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Düzgün iç ve dıĢ basınç gibi eksenel simetrik olan ve/veya rüzgâr ve deprem gibi 

eksenel simetrik olmayan yüklere maruz kalan eksenel simetrik yapıların statik, serbest ve 

zorlanmıĢ titreĢim analizleri harmonik sonlu eleman yöntemiyle halka elemanlar 

kullanarak incelenmiĢtir. Harmonik sonlu eleman yönteminde eksenel simetrik olmayan 

yüklerin Fourier serileri Ģeklinde ifade edilmesiyle üç boyutlu problemler iki boyuta, iki 

boyutlu düzlem problemler de bir boyuta indirgenebilmektedir. Böylece her Fourier terimi 

için düzlem eksenel simetrik benzeri analiz yapılır ve eksenel simetrik olmayan yük 

altındaki problemin tam çözümü yeterli sayıda terim çözümlerinin süperpozisyonuyla elde 

edilir. Bu amaçla Matlab yardımıyla bir bilgisayar programı kodlanmıĢtır. Programın 

güvenilirliği iç basınçlı kalın cidarlı silindir, dönen ince disk ve basit mesnetli ince plak 

gibi kesin çözümü elde edilebilen örneklerle kontrol edilmiĢtir. ÇalıĢmada dörtgen en-

kesitli 4 ve 9 düğüm noktası bulunan iki halka eleman kullanılmıĢtır. Bu iki eleman 

sonuçların hassasiyeti ile kayma ve hacimsel kilitlenme problemleri açısından birbiriyle 

karĢılaĢtırılmıĢtır. 4 düğüm noktalı elemanın aksine 9 düğüm noktalı elemanın kilitlenme 

problemlerinden etkilenmediği gözlenmiĢtir. 

Programın güvenilirliği sağlandıktan sonra 9 düğüm noktalı eleman kullanılarak bir 

soğutma kulesinin TS 498 ve Eurocode‟a göre tanımlanan rüzgâr yükleri altında statik ve 

Düzce deprem yükü altında dinamik analizleri yapılmıĢtır. Statik analiz sonucunda rüzgâr 

basıncının çevresel dağılımının yer değiĢtirmeler ve gerilmeler üzerindeki etkisi 

incelenmiĢtir. Yer değiĢtirme ve gerilmelerin Eurocode‟a göre hesaplanan yükler altında 

çok daha büyük değerler aldığı görülmüĢtür. Bu durumun Eurocode‟a göre elde edilen 

çevresel dağılım için Fourier açılımındaki 2. ve 3. terimlerin katsayılarının diğerlerinden 
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daha büyük değerler almasıyla yapının bu yükleme altında dalgalanan çevresel hareketlere 

büyük ölçüde maruz kalmasından kaynaklandığı düĢünülmektedir. Fourier katsayılarının 

büyüklüğünden yüklemenin hangi tür deformasyonlara (kabuk veya kiriĢ benzeri) daha çok 

sebep olacağı anlaĢılabilmektedir. Serbest titreĢim analizleri sonucunda yapının doğal 

frekanslarının artan çevresel mod numarasıyla bir minimum değere kadar azaldığı ve bu 

değerden sonra ise artmaya baĢladığı görülmüĢtür. Bu davranıĢın silindirik kabuk tipi 

yapıların tipik bir özelliği olduğu söylenebilir. 

Son olarak parametrik çalıĢma yapılarak kule yüksekliğinin, eğriliğinin ve kabuk 

kalınlığının yapının serbest titreĢim ve sismik davranıĢı üzerindeki etkileri incelenmiĢtir. 

TitreĢim periyodunun artan eğrilikle yaklaĢık olarak doğrusal azaldığı, büyük eğriliklerde 

ise bu eğilimin tersine döndüğü gözlenmiĢtir. Ayrıca yapının yüksekliği arttıkça periyodun 

arttığı ve kabuk kalınlığı arttıkça periyodun azaldığı görülmüĢtür. En büyük periyodun 

artan kalınlık ve yükseklikle lineer olarak değiĢtiği de izlenmiĢtir. Birinci yanal mod 

periyodunun artan kabuk kalınlığından etkilenmediği fakat artan kalınlıkla modun daha 

erken oluĢtuğu gözlenmiĢtir. Benzer Ģekilde birinci yanal modun oluĢum sırasının artan 

yükseklikle azaldığı görülmüĢtür. Dinamik analizlerde kule yüksekliğine, eğriliğine ve 

kabuk kalınlığına bağlı olarak gerilmelerde dikkate değer değiĢimlerin meydana geldiği 

izlenmiĢtir. 

