KARADENİZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

YAKIN VE UZAK FAY YER HAREKETİNE MARUZ ÇATLAKLI BETON AĞIRLIK BARAJLARIN DİNAMİK ANALİZİ

YÜKSEK LİSANS TEZİ

İnş. Müh. Tekin Çağatay PARILTAN

TEMMUZ 2019 TRABZON

KARADENİZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsünce

Unvanı Verilmesi İçin Kabul Edilen Tezdir.

Tezin Enstitüye Verildiği Tarih :/Tezin Savunma Tarihi::/

Tez Danışmanı :

Trabzon

KARADENİZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

İnşaat Mühendisliği Anabilim Dalında Tekin Çağatay PARILTAN Tarafından Hazırlanan

YAKIN VE UZAK FAY YER HAREKETİNE MARUZ ÇATLAKLI BETON AĞIRLIK BARAJLARIN DİNAMİK ANALİZİ

başlıklı bu çalışma, Enstitü Yönetim Kurulunun 14/06/2019 gün ve 1807 sayılı kararıyla oluşturulan jüri tarafından yapılan sınavda YÜKSEK LİSANS TEZİ olarak kabul edilmiştir.

Jüri Üyeleri

Başkan : Prof. Dr. Şevket ATEŞ

Üye : Prof. Dr. Ahmet Can ALTUNIŞIK

Üye : Prof. Dr. Murat Emre KARTAL

Sunt Stris Alterness

Prof. Dr. Asim KADIOĞLU Enstitü Müdürü

ÖNSÖZ

Bu tez çalışması Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı'nda yüksek lisans tezi olarak hazırlanmıştır.

"Yakın ve Uzak Fay Yer Hareketine Maruz Çatlaklı Beton Ağırlık Barajların Dinamik Analizi" isimli tez çalışmasını bana öneren ve her aşamasında beni destekleyen, daha iyi ve güzel çalışmalar için devamlı teşvik eden değerli Hocam Sayın Prof. Dr. Ahmet Can ALTUNIŞIK'a teşekkürlerimi bir borç bilirim.

Tez çalışmamda değerli zamanını ve emeğini benim için harcamaktan kaçınmayan, tez ile ilgili değerli görüş ve önerilerini benimle paylaşan Hocam Sayın Doç. Dr. Mehmet AKKÖSE'ye teşekkür ederim.

Akademik hayatım boyunca bana destek olan ve bilgi ve tecrübelerini benimle paylaşan hocam ve arkadaşlarım Sayın Prof. Dr. Süleyman ADANUR'a, İnş. Yük. Müh. Hatice ERDOĞMUŞ'a, İnş. Yük. Müh. Fatma ÖNALAN'a, İnş. Yük. Müh. Ebru KALKAN'a ve Arş. Gör. Fatih Yesevi OKUR'a çok teşekkür ederim.

Öğrenim hayatım boyunca bana her türlü desteği sağlayan babam Lokman Faraklit PARILTAN'a, annem Meryem PARILTAN'a, kardeşim Komiser Yardımcısı Mustafa Çağlar PARILTAN'a, ablam Uzman Çocuk Doktoru Burcu PARILTAN KÜÇÜKALİOĞLU'na ve eniştem İnş. Yük. Müh. Mahmut Halil KÜÇÜKALİOĞLU'na müteşekkir olduğumu belirtir, bu çalışmanın ülkemize faydalı olmasını temenni ederim.

> Tekin Çağatay PARILTAN Trabzon 2019

TEZ ETİK BEYANNAMESİ

Yüksek Lisans Tezi olarak sunduğum "Yakın ve Uzak Fay Yer Hareketine Maruz Çatlaklı Beton Ağırlık Barajların Dinamik Analizi" başlıklı bu çalışmayı baştan sona kadar danışmanım Prof. Dr. Ahmet Can ALTUNIŞIK'ın sorumluluğunda tamamladığımı, verileri/örnekleri kendim topladığımı, deneyleri/analizleri ilgili laboratuvarlarda yaptığımı/yaptırdığımı, başka kaynaklardan aldığım bilgileri metinde ve kaynakçada eksiksiz olarak gösterdiğimi, çalışma sürecinde bilimsel araştırma ve etik kurallara uygun olarak davrandığımı ve aksinin ortaya çıkması durumunda her türlü yasal sonucu kabul ettiğimi beyan ederim. 01/07/2019

G. Yanton Tekin Çağatay PARILTAN

İÇİNDEKİLER

<u>Sayfa No</u>

ÖNSÖZ		III
TEZ ETİH	K BEYANNAMESİ	IV
İÇİNDEK	LILER	V
ÖZET		VIII
SUMMA	RY	IX
ŞEKİLLE	ER DİZİNİ	Х
TABLOL	AR DİZİNİ	XXI
SEMBOL	LER DİZİNİ 2	XXII
1.	GENEL BİLGİLER	1
1.1.	Giriş	1
1.2.	Literatür Araştırması	2
1.3.	Tezin Amacı ve İçeriği	5
1.4.	Barajların Tarihi Gelişimi	5
1.4.1.	Barajların Sınıflandırılması	6
1.5.	Beton Barajlar	7
1.5.1.	Beton Ağırlık Barajlara Etki Eden Kuvvetler	17
1.5.2.	USACE (1995;2000)'e Göre Kaldırma Basıncının Hesabı	20
1.5.2.1.	Drenaj Galerisinin Bulunmaması Durumunda Kaldırma Basıncı	21
1.5.2.2.	Drenaj Galerisinin Bulunması Durumunda Kaldırma Basıncı	22
1.5.2.3.	Çatlak veya Sıfır Basınç Bölgesinin Bulunması Durumunda Kaldırma Basıncı	24
1.6.	Yakın ve Uzak Fay Yer Hareketleri	26
1.7.	Catlak Modellemesi	27
1.7.1.	Ayrık Çatlak Modeli	27
1.7.2.	Yayılı Çatlak Modeli	29
1.8.	Düzlem Şekil Değiştirme Probleminin Tanımı	30
1.9.	Dinamik Analiz	33
1.10.	Direkt İntegrasyon Yöntemleri	34
1.10.1.	Newmark Metodu	35
1.11.	Sıvı Davranışının Esasları	38

1.12.	Kütle Ekleme Yaklaşımı	39
2.	YAPILAN ÇALIŞMALAR	41
2.1.	Giriş	41
2.2.	Çatlak Uzunluğunun Belirlenmesi	42
2.2.1.	Lineer Taban Basınç Dağılımının Temel Varsayımı	43
2.2.2.	Çatlama Durumu	45
2.2.3.	100 ft (30.48m) Yüksekliğindeki Ağırlık Baraj Problemi	46
2.2.3.1.	Başlangıç Çatlak Testi	47
2.2.3.2.	Yeni Çatlak Uzunluğunun Hesabı	58
2.2.3.3.	Nihai Çözüm	66
2.3.	Sarıyar Barajı İçin Çatlak Uzunluğu	66
2.4.	Sarıyar Barajının Çatlaklı ve Çatlaksız Sonlu Eleman Modellerinin Oluşturulması	67
2.4.1.	Baraj-Zemin Etkileşim Modelleme Teknikleri	67
2.4.2.	Barajın İki Boyutlu Sonlu Eleman Modellerinin AutoCAD Programında Oluşturulması ve SAP2000 Programına Aktarılması	70
2.5.	Malzeme ve Kesit Özelliklerinin Tanımlanması	76
2.5.1.	Baraj Malzeme Özelliklerinin Tanımlanması	77
2.5.2.	Zemin Malzeme Özelliklerinin Tanımlanması	78
2.5.3.	Baraj ve Zemin Kesit Özelliklerinin Tanımlanması	79
2.6.	Düğüm Noktalarına Mesnetlerin Atanması	84
2.7.	Boşluk (Gap) Elemanı, Eş Yer Değiştirme (Equal Constraint) Elemanı ve Çatlak Elemanı Tanımlaması	87
2.7.1.	Boşluk Elemanların Tanımlanması ve Çizilmesi	88
2.7.2.	Eş Yer Değiştirme Elemanı Oluşturulması ve Düğüm Noktalarına Atanması	92
2.7.3.	Çatlak Elemanının Tanımlanması	93
2.8.	Hidrodinamik Basınç Yükünün Kütle Olarak Düğüm Noktalarına Atanması	95
2.9.	Sarıyar Beton Ağırlık Barajın Dinamik Analizi	99
2.9.1.	Dinamik Analiz Parametrelerinin SAP2000 Programında Tanımlanması	111
3.	BULGULAR VE İRDEMELEMELER	119
3.1.	Giriş	119
3.2.	Modal Analiz Sonuçları	119

3.3.	Dinamik Analiz Sonuçlarının Değerlendirilmesi	126
3.3.1.	Yer Değiştirmeler	126
3.3.2.	Gerilmeler	137
4.	SONUÇLAR VE ÖNERİLER	167
5.	KAYNAKLAR	171
6.	EKLER	175
ÖZGECM	lis	

Yüksek Lisans Tezi

ÖZET

YAKIN VE UZAK FAY YER HAREKETİNE MARUZ ÇATLAKLI BETON AĞIRLIK BARAJLARIN DİNAMİK ANALİZİ

Tekin Çağatay PARILTAN

Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü İnşaat Mühendisliği Anabilim Dalı Danışman: Prof. Dr. Ahmet Can ALTUNIŞIK 2019, 174 Sayfa, 5 Sayfa Ek

Bu tez çalışmasının amacı, baraj-su-zemin etkileşimi dikkate alınarak yakın ve uzak fay yer hareketine maruz çatlaklı beton ağırlık barajların dinamik davranışını incelemektir. Bu amaçla, Ankara'nın 120 km kuzey batısında Sakarya nehri üzerinde 1956 yılında inşa edilen Sarıyar beton ağırlık barajı kullanılmıştır. Analizler, adım-adım integrasyon tekniği ile Newmark metodu kullanılarak yapılmıştır. İntegrasyon için zaman adımı 0.005 saniye olarak alınmıştır. Seçilen beton ağırlık barajın çatlaklı ve çatlaksız kesitlerinin dinamik analizi, SAP2000 programı ile gerçekleştirilmiştir.

Yüksek lisans tez çalışması dört bölümden oluşmaktadır. Birinci bölümde genel bilgiler olup; yakın ve uzak fay, çatlak ve dinamik analiz ile ilgili literatür araştırmaları ayrıntılı olarak verilmiştir. İkinci bölümde Sarıyar beton ağırlık barajın tasarımı, çatlak uzunluğunun hesaplanması ve analiz metodunun programda tanıtılması anlatılmıştır. Üçüncü bölüm, yakın ve uzak fay etkisinde yapılan dinamik analizlerden elde edilen bulguları içermektedir. Dördüncü bölümde, tez çalışmasından elde edilen sonuçlara ve yapılan önerilere yer verilmektedir. Bu bölümü kaynaklar, ekler ve özgeçmiş izlemektedir.

Anahtar Kelimeler: Dinamik analiz, Çatlak, Yakın ve uzak fay yer hareketi, Sonlu eleman metodu, Baraj-zemin etkileşimi, Hidrodinamik etki

Master Thesis

SUMMARY

DYNAMIC ANALYSIS OF CRACKED CONCRETE GRAVITY DAMS EXPOSED TO NEAR AND FAR FAULT GROUND MOTION

Tekin Çağatay PARILTAN

Karadeniz Technical University The Graduate School of Natural and Applied Sciences Civil Engineering Graduate Program Supervisor: Prof. Dr. Ahmet Can ALTUNIŞIK 2019, 174 Pages, 5 Pages Appendix

The aim of this thesis is to investigate the dynamic behavior of cracked concrete gravity dams exposed to near and far fault ground motion considering the dam-waterground interaction. For this purpose, Sarıyar concrete gravity dam, built in 1956 on the Sakarya River, 120 km northwest of Ankara, was used. The analyses were performed using the Newmark method by step-by-step integration technique. The time step for integration was taken as 0.005 seconds. The dynamic analysis of the fractured and non-cracked sections of the selected concrete gravity dam was performed with the SAP2000 program.

The master thesis study consists of four chapters. In the first chapter, general information is given and the literature researches about near and far fault, crack and dynamic analysis are given in detail. In the second part, the design of the Sarıyar concrete weight dam, the calculation of the crack length and the introduction of the analysis method in the program are explained. The third section contains the findings obtained from dynamic analyses under near and far fault effects. In the fourth chapter, the results obtained from the thesis study and the suggestions made are given. This section follows resources, inserts and resumes.

Key Words: Dynamic analysis, Crack, Near and far fault ground motions, Finite element method, Dam-soil effect, Hydrodynamic effect

ŞEKİLLER DİZİNİ

Sav	vfa	No
		110

Şekil 1.1.	Beton ağırlık barajına etki eden kuvvetler	17
Şekil 1.2.	Drenaj galerisinin olmaması durumunda kaldırma basıncı (USACE, 1995;2000).	21
Şekil 1.3.	Drenaj galerisinin bulunması (USACE, 1995; 2000)	22
Şekil 1.4.	Drenaj galerisinin bulunması ve $X \le 0.05 H_1$ olduğu durum (USACE, 1995; 2000).	23
Şekil 1.5.	Sıfır basınç bölgesi uzunluğunun drenaj galerisi mesafesinden kısa olması (USACE, 1995; 2000).	25
Şekil 1.6.	Sıfır basınç bölgesi uzunluğunun drenaj galerisi mesafesinden uzun olması (USACE, 1995; 2000)	26
Şekil 1.7.	Ayrık çatlak modeli, (a) Çatlak öncesi (b) Çatlak sonrası (Dumanoğlu ve Oskouei, 1999)	28
Şekil 1.8.	Yayılı çatlak modeli, (a) Çatlak öncesi (b) Çatlak sonrası (Dumanoğlu ve Oskouei, 1999)	29
Şekil 1.9.	Uzunluğu boyunca dik kuvvetlerle yüklenmiş sonsuz uzunlukta bir yapı (Akköse,2004; Gül, 2009)	31
Şekil 1.10.	Uzunluğu boyunca dik kuvvetlerle yüklenmiş sonlu uzunlukta bir yapı (Akköse,2004; Gül, 2009)	32
Şekil 1.11.	Hidrodinamik basınç dağılımı (Akköse, 1997)	40
Şekil 2.1.	Sarıyar beton ağırlık baraj en kesiti	41
Şekil 2.2.	Tam taban temasında USACE (2000) kaldırma kriteri kullanılan ağırlık baraj problemi (1 ft = 0.305 m, 1 psf = 47.88 Pa, 1 pcf = 16.018 kg/m3)	42
Sekil 2.3.	Baraj tabanı serbest cisim diyagramı	43
, Şekil 2.4.	Örnek problem	46
Şekil 2.5.	Drenaj olmaması veya $E_d = 0$ 'a karşın H'_3 basınç yüksekliği	49
Şekil 2.6.	$E_d = 0.25$ 'e karşın H_3 basınç yüksekliği	49
Şekil 2.7.	Kritik noktalarda tanımlanmış basınç yüksekliklerinin kaldırma diyagramında oluşturduğu beş bölge	50
Şekil 2.8.	Barajın bölgeleri	52
Şekil 2.9.	Sarıyar beton ağırlık barajında meydana gelen çatlak uzunluğu	67
Şekil 2.10.	Küçük veya büyük zeminli baraj modelleri (Wilson, 2019)	68

Şekil 2.11.	Baraj-zemin ara yüzeyi için sonlu eleman modeli (Wilson, 2015).	69
Şekil 2.12.	Baraj ve zemin kesişim yüzeyi için sonlu elaman örneği	70
Şekil 2.13.	0 katmanında çizilen baraj-zemin sonlu eleman modeli	71
Şekil 2.14.	"3dface" komutunda düğüm noktalarının seçilme sırası	71
Şekil 2.15.	Baraj katmanında "3dface" komutuyla oluşturulan yüzeyler	72
Şekil 2.16.	"3dmove" komutuyla sonlu eleman modelinin orijine taşınması	72
Şekil 2.17.	SAP2000 programında AutoCAD .dxf dosya aktarım penceresi	73
Şekil 2.18.	"Import information" penceresi	73
Şekil 2.19.	"DXF import" penceresi	74
Şekil 2.20.	SAP2000 programına aktarılan baraj-zemin sonlu eleman modeli	74
Şekil 2.21.	SAP2000 programında "Divide Areas" komutu	75
Şekil 2.22.	SAP2000 programinda "Divide Selected Areas" penceresi	75
Şekil 2.23.	Sonlu elemanlara bölünen zemin modeli	76
Şekil 2.24.	"Define Materials" penceresi	77
Şekil 2.25.	"Quick Material Definition" penceresi	77
Şekil 2.26.	Baraj malzeme özelliklerinin tanımlanması	78
Şekil 2.27.	Zemin malzeme özelliklerinin tanımlanması	79
Şekil 2.28.	"Assign to Groups" penceresi	80
Şekil 2.29.	SAP2000 programında "Groups" komutu	80
Şekil 2.30.	"Select by Groups" penceresiyle sonlu eleman seçme	81
Şekil 2.31.	SAP2000 programında "Area Sections" komutu	81
Şekil 2.32.	"Area Sections" penceresi	82
Şekil 2.33.	Baraj kesiti için "Plane Section Data" penceresi	83
Şekil 2.34.	Zemin kesiti için "Plane Section Data" penceresi	83
Şekil 2.35.	Zemin alt yüzeyinde seçilen düğüm noktaları	84
Şekil 2.36.	Zemin alt yüzeyindeki düğüm noktaları için "Assign Joint Restaints" penceresi	84
Şekil 2.37.	Zemin yan yüzeyinde seçilen düğüm noktaları	85
Şekil 2.38.	Zemin yan yüzeylerindeki düğüm noktaları için "Assign Joint Restaints" penceresi	85
Şekil 2.39.	Zemin yan ve alt yüzeyi dışında geriye kalan düğüm noktalarının seçilmesi	86

Şekil 2.40.	Zemin yan ve alt yüzeyi dışında geriye kalan düğüm noktaları için "Assign Joint Restaints" penceresi	86
Şekil 2.41.	Çatlaksız sonlu eleman modellerinde baraj-zemin ara yüzeyindeki karşılıklı düğüm noktalarına "Gap" eleman ve "Constraint" tanımlanması	87
Şekil 2.42.	Çatlaklı sonlu eleman modellerinde baraj-zemin ara yüzeyindeki karşılıklı düğüm noktalarına "Gap" eleman tanımlanması	87
Şekil 2.43.	SAP2000 programinda "Link/Support Properties" komutu	89
Şekil 2.44.	"Link/Support Properties" penceresi	89
Şekil 2.45.	"Link/Support Property Data" penceresi	90
Şekil 2.46.	"GAP_ELEMAN" için "Link/Support Directional Properties" penceresi	91
Şekil 2.47.	"Gap" elemanlı baraj-zemin modeli	91
Şekil 2.48.	Baraj ve zemindeki karşılıklı düğüm noktalarının seçilmesi	92
Şekil 2.49.	SAP2000 programında "Constraints" komutu	92
Şekil 2.50.	"Assign Joint Constraints" penceresi	93
Şekil 2.51.	Baraj tabanındaki 1 cm yüksekliğindeki sonlu elemanların seçilmesi	93
Şekil 2.52.	Silinen sonlu elemanlar	94
Şekil 2.53.	Çatlak elemanı için "Link/Support Property Data" ve "Link/Support Directional Properties" penceresi	94
Şekil 2.54.	Baraj-zemin ara yüzeyindeki çatlak ve gap elemanlar	95
Şekil 2.55.	2 nolu düğüm noktası için hesaplanacak kütle bileşenleri	95
Şekil 2.56.	Yüklemesi yapılacak düğüm noktasının seçilmesi	97
Şekil 2.57.	SAP2000 programında "Masses…" komutu	97
Şekil 2.58.	SAP2000 programında "Assign Joint Masses" penceresi	98
Şekil 2.59.	Memba tarafında yapılan kütle eklemesi	99
Şekil 2.60.	Mansap tarafında yapılan kütle eklemesi	99
Şekil 2.61.	Çatlaksız Sarıyar beton ağırlık baraj baraj-zemin modeli	100
Şekil 2.62.	Çatlaklı Sarıyar beton ağırlık baraj baraj-zemin modeli	100
Şekil 2.63.	1989 Loma Prieta depreminde kaydedilen ve yakın fay yer hareketi özelliği taşıyan CLS090 kaydının ivme-zaman, hız- zaman ve yer değiştirme-zaman grafikleri	103

Şekil 2.64.	1989 Loma Prieta depreminde kaydedilen ve uzak fay yer hareketi özelliği taşıyan CYC285 kaydının ivme-zaman, hız- zaman ve yer değiştirme-zaman grafikleri	104
Şekil 2.65.	1989 Loma Prieta depreminde kaydedilen ve yakın fay yer hareketi özelliği taşıyan CLS090 kaydının frekans grafiği	105
Şekil 2.66.	1989 Loma Prieta depreminde kaydedilen ve uzak fay yer hareketi özelliği taşıyan CYC285 kaydının frekans grafiği	105
Şekil 2.67.	1979 Imperial Valley depreminde kaydedilen ve yakın fay yer hareketi özelliği taşıyan H-E05230 kaydının ivme-zaman, hız- zaman ve yer değiştirme-zaman grafikleri	106
Şekil 2.68.	1979 Imperial Valley depreminde kaydedilen ve uzak fay yer hareketi özelliği taşıyan H-E13230 kaydının ivme-zaman, hız- zaman ve yer değiştirme-zaman grafikleri	107
Şekil 2.69.	1979 Imperial Valley depreminde kaydedilen ve yakın fay yer hareketi özelliği taşıyan H-E05230 kaydının 0.4g ölçeklendirilmiş ivme-zaman, hız-zaman ve yer değiştirme- zaman grafikleri	108
Şekil 2.70.	1979 Imperial Valley depreminde kaydedilen ve uzak fay yer hareketi özelliği taşıyan H-E13230 kaydının 0.4g ölçeklendirilmiş ivme-zaman, hız-zaman ve yer değiştirme- zaman grafikleri	109
Şekil 2.71.	1979 Imperial Valley depreminde kaydedilen ve yakın fay yer hareketi özelliği taşıyan H-E105230 kaydının 0.4g ölçeklendirilmiş frekans grafiği	110
Şekil 2.72.	1979 Imperial Valley depreminde kaydedilen ve uzak fay yer hareketi özelliği taşıyan H-E13230 kaydının 0.4g ölçeklendirilmiş frekans grafiği	110
Şekil 2.73.	SAP2000 programında "Time History" komutu	111
Şekil 2.74.	"Define Time History Functions" penceresi	112
Şekil 2.75.	"Time History Function Definition" penceresi	112
Şekil 2.76.	"Pick Function Data File" penceresi	113
Şekil 2.77.	SAP2000'de tanımlanan ölçeklenmiş yakın fay ivme-zaman grafiği	113
Şekil 2.78.	SAP2000'de tanımlanan ölçeklenmiş uzak fay ivme-zaman grafiği	114
Şekil 2.79.	SAP2000 programında "Load Cases" komutu	114
Şekil 2.80.	SAP2000 programında "Load Case Data" penceresi	115
Şekil 2.81.	SAP2000 programında "Direct Integration Damping" penceresi	116
Şekil 2.82.	SAP2000 programında "Time Integration Parameters" penceresi	116

Şekil 2.83.	SAP2000 programında "Load Case Data" penceresi yakın fay dinamik analiz parametreleri	117
Şekil 2.84.	SAP2000 programında "Run Analysis" komutu	117
Şekil 2.85.	SAP2000 programinda "Set Load Cases to Run" penceresi	118
Şekil 3.1.	Çatlaksız barajın boş olması durumunda baraj-zemin modelinin 1. modu (T = 0.23827 s, f = 4.19693 Hz)	120
Şekil 3.2.	Çatlaksız barajın boş olması durumunda baraj-zemin modelinin 2. modu (T = 0.1041 s, f = 9.60623 Hz)	120
Şekil 3.3.	Çatlaksız barajın boş olması durumunda baraj-zemin modelinin 3. modu (T = 0.09515 s, f = 10.50928 Hz)	121
Şekil 3.4.	Çatlaksız barajın dolu olması durumunda baraj-zemin modelinin 1. modu (T = 0.31259 s, f = 3.19911 Hz)	121
Şekil 3.5.	Çatlaksız barajın dolu olması durumunda baraj-zemin modelinin 2. modu (T = 0.13042 s, f = 7.6677 Hz)	122
Şekil 3.6.	Çatlaksız barajın dolu olması durumunda baraj-zemin modelinin 3. modu (T = $0.09808 \text{ s}, f = 10.19562 \text{ Hz}$)	122
Şekil 3.7.	Çatlaklı barajın boş olması durumunda baraj-zemin modelinin 1. modu (T = 0.25372 s, f = 3.9414 Hz)	123
Şekil 3.8.	Çatlaklı barajın boş olması durumunda baraj-zemin modelinin 2. modu (T = 0.10452 s, f = 9.56763 Hz)	123
Şekil 3.9.	Çatlaklı barajın boş olması durumunda baraj-zemin modelinin 3. modu (T = 0.09877 s, f = 10.1243 Hz)	124
Şekil 3.10.	Çatlaklı barajın dolu olması durumunda baraj-zemin modelinin 1. modu (T = 0.33162 s, f = 3.01547 Hz)	124
Şekil 3.11.	Çatlaklı barajın dolu olması durumunda baraj-zemin modelinin 2. modu (T = 0.13282 s, f = 7.52874 Hz)	125
Şekil 3.12.	Çatlaklı barajın dolu olması durumunda baraj-zemin modelinin 3. modu (T = 0.10079 s, f = 9.92187 Hz)	125
Şekil 3.13.	İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda yakın fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 3.53 cm)	128
Şekil 3.14.	İki boyutlu dinamik analizde çatlaksız barajın dolu olması durumunda yakın fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 5.26 cm)	128
Şekil 3.15.	İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda uzak fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 2.09 cm)	129

Şekil 3.16.	İki boyutlu dinamik analizde çatlaksız barajın dolu olması durumunda uzak fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 4.16 cm)	129
Şekil 3.17.	İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda yakın fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 3.64 cm)	130
Şekil 3.18.	İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda yakın fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 5.19 cm)	130
Şekil 3.19.	İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda uzak fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 2.16 cm)	131
Şekil 3.20.	İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda uzak fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 5.66 cm)	131
Şekil 3.21.	İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda yakın fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 1.74 cm)	133
Şekil 3.22.	İki boyutlu dinamik analizde çatlaksız barajın dolu olması durumunda yakın fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 6.57 cm)	133
Şekil 3.23.	İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda uzak fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 4.83 cm)	134
Şekil 3.24.	İki boyutlu dinamik analizde çatlaksız barajın dolu olması durumunda uzak fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 6.65 cm)	134
Şekil 3.25.	İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda yakın fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 2.30cm)	135
Şekil 3.26.	İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda yakın fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 7.48 cm)	135

Şekil 3.27.	İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda uzak fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 3.12cm)	. 136
Şekil 3.28.	İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda uzak fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 5.27 cm)	. 136
Şekil 3.29.	İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{11} gerilmeleri (max $S_{11} = 5.481$ MPa, min $S_{11} = 5.843 \times 10^{-4}$ MPa)	. 137
Şekil 3.30.	İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{22} gerilmeleri (max $S_{22} = 11.775$ MPa, min S_{22} = 4.077x10 ⁻⁴ MPa)	. 138
Şekil 3.31.	İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 5.932$ MPa, min $S_{12} = 0$ MPa)	. 138
Şekil 3.32.	İki boyutlu dinamik analizde çatlaksız barajın dolu olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{11} gerilmeleri (max $S_{11} = 10.871$ MPa, min S_{11} = 2.632x10 ⁻⁴ MPa)	. 139
Şekil 3.33.	İki boyutlu dinamik analizde çatlaksız barajın dolu olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{22} gerilmeleri (max $S_{22} = 21.889$ MPa, min S_{22} = 5.751x10 ⁻⁴ MPa)	. 139
Şekil 3.34.	İki boyutlu dinamik analizde çatlaksız barajın dolu olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 11.709$ MPa, min S_{12} = 0 MPa)	. 140
Şekil 3.35.	İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{11} gerilmeleri (max S_{11} = 4.474 MPa, min S_{11} = 5.021×10^{-4} MPa)	. 140
Şekil 3.36.	İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{22} gerilmeleri (max S_{22} = 9.031 MPa, min S_{22} = 3.556×10^{-4} MPa)	. 141
Şekil 3.37.	İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 4.731$ MPa, min $S_{12} = 0$ MPa)	. 141

Şekil 3.38.	İki boyutlu dinamik analizde çatlaksız barajın dolu olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{11} gerilmeleri (max $S_{11} = 8.973$ MPa, min $S_{11} = 4.213 \times 10^{-4}$ MPa)	142
Şekil 3.39.	İki boyutlu dinamik analizde çatlaksız barajın dolu olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{22} gerilmeleri (max S_{22} = 18.151 MPa, min S_{22} = 8.752x10 ⁻⁴ MPa)	142
Şekil 3.40.	İki boyutlu dinamik analizde çatlaksız barajın dolu olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 9.664$ MPa, min $S_{12} = 0$ MPa)	143
Şekil 3.41.	İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{11} gerilmeleri (max $S_{11} = 20.152$ MPa, min S_{11} = 5.150x10 ⁻⁴ MPa)	143
Şekil 3.42.	İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{22} gerilmeleri (max $S_{22} = 67.124$ MPa, min S_{22} = 3.667×10^{-4} MPa)	144
Şekil 3.43.	İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 12.625$ MPa, min S_{12} = 0 MPa)	144
Şekil 3.44.	İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{11} gerilmeleri (max $S_{11} = 29.3$ MPa, min $S_{11} = 3.495 \times 10^{-4}$ MPa)	145
Şekil 3.45.	İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{22} gerilmeleri (max $S_{22} = 97.396$ MPa, min S_{22} = 8.833×10^{-4} MPa)	145
Şekil 3.46.	İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 17.088$ MPa, min S_{12} = 0 MPa)	146
Şekil 3.47.	İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{11} gerilmeleri (max S_{11} = 12.662 MPa, min S_{11} = 4.305×10^{-4} MPa)	146
Şekil 3.48.	İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{22} gerilmeleri (max S_{22} = 42.116 MPa, min S_{22} = 2.388x10 ⁻⁴ MPa)	147

Şekil 3.49.	İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 6.875$ MPa, min $S_{12} = 0$ MPa)	. 147
Şekil 3.50.	İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{11} gerilmeleri (max $S_{11} = 30.129$ MPa, min $S_{11} = 4.273 \times 10^{-4}$ MPa)	. 148
Şekil 3.51.	İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{22} gerilmeleri (max S_{22} = 100.369 MPa, min S_{22} = 7.641x10 ⁻⁴ MPa)	. 148
Şekil 3.52.	İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 14.472$ MPa, min $S_{12} = 0$ MPa)	. 149
Şekil 3.53.	Yakın ve uzak fay etkisinde çatlaklı ve çatlaksız baraj-zemin modellerinde oluşan gerilme değerlerinin karşılaştırılması (1989 Loma Prieta Depremi)	. 151
Şekil 3.54.	İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{11} gerilmeleri (max $S_{11} = 3.538$ MPa, min $S_{11} = 8.471 \times 10^{-4}$ MPa)	. 152
Şekil 3.55.	İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{22} gerilmeleri (max $S_{22} = 7.163$ MPa, min $S_{22} = 4.058 \times 10^{-4}$ MPa)	. 153
Şekil 3.56.	İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 3.749$ MPa, min $S_{12} = 0$ MPa)	. 153
Şekil 3.57.	İki boyutlu dinamik analizde çatlaksız barajın dolu olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{11} gerilmeleri (max $S_{11} = 12.579$ MPa, min S_{11} = 7.713x10-4 MPa)	. 154
Şekil 3.58.	İki boyutlu dinamik analizde çatlaksız barajın dolu olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{22} gerilmeleri (max $S_{22} = 26.241$ MPa, min S_{22} = 0.001 MPa)	. 154
Şekil 3.59.	İki boyutlu dinamik analizde çatlaksız barajın dolu olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 13.753$ MPa, min S_{12} = 0 MPa)	. 155

Şekil 3.60.	İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{11} gerilmeleri (max $S_{11} = 7.765$ MPa, min $S_{11} = 8.782 \times 10^{-4}$ MPa)	155
Şekil 3.61.	İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{22} gerilmeleri (max S_{22} = 16.393 MPa, min S_{22} = 5.318×10^{-4} MPa)	156
Şekil 3.62.	İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 8.426$ MPa, min $S_{12} = 0$ MPa)	156
Şekil 3.63.	İki boyutlu dinamik analizde çatlaksız barajın dolu olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{11} gerilmeleri (max S_{11} = 12.585 MPa, min S_{11} = 5.438x10 ⁻⁴ MPa)	157
Şekil 3.64.	İki boyutlu dinamik analizde çatlaksız barajın dolu olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{22} gerilmeleri (max $S_{22} = 26.069$ MPa, min $S_{22} = 0.001$ MPa)	157
Şekil 3.65.	İki boyutlu dinamik analizde çatlaksız barajın dolu olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 13.592$ MPa, min $S_{12} = 0$ MPa)	158
Şekil 3.66.	İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{11} gerilmeleri (max $S_{11} = 12.161$ MPa, min S_{11} = 7.894x10 ⁻⁴ MPa)	158
Şekil 3.67.	İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{22} gerilmeleri (max $S_{22} = 40.337$ MPa, min S_{22} = 3.434×10^{-4} MPa)	159
Şekil 3.68.	İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 7.742$ MPa, min $S_{12} = 0$ MPa)	159
Şekil 3.69.	İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{11} gerilmeleri (max $S_{11} = 43.943$ MPa, min S_{11} = 7.384x10 ⁻⁴ MPa)	160
Şekil 3.70.	İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{22} gerilmeleri (max $S_{22} = 146.238$ MPa, min S_{22} = 8.425×10^{-4} MPa)	160

