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This work describes the development of an interpreter for the least squares 

method which is an important technique of regression analysis that fits a mathematical or 

statistical model to a particular data set, using symbolic computation methods and the 

JavaCC code generation tool. Although the JavaCC tool is generally used when developing 

interpreters for programming languages, it can also be used to evaluate mathematical 

expressions in a similar way. The development process starts with the construction of a 

context free grammar that denotes the mathematical curves. Then, a parser which is 

generated via the JavaCC tool for this grammar is employed to represent the curves with 

object structures and to determine their parameters. Through these object structures, the 

curves are analyzed and the parameters to be computed by the least squares method are 

determined. For the curves with specific function components, such as exponential, 

logarithmic and rational functions, some symbolic computation tasks are performed, which 

transform those curves into polynomials.   

Key words: Symbolic computation, Curve fitting, Least squares method, Context-free 

grammars. 
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 Bu çalışma, sembolik hesaplama yöntemleri ve JavaCC kod oluşturma aracını 

kullanarak, özel bir veri kümesine uygun bir matematiksel yada istatistiksel modeli 

belirlemeye yönelik önemli bir regresyon analiz tekniği olan en küçük kareler yöntemi için 

bir yorumlayıcının geliştirilmesini göstermektedir. JavaCC aracı genellikle programlama 

dilleri için yorumlayıcı geliştirilirken kullanılmasına rağmen, benzer bir yol içinde 

matematiksel ifadeleri değerlendirmek için de kullanılabilir. Geliştirme süreci matematiksel 

eğrileri temsil eden bağlamdan bağımsız bir gramerin oluşturulması ile başlar. Daha sonra, 

bu gramere karşılık JavaCC aracıyla oluşturulan bir ayrıştırıcı, eğrileri nesne yapılarıyla 

temsil etmek ve parametrelerini belirlemek için kullanılır. Bu nesne yapıları içerisinden 

eğriler analiz edilir ve en küçük kareler yöntemi ile hesaplanacak parametreler belirlenir. 

Üstel, logaritmik ve rasyonel işlevler gibi belirli işlev bileşenlerine sahip eğriler için, bu 

eğrileri polinomlara dönüştüren bazı sembolik hesaplama işlemleri gerçekleştirilir. 

 

 

Anahtar Kelimeler: Sembolik hesaplama, Eğri uydurma, En küçük kareler yöntemi, 

Bağlamsız gramerler.
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1.  INTRODUCTION 

In engineering applications many methods have been developed for computer 

environments to solve the mathematical problems which cannot be accomplished by human 

hand. A typical category of these methods contains symbolic computation ones that can do 

symbolic calculations, as well as numerical calculations. Symbolic calculation is based on 

finding the exact and error-free solution of mathematical problems with computer programs. 

In this type of calculation, mathematical equations need to be fully expressed before they 

can be processed, and then converted into algorithms that can be solved by computer 

programs [1, 2]. Today symbolic calculation systems are divided into two classes, such as 

general and special purpose ones. Each of these systems has a programming language in 

which mathematical expressions can be written. General purpose systems provide an 

interactive computing environment for solving problems in various branches of 

mathematics. Tools such as MATLAB [3], Maple [4], Macsyma [5], Mathematica [6], 

Axiom [7], and MuPad are examples of general purpose systems. Special purpose computing 

systems are equipped with a limited number of processing capacities to meet specific 

application requirements. The unit has developed GAP and Magma in the field of group 

theory, CoCoA and Macaulay for computational algebra and algebraic geometry studies, and 

Schoonship tools for high energy physics calculations. Each symbolic calculation system 

includes a specific programming language which is used to code the algorithms that will 

solve the equations of the mathematical models of the problems.  

With the high-level programming languages that facilitate code writing processes, 

compilers have become indispensable tools for software developers. Compilers that 

implement the steps of translating code written in a high-level programming language into 

machine language have a complex code structure as operating systems [8,9]. Functional 

changes in the structure of programming languages, such as ensuring compatibility of new 

technologies with existing systems, are among the most important reasons for the complexity 

of constructing compilers. Automatic code generation tools have been developed to facilitate 

the analysis, interpretation, or compilation processes of formal languages. They can also be 

used to handle mathematical operations in symbolic calculation environments.
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Programming languages are represented by context free grammar (CFG) structures that 

define the syntax of the source data. The representation of the syntax is usually made in the 

BNF notation, and there are numerous automated code generation tools that can generate 

parsers for them. There are many types of automatic code generation tools developed for 

different programming languages. There are even many tools that can generate source code 

in the Java language; ANTLR [10], SableCC [11], JTB [12], JavaCC [13], JLex [14] and 

JFlex [15]. For example, the source code to be generated by the JavaCC tool can be easily 

integrated with other software and serve as a handy analyzer and parser components that can 

process the input data. 

In this thesis, we focus on the implementation of an interpreter for the least squares 

method which performs mathematical operations involving both numerical calculations and 

symbolic calculations, using the JavaCC code generation tool developed for the Java 

programming language. Generally, LSM needs a basic knowledge of algebra, solving 

sysyem of equations using matrices, and some calculus.
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2.  LITERATURE REVIEW 

The most important use of the computer since its inception has been to do fast and 

errorless calculations and various systems, algorithms, techniques and methods have been 

developed for this purpose.  

Given the developments from the past to the present day about the symbolic 

calculation leaving the numerical calculation to one side, the studies can be grouped into two 

main groups. The first one is the research of the solution methods and algorithms that can be 

applied by the computer. This area is studied to develop more general or faster solution 

methods. The other studies are the development of computer algebra system applications. 

Mathematicians have developed many algorithms for math operations, which become 

more useful when the computer entered into human life. And today, the rapid development 

in science and technology has affected the lives of human beings in every field. There are 

many algorithms developed for the computerized solution of mathematical problems.  

In the 3rd century B.C., the algorithm of finding the largest common divisors of 

integers founded by Euclides can be considered as the first and basic example of present 

symbolic computation algorithms. However, the finding of the roots of polynomial 

equations, the derivation, the integral and the investigation of algorithmic solution methods 

of differential equations have been the subject of symbolic computation. 

Although symbolic computing has been used in computers since 1953, it has a long 

history in terms of its use in scientific development. In the United States a dynamic group of 

researchers stated the early basics for the area of symbolic computation from 1965 to 1980 

and this brought important advances in  a useful algorithms and efficeint software [16]. 

Leibniz worked on mathematical calculations between 1673 and 1676 in Paris, who 

searched for a generic symbolic language that is characteristic to the conversion of 

mathematical methods and expressions into algorithms and formulas. 

For example; the problem of separating polynomials from multiplicities also has a long 

history. The first algorithm for separating univariate polynomials over integers into 

multipliers was found by Schubert in 1793. In 1882 this algorithm was re-invented by 
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Kronecker and extended to polynomials with algebraic coefficients. The specified 

algorithms have been fully utilized with the help of computers. 

In the literature, it seems that, compared to the history of the computation with the 

computers, the symbolic computation may be done too early than the development of the 

technology. In 1953, after the invention of electronic computer, the first succesful real 

application was carried out as two graduate thesis. The first one was developed by J. F. Nolan 

from the Massachusetts Institute of Technology [17] and the other by H. G. Kahrimanian at 

Temple University [18]. 

At the end of the 1950s, list processing languages were developed. Lisp, developed by 

John McCarty in 1958, is the most common and longest living language [19]. It is also the 

oldest, second highest level programming language and plays a very important role in 

symbolic computation. The first program to calculate the symbolic integral was written by 

Slagle in 1961 with Lisp. This practice has been developed as a doctoral study [20]. 

It has been understood that symbolic mathematical problems can be solved using the 

facilities provided by Lisp language used as a programming tool. After this step, the 

symbolic calculation area has showed a rapid development from the 1960s. 

The Schubert and Kronecker algorithms were used to divide polynomials into 

multipliers, but it was seen that these algorithms worked very slowly even on a computer. In 

1967, Berlekamp introduced a new algorithm to more quickly divide polynomials on finite 

fields into multipliers [21]. In 1969, Zassenhaus showed that multipliers over the integers 

obtained by the Berlekamp algorithm can be obtained [22]. In 1975-76, Musser, Wang and 

Rothschild, working on similar methods, developed algorithms for solving multivariate and 

algebraic coefficient polynomials. [23, 24]. 

Risch developed an algorithmic solution of the indefinite integral problem for a general 

class of functions involving exponential, logarithmic, trigonometric and rational functions 

between 1968-70 [25]. Nowadays, application studies of Risch algorithm to more 

comprehensive function classes are going on. 

There is a software package that capable of doing symbolic computation called CAS. 

CAS applications represent mathematical expressions symbolically and operate on these 

symbolical represented objects. It can be separated into general purposes which provides 
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computing facilities for general mathematical problems and specific purposes which gives 

special uses for algebraic and special mathematical areas. 

At the end of the 1960s and early 1970s, the first general purpose symbolic 

computation systems were developed. These systems include Reduce [26] in 1967, Macsyma 

[27] and Reduce 2 [28] in 1971, Scratchpad [29] in 1971, and muMATH [30] in 1979.  

In 1971, Macsyma based version called Maxima was developed by Paul S.  Wang. 

This system supports many operations such as rational, logarithmic, trigonometric 

expressions, differentiation, integration, ordinary differential equations, linear equations, 

polynomials, Laplace transforms, matrices, and Taylor series [31]. 

Today, the major general purpose CAS systems include Mathematica [6] from 

wolfram research, Maple [4] from university of Waterloo, Axiom [32] from Richard Jenks, 

Magma [33] from university of Sydney, SageMath [34] from William A. Stein, Maxima [22] 

from Massachusetts Institute of Technology researchers, and Symbolic Math Toolbox 

(MATLAB) [35] from MathWorks. 

