. As it can be seen from Table 7, the highest priority

class traffic achieves a delivery ratio of 88% followed by Normal priority and low priority

traffic at 70% and 60% delivery ratios respectively.

Table 7. WFQ average amount packets

WFQ

 Send Receive % STD

 High priority 1954 1710 88% 1.64

 Normal priority 1915 1342 70% 1.8

 Low priority 2108 1258 60% 2.3

 Total 5977 4310 72% -

This represents a fairer result as compared GPQ approach at the same time

maintaining precedence for the high priority traffic. Furthermore, its results show a fairness

of 97.5% according to Table 8 and quite close to FIFO queuing.

Table 8. Jain's index

 FIFO GPQ WFQ

High p. 31% 45% 40%

 Normal p. 34% 39% 32%

 Low p. 35% 16% 28%

 Jain's Fairness Index 0.99 0.881 0.975

These results on investigating QoS routines for 6TiSCH protocols show that it is

possible to achieve fairness while maintaining a higher delivery ratio for high priority

traffic as compared to other traffic priority classes. It is shown through simulations that

using WFQ mechanism can deliver the important protocol data by giving precedence to

64

high priority for maintaining network stability. At the same time, the other priority classes

are also serviced according to the chosen weights in the queuing mechanism.

6. CONCLUSION AND FUTURE WORK

In conclusion, we have implemented three different QoS algorithms for IETF

6TiSCH protocol. Our goal is to show the preliminary performance results for such well

known QoS mechanisms for 6TiSCH protocol. As indicated by the experimental results, it

is possible to achieve fairness among different traffic priority classes while maintaining the

precedence between them using WFQ mechanism. Al these results represent a constant

flow of randomly generated data traffic in 6TiSCH network. It is of interest to analyze

bursty traffic and its QoS as future work. Furthermore, it is also of interest to analyze the

impact of having deeper queues in TSCH MAC to maintain the QoS of the network in such

bursty traffic patterns. As a follow up study, we are aiming to implement additional QoS

mechanisms and deploy them to real life networks to analyze their impact on 6TiSCH

based IoT networks.

7. REFERENCES

1. Xia, F., Yang, L. T., Wang, L., and Vinel, A., Internet of things, International

Journal of Communication Systems, 25, 9 (2012), 11-101.

2. Dohler, M., Wireless sensor networks: the biggest cross-community design exercise

to-date, Recent Patents on Computer Science, 1, 1, 1,12 (2008), 9–25.

3. Montenegro, G., Kushalnagar, N., Hui, J., Culler, D. and Corp Arch Rock, IETF

Tools: IPv6 over IEEE 802.15.4.

https://tools.ietf.org/html/rfc4944 1 September, 2007

4. Shelby, Z. and Bormann, C., 6LoWPAN: The wireless embedded Internet, 43.

John Wiley & Sons, 2011.

5. Accettura, N., Grieco, L. A., Boggia, G. and Camarda, P., Performance analysis of

the rpl routing protocol in Mechatronics, 2011 IEEE International Conference, May

2011, Washington, IEEE proceedings book, 767–772.

6. Kovatsch, M. , Duquennoy, S. , and Dunkels, A. , A low-power coap for contiki, in

Mobile Adhoc and Sensor Systems (MASS), 2011 IEEE 8th International

Conference, May 2011, Valencia, IEEE Press, 855–860.

7. Internet Engineering Task Force (IETF), Using ieee 802.15. 4e time-slotted channel

hopping in the internet of things (iot): Problem statement, Luxembourg, 2015.

8. De Guglielmo, D., Brienza, S., and Anastasi, G., Ieee 802.15. 4e: A survey,

Computer Communications, 88, 15,8 (2016), 1–24.

9. Arisha, K., Youssef, M., and Younis, M., Energy-aware tdma-based mac for sensor

networks, System-level Power Optimization for Wireless Multimedia

Communication Conference, April 2002, Baltimore, Proceedings book, 21–40.

10. Thubert, P., Watteyne, T., Palattella, M. R. , Vilajosana, X. , and Wang, Q. , Ietf

6tsch: Combining ipv6 connectivity with industrial performance, 2013 Seventh

International Conference, July 2013, Massachusetts, AAAI Press, 541–546.