 

Anahtar Kelimeler: Eksenel Simetrik Yapılar, Halka Sonlu Eleman, Harmonik Analiz, 

Fourier Serisi, Rüzgâr Yükü, Hiperbolik Soğutma Kulesi, Statik ve 

Dinamik Analiz, Serbest TitreĢim. 
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STATIC AND DYNAMIC ANALYSIS OF AXISYMMETRIC STRUCTURES  

USING HARMONIC SOLID RING FINITE ELEMENT MODELING 

 

Ali Ġhsan KARAKAġ 

 

Karadeniz Technical University  

The Graduate School of Natural and Applied Sciences  

Civil Engineering Department 

Supervisor: Prof. Dr. AyĢe DALOĞLU 

2012, 103 Pages 

 

Static, free and forced vibration analysis of axisymmetric structures under non-axisymmetric 

loadings such as wind and earthquake as well as axisymmetric loadings such as internal or external 

pressure were studied using harmonic solid ring finite elements. With the help of harmonic analysis 

physically three dimensional problems can be reduced to two dimensional problems by expressing 

non-axisymmetric loading in the form of Fourier series. The complete solution for the problem is 

obtained by superimposing a reasonable number of solutions for load components. 4-noded (Ring4) 

and 9-noded (Ring9) solid quadrilateral ring elements were used for the finite element analysis. A 

computer program for the purpose was coded in Matlab and verified solving several benchmark 

problems. During verification process these elements were compared with each other for accuracy, 

shear and volumetric locking. Ring9 seemed to be free of locking problems whereas Ring4 suffered 

from locking. 

After verification process a cooling tower was analyzed quasi-statically under wind loadings 

described in accordance with TS 498 and Eurocode and dynamically under Düzce earthquake using 

Ring9. It was realized that the circumferential distribution of wind pressure influenced the 

displacements and stresses significantly. Additionally, Fourier series coefficients of wind loadings 

indicate that the significant portion of the loading will cause shell or beam like deformations. 

Finally, the influence of height, thickness and curvature on the free vibration and seismic response 

of cooling towers were examined with a parametric study. It was recognized that the period of 

vibration tended to decrease approximately linearly with increasing curvature, but for high 

curvatures this trend reversed. Likewise, the variations in the fundamental period of vibration with 

shell thickness and height were approximately linear. As well, remarkable changes in stresses were 

noticed for cooling towers with different wall thickness and curvature in seismic analysis. 

 

Key Words: Axisymmetric Structures, Ring Finite Element, Harmonic Analysis, Fourier Series, 

Wind Loading, Hyperbolic Cooling Towers, Static and Dynamic Response, Free 

Vibration. 
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ner Number of elements in radial direction 

nez Number of elements in axial direction 

P Global load vector 

, ,b s lq q q  Body, surface and line load components 

, ,r zq q q  Load vector components in radial, circumferential, axial directions   

, ,
rm m zm

q q q  Symmetric load amplitudes for harmonic term m  

, ,rm m zmq q q  Antisymmetric load amplitudes for harmonic term m 

q(z) Effective velocity pressure 

R Reduction matrix 

SRI Selectively reduced integration 

mT  Kinetic energy for harmonic m 

, ,r zu u u  Displacement vectors in radial, circumferential, axial directions 

, ,rm m zmu u u  Symmetric displacement amplitudes harmonic term m 

, ,rm m zmu u u  Antisymmetric displacement amplitudes for harmonic term m 

,u u  Velocity and acceleration vectors 

eU  Element strain energy 

v Poisson‟s ratio 

  Angular frequency 

  Eigenvalue 

  Eigenvector 

  Inverse of Jacobian matrix 

  Mass density 

  Stress vector 

  Strain vector 



1. GENERAL INFORMATION 

 

1.1. Introduction 

 

The treatment of axisymmetric structures has considerable practical interest in 

aerospace, civil, mechanical and nuclear engineering because of their simplicity of 

fabrication, optimality in terms of strength to weight ratio due to favorable distribution of 

the structural material and multipurpose usages as both structure and shelter such as 

containers. Specific examples of such structures are pressure vessels, containment vessels, 

pipes, cooling towers, and rotating machinery such as turbines and shafts (Felippa, 2004). 