The major special purpose CAS systems include Fermat [36] for polynomial and 

matrix computation, Macaulay2 [37] for  algebraic geometry and commutative algebra, 

KANT/KASH [38] for algebraic number theory, and CoCoA-5 [39] for commutative 

algebra.  

In 2002, Cristian Bauer developed a symbolic calculation framework called GiNac in 

C ++ environment to implement the symbolic computation and it was designed to handle 

multivariate polynomials, algebras, and other special functions [40].  

In 2004, Hyungju Park pointed out that many problems in digital processing can be 

translated to algebraic problems and can be solved using algebraic and symbolic 

computation methods [41].  

In 2010, Yoshinari Miyazaki developed the application of the Information Access tool 

for mathematical expressions with the aim of contributing to engineering education on the 

web. [42]. This web-based application uses MySQL as the database, Java as the 

programming language and Tomcat as the server. A search query was performed on the 

database of mathematical expressions using regular expressions. 

In 2013, Yavuz TEKBAŞ presented a master thesis on derivatives of mathematical 

expressions [43]. His study, which was developed with the Java programming language, and 

https://eu1.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qAySaHtfOrKETuV1ouQmNC&b=1
https://us11.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qawTmYvfGuAnalfH0peENC%2BATo2f%2BZGGf4nRMInvIapnSfqMqJ&b=1
https://us11.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qawSmKqf6nDjc%3D&b=1
https://us11.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qWzC2OvuCnHmafb2w1Sm9Y%2BQk%3D&b=1
https://us11.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qUzyeGqeanA2y2bVY7S21J6QLg&b=1
https://us11.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qc4QS%2Fg7q1GGO0f2goQiM%3D&b=1
https://us11.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qWzC2OvuCnHmafZnw3RW9e1ATpyOWfBA%3D%3D&b=1
https://us11.proxysite.com/process.php?d=x5B99EuWUE9bjMLPUFPaj4pJJXxPnWJ5p4qUzwmEnQ%3D%3D&b=1
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JavaCC tool, is used to decompose the expressions. According to grammar rules 

determined in the study, derivation, conversion and simplification are performed. 

In 2015, Mir Mohammad Reza Alavi Milani conducted a general methodology study 

on the step-by-step evaluation of mathematical expressions in his doctoral dissertation [44]. 

In this work, a methodology was designed to solve mathematical expressions step-by-step 

and to produce new questions using template expressions. Java is used as an application 

development language. The parser structure generated by JavaCC is used for parsing 

operations. 

In 2016, Baki GÖKGÖZ presented a graduate thesis for programming numerical root 

finding method via symbolic approaches [45].  In this work, it is described how to program 

numerical root-finding methods via automatic code generation tools.  The programming 

process consists of distinct symbolic programming tasks such as differentiation, functional 

translation and generation of iteration expressions. A mathematical expression solved for the 

roots is firstly processed through some analysis operations and then represented by object 

structures, using the JavaCC tool. 

In this work, least squares method was used to minimizes the square of the error. LSM 

is one of the oldest techniques of modern statistics and it was presented in 1805 by the French 

mathematician Legendre. In the modern statistical faramework first use of LSM can be 

signed to Galton (1886). He used in his project on the heritability of size which laid down 

the foundations of correlation and also gave the name to regression analysis [46]. 

Today, there are general computing software such as Mathematica (Wolfram, 1991) 

and (Maplesoft) Maple which symbolically calculate the solution of mathematical problems. 

Maple is a modern software with features such as symbolic and numerical calculation, data 

analysis and visualization. There is widespread use in high schools and universities for 

mathematics and engineering education. Likewise, Matlab is also a tool for symbolic 

computation. 

In addition, Wolfram Alpha, a web-based search engine that can step-by-step solve 

mathematical problems using the Mathematica sub-structure, is one of the most recent 

examples in this area. It has many features such as step-by-step solution of problems, 

graphical representation, web based, automatic mathematical problems. Publications in the 

literature generally refer to the use and output of these software and do not contain 

information on calculation methodologies.



7 

 

 

  

With the emergence of symbolic computing tools, mathematicians began using these 

tools to do proofs of theorems with computers. In later periods, these tools began to be used 

in high schools and universities in support of mathematics education. Apart from the studies 

given here, many studies on computer science related to symbolic and algebraic computation 

such as coding, robotic modeling, computer animations, signal / image processing have been 

done. 

As a result, many problems have been solved throughout the history of symbolic 

computation and it has been proved that some problems cannot be resolved algorithmically. 

Research is needed to find more general solutions and to develop faster methods if necessary. 

However, studies on the development of computer software to be used especially in 

the field of education, science and engineering are continuing by making use of the facilities 

of symbolic calculation. Today, the work in this area seems to focus on developing systems 

that work in parallel, with new languages and technologies, new user-friendly interface, ease 

of use, and new algorithms. In addition, systems are being developed to use numerical, 

geometric and symbolic calculation methods together.
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3.  GENERAL INFORMATION 

3.1. Grammars For Formal Languages 

Formal languages are generally regarded from the work of linguist Noam Chomsky in 

the 1950s, who tried to give a precise characterization of the structure of natural languages. 

His aim was to define the syntax of languages using simple and precise mathematical rules. 

Later it was found that the syntax of programming languages can be described using one of 

Chomsky’s grammatical models called context-free grammars [47]. 

CFGs are universally used to describe the syntactic structure of programming 

languages, which are perfectly suited to describing recursive syntax of expressions and 

statements 

A Context-free grammar is a 4-tuple (V, Σ, R, S) where  

1. V is a finite set called the variables (non-terminals)  

2. Σ is a finite set called the terminals, 

3. R is a finite set of rules, where each rule maps a variable to a string s ∈ (V ∪ 

Σ)*  

4. S ∈ V is the start symbol 

 

3.1.1. A Hierarchy of Grammars 

Grammars are classified into four types by the form of their productions, which is 

called the Chomsky hierarchy. These classes are nested, with type 0 which is the largest and 

most general, and type 3 which is the smallest and most restricted. 

Type- 0 Grammar (Unrestricted grammars) 

Type-0 grammars generate any phrase structure grammar without any restriction.  

The productions can be in the form of α → β where α is a string of terminals and non-

terminals with at least one non-terminal and α cannot be null. β is a string of terminals and 

non-terminals.
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Type- 1 Grammar (Context-sensitive grammars) 

Type-1 grammars generate context-sensitive languages. The productions must be in 

the form α A β → α γ β where A ∈ N (Non-terminal) and  

α, β, γ ∈ (T ∪ N)* (Strings of terminals and non-terminals) 

The strings α and β may be empty, but γ must be non-empty. 

Type- 2 Grammar (Context-free grammars) 

Type-2 grammars generate context-free languages. The productions must be in the 

form A → γ where A ∈ N (Non terminal) and γ ∈ (T ∪ N)* (String of terminals 

and non-terminals). 

Type- 3 Grammar (Right-linear or Regular grammars) 

Type-3 grammars generate regular languages. This type of grammar should have a 

single non-terminal on both sides. The right hand side consist of a single terminal or single 

terminal followed by a single non-terminal. The productions must be in the form X → a or 

X → aY where X, Y ∈ N (Non-terminal) and a ∈ T (Terminal). 

 

3.1.2. Parsing Issues 

3.1.2.1. Ambiguity 

A terminal string w ϵ L (G) is ambiguous if there exists two or more derivation 

trees for w or there exists two or more left most derivations of w. 

A context free grammar is ambiguous if there exists some w ϵ L (G), which is 

ambiguous. 

For example, let us consider the expression “8 + 4 / 2” the derivation trees for 

this expression are shown below: 

 

 

 

 

    Figure 1. The different parse for expression “8 + 4 / 2”
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3.1.2.2. Recursive Productions 

Productions are often defined in terms of themselves. For instance a list of variables 

in a programming language could be indicated by this production: 

 variable_list → variable | variable_list , variable  

The above production is refered as recursive. If the recursive nonterminal is at the left 

of the right-side of the production, e.g. A → u | Av, we call the production left-recursive. 

Similarly, we can define a right-recursive production: A → u | vA. 

                                                                               

3.1.2.3. Left Factoring 

Removing the common left factor that appears in two productions of the same non-

terminal is called Left Factoring, the process of factoring out the common prefix of 

alternates. It is a useful method for manipulating grammars into a form suitable for recursive 

descent, it is done to avoid back-tracing by the parser.  

Let:          

A→ α β | α γ        are two A-production and α ≠ null. In this case, the parser will be 

confused as to which of the two productions to choose and it might have to back-trace. After 

left factoring the grammar will become                    

A→ α A'      A' → β | γ 

 

3.1.3.  Parsing Techniques 

3.1.3.1. LL Parser 

LL(k) parsers are one of the most basic and useful parsers of the top-down parsers. 

Here, the first “L” means reading the input from left to right, and the second means leftmost 

derivation. All LL parsers are called LL (k), and "k" denotes the number of tokens. Generally 

for k = 1, LL (k) may also be written as LL (1), then the grammar will be LL (1) grammar. 

To see whether a grammar is LL (1), first build the parse table then if one element in the 
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parse table contains more than one grammar rule with its right-hand side, then the grammar 

is not LL (1). 

 

3.1.3.2. First and Follow Sets 

The construction of a predictive parser is aided by two functions, FIRST and 

FOLLOW, allow us to fill in the entries of a predictive parsing table, whenever possible. 

3.1.3.2.1. First Set 

For a string of grammar symbols α, FIRST (α) is the set of terminals that begin all 

possible strings derived from α. If α → ε, then ε is also in FIRST (α). 