11. Dujovne, D., Watteyne, T., Vilajosana, X. , and Thubert, P. , 6tisch: deterministic

ip-enabled industrial internet (of things), IEEE Communications Magazine, 52, 12

(2014), 36–41.

12. Görmüs, S. and Yavuz, A. F., A protocol for internet of things: Ietf 6tisch, in Signal

Processing and Communications Applications Conference (SIU) - 2017, IEEE

Press, May 2017, 1–4

13. Hsu, V., Kahn, J. M. , and Pister, K. S., Wireless communications for smart dust.

Electronics Research Laboratory, College of Engineering, University of California,

https://www2.eecs.berkeley.edu/Pubs/TechRpts.html 1 January 1998.

14. Lewis, F. L. et al., Wireless sensor networks, Smart environments: technologies,

protocols, and applications, January 2004, New York, Wiley Online Library Press,

11–46.

15. IEEE Standart for Local and metropolitan area network: Part 15.4: Low-rate

wireless personal area networks (lr-wpans), Networking and Internet Architecture,

New York, 2011.

16. Callaway, E., Gorday, P., Hester, L., Gutierrez, J. A., Naeve, M., Heile, B., and

Bahl, V., Home networking with ieee 802.15. 4: a developing standard for low-rate

wireless personal area networks, IEEE Communications magazine, 40, 8 (2002),

70–77.

17. Howitt, I. and Gutierrez, J. A., Ieee 802.15. 4 low rate-wireless personal area

network coexistence issues, Wireless Communications and Networking

Conferance, May 2003, New York, IEEE Press, 1481–1486.

18. Adams, J. T., An introduction to ieee std 802.15. 4, Aerospace Conference, March

2006, IEEE Press, 8–16.

19. Wang, Q., Liu, X., Chen, W., Sha, L. , and Caccamo, M. , Building robust wireless

lan for industrial control with the dsss-cdma cell phone network paradigm, IEEE

Transactions on Mobile Computing Conference, June 2007, New York, IEEE

Press 706–719.

20. Park, T. R., Kim, T. H. , Choi, J. Y., Choi, S. , and Kwon, W. H. , Throughput and

energy consumption analysis of ieee 802.15. 4 slotted csma/ca, Institotion of

Engineering and Technology Conference, September 2005, Vancouver, IET Press

1017–1019.

21. Koubaa, A , Alves, M. , and Tovar, E., A comprehensive simulation study of

slotted csma/ca for ieee 802.15. 4 wireless sensor networks, 5th IEEE International

Workshop on Factory Communication Systems Conference, 2006, New York,

IEEE Press 183–192.

22. Akyildiz, I. F. and Vuran, M. C., Wireless sensor networks, 4. John Wiley & Sons,

San Diego, 2010.

23. T. I. of Electrical and I. Electronics Engineers, Ieee standard for low-rate wireless

networks, IEEE, New York, 2015.

24. Watteyne, T., Handziski, V., Vilajosana, X. , Duquennoy, S., Hahm, O., Baccelli,

E. and Wolisz, A., Industrial wireless ip-based cyber–physical systems,

Proceedings of the IEEE, 104, May 2016, New York, IEEE Press, 1025–1038.

68

25. Duquennoy, S., Elsts, A., Nahas, B. , and Oikonomou G., TSCH and 6tisch for

contiki: Challenges, design and evaluation, HAL archives-ouvertes, September

2017, HAL Press, 1-9.

26. Watteyne, T., Palattella, M. , and Grieco, L. , Using ieee802. 15.4 e tsch in an iot

context: Overview, problem statement and goals draftietf-6tisch-tsch-05

 http://tools. ietf. org/html/draft-ietf-6tisch-tsch.html 5 Jan. 2015

27. CISCO, Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based

Networks. RFC 6282, New York, Sept. 2011.

28. Olsson, J., 6lowpan demystified, Texas Instruments Magazine, (2014), 1-13.

29. Vasseur, J.-P., Kim, M.,Piste,r K. , Dejean, N. , and Barthel, D. , Routing metrics

used for path calculation in low-power and lossy networks.

https://tools.ietf.org/html/rfc6551 1 March 2012.