Finite element analysis is an extremely powerful tool for the analysis of 

axisymmetric structures when used correctly. Standard finite element methods have been 

shown to be capable, in principle, of dealing with any two or three dimensional cases. 

Nevertheless, the cost of solutions increases greatly with each dimension added. It is 

therefore always desirable to search for alternatives that may reduce computational efforts. 

For axisymmetric structures depending on the configuration of external loads, different 

types of analysis can be identified for simplicity. For example, if also external loads are 

themselves axisymmetric, the analysis is plane axisymmetric and mathematically two-

dimensional. Another situation occurs for an axisymmetric structure under an axi-

antisymmetric loading. For example, a cylindrical body under a torsional loading becomes 

really one-dimensional case. Therefore, the analysis procedure for problems having axial 

symmetry is very similar to the procedure used for problems of plane stress and plane 

strain (Zienkiewicz and Taylor, 2000; Benasciutti et al., 2011). 

However, in many physical axisymmetrical problems the situation is such that the 

geometry and material properties do not vary along circumferential coordinate but the 

loading terms may still exhibit a variation in that direction. Therefore, displacements and 

stresses are three dimensional rather than axially symmetric. Therefore, the standard plane 

axisymmetric analysis obviously does not apply in these situations. In such cases, the 

problem seems to be mathematically three dimensional. However, it is still possible to 

reduce the problem effectively to a two dimensional problem by expressing the loading in 

the form of a Fourier series. Finite element equations can be arranged in such a way that 

the calculations over an element are reduced to those over a two dimensional planar 
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longitudinal section. Thus, for each loading term in Fourier series expansion the 

calculations are similar to those for a plane axisymmetric analysis. The complete solution 

for the original non-axisymmetric loading is obtained by superimposing a reasonable 

number of solutions for these loading components (Bhatti, 2006; Cook et al., 1989). 

Ring finite elements with 4 and 9-noded quadrilateral cross sections to be used for 

multi purposes such as analyses of shells of revolution, circular beams and plates and 

axisymmetrical structures subjected to axisymmetric or non-axisymmetric loadings are 

developed using the displacement based isoparametric formulations and implemented with 

the appropriate digital computer program, Matlab. 

After the verification of the implemented program hyperbolic cooling towers which 

are large, thin shell reinforced concrete structures which contribute to environmental 

protection and to power generation efficiency and reliability are analyzed quasi-statically 

under wind loading and dynamically under earthquake loading. Additionally, free vibration 

analyses are conducted for cooling towers with different heights, wall thicknesses and 

curvatures. The results are presented in graphical and tabular formats. 

 

1.2. Literature Review 

 

Many researchers have worked to develop finite element modeling for axisymmetric 

structures since it has wide range of applications in engineering. Some of studies available 

in literature for the modeling and analysis of axisymmetric structures or bodies can be 

summarized as follows: 

Viladkar et al. (1998), analyze a cooling tower by representing the tower shell by 

semi-loof shell elements and the supporting columns by semi-loof beam elements in finite 

element method. The column ends are assumed to be fixed at their bases. The analysis is 

carried out for only the dead load. Hoop forces are found to be altered significantly in the 

lower portion of the shell near the column-shell junction. 

Baillis et al. (2000), present a 2D modeling which takes into account reinforced 

concrete behavior, crack distribution and geometric imperfections based on the Fourier 

series for rigorous numerical analyses of the behavior of cooling towers.  

Kim and Kim (2000), propose a higher order hybrid-mixed C
0
 harmonic shell of 

revolution element. Unlike existing hybrid-mixed shell of revolution elements, they 
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introduce additional nodeless degrees only for displacement field interpolation in order to 

enhance the solution convergence rate. They address some fundamental issues such as the 

effect of the nodeless degrees and the role of the stress field approximation consistent with 

the displacement field. 

Busch et al. (2002), presents an overview over the tower built at the RWE power 

station at Niederoussem, with 200m elevation the highest cooling tower world-wide. The 

structural consequences of the flue gas inlets through the shell are explained as well as the 

needs for an advanced high performance concrete wall and the fill construction. Further, 

the design and structural analysis of the tower is described with respect to the German 

codified safety concept for these structures. 