Consider: E → T E’ 

E’ → + T E’ | ε 

T → F T’  

T’ → * F T’ | ε 

F → (E) | id 

Then           FIRST (E) = FIRST (T) = FIRST (F) = {( , id} 

FIRST (E’) = {+ , ε} 

FIRST (T) = {( , id} 

FIRST (T’) = {* , ε} 

FIRST (F) = {( , id} 

 

3.1.3.2.2. Follow Set 

FOLLOW (A) for non-terminal A is the set of terminals that can appear immediately 

to the right of A in some sentential form. If A can be the last symbol in a sentential form, 

then $ is also in FOLLOW (A). 

Consider: E → T E’ 

E’ → + T E’ | ε 

T → F T’  

T’ → * F T’ | ε 

F → (E) | id
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Then  FOLLOW (E) = { ) , $ } 

FOLLOW (E’) = FOLLOW (E) = { ) , $ } 

FOLLOW (T) = { + , FOLLOW (E) } = { + ,  ) , $ } 

FOLLOW (T’) = { +,  ) , $ } 

FOLLOW (F) = { * , +,  ) , $ } 

3.1.3.3. LR Parser 

It is the most popular type of bottom-up parsing technique. Here, the “L” again means 

reading the input from left to right, while the “R” means constructing the rightmost 

derivation and its grammar can describe more languages than LL grammars. 

LR parser can handle a large class of context-free grammars and can detect the syntax 

errors as soon as they can occur. More information about LL and LR parsing algorithms can 

be referenced [48]. 

 

3.2. Least Squares Method 

The least squares method is an important technique of regression analysis that fits a 

mathematical or statistical model to a particular data set [49].  Least Squares minimizes the 

square of the error between the original data and the values predicted by the equation. The 

purpose of the LSM method is to find coefficient estimates that will give these error terms 

as low as possible. The minimization of the error is achieved by equalizing the first derivative 

of the difference function to zero. 

The LSM is widely used to find or estimate the numerical values of the parameters to 

fit a function to a set of data and to characterize the statistical properties of estimates. 

The most important application of LSM is in data fitting. 

 

3.2.1. Least Squares Method Introduction 

Given data {(𝑥1, 𝑦1), ..., (𝑥𝑛, 𝑦𝑛)}, we define the error associated   𝑝(𝑥) =   𝑐1𝑥𝑖 +  𝑐0. 

To solve the coefficients 𝑐1 , 𝑐0 for error minimizing: 

minimize E(𝑐1, 𝑐0)  = ∑  (𝑦𝑛 − (𝑐1𝑥𝑛 + 𝑐0))
2
.𝑁

𝑛=1

https://en.0wikipedia.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvQ3VydmVfZml0dGluZw


13 

 

  

Note that the error is a function of two variables, the unknown parameters 𝑐1 and  𝑐0. 

The goal is to find values of 𝑎 and 𝑏 that minimize the error. The purpose of the LSM method 

is to find coefficient estimates that will give these error terms as low as possible. 

To minimize the error of the equation, take the derivative with respect to each 

coefficient  𝑐1 , 𝑐0 

∂E

∂𝑐1
  = ∑ 2 (𝑦𝑛 − (𝑐1𝑥𝑛 +  𝑐0)) . (−𝑥𝑛) 

𝑁

𝑛=1

 

∂E

∂ 𝑐0
  = ∑ 2 (𝑦𝑛 − (𝑐1𝑥𝑛  +   𝑐0)) . (−1) 

𝑁

𝑛=1

 

Setting 
∂E

∂𝑐1
 = 

∂E

∂ 𝑐0
 = 0 (and dividing by -2) yields 

∑  (𝑦𝑛 − (𝑐1𝑥𝑛  +   𝑐0)) . 𝑥𝑛 = 0 

𝑁

𝑛=1

 

∑(𝑦𝑛 − (𝑐1𝑥𝑛  +   𝑐0)) = 0 

𝑁

𝑛=1

 

Note we can divide both sides by -2 as it is just a constant; we cannot divide by 𝑥𝑖, as 

that varies with 𝑖. We may rewrite these equations as 

(∑ 𝑥𝑛
2

𝑁

𝑛=1

) 𝑐1 + (∑ 𝑥𝑛

𝑁

𝑛=1

)  𝑐0 = ∑ 𝑥𝑛𝑦𝑛

𝑁

𝑛=1

 

(∑ 𝑥𝑛

𝑁

𝑛=1

) 𝑐1 + (∑ 1

𝑁

𝑛=1

)  𝑐0 = ∑ 𝑦𝑛.

𝑁

𝑛=1

 

Re-write equation and put it into matrix form: 

 [
∑ 𝑥𝑛

2𝑁
𝑛=1 ∑ 𝑥𝑛

𝑁
𝑛=1

∑ 𝑥𝑛
𝑁
𝑛=1 ∑ 1𝑁

𝑛=1

] [
𝑐1

 𝑐0
] = [

∑ 𝑥𝑛𝑦𝑛
𝑁
𝑛=1

∑ 𝑦𝑛
𝑁
𝑛=1

] 

and to solve this problem, use Cramer’s rule. 

 

3.3. Language Processor 

Language processor is a special type of a computer software program designed or used 

to perform tasks and has the capacity of translating the source code or program codes into 

machine codes. There are different types of language processors such as compilers, 
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assemblers, interpreters, preprocessors, and disassemblers. In this section, we will explain 

the most widely used language processors, which are compilers and interpreters.  

 

3.3.1. Compilers 

A compiler is a software that can read a program written in one language (source 

language) and translate it into an equivalent program in another language (target language) 

which can be understood by the processor. The main task of the compiler is to report if there 

is errors in the source language that are detected during the translation process. Examples of 

compiled programming languages are C and C++. 

 

3.3.2. Interpreters 

Interpreter is used a code to run on your processor, which is not the same as a compiler. 

An interpreter translates code like a compiler but reads the code and executes directly 

without previously converting them to an object code or machine code, and therefore is 

initially faster than a compiler. Each part of the code is interpreted and then execute 

separately in a sequence and an error is found in a part of the code it will stop the 

interpretation of the code without translating the next set of the codes. Examples of 

interpreted languages are Perl, Python and Matlab. 

 

3.3.3. Differences Between Compilers and Interpreters 

Both compilers and interpreters are translated the high-level language into machine 

language, but there are many differences between them.  

The difference between an interpreter and a compiler is as follows: 

o An interpreter reads one statement and translate it, after executing that statement it 

takes another statement in sequence. While the compiler reads the whole program 

and translates it in one go and then executes it.
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o A compiler generates the error message only after the scanning of the whole program. 

Since an interpreter continues translating the program until the first error is met, and 

to interpret the next statement we have to fix the error. 

o A compiler generates intermediate object code which needs more memory, and it 

will be generated every time when the program is being compiled. As an interpreter 

no intermediate object code is generated, it directly generates machine code. 

o In analyzing and processing the source code a compiler takes larger amount of time 

comparatively and interpreter analyzes and processes the source code immediately. 

o   Besides the processing and analyzing time, programs produced by compilers run 

much faster than the same programs executed by an interpreter. 

 

3.3.4. Compiler Phases 

The basic compiler steps are displayed in Figure 2. 

 

 

 
    Figure 2. Structure of a Compiler 

 

 

The two main components of the compiler are : the front-end and the back-end. 

 

3.3.4.1. Front-End 

The front end part consists of  lexical analysis, syntactic analysis, semantic analysis, 

and the generation of object tree (intermediate code representation).These phases mainly 

depend on the source data. It is independent of the target machine. 

In front-end part, code optimization can be done to reduce cost function.
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       Figure 3. Structure of the Front End 

 

3.3.4.2. Back-End 

The second part of the compiler is the back-end phase which dependent on the target 

machine. The back-end phase include code optimization phase,the necessary error 

handaling, symbol table operations, and  the final code generation. This phase of compiler 

is independent of source program. 

The main task of the front-end phase is to analyze the source data and generate the 

object tree representataion while the back end synthesizes the target program from the object 

tree (intermediate code). 

The generation of an intermediate code may be refered as middle end, as it depends upon 

source program and target machine. 

 

 

 

       Figure 4. Structure of the Back End 

 

3.4. Language Interpreters  

In any language interpreter translating any program from one language to another, first 

the compiler breaks the source data to understand the meaning and the syntactic structure of 

the program, then it recombines in a different and meaninful way. The compiler performs 
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two main tasks; analysis at the front end, and does synthesis the back end. The analysis is 

usually broken up into: Lexical analysis, Syntax analysis and Semantic analysis. 

 

3.4.1. Lexical Analysis (Scanning) 

 Lexical analysis is the first phase of a compiler. It works closely with the syntax 

analyzer, which reads input characters from the source program and groups them into 

lexemes to produce output as a sequence of tokens, by removing any whitespace or 

comments in the source code, and the lexical analyzer output passes to the syntax analyzer 

when it demands [50].  

If the lexical analyzer detects an error such as  invalid token, it generates an error. At this 

point, it may stop to process the input data or it may attempt continuing lexical analysis by 

skipping characters until a valid prefix is found. 

 

 

 

      Figure 5. Interaction of lexical analyzer with parser 

 

3.4.1.1. Regular Expressions 

For lexical analysis, definitions  are written and expressed using regular expressions 

which is an algebraic notation designed to describe sets of strings. Regular expressions are 

a useful tool designed for describing, matching and extracting patterns in text. Regular 

grammar is known as the grammar defined by regular expressions and the language defined 
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by regular grammar is known as regular language. Further reading for regular expressions 

can be referenced by Mogensen, and Torben Ægidius book [51]. 

The lexical analyzer needs to scan and recognize only a finite set of valid 

strings/tokens/lexemes that belong to the predefined language. It searches for the pattern 

defined by the language rules. 

Every programmer should have the knowledge of implementing a tool for matching 

regular expressions from scratch. 