Şekil 3.71.	İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 21.607$ MPa, min S_{12} = 0 MPa)	161
Şekil 3.72.	İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{11} gerilmeleri (max $S_{11} = 17.067$ MPa, min $S_{11} = 4.877 x 10^{-4}$ MPa)	161
Şekil 3.73.	İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{22} gerilmeleri (max $S_{22} = 56.928$ MPa, min $S_{22} = 3.273 \times 10^{-4}$ MPa)	162
Şekil 3.74.	İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 10.234$ MPa, min $S_{12} = 0$ MPa)	162
Şekil 3.75.	İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{11} gerilmeleri (max $S_{11} = 29.812$ MPa, min $S_{11} = 7.143 \times 10^{-4}$ MPa)	163
Şekil 3.76.	İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{22} gerilmeleri (max $S_{22} = 98.906$ MPa, min $S_{22} = 0.001$ MPa)	163
Şekil 3.77.	İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 16.091$ MPa, min $S_{12} = 0$ MPa)	164
Şekil 3.78.	Yakın ve uzak fay etkisinde çatlaklı ve çatlaksız baraj-zemin modellerinde oluşan gerilme değerlerinin karşılaştırılması (1979 Imperial Valley Depremi)	166

TABLOLAR DİZİNİ

<u>Sayfa No</u>

Tablo 1.1.	Türkiye'deki beton ağırlık ve silindirle sıkıştırılmış barajlar ve başlıca özellikleri	9
Tablo 1.2.	Çubuk I Barajı'nın bazı özellikleri	10
Tablo 1.3.	Sarıyar Barajı'nın bazı özellikleri	10
Tablo 1.4.	Kemer Barajı'nın bazı özellikleri	11
Tablo 1.5.	Gülüç Barajı'nın bazı özellikleri	11
Tablo 1.6.	Porsuk Barajı'nın bazı özellikleri	12
Tablo 1.7.	Arpaçay Barajı'nın bazı özellikleri	12
Tablo 1.8.	Karacaören II Barajı'nın bazı özellikleri	13
Tablo 1.9.	Boyabat Barajı'nın bazı özellikleri	13
Tablo 1.10.	Beydağ Barajı'nın bazı özellikleri	14
Tablo 1.11.	Cindere Barajı'nın bazı özellikleri	14
Tablo 1.12.	Çine Adnan Menderes Barajı'nın bazı özellikleri	15
Tablo 1.13.	Çaltıkoru Barajı'nın bazı özellikleri	15
Tablo 1.14.	Köprü Barajı'nın bazı özellikleri	16
Tablo 1.15.	Menge Barajı'nın bazı özellikleri	16
Tablo 2.1.	Baraja ait değişken değerleri	47
Tablo 2.2.	İterasyon sonuçları	66
Tablo 2.3.	Baraj ve zemine ait malzeme özellikleri	76
Tablo 2.4.	1989 Loma Prieta depreminde kaydedilen yakın ve uzak fay yer hareketi özelliği taşıyan iki kayıt	101
Tablo 2.5.	1979 Imperial Valley depreminde kaydedilen yakın ve uzak fay yer hareketi özelliği taşıyan iki kayıt	101
Tablo 3.1.	Çatlaklı ve çatlaksız baraj-zemin modellerinin modal analiz değerleri	126
Tablo 3.2.	Yakın ve uzak fay etkisinde çatlaklı ve çatlaksız baraj-zemin modellerinde oluşan gerilme değerleri (1989 Loma Prieta Depremi)	150
Tablo 3.3.	Yakın ve uzak fay etkisinde çatlaklı ve çatlaksız baraj-zemin modellerinde oluşan gerilme değerleri (1979 Imperial Valley Depremi)	165

SEMBOLLER DİZİNİ

a	: Deprem ivmesi
b	: Barajın taban genişliği
C	: Sönüm matrisi
C _f	: Sudaki ses hızı
d	: Kret genişliği
\mathbf{D}^{e}_{ijkl}	: Lineer elastik malzeme matrisi
e	: Eksantrisite
Е	: Elastisite modülü
E _d	: Ondalık olarak ifade edilen drenaj etkisi
F _I (t)	: Atalet kuvvetleri
F _d	: Depremin baraj gövdesinde oluşturduğu yatay atalet kuvveti
$F_{\rm D}(t)$: Sönüm kuvvetleri
$F_{s}(t)$: Elastik kuvvetler
g	: Yerçekimi ivmesi
Н	: Toplam su derinliği, Su derinliği, Rezervuar derinliği
H_1	: Barajın memba yüzeyindeki su derinliği
H_2	: Barajım mansap yüzeyindeki su derinliği
H_4	: Drenaj galeri yüksekliği
К	: Tanjant rijitlik matrisi
L	: Taban uzunluğu
m(z)	: Rezervuar derinliğine bağlı kütle dağılımı
М	: Kütle matrisi
Μ	: Toplam Moment
$M_{\rm U}$: Kaldırmadan dolayı oluşan toplam moment
M_w	: Yapının ağırlığından dolayı oluşan toplam moment
M_{w1}	: Barajın 1 bölgesi için yapının ağırlığına bağlı moment
M_{w2}	: Barajın 2 bölgesi için yapının ağırlığına bağlı moment
M_1	: Dikey su yükünden dolayı oluşan moment

M ₂	: Memba tarafındaki yatay su yükünden dolayı oluşan moment
M ₃	: Mansap tarafındaki yatay su yükünden dolayı oluşan moment
N	: Toplam kuvvet
Р	: Dış yük vektörü
Р	: Yatay su basıncı
P_{f}	: Hidrodinamik basınc
Ρ'	: Taban basıncı
t	: Zaman
Т	: Çatlağın mevcut uzunluğudur
Т	: Sıfır basınç bölgesi uzunluğu
U	: Yerdeğiştirme vektörü
U	: Toplam kaldırma kuvveti
U ₁	: 1 bölgesindeki kaldırma kuvveti
U ₂₃	: 2 ve 3 bölgelerindeki kaldırma kuvveti
U ₄₅	: 4 ve 5 bölgelerindeki kaldırma kuvveti
U _i	: i anındaki yer değiştirme vektörü
U _{i+1}	: i+1 anındaki yer değiştirme vektörü
Ú	: Hız vektörü
\dot{U}_i	: i anındaki hız vektörü
\dot{U}_{i+1}	: i+1 anındaki hız vektörü
Ü	: İvme vektörü
Ü	: i anındaki ivme vektörü
$\ddot{\boldsymbol{U}}_{i+1}$: i+1 anındaki ivme vektörü
V	: Baraj gövde hacmi
V_{w}	: Dikey su yükü
W _t	: Taban genişliği
W	: Barajın ağırlığı
x′	: Taban ortasının sağındaki mesafe
X _t	: Kuyruk suyunun barajla kesiştiği mesafe
X _d	: Topuktan itibaren dren mesafesi
Х	: Baraj memba yüzeyinden drenaj deliğine olan uzaklık

у	: Rezervuar yüzeyinden söz konusu seviyeye kadar olan düşey su derinliği
Z	: Su yüzeyinden itibaren su derinliği
α	: Depremden dolayı ivme katsayısı
$\boldsymbol{\epsilon}_{kl}$: Elastik şekil değiştirme
$\boldsymbol{\varepsilon}_{x}, \boldsymbol{\varepsilon}_{y}, \boldsymbol{\varepsilon}_{z}$: Kartezyen koordinatlarda şekil değiştirme bileşenleri
σ_{ij}	: Elastik şekil değiştirmelere karşılık gelen gerilmeler
$\sigma_x, \sigma_y, \sigma_z$: Kartezyen koordinatlarda gerilme bileşenleri
γ_{w}	: Suyun birim ağırlığı
γ_{c}	:Betonun birim ağırlığı
γ_{b}	: Malzemenin özgül ağırlığı
β	: Sıvının hacimsel elastisite modülü
ν	: Poisson oranı
$\rho_{\rm f}$: Sıvının kütle yoğunluğunu

1. GENEL BİLGİLER

1.1. Giriş

İnsanoğlu geçmişten günümüze kadar canlı hayatını sürdürebilmesi için suya muhtaç olmuştur. Ancak suya ihtiyaçları olduğu kadar sudan da korunmaları gerekmiştir. Bu sebeple, bentlerden, kuyulardan, göllerden ve barajlardan yararlanmışlardır.

Barajlarda hidrostatik ve hidrodinamik su basınçları, deprem etkileri en önemli kuvvetlerdir. Bu kuvvetlerin etkisi altında barajların davranışının hassasiyetle incelenmesi gerekmektedir. Zira barajların inşası gibi yıkılmaları da toplum için mali yönden külfet ve de insan hayatı açısından telafisi mümkün olmayan sonuçlar doğurabilir. Deprem sırasında dünyada pek çok barajın hasar görmesi ve yıkılmaları, mühendisleri bu tip yapıların gerek projelendirme ve gerekse yapım aşamasında gerekli titizliği göstermelerini zorunlu hale getirmiştir. Baraj davranışına etkisi mümkün olan her etken, değişken ve parametrenin göz önünde tutulmasının zorunluluğu kendiliğinden doğmuştur. Öyle ki böyle önemli yapıların basitleştirici kabuller yaparak seçilen analitik modelleri yapının gerçek davranışına çok farklı sonuçlar verebileceği gibi, ekonomik olmayan boyutlandırmaya da neden olabilir (Dumanoğlu ve Oskouei, 1999).

Beton barajlarda yapım ve servis aşamasında meydana gelen hasarlardan çok daha tehlikelisi, deprem sırasında meydana gelen hasarlar veya çatlaklardır. Çatlaklar, uygulanan yüklerden dolayı oluşan çekme gerilmelerinin betonun taşıyabileceği maksimum çekme mukavemetini aşması durumunda meydana gelir. Önceleri büyük kütlelere sahip barajların deprem sırasında gövdelerinde çekme gerilmesi oluşabileceğine ihtimal verilmemesinden dolayı dinamik analizlerde çok basit ve yaklaşık yöntemler kullanılmaktaydı. Bu yöntemlerde deprem yükleri, sismik katsayılara bağlı olarak hesaplanan eşdeğer statik kuvvet olarak dikkate alınmaktaydı. Hâlbuki deprem, statik kuvvet olarak göz önüne alınamayacak derecede önemli bir dinamik yer hareketidir. Bu konuyla ilgili en çarpıcı örnek, eşdeğer statik yüklere göre çekme gerilmesi göz ardı edilerek projelendirilen Koyna barajıdır. 1967 yılındaki depremde bu baraj büyük hasar görmüştür (Akköse ve Gül, 2009).

Beton ağırlık barajların sismik performansı yer hareketinin karakteristikleri ve şiddetinden önemli derecede etkilenmektedir. Bir bölgede oluşan deprem sırasında, o

bölgedeki mevcut fayın yakınında kaydedilen yer hareketi fayın uzağında kaydedilen yer hareketinden oldukça farklıdır. Yakın fay yer hareketleri, büyük hız sinyalleri ile karakterize edilmektedir. Bu yer hareketleri, depremin başlangıcında bölgedeki yapılara büyük bir enerji uygulamakta ve büyük hasarlara sebep olabilmektedir.

Bu sebeple, beton ağırlık barajların dinamik analizinde baraj-su-zemin etkileşimi dikkate alınarak barajda çatlak olması durumunun da değerlendirilmesi önem arz etmektedir. Bunun yanı sıra, son zamanlarda önemi daha da artan yakın ve uzak fay yer hareketinin barajlara etkisi göz ardı edilmemelidir.

1.2. Literatür Araştırması

Uzun yılardır beton ağırlık barajların tasarımında Bernoulli sığ kiriş teorisine dayanan klasik model kullanılmıştır. Klasik modelin analiz edemediği malzeme özellikleri, sıcaklıklar ve dinamik yük koşulları ile ilgili analizler için yapılan çalışmalarda sonlu eleman yönteminin yeni barajların tasarım ve optimizasyonunu ve mevcut barajların durumunun analizini kolaylaştırdığı görülmektedir (Durieux ve Rensburg,2016).

Kanenawa vd. (2003), yapmış oldukları çalışmada Japonya'daki beton ağırlık barajların dinamik analizi hakkında PWRI (Kamu Çalışmaları Araştırma Enstitüsü) tarafından geliştirilen yöntemlerden biri olan yayılı çatlak (smeared crack) modelini kullanarak nonlineer analiz sonuçlarını incelemişlerdir. İncelemeler sonucunda; çekme dayanımının çatlak oluşumu üzerinde kırılma enerjisinden daha büyük etkiye sahip olduğunu ve deprem sırasında çatlakların baraj topuğunda ve baraj memba yüzeyinde eğimin değiştiği nokta civarında oluştuğunu tespit etmişlerdir.

Yamaguchi vd. (2004), yapmış oldukları çalışmada şiddetli deprem etkisine maruz bırakılan beton ağırlık barajların performansının dikkatli değerlendirilmesi için kütle betonunun gerilme davranışıyla ilişkili lineer olmayan özelliklerin doğru bir şekilde modellenmesi gerektiğini, şiddetli zemin hareketleri altında birkaç bölgede çekme kırılması gelişebileceğini, bunun barajın dinamik tepki özelliklerini önemli ölçüde değiştireceğini ve yapısal sistemin bütünlüğünü tehlikeye atma potansiyeline sahip olduğunu öne sürmüşlerdir. Bu koşullar altında, sismik performans değerlendirilmesinde beklenebilecek hasarın şiddetini ve uzantısını doğrudan tahmin etmek için analizlerde zaman tanım alanında lineer olmayan analiz yönteminin kullanılmasının daha doğru olduğunu belirtmişlerdir.

Jlang ve Du (2012), yapmış oldukları çalışmada çatlaklı bir barajın sismik stabilitesini incelenmişlerdir. İncelemede geometrik nonlineerlik ve büyük deformasyonlar ve ayrıca çatlak alanındaki temas koşullarını dikkate almışlardır. Penetre çatlakların yerini ilk önce nonlineer sonlu eleman yöntemine (FEM) dayanan beton plastik hasar modeli kullanılarak tanımlamışlardır. Daha sonra normal yönde çatlak etkileşimini modellemek için katı temas algoritmasını, teğet yönde çatlak etkileşimini modellemek için de Coloumb sürtünme modelini kullanmışlardır. Sayısal modelleri örnek bir olay incelemesiyle doğruladıktan sonra, Koyna Barajı'nın iki tip penetrasyon çatlaklarının sismik stabilitesini farklı sismik pik ivmeleriyle ayrıntılı olarak ele almışlardır ve ayrıca barajın çökme süreçlerini de belirtmişlerdir. Çatlak, barajın kuvvetli depremlerdeki kırılma süreçlerinin kayma ve devrilme olarak iki aşamaya ayrılabileceğini belirtmişlerdir. Kayma aşamasının pik ivmenin yakınında sona erdiğini ve üst bloğun çökme meydana gelmeden önce çatlak boyunca uzun bir mesafe kaydığını gözlemlemişlerdir. Üst bloğun maksimum kayma yer değiştirmesi, çatlak bölgesinde artan sürtünme katsayısı ile azalacağını belirtmişlerdir. Barajda penetre çatlak olduğunda barajın deprem direnci azaldığını ancak yine de büyük bir güvenlik toleransına sahip olduğu sonucuna varmışlardır. Pik ivme orijinal Koyna depreminin beş katına ulaştığında düz yatay çatlaklı baraj dengesiz olurken, pik ivme orijinal Koyna depreminin sekiz katı olduğunda eğimli çatlaklı barajda dengesizlik olduğunu, bu nedenle çatlak şeklinin bir barajın depreme dayanım sınırı üzerinde önemli bir etkiye sahip olduğu sonucuna varmışlardır.

Zhang vd. (2013), tek ve çoklu başlangıç çatlaklarına sahip beton ağırlık barajının doğrusal olmayan sismik çatlak analizini incelemişlerdir. Tüm sayısal hesaplamalar, çatlaklı beton ağırlık barajını modellemek ve çatlak yayılma sürecini tahmin etmek için kullanılan, geliştirilmiş sonlu eleman yöntemine (XFEM) dayanarak yapmışlardır. Koyna beton ağırlık barajının iki boyutlu deprem analizini, sayısal uygulama için 1967 Koyna deprem kayıtları kullanarak yapmışlardır. Çalışmada; mevcut XFEM sonuçlarının karşılaştırılması, Koyna baraj prototipinin incelenmesi, Koyna barajı için yapılan literatürdeki model testi ve mevcut metotlar, XFEM prosedürünün, sismik koşullar altında beton ağırlık barajlarında çatlak ilerleme sürecini ve çatlama sürecini etkin bir şekilde tahmin edebileceğini göstermişlerdir. Çatlaklı beton ağırlık barajının sismik çatlama analizi, ilk çatlakların sismik tepkinin ve çatlak ilerleme sürecinin tahmininde önemli olduğunu sonucuna varmışlardır. Barajın memba yüzeyindeki tek başlangıç çatlağına ek olarak, barajın memba ve mansap yüzünde çoklu başlangıç çatlakları da dâhil olmak üzere

diğer olası başlangıç çatlaklarının, barajda delici çatlaklara neden olacağını vurgulamışlardır.

Zhang ve Wang (2013), baraj-rezervuar-temel etkileşimini göz önüne alarak, nonlineer dinamik tepki ve beton ağırlık barajlarının sismik hasarına yakın ve uzak fay yer hareketi etkilerini analitik olarak değerlendirilmesini incelemişlerdir. Çalışmadan, yakın fay yer hareketlerinden elde edilen nonlineer etkinin uzak fay yer hareketlerinden elde edilenlerden önemli ölçüde farklı bir yer değiştirme kayıtlarına sahip olduğu sonucuna varmışlardır. Yakın fay yer hareketlerinin nonlineer dinamik tepkisi ve yapılar üzerindeki şiddetli ve itici etkilerinden dolayı beton ağırlık barajlarının birikimli hasarı üzerinde kayda değer etkilerinin olduğunu, yakın fay yer hareketleri baraj gövdesinde uzak fay yer hareketlerinden daha şiddetli hasara sebep olma potansiyeline sahip olduğunu, daha gerçekçi sonuçlar elde etmek için yakın fay yer hareketlerinin beton ağırlık barajları üzerindeki etkileri dikkate alınması gerektiğini vurgulamışlardır.

Wang vd. (2014), yapmış oldukları çalışmada yakın ve uzak fay yer hareketlerinin baraj-rezervuar-temel etkileşimi de dâhil olmak üzere beton ağırlık barajlarının sismik performansı üzerindeki etkilerini incelemişlerdir. Sayısal uygulama olarak Koyna ağırlık barajını seçmişlerdir. Analizlerde, belirgin titreşimli dört farklı yakın fay yer hareketi kaydını kullanmışlardır. Talep-kapasite oranı, yığışımlı aşırı gerilim süresi ve aşırı gerilim bölgelerin mekânsal kapsamına dayalı sismik performans değerlendirme yöntemi sunulmuşlardır. Gerilme sertleşmesi veya yumuşama davranışı içeren Beton Hasarlı Plastisite (Concrete Damaged Plasticity) modeli doğrusal olmayan analizlerde kullanmışlardır. Seçtikleri beton barajda hem yakın fay hem de uzak fay yer hareketlerine maruz kalan nonlineer sismik hasar analizleri yapmışlardır. Yapılan sismik hasar analizleri barajlarda biriken hasarın önemli ölçüde yakın fay yer hareketlerinden etkilendiğini, yakın fay yer hareketleri için maksimum yer değiştirme değerlerinin uzak fay yer hareketlerinden daha fazla olduğunu, memba tarafında dikkate değer ayrılmanın bazı yakın fay yer hareketi durumlarında baraj altında tepki olarak görüldüğünü, yakın yer hareketlerinin impulsif etkileri sebebiyle beton ağırlık barajlarda daha fazla sismik performans talebine yol açma potansiyeli olduğu, bu sebeple yakın fay yer hareket etkileri beton ağırlık barajların sismik performansı üzerinde daha gerçekçi sonuçlar elde etmek için göz önüne alınması gerektiği sonuçlarına ulaşmışlardır.

Durieux ve Rensburg (2016), yapmış oldukları çalışmada Drucker-Prager nonlineer sonlu eleman yöntemi (DP NL FEM) akma modeli, tekillik noktalarındaki en yüksek gerilme probleminin üstesinden gelmek ve baraj tabanında daha gerçekçi gerilmeler üretmek için bir yöntem olarak vermiştirler. Çalışmada tamamlanmış bir ağırlık baraja ait bir örnek çalışma, çeşitli analiz teknikleri karşılaştırılarak analizi yapılmıştır. Servis ve aşırı yük durumlarını araştırmışlardır. Duvar tabanı boyunca aşınmış malzeme de dâhil olmak üzere beton ve kaya için farklı malzeme özelliklerini göz önünde bulundurmuşlardır. Ağırlık barajlarının NL DP FEM ile daha kesin olarak analiz edilebileceği ve tekillik noktalarındaki yüksek gerilme piklerinin üstesinden gelinebileceği gösterilmiştir. Drucker-Prager parametrelerinin standart malzeme laboratuvar testlerinden kolayca elde edilebilmesi, NL DP FEM'in diğer modellemelere göre avantajlı olduğunu vurgulamışlardır. Mevcut barajlarını durum değerlendirme analizi için, NL DP FEM daha karmaşık nonlineer kırılma mekaniği yönteminin öncüsü ve kontrolü olarak kullanılabileceğini öne sürmüşlerdir.

1.3. Tezin Amacı ve İçeriği

Çatlaklı ve çatlaksız beton ağırlık barajların dinamik davranışının belirlenmesinde yakın ve uzak fay yer hareketlerinin dikkate alınmasının gerekliliği literatür çalışmalarında ne kadar önemli olduğu görülmüştür. Bu sebeple bu yüksek lisans tez çalışmasında, barajsu-zemin etkileşimi dikkate alınarak yakın ve uzak fay yer hareketine maruz çatlaklı beton ağırlık barajların dinamik davranışı incelenmiştir. Bu amaçla, Ankara'nın 120 km kuzey batısında Sakarya nehri üzerinde 1956 yılında inşa edilen Sarıyar beton ağırlık barajı kullanılmıştır. Yapılan çalışmalarda; yakın ve uzak fay yer hareketine maruz çatlaklı ve çatlaksız beton ağırlık barajların dinamik analizleri neticesinde, kret yer değiştirmeleri, baraj-zemin modellerinde yatay gerilmeler (S_{11}), düşey gerilmeler (S_{22}) ve kayma gerilmeleri (S_{12}) incelenmiştir.

1.4. Barajların Tarihi Gelişimi

Baraj, su biriktirmek amacı ile hazne oluşturmak üzere bir akarsu vadisini kapatarak akışı engelleyen yapıdır. Baraj kelimesi 20. Yüzyılın ortasından sonra Fransızcadan dilimize geçmiş olup sözlükte engel anlamına gelmektedir. Çağdaş beton barajların öncüsü niteliğindeki kargir barajlar binlerce yıl boyunca inşa edilerek günümüze kadar gelmiştir. Dünyanın en eski barajı kalıntıları Ürdün'de bulunan M.Ö 4000 yıllarının sonlarında inşa edildiği sanılan Jawa dolgu barajıdır (Azami 5m yüksekliğinde, sedde niteliğinde). Sonra Mısır'da M.Ö 3000 yıllarının ortalarında Nil nehri üzerinde inşa edilmiş Sadd-el-Kafara barajıyla (12m yüksekliğinde, 108m kret uzunluğunda) başlayıp, Akdeniz çevresinde M.S 1000 yılının ortalarına doğru, Roma döneminin sonuna kadar devam eden yarı kargir barajlar, killi bir merkezi geçirimsizlik bölgesinin memba ve mansap kesimlerinde moloz veya kesme taş niteliğinde kargir bölgelerle oluşturulmuştur. Çin'de M.Ö 200 yıllarında yapılan Tu-Kiang barajı, iki yüz bin hektarlık pirinç tarlalarını sulamak için yapılmış ve günümüzde hala kullanılmaktadır. Mezopotamya'da Samarra yakınında Dicle üstünde inşa edilmiş olan Marduk barajının, birkaç bin yıl hizmet gördüğü ve M.S 1296'da yıkıldığı bilinmektedir. Anadolu'daki en eski baraj kalıntısı, Kayseri-Sivas arasında bulunan Uzunyayla'nın sulanması amacıyla M.Ö 2000'li yılların ortalarında Hititler tarafından yapılan Karakuyu barajına aittir.

Orta çağda Batı'da önemli su yapılarına rastlanmamaktadır. Doğuda M.S 5. ve 16. yüzyıllar arasında Japonya'da otuzdan fazla baraj inşa edilmiştir. İran'da da 40m yüksekliğinde Saveh Barajı inşa edilmiştir.

Başlangıçta taşkınlardan korunmak, içme ve sulama suyu elde etmek için inşa edilen barajlar, 1900'lü yıllardan sonra bunlara ek olarak elektrik enerjisi üretmek üzere tasarlanmaya başlanmıştır. Cumhuriyet döneminde ilk beton ağırlık baraj 1936 yılında hizmete giren Çubuk Nehri üzerinde inşa edilen Çubuk I barajıdır. II. Dünya Savaşı'ndan sonra Porsuk I (1948), Elmalı II (1955), Sarıyar (1956), Kemer (1958) gibi beton ağırlık barajlar inşa edilmiştir (Öziş ve Alsan, 1990).

1.4.1. Barajların Sınıflandırılması

Barajlar; büyüklüklerine, yapılışlarına ve gövde dolgu malzemesi ve gövde biçimine göre üç başlıkta sınıflandırılabilir.

a) Büyüklüklerine Göre Sınıflandırma

Büyüklüklerine göre barajlar; büyük baraj, gölet (küçük baraj) ve yüksek baraj olarak üçe ayrılırlar. Uluslararası Büyük Barajlar Komisyonu (ICOLD: International Comission on Large Dam) büyük baraj tanımı için şu şartları vermektedir: Kreti ile temeli arasındaki yükseklik 15m'den fazla olan barajlar ile yüksekliği 10-15m arasında olan fakat buna ek olarak; kret uzunluğu 500m'den büyük, hazne hacmi 1106m³'den büyük ve en büyük taşkın debisi 1000 m³/sn'den büyük olma özelliklerinden en az birini taşıyan barajlar büyük baraj olarak isimlendirilirler.

Büyük baraj tanımının dışında kalan, projesi daha basit ve çabuk sonuç alınan yapılara gölet (küçük baraj), yüksekliği 50m'den fazla olan barajlara da yüksek baraj denilmektedir (Gedik, 2019).

b) Yapılışlarına Göre Sınıflandırma

Bir baraj tek veya çok amaçlı olarak planlanır. Tek amaçlı barajlar; içme suyu temini, endüstri suyu temini, sulama, hidroelektrik enerji, taşkın kontrolü vb. için inşa edilirler. Bunların birkaçını birlikte temin eden baraja da çok amaçlı baraj denilmektedir (Gedik, 2019).

c) Gövde Dolgu Malzemesi ve Gövde Biçimine Göre Sınıflandırma

Gövde dolgu malzemesine ve gövde biçimine göre barajlar, dolgu barajlar ve beton barajlar olmak üzere ikiye ayrılabilir.

Dolgu barajlar; toprak dolgu barajlar, kaya dolgu barajlar ve ön yüzü betonarme kaplı kaya dolgu barajlar olmak üzere üçe ve beton barajlar da beton ağırlık barajlar, payandalı barajlar, kemer barajlar ve silindirle sıkıştırılmış beton barajlar olmak üzere dörde ayrılırlar (Gedik, 2019).

1.5. Ağırlık Barajlar Hakkında Genel Bilgiler

Beton baraj gövdeleri, gevşek zemin ve ayrışmış kaya kazılıp alındıktan sonra, yeterli taşıma gücüne sahip sağlam kaya üzerine inşa edilirler. Beton barajların en önemli avantajı dolu savak, dip savak vb. gibi diğer yapıların gövde üzerinde yer alabilmesidir. Aks yerindeki mevcut şartlara göre, beton ağırlık ve beton kemer tipinde bir gövde seçilebilir (Gedik, 2019).

Beton ağırlık baraj, üzerine etki eden kuvvetleri kemer tesiri olmadan kendi ağırlığı ile stabilitelerini sağlayan genellikle betondan inşa edilen barajlardır. Bu tip barajlarda ana biçim, memba yüzü düşey, mansap yüzü eğimli şekildedir. Bazı durumlarda, uygun gerilme dağılımını sağlamak amacıyla memba yüzünün alt kısmına düşeyden biraz farklı eğimde verilebilmektedir.

Beton ağırlık barajlar, geleneksel kütle betonu ve silindirle sıkıştırılmış beton (Roller Compacted Concrete) olmak üzere iki tip beton yapım yönetimi kullanılarak inşa edilmektedir. Geleneksel betonlu barajlar; çimento, agrega, su ve katkı maddeleri karıştırılıp oluşturulan beton kullanılarak yapmaktadır. Silindirle sıkıştırılmış beton (SSB) teknolojisi baraj, karayolu ve liman gibi büyük projelerde kullanılmaktadır.

SSB betonunun bileşimi normal bir görüntüye sahip olup, fiziksel özellikleri ile gerçek bir beton gibi sertleşen, çimento ile harmanlanmış ıslak çakıl içermektedir. Bununla birlikte klasik betondan daha büyük dane çapı içeren agrega kullanılmaktadır. Ayrıca, klasik betonda çimento oranının fazla olmasına rağmen SSB karışımında az miktarda çimento ve büyük oranda uçucu kül bulunmaktadır (Gedik, 2019; Polat, 2019).

Tablo 1.1'de Türkiye'de işletmeye açılan beton ağırlık ve silindirle sıkıştırılmış barajlara ait özellikler verilmiştir. Tablo 1.1'de ki beton ağırlık barajlara ait bazı özellikler ise Tablo 1.2 ile Tablo 1.15 arasında verilmiştir.