Nasir et al. (2002), examines the influence of some geometric parameters such as 

height and thickness on the free vibration and seismic response of shell structures using 

three dimensional isotropic shell elements (S4R5) to model the shell in finite element 

method.  This element features five degrees of freedom (three displacement components 

and two rotations) per node and thus typically models thin shell structures. 

Lang et al. (2002), present a shell ring element for the static analysis of shells of 

revolution of arbitrary shape under arbitrarily distributed loads, based on a displacement 

formulation that includes geometric and physical non-linearity. 

Hong and Teng (2002), present a finite element formulation for the non-linear 

analysis of elastic doubly curved segmented and branched shells of revolution subjected to 

arbitrary loads. 

Redekop (2004), uses the three-dimensional theory of elasticity to set up accurate 

solution for the natural frequencies of vibration of a hollow body of revolution of arbitrary 

geometry. A semi analytical approach is adopted, in which solutions are obtained for 

specified circumferential harmonic modes of vibration. 

Kang and Leissa (2005), present a three dimensional method of analysis for 

determining the free vibration frequencies and mode shapes of thick, hyperboloidal shells 

of revolution. 

Noorzaei et al. (2006), deals with physical and material modeling of a cooling tower-

foundation-soil system. The physical modeling is carried out using solid 20-noded 

isoparametric element to model the cooling tower, annular raft foundation and soil media. 

The cooling tower-foundation-soil system is analyzed under vertical and lateral load 
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generated due to self-weight and wind loads. The soil nonlinearity is taken into 

consideration using hyperbolic nonlinear elastic constitutive law. 

Viladkar (2006), deals with the numerical modeling of a column supported 

hyperbolic cooling tower and its supporting annular raft-soil system to study its soil-

structure interaction response under the influence of symmetrical wind load acting upon it. 

The soil-structure interaction response of the tower is compared with that of a tower whose 

supporting columns are treated as fixed at the base. 

Jog and Annabattula (2006), present a general procedure for the development of 

hybrid axisymmetric elements based on the Hellinger-Reissner principle within the context 

of linear elasticity. 

Ahmadian and Bonakdar (2008), present a new 16-node cylindrical superelement. 

Static and modal analyses of laminated hollow cylinders subjected to various kinds of 

loading and boundary conditions are performed using this element 

Florin and Sunai (2010), explain that from physical point of view, the damping 

represents the soil seismic excitation energy taken over process through internal 

absorption, rubbed between existent layers, as cracks on rocky foundations. 

Higgins and Basu (2011), analyze laterally loaded piles using the Fourier finite 

element method which calculate the response of axisymmetric solids subjected to non-

axisymmetric loads. The analysis is mostly performed for piles embedded in elastic soil 

with constant and linearly varying modulus. 

 

1.3. Objectives of This Research 

 

The main objective of the study is to perform the static, modal and dynamic analysis 

of axisymmetric structures under non-axisymmetric loadings such as wind and earthquake 

as well as axisymmetric loadings such as internal or external pressure using solid ring 

harmonic finite elements. A computer program is coded in Matlab for the purpose. Also, 

the aim of computer programming is to be master of concepts and assumptions behind the 

coding in commercial computer analysis programs. A verification study is done first by 

solving several benchmark problems and then the responses of a cooling tower are 

investigated under dead, wind and earthquake loading.  
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1.4. Selection of the Model and the Computational Technique 

 

In the field of engineering design we come across many complex problems, the 

mathematical formulation of which is tedious and usually not possible by analytical 

methods. At such instants we resort to the use of numerical techniques. The two classical 

choices which are the most popular for numerical solution are finite difference method 

(FDM) and finite element method (FEM). Since the FDM is highly difficult to apply for 

complex geometries, loadings and boundary conditions the finite element method, FEM, is 

chosen as the powerful tool for getting the numerical solution of a wide range of 

axisymmetric problems. 

In order to reduce the computational efforts plane axisymmetric, plane axi-

antisymmetric and harmonic finite element techniques are used in the element formulations 

for different types of loading for axisymmetric structures. Using these techniques three 

dimensional problems can be reduced to two dimensional and two dimensional ones to one 

dimensional. Additionally, one of the model reduction method called as „Guyan reduction‟ 

is used in the free vibration and dynamic analysis of axisymmetric structures in order to 

save time. In free vibration analysis of axisymmetric structures QR inverse iteration 

technique is used to solve eigenvalue problems. Moreover, static solutions are obtained 

using Gauss elimination procedures and Newmark direct integration technique is applied in 

the dynamic analysis. 