30. Dujovne, M. P. D., Grieco, LA. and Accettura, N. , 6tisch 6top scheduling function

zero (sf0), Internet Engineering Task Force, vo 8. (2016), 1-22.

31. Thomas, L., Shalu, R. , Daniel, J. J. , Anand, S. , and Hegde, M. , 6tisch operation

sublayer (6top) implementation on contiki os, Communication Systems and

Networks (COMSNETS), 2017 9th International Conference, January 2017,

Bangalore, IEEE Press, 423-424.

32. Mukhopadhyay, S. C. and Suryadevara, N., Internet of things: Challenges and

opportunities, Internet of Things, (2014), 1–17.

33. Muthanna, A. , Prokopiev, A. , Paramonov, A. , and Koucheryavy, A. , Comparison

of protocols for ubiquitous wireless sensor network, in Ultra Modern

Telecommunications and Control Systems and Workshops (ICUMT), 2014 6th

International Congress , May 2014, Stockholm, GlobalEvents Press, 334–337.

34. Shelby, Z., Hartke, K., and Bormann, C., The constrained application protocol

(coap).

https://tools.ietf.org/html/draft-ietf-core-coap-13 9 June 2013.

35. Adryan, B., Obermaier, D , and Fremantle, P. , The Technical Foundations of IoT.

Artech House, Boston, 2017.

36. Shelby, Z., Hartke, K., Bormann, C., and Frank, B. , Rfc 7252, Constrained

Application Protocol (CoAP).

http://tools.ietf.org/html/rfc7252 6 August 2014.

37. Rahman, A. and Dijk, E., Rfc 7390 Group communication for coap, Internet

Engineering Task Force (IETF).

https://tools.ietf.org/html/rfc7390 1 October 2014

69

38. Karagiannis, V. , Chatzimisios, P. , Vazquez-Gallego, F. , and Alonso-Zarate, J. , A

survey on application layer protocols for the internet of things, Transaction on IoT

and Cloud Computing, 3, 1 (2015), 11–17.

39. Shelby, Z., Constrained application protocol (coap) draft-ietf-core-coap-03.

https://tools.ietf.org/html/draft-ietf-core-coap-13 6 December 2012.

40. Vilajosana, X., Pister, K., and Watteyne, T., Minimal ipv6 over the tsch mode of

ieee 802.15. 4e (6tisch) configuration.

https://tools.ietf.org/html/rfc8180 1 May 2017

41. Puri, T., Challa, R. K., and Sehgal, N. K., Energy efficient qos aware mac layer

time slot allocation scheme for wbasn, in Advances in Computing,

Communications and Informatics (ICACCI), 2015 International Conference, June

2015, London, ICACCI Press 966–972.

42. Ezdiani, S. , Acharyya, I. S., Sivakumar, S. , and Al-Anbuky, A. , An iot

environment for wsn adaptive qos, in Data Science and Data Intensive Systems

(DSDIS), 2015 IEEE International Conference, July 2015, Sydney, IEEE

Press,586–593.

43. Karim, L., Nasser, N. , Taleb, T. , and Alqallaf, A. , An efficient priority packet

scheduling algorithm for wireless sensor network, in Communications (ICC), 2012

IEEE International Conference, June 2012, Ottawa, IEEE Press , 334–338.

44. Al-Anbagi, I. , Erol-Kantarci, M. , and Mouftah, H. T. , An adaptive qos scheme

for wsn-based smart grid monitoring, in Communications Workshops (ICC), 2013

IEEE International Conference, June 2013, Budapest, IEEE Press, 1046–1051.

45. Boughanmi, N., Song, Y.-Q. , and Rondeau, E., Priority and adaptive qos

mechanism for wireless networked control systems using ieee 802.15. 4 in IECON

2010-36th Annual Conference on IEEE Industrial Electronics Society, November

2010, Glendale, IEEE Press, 2134–2141.

46. Sobrinho, J. L. and Krishnakumar, A. S., Quality-of-service in ad hoc carrier sense

multiple access wireless networks, IEEE Journal on selected areas in

communications, 17, 8, August 1999, New York, IEEE Press, 1353–1368.

47. https://datatracker.ietf.org/wg/6tisch/about/, Ipv6 over the tsch mode of ieee

802.15.4e (6tisch). 20 August 2017.