Examples: 

Regular Expression    Language 

a∗             {ϵ, a, aa, aaa, ...} 

(ab)∗       {ϵ, ab, abab, ababab, ...}  

(a | b)∗       {ϵ, a, b, aa, ab, ba, bb, aaa, ...} 

(a b | c)∗       {ϵ, c, ab, cc, abc, cab, ccc, abab, ...} 

 

3.4.2. Syntax Analysis (Parsing) 

Syntax analysis or parsing is the second phase of a compiler.  

After lexical analysis splits the input into tokens, the goal of parsing is to recombine 

these tokens not into a list of characters, but into something that has meaning and reflects 

the structure of the text. 

 

 

 

      Figure 6. Syntax analyzer process



19 

 

  

3.4.2.1.  BNF 

It is a standard notation developed by Noam Chomsky, John Backus, and Peter Naur 

for expressing syntax as a set of grammar rules. BNF is a formal mathematical procedure to 

identify context-free grammars. Backus-Naur Form has four symbols that has a special 

meaning. 

    <  >  ::=  | 

Given a context-free grammar (Σ, N, P, S), a non-terminal (a symbol in the alphabet 

N) is always enclosed in < and > (e.g. < expression>). A terminal (a symbol in the alphabet 

Σ) is often represented as itself, though in the context of computer languages a terminal 

symbol is often enclosed in single quotes. A production (non-terminal → symbols) in P is 

then represented as 

             < non-terminal > ::= symbols  

The symbol | is used in BNF to combine multiple productions in P into one rule. For 

instance, if P := {S → A, S → B}, then P in BNF is < S > ::= A | B 

• “::=” means “is defined as”  

• “|” means “or”  

• Angle brackets mean a nonterminal  

• Symbols without angle brackets are terminals 

 

 

 Table 1. BNF type grammar for numerical expression 

 
<expr> ::= '-' <num> | <num>  

<num>  ::= <digits> | <digits> . <digits> 

<digits> ::= <digit> | <digit> <digits> 

<digit> ::= '0' | '1' | '2' | '3'| '4' | '5' | '6' | '7' | 

'8' | '9' 

 

      



20 

 

  

3.4.2.2. EBNF  

EBNF is the same as BNF, with additional meta-symbols: 

It shows an optional opeartor. It means that the symbol (or symbols) to the left of the operator 

is optional (it can appear zero or one time)  

• * : Which shows a repeating operator. It means that something can be repeated any number 

of times (and possibly be skipped altogether)  

• + : Which shows the number of appearance of an elemnt. It means that something can 

appear one or more times 

Expression of the EBNF type grammar is shorter than the expression of the BNF type 

grammar in Table 1, as can be seen in Table 2. 

 

 

Table 2. EBNF grammar for number expression 

 
<expr> ::= '-'? < digit>+ ('.' <digit>+)?  

<digit> ::= '0' | '1' | '2' | '3'| '4' | '5' | '6' | '7' | 

'8' | '9' 

 

3.4.2.3. Syntax Classes 

Syntax classes are defined to represent input data that can be generated by grammar 

rules as object-oriented programming constructs. 

The definition of some syntactic classes is shown in Table 3 
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Table 3. Syntax classes 

 
abstract class Exp { 

public abstract double accept(Visitor v) ; 

} 

class Plus extends Exp { 

  public Exp exp1, exp2; 

  public Plus(Exp e1, Exp e2) {  

    exp1 = el;  

    exp2 = e2; 

  } 

  public double accept(Visitor V) {  

    return v.visit(this); 

  } 

} 

Class Euler extends Exp { 

  public Exp exp; 

  public Euler(Exp e) {  

    exp = e;  

  } 

  public double accept(Visitor V) {  

    return v.visit(this); 

  } 

}   …         

3.4.2.4. Abstract Syntax Tree 

An abstract syntax tree (AST) is just another representation of the source program in 

an intermediate code. But it is a representation that is much more submissive to analysis. 
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Each node in the abstract syntax tree is an object of a specific type, reflecting the underlying 

linguistic component or operation. After the grammar definition is done, an AST class is 

created for each word type [52,53]. According to JavaCC EBNF language knowledge, each 

element in the symbol list is placed in the object tree. 

For a mathematical expression with addition, subtraction, division and multiplication 

only, the grammatical information to be written is as follows. 

 

 

Table 4. Grammar Example for four operations 

 
E → E + E 

E → E - E 

E → E * E 

E → E / E 

E → num 

 

 

The AST classes to be created in response to this grammar are as shown in Table 5. 
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Table 5. AST classes for four operations 

 

public abstract class Exp  { } 

public class Plus extends Exp { 

  public Exp el , e2; 

  public Plus (Exp al, Exp a2){ el=al; e2=a2;} 

} 

public class Minus extends Exp { 

… 

} 

public class Times extends Exp { 

… 

} 

public class Divide extends Exp { 

… 

} 

public class Num extends Exp {  

public int n; 

public Num (int n) { this. n = n; } 

} 
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The parser grammar to produce AST from the above classes is as shown in Table 6. 

 

 

Table 6. Grammar for four operations 

 
Exp Start () : 

{ Exp e; } 

{ e=E () { return e; } } 

Exp E () : 

{ Exp e1, e2; } 

{ e1=T () ( "+" e2=T () { e1 = new Plus (e1,e2) ;}  

   |"-" e2=T () { e1 = new Minus (e1, e2); })* 

{ return e1; } 

Exp T() : 

{ Exp e1, e2; } 

e1=F() ( "*" e2=F() { e1 = new Times (e1, e2); } 

   | "/" e2=F() { e1 = new Divide (e1, e2) ; })* 

{ return e1; } 

Exp F () : 

{ Token it; }  

{ t=<NUM> { return new Num (Integer.parseInt(t.image)); } 

 

 

3.4.3. Semantics Analysis 

Semantics analyzer is the third phase of the compiler and checks actual meaning of 

the statement parsed in a parse tree. It finds all possible remaining errors that would make 

program invalid, for example; a variable that is an integer cannot be directly equalized in a 

variable that is a string without being subject to any transformations because their token 

types are interpreted differently by the compiler.
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3.4.4. Symbol Table 

Symbol table is a data structure created and provided by compilers in order to check 

of identifiers used in the source program. It stores name, data type, procedure name, storage 

location, scope about identifiers, and other relevant information. 

Symbol table is used by both the front-end and the back-end parts of a compiler. 

For example, if a symbol table has to store information about the following variable 

declaration: 

static int interest;   then it should store the entry such as:<interest, 

int, static>. More information about symbol table is referenced [54]. 

 

3.4.5. Evaluation Methods 

3.4.5.1. Instanceof Operator 

In this method, the type of object that contains a node is determined by the 

intanceOf operator. After the object type is determined, the objects of the subclasses 

need to be derived from the upper class reference variable so that the represented process 

can be executed. 

The related subclasses object can be derived using the cast structure. 

Table 7 describes the object tree and the value of exp to be evaluated. 
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Table 7. Evaluation the instanceof operator 

public static double eval (Exp exp , double x) { 

if (exp instanceof Plus) 

return eval(((Plus)exp).exp1, x) + eval(((Plus)exp).exp2, x); 

else if (exp instanceof Minus) 

return eval(((Minus)exp).exp1, x) - eval(((Minus)exp).exp2, x); 

else if (exp instanceof Power) 

return Math.pow(eval(((Power)exp).exp1, x), eval (((Power)exp).exp2, x)); 

else if (exp instanceof Euler) 

return Math.pow(Math.E, eval(((Euler)exp)..exp, x)); 

 

 

3.4.5.2. Visitor Design Pattern 

Visitor show off  an operation to be performed on the elements of an object structure. 

Visitor allows you to define a new operation without affecting the classes of the elements on 

which it operates [55]. In this design template, a visitor class is created with a visit method 

for each AST object. Visitor class is an interpreter of the AST tree. 

An example of visitor interface class is as in Table 8. 

 

 

Table 8. Visitor interface 

public interface IVisitor {  

 public int visit (Plus e) ;  

 public int visit (Minus e);  

 public int visit (Times e);  

 public int visit (Divide e);  

 public int visit (Num e) ; 

} 
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A visitor class is created by the defined interface. This class contains the necessary 

code for the bodies of all the methods in the interface. An interface can be used for multiple 

visitor classes. 

A visitor class that implements the visitor interface in Table 8 is as in Table 9 

 

 

Table 9. Visitor Class 

 
Public class Visitor implements IVisitor { 

  public int visit (Plus e) { 

    return e.e1.accept(this)+e.e2.accept(this); 

  } 

  public int visit (Minus e) { 

    return e.e1.accept(this)-e.e2.accept(this); 

  } 

  public int visit (Times e) { 

    return e.e1.accept(this)*e.e2.accept(this); 

  } 

  public int visit (Divide e) { 

    return e.e1.accept(this)/e.e2.accept(this); 

  } 

  public int visit (Num e) { 

    return e. n; 

  }  } 

 

The visitor design template allows the source code to be more regular and readable 

than other methods. It also makes it easier for the developer to add or modify code. The 

visitor is an interpreter object with a visit method for each AST class. However, in this 

structure, each AST class must have an accept method that sends the task to the appropriate 

visit method. In this way, the control exchanges between the visitor and the AST class. 

The node invoked by the visitor invokes the visit method corresponding to the class of 

the accept method. This object continues until the end of the tree. 

In summary the visitor design template is a new evaluator.
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3.5. Automatıc Code Generatıon Tools 

Automatic code generation tools are symbolically used to calculate mathematical 

operations in a computer environment. They have been developed to facilitate the analysis, 

interpretation, or compilation processes of formal languages. There are many types of 

automatic code generation tools developed for different programming languages such as 

javaCC and sableCC.  