Detailed information for these numerical and computational methods is presented in 

the following sections. 

 

1.5. Finite Element Modeling of Axisymmetric Structures 

 

The basic concept in finite element modeling of axisymmetric structures is that the 

structure is divided into smaller solid ring elements of finite dimensions. In the context of 

the thesis 4-noded and 9-noded solid ring elements are used and named as Ring4 and 

Ring9, respectively. The original structure is then considered as an assemblage of these 

elements connected at a finite number of joints called as nodes. The properties of the 

elements are formulated and combined to obtain the properties of the entire body. Thus 

instead of solving the problem for the entire structure in one operation, in the method 
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attention is mainly devoted to the formulation of properties of the constituent elements. 

The properties and mathematical formulations of these ring elements are explained in the 

following sections. Finite element modeling is implemented with appropriate digital 

computer program, Matlab since it is a computer oriented procedure. 

The computer implementation stages of a finite element method for linear static and 

dynamic analysis of axisymmetric structures using ring elements are preprocessing, 

processing and post-processing. The preprocessing portion involves the model definition 

by direct setting of the data structures such as geometry data (node coordinates), element 

data (connectivity, material, body and surface forces), and degree of freedom data (support 

boundary conditions). Also, the processing stage performs for the solution of nodal 

displacements and in post processing stage element stresses are computed. 

 

1.6. Geometry Definitions of Axisymmetric Problems 

 

An axisymmetric object or structure is generated by revolving a plane figure about an 

axis, and is most easily described in cylindrical coordinates r, θ and z. For these solid 

objects or structures the geometry is symmetric about the axis around which the plane 

figure is revolved. 

Also, an axisymmetric object or structure can be obtained by revolving an outer 

curve and an inner curve about a vertical axis as shown in Fig. 1. 

 

 

Figure 1. Generators of an axisymmetric object and an element 
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These curves are the generators of inner and outer surfaces of the revolutionary object. 

Radial coordinates of the generators are parametrically defined to produce different shapes. 

The radial coordinates are written as, 

 

4
i

i i i iR A
       and    4

o

o o o oR A
                                                                 (1) 

 

in which ,i i   and ,o o   arte some constant parameters (i and o denote inner and outer 

generators respectively) while i and o  are quadratic functions of the vertical coordinate 

z. These quadratic functions are defined as, 

 

2
1 2 3i i i iA A z A z       and    

2
1 2 3o o o oA A z A z                                                 (2) 

 

In these equations, Aij and Aoj , where (j=1 to 4 ), are the parametric constants 

depending on shapes of generators. These parametric representations of generators can 

represent almost all practically used revolutionary objects, such as cylindrical, conical, 

spherical, ellipsoidal, hyperboloidal, paraboloidal, etc. Parameters of these objects are 

presented in Table 1. rc and zc are the coordinates of centers of objects, cl and ml are 

respectively constant and slope of the line, R is the radius of the circular generation, c1, c2 

and c3 are constants of the parabola, a and b are lengths of the axes of ellipse and the 

hyperbola. Beyond these known functions, i and o , can be used as generators of 

revolutionary solid objects (Karadeniz, 2009). 

 

Table 1. Parameters of some practically used revolutionary objects 

 

Generator     
1A  2A  3A  4A  

Linear 1 1 lc  lm  0 0 

Circular 1  1/2 2 2
cR z  2 cz  -1 cr  

Elliptic /a b  1/2 2 2
cb z  2 cz  -1 cr  

Hyperbolic /a b  1/2 2 2
cb z  2 cz  1 cr  

Parabolic 1 1 1c  2c  2c  0 
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1.7. Element Coordinates and Shape Functions 

 

The elements defined are quadrilateral axisymmetric solid elements. Such elements 

are called as ring elements. These elements are most easily described in cylindrical 

coordinates r, θ, and z. The coordinate systems and the element nodal numbering rules for 

the two ring elements are depicted in Fig. 2. Coordinates of any location within the 

element are calculated using interpolations between nodal coordinates as stated below: 

 

1

b

j j

j

r N r


       and      
1

b

j j

j

z N z


                                                                           (3) 

 

where rj and zj (j=1 to b) are nodal coordinates, b is the number of nodes and Nj are shape 

functions or interpolation functions given in Eqs. 4 and 5. 