48. Balen, J., Zagar, D., and Martinovic, G., Quality of service in wireless sensor

networks: a survey and related patents, Recent Patents on Computer Science, 4, 3

(2011), 188–202.

49. Wang, Y., Liu, X., and Yin, J. , Requirements of quality of service in wireless

sensor network, in Networking, International Conference on Systems and

International Conference on Mobile Communications and Learning Technologies,

70

2006. ICN/ICONS/MCL 2006. International Conference, May 2006, Morne, IEEE

Press, 116–116.

50. Vasseur, J.-P. and Dunkels, A. , Interconnecting smart objects with ip: The next

internet, Burlington, 2010.

51. Yu, C.-H., Doppler, K. , Ribeiro, C. B. , and Tirkkonen O. , Resource sharing

optimization for device-to-device communication underlaying cellular networks,

IEEE Transactions on Wireless communications, December 2011, New York ,

IEEE Press, 2752–2763.

52. Siddha, V. , Ishiguro, K. , and Hernandez, G. A., Hardware abstraction layer, US

Patent 8, New York, 2012.

53. Cc2538 powerful wireless microcontroller system-on-chip for 2.4-ghz ieee 802.15.

4, 6lowpan, and zigbee applications, CC2538 datasheet.

http://www.ti.com/lit/ds/symlink/cc2538.html 1 April 2015.

54. Cc2650 simplelink multistandard wireless mcu, CC2650,

http://www.ti.com/lit/ds/symlink/cc2650.html 1 July 2016.

55. Eriksson, J. , Dunkels, A. , Finne, N. , Osterlind, F. , and Voigt, T. , Mspsim–an

extensible simulator for msp430-equipped sensor boards, Poster/Demo session,

118, January 2007, The Netherlands, EWSN Press, 1-22.

56. Dunkels, A., Gronvall, B., and Voigt, T., Contiki-a lightweight and flexible

operating system for tiny networked sensors, in Local Computer Networks, 2004.

29th Annual IEEE International Conference, December 2004, Tampa, IEEE Press,

455–462.

57. Stehlik, M., Comparison of simulators for wireless sensor networks. PhD thesis,

Masarykova univerzita, Fakulta informatiky, Masaryk, 2011.

58. Osterlind, F., Dunkels, A. , Eriksson, J. , Finne, N. , and Voigt, T. , Cross-level

sensor network simulation with cooja, in Local computer networks, proceedings

2006 31st IEEE Conference, November 2006, Tampa, IEEE Press, 641–648.

59. Gaspar, P. D., Santo, A. E., and Ribeiro, B., Msp430 microcontrollers essentials-a

new approach for the embedded systems courses: Part 1-overview and tools, in

Education and Research Conference (EDERC), 2010 4th European, December

2010, Nice, IEEE Press, 66–70.

60. Cobham, A., Priority assignment in waiting line problems, Journal of the

Operations Research Society of America, 2, 1 (1954), 70–76.

61. Semeria, C., Supporting differentiated service classes: queue scheduling

disciplines, Juniper networks, (2001), 11–14.

62. Jain, R., Chiu, D.-M. , and Hawe, W. R., A quantitative measure of fairness and

discrimination for resource allocation in shared computer system, 38. Eastern

71

Research Laboratory, Digital Equipment Corporation Hudson, September 1984,

Hudson, DECH Press, 1-38

63. Shi, H. , Prasad, R. V., Onur, E. , and Niemegeers I. , Fairness in wireless

networks: Issues, measures and challenges, IEEE Communications Surveys &

Tutorials, 16, 1 (2014), 5–24.

CURRICULUM VIATE

Diliara Ibrahimova was born in 14
th

 of March, 1993 in Crimea, Ukraine. In 2010

graduated from the school №6 in Simferopol. She has a bachelor degree in Computer

Science from Crimea, in 2014, Ukraine. Diliara Ibrahimova has been studying at

Karadeniz Technical University since 2014 for a master degree in Computer Engineering.

Ibrahimova speaks English, Turkish, Russian and Ukrainian languages.

Publication:

 Ibrahimova, D., Görmüş S., “QoS for IETF 6TiSCH”, SIU (Signal Processing and

Communication Applications Conference), Izmir, Turkey, May 2018.