 

3.5.1. JavaCC  

JavaCC is a tool developed with Java that generates lexical analysis from regular 

expressions and parser from context free grammars and is known as a LL(k) parser generator.  

Advantages of using JavaCC: 

• Provides time saving in the production of compiler. 

• Provides a standard encoding. 

• Provides error-free development. 

• Provides object-oriented development with the Java language. 

• If the regex and grammar definitions are correct, it produces an error-free parser. 

Productions of a JavaCC are the form: 

void Assignment() : {} { Identifier() "=" Expression() 

";" }  

where Assignment(), Identifier(), and Expression() are nonterminal 

symbols; and "=" and ";" are terminal symbols. 

JavaCC uses a configuration file with the extension ".jj". This file starts with setting 

options. Among these options are the number of tokens to be looked at when making 

predictive production, enabling / disabling debug mode, and determining the target folder of 

the files to be created.  

Then the body of the main class of the parser to be produced is defined. This can be 

done between the PARSER BEGIN and PARSER END tags to define and parse the main 

parser class. 
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The same name must follow PARSER_BEGIN and PARSER_END; This will be the name 

of the generated parser.  Any code to be added to this field will be recognized exactly as the 

class will be created by JavaCC. 

As a third step, the skip character and the token list required for lexical analysis are 

defined using regular expressions. The token list is identified using the regular expressions, 

if necessary, under the TOKEN tag. Skipped characters are defined by the SKIP tag and are 

usually space and end-of-line characters. These can be added to other characters depending 

on the application. 

Table 10 provides an example of a JavaCC configuration file. 

 

 

Table 10. JavaCC configuration file 

 
OPTIONS {  

LOOKAHEAD = 1 ; 

. . . 

} 

PARSER_BEGIN (parser_name) 

. . .  

class parser_name . . . { 

. . . 

} 

. . . 

PARSER_END (parser_name) 

SKIP : { "  " | "\t" | "\n" }  

TOKEN : {  

   < NUM : ( [ "0"-"9" ] ) * >  

 | < PLUS : "+" >  

 | < MINUS: "-" > 

 . . . 

} 
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The configuration file is finally completed with the addition of grammar definitions. 

JavaCC uses the extended BNF to define grammar. 

 

3.5.2. SableCC  

SableCC is a parser generator object-oriented development environment working on 

Java, which is developed by Etienne Gagnon in 1998 as a graduate thesis. The SableCC 

parser generator  produce syntax tree classes and using those classes it will build up syntax. 

To reach a shorter development cyle, SableCC isolates the machine generated code and user 

written code and it is LALR (1) based parser. Its productions are of the form:  

assignment = identifier assign expression semicolon ;                                   

where assignment, identifier, and expression are nonterminal symbols; and assign and 

semicolon are terminal symbols. 
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4.  RESEARCH METHODOLOGY 

4.1. Introduction 

In engineering applications numerous methods have been developed for the computer 

environment to solve the mathematical problems. In general, numerical and symbolic 

approaches take the form of two main classes of computational methodologies. 

Numerical methods involve a certain margin of error, and calculations for solving a 

problem are repeated until a certain error rate and/or a certain number of iterations are 

reached. Symbolic methods are based on finding the exact and error-free solution of 

mathematical problems with the help of computer environments. Manual resolution of these 

calculations may not be possible with long, faulty, and sometimes conventional methods. 

In this study, we describe the process of developing an interpreter for the least squares 

method, where it first identifies the unknowns such as 𝑎 and 𝑏  in the input function and then 

takes a set of points. In some cases, the input function first needs converted into a polynomial 

function and then into an AST before the least squares method is applied to it.  

4.2. General Structure of the Least Squares Interpreter 

In the study, we describe the process of developing an interpreter for the least squares 

method. The interpreter language is formally defined using an Extended Backus Naur Form 

(EBNF). The grammatical form that is suitable for the syntactic and semantic structure of 

mathematical expressions has been developed and transformed into the LL (k) grammatical 

structure from left to right. In addition, syntax classes are defined to represent operators and 

functions that can be included in a mathematical expression. Before applying the method, 

the input function is evaluated through an AST to see whether it requires a possible 

conversion to a linear. 

A token generator that takes the augmented generic input data and transforms it into a 

token sequence. It consists of a parser that generates a syntactic tree by checking the syntactic 

structure of the data from the token array, expression calculators that perform least squares, 

summation and simplification operations on the syntactic tree. The general structure of the 

application is shown in Figure 7.
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   Figure 7. Architecture of the Least Squares Interpreter 

 

4.2.1. Lexical Analysis 

Lexical analysis, which is the first stage of compilation process, takes the modified 

source code from a system of least squares that are written in the form of sentences and 

breaks it into a sequence of tokens which is suitable for the syntax structure of the Java 

programming language, by skipping any whitespace or comments in the source code. At this 

point, if the application of least squares method for a given input is invalid it may stop 

reading the input or it may attempt continuing lexical analysis by skipping characters until a 

valid prefix is found. 
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4.2.1.1.  Token Declaration 

A token analyzer generates a token array by analyzing the input data in the direction 

of the global specifications. A token represents each word (terminal) in the input data that 

cannot be separated into smaller pieces. 

According to the JavaCC notation, the token name and the regular expression of the 

represented set of words are given together in the token descriptions shown below in Table 

11. Generally, each operator is represented by a different token class in the keyword. 

 

  

Table 11. JavaCC token declaration for the application 

 

TOKEN: { 

   <PLUS: "+"> 

 | <MINUS: "-"> 

 | <TIMES: "*"> 

 | <DIVIDE: "/"> 

 | <POWER: "^"> 

 | <EQ: "="> 

 | <COMMA: ","> 

 | <LPAREN: "("> 

 | <RPAREN: ")"> 

 | <NUM: (["0"-"9"])+("."(["0"- 

                    "9"])+)?> 

 | <X: "x"> 

 | <LN: "ln"> 

 | <E: "e"> 

 | <ID: ["a"-"z"](["a"-z|["0"- 

                           "9"])*>     

} 

 

 

The mathematical expression is entered into the system in text format as follows:        

𝑎 ∗ exp ^ (𝑏 ∗ 𝑥 + 𝑐). According to the definitions in Table 11, this example is broken down 

into the token sequence given in Table 12  

 

 

Table 12. Token Sequence 

 

ID, TIMES, EXP, POWER, LPAREN, ID, TIMES, X, PLUS, ID, 

LPAREN 

 

 

The word that is not identified as token will be detected by the code generated by 

JavaCC and an appropriate error message will be displayed.
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4.2.2. Syntax Analysis 

In this stage, the source data format is defined, syntactic analysis is performed using 

the token array obtained from the lexical analysis. Lexical analysis splits the source input 

into tokens whereas the purpose of syntax analysis is to recombine these tokens using a 

predefined syntactic structure that is denoted by the CFG. 

The syntactic rules of the Least Square Method are defined using the CFG then 

expressions that generate the object tree are added to these definitions. The application report 

syntactic errors in case of the parser detects any syntactic errors, and finally the application 

generates the object tee (AST) of the application. JavaCC parser generator tool is used to 

perform the syntax operations of the least squares equations and to generate the object tree 

of the least squares input data from the defined syntactic structure. 

The JavaCC tool includes easy-to-use declarative constructs for describing data 

formats and building object trees. Syntax classes are defined for each rule of a grammar that 

formally represents the source data, including the token and non-terminals contained by the 

rule. After the grammatical structure is determined for the syntactic analysis stage, this 

grammatical structure must be adapted to LL(k). This is because JavaCC works with the 

LL(k) grammars. LL(k) grammars involves performing some necessary modifications on the 

CFG. Therefore, the left factoring process is performed by eliminating the recursive states 

from the left. After all these processes, the related grammar structure is transferred to JavaCC 

environment and Java code is produced which can perform the syntactical analysis 

requirements of the developed application. 

In this section, the syntax structure developed for the least squares method and the 

JavaCC code structure which automatically generates the abstract tree of the syntax structure 

are explained in detail. 

 

4.2.2.1.  Syntax Structure of Least Squares Input Data 

The JavaCC tool needs to produce LL (1) grammar by performing some operations on 

EBNF grammar such as eliminating the ambiguity and left factoring as shown in Table 13. 
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Table 13. LL (1) grammar definition for LSM 

 

G={Σ, T, V, P, S}  

V={Eq2,  Exp, Term, Power, Elem, Func, Num,    Id }⊆ 𝛴  

T={log, Ln, exp, ( , ), +, -, *, /, ^, =, , , ;}⊆ 𝛴  

Σ=𝑇 ∪ 𝑉  

S={Eq}  

Productions  

<Eq2>     → <id>(<Exp>) = <Exp>  

<Exp>     → ("+"│"-")? <term> [("+"│"-") <term> ]*  

<Term>    → <power> [("*"│"/") <power>]*  

<Power>   → < func > ("^"<power>)?  

<Elem>    → <func> "(" <Exp> ")" | <num> | <id>  

<Func>    → <num> | <id> | "log" | "ln" | "e"  

<Num>     → "-"? ["0"-"9"] + ("."["0"-"9"]+)?  