		İnşa Consr	atin uction	Ye Locat	r i ion				Yüks He	ekliği ight	Normal	Normal S At Norm Surface	u Kotunda nal Water Elevation	
Sıra No Seq No	Adı Name	Başlama Yılı Starting Year	Bitis Yılı Completion Year	Akarsuyu River	İli Province	Gövde Dolgu Tipi Embankment Type	Gövde Hacmi Dam Volume 10 ³ m ³	Kret Kotu Crest Elevation m	Temelden From Foundation m	Talvegden From River Bed m	Su Kotu Normal Water Surface Elevation m	Göl Hacmi Reservoir Volume hm ³	Göl Alam Reservoir Area km ²	Amacı Purpose
1	ÇUBUK I	1930	1936	Çubuk	Ankara	Beton Ağırlık	120	908,61	58,00	25,00	906,61	12,50	0,94	İ+T
2	SARIYAR	1950	1956	Sakarya	Ankara	Beton Ağırlık	568	480,00	108,00	90,00	475,00	1900,00	83,83	Е
3	KEMER	1954	1958	Akçay	Aydın	Beton Ağırlık	740	298,50	113,50	108,50	291,50	358,50	14,75	S+T+E
4	GÜLÜÇ	1964	1966	Gülüç	Zonguldak	Beton Ağırlık	52	20,50	22,00	14,50	18,50	6,00	1,34	İ+T
5	PORSUK	1966	1972	Porsuk	Eskişehir	Beton Ağırlık	224	886,70	64,70	49,70	882,60	431,00	23,40	S+T+İ
6	ARPAÇAY	1975	1983	Arpaçay	Kars	Beton Ağırlık	180	1456,10	59,10	47,00	1452,00	525,00	41,80	S
7	KARACAÖREN II	1988	1993	Aksu	Burdur	Beton Ağırlık	165	190,00	49,00	45,00	187,50	48,00	2,34	S+E
8	BOYABAT	2008	2012	Kızılırmak	Sinop	Beton Ağırlık	2700	335,00	195,00	193,00	330,00	3557,00	65,40	Е
9	BEYDAĞ	1994	2007	K. Menderes	İzmir	SSB*	2700	785	100	60	-	300	-	S
10	CİNDERE	1994	2012	B. Menderes	Denizli	SSB*	1950	300,00	115,00	85,00	-	94,00	3,00	S+E
11	ÇİNE ADNAN MENDERES	1995	2010	Çine Çayı	Aydın	SSB*	1410	-	136,5	120	-	350	9,34	S+T+E
12	ÇALTIKORU	1996	2011	İlyas Çayı	İzmir	SSB*	760	158,00	66,00	61,00	-	41,60	1,90	S
13	KÖPRÜ	2009	2012	Seyhan	Adana	SSB*	1000	413	109	100	-	93,2	-	Е
14	MENGE	2010	2012	Seyhan	Adana	SSB*	327,7	303,6	68	60	-	50,797	-	Е

Tablo 1.1. Türkiye'deki beton ağırlık ve silindirle sıkıştırılmış barajlar ve başlıca özellikleri

E: Enerji T: Taşkın Kontrol S: Sulama

İ: İçme – Kullanma ve Sanayi Suyu Temini

SSB*: Silindirle Sıkıştırılmış Beton

Tablo 1.2. Çubuk I Barajı'nın bazı özellikleri

Adı	Çubuk I
Yeri	Ankara
Akarsu	Çubuk
Amaç	İ+T
İnşaata Başlama-Bitiş Yılı	1930-1936
Gövde Dolgu Tipi	Beton Ağırlık
Yükseklik (Talvegden)	25 m
Sulama Alanı	- ha
Yıllık İçme Suyu	$3 hm^3$
Güç	_ <i>MW</i>
Yıllık Üretim	- GWh

Tablo 1.3. Sarıyar Barajı'nın bazı özellikleri

	Adı	Sarıyar
	Yeri	Ankara
	Akarsu	Sakarya
	Amaç	Enerji
	İnşaata Başlama-Bitiş Yılı	1950-1956
	Gövde Dolgu Tipi	Beton Ağırlık
THUR PROPERTY AND A REAL PROPERTY AND A	Yükseklik (Talvegden)	90 m
	Sulama Alanı	- ha
	Yıllık İçme Suyu	$-hm^3$
and the second s	Güç	160 MW
	Yıllık Üretim	400 GWh

Tablo 1.4. Kemer Barajı'nın bazı özellikleri

	Adı	Kemer
	Yeri	Aydın
TANDAL DE LE LE LE LE	Akarsu	Akçay
	Amaç	S+T+E
	İnşaata Başlama-Bitiş Yılı	1954-1958
	Gövde Dolgu Tipi	Beton Ağırlık
	Yükseklik (Talvegden)	108,50 <i>m</i>
	Sulama Alanı	57847 ha
	Yıllık İçme Suyu	$-hm^3$
	Güç	48 <i>MW</i>
	Yıllık Üretim	143 GWh

Tablo 1.5. Gülüç Barajı'nın bazı özellikleri

	Adı	Gülüç
	Yeri	Zonguldak
	Akarsu	Gülüç
	Amaç	İ+T
	İnşaata Başlama-Bitiş Yılı	1964-1966
	Gövde Dolgu Tipi	Beton Ağırlık
	Yükseklik (Talvegden)	14,50 <i>m</i>
	Sulama Alanı	- ha
A REAL PROPERTY OF THE REAL PROPERTY OF THE REAL PROPERTY OF THE REAL PROPERTY OF THE REAL PROPERTY OF THE REAL	Yıllık İçme Suyu	$6 hm^3$
STATISTICS AND AND AND AND AND AND AND AND AND AND	Güç	$_MW$
	Yıllık Üretim	- GWh
Tablo 1.6. Porsuk Barajı'nın bazı özellikleri

	Adı	Porsuk
	Yeri	Eskişehir
The second second second second second second second second second second second second second second second se	Akarsu	Porsuk
	Amaç	S+T+İ
	İnşaata Başlama-Bitiş Yılı	1966-1972
	Gövde Dolgu Tipi	Beton Ağırlık
	Yükseklik (Talvegden)	49,70 m
	Sulama Alanı	41020 ha
	Yıllık İçme Suyu	$206 \ hm^3$
	Güç	- <i>MW</i>
	Yıllık Üretim	-GWh

Tablo 1.7. Arpaçay Barajı'nın bazı özellikleri

	Adı	Arpaçay
	Yeri	Kars
	Akarsu	Arpaçay
A A A A A A A A A A A A A A A A A A A	Amaç	Sulama
	İnşaata Başlama-Bitiş Yılı	1975-1983
	Gövde Dolgu Tipi	Beton Ağırlık
	Yükseklik (Talvegden)	47 m
	Sulama Alanı	40420 ha
	Yıllık İçme Suyu	$-hm^3$
	Güç	- <i>MW</i>
	Yıllık Üretim	- GWh

Tablo 1.8. Karacaören II Barajı'nın bazı özellikleri

	Adı	Karacaören II
	Yeri	Burdur
	Akarsu	Aksu
	Amaç	Sulama-Enerji
	İnşaata Başlama-Bitiş Yılı	1988-1993
	Gövde Dolgu Tipi	Beton Ağırlık
	Yükseklik (Talvegden)	45 m
	Sulama Alanı	19330 ha
	Yıllık İçme Suyu	$-hm^3$
	Güç	47 <i>MW</i>
	Yıllık Üretim	206 GWh

Tablo 1.9. Boyabat Barajı'nın bazı özellikleri

MARKED CONTRACTOR	Adı	Boyabat
	Yeri	Sinop
	Akarsu	Kızılırmak
	Amaç	Enerji
	İnşaata Başlama-Bitiş Yılı	2008-2012
	Gövde Dolgu Tipi	Beton Ağırlık
	Yükseklik (Talvegden)	193 <i>m</i>
	Sulama Alanı	- ha
	Yıllık İçme Suyu	$-hm^3$
	Güç	528 MW
	Yıllık Üretim	1500 GWh

Tablo 1.10. Beydağ Barajı'nın bazı özellikleri

	Adı	Beydağ
	Yeri	İzmir
and the second second	Akarsu	Küçük Menderes
	Amaç	Sulama
	İnşaata Başlama-Bitiş Yılı	1994-2007
	Gövde Dolgu Tipi	Silindirle Sıkıştırılmış Beton
	Yükseklik (Talvegden)	60 <i>m</i>
	Sulama Alanı	22000 ha
	Yıllık İçme Suyu	$-hm^3$
	Güç	- <i>MW</i>
	Yıllık Üretim	- GWh

Tablo 1.11. Cindere Barajı'nın bazı özellikleri

	Adı	Cindere
	Yeri	Denizli
	Akarsu	Büyük Menderes
	Amaç	Sulama-Enerji
	İnşaata Başlama-Bitiş Yılı	1994-2012
	Gövde Dolgu Tipi	Silindirle Sıkıştırılmış Beton
	Yükseklik (Talvegden)	85 m
	Sulama Alanı	16000 ha
	Yıllık İçme Suyu	$-hm^3$
	Güç	30 <i>MW</i>
	Yıllık Üretim	100 GWh

Tablo 1.12. Çine Adnan Menderes Barajı'nın bazı özellikleri

	Adı	Çine Adnan Menderes
	Yeri	Aydın
	Akarsu	Çine Çayı
	Amaç	S+T+E
	İnşaata Başlama-Bitiş Yılı	1995-2010
DSI L	Gövde Dolgu Tipi	Silindirle Sıkıştırılmış Beton
	Yükseklik (Talvegden)	120 m
	Sulama Alanı	22358 ha
	Yıllık İçme Suyu	$-hm^3$
	Güç	47,2 <i>MW</i>
	Yıllık Üretim	118 GWh

Tablo 1.13. Çaltıkoru Barajı'nın bazı özellikleri

	Adı	Çaltıkoru
and the second s	Yeri	İzmir
	Akarsu	İlyas Çayı
	Amaç	Sulama
	İnşaata Başlama-Bitiş Yılı	1996-2011
	Gövde Dolgu Tipi	Silindirle Sıkıştırılmış Beton
	Yükseklik (Talvegden)	61 <i>m</i>
	Sulama Alanı	4251 ha
	Yıllık İçme Suyu	$-hm^3$
	Güç	- <i>MW</i>
	Yıllık Üretim	- GWh

Tablo 1.14. Köprü Barajı'nın bazı özellikleri

	Adı	Köprü	
	Yeri	Adana	
and the second	Akarsu	Seyhan	
	Amaç	Enerji	
	İnşaata Başlama-Bitiş Yılı	2009-2012	
	Gövde Dolgu Tipi	Silindirle Sıkıştırılmış Beton	
	Yükseklik (Talvegden)	100 <i>m</i>	
	Sulama Alanı	- ha	
	Yıllık İçme Suyu	$-hm^3$	
	Güç	155,85 <i>MW</i>	
	Yıllık Üretim	383,88 GWh	

Tablo 1.15. Menge Barajı'nın bazı özellikleri

Adı	Menge
Yeri	Adana
Akarsu	Seyhan
Amaç	Enerji
İnşaata Başlama-Bitiş Yılı	2010-2012
Gövde Dolgu Tipi	Silindirle Sıkıştırılmış Beton
Yükseklik (Talvegden)	60 <i>m</i>
Sulama Alanı	- ha
Yıllık İçme Suyu	$-hm^3$
Güç	89,20 MW
Yıllık Üretim	202,60 GWh

1.5.1. Beton Ağırlık Barajlara Etki Eden Kuvvetler

Bir barajın projelendirilmesinde, ilk olarak baraja etki eden kuvvetlerin belirlenmesi gerekir. Bu kuvvetleri statik ve dinamik olmak üzere iki kısma ayırmak mümkündür. Barajlara etki eden bütün statik ve dinamik kuvvetleri aşağıdaki gibi sıralayabiliriz;

- 1. Barajın kendi ağırlığı
- 2. Hidrostatik su basıncı
- 3. Tabanda kaldırma ve boşluk suyu basıncı
- 4. Depremden dolayı oluşan kuvvetler
- 5. Buz basıncı
- 6. Silt basıncı
- 7. Sıcaklık yükleri

Şekil 1.1. Beton ağırlık barajına etki eden kuvvetler

a) Barajın Kendi Ağırlığı

Malzemenin özgül ağırlığı γ_b ve gövde hacmi V olmak üzere;

$$W = \gamma_{\rm b} V \tag{1.1}$$

eşitliği ile hesaplanır. Köprü ve kapaklar vb. donanımlardan gelen dış kuvvetler barajın kendi ağırlığına eklenir (Gedik, 2019).

b) Hidrostatik Su Basıncı

Barajlara memba ve mansap tarafında etki edebilir. Mansap tarafındaki su yüksekliği küçük ise ihmal edilebilir. Hesap kolaylığı bakımından eğimli yüzeylerden gelen toplam basınç yatay ve düşey bileşenlere ayrılır. Yatay su basıncı

$$P_{H1} = \frac{\gamma_w \cdot H^2}{2} \tag{1.2}$$

ifadesi ile hesaplanır. Burada H su derinliği, γ_w suyun özgül ağırlığıdır (Gedik, 2019).

c) Tabanda Kaldırma ve Boşluk Suyu Basıncı

Taban basıncı özellikle ağırlık barajlara etki eden en önemli etkenlerdendir. Kaldırma basıncı; normal su seviyesinden, baraj en kesitindeki su alma yapılarından dolayı oluşan kuyruk suyundan, baraj ve temel arasında kalan kesimden ve tabanın altında kalan bölümden oluşur. Bu basınç, beton ve temel malzemeleri içindeki çatlaklar, gözenekler ve bağlantı yerlerinde mevcuttur. Stabilite ve gerilme analizlerinde yapısal yeterliliğin sağlanmasında kaldırma basıncı aktif basınca eklenmelidir. Bu basınçların zamanla değişimi, sınır koşulları ve malzeme geçirgenliği ile ilişkilidir. Kaldırma basıncının deprem yükleri ile değişmediği varsayılır (USACE, 1995; 2000).

d) Depremden Dolayı Oluşan Kuvvetler

Beton ağırlık barajlarda, depremden dolayı oluşan kuvvetlerin etkisi en güzel dinamik analizler ile tespit edilebilir. Eğer bu kuvvetler statik olarak ele alınacaksa, projelendirmede yatay ve düşey deprem yüklerinin dikkate alınması gerekir. Membamansap doğrultusundaki deprem hareketi, yani yatay deprem yükü, su ve zeminin mansaba doğru olan basıncını artırır. Ayrıca barajın ağırlığı sebebi ile mansaba doğru yatay doğrultuda atalet kuvveti oluşur. Düşey doğrultudaki deprem hareketinden oluşan yukarı yönlü atalet kuvvetleri sebebiyle eğik yüzeyler üzerinde bulunan su ve zemin ağırlığı ile kendi ağırlığının etkisi azalır. Deprem kuvvetlerini hesaplamak için, barajı etkileyebilecek depremin şiddetini bilmek gerekir. Bunun değeri genellikle yerçekimi ivmesi cinsinden ifade edilir. Depremin baraj gövdesine yatay yönde etki edecek atalet kuvveti;

$$F_{\rm EH} = \alpha.W \tag{1.3}$$

ifadesi ile hesaplanır. Burada, W barajın kendi ağırlığı, α depremden dolayı ivme katsayısı olup, a deprem ivmesinin, g yerçekimi ivmesine oranıdır ($\alpha = a/g$).

Memba yüzeyi düşey olan bir barajda, depremden dolayı oluşan hidrodinamik su etkisi,

$$P_{\rm HD} = C.\alpha.\gamma_{\rm w}.H \tag{1.4}$$

eşitliği ile hesaplanabilir. Burada

$$C = 0.365 \left[\frac{y}{H} \left(2 - \frac{y}{H} \right) + \sqrt{\frac{y}{H} \left(2 - \frac{y}{H} \right)} \right]$$
(1.5)

eşitliğinden bulunur. Burada;

 $\gamma_{\rm w}$: Suyun özgül ağırlığı

H: Toplam su derinliği

y: Rezervuar yüzeyinden söz konusu seviyeye kadar olan düşey su derinliğini göstermektedir.

Bu kuvvet tabandan $(4\pi/3)$ H kadar yukardan etki eder. Ölü hacimdeki siltin etkisi, deprem sırasında içsel sürtünme açısının değişimi tam bilinemediği için, H yerine siltin yüksekliği H_{si} formülde kullanılarak suyun etkisi gibi hesaplanabilir.

USBR'ye (United States Bureau of Reclamation) göre baraj yüzeyini etkileyen söz konusu seviyenin üst kısmındaki toplam yatay kuvvet ve seviyenin üst kısmında toplam devirici moment için aşağıdaki eşitlikler verilmiştir (Gedik, 2019).

$$V_{e} = 0.726F_{de}y$$
 (1.6)

$$M_{e} = 0.299 F_{de} y^{2}$$
(1.7)

e) Buz Basıncı

Kış sıcaklıklarının 0 derecesinin altına düştüğü yerlerde yapılacak barajların hesaplarında buz basıncı dikkate alınmalıdır. Kuvvetin buz kalınlığının ortasından etkidiği kabul edilir. Buz basıncı sıcaklık artış oranına ve buz kalınlığına göre hesaplanır. Baraj gölünde oluşacak sıcaklık değişimleri ve buz kalınlığı meteorolojik verilerden tahmin edilebilir. Buz basıncı baraj yerinin iklim ve haznenin işletme şartlarına bağlı olarak değişir (Gedik, 2019).

1.5.2. USACE (1995;2000)'e Göre Kaldırma Basıncının Belirlenmesi

Bu kısımda, beton ağırlık barajların tabanında meydana gelen kaldırma basıncı, USACE (1995;2000)'e göre belirlenişi açıklanmıştır. Baraj tabanı boyunca kaldırma basınç dağılımı, drenaj etkinliğine, enjeksiyon perdesine ve kaya geçirgenliği, bağlantı yerleri, birleşim ve faylanma gibi jeolojik özelliklere bağlıdır (USACE, 1995;2000).

Beton ağırlık baraj tabanındaki kaldırma drenaj galerisinin bulunmaması, drenaj galerisinin bulunması ve sıfır basınç bölgesinin bulunması durumlarında incelenmiştir.

1.5.2.1. Drenaj Galerisinin Bulunmaması Durumunda Kaldırma Basıncı

Beton ağırlık barajlarda drenaj galerisinin bulunmaması durumunda kaldırma basıncında herhangi bir azaltma yapılmaz. Kaldırma basıncındaki değişim, barajın topuk kısmından burun kısmına kadar lineer olarak değişir. Şekil 1.2'de temel üzerinde veya altındaki herhangi bir noktadaki kaldırma basıncının belirlenmesi gösterilmiştir (USACE, 1995;2000).

Şekil 1.2. Drenaj galerisinin olmaması durumunda kaldırma basıncı (USACE, 1995; 2000).

Bu kaldırma basıncı;

$$H_{x} = H_{2} + \frac{x}{L} (H_{1} - H_{2})$$
(1.8)

şeklinde hesaplanır

Burada;

H₁: Normal su seviyesi

H₂: Kuyruk suyu seviyesi

L: Baraj taban boyunu göstermektedir.

1.5.2.2. Drenaj Galerisinin Bulunması Durumunda Kaldırma Basıncı

Beton ağırlık barajlarda tabanda veya temel altındaki kaldırma basıncı temel drenajlarının yerleştirilmesiyle azaltılabilir. Drenaj sisteminin etkinliği, drenlerin derinliğine, boyutuna, drenaj aralığına, temel karakterine ve tesisin hangi drenaj delikleriyle muhafaza edileceğine bağlıdır. Drenaj etkisinin %25 ile %50 arasında değiştiği kabul edilir. Zemin deneyleri ve akış analizlerine göre, bu değer %67'ye yükseltilebilir. Kaldırma basıncı; topuk başındaki drenajsız basınçtan drenaj hattı başındaki indirgenmiş basınca, oradan da burun kısmındaki drenajsız basınca kadar Şekil 1.3'de gösterildiği gibi lineer olarak değişecektir (USACE, 1995;2000).

Şekil 1.3. Drenaj galerisinin bulunması (USACE, 1995; 2000).

Baraj tabanından itibaren drenaj galeri yüksekliği (H₄) kuyruk suyu seviyesinden (H₂) büyükse (H₄ > H₂) H₃;

$$H_{3} = K \left[\left(H_{1} - H_{2} \right) \frac{\left(L - X \right)}{L} + H_{2} - H_{4} \right] + H_{4}$$
(1.9)

şeklinde hesaplanır. Burada;

$$\mathbf{K} = 1 - \mathbf{E}_{\mathrm{d}} \tag{1.10}$$

ile ifade edilir.

 E_d : Ondalık olarak ifade edilen drenaj etkisi, X: memba yüzeyinden drenaj hattına olan uzaklıktır. Baraj tabanından itibaren drenaj galeri yüksekliği (H₄) kuyruk suyu seviyesinden (H₂) küçükse (H₄ < H₂) H₃;

$$H_{3} = K(H_{1} - H_{2})\frac{(L - X)}{L} + H_{2}$$
(1.11)

şeklinde hesaplanır.

Drenaj hattı, memba yüzeyinden rezervuar yüksekliğinin %5'i kadar uzaklıkta temeli kesmesi durumunda, kaldırma basıncı tek bir düz çizgi olarak değişebileceği varsayılabilir. Bu durum Şekil 1.4'de gösterilmektedir. Drenaj galerisi kuyruk suyu yüksekliğinin üzerinde ise, drenaj hattının basıncı, kuyruk suyu seviyesi galeri yüksekliğine eşit olacak şekilde belirlenmelidir (USACE, 1995; 2000).

Şekil 1.4. Drenaj galerisinin bulunması ve X \leq 0.05 H₁ olduğu durum (USACE, 1995; 2000).

Memba yüzeyinden drenaj hattına olan uzaklık (X) normal su seviyesinin %5'inden $(0,05H_1)$ küçük eşit olduğunda (X ≤ 0.05 H₁) iki durum söz konusudur. Bunlar;

 Baraj tabanından itibaren drenaj galeri yüksekliği kuyruk suyu seviyesinden büyükse (H₄ > H₂) H₃;

$$H_{3} = K(H_{1} - H_{4}) + H_{4}$$
(1.12)

şeklinde,

Baraj tabanından itibaren drenaj galeri yüksekliği kuyruk suyu seviyesinden küçükse (H₄ < H₂) H₃;

$$H_{3} = K(H_{1} - H_{2}) + H_{2}$$
(1.13)

şeklinde hesaplanır.

1.5.2.3. Çatlak veya Sıfır Basınç Bölgesinin Bulunması Durumunda Kaldırma Basıncı

Basınç oluşmayan herhangi bir temel düzleminin herhangi bir kısmındaki kaldırma basıncı, hidrostatik basınç yüksekliğinin yüzde yüzü olacaktır. Sıfır basınç bölgesi drenaj hattının ötesine geçmediğinde, kaldırma basıncı Şekil 1.5'te gösterildiği gibi olacaktır. Sıfır basınç bölgesinin drenaj hattının ötesine uzanması durumunda, drenaj etkinliği dikkate alınmayacaktır. Bu kaldırma basınç koşulu, Şekil 1.6'da gösterilmektedir (USACE, 1995;2000).

Şekil 1.5. Sıfır basınç bölgesi uzunluğunun drenaj galerisi mesafesinden kısa olması (USACE, 1995; 2000).

Çatlak veya Sıfır basınç bölgesi uzunluğu (T) memba yüzeyinden drenaj hattına olan uzaklıktan (X) küçük olduğunda (T < X):

Baraj tabanından itibaren drenaj galeri yüksekliği kuyruk suyu seviyesinden büyükse $(H_4 > H_2) H_3;$

$$H_{3} = K \left[\left(H_{1} - H_{2} \right) \frac{L - X}{L - T} + H_{2} - H_{4} \right] + H_{4}$$
(1.14)

şeklinde,

Baraj tabanından itibaren drenaj galeri yüksekliği kuyruk suyu seviyesinden küçük ise $(H_4 < H_2) H_3$;

$$H_{3} = K \left[(H_{1} - H_{2}) \frac{L - X}{L - T} \right] + H_{4}$$
(1.15)

şeklinde hesaplanır.

Şekil 1.6. Sıfır basınç bölgesi uzunluğunun drenaj galerisi mesafesinden uzun olması (USACE, 1995; 2000).

Çatlak veya sıfır basınç bölgesi uzunluğu memba yüzeyinden drenaj hattına olan uzaklıktan büyük olduğunda (T > X), drenaj etkisi dikkate alınmaz.

1.6. Yakın ve Uzak Fay Yer Hareketleri

Yerküre sessiz bir gezegen değildir ve milisaniyeden günlere kadar değişen periyotlarda ve nanometrelerden metrelere kadar değişen genliklerde devamlı surette titreşmektedir. Bu titreşimlerin büyük çoğunluğu çok zayıf olup hissedilmezler; hatta özel olarak tasarlanmış ölçüm cihazları olmadan tespit de edilemezler. İnsanları ve çevresini etkileyecek güce sahip olan söz konusu hareketlere "Kuvvetli Yer Hareketi" denilmektedir. Bir deprem sonrası civarda oluşacak tesirlerin hassas olacak şekilde değerlendirilmesi kuvvetli yer hareketinin nesnel ve nicel yollardan tanımlanmasını gerektirir. Depremlerin oluşturduğu yer hareketleri oldukça karmaşıktır ve genellikle bu hareketlerin bir noktadaki doğrusal hareketinin üç ortogonal bileşeni ölçülür. İvmenin, hızın ve yer değiştirmenin zamana bağlı değişimi gibi tipik yer hareketi kayıtları olağanüstü miktarda bilgi ihtiva ederler. Mühendislik açısından yer hareketinin özelliklerini tanımlamak ve bu özellikleri yansıtan bir dizi yer hareketi parametresini incelemek gerekir. Deprem hareketinin mühendislik açısından üç önemli özelliği bulunmaktadır. Bunlar genlik, frekans içeriği ve hareketin süresidir (Kayabalı, 2003; USACE, 2003; Liao vd., 2004; Gül, 2009).

Yırtılan bir fay boyunca açığa çıkan enerjinin çoğu gerilme dalgaları şeklinde olmaktadır. Gerilme dalgaları bir deprem kaynağından uzaklaşırken giderek yayılırlar ve içinden geçtikleri ortamlarca da kısmen emilirler. Sonuçta da kaynaktan uzaklaştıkça söz konusu enerji azalır. Bu sebepten gerilme dalgaları ile uzaklık arasında kuvvetli bir ilişki bulunmaktadır. Bir bölgede oluşan deprem sırasında, o bölgedeki mevcut fayın yakınında kaydedilen yer hareketi fayın uzağında kaydedilen yer hareketinden oldukça farklıdır. Yakın fay yer hareketi, bir fayın oldukça yakınında kaydedilen (faya uzaklık < 10km) ve en büyük hız değerinin en büyük ivme değerine oranı (PGV/PGA) 0.1 saniyeden büyük olan yer hareketi olarak tarif edilmektedir. Araştırma bölgesinin uzağından farklı depremlerin aynı alıcılarda kaydedilensi de uzak fay terimini ifade etmektedir. Genellikle alıcı-kaynak uzaklığı 10km'den büyük olan yer hareketleri bu grup ile temsil edilmektedir (Kayabalı, 2003; USACE, 2003; Liao vd., 2004; Gül, 2009).

1.7. Çatlak Modellemesi

Beton yapılarda, çekme gerilmesinin çatlak oluşumunda temel etken olması sebebi ile yapıda oluşan çatlaklar, gerilme analizine dayalı çeşitli yöntemler ile incelenmektedir. Bu yöntemlerin en etkili olanlarından bir tanesi malzemenin lineer olmayan davranışını dikkate alan klasik yöntemdir. Beton ağırlık barajlarında oluşan çatlaklar, genellikle baraj kesiti boyunca oluşan bir veya birkaç ayrık çatlak türündedir. Bu gerçek, çatlak etkisinin incelenmesi açısından sonuca kolaylıkla ulaşılabilecek bir analitik model oluşturmayı zorlaştırmaktadır. Ancak, çatlakları modellemek ve barajların dinamik davranışına etkilerini hesaplayabilmek için ayrık çatlat (discrete crack) ve yayılı çatlak (smeared crack) modelleri geliştirilmiştir. Bu modellerde sistem iki (bir tanesi lineer diğeri lineer olmayan) veya daha fazla altyapılara bölünerek çözüm yapılmaktadır (Zienkiewicz ve Bettess, 1978; Nitikitpaiboon ve Bathe, 1993; Dumanoğlu ve Oskouei, 1999).

1.7.1. Ayrık Çatlak Modeli

Ayrık çatlak modelini esas alan analitik modele dayalı yöntemlerde, çatlak etrafındaki sonlu elemanların çatlak boyunca birbirinden ayrıldığı varsayılmaktadır. Öyle

ki iki komşu eleman arasındaki gerilme veya şekil değiştirme belirli bir limiti aştığı takdirde iki eleman arası açıldığı kabul edilmektedir. Böylece, elemanlar için müşterek olan düğüm noktaları birbirinden farklı iki düğüm noktasına dönüşmektedir. Çatlaklar ilerledikçe elemanlar da tamamen ayrılmaktadır. Bunun sonucu olarak, sonlu eleman ağı yeniden şekillenmiş olacağından, sistemin serbestlik derecesi sayısı artacaktır. Sonuç olarak, sistemde çözülecek denklem sayısı ve buna bağlı olarak da rijitlik matrisindeki bant genişliğinin de artmış olması mümkündür. Ayrık çatlak modeli Şekil 1.7'de gösterilmiştir.

Şekil 1.7. Ayrık çatlak modeli, (a) Çatlak öncesi (b) Çatlak sonrası (Dumanoğlu ve Oskouei, 1999).

Ayrık çatlak yönteminin diğer bir zorluğu da, analiz yapmadan önce hangi düğüm noktasındaki veya elemandaki gerilme veya şekil değiştirmenin, maksimum çekme gerilmesini veya maksimum şekil değiştirmeyi aşacağının belirlenememesidir. Çatlağın yerini önceden tespit etmek mümkün olmadığından, tüm sistem için çatlağın oluşabileceği düğüm noktalarının veya elemanlarının önceden tanımlanması gerekmektedir. Aksi takdirde çatlağın ilerleme yönünü belirlemek ve buna bağlı olarak sonuçlara ulaşmak zor olacaktır.

Kaya mekaniğinde tabakalar arasındaki açılmaları simgeleyen yöntemler son zamanlarda beton barajlar içinde kullanılmaktadır. Bu yöntemlerden bir tanesi ara yüzey elemanı (Interface elemanı) kullanma yöntemidir (Fenves vd., 1992; Ahmadi ve Razavi, 1992; Bfer, 1985). Bu yaklaşımda, açılan iki blok arasında sıfır kalınlığında yüzey elemanı kullanılarak, elemandaki gerilmeler veya şekil değiştirmeler karşılaştırılmaktadır. Diğer bir yaklaşımda da bloklar arasında lineer olmayan yay eleman kullanılmasıdır (Dowling ve Hall, 1989; Dowling, 1988). Her iki yaklaşımda da eleman, sonsuz basınç dayanımına ve sınırlı çekme dayanımına sahip olduğundan, elemanda oluşacak çekme gerilmelerinin elemanın taşıyabileceği maksimum çekme gerilmesini aşması halinde elemanlar arası açılacaktır (Hillerborg ve Rots, 1989). Bu yöntemlerde düğüm noktaları ve elemanlar arası açıldığından sonlu eleman ağı tekrar kurulmamaktadır. Ancak, bir düğüm noktası için iki düğüm noktasının tanımlanması sistemin serbestlik derecesi sayısını artırmaktadır. Yüzey eleman yaklaşımından yararlanılarak yayılı yüzey çatlak modeli geliştirilmiştir (Graves ve Derucher, 1987; Schnobrich vd., 1972). Bu yaklaşım yayılı çatlak modeli için temel bir örnek ve yaklaşım olmaktadır (Dumanoğlu ve Oskouei, 1999).

1.7.2. Yayılı Çatlak Modeli

Yayılı çatlak yaklaşımında (smeared crack), çatlak elemanın içinde oluşmakta ve ayrık çatlak yöntemindeki sakıncalar ortadan kalkmaktadır. Bu yöntemdeki eleman içindeki çatlağın oluşu Şekil 1.8'de gösterilmektedir (Dumanoğlu ve Oskouei, 1999).

Şekil 1.8. Yayılı çatlak modeli, (a) Çatlak öncesi (b) Çatlak sonrası (Dumanoğlu ve Oskouei, 1999).

Yayılı çatlak modelinde bir elemanda oluşacak çekme gerilmelerinin, elemanın taşıyabileceği maksimum çekme gerilmelerini aşması halinde, çekme gerilmelerine dik doğrultuda çatlaklar meydana gelmektedir. Sonuç olarak, elemanın sadece rijitlik matrisi değişmekte, yeniden sonlu eleman ağı kurulmamakta; sistemin bilinmeyen sayısında değişiklik yapılmamakta ve böylece sistem matrisinin bant genişliğinde değişiklik olmamaktadır.

Yöntemin diğer bir özelliği de çatlak oluştuktan sonra betonun izotropik davranıştan uzaklaşıp, izotropik olmayan davranış sergilemesidir.

Bu yöntemde çatlak doğrultusuna bağlı olarak eleman rijitliği değişecek ve sistemde yeniden yük dağılımı meydana gelecektir. Bu yöntem çatlağın oluşumuna göre iki gruba ayrılmaktadır;

a) Dönel yayılı çatlak modeli

b) Sabit doğrultulu çatlak modeli

Dönel yayılı çatlak modelinde çatlağın yayılma doğrultusu sabit kalmamakta ve çatlak, elemandan elemana doğrultusu değişerek ilerlemektedir. Sabit doğrultulu çatlak modelinde ise çatlağın yayılma doğrultusunun sabit kaldığı kabul edilmektedir. Birinci yaklaşım daha çok betonarme yapı elemanlar için tavsiye edilmektedir. Çünkü betonarme yapılarda çatlak sabit kalmayacağından, sabit doğrultulu çatlak kullanmak pek doğru olmayacaktır. Rot (1989) çalışmasında betonarme yapılar için hangi yaklaşımın daha doğru sonuçlar vereceğinin tespit edilmesinin zor olacağını ifade etmiştir. Beton yapılardan olan beton ağırlık barajlarda, çatlak doğrultusunun analiz boyunca sabit kaldığı bilindiğinden, sabit doğrultulu yayılı çatlak modeli kullanılarak analiz yapılması tavsiye edilmektedir (Dumanoğlu ve Oskouei, 1999).

1.8. Düzlem Şekil Değiştirme Probleminin Tanımı

Lineer elastik bir malzeme için gerilme-şekil değiştirme bağıntısı,

$$\sigma_{ij} = D^{e}_{ijkl} \varepsilon_{kl} \tag{1.16}$$

şeklinde yazılabilir. Burada; ε_{kl} , elastik şekil değiştirmeler; σ_{ij} , elastik şekil değiştirmelere karşılık gelen gerilmeler ve D^{e}_{ijkl} lineer elastik malzeme matrisidir. (1.16) denklemi matris formda iki boyutlu gerilme hali için yazılacak olursa;

$$\begin{cases} \sigma_{y} \\ \sigma_{z} \\ \tau_{yz} \end{cases} = \frac{E}{(1-v^{2})} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{(1-v)}{2} \end{bmatrix} \begin{cases} \varepsilon_{y} \\ \varepsilon_{z} \\ \gamma_{yz} \end{cases}$$
(1.17)

şeklindeki gerilme-şekil değiştirme bağıntısı elde edilir. Bu tez çalışmasında, beton ağırlık barajlar düzlem şekil değiştirme kabulü yapılarak analiz edilmiştir (Akköse, 2004; Gül, 2009).

Bir boyutu diğer iki boyutunun yanında çok büyük olan Şekil 1.9'daki gibi prizmatik bir yapı, boyuna elemanlarına dik kuvvetlerle yüklenir ve bu kuvvetler uzunluk boyunca değişmezlerse, bütün dik kesitlerin aynı şartlar altında olduğu kabul edilebilir (Timoshenko ve Goodier, 1969). Bu durumda, Şekil 1.9'daki yapı dikkate alınacak olursa, yapıdaki düzlem gerilme halini σ_x , σ_y , σ_z ve γ_{yz} gerilme bileşenleri belirler. Bu gerilme halinde ε_x , γ_{xy} , γ_{xz} şekil değiştirme bileşenleri sıfır olur. Bu düzlem problem tipi, elastisitede *Düzlem Şekil Değiştirme Problemi* olarak bilinmektedir. Eğer dikkate alınan yapı, Şekil 1.9'daki gibi sonsuz uzunluktaysa ve uzunluğu boyunca x-eksenine dik kuvvetlerle yüklenmişse, bütün dik kesitler simetri düzlemleridir ve bunun sonucu olarak uzunluk boyunca yer değiştirmeler yukarıda belirtildiği gibi sıfırdır (Akköse 2004; Gül, 2009).

Şekil 1.9. Uzunluğu boyunca dik kuvvetlerle yüklenmiş sonsuz uzunlukta bir yapı (Akköse,2004; Gül, 2009).

Şekil 1.10. Uzunluğu boyunca dik kuvvetlerle yüklenmiş sonlu uzunlukta bir yapı (Akköse 2004; Gül, 2009).

Eğer dikkate alınan yapı Şekil 1.10'daki gibi sonlu uzunlukta ise, uçlardaki sınır şartları,

$$U(0, y, z) = U(L, y, z) = 0; x = 0 ve x = L için \sigma_{xy} = \sigma_{xz} = 0$$
 (1.18)

şeklindedir. Bu son durum, düzlem şekil değiştirme hali ile özdeşir (Chou ve Pagano, 1967). Buna göre, düzlem şekil değiştirme hali için lineer-elastik bir malzemenin gerilmeşekil değiştirme bağıntısı;

$$\begin{cases} \sigma_{y} \\ \sigma_{z} \\ \tau_{yz} \end{cases} = \frac{E}{(1+\nu)(1-2\nu)} \begin{vmatrix} (1-\nu) & \nu & 0 \\ \nu & (1-\nu) & 0 \\ 0 & 0 & \frac{(1-2\nu)}{2} \end{vmatrix} \begin{cases} \varepsilon_{y} \\ \varepsilon_{z} \\ \gamma_{yz} \end{cases}$$
(1.19)

şeklinde elde edilebilir (Akköse,2004; Gül, 2009).

1.9. Dinamik Analiz

Yapı sistemlerinin dinamik analizinde, en önemli etki deprem kuvvetidir. Sonlu eleman metoduna göre analiz edilecek olan sistemin dinamik davranışını temsil eden hareket denklemi veya dinamik denge denklemi;

$$M\ddot{U} + C\dot{U} + KU = P \tag{1.20}$$

şeklinde yazılabilir. Burada;

M : Kütle matrisi,

C : Sönüm matrisi,

K : Tanjant rijitlik matrisi,

U : Yerdeğiştirme vektörü,

Ú : Hız vektörü,

Ü : İvme vektörü,

P : Dış yük vektörüdür.

(1.20) denkleminin, t anındaki statik durumundan çıkarıldığı düşünülürse bu denklem;

$$F_{I}(t) + F_{D}(t) + F_{S}(t) = P(t)$$
 (1.21)

şeklinde de yazılabilir. Burada;

 $F_{I}(t)$ atalet kuvvetleri olup, $F_{I}(t) = M\ddot{U}$ ile,

 $F_D(t)$ sönüm kuvvetleri olup, $F_D(t) = C\dot{U}$ ile,

 $F_s(t)$ elastik kuvvetler olup, $F_s(t) = KU$ olarak ifade edilir.

Görüldüğü gibi, bu kuvvetlerin hepsi zaman bağımlıdır ve t anındaki statik denge durumu dikkate alınmaktadır. Bu denge durumu, ivmeye bağlı atalet kuvvetleri ile hıza bağlı sönüm kuvvetlerini içermektedir (Bathe, 1982; Akköse, 1997). (1.20) denkleminde kütle ve sönüm matrisleri ihmal edilirse, daha önce bahsedilen statik denge konumu elde edilmektedir.

Matematiksel olarak (1.20) denklemi, ikinci dereceden lineer diferansiyel denklem sistemini göstermektedir. Bu denklemlerin çözümü, sabit katsayılı lineer diferansiyel denklemlerin çözümü gibi elde edilebilir. Ancak, diferansiyel denklem sistemlerinin genel çözümü için uygulanan işlemler, eğer matrislerin dereceleri büyük ise çok zor ve zaman alıcı olmaktadır (Bathe, 1982; Akköse, 1997). Pratikte bu denklemlerin çözümü için etkili birçok yaklaşık sayısal metod bulunmaktadır. Burada direkt integrasyon metodlarından bahsedilecektir (Akköse, 1997).

1.10. Direkt İntegrasyon Yöntemleri

Matematiksel olarak lineer ve lineer olmayan sistemler için dinamik hareket denklemleri, ikinci dereceden lineer diferansiyel denklem sistemini göstermektedir. Bu denklemlerin çözümü, sabit katsayılı lineer diferansiyel denklemlerin çözümü gibi elde edilebilir. Ancak, diferansiyel denklem sistemlerinin genel çözümü için uygulanan işlemler, eğer matrislerin dereceleri büyük ise çok zor ve zaman alıcı olmaktadır (Bathe, 1996). Pratikte bu denklemlerin çözümü için etkili birçok yaklaşık sayısal yöntem bulunmaktadır. Direkt integrasyon yöntemleri bunlardan biridir (Akköse, 1997; Gül, 2009).

Direkt integrasyonda, dinamik hareket denklemi, adım-adım sayısal işlem kullanılarak integre edilmektedir. Burada direkt integrasyon teriminden, denklemlerin farklı bir forma dönüştürülmeden işlemlerin adım adım yürütüldüğü anlaşılmalıdır (Bathe, 1996). Direkt sayısal integrasyon, iki husus dikkate alınarak gerçekleştirilmektedir. Birincisi, herhangi bir t anında dinamik denge denklemini sağlamaya çalışmak yerine, ayrı ayrı Δt zaman aralıklarında bu denklemi sağlamayı amaçlamaktadır. Bunun anlamı, basit olarak atalet ve sönüm kuvvetlerini içeren statik dengenin, çözüm aralığı içerisinde her Δt zaman aralığında araştırılmasıdır. Bu sebeple, statik analizde kullanılan bütün çözüm tekniklerinin direkt integrasyonda etkili bir şekilde kullanılabildiği gözükmektedir. İkinci husus, her Δt zaman aralığında yer değiştirme, hız ve ivme değerlerinin değişim göstermesidir. Bu değişim üzerinde yapılan kabulün şekli, çözümün doğruluğunu ve stabilitesini belirlemektedir (Bathe, 1996; Akköse, 1997; Gül, 2009).

Çözümde, U_0 , \dot{U}_0 , \ddot{U}_0 ile gösterilen, t = 0 anındaki başlangıç yer değiştirme, hız ve ivme vektörleri bilinmektedir. Dinamik hareket denkleminin çözümü, t = 0 ile t = Tzaman aralığında dikkate alınırsa, T çözüm zamanı eşit zaman aralığına bölünür ($\Delta t = T/n$). t anındaki çözüm bilindiği için, $t + \Delta t$ anındaki çözüm bulunabilir. Yani, başlangıç şartlarından hareketle, Δt zaman sonraki çözüm elde edilebilmektedir. Bu işlem, çözüm aralığı boyunca devam ettirilir. Direkt integrasyon yöntemlerinden, Merkezi Farklar, Houbolt ve Newmark yöntemi en etkili olanlarıdır (Bathe, 1996; Akköse,1997; Gül, 2009). Burada yapılan çalışmalarda Newmark metodu kullanılmıştır.

1.10.1. Newmark Metodu

1959 yılında, Newmark Metodu Newmark tarafından geliştirilen aşağıdaki formüller ile (1.20) denklemi ile verilen dinamik denge denklemi adım adım çözülebilmektedir (Akköse, 1997).

$$\dot{\mathbf{U}}_{i+1} = \dot{\mathbf{U}}_i + \left[(1 - \gamma) \Delta t \right] \ddot{\mathbf{U}}_i + (\gamma \Delta t) \ddot{\mathbf{U}}_{i+1}$$
(1.22)

$$U_{i+1} = U_i + (\Delta t)\dot{U}_i + [(0.5 - \beta)(\Delta t)^2]\ddot{U}_i + [\beta(\Delta t)^2]\ddot{U}_{i+1}$$
(1.23)

Burada;

U_i : i anındaki yer değiştirme vektörü,

 U_{i+1} : i+1 anındaki yer değiştirme vektörü,

 \dot{U}_i : i anındaki hız vektörü,

 \dot{U}_{i+1} : i+1 anındaki hız vektörü,

 \ddot{U}_i : i anındaki ivme vektörü,

 \ddot{U}_{i+1} : i+1 anındaki ivme vektörüdür.

β ve γ parametreleri, Δt zaman aralığındaki ivmenin değişimini tanımlar. Ayrıca bu parametreler, kullanılan metodun stabilite ve doğruluk karakteristiklerini belirler. $\gamma = \frac{1}{2}$

ve $\frac{1}{6} \le \beta \le \frac{1}{4}$ alınması metodun doğruluğu için tatminkardır (Chopra, 1995; Akköse, 1997).

(1.20) denkleminin i anındaki dengesi dikkate alındığında hareket denklemi,

$$M\ddot{U}_{i} + C\dot{U}_{i} + KU_{i} = P_{i}$$
(1.24)

şeklinde, i+1 anındaki dengesi dikkate alınırsa,

$$\dot{MU}_{i+1} + \dot{CU}_{i+1} + KU_{i+1} = P_{i+1}$$
(1.25)

şeklinde yazılabilir. Eğer (1.25) denkleminden (1.24) denklemi çıkarılırsa artımsal haraket denklemi elde edilir.

$$\mathbf{M}\Delta \ddot{\mathbf{U}}_{i} + \mathbf{C}\Delta \dot{\mathbf{U}}_{i} + \mathbf{K}\Delta \mathbf{U}_{i} = \Delta \mathbf{P}_{i} \tag{1.26}$$

Burada;

$$\begin{split} \Delta \ddot{\mathbf{U}}_{i} &= \ddot{\mathbf{U}}_{i+1} - \ddot{\mathbf{U}}_{i} \\ \Delta \dot{\mathbf{U}}_{i} &= \dot{\mathbf{U}}_{i+1} - \dot{\mathbf{U}}_{i} \\ \Delta \mathbf{U}_{i} &= \mathbf{U}_{i+1} - \mathbf{U}_{i} \\ \text{şeklindedir. (1.22) ve (1.23) denklemleri artımsal olarak düzenlenirse;} \end{split}$$

$$\Delta \dot{\mathbf{U}}_{i} = (\Delta t)\ddot{\mathbf{U}}_{i} + \gamma(\Delta t)\Delta \ddot{\mathbf{U}}_{i}$$
(1.27)

$$\Delta U_{i} = (\Delta t)\dot{U}_{i} + \frac{(\Delta t)^{2}}{2}\ddot{U}_{i} + \beta(\Delta t)^{2}\Delta\ddot{U}_{i}$$
(1.28)

elde edilir. (1.28) denkleminden $\Delta \ddot{U}_i$ çekilecek olursa;

$$\Delta \ddot{\mathbf{U}}_{i} = \frac{1}{\beta(\Delta t)^{2}} \Delta \mathbf{U}_{i} - \frac{1}{\beta(\Delta t)} \dot{\mathbf{U}}_{i} - \frac{1}{2\beta} \ddot{\mathbf{U}}_{i}$$
(1.29)

bulunur. (1.29) denklemi (1.27) denkleminde yerine konursa,

$$\Delta \dot{\mathbf{U}}_{i} = \frac{\gamma}{\beta(\Delta t)} \Delta \mathbf{U}_{i} - \frac{\gamma}{\beta} \dot{\mathbf{U}}_{i} + \Delta t \left(1 - \frac{\gamma}{2\beta} \right) \ddot{\mathbf{U}}_{i}$$
(1.30)

elde edilir. (1.29) ve (1.30) denklemleri artımsal hareket denkleminde, (1.26), yerine konur ve düzenlenirse;

$$\left(\mathbf{K} + \frac{\gamma}{\beta(\Delta t)}\mathbf{C} + \frac{1}{\beta(\Delta t)^2}\mathbf{M}\right)\Delta \mathbf{U}_i = \Delta \mathbf{P}_i + \left(\frac{1}{\beta(\Delta t)}\mathbf{M} + \frac{\gamma}{\beta}\mathbf{C}\right)\dot{\mathbf{U}}_i + \left[\frac{1}{2\beta}\mathbf{M} + \Delta t\left(\frac{\gamma}{2\beta} - 1\right)\mathbf{C}\right]\ddot{\mathbf{U}}_i (1.31)$$

elde edilir. (1.31) denklemi şu şekilde yazılabilir;

$$\hat{\mathbf{K}}_{i}\Delta\mathbf{U}_{i} = \Delta\hat{\mathbf{P}}_{i} \tag{1.32}$$

Burada;

$$\hat{K}_{i} = K + \frac{\gamma}{\beta(\Delta t)}C + \frac{1}{\beta(\Delta t)^{2}}M$$
(1.33)

$$\Delta \hat{P}_{i} = \Delta P_{i} + \left(\frac{1}{\beta(\Delta t)}M + \frac{\gamma}{\beta}C\right)\dot{U}_{i} + \left[\frac{1}{2\beta}M + \Delta t\left(\frac{\gamma}{2\beta} - 1\right)C\right]\ddot{U}_{i}$$
(1.34)

Görüldüğü gibi, dinamik hareket denkleminin, her Δt zaman aralığı içinde statik denge konumu sağlanarak çözümü elde edilmektedir. Burada adım adım çözüm ilk önce ΔU_i (1.32) denkleminden bulunur. Daha sonra, (1.29) ve (1.30) denklemleri yardımıyla $\Delta \dot{U}_i$ ve $\Delta \ddot{U}_i$ elde edilir. Bir sonraki adıma ait değerler,

$$\begin{array}{l}
\mathbf{U}_{i+1} = \mathbf{U}_{i} + \Delta \mathbf{U}_{i} \\
\dot{\mathbf{U}}_{i+1} = \dot{\mathbf{U}}_{i} + \Delta \dot{\mathbf{U}}_{i} \\
\ddot{\mathbf{U}}_{i+1} = \ddot{\mathbf{U}}_{i} + \Delta \ddot{\mathbf{U}}_{i}
\end{array}$$
(1.35)

denklemleri vasıtasıyla elde edilmektedir. İşlemler bu şekilde çözüm aralığı boyunca devam etmektedir.

Newmark metodunun, $\gamma = \frac{1}{2}$ ve $\beta = \frac{1}{4}$ alındığı taktirde ortalama ivme metodu, $\gamma = \frac{1}{2}$ ve $\beta = \frac{1}{6}$ olması halinde ise lineer ivme metodu olmak üzere iki özel durumu vardır (Bathe, 1996; Akköse, 1997).

1.11. Sıvı Davranışının Esasları

Lineer sıkışabilir, viskoz olmayan (inviscid) ve dönmesi kısıtlanmış bir sıvının küçük genlikli hareketler altında üç boyutlu hareketi,

$$\frac{\partial^2 \mathbf{P}_{\mathrm{f}}}{\partial x^2} + \frac{\partial^2 \mathbf{P}_{\mathrm{f}}}{\partial y^2} + \frac{\partial^2 \mathbf{P}_{\mathrm{f}}}{\partial z^2} = \frac{1}{C_{\mathrm{f}}^2} \frac{\partial^2 \mathbf{P}_{\mathrm{f}}}{\partial t^2}$$
(1.36)

dalga denklemiyle verilmektedir (Zienkiewicz, 1964). Burada; P_f hidrodinamik basıncı (hidrostatik basınç fazlası), t zamanı, x, y, z kartezyen koordinatları göstermektedir. C_f sudaki ses hızı (veya sudaki basınç dalgalarının hızı) olup,

$$C_{f} = \sqrt{\frac{\beta}{\rho_{f}}}$$
(1.37)

ile tanımlanmaktadır. Bu denklemde; β sıvının hacimsel elastisite modülünü, ρ_f ise sıvının kütle yoğunluğunu temsil etmektedir.

Dinamik etkilere maruz sıvı sistemlerde hidrostatik basınçların yanı sıra oluşan hidrodinamik basınçlar, (1.36) denkleminin uygun sınır şartları altında çözülmesiyle elde edilir. Bu sınır şartları genel olarak aşağıdaki şekilde tanımlanmaktadır;

• Sıvı serbest yüzeyinde yüzey dagalarının oluştuğu kabul edilirse bu yüzeyde

$$\frac{\partial \mathbf{P}_{\mathrm{f}}}{\partial z} = -\frac{1}{g} \frac{\partial^2 \mathbf{P}_{\mathrm{f}}}{\partial t^2} \tag{1.38}$$

bağıntısı geçerli olur. Burada; z, düşey eksen ve g, yerçekimi ivmesidir. Sıvı serbest yüzeyinde yüzey dalgalarının oluşmadığı kabul edilirse bu sınır şartı aşağıdaki gibi olur;

$$\mathbf{P}_{\mathrm{f}} = \mathbf{0} \tag{1.39}$$

• Sıvı serbest yüzeyi dışındaki yüzeyler (sıvı-katı temas yüzeyleri) herhangi bir ivmeye maruz ise bu yüzeyler için sınır şartı,

$$\frac{\partial \mathbf{P}_{\mathrm{f}}}{\partial \mathbf{n}} = -\rho_{\mathrm{f}} \mathbf{a}_{\mathrm{n}} \tag{1.40}$$

şeklindedir. Burada; n, sıvı yüzeyi normalini, a_n ise bu normal doğrultusundaki ivmeyi göstermektedir. Eğer bu yüzeyler herhangi bir ivmeye maruz değilse bu yüzeylerde;

$$\frac{\partial P_{f}}{\partial n} = 0 \tag{1.41}$$

sınır şartı geçerlidir (Wilson ve Khalvati, 1983; Calayır, 1994; Bayraktar, 1995; Akköse, 2004; Gül, 2009).

1.12. Kütle Ekleme Yaklaşımı

Kütleme ekleme yaklaşımı ilk olarak Westergaard (1933) tarafından ortaya atılmıştır. Westergaard'ın bu çalışmasında, barajın rijit, sonsuz uzun ve düşey memba yüzeyli olduğu, rezervuarının memba doğrultusunda sonsuza uzadığı, suyun sıkışamaz olduğu ve sıvı yüzey dalgalarının oluşmadığı kabul edilmiştir. Bu yaklaşımda, dinamik etki sonucunda baraj memba yüzeyi boyunca oluşan hidrodinamik basınç dağılımı, baraj ile birlikte titreşen bir kütle dağılımı olarak göz önüne alınmaktadır. Söz konusu kütle dağılımından tekil kütleler hesaplanıp, sonlu eleman ağı baraj memba yüzeyindeki düğüm noktalarının kütlelerine eklenerek rezervuarın hidrodinamik etkisi dikkate alınmaktadır. Şekil 1.11 bu yaklaşımdan elde edilen su kütlesinin derinliğe bağlı olarak değişimini göstermektedir (Akköse, 1997).

Şekil 1.11. Hidrodinamik basınç dağılımı (Akköse, 1997).

Şekil 1.11'e göre tekil kütleler aşağıdaki ifade ile elde edilmektedir (Akköse, 1997).

$$m(z) = \frac{7}{8} \frac{\gamma_w}{g} \sqrt{Hz}$$
(1.42)

Burada;

m(z) : Rezervuar derinliğine bağlı kütle dağılımı,

 $\gamma_{\rm w}$: Suyun birim ağırlığı,

g : Yerçekimi ivmesi,

- H : Rezervuar derinliği,
- z : Su yüzeyinden itibaren su derinliğini temsil etmektedir.

2. YAPILAN ÇALIŞMALAR

2.1. Giriş

Bu tez çalışmasında, yakın ve uzak fay yer hareketine maruz çatlaklı beton ağırlık barajın dinamik analizinden elde edilen yer değiştirmeler ve gerilmeler incelenmiştir. Analizlerde Ankara'nın 120km kuzey batısında Sakarya nehri üzerinde 1956 yılında inşa edilmiş olan Sarıyar beton ağırlık baraj kesiti kullanılmıştır. Baraj en kesiti Şekil 2.1'de verilmiştir. USACE (2000)'de verilen çalışmadan yararlanılarak çatlak uzunluğu hesaplanmıştır. Çatlak uzunluğunun hesaplanmasında Fortran 90 programı kullanılmıştır.

Bu bölümde, baraj modellemesinde AutoCAD ve SAP2000 programları, dinamik analizlerde SAP2000 programı kullanılmıştır. Analizlerde yakın ve uzak fay yer hareketi olarak, 1979 Imperial Valley ve 1989 Loma Prieta depreminde kaydedilen yakın ve uzak fay yer hareketi özelliği taşıyan toplam dört kayıt kullanılmıştır. Analizler, beton ağırlık barajın çatlaklı ve çatlaksız olması durumuna göre yakın ve uzak fay yer hareketleri her iki durum için de ayrı ayrı etkittirilerek yapılmıştır.

Şekil 2.1. Sarıyar beton ağırlık baraj en kesiti

2.2. Çatlak Uzunluğunun Belirlenmesi

Bu kısımda yer alan açıklamalar, formülasyonlar ve hesap adımları USACE (2000) Ek C'de verilen çalışmadan oluşmaktadır. Ayrıca herhangi bir beton ağırlık barajdaki çatlak potansiyelini ve çatlak boyutunu hesaplamak için USACE (2000)'de yer alan ve Şekil 2.2'de gösterilen 100ft (30.48m) yüksekliğindeki beton ağırlık baraj kesiti için yapılan hesaplar ayrıntılı olarak verilmiştir.

Şekil 1.3'e göre $H_3 = 68$ ft

Şekil 2.2. Tam taban temasında USACE (2000) kaldırma kriteri kullanılan ağırlık baraj problemi (1 ft = 0.3048 m, 1 psf = 47.88 Pa, 1 pcf = 16.018 kg/m³)

2.2.1. Lineer Taban Basınç Dağılımının Temel Varsayımı

Kaya gibi sağlam bir zemin üzerine oturan, uzunluğu L ve genişliği w olan bir baraj tabanı düşünelim. Tabana etkiyen bütün düşey kuvvetler, kaldırma basıncı da dâhil olmak üzere N olsun. Ayrıca taban üstünde tabanın ortasına etkiyen toplam moment de M olsun. Taban statik dengede olduğunda zemin, tabana eşit ve zıt yönde bir kuvveti ve momenti taban basıncı şeklinde uygular. Rijit bir tabanda zeminden tabana uygulanan bu basıncın lineer formda olduğu kabul edilir. Bu durum Şekil 2.3'de gösterilmektedir.

Şekil 2.3. Baraj tabanı serbest cisim diyagramı

Bu durum;

$$\mathbf{P}' = \mathbf{a}\mathbf{x}' + \mathbf{b} \tag{2.1}$$

şeklinde ifade edilebilir. Burada,

P': Taban basıncını

a : Hesaplanacak sabiti

x': Taban ortasının sağındaki mesafeyi

b : Hesaplanacak sabiti göstermektedir.

Şekil 2.3'de B, basınç altındaki taban boyutudur.

Kuvvetlerin oluşturduğu dengeden;

$$w_t \int_{-\frac{B}{2}}^{\frac{B}{2}} P' dx' = N$$
(2.2)

şeklinde yazılabilir. Bu denklem çözümünden

$$w_{t} \left[\frac{1}{2} a(x')^{2} + bx' \right]_{\frac{B}{2}}^{\frac{B}{2}} = N$$
(2.3)

elde edilir. Bu denklemden

$$b = \frac{N}{Bw_t}$$
(2.4)

elde edilir.

Momentlerin oluşturduğu dengeden ise

$$w_t \int_{\frac{B}{2}}^{\frac{B}{2}} P'x'dx' = M$$
 (2.5)

denklemi yazılabilir. Bu denklemin çözümünden

$$w_{t} \left[\frac{1}{2} a(x')^{3} + \frac{1}{2} b(x')^{2} \right]_{\underline{B}_{\frac{B}{2}}}^{\underline{B}_{\frac{B}{2}}} = M$$
(2.6)

elde edilir. Bu denklemden

$$a = \frac{12M}{B^3 w_t}$$
(2.7)

elde edilir. a ve b (2.1) denkleminde yeniden yazılırsa;

$$P' = \frac{12M}{B^3 w_t} x' + \frac{N}{B w_t}$$
(2.8)

taban basıncı denklemi elde edilir.

Eksantrisite tanımdan,

$$e = \frac{M}{N}$$
(2.9)

olduğu hatırlanırsa ve (2.8) denkleminde yerine yazılırsa;

$$P' = \frac{N}{Bw_{t}} \left(\frac{12e}{B^{2}} x' + 1 \right)$$
(2.10)

zemin taban basıncı denklemi elde edilir.

2.2.2. Çatlama Durumu

Zemin taban basıncı denklemi pozitif olduğu sürece hiçbir çatlama meydana gelmez. Barajlarda en kritik yer rezervuar tarafındadır. Bu sebeple,

$$\frac{N}{Bw_{t}}\left[\frac{12e}{B^{2}w_{t}}\left(-\frac{B}{2}\right)+1\right] \ge 0$$
(2.11)

olmalıdır. Buna göre bu denklemin çözümünden;

$$e \le \frac{B}{6} \tag{2.12}$$

elde edilir. Yani taban basıncına karşı koyan kuvvetin tabanın üçte biri içinde kalması durumunda tabanda çatlak oluşmayacağı anlamına gelir. Eğer eksantrisite bu değeri aşarsa çatlak oluşacağı (çekme bölgesi oluşacağı) aşikardır.

2.2.3. 100 ft (30.48m) Yüksekliğindeki Ağırlık Baraj Problemi

Sayısal uygulama için örnek baraj problemi Şekil 2.4'de tanımlanmış ve baraja ait değişkenler Tablo 2.1'de verilmiştir. Burada, 1ft (0.3048m) birim genişlik için hesaplar yapılmıştır.

Şekil 2.4. Örnek problem

Kret Genişliği	d	5 ft	Taban Uzunluğu	L	75 ft
Normal Sy Cavinasi I	п	100 ft	Kuyruk Suyu	тт	5 ft
Normai Su Seviyesi	\mathbf{n}_1	100 11	Yüksekliği	П2	5 ft
Galeri Yüksekliği H	П	10 ft	Topuktan İtibaren Dren	Xd	10 ft
	П4		Mesafesi		
Suyun Birim Ağırlığı	Yw	0.0625 kip/ft^3	Betonun Birim Ağırlığı	Yc	0.15 kip/ft^3
Drenaj Etkisi	$\mathbf{E}_{\mathbf{d}}$	0.25	Taban Genişliği	w _t	1 ft
Not: 1 ft = 0.3048 m; 1 kip/ft ³ = 0.016018 kg/cm ³					

Tablo 2.1. Baraja ait değişken değerleri

2.2.3.1. Başlangıç Çatlak Testi

(2.9) ve (2.12) denklemleri, başlangıçta B = L alınarak bir çatlak olup olmadığını test etmek için kullanılır.

a) Kuvvet Hesabı

Yapının ağırlığı W olmak üzere;

$$W = \frac{1}{2}\gamma_{c}(d+L)H_{1}W_{t}$$
(2.13)

$$W = \frac{1}{2} \times (0.15) \times (5+75) \times (100) \times (1)$$

W = 600 kip (2,668.92 kN)

şeklinde elde edilir. Burada $\gamma_{\rm c}$ betonun birim ağırlığıdır.

Kuyruk suyunun barajla kesiştiği mesafe;

$$x_{T} = (d - L)\frac{H_{2}}{H_{1}} + L$$
 (2.14)

$$\mathbf{x}_{\mathrm{T}} = \left(5 - 75\right) \times \left(\frac{5}{100}\right) + 75$$
$$x_{T} = 71.5 \text{ ft} (21.79 \text{ m})$$

olarak elde edilir.

Düşey su yükü V_{w} olmak üzere;

$$\mathbf{V}_{w} = \frac{1}{2} \gamma_{w} \left(\mathbf{L} - \mathbf{x}_{T} \right) \mathbf{H}_{2} \mathbf{w}_{t}$$
(2.15)

$$V_{w} = \frac{1}{2} \times (0.0625) \times (75 - 71.5) \times (5) \times (1)$$
$$V_{w} = 0.55 \text{ kip } (2.45 \text{ kN})$$

şeklinde elde edilir. Burada $\gamma_{\rm w}\,$ suyun birim ağırlığıdır.

Şekil 2.5'den, drenaj olmaması veya $E_d = 0$ ise $x = x_d$ 'de basınç yüksekliği H'_3 ;

$$H'_{3} = (H_{1} - H_{2})\left(\frac{L - x_{d}}{L - T}\right) + H_{2}$$
 (2.16)

$$H'_{3} = (100 - 5) \times \left(\frac{75 - 10}{75 - 0}\right) + 5$$
$$H'_{3} = 87.33 \text{ ft} (26.62 \text{ m})$$

olarak bulunur. Burada;

x_d: topuktan itibaren dren mesafesi,

T: çatlağın mevcut uzunluğudur.

Böylece

$$H_2 < H_4 < H'_3$$
 (2.17)

olarak elde edilir.

Şekil 2.5. Drenaj olmaması veya $E_d = 0$ 'a karşın H'_3 basınç yüksekliği

Şekil 2.6'da gösterilen, drenaj olmasına karşın $x = x_d$ 'de basınç yüksekliği H_3 ;

$$H_{3} = (H'_{3} - H_{4})(1 - E_{d}) + H_{4}$$
(2.18)

$$H_3 = (87.33 - 10) \times (1 - 0.25) + 10$$

 $H_3 = 68$ ft (20.73 m) olarak bulunur.

Şekil 2.6. $E_d = 0.25$ 'e karşın H_3 basınç yüksekliği

Böylece kritik noktalarda tanımlanmış basınç yüksekliklerinin kaldırma basıncı diyagramında oluşturduğu beş bölge elde edilmiş olur (Şekil 2.7).

Şekil 2.7. Kritik noktalarda tanımlanmış basınç yüksekliklerinin kaldırma diyagramında oluşturduğu beş bölge

1 bölgesindeki kaldırma kuvvetinin;

$$\mathbf{U}_{1} = \boldsymbol{\gamma}_{\mathbf{w}} \mathbf{w}_{\mathbf{t}} \mathbf{H}_{1} \mathbf{T} \tag{2.19}$$

$$U_1 = (0.0625) \times (1) \times (100) \times (0)$$

 $U_1 = 0 \text{ kip } (0 \text{ kN})$

• 2 ve 3 bölgelerindeki kaldırma kuvveti;

$$U_{23} = \frac{1}{2} \gamma_{w} w_{t} (H_{1} + H_{3}) (x_{d} - T)$$
(2.20)

$$U_{23} = \frac{1}{2} \times (0.0625) \times (1) \times (100 + 68) \times (10 - 0)$$

$$U_{23} = 52.5 \text{ kip} (233.53 \text{ kN})$$

• 4 ve 5 bölgelerindeki kaldırma kuvveti;

$$U_{45} = \frac{1}{2} \gamma_{w} w_{t} (H_{3} + H_{2}) (L - x_{d})$$
(2.21)

$$U_{45} = \frac{1}{2} \times (0.0625) \times (1) \times (68 + 5) \times (75 - 10)$$
$$U_{45} = 148.28 \text{ kip } (659.58 \text{ kN})$$

olarak elde edilir.

Toplam kaldırma kuvveti ise

$$U = U_1 + U_{23} + U_{45}$$
(2.22)

denklemi yardımıyla

U = 0 + 52.5 + 148.28 U = 200.78 kip (893.11 kN) şeklinde hesaplanır.

Baraj tabanındaki toplam kuvvet ise

$$N = W + V_w - U \tag{2.23}$$

denklemi yardımıyla

N = 600 + 0.55 - 200.78 N = 399.77 kip (1,778.26 kN) olarak bulunur. b) Moment Hesabı

Moment hesaplarında moment, baraj taban orta noktasına göre alınmaktadır.

Şekil 2.8. Barajın bölgeleri

Şekil 2.8'de verilen barajın 1 bölgesi için yapının ağırlığına bağlı moment;

$$M_{w1} = \gamma_{c} w_{t} dH_{1} \left(\frac{d}{2} - \frac{B}{2} - T \right)$$

$$M_{w1} = (0.15) \times (1) \times (5) \times (100) \times \left(\frac{5}{2} - \frac{75}{2} - 0 \right)$$
(2.24)

$$M_{w1} = -2,625 \text{ kip.ft} (-3,559.5 \text{ kN.m})$$

olarak bulunur.

Şekil 2.8' de verilen barajın 2 bölgesi için yapının ağırlığına bağlı moment;

$$M_{w2} = \frac{1}{2} \gamma_{c} w_{t} (L - d) H_{1} \left(\frac{1}{3} (2d + L) - \frac{B}{2} - T \right)$$
(2.25)

$$M_{w2} = \frac{1}{2} \times (0.15) \times (1) \times (75 - 5) \times (100) \times \left[\frac{1}{3} \times (2 \times 5 + 75) - \frac{75}{2} - 0\right]$$
$$M_{w2} = -4,812.5 \text{ kip.ft} (-6,525.75 \text{ kN.m})$$

olarak bulunur.

Yapının ağırlığından dolayı oluşan toplam moment ise

$$M_{w} = M_{w1} + M_{w2}$$
(2.26)

denklemi yardımıyla

$$M_w = -2,625 - 4,812.5$$

 $M_w = -7,437.5$ kip.ft (-10,085.25 kN.m)

şeklinde elde edilir.

Düşey su yükünden dolayı oluşan moment;

$$M_{1} = V_{w} \left[\frac{1}{3} (2L + x_{t}) - \frac{B}{2} - T \right]$$
(2.27)

$$M_{1} = (0.55) \times \left[\frac{1}{3} \times (2 \times 75 + 71.5) - \frac{75}{2} - 0\right]$$

M_{1} = 19.98 kip.ft (27.09 kN.m)

olarak bulunur.

Memba tarafındaki yatay su yükünden dolayı oluşan moment;

$$M_{2} = \frac{1}{6} \gamma_{w} H_{1}^{3} w_{t}$$

$$M_{2} = \frac{1}{6} \times (0.0625) \times (100)^{3} \times (1)$$
(C.28)

$$M_2 = 10,416.67$$
 kip.ft (14,125.00 kN.m)

olarak bulunur.

Mansap tarafındaki yatay su yükünden dolayı oluşan moment;

$$M_{3} = -\frac{1}{6}\gamma_{w}H_{2}^{3}w_{t}$$
(2.29)

$$M_{3} = -\frac{1}{6} \times (0.0625) \times (5)^{3} \times (1)$$
$$M_{3} = -1.30 \text{ kip.ft} (-1.76 \text{ kN.m})$$

olarak bulunur.

Şekil 2.7'nin 1 bölgesindeki kaldırma basıncından dolayı oluşan moment;

$$M_{u1} = \gamma_{w} W_{1} H_{1} T \left(\frac{B}{2} + T - \frac{T}{2} \right)$$
(2.30)

$$\mathbf{M}_{u1} = (0.0625) \times (1) \times (100) \times (0) \times \left(\frac{75}{2} + 0 - \frac{0}{2}\right)$$

 $M_{u1} = 0$ kip.ft (0 kN.m)

olarak bulunur.

Şekil 2.7'nin 2 bölgesindeki kaldırma basıncından dolayı oluşan moment;

$$M_{u2} = \gamma_{w} w_{t} H_{3} \left(x_{d} - T \right) \left(\frac{B}{2} + T - \frac{x_{d} + T}{2} \right)$$
(2.31)

$$M_{u2} = (0.0625) \times (1) \times (68) \times (10 - 0) \times \left(\frac{75}{2} + 0 - \frac{10 + 0}{2}\right)$$
$$M_{u2} = 1,381.25 \text{ kip.ft } (1,872.98 \text{ kN.m})$$

olarak bulunur.