<Id>      →  ["a"-"w","A"-"W"](["a"-"w","A"-"W","0"-"9"])* 

<Idn>     →   ["x"-"y"](["x"-"y"]|["0"-"9"])*> 

 

  

 

Parsing an expression is processing the expression according to the grammar 

production rules. The name of methods in the JavaCC syntax description of least square 

expressions is determined according to the nonterminal set in Table 14, as shown in Table 

13. All JavaCC methods are defined according to the grammar structure and, at the late stage, 

they are used to generate the related object tree, with the nodes constructed by the syntax 

classes, for the interpretation process.
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Table 14. JavaCC Grammar Definition for LSM 

 

Equation Eq2() : 

{ Exp e, e1; Token t;  } 

{ t = <ID> <LPAREN> e1 = E() <RPAREN>  <EQ>  e = E()  

{ return new Function(t.image, e1, e ); } 

} 

Exp E() : 

{ Exp e1, e2; Exp args5[] = new Exp[26];  } 

{ e1=T()  ( 

      <PLUS> e2=T()  { e1 = new Plus(e1, e2); } 

    | <MINUS> e2=T()  { e1 = new Minus(e1, e2); }  )*  

  { return e1; } 

} 

Exp T() : 

{ Exp e1 , e2;  } 

{  e1 = P() ( 

      <TIMES> e2 = P()  { e1 = new Times(e1,e2); } 

    | <DIVIDE> e2 = P()  { e1 = new Divide(e1,e2); } )*  

  { return e1; }   

} 

Exp P() : 

{ Exp e1, e2; } 

{  e1=F() ( 

      <POWER> e2=P() { e1 = new Power(e1, e2); } )? 

  { return e1; } 

} 

Exp F() : 

{ Exp e; Token t;  } 

{   t = <ID>  { return new Var(t.image);} 

    | t = <IDN>  { return new Var(t.image);} 

    | t = <NUM> { return new Num(Integer.parseInt(t.image)); }  

    | <LPAREN> e = E() <RPAREN> { return e; }  

    | <LN> <LPAREN> e=E() <RPAREN> { return new Ln(e); } 

    | <E> <LPAREN> e=E() <RPAREN> { return new Euler(e); } 

  ... 

} 
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4.2.2.2.  Generating Abstract Syntax Tree 

Based on the programming language used, there are many algorithms to build a parsing 

tree from a sequence of tokens. The Java language is used in this thesis as the implementation 

programming language, so an object-oriented parser constructed with the JavaCC generator 

tool generates the object tree. Each CFG rule is represented as a syntax class. The formation 

of the hierarchical structure of the grammatical object tree depends on the execution of the 

grammar rules used to form the source data. A syntax tree (object tree) consists of several 

nodes linked together in a hierarchical structure. From these nodes on the object tree, each 

node is derived from syntax classes and contains an object that represents a process or data. 
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Table 15. Abstract Syntax Tree for LSM 

 

abstract class Equation {  

public abstract Object accept(Visitor v); } 

... 

class Plus extends Exp { 

  Exp a, b; 

  public Plus(Exp x, Exp y) { 

    a = x; b = y; } 

  public Object accept(Visitor v) { 

      return v.visit(this); } 

   public double eval(double x) { 

    return a.eval(x) + b.eval(x); 

  } } 

... 

class Var extends Exp { 

  String id; 

  public Var(String x) { id = x; } 

  public String toString( ) { return  id ; } 

  public Object accept(Visitor v) { return v.visit(this); } 

   public double eval(double x) { return Double.parseDouble(id); 

  } } 

class Num extends Exp { 

  int n; 

  public Num(int x) { n = x; } 

  public String toString( ) { return  (String.valueOf(n));} 

  public Object accept(Visitor v) { 

      return v.visit(this); 

   } 

   public double eval(double x) { 

    return n; 

  } 

} 
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4.2.3. Semantic Analysis 

 The aim of the semantic analysis is to check the actual meaning of the statement 

represented in the parse tree such that the token structures on the leaves of the tree start to 

make sense for the interpreter. Once the abstract tree is created, it is subjected to semantic 

analysis. The token expressions in the leaves of the abstract tree begin to make sense for the 

interpreter at this stage. For example; interpreter tokens are constructed as constants such as 

integer, variable, string, so that the corresponding token is processed according to the 

interpreter-loaded meaning in the program. The most important operations in this phase 

include type checking, scope resolution, and array bounds. As a consequence of these 

operations, some errors can occur semantically. Errors that may occur at this stage are called 

semantic errors. For example; a variable with an integer and a variable with a string cannot 

be directly equalized because their token types are interpreted differently by the interpreter. 

 In this section, semantic errors in the code structure of the source program are checked 

and data type information is determined for code generation operations. Type checking is 

the most important part of semantic analysis. The CFG used in syntactic analysis operations 

is combined with the semantic rules determined at this stage. 

 

4.2.4. Simplification 

 When performing mathematical functions, it may be necessary to simplify the function 

expression. The reason for this is, during the intermediate steps of the evaluation process or 

before the printing process, that the tree has some parts to simplify and if the parts are not 

simplified, the structure of the function may contain a lot of unnecessary data which can 

complicate the interpretation process, reducing the legibility of the related function.  

 It is difficult to define a general simplification process that covers all mathematical 

expressions so it must be defined according to the expression or problem. 
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4.2.5. Transformation into polynomial 

The least squares method usually uses a linear system of equations to obtain the values 

of unknowns in an input function. In fact, the equation system is derived from the input 

function, applying relative differentials on the unknowns in that function. In the case that the 

function is a polynomial, the resulting system will purely linear one and can be easily solved. 

In the other hand, when the function is nonlinear it first needs to converted into a polynomial 

function (by taking the log or the reciprocal of the data), and then least-squares method can 

be applied to the resulting linear equation.  

Some particular functions that require the conversion into polynomial function before 

the least squares method is applied to it are exponential function, rational function and power 

function. 

 

4.2.5.1. Exponential Functions 

In order to apply the least squares method into an exponential function of the form 

𝑔(𝑥) = 𝐴 . 𝑒𝐵𝑥, the function needs some necessary transformations of linearization. In this 

way, first it is converted into a polynomial of degree 1, applying the natural logarithm to 

both sides of the equation as follows. 

𝑔(𝑥) = 𝐴 . 𝑒𝐵𝑥 

𝑙𝑛 𝑔(𝑥) = 𝑙𝑛 (𝐴 . 𝑒𝐵𝑥) 

𝑙𝑛 𝑔(𝑥) = 𝑙𝑛 𝐴 + 𝐵𝑥 . ln 𝑒 

ln 𝑔(𝑥) = ln 𝐴 + 𝐵 . 𝑥 

This linearization is also applied to the related set of data points. After the data is 

linearized, the following substitutions are made to the equation  

Let z = ln(𝑦)  

         𝑎0 = ln(𝑎),  implying  𝑎 = 𝑒𝑎0 

𝑎1 = 𝑏  

The data now appears in the form of a linear model:  

𝑧 = 𝑎0 + 𝑎1 𝑥 
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In the exponential model procedure, least squares linear regression method is used to 

solve for the 𝑎0 and 𝑎1 coefficients which are then used to determine the original constants 

of the exponential model, 𝑎 and 𝑏, where 𝑦 = 𝑎 𝑒𝑏𝑥. 

 

4.2.5.2. Power Functions 

As with the exponential function, a power function of the form 𝑔(𝑥) = 𝑎 𝑥𝑏 is 

modified via the same transformations. The application of the natural logarithm to both sides 

of the equation leads to the following linear function. 

𝑔(𝑥) = 𝑎 𝑥𝑏 

𝑙𝑛 𝑔(𝑥) = 𝑙𝑛 (𝑎 𝑥𝑏) 

𝑙𝑛 𝑔(𝑥) = 𝑙𝑛 𝑎 + 𝑏 ln 𝑥 

After the linearization on data points, the following substitutions are made to the 

equation  

Let z = ln(𝑦)  

          w = ln(𝑥) 

         𝑎0 = ln(𝑎),  implying  𝑎 = 𝑒𝑎0 

         𝑎1 = 𝑏  

 The linear model gets into the  

 𝑧 = 𝑎0 + 𝑎1 𝑤             

 In the power model procedure, least squares linear regression method is used to solve 

for the 𝑎0 and 𝑎1 coefficients which are then used to determine the original constants of the 

power model, 𝑎 and 𝑏, where 𝑦 = 𝑎 𝑥𝑏. 

 

4.2.5.3. Rational Function  

For rational functions to be handled by the least squares method we take the reciprocal 

of the function at both sides as follows: 

𝑦 =
𝑎 𝑥

𝑏 + 𝑥
 

1

𝑦
=

𝑏

𝑎

1

𝑥
+

1

𝑎
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Together with the linearization of data points, the following substitutions are made:  

Let  𝑧 =
1

𝑦
 

 𝑞 =
1

𝑥
 

 𝑎0 =
1

𝑎
  , implying  𝑎 = 

1

𝑎0
 

 𝑎1 =
𝑏

𝑎
 , implying  𝑏 = 

𝑎1

𝑎0
 

Then the data now reaches the form of a linear model:  

𝑧 = 𝑎0 + 𝑎1 𝑞              

In the saturation growth model procedure, least squares linear regression method is 

used to solve for the 𝑎0 and  𝑎1 coefficients which are then used to determine the original 

constants of the growth model, 𝑎 and 𝑏, where𝑦 =
𝑎 𝑥

𝑏+𝑥
. 

 

4.2.6. Summation 

With the least squares method, we calculate the sum of the squares of the x-values and 

also calculate the sum of each x-value multiplied by its corresponding y-values.  

The sum of the squares of the x-values get very large according to the degree of 

polynomial. For example, a sum of  𝑥4 needs for a 2nd degree polynomial (quadratic), 𝑥6 

needs for a 3rd degree polynomial and 𝑥16 for an 8th degree polynomial. 