Şekil 2.7'nin 3 bölgesindeki kaldırma basıncından dolayı oluşan moment;

$$M_{u3} = \frac{1}{2} \gamma_{w} w_{t} (H_{1} - H_{3}) (x_{d} - T) \left(\frac{B}{2} + T - \frac{2T + x_{d}}{3} \right)$$

$$M_{u3} = \frac{1}{2} \times (0.0625) \times (1) \times (100 - 68) \times (10 - 0) \times \left(\frac{75}{2} + 0 - \frac{2 \times 0 + 10}{3} \right)$$

$$M_{u3} = 341.67 \text{ kip.ft } (463.30 \text{ kN.m})$$

$$(2.32)$$

olarak bulunur.

Şekil 2.7'nin 4 bölgesindeki kaldırma basıncından dolayı oluşan moment;

$$M_{u4} = \gamma_{w} w_{t} H_{2} \left(L - x_{d} \right) \left(\frac{B}{2} + T - \frac{x_{d} + L}{2} \right)$$

$$M_{u4} = \left(0.0625 \right) \times \left(1 \right) \times \left(5 \right) \times \left(75 - 10 \right) \times \left(\frac{75}{2} + 0 - \frac{10 + 75}{2} \right)$$
(2.33)

$$M_{u4} = -101.56$$
 kip.ft (-137.72 kN.m)

olarak bulunur.

Şekil 2.7'nin 5 bölgesindeki kaldırma basıncından dolayı oluşan moment;

$$M_{u5} = \frac{1}{2} \gamma_{w} w_{t} (H_{3} - H_{2}) (L - x_{d}) \left(\frac{B}{2} + T - \frac{2x_{d} + L}{3} \right)$$
(2.34)

$$M_{u5} = \frac{1}{2} \times (0.0625) \times (1) \times (68 - 5) \times (75 - 10) \times \left(\frac{75}{2} + 0 - \frac{2 \times 10 + 75}{3}\right)$$
$$M_{u5} = 746.48 \text{ kip.ft (1,012.23 kN.m)}$$

olarak bulunur.

Kaldırma basıncından dolayı oluşan toplam moment ise

$$M_{II} = M_{I1} + M_{I2} + M_{I3} + M_{I4} + M_{I5}$$
(2.35)

denklemi yardımıyla

$$M_{\rm U} = 0 + 1381.25 + 341.67 - 101.56 + 746.48$$

 $M_{\rm U} = 2,367.84$ kip.ft (3,210.79 kN.m)

şeklinde elde edilir.

Baraj tabanında oluşan toplam moment ise

$$M = M_{w} + M_{1} + M_{2} + M_{3} + M_{u}$$
(2.36)

şeklinde elde edilir.

c) Çatlak Testi

Baraj tabanındaki toplam kuvvet ve toplam moment elde edildikten sonra (2.9) ve (2.12) denklemleri yardımıyla barajda çatlak oluşup oluşmayacağı kontrol edilebilir. Baraj tabanındaki eksantrisite;

$$e = \frac{M}{N}$$
(2.37)

$$e = \frac{5365.69}{399.77}$$

$$e = 13.42 \text{ ft} (4.09 \text{ m})$$

şeklinde elde edilir. Bu değer

$$e = 13.42 ft > \frac{B}{6} = \frac{75}{6} = 12.65 ft (3.86 m)$$
 (2.38)

olduğundan çatlak oluşacaktır.

d) Başlangıç Çatlak Uzunluğunun Belirlenmesi

(2.10) denkleminde zemin taban basıncı sıfır alındığında,

$$x_0' = -\frac{B^2}{12e}$$
(2.39)

elde edilir. Bu denklemde e=13.42ft (4.09 m)yerine konursa

$$x'_{0} = -\frac{75^{2}}{12 \times 13.42}$$
$$x'_{0} = -34.92 \,\text{ft} \,(-10.64 \,\text{m})$$

elde edilir. Buna göre baraj tabanındaki basınç bölgesinin yeni değeri;

$$B_{new} = \frac{1}{2} B_{old} - x'_0$$
(2.40)

$$B_{new} = \frac{1}{2} \times 75 - (-34.92)$$
$$B_{new} = 72.42 \text{ft} (22.07 \text{ m})$$

şeklinde elde edilir. Böylece baraj tabanındaki başlangıç çekme bölgesi uzunluğu veya çatlak uzunluğu

$$T_{new} = L - B_{new}$$
(2.41)

$$T_{new} = 75 - 72.42$$

 $T_{new} = 2.58 \text{ft} (0.77 \text{ m})$

olarak elde edilir.

2.2.3.2. Yeni Çatlak Uzunluğunun Hesabı

Başlangıç çatlak uzunluğu 2.58ft (0.77 m) olarak hesaplandıktan sonra yeni çatlak uzunluğunun hesabında, (2.16)'dan (2.41) denklemine kadar olan denklemlerde çatlak uzunluğu T = 2.58ft (0.77 m) alınarak çözüm tekrarlanır.

a) Kuvvet Hesabı

Öncelikle drenaj olmaması durumunda $x = x_d$ için basınç yüksekliği H'_3

$$H'_{3} = (H_{1} - H_{2})\left(\frac{L - x_{d}}{L - T}\right) + H_{2}$$
 (2.42)

$$H'_{3} = (100 - 5) \times \left(\frac{75 - 10}{75 - 2.58}\right) + 5$$
$$H'_{3} = 90.27 \text{ ft} (27.51 \text{ m})$$

olarak bulunur. Daha sonra drenaj olması durumunda $x = x_d$ için basınç yüksekliği H₃;

$$H_{3} = (H'_{3} - H_{4})(1 - E_{d}) + H_{4}$$
(2.43)

$$H_3 = (90.27 - 10) \times (1 - 0.25) + 10$$

 $H_3 = 70.20 \text{ ft} (21.40 \text{ m})$

olarak bulunur.

Şekil 2.7'de verilen,

1 bölgesindeki kaldırma kuvveti;

$$\mathbf{U}_1 = \boldsymbol{\gamma}_{\mathbf{w}} \mathbf{w}_{\mathbf{t}} \mathbf{H}_1 \mathbf{T} \tag{2.44}$$

 $U_1 = (0.0625) \times (1) \times (100) \times (2.58)$ $U_1 = 16.13 \text{ kip } (71.75 \text{ kN})$

• 2 ve 3 bölgelerindeki kaldırma kuvveti;

$$U_{23} = \frac{1}{2} \gamma_{w} w_{t} (H_{1} + H_{3}) (x_{d} - T)$$
(2.45)

$$U_{23} = \frac{1}{2} \times (0.0625) \times (1) \times (100 + 70.20) \times (10 - 2.58)$$
$$U_{23} = 39.47 \text{ kip (175.57 kN)}$$

• 4 ve 5 bölgelerindeki kaldırma kuvveti;

$$U_{45} = \frac{1}{2} \gamma_{w} w_{t} (H_{3} + H_{2}) (L - x_{d})$$
(2.46)

$$U_{45} = \frac{1}{2} \times (0.0625) \times (1) \times (70.20 + 5) \times (75 - 10)$$
$$U_{45} = 152.75 \text{ kip (} 679.46 \text{ kN)}$$

olarak elde edilir.

Toplam kaldırma kuvveti ise

$$\mathbf{U} = \mathbf{U}_1 + \mathbf{U}_{23} + \mathbf{U}_{45} \tag{2.47}$$

şeklinde hesaplanır.

Baraj tabanındaki toplam kuvvet ise

$$N = W + V_w - U \tag{2.48}$$

denklemi yardımıyla

olarak bulunur.

b) Moment Hesabı

Şekil 2.8'de verilen barajın 1 bölgesi için yapının ağırlığına bağlı moment;

$$M_{w1} = \gamma_{c} w_{t} dH_{1} \left(\frac{d}{2} - \frac{B}{2} - T \right)$$
(2.49)

$$M_{w1}(0.15) \times (1) \times (5) \times (100) \times \left(\frac{5}{2} - \frac{72.42}{2} - 2.58\right)$$
$$M_{w1} - 2,721.75 \text{ kip.ft} (-3,690.69 \text{ kN.m})$$

olarak bulunur.

Şekil 2.8'de verilen barajın 2 bölgesi için yapının ağırlığına bağlı moment;

$$M_{w2} = \frac{1}{2} \gamma_{c} w_{t} (L - d) H_{1} \left(\frac{1}{3} (2d + L) - \frac{B}{2} - T \right)$$
(2.50)

$$M_{w2} = \frac{1}{2} \times (0.15) \times (1) \times (75 - 5) \times (100) \times \left[\frac{1}{3} \times (2 \times 5 + 75) - \frac{72.42}{2} - 2.58\right]$$
$$M_{w2} = -5,489.75 \text{ kip.ft } (-7,444.101 \text{ kN.m})$$

olarak bulunur.

Yapının ağırlığından dolayı oluşan toplam moment ise

$$M_{w} = M_{w1} + M_{w2}$$
(2.51)
$$M_{w} = -2721.75 - 5489.75$$

$$M_{w} = -8,211.5 \text{ kip.ft } (-11,134.79 \text{ kN.m})$$

şeklinde elde edilir.

Düşey su yükünden dolayı oluşan moment;

$$M_{1} = V_{w} \left[\frac{1}{3} (2L + x_{t}) - \frac{B}{2} - T \right]$$
(2.52)

$$M_{1} = (0.55) \times \left[\frac{1}{3} \times (2 \times 75 + 71.5) - \frac{72.42}{2} - 2.58 \right]$$
$$M_{1} = 19.27 \text{ kip.ft} (26.13 \text{ kN.m})$$

olarak bulunur.

Memba tarafındaki düşey su yükünden dolayı oluşan moment,

$$M_{2} = \frac{1}{6} \gamma_{w} H_{1}^{3} w_{t}$$
(2.53)

$$M_{2} = \frac{1}{6} \times (0.0625) \times (100)^{3} \times (1)$$

M₂ = 10,416.67 kip.ft (14,125.00 kN.m)

olarak bulunur.

Mansap tarafındaki yatay su yükünden dolayı oluşan moment,

$$M_{3} = -\frac{1}{6}\gamma_{w}H_{2}^{3}w_{t}$$
(2.54)

$$M_{3} = -\frac{1}{6} \times (0.0625) \times (5)^{3} \times (1)$$
$$M_{3} = -1.30 \text{ kip.ft} (-1.76 \text{ kN.m})$$

olarak bulunur.

Şekil 2.7'nin 1 bölgesindeki kaldırma basıncından dolayı oluşan moment

$$M_{u1} = \gamma_{w} w_{t} H_{1} T \left(\frac{B}{2} + T - \frac{T}{2} \right)$$

$$M_{u1} = (0.0625) \times (1) \times (100) \times (2.58) \times \left(\frac{72.42}{2} + 2.58 - \frac{2.58}{2} \right)$$

$$M_{u1} = 604.69 \text{ kip.ft (819.96 kN.m)}$$

$$(2.55)$$

olarak bulunur.

Şekil 2.7'nin 2 bölgesindeki kaldırma basıncından dolayı oluşan moment

$$M_{u2} = \gamma_{w} w_{t} H_{3} \left(x_{d} - T \right) \left(\frac{B}{2} + T - \frac{x_{d} + T}{2} \right)$$
(2.56)

$$M_{u2} = (0.0625) \times (1) \times (70.20) \times (10 - 2.58) \times \left(\frac{72.42}{2} + 2.58 - \frac{10 + 2.58}{2}\right)$$

$$M_{u2} = 1,058.05 \text{ kip.ft} (1,434.72 \text{ kN.m})$$

olarak bulunur.

Şekil 2.7'nin 3 bölgesindeki kaldırma basıncından dolayı oluşan moment

$$M_{u3} = \frac{1}{2} \gamma_{w} w_{t} (H_{1} - H_{3}) (x_{d} - T) \left(\frac{B}{2} + T - \frac{2T + x_{d}}{3} \right)$$
(2.57)

$$M_{u3} = \frac{1}{2} \times (0.0625) \times (1) \times (100 - 70.20) \times (10 - 2.58) \times \left(\frac{72.42}{2} + 2.58 - \frac{2 \times 2.58 + 10}{3}\right)$$
$$M_{u3} = 233.12 \text{ kip.ft (316.11 kN.m)}$$

olarak bulunur.

Şekil 2.7'nin 4 bölgesindeki kaldırma basıncından dolayı oluşan moment

$$M_{u4} = \gamma_w w_t H_2 \left(L - x_d \right) \left(\frac{B}{2} + T - \frac{x_d + L}{2} \right)$$

$$M_{u4} = (0.0625) \times (1) \times (5) \times (75 - 10) \times \left(\frac{72.42}{2} + 2.58 - \frac{10 + 75}{2} \right)$$

$$M_{u4} = -75.36 \text{ kip.ft } (-102.19 \text{ kN.m})$$

$$(2.58)$$

olarak bulunur.

Şekil 2.7'nin 5 bölgesindeki kaldırma basıncından dolayı oluşan moment

$$M_{u5} = \frac{1}{2} \gamma_{w} w_{t} (H_{3} - H_{2}) (L - x_{d}) \left(\frac{B}{2} + T - \frac{2x_{d} + L}{3} \right)$$
(2.59)

$$M_{u5} = \frac{1}{2} \times (0.0625) \times (1) \times (70.20 - 5) \times (75 - 10) \times \left(\frac{72.42}{2} + 2.58 - \frac{2 \times 10 + 75}{3}\right)$$
$$M_{u5} = 943.40 \text{ kip.ft (1,279.25 kN.m)}$$

olarak bulunur.

Kaldırma basıncından dolayı oluşan toplam moment ise

$$M_{\rm II} = M_{\rm u1} + M_{\rm u2} + M_{\rm u3} + M_{\rm u4} + M_{\rm u5}$$
(2.60)

denklemi yardımıyla

M_U = 604.69 + 1058.05 + 233.12 - 75.36 + 943.40 M_U = 2,763.90 kip.ft (3,747.85 kN.m)

şeklinde elde edilir.

Baraj tabanında oluşan toplam moment ise

$$M = M_{w} + M_{1} + M_{2} + M_{3} + M_{u}$$
(2.61)

denklemi yardımıyla

şeklinde elde edilir.

c) Çatlak Testi

Baraj tabanında elde edilen yeni toplam kuvvet ve toplam moment elde edildikten sonra (2.9) ve (2.12) denklemleri yardımıyla barajdaki çatlağın devam edip etmediği kontrol edilebilir. Baraj tabanındaki yeni eksantrisite;

$$e = \frac{M}{N}$$
(2.62)

$$e = \frac{4987.04}{392.20}$$

$$e = 12.72 ft (3.88 m)$$

şeklinde elde edilir. Bu değer

$$e = 12.72 ft > \frac{B}{6} = \frac{72.42}{6} = 12.07 ft (3.68 m)$$
 (2.63)

olduğundan çatlağın ilerlediği veya büyüdüğü anlaşılabilir.

d) Yeni Çatlak Uzunluğunun Belirlenmesi

Yeni çatlak uzunluğunu belirlemek için ilk önce;

$$x'_{0} = -\frac{B^{2}}{12e}$$

$$x'_{0} = -\frac{72.42^{2}}{12 \times 12.72}$$

$$x'_{0} = -34.36 \,\text{ft} \,(-10.47 \,\text{m})$$
(2.64)

elde edilir. Buna göre baraj tabanındaki basınç bölgesinin yeni değeri

$$B_{new} = \frac{1}{2} B_{old} - X_0^{'}$$
(2.65)

$$B_{new} = \frac{1}{2} \times 72.42 - (-34.36)$$
$$B_{new} = 70.57 \text{ ft} (21.51 \text{ m})$$

şeklinde elde edilir. Böylece baraj tabanındaki yeni çekme bölgesi uzunluğu veya yeni çatlak uzunluğu

$$T_{new} = L - B_{new}$$
(2.66)

$$T_{new} = 75 - 70.57$$

 $T_{new} = 4.43 \text{ft} (1.35 \text{ m})$

olarak elde edilir.

2.2.3.3. Nihai Çözüm

(2.42) - (2.66) denklemleri, T = T_{new} değerleri alınarak tekrarlanır. Bu işlem T çatlak değeri kabul edilebilir bir tolerans içinde değişmeden kalana kadar devam ettirilir. Böylece nihai çözüm elde edilir.

Tablo 2.2. İterasyon sonuçları

İterasyon	T _{new} ft	U kip	M _u kip.ft	N kip	M kip.ft
1	2.58	200.78	2367.84	399.77	5365.69
2	4.43	208.33	2763.25	392.22	4987.61
3	5.69	213.71	3049.44	386.84	4721.74
Çözüm	8.23	224.90	3654.04	375.65	4180.36
Not: $1 ft = 0$.	.3048 m; 1 kip	= 4.4482 kN;	1 kip.ft = 1.356	kN.m	

2.3. Sarıyar Barajı İçin Çatlak Uzunluğu

Beton ağırlık barajların topuk kısmında meydana gelebilecek çatlak uzunluğunun belirlenmesi için "2.2. Çatlak Uzunluğunun Belirlenmesi" kısmında verilen örnek sayısal uygulama işlem adımları Şekil 2.1'deki Sarıyar baraj kesiti için tekrarlanmıştır. Bunun için Fortran 90'da bir program yazılmıştır. Programdaki kodlamalar Ek 1'de verilmiştir. Yazılan program sayesinde Sarıyar barajında meydana gelebilecek çatlak uzunluğu 7.20 metre olarak tespit edilmiş ve. Şekil 2.9'da çatlak uzunluğu gösterilmiştir.

Şekil 2.9. Sarıyar beton ağırlık barajında meydana gelen çatlak uzunluğu

2.4. Sarıyar Barajının Çatlaklı ve Çatlaksız Sonlu Eleman Modellerinin Oluşturulması

Sarıyar beton ağırlık barajının zemin ile birlikte sonlu eleman modelleri hazırlanırken ilk olarak modellerin tasarımı AutoCAD programında yapılmış, daha sonra SAP2000 programına aktarılmıştır. Modeller hazırlanırken baraj-zemin etkileşim modelleme tekniklerine uygun hareket edilmiştir.

2.4.1. Baraj-Zemin Etkileşim Modelleme Teknikleri

Yapı-zemin etkileşimine maruz yapılarda, bu etkileşim farklı zemin modelleriyle temsil edilebilmektedir. Bunlardan birincisi barajın altında küçük veya büyük hacimli zemin dikkate alınarak baraj ve zemini Şekil 2.10'daki gibi modellemektir. Bu modellemede zeminin kütle atalet etkileri dikkate alınmaktadır. Bu şekilde ki baraj-zemin etkileşim modellerinde küçük veya büyük hacimli zemin modellerinin sonuçları arasındaki farkların birbirine çok yakın olduğu görülmüştür. Sonlu eleman zemin modellerinde, sönümleme etkilerinin ihmal edildiği doğrudur ancak zemin modelleri büyüdükçe yekpare zemin içerisinde normal modal sönümlemedeki enerji yayılımı, deprem tipi yüklemelerdeki sönümleme etkilerinden oldukça daha büyük olmuştur (Wilson, 2019)

Şekil 2.10. Küçük veya büyük zeminli baraj modelleri (Wilson, 2019).

İkinci yaklaşım ise kütlesiz zemin yaklaşımıdır. Yapıların deprem analizini yapan programlarda zeminin kütlesini tanımlamayan ayrı bir seçenek bulunmamaktadır ve deprem kuvvetlerinin bundan bağımsız olduğu öngörülmektedir. Bu sebeple, yaygın olan bu yaklaşım, analizlerde zemin kütlesini ihmal etmeyi gerektirmektedir (Wilson, 2019)

Gerçekçi bir sonlu eleman modeli oluşturulurken karşılaşılan zorluklardan biri; deprem etkisinde baraj-zemin-rezervuar etkileşim sisteminin gerçek davranışının tam olarak anlaşılamamasıdır. Mesela, eğer baraj-zemin ara yüzeyinde gerilmeler kaldırma etkisine sebep olursa, kayma gerilmeleri hala aktarılabilir mi? Ayrıca, yükleme sırasında oluşan kaldırma basıncı değişir mi? Bu ve diğer bilinmeyen faktörlerden dolayı iyi bir mühendislik ortaya koymak gerekmektedir. Böylece farklı varsayımlar kullanılarak birçok farklı sonlu eleman modeli oluşturulabilir (Wilson, 2015).

Mühendislikteki deneyimlere dayanılarak, baraj-zemin ara yüzeyinin tipik bir sonlu eleman modeli Şekil 2.11'de gösterilmiştir.

Şekil 2.11. Baraj-zemin ara yüzeyi için sonlu eleman modeli (Wilson, 2015).

Baraj ve zeminin sonlu eleman modelini oluşturmada basit bir metot olarak sekiz düğüm noktalı katı elemanlar kullanmaktır. Doğru sonuçlar elde edebilmek için olabildiğince düzgün dörtgen ağlar seçilmelidir. İki farklı malzemeye sahip bütün ara yüzeylerde iki düğüm noktası kullanmanın her zaman gerekli olduğu unutulmamalıdır. Bu, farklı malzemelerden dolayı ara yüzeye paralel gerilmelerin eşit olmamasından kaynaklanmaktadır. Bu yüzden, SAP2000 programında eş gerilme eğrilerini doğru elde edebilmek için ara yüzeyde iki düğüm noktasının kullanılması gerekmektedir. Bu düğüm noktaları aynı yere yerleştirilmelidir. Baraj ve zemin için ayrı ayrı sonlu eleman ağı oluşturulduktan sonra ara yüzeydeki karşılıklı düğüm noktaları eşit deplasmana (Equal Constraints) sahip olması için gerekli sınır şartı tanımlanmalıdır (Wilson, 2015).

Ara yüzeyde iki düğüm noktası yerleştirmenin başka bir avantajı, doğrusal olmayan dinamik analizde kaldırma basıncına izin vermek için bu konum ara yüzeyde doğrusal olmayan gap elemanlarının yerleştirilmesinin gerekli olabilmesidir. Bununla birlikte, herhangi bir doğrusal olmayan analizden önce daima statik yükleme ve lineer analizin yapılması özellikle tavsiye edilmektedir. Bu mühendisin doğrusal veya doğrusal olmayan dinamik analiz öncesinde sonlu eleman modelinin geçerliliğini kontrol etmesini mümkün kılmaktadır (Wilson, 2015).

Şekil 2.11'de gösterilen sonlu eleman modeli, maksimum gerilmenin oluştuğu baraj tabanındaki (yaklaşık 10cm kalınlığında) ince bir katı elemanlar tabakasını göstermektedir. Ayrıca, zeminde yer değiştirmenin sürekliliğini sağlamak için baraj-zemin kesişim bölgesine küçük elemanlardan oluşan düşey bir tabakanın yerleştirilmesi tavsiye edilmektedir (Wilson, 2015).

2.4.2. Barajın İki Boyutlu Sonlu Eleman Modellerinin AutoCAD Programında Oluşturulması ve SAP2000 Programına Aktarılması

Sarıyar beton ağırlık barajının sonlu eleman modelleri AutoCAD programında oluşturulmuştur. Modeller oluşturulurken baraj tabanı ile zemin arasında boşluk elemanlarının yerleştirilebilmesi için 1cm'lik boşluk bırakılmıştır. Baraj tabanındaki çatlak için baraj tabanında 1cm yüksekliğinde dört düğüm noktalı elemanlar çizilmiştir. Ayrıca barajın topuğunda baraj ile zeminin kesiştiği noktada gerilme yığılması oluşacağından, gerilmelerin iyi gözlenebilmesi için burada 10cm'lik bir katı elemanlar tabakası oluşturulmuştur. Şekil 2.12'de kesişim yüzeyinde oluşturulan elemanlar gösterilmiştir.

Şekil 2.12. Baraj ve zemin kesişim yüzeyi için sonlu elaman örneği

Sonlu eleman modellinin oluşturulmasındaki işlemler şu şekildedir;

- 1) AutoCAD programında Baraj adlı bir tabaka (layer) oluşturulur.
- 2) Baraj ve zemine ait sonlu eleman modeli 0 tabakası (0 layer) çizilir (Şekil 2.13).

Şekil 2.13. 0 katmanında çizilen baraj-zemin sonlu eleman modeli

3) 0 katmanında çizilen baraj ve zemin sonlu eleman modeli "3dface" komutuyla yüzey haline getirmek için ilk önce Baraj katmanı seçilir. Komut satırına "3dface" komutu yazılarak, dört düğüm noktalı elemanın düğüm noktaları Şekil 2.14'de verilen sıralamaya uygun olarak seçilir ve yüzey oluşturulur (Şekil 2.15). Her bir elemanda bu işlem adımı tekrarlanır.

Şekil 2.14. "3dface" komutunda düğüm noktalarının seçilme sırası

Şekil 2.15. Baraj katmanında "3dface" komutuyla oluşturulan yüzeyler

Sonlu eleman modelinin AutoCAD programından SAP2000 programına aktarılmasındaki işlemler şu şekildedir:

1) AutoCAD'de tüm katmanlar açık olacak şekilde sonlu eleman modeli seçilir. "3dmove" komutu yardımıyla baraj zeminin sol alt kenarı seçilir. Komut satırında 0,0,0 yazılarak model orijine taşınır. Yapılan işlem Şekil 2.16'da gösterilmiştir.

Şekil 2.16. "3dmove" komutuyla sonlu eleman modelinin orijine taşınması

2) AutoCAD dosyası ".dxf" uzantısıyla kaydedilir.

3) SAP2000 programı açılır. "File" menüsünden "Import" sekmesi tıklanır. Açılan "Import" sekmesinden "AutoCAD .dxf File..." sekmesi seçilir (Şekil 2.17). Açılır pencereden kaydedilen ".dxf" uzantılı dosya seçilir. Açılan Import Information penceresinde "Global Up Direction" sekmesinde "Y" radyo düğmesi tıklanır ve "Units" olarak "kN, m, C" seçilir (Şekil 2.18). Açılan "DXF Import" penceresinde "Shells" açılır listesinden baraj katmanı seçilir ve Ok tuşuna basılır (Şekil 2.19).

×				SAP2000 v20.0	0 Ultimate 64-bit - (Untitled)	_ 5 ×
File	e Edit. View Define Draw S	Select Assign	Analyz	e Display Design Options Tools Help		
	New Model	Ctrl+N		遊 1: 3:1 xy xz yz nv 3 6) 송 등 탑回 成·		
	Open	Ctrl+O	75	f-nd - I- 目- -		
111	Save	Ctrl+S				•
阙	Save As	Ctrl+Shift+S				
	Import		, 20	SAP2000 MS Access Database .mdb File		
	Export		, 20	SAP2000 MS Excel Spreadsheet xls File		
	Upload to CSI Cloud		20	SAP2000 .s2k Text File		
	Batch File Control			SAP2000 XML File		
0	Create Video		- 63	CIS/2 STEP File		
aŭ	Print Setup for Graphics.		1	Steel Detailing Neutral File		
-	Print Graphics	Ctrl+P	20	FrameWorks Plus File		
- AL	Print Tables	Ctrl+Shift+T	1	Revit .exr File		
M	Report Setup		1	AutoCAD .dxf File		
	Create Report	Ctrl+Shift+R	68	IFC .ifc File		
	Advanced Report Writer		1000	IGES .igs File		
1 Mag	Capture Enhanced Metafile		-	NASTRAN.dat File		
	Capture Picture		, 👜	STAAD/GTSTRUDL.std/.gti File		
0	Modily/Show Project Information		100	Strict ADI3D File		
	Modify/Show Comments and Log	Ctrl+Shift+C	1523	SACS File.		
1	Show Input/Log Files	Ctrl+Shift+F	-			
	Temel Model.sdb					
3	Çatlaklı Boş Baraj.sdb					
	Çatlaklı Dolu Barajsdb					
	Çatlaksız Dolu Baraj.sdb					
G	Exit					
			_			

Şekil 2.17. SAP2000 programında AutoCAD .dxf dosya aktarım penceresi

×	Im	port Information	×
- 0	Global Up Dir	ection	
	○ x	● Y ○ Z	
	🔾 - X	○ - Y ○ - Z	
	Units	KN, m, C 🗸	
	OK	Cancel	
	Units	KN, m, C v Cancel	

Şekil 2.18. "Import information" penceresi

×	DXF Import	×
Assign Layers		
Special Joints	NONE	~
Frames	NONE	~
NL Links	NONE	~
Shells	Baraj	~
Solid	NONE	~
ОК	Cancel	

Şekil 2.19. "DXF import" penceresi

4) AutoCAD programında oluşturulan model SAP2000 programına kabuk eleman olarak aktarılmış olur (Şekil 2.20).

Bir bütün olarak SAP2000 programına aktarılan zemin modelleri edit menüsündeki "Divide Areas" sekmesiyle küçük sonlu elemanlara ayrılır. Bu işlemler sırayla şu şekilde yapılmaktadır:

1) Sonlu elemanlara bölünecek zemin elemanı seçilir.

2) Programdaki "Edit" açılır menüsünden "Edit Areas" sekmesi seçilir. Açılan sekmeden "Divide Areas" komutuna tıklanılır (Şekil 2.21).

Şekil 2.20. SAP2000 programına aktarılan baraj-zemin sonlu eleman modeli

٢.,	с. 2	16					SAP2000 v2	0.0.0 Ultim	ate 64-bit	(Untitled)					_ 0 💌
File	Edit	View Define Draw Se	elect Assig	n Ar	nalyze Display Design (Options Tools Hel	5								
04	2	Undo	Ctrl+Z	0	🔍 🔍 🦉 🧤 🕬 xy x	kz yz nv 3 66	▶ 두 떫 🖻	1 21 -							
*	6	Redo	Ctrl+Y	17	71- nd · I · 🔲 ·	· EI-X	•	八十四日	14 · · · ·		ិ 🗋 ត័រ 👘				
5 .	*	Cut	Ctrl+X							And Alternation	Sector March				* 3
2		Сору	Ctr1+C												
-	63	Paste_	Ctrl+V												
2	×	Delete	Delete												
à		Add to Model From Template.	L.	1											
2	18	Interactive Database Editing	Ctr1+E					11111							
1	111	Regirate	Ctrl+R					IT IN COLOR							
2	a	Extrude													
5	.1.	Move-	Ctrl+M						AH.						
1		Fairs Ballana							<i>IIIII</i>						
7		Edit Points		L											
	1	Edit Areas		0	Divide hears										
	-	Divide Calles		8	Unide Arens	-				Æ					
		LIDER MORE		-	Merge Areas	-	1111			111					
	.0	Select Duplicates		E.	Expand/Shrink Areas	1									
1	¥.	Merge Duplicates		\$	Add Point To Area Edge										
S	33	Change Labels			Remove Points From Area										
1 Arean	4Ed	lges Selected											X-76,27 Y0, 2101,852	GLOBAL	~ [101, m, C

Şekil 2.21. SAP2000 programında "Divide Areas" komutu

3) Açılan "Divide Selected Areas" penceresinde "Divide Options" da "Divide Area into This Number of Objets" radyo düğmesi seçilir. Açılan sekmelerde x yönünde elde edilmek istenen sonlu eleman sayısı "Along Edge From Point 1 to 2" de ve z yönünde elde edilmek istenen sonlu eleman sayısı "Along Edge From Point 1 to 3" e yazılır (Şekil 2.22). Bu işlem diğer zemin elemanlarında da uygulanarak istenilen zemin sonlu eleman modeli elde edilmiş olur (Şekil 2.23).

- D III - 11 - 11 - 4 - 6 - 6 - 6	A DEMANDER TO BE AND A A MARKED AND A MARKED AND A A MARKED AND A	
	A. H. G. L. M. L. M. C. S. A. M. S.	
t warmen and	Divide Selected Areas	•.
Law .	Divide Options	
-	Divide Area into This Number of Objects (Quads and Triangles Only)	
	Along Edge from Point 1 to 2 18	
â	Along Edge from Point 1 to 3 16	
24	 Divide Area Into Objects of This Maximum Size (Quads and Triangles Only) 	
	Along Edge from Point 1 to 2	
	Along Edge from Point 1 to 3	
5	 Divide Area Based on Points on Area Edges (Quads and Triangles Only) Points Determined From: 	
	Intersections of Visible Straight Grid Lines with Area Edges	
14 C	Intersections of Selected Straight Frame Objects with Area Edges	
	Selected Point Objects on Area Edges	
(F)	Divide Area Using Cookie Cut Based on Selected Straight Frame Objects	
	Extend All Selected Frame Lines to Intersect Area Edges	
14	Divide Area Using Coolie Cut Based on Selected Point Objects	
•	Rotation of Cut Lines from Area Local Aites	
fe :	O Divide Avea Using General Divide Tools saled on Selected Points and Prames	
<	Automation Sterior Univolation Sterior	
	Local Axes for Added Points	
86. *	Make Same on Edge If Adjacent Corners Have Same Local Axes Definition	
8	Make Same on Face If All Corners Mave Same Local Axes Definition	
4	Restraints and Constraints for Added Points	
	Add on Edge When Restraints/Constraints Exist at Adjacent Corner Points	
	(Applies if added edge point and adjacent corner points have same local axes definition)	
	Add on Face When Restraints/Constraints Exist at All Corner Points	
	(Applies in added face primit and an comer points have same local area definition)	
	Reset Form to Default Values	
	The second secon	

Şekil 2.22. SAP2000 programında "Divide Selected Areas" penceresi

Şekil 2.23. Sonlu elemanlara bölünen zemin modeli

2.5. Malzeme ve Kesit Özelliklerinin Tanımlanması

Bir boyutu diğer iki boyutunun yanında çok büyük olan barajlarda "Düzlem Şekil Değiştirme Problemi" kabul edilmektedir. AutoCAD'den SAP2000'e iki boyutlu sonlu elemanlar kabuk (shell) elaman olarak aktarıldığından dolayı SAP2000'de sonlu elemanların kesit özelliklerinin düzlem şekil değiştirme yani "plane-strain" olarak değiştirilmesi gerekmektedir. Analizler bir birim genişlik için yapılacağından kesit kalınlıkları bir birim olarak alınmıştır. Baraj ve zemine ait malzeme özellikleri Tablo 2.3'de verilmiştir.