 

4.2.7. Representation by Jacobean Matrix 

After the general polynomial regression model is developed using the method of the 

least squares, the coefficients of the polynomial model may be determined as Jacobean 

matrix as follows:   

[
 
 
 
 
 
 𝑛 ∑ 𝑥𝑖

𝑛

𝑖=1
… ∑ 𝑥𝑖

𝑘
𝑛
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𝑛

𝑖=1
∑ 𝑥𝑖

2
𝑛

𝑖=1
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𝑘+1
𝑛

𝑖=1

⋮ ⋮ ⋮ ⋮

∑ 𝑥𝑖
𝑘

𝑛

𝑖=1
∑ 𝑥𝑖

𝑘+1
𝑛

𝑖=1
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2𝑘
𝑛

𝑖=1 ]
 
 
 
 
 
 

[

𝑎0

𝑎1

⋮
𝑎𝑘

] =

[
 
 
 
 
 
 ∑   𝑓𝑖 

𝑛

𝑖=1

∑   𝑓𝑖 𝑥𝑖

𝑛

𝑖=1

⋮

∑   𝑓𝑖 𝑥𝑖
𝑘

𝑛

𝑖=1 ]
 
 
 
 
 
 



43 

 

  

The use of matrix representation will make things easier when it comes to applying 

the math to higher order polynomials. 

 

4.2.8. Cramer’s Rule 

Cramer's rule allows us to solve the linear simultaneous system of equations, by 

finding the regression coefficients using the determinants of the square matrix. Each of the 

coefficients may be determined using the following equation: 

𝑎𝑘 =
𝐷𝑘

𝐷⁄  

 

[
 
 
 
 
 
 ∑   𝑓𝑖 

𝑛

𝑖=1
∑ 𝑥𝑖

𝑛

𝑖=1
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𝑛
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𝑘

𝑛

𝑖=1
∑ 𝑥𝑖

𝑘+1
𝑛

𝑖=1
… ∑ 𝑥𝑖

2𝑘
𝑛

𝑖=1 ]
 
 
 
 
 
 

 

 

The method of Cramer’s rule is valid whenever the system has a unique solution (𝐷 is 

not equal to zero). 
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Table 16. Solving linear equations using Cramer’s rule 

 

public double[] cramers(double A[][],double B[]) 

  { 

 double temp[][] = new double[N][N]; 

 double x[] = new double[N]; 

 for(int i=0;i<N;i++) 

 { 

      for(int j=0;j<N;j++){ 

         for(int k=0;k<N;k++){ 

           if(k == i) 

            temp[j][k] = B[j]; 

            else 

             temp[j][k] = A[j][k];       

            } 

     } 

       x[i]=determinant(temp,N)/determinant(A,N); 

    } 

 for(int i=0;i<N;i++){ 

   String c = varibles.get(i).toString(); 

            FinalSolution.add(c); 

            FinalSolution.add(" = "); 

            double c1 = x[i]; 

                     FinalSolution.add(c1); 

                     FinalSolution.add("\n"); 

  System.out.println(varibles.get(i).toString()+" = 

"+x[i]); 

 } 

 return x; 

  } 
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4.2.9. Printing Solution Values and Intermediate Steps 

After calculating the final result, the application program will show all intermediate 

steps and final solution. To speed up the evaluation process of some functions, they are 

simplified and stored in the AST. In the printing process, a print visitor class is used, which 

contains the functions defined on AST to print them. 
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5.  INTERPRETER ILLUSTRATION 

In this section, a sample visual application to illustrate how the least squares interpreter 

works is described. The function that minimizes the sum of squared errors is entered in the 

user interface in the specified format. The least squares method estimates the values and 

displays it in the interface. 

 

5.1. Input Data Format 

First the function equation for the least squares method (mathematical expression) are 

entered into the interpreter as text format, then it checks whether the function input needs a 

transformation. If the input function is not polynomial it first converts into a polynomial 

function and then it identifies the unknowns such as 𝑎 and 𝑏 in the input function to estimate 

the coefficient values. 

 

 

Table 17. Input data format for polynomial Least Squares Method 

𝑝(𝑥) = 𝑎0 ∗ 𝑥^0 + 𝑎1 ∗ 𝑥^1 + 𝑎2 ∗  𝑥^2 + ⋯ + 𝑎𝑛  ∗ 𝑥^𝑛 

𝑥 = {𝑣𝑎𝑙1, 𝑣𝑎𝑙2, 𝑣𝑎𝑙3, 𝑣𝑎𝑙4, … , 𝑣𝑎𝑙𝑛} 

𝑦 = {𝑣𝑎𝑙1, 𝑣𝑎𝑙2, 𝑣𝑎𝑙3, 𝑣𝑎𝑙4, … , 𝑣𝑎𝑙𝑛} 

 

 

5.2. Step-By-Step Application of the Least Squares Method 

In this section, to illustrate the methodology of the interpreter, we explain all 

intermediate steps needed to solve some given linear and nonlinear equations of different 

types in Table 18 and Table 19.   
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  Table 18. Input data of the application (Polynomial) 

 

𝑝(𝑥) = 𝑎0 + 𝑎1 𝑥 + 𝑎2 𝑥
2 

𝑥 = {0, 0.2, 0.4, 0.7, 0.9, 1 } 

𝑦 = {1.016, 0.768, 0.648, 0.401, 0.272, 0.193 } 

 

 

 

   Table 19. Input data of the application (Exponential) 

 

𝑝(𝑥) = 𝐴 . 𝑒𝐵𝑥 

𝑥 = {0, 0.5, 1.25, 2, 2.7, 3, 3.5, 3.9, 4.75, 5.25} 

𝑦 = {1.37, 1.48, 2.09, 2.77, 3.6, 4.1, 4.88, 6.01, 7.95, 9.9} 

 

 

 

For the given input data in Table 18, we need to find or estimate the numerical values 

of the parameters 𝑎0, 𝑎1 and 𝑎2 to fit a function to a set of data 𝑥 and 𝑦 and to characterize 

the statistical properties of estimates. 

First the interpreter checks if the input equation is polynomial, then analyzes the input 

data format. If there is no error detected, an AST is generated as a hierarchical representation 

of the source data. The interpretation is carried out through the nodes of the AST. The 

following sections present the detailed illustration of all these phases. 

 

5.2.1. Analysis Phase of the Interpreter 

In the analysis phase the input data given in Table 18 are broken into constituent pieces 

of tokens according to the Token Declaration made in JavaCC for the interpreter as seen in 

Table 11. If there is no error in the format of the given input source data, the generated token 

sequence of the given input source data is given in Table 20.  
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Table 20. Token sequence of the given application input data 

 
ID LPAREN ID RPAREN ASSIGN ID TIMES ID POWER NUM PLUS ID   

                 TIMES ID POWER NUM 

X ASSIGN LCB NUM COMMA NUM COMMA NUM … RCB 

Y ASSIGN LCB NUM COMMA NUM COMMA NUM … RCB 

  

 

After the sequence of tokens is generated, the syntax analyzer checks whether the 

token sequence it receives from the input as source data conforms to predefined syntax rules 

and creates an abstract syntax tree if it does not see any problem. Abstract syntax trees are 

often used as intermediate representations of the data between the front end and the back 

end. A sample token array and the intermediate code generated by the parser for this token 

array are shown in Table 21. 

 

 

Table 21. The object tree for the input source data in Table 18 

 
Eq(new Function (  

           new Plus(new Times(new var (𝑎0),new Power(new 

                                       Var(x),new Num(0))),                   

                    new Times(new var (𝑎1),new Power(new 

                                      Var(x),new Num(1))))) 

)                                                                                                                                                                                                               

 

 

 In the analysis phase an intermediate representation is constructed from the given 

source code. The remaining steps of the interpretation phase will be discussed in the next 

section, the following steps of the implementation of least squares method: 

• Minimize the sum of the squares of the errors for the given function. 

• Minimize 𝐸 according to each coefficient by setting Partial Derivative 

• Evaluate by dividing 2 at both sides 

• Compute the sum of the squares of the x-values and also the sum of each x-value 

multiplied by its corresponding y-values 

• Represent as Jacobian matrix form. 

• Write into form of 𝐴𝑋 = 𝐵 

• Solve using Crammer’s Rule
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5.2.2. Interpretation Phase  

In this section, the solution using the equation AX = B which derived for the 

polynomials and the solution to be obtained from the equations obtained by derivation can 

be separated from each other. 

In the interpretation phase, the final processing step of granting resources without any 

errors is performed here. At this stage, the source code for performing the least squares 

method (error estimation) starts with the function converter if it’s necessary, then the partial 

differentiation of the given function with respect to each coefficient is calculated, the sum 

of the squares of the x-values and also the sum of each x-value multiplied by its 

corresponding y-values is computed, finally we represent as Jacobean Matrix into form of    

𝐴𝑋 = 𝐵 solving this linear equation using Cramer’s Rule. 
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Table 22. Least Squares Method interpretation process of object tree in Table 21 

 
1) Minimize the sum of the 

squares of the errors 
𝐸 = ∑𝜀𝑖

2 = ∑[𝑝(𝑥𝑖) − 𝑓𝑖]
2

𝑛

𝑖=1

𝑛

𝑖=1

= ∑[𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 − 𝑓𝑖]

2

𝑛

𝑖=1

 

 

2) Minimize 𝐸 according to each 

coefficient by setting Partial 

Derivative  

𝜕𝐸

𝜕𝑎0

= 2∑[𝑎0 + 𝑎1𝑥 + 𝑎1𝑥
2 − 𝑓𝑖]

𝑛

𝑖=1

 = 0 

𝜕𝐸

𝜕𝑎1

= 2∑[𝑎0 + 𝑎1𝑥 + 𝑎1𝑥
2 − 𝑓𝑖]

𝑛

𝑖=1

. 𝑥 = 0 

𝜕𝐸

𝜕𝑎1

= 2∑[𝑎0 + 𝑎1𝑥 + 𝑎1𝑥
2 − 𝑓𝑖]

𝑛

𝑖=1

. 𝑥2  = 0 

 

3) Evaluate by dividing 2 at both 

sides 
∑(𝑎0 + 𝑎1𝑥 + 𝑎1𝑥

2) =

𝑛

𝑖=1

∑  𝑓𝑖  .  1

𝑛

𝑖=1

 

∑(𝑎0 + 𝑎1𝑥 + 𝑎1𝑥
2) 𝑥𝑖 =

𝑛

𝑖=1

∑  𝑓𝑖  .  𝑥𝑖

𝑛

𝑖=1

 

∑(𝑎0 + 𝑎1𝑥 + 𝑎1𝑥
2) 𝑥2 =

𝑛

𝑖=1

∑  𝑓𝑖  .  𝑥
2

𝑛

𝑖=1

 

 

 

4) Compute the sum of the 

squares of the x-values and 

also the sum of each x-value 

multiplied by its corresponding 

y-values 

∑𝑥𝑖 = 3.2 

6

𝑖=1

 , ∑𝑓𝑖 = 3.298 ,   ∑ 𝑥𝑖
2 = 2.5 ,

6

𝑖=1

  

6

𝑖=1

  

 

 ∑𝑥𝑖 𝑓𝑖 = 1.1313 ,

6

𝑖=1

  ∑𝑥𝑖
3 = 2.144 

6

𝑖=1

 , 

∑𝑥𝑖
4 = 1.923 

6

𝑖=1

,   ∑𝑓𝑖  𝑥𝑖 
2 = 0.744 

6

𝑖=1

 

 

5) Represent as Jacobian matrix 

form. 
[

6 3.2 2.5
3.2 2.5 2.144
2.5 2.144 1.923

] 

6) write into form of          𝐴𝑋 = 𝐵 
[

6 3.2 2.5
3.2 2.5 2.144
2.5 2.144 1.923

] . [

𝑎0

𝑎1

𝑎2

] = [
3.298
1.1313
0.744

] 

7) Solve using Crammer’s Rule 𝐷 = 0.2521, 𝐷𝑎0
= 0.2517, 𝐷𝑎1

= 0.2538 , 𝐷𝑎2
= 0.0532 

𝑎0 = 𝐷𝑎0
 / 𝐷 = 0.9986  

 𝑎1  = 𝐷𝑎1
 / 𝐷 = −1.0068             𝑎2  = 𝐷𝑎2

 / 𝐷 = 0.21103 
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Where 𝐸 denoted the sum of the squares, 𝐷 is the determinant of the coefficient 

matrix, 𝐷𝑎0
, 𝐷𝑎1

 and 𝐷𝑎2
 are the determinants of the unknown vectors of 𝑎0, 𝑎1 𝑎𝑛𝑑 𝑎2  

respectively. The given application is solved the polynomial function of curve fitting using 

the Least Squares Method. The final solution is: 

𝑝(𝑥) = 0.9986 − 1.006 𝑥 + 0.21103 𝑥2 

 

 

Table 23. Least Squares Method interpretation process which need transformation into 

                polynomial 

 
1) Check if it is polynomial and transform it if 

it’s not 

 

 

𝑝(𝑥) = 𝐴 . 𝑒𝐵𝑥      →   𝑝(𝑥) =  𝐶 + 𝐵𝑥 

 

2) Minimize the sum of the squares of the errors 
𝐸 = ∑ 𝜀𝑖

2 = ∑[𝑝(𝑥𝑖) − 𝑓𝑖]
2

𝑛

𝑖=1

𝑛

𝑖=1

= ∑[𝐶 + 𝐵𝑥 − 𝑦𝑖]
2

𝑛

𝑖=1

 

 

3) Minimize 𝐸 according to each coefficient by 

setting Partial Derivative  

𝜕𝐸

𝜕𝐶
= 2∑[𝐶 + 𝐵𝑥 − 𝑓𝑖]

𝑛

𝑖=1

 = 0 

𝜕𝐸

𝜕𝐵
= 2∑[𝐶 + 𝐵𝑥 − 𝑓𝑖]

𝑛

𝑖=1

. 𝑥 = 0 

 

4) Evaluate by dividing 2 at both sides 
∑(𝐶 + 𝐵𝑥) =

𝑛

𝑖=1

∑  𝑓𝑖  .  1

𝑛

𝑖=1

 

∑(𝐶 + 𝐵𝑥) 𝑥 =

𝑛

𝑖=1

∑  𝑓𝑖  .  𝑥

𝑛

𝑖=1

 

 

5) Compute the sum of the squares of the x-

values and also the sum of each x-value 

multiplied by its corresponding y-values 

∑𝑥𝑖

10

𝑖=1

= 26.9   ,     ∑ 𝑌𝑖

10

𝑖=1

= 12.9   ,    ∑𝑥𝑖
2

10

𝑖=1

= 100  ,    

∑𝑌𝑖

10

𝑖=1

𝑥𝑖 = 45                  𝑊ℎ𝑒𝑟𝑒     𝑌𝑖 = ln 𝑓𝑖  

6) Represent as Jacobian matrix form. [
10 26.9

26.9 100
] 

7) write into form of          𝐴𝑋 = 𝐵 [
10 26.9

26.9 100
] . [

𝐶
𝐵
] = [

12.9
45

] 

8) Solve using Crammer’s Rule 𝐷 = 276.39, 𝐷𝐶 = 79.5, 𝐷𝐵 = 102.99 

𝐶 = 𝐷𝐶  / 𝐷 = 0.2876  ,         𝐵  = 𝐷𝐵 / 𝐷 = 0.3726 

9) Apply with the giving function (Exponential 

Function) 

𝐴 = 𝑒𝐶 = 𝑒0.2876 = 1.3333       

𝑝(𝑥) = 1.3333 𝑒0.3726 𝑥  
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To apply this solution to the giving function (𝑝(𝑥) = 𝐴 . 𝑒𝐵𝑥     ) we need to find 𝐴: 

𝐴 =  𝑒𝐶 = 𝑒0.2876 = 1.3333 

and the final solution will be: 

𝑝(𝑥) = 1.3333 𝑒0.3726 𝑥  

To simplify the usage of the program we have developed a simple interface.   

 

 

              Figure 8. Application Interface
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6.  CONCLUSION 

 In this study, the development of an interpreter for the least squares method is 

addressed. As with the method, the input data of the interpreter are constructed by a finite 

set of points and an approximating function that can be represented via a formal grammar. 

It deals with the determination of some coefficients in the function that represents the given 

points with minimum error. The grammar rules of the related input language are defined in 

accordance with the specification requirements of the JavaCC tool, which generates code 

automatically from Java programming language. The development process consists of two 

main phases, namely data analysis and method interpretation. 

The analysis phase performs two important operations such as lexical analysis and 

syntax analysis.  The lexical analyzer (lexer) breaks the character sequence of the input data 

into sub-pieces called tokens and also identifies the kind of each token. Then the token 

sequence is examined by the syntax analyzer (parser) to check that it meets the syntax 

structure defined by the rules of the language grammar. On the proper sequencing of the 

tokens, the parser generates an intermediate code representation that has the hierarchical 

structure, called the abstract syntax tree (AST). This tree serves as an input to the other 

components of the interpreter responsible for further analysis and evaluation.  

The interpretation phase performs various symbolic programming activities such as 

functional transformation and generation of summation expressions. More specifically, the 

programming process of the least squares method needs to carry out polynomial conversion, 

function evaluation and equation solving. Therefore, the least squares method is 

implemented through two basic visitor interfaces that has some evaluation methods defined 

on the AST produced by the parser. One visitor interface is used to transform the 

approximating function into a polynomial form. The other one is required to determine some 

parameters of the function, solving a linear system of equations derived from an input set of 

points. 

In our task, given a set of points (𝑥𝑖, 𝑦𝑖) and an approximating function of (𝑎 + 𝑏𝑥), 

we seek to find a value for 𝑎 and 𝑏 that minimizes the sum of the squared errors. The error 
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is decomposed into the difference between the observed value 𝑦𝑖 and the predicted value 

(𝑎 + 𝑏𝑥𝑖) that we want to minimize with respect to two parameters of 𝑎 and 𝑏. To carry out 

this task, we need a solid understanding of algebra, basic linear algebra (using matrices to 

solve the system of equations) and some of calculus (partial derivative and summations). 

The partial derivatives with respect to 𝑎 and 𝑏 end up with two equations with two 

unknowns. Then the last step is to solve the system of equations simultaneously for 𝑎 and 𝑏 

using Cramer’s rule. 

The interpreter language is defined formally, using EBNF grammar, and can perform 

both numeric and symbolic calculations. Before applying the method, the input function is 

evaluated through an AST to see whether it requires a possible conversion to a polynomial 

(applying the natural logarithm to both sides of the equation). For such functions, the 

conversion allows an easy solution based on a system of linear models. 

The least squares method usually uses a linear system of equations to obtain the values 

of unknowns in an input function. In fact, the equation system is derived from the input 

function, applying relative differentials on the unknowns in that function. In the case that 

the function is a polynomial, the resulting system will purely linear one and can be easily 

solved. 
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7.  FUTURE WORKS 

In the work, the least squares method is interpreted only for some types of 

approximating functions with a given set of data points. It can be extended to cover the 

another types  such  as trigonometric ones. 

In our interpreter, to solve the linear equations we have used Cramer’s rule that can 

solve only nonlinear equations with unique solutions. If the determinant of the coefficient 

matrix, denoted by D, is zero, then Cramer’s Rule will not work because of divide by zero. 

In this case, there are obviously two scenarios that makes the system of equations 

inconsistent (no solution) and dependent (infinite solutions). These scenarios can also be 

supported with the use of a different technique of systems of equations such as 

Addition/Elimination or Substitution to find out and solve the type of the system. 

In order to improve the usability of the interpreter, it can be moved to web 

environment, and visualization of operations and graphical structures, required for the 

minimization or representation of errors, can be obtained. 
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