Tabl	0 2.3	. Baraj	ve zemine	ait ma	lzeme	özellikleri
------	-------	---------	-----------	--------	-------	-------------

Baraj N	/Ialzeme Öz	ellikleri	Zemin M	Ialzeme Öz	ellikleri
$\frac{E_b}{\left(kN/m^2\right)}$	V_{b}	${\gamma_b \over \left(kN/m^3 ight)}$	${{ m E_z}\over \left(kN/m^2 ight)}$	V_z	${\gamma_z \over \left(kN/m^3 ight)}$
2.7579×10^7	0.2	23.20	5.5158x10 ⁷	0.2	0

2.5.1. Baraj Malzeme Özelliklerinin Tanımlanması

Barajın malzeme özelliklerinin tanımlanmasındaki işlemler sırasıyla şu şekildedir; 1) "Define" menüsünde "Materials..." sekmesi seçilir.

- Materials	Click to:
4000Psi A992Fv50	Add New Material
	Add Copy of Material
	Modify/Show Material
	Delete Material
	Show Advanced Properties
	ОК
	Cancel

Şekil 2.24. "Define Materials" penceresi

2) Ekrana gelen ileti kutusundan yeni bir malzeme tanımlamak için "Add New Material..." tıklanılır.

3) Açılan pencerede "Quick Material Definition" ileti kutusunda;

- "Region" açılır listesinden User (Kullanıcı) seçeneği
- Material Type açılır listesinden Other seçeneğini seçilir ve OK tuşuna basılır.

	Quick Material Definition
Begion	User
Material Type	Other 🗸
Standard	User
Grade	_
	OK Cancel

Şekil 2.25. "Quick Material Definition" penceresi

4) Ekrana malzeme özelliklerini gösteren "Material Property Data" ileti kutusu gelecektir. Bu ileti kutusunda;

- "Material Name" kutucuğuna BETON,

- "Weight per unit Volume" (Birim Hacim Ağırlığı) yazı kutucuğuna 23.20,

- "Modulus of Elasticity, E" (Elastisite Modülü) yazı kutucuğuna 2.7579E7,

- "Poisson's Ratio, U" (Poisson Oranı) yazı kutucuğuna 0.2,

- "Coeffcient of Thermal Expansion, A" (Isıl Genleşeme Katsayısı) yazı kutucuğuna 0 yazılır.

"Material Property Data" ileti kutusunda yazılanlar Şekil 2.26'da verilmiştir.

		0.1	RETON		
Materia	al Name and Display	Color	BETON		
Materia	аl Туре		Other		~
Materia	al Notes		Mod	ify/Show Notes	
Weight a	and Mass			Units	
Weigh	t per Unit Volume	23,2		KN, m, C	~
Mass p	er Unit Volume	2,3657			
Isotropic	Property Data				
Moduli	us of Elasticity, E			27579000,	
Poisso	n, U			0,2	
Coeffic	ient of Thermal Exp	ansion, A		0,	
Shear	Modulus, G			11491250,	
Switch	To Advanced Prope	erty Display			

Şekil 2.26. Baraj malzeme özelliklerinin tanımlanması

2.5.2. Zemin Malzeme Özelliklerinin Tanımlanması

Zemin malzeme özelliklerinin tanımlanmasındaki işlem adımları barajda olduğu gibi tekrarlanır. "Material Property Data" ileti kutusunda aşağıdaki değerler yazılır.

- "Material Name" kutucuğunda KAYA,

- "Weight per unit Volume" (Birim Hacim Ağırlığı) yazı kutucuğunda 0,

- "Modulus of Elasticity, E" (Elastisite Modülü) yazı kutucuğunda 5.5158E7,
- "Poisson's Ratio, U" (Poisson Oranı) yazı kutucuğunda 0.2,
- "Coeffcient of Thermal Expansion, A" (Isıl Genleşeme Katsayısı) yazı kutucuğunda 0

"Material Property Data" ileti kutusunda yazılanlar Şekil 2.27'de verilmiştir.

Material Name and Display C	Color	KAYA		
Material Type		Other		\sim
Material Notes		Mod	lify/Show Notes	
Weight and Mass			Units	
Weight per Unit Volume	0,		KN, m, C	~
Mass per Unit Volume	0,			
Isotropic Property Data				
Modulus of Elasticity, E			55158000,	
Poisson, U			0,2	
Coefficient of Thermal Expan	nsion, A		0,	
Shear Modulus, G			22982500,	
Switch To Advanced Propert	ty Display			

Şekil 2.27. Zemin malzeme özelliklerinin tanımlanması

2.5.3. Baraj ve Zemin Kesit Özelliklerinin Tanımlanması

Baraj ve zemin kesit özelliklerinin tanımlanmasındaki işlemler sırasıyla şu şekildedir:

1) Programda BARAJ ve ZEMİN olarak iki grup oluşturulur.

2) Baraj sonlu elemanları seçilir.

 3) "Assign" sekmesindeki "Assign to Group..." sekmesi seçilir. Açılan "Assign to Groups" penceresinde BARAJ seçilerek, "Replace Group" radyo düğmesi tıklanır (Şekil
 2.28). OK tuşuna basıldıktan sonra baraj sonlu elemanları BARAJ grubuna aktarılmış olur. Aynı işlem zemin sonlu elemanları için de tekrarlanır.

X Assign to Groups	×						
BARAJ							
ZEMİN							
Options							
Add to Group Replace Group							
O Delete from Group							
Define Groups							
OK Close Apply]						

Şekil 2.28. "Assign to Groups" penceresi

4) "Select" menüsünden "Select" sekmesi tıklanır ve "Groups..." komutu seçilir (Şekil 2.29)

Şekil 2.29. SAP2000 programında "Groups" komutu

5) Açılan "Select by Groups" penceresinden BARAJ seçilerek, baraj sonlu elemanları seçilmiş olur (Şekil 2.30).

File Edit View Define Draw Select	SAP2000 Assign Analyze Display Design Options Tools Help) v20.0.0 Ultimate 64-bit - Çatlaksız Dolu Baraj			_ 0 ×
File Edit View Define Draw Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select Image: Select	SAP2000 Asign Analyze Display Design Options Tools Help Compared to the second secon	y y 20.00 U Himate 64-bit - Çatlaksız Dolu Baraj			- 0 ×
1437 Points 1347 Areas, 5388 Edges Selected			X-215.932 Y0, Z-64.193	GLOBAL	✓ KN, m, C ✓

Şekil 2.30. "Select by Groups" penceresiyle sonlu eleman seçme

6) "Define" menüsünden "Section Properties" sekmesindeki "Area Sections..." komutu seçilir (Şekil 2.31).

×					SAP2000 v20.0.0 Ultimate 64-bit - Çatlaksız Dolu Baraj	- Ö 💌
File Edit View	Defi	ne Draw Select Assign	Anal	yze Display Design Options	Tools Help	
0 💊 🖬 🖓 /	E.	Materials	ŧ	🔾 🕲 🧤 3-d xy xz yz	nv 3 68 會豪 監図 题·	
Y D DX II	B	Section Properties	•	I Frame Sections		
X-Z Plane	•?	Mass Source		- Tendon Sections		• ×
24	()	Coordinate Systems/Grids	1	Cable Sections		
\odot	\oplus	Joint Constraints	-	Area Sections		
1		Joint Patterns	1	Solid Properties		
N	7	Groups		Reinforcement Bar Sizes		
	1	Section Cuts		Link/Support Properties		
D	<	Generalized Displacements		Frequency Dep. Link Props		
	°fx	Functions	× 4	F ¹ Hinge Properties		
	¥D ¥E	Load Patterns				
	10.0 15 E	Load Cases				
19	D+L +E	Load Combinations				
A	<u>111</u>	Moving Loads	•			
\times		Named Property Sets	•			
+		Pushover Parameter Sets	•			
2		Named Sets	•			
4						
PS						
cir ^{la}						
13						
X-Z Plane @ Y=0					X-180,306 Y0, Z241,472	GLOBAL V KN, m, C V

Şekil 2.31. SAP2000 programında "Area Sections" komutu

7) Açılan "Area Sections" penceresinde "Select Section Type To Add" açılır listesinden "Plane" seçilip, "Add New Section..." düğmesine basılır (Şekil 2.32).

×	Area Sections
Sections ASEC1 BARAJ None ZEMİN	Select Section Type To Add Plane Click to: Add New Section Add Copy of Section Modify/Show Section Delete Section OK Cancel

Şekil 2.32. "Area Sections" penceresi

8) "Plane Section Data" ileti kutusunda sırayla;

- "Section Name" yazı kutucuğuna BARAJ yazılır,
- "Type" radyo düğmelerinde "Plane-Strain" seçilir,
- "Material Name" açılır listesinden BETON seçilir,
- "Material Angle" yazı kutucuğunu 0 yazılır,
- "Thickness" yazı kutucuğuna 1 yazılır.

Zemin kesit özelliklerinin tanımlanabilmesi için 4. adımdan itibaren yapılan işlem adımları tekrarkanır. "Plane Section Data" ileti kutusunda zemin için sırasıyla;

- "Section Name" yazı kutucuğuna ZEMİN yazılır,
- "Type" radyo düğmelerinde "Plane-Strain" seçilir,
- "Material Name" açılır listesinden KAYA seçilir,
- "Material Angle" yazı kutucuğunu 0 yazılır,
- "Thickness" yazı kutucuğuna 1 yazılır.

"Plane Section Data" ileti kutusunda baraj ve zemin kesiti için yapılan tanımlamalar sırasıyla Şekil 2.33 ve Şekil 2.34'de verilmiştir.

🛒 Pl	Plane Section Data				
Section Name	BARAJ				
Section Notes	Modify/Show				
	Display Color				
Туре					
O Plane-Stress					
Plane-Strain					
Incompatible N	Nodes				
Material					
Material Name	+ BETON Y				
Material Angle	0,				
Thickness					
Thickness	1,				
Stiffness Modifiers	Temp Dependent Properties	ľ			
Set Modifiers	Thermal Properties	ľ			
O	K Cancel				
	Gundel				

Şekil 2.33. Baraj kesiti için "Plane Section Data" penceresi

X	Plane	Section Data	x					
	Section Name ZEMIN							
	Section Notes	Modify/Show						
		Display Color						
	Туре							
	O Plane-Stress							
	Plane-Strain							
	Incompatible Modes Material							
	Material Name	+ KAYA V						
	Material Angle	0,						
	Thickness							
	Thickness	1,						
	Stiffness Modifiers	Temp Dependent Properties						
	Set Modifiers	Thermal Properties						
	ОК	Cancel						
	L							

Şekil 2.34. Zemin kesiti için "Plane Section Data" penceresi
2.6. Düğüm Noktalarına Mesnetlerin Atanması

Baraj-zemin modelinde zeminin alt yüzeyinin hiçbir doğrultusunda yer değiştirme ve dönme olmayacağı için ankastre mesnet tanımlanmıştır. Zemin yan yüzeylerinde sadece z doğrultusunda ve modelin geri kalan kısımlarında x ve z doğrultusunda yer değiştirme olduğu, dönmenin olmadığı kabul edilmiştir. SAP2000 programında modelin ilgili düğüm noktalarına mesnetler şu şekilde tanımlanmıştır:

1) Baraj-zemin modelinin zemin alt düğüm noktaları seçilir (Şekil 2.35)

Şekil 2.35. Zemin alt yüzeyinde seçilen düğüm noktaları

2) "Assign" menüsünde "Joint" sekmesinde ki "Restaints..." komutu seçilir. Açılan"Assign Joint Restaints" penceresi Şekil 2.36'daki gibi düzenlenir.

🗶 Assign Joint Restraints 🛛 🗙					
Restraints in Joint Local Directions					
✓ Translation 1 ✓ Ro	tation about 1				
Translation 2	tation about 2				
Translation 3	tation about 3				
Fast Restraints					
	, •				
OK Close	Apply				

Şekil 2.36. Zemin alt yüzeyindeki düğüm noktaları için "Assign Joint Restaints" penceresi

3) Zemin yan yüzeylerindeki düğüm noktaları seçilir (Şekil 2.37).

Şekil 2.37. Zemin yan yüzeyinde seçilen düğüm noktaları

4) "Assign" menüsünde "Joint" sekmesinde ki "Restaints…" komutu seçilir. Açılan "Assign Joint Restaints" penceresi Şekil 2.38'deki gibi düzenlenir.

🐹 Assign Joint Re	straints ×
Restraints in Joint Local Directions	
Translation 1	Rotation about 1
Translation 2	Rotation about 2
Translation 3	Rotation about 3
Fast Restraints	
OK Close	Apply

Şekil 2.38. Zemin yan yüzeylerindeki düğüm noktaları için "Assign Joint Restaints" penceresi

5) Modelde zeminin yan ve alt yüzeyindeki düğüm noktalarının dışındaki bütün düğüm noktaları seçilir (Şekil 2.39).

Şekil 2.39. Zemin yan ve alt yüzeyi dışında geriye kalan düğüm noktalarının seçilmesi

6) "Assign" menüsünde "Joint" sekmesinde ki "Restaints..." komutu seçilir. Açılan"Assign Joint Restaints" penceresi Şekil 2.40'daki gibi düzenlenir.

🐹 Assign Joint Restraints				
Restraints in Joint Local Directions				
Translation 1	Rotation about 1			
✓ Translation 2	✓ Rotation about 2			
Translation 3	Rotation about 3			
Fast Restraints				
	<u>↔</u>			
OK Close	Apply			

Şekil 2.40. Zemin yan ve alt yüzeyi dışında geriye kalan düğüm noktaları için "Assign Joint Restaints" penceresi

2.7. Boşluk (Gap) Elemanı, Eş Yer Değiştirme (Equal Constraint) Elemanı ve Çatlak Elemanı Tanımlaması

Bu çalışmada barajdaki çatlak, SAP2000 programında boşluk elemanlarıyla tanımlanmıştır. SAP2000 programında çatlak eleman kullanımı Karaca (2016)'da verilen örneklerle karşılaştırılarak doğrulanmıştır. Karaca bu çalışmadaki örneklerini ANSYS analiz programında gerçekleştirmiştir. SAP2000 programında yapılan analizlerden elde edilen değerler Karaca'nın ANSYS programında elde ettiği değerlerle benzerlik göstermektedir.

Bu çalışmada çatlaksız ve çatlaklı beton ağırlık baraj modelleri ayrı ayrı oluşturulmuştur. Çatlaksız sonlu eleman modellerinde baraj-zemin ara yüzeyindeki karşılıklı düğüm noktalarına boşluk elemanı ve eş yer değiştirme elemanı tanımlanmıştır (Şekil 2.41). Çatlaklı modeller de ise çatlaksız modellerdeki gibi boşluk elemanı ve eş yer değiştirme elemanı baraj-zemin ara yüzeyindeki karşılıklı düğüm noktalarına tanımlandıktan sonra baraj alt yüzeyinde oluşturulan 7.20m uzunluğundaki kısma denk gelen düğüm noktalarında çatlakları temsilen boşluk elemanı tanımlanmıştır (Şekil 2.42).

Şekil 2.41. Çatlaksız sonlu eleman modellerinde baraj-zemin ara yüzeyindeki karşılıklı düğüm noktalarına boşluk elemanı ve eş yer değiştirme elemanı tanımlanması

Şekil 2.42. Çatlaklı sonlu eleman modellerinde baraj-zemin ara yüzeyindeki karşılıklı düğüm noktalarına boşluk elemanı tanımlanması

2.7.1. Boşluk Elemanların Tanımlanması ve Çizilmesi

Doğrusal olmayan boşluk elemanının amacı, model yüzeylerindeki sadece basınç kuvvetlerini transfer etmeye zorlamak ve yüzeyler temasta değilken çekme kuvvetlerinin gelişmesine izin vermemektir. Bu, uzayda aynı noktada bulunan iki yüzeydeki düğümlerin yüzeye normal bir boşluk elemanı ile bağlanmasıyla gerçekleştirilebilir. Boşluk elemanının eksenel rijitliği yüzeydeki düğümlerin rijitliğine kıyasla, boşluktaki basınç kuvvetlerini, boşluktaki en az deformasyon ile basınç kuvvetlerini transfer etmek için yeterince büyük seçilmelidir. Bununla birlikte, boşluk elemanın rijitliği çok büyükse, çözüm aşamasında sayısal problemler ortaya çıkabilir.

Modern kişisel bilgisayarlar, 15 önemli rakam kullanarak tüm hesaplamaları yaparlar. Bir boşluk elemanı bitişik düğüm rijitliğinden 1000 kat daha rijitse, doğru bir çözüm elde etmek için yaklaşık 12 önemli rakam korunur. Bu nedenle, arabirim yüzey düğümlerinde normal rijitliği tahmin etmek gerekir. Yaklaşık yüzey düğümü rijitliği, aşağıdaki basit denklemden hesaplanabilir:

$$k = \frac{A_s E}{t_n}$$
(2.67)

Burada; A_s , normal boşluk elemanıyla ilişkili yaklaşık yüzey alanı, E barajın elastisite modülü ve t_n , yüzey için normal olan sonlu eleman boyutudur. Bu nedenle, boşluk eleman rijitliği;

$$k_{g} = 1000 \frac{A_{s}E}{t_{n}}$$
(2.68)

formülüyle verilir. Bu değerin 10 kat arttırılması ya da azaltılması sonuçları önemli ölçüde değiştirmemektedir (Wilson, 2015)

SAP2000 programında boşluk elemanları şu şekilde tanımlanmıştır:

1) "Define" menüsünden "Section Properties" sekmesindeki "Link/Support Properties..." komutu seçilir (Şekil 2.43).

Şekil 2.43. SAP2000 programında "Link/Support Properties..." komutu

2) Açılan "Link/Support Properties" penceresinde "Add New Property..." düğmesine basılır (Şekil 2.44).

🔀 Link/Supp	Link/Support Properties				
Properties CATLAK ELEMAN GAP_ELEMAN LINK1	Click to: Add New Property Add Copy of Property Modify/Show Property Delete Property OK Cancel				

Şekil 2.44. "Link/Support Properties" penceresi

3) Açılan "Link/Support Property Data" penceresinde "Link/Support Type" açılır listesinden "Gap" seçilir. "Property Name" olarak "GAP_ELEMAN" yazılır. "Directional Properties" bölümünde "U₁" ve "Nonlinear" kutucukları seçilir (Şekil 2.45).

Link/St	pport Type	Gap	~		
Prope	rty Name	GAP_ELEMA	AN	Set Default Name	
Proper	ty Notes			Modify/Show	
- Total Ma	ss and Weig	ht			
Mass		0,	Rotational Inertia	1 0,	
Weight		0,	Rotational Inertia	2 0,	
			Potational Inertia	0	
Factors Proper Proper	For Line, Are ty is Defined ty is Defined	ea and Solid Spr for This Length for This Area In	ings In a Line Spring Area and Solid Springs	1. 1.	
Factors Proper Proper Direction Direction	For Line, Are ty is Defined ty is Defined al Propertie n Fixed	ea and Solid Spr I for This Length I for This Area In S NonLinear	In a Line Spring Area and Solid Springs Properties	1. 1. P-Delta Parameter	;
Factors Proper Proper Direction Direction	For Line, Are ty is Defined ty is Defined al Propertie n Fixed	ea and Solid Spr I for This Length I for This Area In s NonLinear	Properties Modify/Show for U1	1. 1. P-Delta Parameter Advanced	;
Factors Proper Proper Direction Directio	For Line, Are by is Defined al Propertie n Fixed	ea and Solid Spr for This Length for This Area In s NonLinear V	Properties Modify/Show for U1 Modify/Show for U2	1. 1. P-Delta Parameter Advanced	
 Factors Proper Proper Direction ✓ U1 U2 U3 	For Line, Are ty is Defined al Propertie n Fixed	ea and Solid Spr I for This Length I for This Area In S NonLinear	Properties Modify/Show for U1 Modify/Show for U2 Modify/Show for U3	1, 1, P-Delta Parameter Advanced	
Factors Proper Direction Direction U1 U2 U2 U3	For Line, Are ty is Defined al Propertie Fixed	a and Solid Spr for This Length for This Area In s NonLinear	Properties Modify/Show for U1 Modify/Show for U2 Modify/Show for U3 Modify/Show for U3	1. 1. 1. P-Delta Parameter Advanced	3
Factors Proper Proper Direction U1 U2 U2 U2 U3 U3 R1 R2	For Line, Ard ty is Defined al Propertie n Fixed	a and Solid Spr for This Length for This Area In s NonLinear	Properties Modify/Show for U3 Modify/Show for U3 Modify/Show for U3 Modify/Show for C3 Modify/Show for C3	1. 1. 1. P-Delta Parameter Advanced	3

Şekil 2.45. "Link/Support Property Data" penceresi

4) "Link/Support Property" Data penceresinde "Properties" sütununda bulunan "Modify/Show for $U_1...$ " düğmesine tıklanılır. Açılan "Link/Support Directional Properties" penceresinde "Properties Used For Nonlinear Analysis Cases" bölümünde;

• "Stiffness" kutucuğuna barajın elastisite modülünün 1000 katı olan 2.7579E10 değeri yazılır.

• "Open" kutucuğuna baraj zemin ara yüzey uzaklık değeri olan 0.01 m yazılır.

"Link/Support Directional Properties" penceresinde yazılanlar Şekil 2.46'da gösterilmiştir.

Identification	GAP F	LEMAN	
Property Name			
Direction	01		
Туре	Gap		
NonLinear	Yes		
Properties Used For Line	ear Analysis C	ases	
Effective Stiffness		0,	
Effective Damping		0,	
Properties Used For Non	nlinear Analysi	s Cases	
Stiffness		2,758E+10	
Open		0,01	
ОК		Cancel	

Şekil 2.46. "GAP_ELEMAN" için "Link/Support Directional Properties" penceresi

Tanımlanan boşluk elemanlar baraj-zemin ara yüzeyindeki düğüm noktalarında çizilirken yapılan işlemler şu şekilde sıralanmıştır:

1) "Draw" menüsünden "Draw 2 Joint Link" komutu seçilir.

2) "Açılan Properties of Object" penceresinde "Property" olarak "GAP_ELEMAN" seçilir ve sırasıyla baraj-zemin ara yüzeyinde karşılıklı düğüm noktaları birleştirilerek boşluk elemanlar oluşturulur. Oluşturulan boşluk elemanlar model üzerinde mavi renkli yay şeklinde gözükmektedir (2.47).

Şekil 2.47. Boşluk elemanlı baraj-zemin modeli

2.7.2. Eş Yer Değiştirme Elemanı Oluşturulması ve Düğüm Noktalarına Atanması

Baraj-zemin ara yüzeyindeki karşılıklı iki düğüm noktalarının eşit yer değiştirmeye sahip olabilmesi için SAP2000 programında eş yer değiştirme elemanı tanımlaması yapılmıştır. Eş yer değiştirme elemanı programda oluşturulurken aşağıdaki işlem adımları izlenmiştir:

1) Baraj zemindeki karşılıklı düğüm noktası seçilir (Şekil 2.48) ve "Assign" menüsünde "Joint" sekmesindeki "Constraints..." tıklanılır (Şekil 2.49).

Şekil 2.48. Baraj ve zemindeki karşılıklı düğüm noktalarının seçilmesi

Şekil 2.49. SAP2000 programında "Constraints..." komutu

Açılan "Assign Joint Constraints" penceresinde "EQUAL 1" seçilerek (Şekil
 2.50), ilk karşılıklı düğüm noktasına eş yer değiştirme elemanı atanmış olur. Diğer düğüm noktaları için de aynı işlem adımları tekrarlanır.

×	Assign Joint Constraints	×
EQUAL1		^
EQUAL2		
EQUAL3		
EQUAL4		
EQUAL5		
EQUAL6		
EQUAL7		
EQUAL8		
EQUAL9		
EQUAL10		
EQUAL11		
EQUAL12		
EQUAL13		
EQUAL14		
EOUAL15		~
ſ		
	Define Joint Constraints	
		b.
	Close App	iy

Şekil 2.50. "Assign Joint Constraints" penceresi

2.7.3. Çatlak Elemanının Tanımlanması

Hazırlanan baraj-zemin sonlu eleman modelinde çatlak elemanı tanımlanırken yapılan işlemler aşağıda sıralanmıştır;

1) Baraj modelinin taban kısmında bulunan 1 cm yüksekliğindeki sonlu elemanlar çatlak uzunluğu (7.20m) kadar seçilir (Şekil 2.51).

Şekil 2.51. Baraj tabanındaki 1 cm yüksekliğindeki sonlu elemanların seçilmesi

2) Seçim yapıldıktan sonra sonlu elemanlar silinir (Şekil 2.52).

Şekil 2.52. Silinen sonlu elemanlar

3) Bu tez çalışmasının "2.7.1. Boşluk Elemanların Tanımlanması ve Çizilmesi" kısmında verilen boşluk eleman tanımlama işlemleri tekrarlanarak çatlak tanımlanması yapılır. Tanımlanan çatlak elemanın programda rijitliği (kN/m) (Stiffness) barajın elastisite modül değeriyle (2.7579x10⁷).aynı alınır (Şekil 2.53).

	ype Gap	~			
Property Nam	e ÇATLAK_E	LEMAN	Set Default Name		
Property Notes			Modify/Show	K Link/Suppo	ort Directional Properties
otal Mass and V	Veight			Identification	
Mass	0,	Rotational Inertia 1	0,	Property Name	ÇATLAK_ELEMAN
Weight	0,	Rotational Inertia 2	0,	Direction	U1
		Rotational Inertia 3	0,	Туре	Gap
actors For Line	, Area and Solid S	prings		NonLinear	Yes
Property is Def	ined for This Leng	th In a Line Spring	1,	Properties Used For Linea	ar Analysis Cases
Property is Def	ined for This Area	In Area and Solid Springs	1,	Effective Stiffness	0,
Directional Prope	erties		P-Delta Parameters	Effective Damping	0,
Direction Fi	xed NonLinear	Properties	Advanced	Properties Used For Nonli	near Analysis Cases
✓ U1	✓	Modify/Show for U1		Stiffness	27579000,
U2		Modify/Show for U2		Open	0,01
		Modify/Show for U3			
U3		Modify/Show for R1		OK	Cancel
U3			OK	UK	Cancer
U3 R1 R2		Modify/Show for R2			

Şekil 2.53. Çatlak elemanı için "Link/Support Property Data" ve "Link/Support Directional Properties" penceresi

4) "Draw" menüsünden "Draw 2 Joint Link" komutu seçilir.

5) Açılan "Properties of Object" penceresinde "Property" olarak "ÇATLAK_ELEMAN" seçilir ve baraj ve zemindeki karşılıklı düğüm noktaları birleştirilerek çatlak elemanlar oluşturulur. Oluşturulan çatlak elemanlar model üzerinde kırmızı renkli yay şeklinde gözükmektedir (Şekil 2.54).

Şekil 2.54. Baraj-zemin ara yüzeyindeki çatlak ve boşluk elemanlar

2.8. Hidrodinamik Basınç Yükünün Kütle Olarak Düğüm Noktalarına Atanması

Bu tez çalışmasının "1.12. Kütle Ekleme Yaklaşımı" kısmında verilen kütle ekleme yaklaşımı kullanılarak hidrodinamik basınç yükleri kütle (kg) şeklinde hesaplanmıştır. 2 nolu düğüm noktası için hesaplanacak kütle bileşenleri Şekil 2.55'de gösterilmiştir.

Şekil 2.55. 2 nolu düğüm noktası için hesaplanacak kütle bileşenleri

2 nolu düğüm noktasındaki kütle hesabında kullanılacak formülasyonlar aşağıda verilmiştir.

$$m(z_1) = \frac{7}{8} \frac{\gamma_w}{g} \sqrt{Hz_1}$$
(2.69)

$$m(z_2) = \frac{7}{8} \frac{\gamma_w}{g} \sqrt{Hz_2}$$
(2.70)

$$m(2) = \frac{m(z_1) + m(z_2)}{2} ht$$
(2.71)

Denklem (2.69), (2.70) ve (2.71)'de verilen ifadelerde;

m(z)	: Rezervuar derinliğine bağlı kütle dağılımını,
$\gamma_{\rm w}$: Suyun birim ağırlığını (10000 N/m ²),
g	: Yerçekimi ivmesini, (9.81 m/s ²),
Н	: Rezervuar derinliğini (90 m),
z	: Su yüzeyinden itibaren su derinliğini temsil etmektedir.

Şekil 2.51'de verilen değerler (2.71) denkleminde yerine yazılırsa;

$$m(2) = \frac{\frac{7}{8}x\frac{10000}{9.81}x\sqrt{90x0.25} + \frac{7}{8}x\frac{10000}{9.81}x\sqrt{90x0.75}}{2}x0.5x1$$

$$m(2) = \left(\frac{\frac{N}{m^2}}{\frac{m}{s^2}}x\sqrt{mxm} + \frac{\frac{N}{m^2}}{\frac{m}{s^2}}x\sqrt{mxm}\right)xmxm$$

$$m(2) = \frac{Nxs^2}{m} = kg$$

m(2) = 2889.742 kg olarak bulunur.

Hazırlanan çatlaklı ve çatlaksız baraj modellerinin rezervuar ve kuyruk suyunun yapmış olduğu hidrodinamik basınç değerleri Microsoft Excel programı yardımıyla hesaplanmıştır.

SAP2000 programında hesaplanan kütleler model üzerindeki ilgili düğüm noktalarına şu şekilde eklenmiştir:

1) Kütle eklenecek düğüm noktası seçilir (Şekil 2.56).

Şekil 2.56. Yüklemesi yapılacak düğüm noktasının seçilmesi

2) "Assign" menüsünde "Joint" sekmesindeki "Masses..." komutu seçilir (Şekil 2.57).

Şekil 2.57. SAP2000 programında "Masses..." komutu

3) Açılan "Assign Joint Masses" penceresinde "Specify Joint Mass" sekmesinde "As Mass", "Mass Coordinate System" bölümünde "Direction" açılır penceresinde "GLOBAL" seçilir. "Mass" bölmesinde "Translation Global X" yazı kutucuğuna ilgili düğüm noktası için hesaplanan kütle (kg) değeri yazılır (Şekil 2.58). Kullanılan baraj modelinde, memba yüzeyindeki düğüm noktalarına Global X doğrultusunda ekleme yapıldığından kütle (+) pozitif işaret, mansap yüzeyinde yapılan Global X'in ters doğrultusunda ekleme yapıldığından kütle negatif (-) işaret almıştır. Barajın mansap ve memba tarafında düğüm noktalarına yapılan kütle eklemeleri sırasıyla Şekil 2.59 ve Şekil 2.60'da gösterilmiştir.

×	Assigr	n Joint Masses		×
Specify Jo	int Mass			
As N	Mass			
🔿 As V	Veight			
O As V	olume and Material	l Property		
Ma	terial + 2	4000Psi	~	
- Mass Coo	rdinate System			
Direction	GLOBAL		~	
Mass				
Translati	on Global X	2889,74	ka	
Translati	on Global Y	0	kg	
Translati	on Global Z	0	kg	
Mass Mor	nent of Inertia			
Rotation	about Global X	0	kg-m²	
Rotation	about Global Y	0	kg-m²	
Rotation	about Global Z	0	kg-m²	
Options -				
O Add	to Existing Masses			
Rep	lace Existing Masses	;		
O Dele	ete Existing Masses			
	Reset For	m to Default Values		

Şekil 2.58. SAP2000 programında "Assign Joint Masses" penceresi

Şekil 2.60. Mansap tarafında yapılan kütle eklemesi

2.9. Sarıyar Beton Ağırlık Barajın Dinamik Analizi

İki boyutlu dinamik analizlerde Şekil 2.61'de gösterilen çatlaksız baraj-zemin modeli ve Şekil 2.62'de gösterilen çatlaklı baraj-zemin modeli kullanılmıştır.

Analizlerde rezervuarın su ile dolu olup olmaması durumlarında yakın ve uzak fay etkisinin baraja yapmış olduğu etkiler incelenmiştir.

Şekil 2.61. Çatlaksız Sarıyar beton ağırlık barajına ait baraj-zemin modeli

Şekil 2.62. Çatlaklı Sarıyar beton ağırlık barajına ait baraj-zemin modeli

Dinamik analizde yer hareketi olarak 1989 Loma Prieta ve 1979 Imperial Valley depremlerinde kaydedilen yakın ve uzak fay yer hareketi özelliği taşıyan toplam dört kayıt kullanılmıştır. Bu kayıtlara ait bazı bilgiler Tablo 2.4 ve Tablo 2.5'te verilmiştir. Bu bilgiler "https://ngawest2.berkeley.edu/site" adresinden alınmıştır. Bu tez çalışmasında, 1979 Imperial Valley depreminde kaydedilen yakın ve uzak fay yer hareketlerinin etkisini inceleyebilmek için yer hareketleri 0.40g'ye ölçeklendirilmiştir. Yakın ve uzak fay yer hareketleri, baraja memba-mansap doğrultusunda (yatay) uygulanmıştır. Seçilen her iki depremde en büyük ivmeler ilk 20 saniye içerisinde oluştuğundan analizlerde kayıtların sadece ilk 20 saniyesi kullanılmıştır.

Tablo 2.4. 1989 Loma Prieta depreminde kaydedilen yakın ve uzak fay yer hareketi özelliği taşıyan iki kayıt

Yer Hareketi	İstasyon	Kayıt Bileşeni	Faya Uzaklık (km)	PGA (g)	PGV (cm/s)	PGV/PGA (s)
Yakın-fay	Corralitos	CLS090	5.1	0.48	45.2	0.10
Uzak-fay	Coyote Lake Dam	CYC285	21.8	0.48	39.7	0.08

Tablo 2.5. 1979 Imperial Valley depreminde kaydedilen yakın ve uzak fay yer hareketi özelliği taşıyan iki kayıt

Yer Hareketi	İstasyon	Kayıt Bileşeni	Faya Uzaklık (km)	PGA (g)	PGV (cm/s)	PGV/PGA (s)
Yakın-fay	El Centro Array#5	IMPVALL/H- E05230	1.0	0.379	90.5	0.243
Uzak-fay	El Centro Array#13	IMPVALL/H- E13230	21.9	0.139	13.0	0.095

1989 Loma Prieta depreminde kaydedilen yakın ve uzak fay yer hareketi özelliği taşıyan kayıtların ivme-zaman, hız-zaman ve yer değiştirme-zaman grafikleri Şekil 2.63 ve 2.64'de, frekans grafikleri Şekil 2.65 ve Şekil 2.66'da verilmiştir. Bu depreme ait yakın ve uzak fay yer hareketlerinin maksimum ivme değerleri 0.48g'dir.

1979 Imperial Valley depreminde kaydedilen yakın ve uzak fay yer hareketi özelliği taşıyan kayıtların ivme-zaman, hız-zaman ve yer değiştirme-zaman grafikleri Şekil 2.67 ve Şekil 2.68'da verilmiştir. Bu depreme ait yakın ve uzak fay yer hareketlerinin maksimum ivme değerleri sırasıyla 0.379g ve 0.139g olup, bu yer hareketlerinin ölçeklendirilmiş ivme-zaman, hız-zaman ve yer değiştirme-zaman grafikleri Şekil 2.69 ve 2.70'de, frekans grafikleri Şekil 2.71 ve Şekil 2.72'de sunulmuştur.

Analizler, adım-adım integrasyon tekniği ile Newmark ortalama ivme metodu kullanılarak gerçekleştirilmiştir. İntegrasyon için zaman adımı 0.005 olarak alınmıştır. Beton ağırlık baraj kesitinin dinamik analizleri SAP2000 programında gerçekleştirilmiştir.

Şekil 2.63. 1989 Loma Prieta depreminde kaydedilen ve yakın fay yer hareketi özelliği taşıyan CLS090 kaydının ivme-zaman, hız-zaman ve yer değiştirme-zaman grafikleri

Şekil 2.64. 1989 Loma Prieta depreminde kaydedilen ve uzak fay yer hareketi özelliği taşıyan CYC285 kaydının ivme-zaman, hız-zaman ve yer değiştirme-zaman grafikleri

Şekil 2.65. 1989 Loma Prieta depreminde kaydedilen ve yakın fay yer hareketi özelliği taşıyan CLS090 kaydının frekans grafiği

Şekil 2.66. 1989 Loma Prieta depreminde kaydedilen ve uzak fay yer hareketi özelliği taşıyan CYC285 kaydının frekans grafiği

Şekil 2.67. 1979 Imperial Valley depreminde kaydedilen ve yakın fay yer hareketi özelliği taşıyan H-E05230 kaydının ivme-zaman, hız-zaman ve yer değiştirme-zaman grafikleri

Şekil 2.68. 1979 Imperial Valley depreminde kaydedilen ve uzak fay yer hareketi özelliği taşıyan H-E13230 kaydının ivme-zaman, hız-zaman ve yer değiştirme-zaman grafikleri

Şekil 2.69. 1979 Imperial Valley depreminde kaydedilen ve yakın fay yer hareketi özelliği taşıyan H-E05230 kaydının 0.4g ölçeklendirilmiş ivme-zaman, hız-zaman ve yer değiştirme-zaman grafikleri

Şekil 2.70. 1979 Imperial Valley depreminde kaydedilen ve uzak fay yer hareketi özelliği taşıyan H-E13230 kaydının 0.4g ölçeklendirilmiş ivme-zaman, hız-zaman ve yer değiştirme-zaman grafikleri

Şekil 2.71. 1979 Imperial Valley depreminde kaydedilen ve yakın fay yer hareketi özelliği taşıyan H-E105230 kaydının 0.4g ölçeklendirilmiş frekans grafiği

Şekil 2.72. 1979 Imperial Valley depreminde kaydedilen ve uzak fay yer hareketi özelliği taşıyan H-E13230 kaydının 0.4g ölçeklendirilmiş frekans grafiği

2.9.1. Dinamik Analiz Parametrelerinin SAP2000 Programında Tanımlanması

Dinamik analiz için 1979 Imperial Valley ve 1989 Loma Prieta deprem kayıtlarının yakın ve uzak fay yer hareketi ivme-zaman grafikleri programa tanımlanmıştır. Daha sonra sistemin yükleme durumları tanımlanırken Newmark ortalama ivme metodunun parametreleri programa girilip, her bir model için aynı işlemler tekrarlanarak analizler başlatılmıştır. Programda 1979 Imperial Valley deprem kayıtlarının tanımlanmasına ait işlem adımları sırasıyla şu şekilde yapılmıştır;

1) Tanımlamalar yapılmadan parametre birimleri programda "N, m, C" olarak seçilir. Deprem kayıtları programa tanımlanmasında, "Define" menüsündeki "Fuctions" sekmesindeki "Time History..." komutu seçilir (Şekil 2.73).

Şekil 2.73. SAP2000 programında "Time History..." komutu

2) Açılan "Define Time History Functions" penceresinde "Choose Function Type to Add" açılır penceresinde "From File" seçilip "Add New Function..." düğmesine basılır (Şekil 2.74).

Define Tir	me History Functions
Functions RAMPTH UNIFTH Uzak-H-E13230-ACC Yakın-H-E05230-ACC	Choose Function Type to Add From File Click to: Add New Function Modify/Show Function Delete Function OK Cancel

Şekil 2.74. "Define Time History Functions" penceresi

3) Açılan "Time History Function Definition" penceresinde "Function Name" yazı kutucuğuna "Yakın-Fay-H-E-05230-Scaled" yazılır. "Values are" bölümünde "Time and Function Values" seçilir. Deprem kaydının alınacağı dosyayı seçmek için "Browse" düğmesine basılır (Şekil 2.75).

	ame	Yakın-Fay-H-E05230-Scaled
Function File File Name	Browse	Values are: Time and Function Values Values at Equal Intervals of
Header Lines to Skip Prefix Characters per Line to Skip Number of Points per Line Convert to User Defined	0 0 1 View File	Free Format Fixed Format Characters per Item

Şekil 2.75. "Time History Function Definition" penceresi

4) Açılan "Pick Function Data File" penceresinde istenilen deprem kaydı seçilir (Şekil 2.76).

🔄 🎯 👻 🕆 👢 🕨 örnel	k 🕨 Yakin_Uzak Grafikleri		Ara: Yakin_Uzal	Grafikl P
Düzenle • Yeni klasör)II •	
Sik Kullanilanlar	Ad	Değiştirme tarihi	Tür	Boyut
Masaŭstŭ	H-E05230-DIS.dat	6.4.2018 00:09	DAT Dosyasi	208 1
Son gidilen verler	H-E05230-DIS.grf	25.5.2009 22:37	Grapher Plot Docu	46 1
Kitanlıklar	H-E05230-SCALED.dat	5.4.2018 20:15	DAT Dosyası	208 1
A OneDrive	H-E05230-SCALED.grf	25.5.2009 22:55	Grapher Plot Docu	49
in Indirilenter	H-E05230-VEL.dat	5.4.2018 20:16	DAT Dosyası	208
indimenter .	H-E05230-VEL.grf	25.5.2009 22:37	Grapher Plot Docu	92
10 Kitapliklar	H-E13230-ACC.dat	5.4.2018 20:17	DAT Dosyası	209
Reiceler	H-E13230-ACC.grf	25.5.2009 22:48	Grapher Plot Docu	48
A Minikler	H-E13230-DIS.dat	5.4.2018 20:18	DAT Dosyası	209
Resimler	H-E13230-DIS.grf	25.5.2009 22:48	Grapher Plot Docu	84
Nideolar	H-E13230-SCALED.dat	5.4.2018 20:18	DAT Dosyası	209
S VILLEUIDI	H-E13230-SCALED.grf	25.5.2009 22:51	Grapher Plot Docu	100
• • · ·				>
Dosya adı	H-E05230-SCALED.dat		✓ Data Files (*.*)	~
			4.	Interio

Şekil 2.76. "Pick Function Data File" penceresi

5) "Time History Fuction Definition" penceresinde ölçeklenmiş yakın fay ivmezaman grafiği tanımlanmış olur (Şekil 2.77).

Function N	ame	Yalon-Fay-H-E05230-Scaled
Function File		Values are:
File Name Browse		Time and Function Values
c lusers\msi\desktop\ornek\yakin_u grafikler\h-e05230-scaled.dat	izak	Values at Equal Intervals of
Header Lines In Skin	0	Format Type
	0	Free Format
Prefix Characters per Line to Skip	0	Characters per Item
Number of Points per Line	1	
Convert to User Defined	View File	
	philip tions	Aunor

Şekil 2.77. SAP2000 de tanımlanan ölçeklenmiş yakın fay ivmezaman grafiği

6) Uzak-fay yer hareketinin ivme zaman grafiğini tanımlamak için aynı işlemler yapılır. Tanımlanan ölçeklenmiş uzak fay ivme zaman grafiği Şekil 2.78'de verilmiştir.

Function N	ame	Uzak-Fay-H-E-13230-Scaled		
Function File		Values are.		
File Name Browse		 Time and Function Values 		
c lusers\msi\desktop\0rnek\yakin_u grafikleri\h-e13230-scaled.dat	zak	Values at Equal Intervals of		
Brownerst e rener orange en		Format Type		
Header Lines to Skip	0	 Free Format 		
Prefix Characters per Line to Skip	0	Fixed Format		
Number of Points ner Line	1	Characters per Item		
number of round per care				
Convert to User Defined	View File			
	il de la compañía de La compañía de la compañía de la compañía de la comp	Mproven		

Şekil 2.78. SAP2000'de tanımlanan ölçeklenmiş uzak fay ivmezaman grafiği

7) Yükleme durumları programda tanımlamak için "Define" menüsündeki "Load Cases..." komutu seçilir (Şekil 2.79).

Şekil 2.79. SAP2000 programında "Load Cases..." komutu

8) Açılan "Load Case Data Penceresinde"; "Load Case Name" yazı kutucuğuna uzak-fay_dinamik_analiz yazılır. "Load Case Type" bölümündeki açılır pencereden "Time History" seçilir. "Analysis Type" olarak "Linear", "Solution Type" olarak "Direct Integration" seçilir. "Loads Applied" bölümünde "Load Type" açılır penceresinde "Accel", "Load Name" açılır penceresinde "U1", "Function" açılır penceresinde "Uzak-Fay-H-E-13230-Scaled" seçilir ve "Scale Factor" yazı kutucuğuna 9.81 yazılır. İvme-zaman grafiği 9.81 yazılmasıyla birlikte tanımlanmış olur. "Time Step Data" bölümünde, "Number of Output Time Steps" yazı kutucuğuna 4000, "Output Time Step Size" yazı kutucuğuna 0.005 yazılır. Böylelikle ivme-zaman grafiğinin ilk 20 saniyesinin dikkate alınacağı programa tanımlanmış olur (Şekil 2.80).

"Damping" sekmesinde "Modify/Show..." düğmesi tıklanılır ve açılan "Direct Integration Damping" penceresinde "Direct Specification" seçilir. "Mass Proportional Coefficient" (Kütle oransal katsayısı α) yazı kutucuğuna 1.1088, "Stiffness Proportional Coefficient" (Rijitlik oransal katsayısı β) yazı kutucuğuna 0.000936 yazılır (Şekil 2.81). Böylece Rayleigh sönüm katsayıları tanımlanmış olur. Burada bu sönüm katsayıları baraj ve zemin modellerinde 2 Hz ile 15 Hz frekans aralığı için hesaplanmıştır.

oad Case Name	Notes	Load Cas	е Туре
uzak-fay_dinamik_analiz	Set Def Name Modify/Sh	Time His	tory Y Design
tiffness to Use		Analysis	Solution Type
 Zero Initial Conditions - Unstressed State 	e	 Line 	ar 🔿 Modal
Stiffness at End of Nonlinear Case		✓ ○ Noni	inear
Important Note: Loads from the Nonline	ear Case are NOT included in the cur	History Ty	pe
case		 Trans 	sient
Use Modes from Case	MODAL	V Peri	odic
oads Applied		Mass Sou	rce
Load Type Load Name Functi	on Scale Factor	MSSSRC	1
Accel VI V Uzak-H-E Accel U1 Uzak-H-E	32 ~ 9,81 3230-4 9,81 ^ Add		
Accel VII VU2ak-H-E Accel UI U2ak-H-E Show Advanced Load Parameters	32 v 9.81 3230- 9.81 Add Modify Delete	· · · · · · · · · · · · · · · · · · ·	
Accel VI VIZak-H-E Accel UI Uzak-H-E Show Advanced Load Parameters ime Step Data	32 v 9,81 3230 (9,81 Add Modify Delete	2	
Accel VI VIZak-H-E Accel UI UZak-H-E Show Advanced Load Parameters ime Step Data Number of Output Time Steps	32 v 9,81 3220- 9,81 Add Modify Delete 4000		
Accel VII VIZak-H-E Accel VI VIZak-H-E Show Advanced Load Parameters Ime Step Data Number of Output Time Steps Output Time Step Size	32 v 9.81 3230- 9.81 Add Modify Delete 4000 5.000E-03		
Accel VI VIZak-H-E Accel UI UZak-H-E Show Advanced Load Parameters ime Step Data Number of Output Time Steps Output Time Step Size Damping Propo	32 \$\vee\$9,81 3230-\vee\$9,81 \$\vee\$3230-\vee\$9,81 \$\vee\$400 \$\vee\$4000 \$\vee\$5,000E-03 \$\vee\$100al \$\v		ОК

Şekil 2.80. SAP2000 programında "Load Case Data" penceresi

			Mass Proportional Coefficient		Stiffness Co	Proportional efficient	
Direct Sp	ecification		1,1088	1/sec	0,0009		sec
O Specify D	amping by Period						
Specify D	amping by Frequency						
	Period	Freque	ncy	Da	mping		
First	sec		cyc/sec			Recalc	ulate
Second	sec		cyc/sec			Coeffic	ients
dditional Modal (Include Ac Mod	Jamping ditional Modal Damping II Load Case asemum Considered Modal Fre	doouch					
		Modity/Show Mo	dal Damping Parameters				

Şekil 2.81. SAP2000 programında "Direct Integration Damping" penceresi

"Time Integration" sekmesinde "Modify/Show" düğmesine tıklanır ve açılan "Time Integration Parameters" penceresinde "Newmark" seçilip Gamma (γ) yazı kutucuğuna 0.5, Beta (β) yazı kutucuğuna 0.25 yazılarak Newmark ortalama ivme metodu tanımlanmış olur (Şekil 2.82).

Method Newmark Gamma 0,5 Beta 0,25 Wilson Theta	
Newmark Gamma 0,5 Beta 0,25 Wilson Theta	
Beta 0,25	
O Wilson Theta	
() Collocation Gamma	
Beta	
Theta	
Hilber - Hughes - Taylor Gamma	
Beta	
Alpha	
Chung and Hulbert Gamma	
Beta	
Alpha	
Alpha-m	
OK Cancel	

Şekil 2.82. SAP2000 programında "Time Integration Parameters" penceresi

9) Aynı işlem adımları 1979 Imperial Valley depreminin yakın fay yer hareketi kaydı ve 1989 Loma Prieta yakın ve uzak fay yer hareketi kayıtları içinde tekrarlanır. 1979 Imperial Valley depreminin yakın fay yer hareketine ait dinamik analiz parametreleri Şekil 2.83'te verilmiştir.

Load Case Name		Notes	Load Case Type	
yakın-fay_dinamik_analiz	Set Def Name	Modify/Show	Time History	✓ Desig
Stiffness to Use			Analysis Type	Solution Type
Zero Initial Conditions - U	Instressed State		Linear	Modal
Stiffness at End of Nonlin	iear Case	Ŷ	 Nonlinear 	 Direct Integration
Important Note Loads case	from the Nonlinear Case are NO	T included in the current	History Type	
Modal Load Case			(2) Operation	
Use Modes from Case		MODAL ~	C Person	
Loads Applied			Mass Source	
Load Type Load Nat	me Function Scale F	actor	MSSSRC1	
Accel V U1	✓ Yakın-H-E052 ✓ 9.81			
Accel U1	Yakin-H-E05230- 9,81	Add		
		Modify		
		Delete		
Show Advanced Load P	aramatare			
Silve Auvanced Load P	arameters			
Time Step Data				
Number of Output Time	Steps	4000		
Output Time Step Size		5,000E-03		
Damping	Proportional	Modify/Show		OK
	Newmark	Modifu/Show		Cancel
Time Integration	The ministry	MOGHY/SHOW		

Şekil 2.83. SAP2000 programında "Load Case Data" penceresi yakın fay dinamik analiz parametreleri

10) Dinamik analizlerin başlatılması için programda "Analyze" menüsünde "Run Analysis" komutu seçilir (Şekil 2.84).

Şekil 2.84. SAP2000 programında "Run Analysis" komutu

11) Açılan "Set Load Cases to Run" penceresinde "DEAD" ve "MODAL" durumlar seçilip, "Do Not Run" komutuna tıklanarak seçili analizler kapatılır. Yakın ve uzak fay dinamik analizlerinin başlatılması için "Run Now" düğmesine tıklanılır (Şekil 2.85)

-	_			Click to:
Case	lype	Status Not Dup	Action	Run/Do Not Run Case
MODAL vakın dinamik analiz	Modal	Not Run	Do not Run	Show Case
uzak_dinamik_analiz-1	mik_analiz-1 Linear Direct Integration History Not Run Not Run		Run	Delete Results for Case
				Run/Do Not Run All
				Delete All Results
				Show Load Case Tree
alysis Monitor Options				Model-Alive
Always Show				Run Now
Never Show				
Show After 4	seconds			OK Cancel

Şekil 2.85. SAP2000 programında "Set Load Cases to Run" penceresi

Her bir modelin dinamik analizi için bu işlem adımları tekrarlanır.

3. BULGULAR VE İRDELEMELER

3.1. Giriş

Tezin bu bölümünde Sarıyar Beton Ağırlık Barajı'nın dinamik analizinden elde edilen bulgular verilmiştir. Analizlerde dinamik etki olarak 1979 Imperial Valley ve 1989 Loma Prieta depreminde kaydedilen yakın ve uzak fay yer hareketi özelliği taşıyan toplam dört kayıt kullanılmıştır. Barajın dört farklı durumu için analizler gerçekleştirilmiştir. Bunlar barajın çatlaksız-boş, çatlaksız-dolu, çatlaklı-boş ve çatlaklı-dolu olması durumlarıdır.

Baraj davranışının değerlendirilmesinde kret yer değiştirmeleri çok önemlidir. Kret yer değiştirmelerinin değişimleri sonuçların geçerliliğini denetlemekte görsel bir araç olarak kullanılabileceği gibi büyüklükleri de barajın genel stabilitesini değerlendirmede kullanılabilir. Bu sebeple, kret yer değiştirmelerinin deprem süresince değişimi incelenmiştir.

Analizlerde esas olarak beton ağırlık barajın baraj-su ve çatlak etkileşimi incelenmiştir. Barajın çatlaklı ve çatlaksız durumları rezervuarın boş ve dolu olması durumlarında analizlerin yapılması dinamik davranışta çatlak ve rezervuardaki su etkisi belirlenmeye çalışılmıştır. Bu amaçla baraj modelinde meydana gelen gerilmeler incelenmiştir.

3.2. Modal Analiz Sonuçları

Çatlaklı ve çatlaksız Sarıyar Beton Ağırlık Barajı'nın modal analizine ait sonuçlar Tablo 3.1'de verilmiştir. Yapılan modal analizlerde baraj-zemin modelinde çatlak etkisi gözlemlenmiştir. Tezde çatlak etkisini göstermek için barajın 1., 2. ve 3. modları verilmiştir. Şekil 3.1 ile Şekil 3.12 arasında baraj-zemin modellerinin 1., 2. ve 3. modlarındaki deforme olmuş baraj-zemin modelleri gösterilmiştir.

Deformed Shape (MODAL) - Mode 2; T = 0,1041; f = 9,60623

Şekil 3.2. Çatlaksız barajın boş olması durumunda baraj-zemin modelinin 2. modu (T = 0.1041 s, f = 9.60623 Hz)

Deformed Shape (MODAL) - Mode 1; T = 0,31259; f = 3,19911

Şekil 3.4. Çatlaksız barajın dolu olması durumunda baraj-zemin modelinin 1. modu (T = 0.31259 s, f = 3.19911 Hz)

Deformed Shape (MODAL) - Mode 3; T = 0,09808; f = 10,19562

Şekil 3.6. Çatlaksız barajın dolu olması durumunda baraj-zemin modelinin 3. modu (T = 0.09808 s, f = 10.19562 Hz)

Deformed Shape (MODAL) - Mode 2; T = 0,10452; f = 9,56763

Şekil 3.8. Çatlaklı barajın boş olması durumunda baraj-zemin modelinin 2. modu (T = 0.10452 s, f = 9.56763 Hz)

Deformed Shape (MODAL) - Mode 1; T = 0,33162; f = 3,01547

Şekil 3.10. Çatlaklı barajın dolu olması durumunda baraj-zemin modelinin 1. modu (T = 0.33162 s, f = 3.01547 Hz)

Deformed Shape (MODAL) - Mode 3; T = 0,10079; f = 9,92187

Şekil 3.12. Çatlaklı barajın dolu olması durumunda baraj-zemin modelinin 3. modu (T = 0.10079 s, f = 9.92187 Hz)

			T (s)	f (Hz)				T (s)	f (Hz)
ÇATLAKSIZ BARAJ	Boş	1.Mod	0.23827	4.19693	AKLI BARAJ	Bos	1.Mod	0.25372	3.94140
		2. Mod	0.10410	9.60623		Doğ	2. Mod	0.10452	9.56763
		3. Mod	0.09515	10.50928			3. Mod	0.09877	10.12430
	Dolu	1. Mod	0.31259	3.19911		1. Mod	0.33162	3.01547	
		2. Mod	0.13042	7.66770	ATL	Dolu	2. Mod	0.13282	7.52874
		3. Mod	0.09809	10.19562	- C		3. Mod	0.10079	9.92187

Tablo 3.1. Çatlaklı ve çatlaksız baraj-zemin modellerinin modal analiz değerleri

3.3. Dinamik Analiz Sonuçlarının Değerlendirilmesi

Yakın ve uzak fay yer hareketine maruz çatlaklı ve çatlaksız Sarıyar Beton Ağırlık Barajı'nın dinamik davranışı, 1979 Imperial Valley ve 1989 Loma Prieta depremleri kullanılarak tespit edilmeye çalışılmıştır. Analizlerde, 1979 Imperial Valley depreminin H-E05230 bileşeni ve H-E13230 bileşeni, 1989 Loma Prieta depreminin CLS090 bileşeni ve CYC285 bileşeni kullanılmıştır. Bu bileşenlerden ilki yakın fay, ikincisi ise uzak fay özelliği taşımaktadır (Tablo 2.4; Tablo 2.5). Deprem etkisi baraja memba-mansap doğrultusunda uygulanmıştır. Analizden elde edilen gerilmeler baraj-zemin modelinden elde edilen kontur grafikleriyle, kret yer değiştirmeleri de modelin 1 nolu düğüm noktasından elde edilmiştir.

Analizler sonucu elde edilen kret yer değiştirmeleri, baraj-zemin sonlu eleman modellerine ait yatay (S_{11}), düşey (S_{22}) ve kayma gerilmeleri (S_{12}) incelenmiştir. Analizler sonucu elde edilen bu yer değiştirme ve gerilmeler tezde ayrıntılı olarak verilmiştir.

3.3.1. Yer Değiştirmeler

Baraj davranışının değerlendirilmesinde kret yer değiştirmeleri çok önemli olduğundan, bu yer değiştirmelerin dinamik etki süresince değişimi incelenmiştir. Bu incelemede, 1979 Imperial Valley ve 1989 Loma Prieta depremlerinin yakın ve uzak fay yer hareketine maruz baraj modellerin çatlaklı, çatlaksız, boş ve dolu olması durumları dikkate alınmıştır.

a) 1989 Loma Prieta Depremi İçin Yer Değiştirmeler

Şekil 3.13 ile Şekil 3.20 arasında rezervuarın boş ve dolu olması dikkate alınarak yakın ve uzak fay yer hareketine maruz Sarıyar beton ağırlık barajın kretinde membamansap doğrultusunda elde edilen yer değiştirmelerin dinamik etki süresince değişimi verilmiştir.

Bu yer değiştirmeler incelendiğinde kret noktasının (1 nolu düğüm noktası) maksimum yer değiştirmesi uzak fay etkisindeki çatlaklı-dolu barajda olduğu görülmektedir. Ancak yer değiştirme değerleri bir bütün olarak incelendiğinde yakın fay etkisinin daha etkili olduğu anlaşılmaktadır. Yakın ve uzak fayın barajın kret noktasındaki yer değiştirmesinin hangi faylanma durumunda fazla olduğunun incelenmesi için analizler farklı baraj modelleri için de tekrarlanması gerekmektedir.

Şekil 3.13. İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda yakın fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 3.53 cm)

Şekil 3.14. İki boyutlu dinamik analizde çatlaksız barajın dolu olması durumunda yakın fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 5.26 cm)

Şekil 3.15. İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda uzak fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 2.09 cm)

Şekil 3.16. İki boyutlu dinamik analizde çatlaksız barajın dolu olması durumunda uzak fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 4.16 cm)

Şekil 3.17. İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda yakın fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 3.64 cm)

Şekil 3.18. İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda yakın fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 5.19 cm)

Şekil 3.19. İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda uzak fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 2.16 cm)

Şekil 3.20. İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda uzak fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 5.66 cm)

b) 1979 Imperial Valley Depremi İçin Yer Değiştirmeler

Şekil 3.21 ile Şekil 3.28 arasında rezervuarın boş ve dolu olması dikkate alınarak yakın ve uzak fay yer hareketine maruz Sarıyar beton ağırlık barajın kretinde membamansap doğrultusunda elde edilen yer değiştirmelerin dinamik etki süresince değişimi verilmiştir.

Bu yer değiştirmeler incelendiğinde kret noktasının (1 nolu düğüm noktası) maksimum yer değiştirmesi yakın fay etkisindeki çatlaklı-dolu barajda olduğu görülmektedir. Yakın ve uzak fayın barajın kret noktasındaki yer değiştirmesinin hangi faylanma durumunda fazla olduğunun incelenmesi için analizler farklı baraj modelleri için de tekrarlanması gerekmektedir.

Şekil 3.21. İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda yakın fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 1.74 cm)

Şekil 3.22. İki boyutlu dinamik analizde çatlaksız barajın dolu olması durumunda yakın fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 6.57 cm)

Şekil 3.23. İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda uzak fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 4.83 cm)

Şekil 3.24. İki boyutlu dinamik analizde çatlaksız barajın dolu olması durumunda uzak fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 6.65 cm)

Şekil 3.25. İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda yakın fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 2.30cm)

Şekil 3.26. İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda yakın fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 7.48 cm)

Şekil 3.27. İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda uzak fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 3.12cm)

Şekil 3.28. İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda uzak fay etkisinde kret noktasında (1 nolu düğüm noktası) meydana gelen yatay yer değiştirmelerin zamanla değişimi (Maksimum yer değiştirme 5.27 cm)

3.3.2. Gerilmeler

1979 Imperial Valley ve 1989 Loma Prieta depremlerinin yakın ve uzak fay yer hareketine maruz çatlaklı ve çatlaksız Sarıyar Beton Ağırlık Barajı'nın dinamik davranışı sonucunda baraj-zemin modelinde oluşan S_{11} , S_{22} ve S_{12} gerilmeleri elde edilmiştir.

a) 1989 Loma Prieta Depremi İçin Gerilmeler

Şekil 3.29 ile Şekil 3.52 arasında verilen bu gerilmeler rezervuarın boş ve dolu olması durumu için ayrı ayrı verilmiştir.

Şekil 3.29. İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{11} gerilmeleri (max $S_{11} = 5.481$ MPa, min $S_{11} = 5.843 \times 10^{-4}$ MPa)

Şekil 3.31. İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 5.932$ MPa, min $S_{12} = 0$ MPa)

Şekil 3.33. İki boyutlu dinamik analizde çatlaksız barajın dolu olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{22} gerilmeleri (max $S_{22} = 21.889$ MPa, min $S_{22} = 5.751 \times 10^{-4}$ MPa)

Şekil 3.34. İki boyutlu dinamik analizde çatlaksız barajın dolu olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 11.709$ MPa, min $S_{12} = 0$ MPa)

Şekil 3.35. İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{11} gerilmeleri (max $S_{11} = 4.474$ MPa, min $S_{11} = 5.021 \times 10^{-4}$ MPa)

Şekil 3.37. İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 4.731$ MPa, min $S_{12} = 0$ MPa)

Şekil 3.39. İki boyutlu dinamik analizde çatlaksız barajın dolu olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{22} gerilmeleri (max $S_{22} = 18.151$ MPa, min $S_{22} = 8.752 \times 10^{-4}$ MPa)

Şekil 3.41. İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{11} gerilmeleri (max $S_{11} = 20.152$ MPa, min $S_{11} = 5.150 \times 10^{-4}$ MPa)

Şekil 3.43. İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 12.625$ MPa, min $S_{12} = 0$ MPa)

Şekil 3.44. İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{11} gerilmeleri (max $S_{11} = 29.3$ MPa, min $S_{11} = 3.495 \times 10^{-4}$ MPa)

Şekil 3.45. İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{22} gerilmeleri (max $S_{22} = 97.396$ MPa, min $S_{22} = 8.833 \times 10^{-4}$ MPa)

Şekil 3.46. İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 17.088$ MPa, min $S_{12} = 0$ MPa)

Şekil 3.47. İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{11} gerilmeleri (max $S_{11} = 12.662$ MPa, min $S_{11} = 4.305 \times 10^{-4}$ MPa)

Şekil 3.49. İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 6.875$ MPa, min $S_{12} = 0$ MPa)

Şekil 3.51. İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{22} gerilmeleri (max $S_{22} = 100.369$ MPa, min $S_{22} = 7.641 \times 10^{-4}$ MPa)

Şekil 3.52. İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 14.472$ MPa, min $S_{12} = 0$ MPa)

Şekil 3.29 ile Şekil 3.52 arasında verilen bu gerilmeler incelendiğinde maksimum gerilmenin yakın fay etkisindeki çatlaklı-dolu barajın S₂₂ gerilmesi olduğu görülmektedir. Beton ağırlık barajlarda deprem etkisinde gerilmelerin barajın topuk, burun ve mansap gövdesin olması beklenmektedir. Yapılan incelemelerde bu durum çatlaksız barajın yakın ve uzak fay etkisindeki modellerinde görülmektedir. Çatlaklı barajda ise gerilmeler genel olarak çatlağın bittiği yüzeyde, topuk, burun ve barajın mansap yüzünde oluşmuştur. Şekiller genel olarak incelendiğinde maksimum gerilmenin S₂₂ çekme gerilmesi olduğu görülmüştür. Analizlerden önce yakın fay etkisinin uzak fay etkisinden daha büyük olması beklenmiştir. Yapılan analizler sonucunda uzak fay etkisindeki çatlaklı barajda maksimum S₂₂ gerilmesi görülmüştür. Ancak yapılan analiz sonuçları incelendiğinde barajlarda yakın fay etkisinin daha etkili olduğu görülmüştür. Çatlaklı barajlarda gerilmeler çatlağın bittiği yüzeyde oluşmuştur. Tablo 3.2'de elde edilen gerilmelerin maksimum ve minimum değerleri ve Şekil 3.53'te de maksimum gerilmelerin karşılaştırılması verilmiştir.

		Yakın Fav			Uzak Fav			
LAKLI BARAJ	Boş	S ₁₁	$min=5.150 \times 10^{-4}$ max=20.152	MPa MPa		S ₁₁	$min=4.305 \times 10^{-4}$ max= 12.662	MPa MPa
		S ₂₂	$min=3.667 \times 10^{-4} max=67.124$	MPa MPa	Boş	S ₂₂	$min= 2.388 \times 10^{-4}$ max= 42.116	MPa MPa
		S ₁₂	min= 0 max= 12.625	MPa MPa		S ₁₂	min= 0 max= 6.875	MPa MPa
	Dolu	S ₁₁	$min= 3.495 \times 10^{-4}$ max= 29.30	MPa MPa		S ₁₁	$min = 4.273 \times 10^{-4}$ $max = 30.129$	MPa MPa
ÇAT		S ₂₂	$min= 8.833 \times 10^{-4}$ max= 97.396	MPa MPa	Dolu	S ₂₂	$min=7.641 \times 10^{-4}$ max=100.369	MPa MPa
		S ₁₂	min= 0 max= 17.088	MPa MPa		S ₁₂	min= 0 max= 14.472	MPa MPa
	Boş	S ₁₁	$min= 5.843 X 10^{-4}$ max= 5.481	MPa MPa		S ₁₁	$min= 5.021 \times 10^{-4}$ max= 4.474	MPa MPa
RAJ		S ₂₂	$min=4.077 \times 10^{-4}$ max=11.775	MPa MPa	Boş	S ₂₂	$min=3.556 \times 10^{-4}$ max=9.031	MPa MPa
IZ BA		S ₁₂	min= 0 max= 5.932	MPa MPa		S ₁₂	min=0 $max=4.731$	MPa MPa
LAKS	Dolu	S ₁₁	$min=2.632 \times 10^{-4}$ max=10.871	MPa MPa		S ₁₁	$min=4.213 \times 10^{-4}$ max=8.973	MPa MPa
ÇATI		S ₂₂	$min=5.751 \times 10^{-4}$ max=21.889	MPa MPa	Dolu	S ₂₂	$min=8.752x10^{-4} max=18.151$	MPa MPa
		S ₁₂	min= 0 max= 11.709	MPa MPa		S ₁₂	min= 0 max= 9.664	MPa MPa

Tablo 3.2. Yakın ve uzak fay etkisinde çatlaklı ve çatlaksız baraj-zemin modellerinde oluşan gerilme değerleri (1989 Loma Prieta Depremi)

1989 Loma Prieta Depremi

um Gerilmeler Catlaksız-Dolu 1989 Loma Prieta Depremi

b) 1979 Imperial Valley Depremi İçin Gerilmeler

Şekil 3.53 ile Şekil 3.76 arasında verilen bu gerilmeler rezervuarın boş ve dolu olması durumu için ayrı ayrı verilmiştir.

Şekil 3.54. İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{11} gerilmeleri (max $S_{11} = 3.538$ MPa, min $S_{11} = 8.471 \times 10^{-4}$ MPa)

Şekil 3.55. İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{22} gerilmeleri (max $S_{22} = 7.163$ MPa, min $S_{22} = 4.058 \times 10^{-4}$ MPa)

Şekil 3.56. İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 3.749$ MPa, min $S_{12} = 0$ MPa)

Şekil 3.58. İki boyutlu dinamik analizde çatlaksız barajın dolu olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{22} gerilmeleri (max $S_{22} = 26.241$ MPa, min $S_{22} = 0.001$ MPa)

Şekil 3.59. İki boyutlu dinamik analizde çatlaksız barajın dolu olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 13.753$ MPa, min $S_{12} = 0$ MPa)

Şekil 3.60. İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{11} gerilmeleri (max $S_{11} = 7.765$ MPa, min $S_{11} = 8.782 \times 10^{-4}$ MPa)

Şekil 3.62 İki boyutlu dinamik analizde çatlaksız barajın boş olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 8.426$ MPa, min $S_{12} = 0$ MPa)

Şekil 3.64. İki boyutlu dinamik analizde çatlaksız barajın dolu olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{22} gerilmeleri (max $S_{22} = 26.069$ MPa, min $S_{22} = 0.001$ MPa)

Şekil 3.66. İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{11} gerilmeleri (max $S_{11} = 12.161$ MPa, min $S_{11} = 7.894 \times 10^{-4}$ MPa)

Şekil 3.68. İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 7.742$ MPa, min $S_{12} = 0$ MPa)

Şekil 3.70. İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{22} gerilmeleri (max $S_{22} = 146.238$ MPa, min $S_{22} = 8.425 \times 10^{-4}$ MPa)

Şekil 3.71. İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda yakın fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 21.607$ MPa, min $S_{12} = 0$ MPa)

Şekil 3.72. İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{11} gerilmeleri (max $S_{11} = 17.067$ MPa, min $S_{11} = 4.877 \times 10^{-4}$ MPa)

Şekil 3.74. İki boyutlu dinamik analizde çatlaklı barajın boş olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 10.234$ MPa, min $S_{12} = 0$ MPa)

Şekil 3.76. İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{22} gerilmeleri (max $S_{22} = 98.906$ MPa, min $S_{22} = 0.001$ MPa)

Şekil 3.77. İki boyutlu dinamik analizde çatlaklı barajın dolu olması durumunda uzak fay etkisinde baraj-zemin modelinde meydana gelen S_{12} gerilmeleri (max $S_{12} = 16.091$ MPa, min $S_{12} = 0$ MPa)

Şekil 3.53 ile Şekil 3.76 arasında verilen bu gerilmeler incelendiğinde maksimum gerilmenin yakın fay etkisindeki çatlaklı-dolu barajın S₂₂ gerilmesi olduğu görülmektedir. Beton ağırlık barajlarda deprem etkisinde gerilmelerin barajın topuk, burun ve mansap gövdesinde olması beklenmektedir. Yapılan incelemelerde bu durum çatlaksız barajın yakın ve uzak fay etkisindeki modellerinde görülmektedir. Çatlaklı barajda ise gerilmeler genel olarak çatlağın bittiği yüzeyde, topuk, burun ve barajın mansap yüzünde oluşmuştur. Şekiller genel olarak incelendiğinde maksimum gerilmenin S₂₂ çekme gerilmesi olduğu görülmüştür. Analizlerden önce yakın fay etkisinin uzak fay etkisinden daha büyük olması beklenmiştir. Yapılan analizler sonucunda yakın fay etkisindeki çatlağın bittiği yüzeyde oluşmuştur. Tablo 3.3'te elde edilen gerilmelerin maksimum ve minimum değerleri ve Şekil 3.78'de de maksimum gerilmelerin karşılaştırılması verilmiştir.

	Yakın Fav					Uzak Fav			
ÇATLAKLI BARAJ	Boş	S ₁₁	$min = 7.894 \times 10^{-4}$ $max = 12.161$	MPa MPa		S ₁₁	$min = 4.877 \times 10^{-4}$ max = 17.067	MPa MPa	
		S ₂₂	$\frac{\text{min} = 12.101}{\text{min} = 3.434 \times 10^{-4}}$ $\frac{\text{max} = 40.337}{\text{max} = 40.337}$	MPa MPa	Boş	S ₂₂	$min=3.273 \times 10^{-4}$ $max=56.928$	MPa MPa	
		S ₁₂	min= 0 max=7.742	MPa MPa		S ₁₂	min=0 $max=10.234$	MPa MPa	
	Dolu	S ₁₁	$min=7.384x10^{-4}$ max=43.943	MPa MPa		S ₁₁	$min=7.143x10^{-4}$ max=29.812	MPa MPa	
		S ₂₂	$min = 8.425 \times 10^{-4}$ $max = 146.238$	MPa MPa	Dolu	S ₂₂	min= 0.001 max= 98.906	MPa MPa	
		S ₁₂	min= 0 max= 21.607	MPa MPa		S ₁₂	min= 0 max= 16.091	MPa MPa	
ÇATLAKSIZ BARAJ	Boş	S ₁₁	$min = 8.471 \times 10^{-4}$ max = 3.538	MPa MPa		S ₁₁	$min= 8.782 \times 10^{-4}$ max= 7.765	MPa MPa	
		S ₂₂	$min=4.058 \times 10^{-4}$ max=7.163	MPa MPa	Boş	S ₂₂	min= 5.318×10^{-4} max= 16.393	MPa MPa	
		S ₁₂	min=0 $max=3.749$	MPa MPa		S ₁₂	min=0 $max=8.426$	MPa MPa	
	Dolu	S ₁₁	$min=7.713x10^{-4}$ max=12.579	MPa MPa		S ₁₁	$min= 5.438 \times 10^{-4}$ max= 12.582	MPa MPa	
		S ₂₂	min= 0.001 max= 26.241	MPa MPa	Dolu	S ₂₂	min= 0.001 max= 26.069	MPa MPa	
		S ₁₂	min= 0 max= 13.753	MPa MPa		S ₁₂	min= 0 max= 13.592	MPa MPa	

Tablo 3.3. Yakın ve uzak fay etkisinde çatlaklı ve çatlaksız baraj-zemin modellerinde oluşan gerilme değerleri (1979 Imperial Valley Depremi)

1979 Imperial ValleyDepremi 200 Catlaklı-Bos-Yakın Fay Catlaklı-Boş-Uzak Fay 150 Catlaksız-Boş-Yakın Fay MPa 100 Catlaksız-Boş-Uzak Fay 50 Catlaklı-Dolu-Yakın Fay Catlaklı-Dolu-Uzak Fay 0 S22 Catlaksız-Dolu-Yakın Fay Maksimum Gerilmeler Catlaksız-Dolu-Uzak Fay

Şekil 3.78. Yakın ve uzak fay etkisinde çatlaklı ve çatlaksız baraj-zemin modellerinde oluşan gerilme değerlerinin karşılaştırılması (1979 Imperial Valley Depremi)

4. SONUÇ VE ÖNERİLER

Bu tez çalışmasında, baraj-su-zemin etkileşimi dikkate alınarak yakın ve uzak fay yer hareketine maruz çatlaklı beton ağırlık barajların dinamik davranışı incelenmiştir. Bu amaçla, Ankara'nın 120km kuzey batısında Sakarya nehri üzerinde 1956 yılında inşa edilmiş olan Sarıyar beton ağırlık barajı kullanılmıştır.

Analizler, adım-adım integrasyon tekniği ile Newmark metodu kullanılarak gerçekleştirilmiştir. İntegrasyon için zaman adımı 0.005 saniyedir. Bu çalışmada Rayleigh sönüm sabitleri, %5 sönüm oranı kabul edilerek 2 ile 15Hz frekans aralığı için hesaplanmıştır. Seçilen beton ağırlık baraj çatlaklı ve çatlaksız kesitlerinin dinamik analizleri, SAP2000 yapı analiz programı ile gerçekleştirilmiştir.

Bu tezde, 1979 Imperial Valley ve 1989 Loma Prieta depreminde kaydedilen yakın ve uzak fay yer hareketi özelliği taşıyan toplam dört kayıt kullanılmıştır. 1979 Imperial Valley depreminin yakın ve uzak fay yer hareketleri sırasıyla 0.379g ve 0.139g maksimum ivme değerlerine sahiptir. Tezde, bu yakın ve uzak fay yer hareketlerinin etkisini inceleyebilmek için bu yer hareketleri 0.40g'ye ölçeklendirilmiştir. 1989 Loma Prieta depreminin yakın ve uzak fay yer hareketleri de sırasıyla 0.48g ve 0.48g maksimum ivme değerlerine sahiptir. Yakın ve uzak fay yer hareketi, baraja memba-mansap doğrultusunda (yatay) uygulanmıştır. 1979 Imperial Valley ve 1879 Loma Prieta depremlerinde en büyük ivmeler ilk 20 saniye içerisinde oluştuğu için analizlerde seçilen yakın ve uzak fay yer hareketi kayıtlarının sadece ilk 20 saniyesi kullanılmıştır.

Bu tez çalışmasında ilk olarak, Sarıyar beton ağırlık barajında meydana gelebilecek çatlak boyu tespit edilmiştir. Bunun için USACE (2000)'deki yöntem kullanılmıştır. Çatlak boyu tespit edildikten sonra çatlaklı ve çatlaksız Sarıyar beton ağırlık barajının sonlu eleman modeli önce AutoCAD programında çizilmiş daha sonra SAP2000 programına aktarılmıştır.

Yakın ve uzak fay yer hareketine maruz çatlaklı ve çatlaksız beton ağırlık barajların dinamik analizleri neticesinde, barajın kret yer değiştirmeleri, baraj-zemin sonlu eleman modellerine ait yatay (S_{11}), düşey (S_{22}) ve kayma gerilmeleri (S_{12}) incelenmiştir. Analizler sonucu elde edilen bu yer değiştirme ve gerilmeler tezde ayrıntılı olarak verilmiştir.

Yapılan analizler sonucu elde edilen bulgulardan çıkarılan sonuçlar maddeler halinde sıralamak gerekirse;

- Analizlerde görülmüştür ki; rezervuar varlığı baraj davranışını önemli ölçüde etkilemektedir. Bu sebeple, beton ağırlık barajların dinamik analizlerinde baraj-zemin ve baraj-rezervuar-zemin etkileşimi dikkate alınmalıdır.
- Dinamik analiz sonuçlarına göre, çatlaksız ve çatlaklı baraj için en elverişiz durum barajın dolu olması halidir.
- Yakın ve uzak fay yer hareketine maruz beton ağırlık baraj davranışına hidrodinamik etki, rezervuarın boş ve dolu olması durumunda elde edilen yer değiştirme ve gerilme değerlerinde açıkça görülmektedir.
- 4) Yakın fay yer hareketine maruz çatlaksız ve çatlaklı beton ağırlık barajının kret yer değiştirmeleri karşılaştırıldığında, beklenildiği gibi rezervuarın boş ve dolu olması durumunda barajın çatlaklı olması durumunda çatlaksız olduğu durumdakine göre daha büyük yer deriştirmeler elde edilmiştir.
- 5) Bu çalışmada iki farklı zamanda meydana gelen depremlerde kaydedilen yakın ve uzak fay yer hareketleri kullanılmıştır. Dinamik analiz sonuçları değerlendirildiğinde; 1979 Imperial Valley depreminde uzak fay yer hareketinin, 1989 Loma Prieta depreminde ise yakın fay yer hareketinin daha etkili olduğu gözlemlenmiştir. Sonuçların genelleştirilebilmesi için deprem kayıtlarının artırılması gerekmektedir.
- 6) Dinamik analiz sonuçlarına göre, çatlaksız ve çatlaklı baraj davranışının her iki depremin yakın ve uzak fay yer hareketinde yukarıda bahsedildiği gibi değişik bir durum sergilemesine sebep olarak barajın frekans içeriğinin yakın ve uzak fay yer hareketi frekans içeriklerinden farklı olması gösterilebilir.

1979 Imperial Valley depremi dikkate alındığında;

- a) Uzak fay yer hareketine maruz çatlaksız ve çatlaklı beton ağırlık barajının kret yer değiştirmeleri karşılaştırıldığında, rezervuarın boş ve dolu olması durumunda barajın çatlaklı olması halinde çatlaksız olduğu zamankine göre daha büyük yer değiştirmeler beklenirken, beklenenin aksine daha küçük çıkmıştır.
- b) Yakın fay yer hareketine maruz çatlaksız ve çatlaklı beton ağırlık baraj davranışı karşılaştırıldığında, çatlaklı barajda elde edilen yer değiştirme ve gerilmeler çatlaksız barajda elde edilenlere göre daha büyük değerler almıştır. Uzak fay yer

hareketine maruz çatlaksız ve çatlaklı beton ağırlık baraj davranışı karşılaştırıldığında ise, yer değiştirmede çatlaksız barajda elde edilenler daha büyük değerler almışken, gerilmelerde ise çatlaklı barajda elde edilenler daha büyük değerler almıştır.

1989 Loma Prieta depremi dikkate alındığında;

- a) Uzak fay yer hareketine maruz çatlaksız ve çatlaklı beton ağırlık barajının kret yer değiştirmeleri karşılaştırıldığında, rezervuarın boş ve dolu olması durumunda barajın çatlaklı olması halinde çatlaksız olduğu zamankine göre daha büyük yer değiştirmeler elde edilmiştir.
- b) Yakın fay yer hareketine maruz çatlaksız ve çatlaklı beton ağırlık baraj davranışı karşılaştırıldığında, çatlaklı barajda elde edilen yer değiştirme ve gerilmeler çatlaksız barajda elde edilenlere göre daha büyük değerler almıştır. Uzak fay yer hareketine maruz çatlaksız ve çatlaklı beton ağırlık baraj davranışı karşılaştırıldığında ise, çatlaklı barajda elde edilen yer değiştirme ve gerilmeler çatlaksız barajda elde edilenlere göre daha büyük değerler almıştır.

Yakın ve uzak fay yer hareketine maruz çatlaksız ve çatlaklı Sarıyar beton ağırlık barajının dinamik analizinden çıkarılan yukarıdaki sonuçlar, tüm beton ağırlık barajlar için uygun olmayabilir. Çünkü baraj-zemin ve baraj-su-zemin etkileşimi, baraj ve yer hareketlerine bağlı olarak farklılık gösterebilir. Bununla birlikte, elde edilen genel sonuçlar çoğu durum için geçerlidir.

Sarıyar beton ağırlık barajının dinamik analizlerinden elde edilen sonuçlardan sonra, aşağıdaki hususların üzerinde durulması, araştırma ve incelemelerin devam ettirilmesi tavsiye edilmektedir:

 Bu çalışma ile deprem etkilerinin yön değiştirebilir olması nedeni ile beton malzemeden inşa edilen beton ağırlık barajların büyük çekme gerilmelerine maruz kaldığı analizler sonucu görülmüştür. Betonun basınca oranla çekme gerilmelerine dayanımı çok küçüktür. Dolayısıyla beton ağırlık barajlarda yakın ve uzak fay yer hareketi ile hidrodinamik etki sonucu oluşacak muhtemel çekme gerilmelerinin oluşturacağı çatlakların oluşumu ve yayılışı detaylı olarak incelenmelidir.

- 2) Bu çalışmada, beton ağırlık barajın dinamik analizinde yakın ve uzak fay yer hareketinin sadece yatay bileşeni dikkate alınmıştır. Yer hareketinin düşey bileşeni de dikkate alınarak, yatay ve düşey yer hareketine maruz beton ağırlık barajın dinamik davranışı incelenmelidir.
- Rezervuar tabanında biriken sediment tabakasının beton ağırlık barajının dinamik davranışına etkisi de incelenmelidir.

5. KAYNAKLAR

- Ahmadi, M. and Razavi, S., 1992. A Three-Dimensional Joint Opening Analysis of An Arch Dam, <u>Computers & Structures</u>, 44,1-2, 187-192.
- Akköse, M. ve Gül, F., 2009. Yakın Ve Uzak-Fay Yer Hareketine Maruz Beton Ağırlık Barajlarda Boyut Etkisi, Uluslararası Katılımlı II. Ulusal Baraj Güvenliği Sempozyumu ve Sergisi, Eskişehir, Bildiriler Kitabı, 553-556.
- Akköse, M., 1997. Kemer Barajların Lineer ve Lineer Olmayan İki ve Üç Boyutlu Statik ve Dinamik Analizi, Yüksek Lisans Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon, Türkiye.
- Akköse, M., 2004. Lagrange Yaklaşımı İle Kemer Baraj-Su-Zemin Sistemlerinin Malzeme Bakımından Lineer ve Lineer Olmayan Dinamik Analizi, Doktora Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon, Türkiye.
- AutoCAD, 2014. Autodesk AutoCAD 2014, USA.
- Bathe, K.J., 1982. Finite Element Procedures in Engineering Analysis, Prentice-Hall, New Jersey.
- Bathe, K.J., 1996. Finite Element Procedures in Engineering Analysis, Prentice-Hall, New Jersey.
- Bayraktar, A., 1995. Asinkronize Yer Hareketi Etkisindeki Baraj-Rezervuar-Temel Sistemlerinin Dinamik Davranışı, Doktora Tezi, K.T.Ü, Fen Bilimleri Enstitüsü, Trabzon, Türkiye.
- Bfer, G., 1985. An Isoparametric Joint/Interface Element for Finite Element Analysis, International Journal for Numerical Methods in Engineering, 21,4, 585-600.
- Calayır, Y., 1994. Beton Ağırlık Barajların Euler ve Lagrange Yaklaşımları Kullanılarak Dinamik Analizi, Doktora Tezi, K.T.Ü, Fen Bilimleri Enstitüsü, Trabzon, Türkiye.
- Chopra, A. K., 1995. Dynamics of Structures, A Primer, 2, Earthquake Engineering Research.
- Chou, P. and Pagano, N., Elasticity, D. 1967. Van Nostrand Company, Inc., Princeton, New Jersey, 20.
- Dowling, M. J. and Hall, J. F., 1989. Nonlinear Seismic Analysis of Arch Dams, <u>Journal of Engineering Mechanics</u>, 115,4, 768-789.
- Dowling, M.J, 1989. Nonlinear Seismic Analysis of Arch Dams, Doktora Tezi, California Institue of Technology, Pasadena, California.

- Dumanoğlu, A. ve Oskouei, V., 1999. Beton Ağırlık Barajlarının Dinamik Davranışına Çatlak Etkisi, <u>Türkiye Deprem Vakfı</u>, TDV/TR 021-35.
- Durieux, J. H. and Van Rensburg, B., 2016. Development of A Practical Methodology for The Analysis of Gravity Dams Using The Non-Linear Finite Element Method, Journal of The South African Institution of Civil Engineering, 58,2, 2-13.
- Fenves, G. L., Mojtahedi, S. and Reimer, R. B., 1992. Effect of Contraction Joints on Earthquake Response of An Arch Dam, <u>Journal of Structural Engineering</u>, 118,4, 1039-1055.
- Gedik, N., Su Yapıları Ders Notu, Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü. http://insaat.balikesir.edu.tr/dokumanlar/suyapilari/barajlar.pdf 15 Mart 2019
- Graves, R. H. and Derucher, K. N., 1987. Interface Smeared Crack Model Analysis of Concrete Dams in Earthquakes, <u>Journal of Engineering Mechanics</u>, 113,11, 1678-1693.
- Gül, F., 2009. Yakın ve Uzak-Fay Yer Hareketine Maruz Beton Ağırlık Barajların Yapısal Performansına Boyut Etkisinin İncelenmesi, Yüksek Lisans Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon, Türkiye.
- Hillerborg, A. and Rots, J., 1989. Crack Concepts and Numerical Modelling, Fracture Mechanics of Concrete Structures: From Theory to Applications, 128-146.
- Jiang, S.-y. and Du, C.-b., 2012. Seismic Stability Analysis of Concrete Gravity Dams With Penetrated Cracks, <u>Water Science and Engineering</u>, 5,1, 105-119.
- Kanenawa, K.-i., Sasaki, T. and Yamaguchi, Y., 2003. Advanced Research Activities on Dynamic Analysis for Concrete Dams in Japan and an Study on Seismic Performance of Concrete Gravity Dams by Smeared Crack Model, Proc. 35th Joint Meeting US-Japan Panel on Wind and Seismic Effects, 17.
- Karaca, S., 2016, Çatlaklı Elastik Kirişlerin Dinamik Davranışlarının Analitik, Sayısal Ve Deneysel Yöntemlerle İncelenmesi, Yüksek Lisans Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon, Türkiye.
- Kayabalı, K., 2003. Geoteknik Deprem Mühendisliği, Gazi Kitabevi, Ankara.
- Liao, W.-I., Loh, C.-H. and Lee, B.-H., 2004. Comparison of Dynamic Response of Isolated and Non-Isolated Continuous Girder Bridges Subjected to Near-Fault Ground Motions, <u>Engineering Structures</u>, 26,14, 2173-2183.
- Nitikitpaiboon, C. and Bathe, K., 1993. An arbitrary Lagrangian-Eulerian Velocity Potential Formulation for Fluid-Structure Interaction, <u>Computers & Structures</u>, 47,4-5, 871-891.
- Öziş, Ü. ve Alsan, M., 1990. Beton Baraj İnşaatının Türkiye'de Gelişimi, İMO Teknik Dergi, 3, 147-158.

- Polat, Ö., Silindirle Sıkıştırılmış Beton Baraj Uygulamaları. https://www.slideshare.net/OncuPolat/silindirle-sktrlm-beton-baraj-uygulamalari 15 Mart 2019
- Rot, G., 1989. Smeared Crack Approch, Fracture Mechanics of Concerete Structures, Elfgren, L., Chapman and Hall.
- SAP2000, 2008. Integrated Finite Element Analysis and Design of Structures, Computers and Structures, Inc., Berkeley, California, USA.
- Schnobrich, W.C., Salem, M.H., Pecknold, D.A. and Mohraz, B., 1972. Nonlinear Stress Analysis of Reinforced Concrete, <u>Journal of the Structural Division</u>, 98,10, 2327-2328.
- Timoshenko, S., and Goodier, E., 1969. Elastisite Teorisi (Çev., Kayan İ. ve Şuhubi E.), Arı Kitabevi, İstanbul.
- URL-1, https://ngawest2.berkeley.edu/site, 23 Haziran 2019
- USACE, 1995. Gravity Dam Design, Engineer Research and Development Center, Washington.
- USACE, 2000. Evaluation and comparison of stability analysis and uplift criteria for concrete gravity dams by three federal agencies, Engineer Research and Development Center, Washington.
- USACE, 2003. Time history dynamic analysis of concrete hydraulic structures, Engineer Research and Development Center, Washington.
- Wang, G., Zhang, S., Wang, C. and Yu, M., 2014. Seismic Performance Evaluation of Dam-Reservoir-Foundation Systems to Near-Fault Ground Motions, <u>Natural Hazards</u>, 72,2, 651-674.
- Westergaard, H. M., 1933. Water Pressures on Dams During Earthquakes, Trans. <u>ASCE</u>, 95, 418-433.
- Wilson, E. L. ve Khalvati, M., 1983. Finite Elements for The Dynamic Analysis of Fluid Solid Systems, <u>International Journal for Numerical Methods in Engineering</u>, 19,11, 1657-1668.
- Wilson, E.L., Ed Wilson's Web Site, Fluid-Structure Interaction. http://www.edwilson.org/Book/23-Fluid.pdf 19 Mayıs 2015
- Wilson, E.L., Ed Wilson's Web Site, Soil-Structure Interaction. http://www.edwilson.org/BOOK-Wilson/16-SSI.pdf 12 Mayıs 2019
- Yamaguchi, Y., Hall, R., Sasaki, T., Matheu, E., Kanenawa, K.-i., Chudgar, A. and Yule, D., 2004. Seismic Performance Evaluation of Concrete Gravity Dams, Proceedings of the 13th World Conference on Earthquake Engineering.

- Zhang, S. and Wang, G., 2013. Effects of Near-Fault and Far-Fault Ground Motions on Nonlinear Dynamic Response and Seismic Damage of Concrete Gravity Dams, <u>Soil Dynamics and Earthquake Engineering</u>, 53, 217-229.
- Zhang, S., Wang, G. and Yu, X., 2013. Seismic Cracking Analysis of Concrete Gravity Dams With Initial Cracks Using The Extended Finite Element Method, <u>Engineering Structures</u>, 56, 528-543.
- Zienkiewicz, O. and Bettess, P., 1978. Fluid Structure Dynamic Interaction and Wave Forces. An Introduction to Numerical Treatment, <u>International Journal for</u> <u>Numerical Methods in Engineering</u>, 13,1, 1-16.
- Zienkiewicz, O., 1964. Hydrodynamic pressures due to earthquakes, <u>Water Power</u>, 8, 382-388.

Ek 1. Fortran 90 Çatlak Uzunluğu Hesabı Kodu

• Veri girişi yapılacak dosya içeriği (.txt uzantılı dosya);

-----Baraj Tip Kesiti------


```
---Barajın Düğüm Noktası Sayısını Giriniz (d)---
6
---Barajın Köşe Koordinatlarını (i,j) Şeklinde Şekle Göre Sırasıyla Giriniz (m)---
00
72 0
1075 87.5
10.75 90
3.75 90
3.75 25
3.75 0
10.75 0
---Taban Genişliğini giriniz (l) (m)---
1
---Hazne Suyu Seviyesini (H1) giriniz (Memba Su Seviyesi) (m)---
90
---Kuyruk Suyu Seviyesini (H2) giriniz (Mansap Su Seviyesi) (m)---
5
---Beton Yoğunluğunu giriniz (gamaC) (kN/m^3)---
23.20
---Su Yoğunluğunu giriniz (gamaW) (kN/m^3)---
10
---Drenaj etkisinini giriniz (E)---
0.25
```

```
---Galeri yüksekliğini (H4) giriniz (m)---
15
---Topuktan itibaren dren mesafesini (xd) giriniz (m)---
7.5
```

• Fortran 90 programında yazılan kodlama;

```
Program catlak_boyu_hesabi
   Implicit None
   integer:: iterasyon, i, j, l, d
   Real,allocatable:: A(:,:)
   Real:: gamaC, gamaW, Al1, Al2, Al3
   Real:: xd, H1, H2, H4, B
   Real:: Bold, Bnew, T, Tnew, W
   Real:: xt, Vw, H3i, H3, U1
   Real:: U23, U45, U, N, Mw1
   Real:: Mw2, Mw, M1, M2, M3
   Real:: Mu1, Mu2, Mu3, Mu4, Mu5
   Real:: Mu, M, ei, B6, xoi
   Real:: Pmax, H1cr, H3cri, H3cr
   Real:: Mw3, M4, E
   Real:: Vwi1, Vwi2, M5
   open(10,file='veriler.txt',status='old')
   open(11,file='sonuclar.txt',status='old')
   write(11,*) '-----'SONUÇLAR-----'
   read(10,*) ! Baraj şekli veriler klasöründe okutulmadan geçilir
   read(10,*) !
   read(10,*) !
   read(10,*) !
                                  5
                                             4
                                              1
   read(10,*) !
   read(10,*) !
   read(10,*) !
    read(10,*) !
                                           3
                                             read(10,*) !
    read(10,*) !
                                              | \rangle
    read(10,*) !
    read(10,*) !
    read(10,*) !
    read(10,*) !
    read(10,*) !
    read(10,*) !
                                  6
    read(10,*) !
   read(10,*) !
   read(10,*) !
                                      I_I
   read(10,*) !
   read(10,*) !
   read(10,*) !
                                              I
   read(10,*) !
                            1
                                                            \2/
                                             8
   read(10,*) !
```

```
read(10,*)
    read(10,*) d !Barajın düğüm noktası sayısı dosyadan okutulur
    allocate (A(d+2,2)) !Barajın köşe noktalarının koordinatlarını içeren matris
oluşturulur
    read(10,*)
    Do i=1,d+2
        read(10,*)(A(i,j),j=1,2) !Matrise koordinat değerleri girdirtilir
    enddo
    read(10,*)
    read(10,*) l !Baraj 1 birim genişlik için çözümleneceğinden taban genişliği 1
olarak okutulur
   read(10,*)
    read(10,*) H1 !Hazne suyu seviyesi okutulur
    read(10,*)
    read(10,*) H2 !Kuyruk suyu seviyesi okutulur
    read(10,*)
    read(10,*) gamaC !Beton yoğunluğu okutulur
    read(10,*)
    read(10,*) gamaW !Su yoğunluğu okutulur
    read(10,*)
    read(10,*) E !Drenaj etkisi okutulur
    read(10,*)
    read(10,*) H4 !Galeri yüksekliği okutulur
    read(10,*)
    read(10,*) xd !Topuktan itibaren dren mesafesi okutulur
```


!Geometrik şekillerin alanları hesaplatılır

Al1=(1./2.)*((A(7,1)-A(1,1))*(A(6,2)-A(7,2))) !1 numaralı alan hesaplatılır Al2=(A(8,1)-A(7,1))*(A(4,2)-A(8,2)) !2 numaralı alan hesaplatılır Al3=(1./2.)*((A(2,1)-A(8,1))*(A(3,2)-A(8,2))) !3 numaralı alan hesaplatılır

!Çatlak boyunu hesaplatmak için başta çatlak boyunun T=0 olduğu kabul edilir !Eksantriste değerinin (e=M/N) taban orta noktasının ((B=(L-T))/2) 3'de 1'inden (B/6) küçük olması durumunda çatlak boyu hesaplatılır

!Karar mekanizması yukaridaki açıklamaya göre hazırlanmıştır

```
if ((T.lt.xd).and.(H4.gt.H2)) then
T=0
iterasyon=0
Do
    iterasyon=iterasyon+1
    B=A(2,1)-T
    Bold=B
    W=l*gamaC*(Al1+Al2+Al3)
    xt=A(2,1)-(H2*((A(2,1)-A(8,1))/A(3,2)))
    Vw=l*gamaW*(1./2.)*((A(2,1)-A(1,1))-xt)*H2
    Vwi1=l*gamaW*(H1-A(6,2))*(A(7,1)-A(1,1))
    Vwi2=l*gamaW*(1./2.)*A(6,2)*(A(7,1)-A(1,1))
    H3i=(H1-H2)*((A(2,1)-xd)/(A(2,1)-T))+H2
    H3=(H3i-H4)*(1-E)+H4
    U1=l*gamaW*H1*T
    U23=1*gamaW*(1./2.)*(H1+H3)*(xd-T)
    U45=1*gamaW*(1./2.)*(H3+H2)*(A(2,1)-xd)
    U=U1+U23+U45
    N=W+Vw+Vwi1+Vwi2-U
    ! Bütün momentler taban orta noktasına göre alınmaktadır
   Mw1=l*gamaC*Al1*((2./3.)*A(7,1)-(B/2.)-T)
    Mw2=l*gamaC*Al2*(A(7,1)+((A(4,1)-A(5,1))/2.)-(B/2.)-T)
```

```
Mw3=l*gamaC*Al3*(A(7,1)+(A(4,1)-A(5,1))+(1./3.)*(A(2,1)-A(8,1))-(B/2.)-T)
Mw=Mw1+Mw2+Mw3
M1=Vw*((1./3.)*(2.*A(2,1)+xt)-(B/2.)-T)
M2=Vwi1*((1./2.)*A(7,1)-(B/2.)-T)
M3=Vwi2*((1./3.)*A(7,1)-(B/2.)-T)
M4=l*gamaW*(1./6.)*(H1**3)
M5=-l*gamaW*(1./6.)*(H2**3)
Mu1=l*gamaW*H1*T*((B/2.)+T-(T/2.))
Mu2=l*gamaW*H3*(xd-T)*((B/2.)+T-((xd+T)/2.))
Mu3=l*gamaW*(1./2.)*(H1-H3)*(xd-T)*((B/2.)+T-((2*T+xd)/3.))
Mu4=l*gamaW*H2*(A(2,1)-xd)*((B/2.)+T-((xd+A(2,1))/2.))
Mu5=l*gamaW*(1./2.)*(H3-H2)*(A(2,1)-xd)*((B/2.)+T-((2*xd+A(2,1))/3.))
Mu=Mu1+Mu2+Mu3+Mu4+Mu5
M=Mw+M1+M2+M3+M4+M5+Mu
ei=M/N
B6=B/6.
xoi=-((B**2)/(12*ei))
Bnew=(1./2.)*Bold-xoi
Tnew=A(2,1)-Bnew
T=Tnew
if (ei.le.B6) EXIT
```

```
Enddo
```

ÖZGEÇMİŞ

Tekin Çağatay PARILTAN, 1992 yılında Trabzon'da doğdu. 2011 yılında girdiği Öğrenci Seçme ve Yerleştirme Sınavı'nın sonucunda Karadeniz Teknik Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü'nde "Lisans" eğitimi almaya hak kazandı. Derslerinde göstermiş olduğu başarılar neticesinde 2012 yılında Harita Mühendisliği Bölümü'nde Çift Anadal Programı'na başladı. 2015 yılında İnşaat Mühendisi ve Harita Mühendisi olarak mezun oldu ve lisans eğitimlerini tamamladı. Aynı yıl Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı'nda "Yüksek Lisans" eğitimine başladı. 2017 yılından beri özel sektörde çalışan Tekin Çağatay PARILTAN şantiye şefi olarak görevine devam etmekte olup, iyi derecede İngilizce bilmektedir.