 

 

 

 

 

Figure 2. Nodal numbering and global cylindrical coordinate system of (a) 4-node 

(b) 9-node quadrilateral ring element cross sections 
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Since the expression of the interpolation functions in terms of the global cylindrical 

coordinates is algebraically complex (Hutton, 2004) and boundary of integral equations 

defined over the element volume or area is different for each element due to positional and 

geometrical configurations, for simplicity, transformation of boundary regions is applied. 

This procedure is called as mapping of elements. The mapping concept makes finite 

element computations possible for arbitrary shaped elements (Bhatti, 2006). Therefore, an 

area transformation is needed from cylindrical coordinates (r, z) to natural coordinates 

whose master area is a 2x2 square in the ξ and η coordinates as shown in Fig. 3. 

In the global coordinate system cylindrical coordinates (r, θ, z) are used to determine 

the position vector in the element where r, θ, z are radial, tangential and axial coordinates, 

respectively as shown in Fig. 2. But the element formulation is completely done based on 

the natural coordinate system which is a local system based on each individual element. 

The natural coordinate system is shown in Fig. 3 as (ξ, η). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Coordinate transformation of (a) 4-noded (b) 9-noded quadrilateral ring 

elements 
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Shape functions for the four-node bilinear quadrilateral ring element are (Cook, 1989): 

 

1

2

3

4

1
(1 )(1 )

4

1
(1 )(1 )

4

1
(1 )(1 )
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                                                                                                   (4) 

 

Shape functions for the nine-node biquadratic quadrilateral ring element are: 
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                                                                                             (5) 

 

Perspective views of some shape functions for particular corner, mid-side and center nodes 

are shown in Fig. 4. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4. Perspective view of the shape functions for (a) node 1 of the 4-node 

bilinear quadrilateral ring and (b) node 1 (c) node 5 (d) node 9 of the 9-

node biquadratic quadrilateral ring 

 

1.8. Strains and Stresses in an Axisymmetrical Solid Element 

 

The stress (ζ) components in an axisymmetric element are shown in Fig. 5. 

Corresponding stresses (ε) are also defined in the same directions and obtained applying 

stress strain constitutive relationship in Eq. 8. 

 

 
T

r z rz r z         and  
T

r z rz r z                  (6) 

 

Having denoted the displacement components ru ,u  and zu  in the radial, circumferential 

or tangential and axial directions respectively, strain components for three dimensional 

elements in cylindrical coordinates are given by the Eq. 7. 
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Figure 5. Stress components in an axisymmetrical solid element 
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    D                                                                                                               (8) 

 

where  D  is the elasticity matrix given in the following sections. 

 

1.9. Plane Axisymmetric Finite Element 

 

In the case of axisymmetric structures loaded by axially symmetric loads, by 

symmetry, the two displacement components ru  and zu  in any plane section of the body 

along its axis of symmetry completely define the state of strain and, accordingly, the state 

of stress. Thus, the circumferential (hoop) displacement u , the tangential stress 

components r  and z  and their corresponding shear strains r  and z  must be zero. 
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The analysis then reduces to a plane FE model, characterized by only radial ( , )ru r z  and 

axial ( , )zu r z  displacements, where r and z denote the radial and axial coordinates of a 

point within the structure. For an b-node finite element, the vector of displacement field in 

the cylindrical reference system (r,θ,z) is: 

 

1

1

{ } [ ]{ }

b

j rj

j
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N u

u
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N u
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 
 
    

     
   

 
  





                                                                            (9)

  

where urj, and uzj, (j=1 to b), are the nodal values of the of displacements, {d} is the nodal 

displacement vector and [N] is the shape functions matrix, which are defined as written by, 

 

1 2 3{ } [{ } { } { } ................{ } ]T T T T T
bd u u u u                                                      (10)

 

 

where {u}
T

j  (j=1,2,3,..,b) are the nodal displacement vectors of the element. 
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                                                     (11) 

 

The strain can be stated in a matrix form as 
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z
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, the operator matrix  (12) 

Inserting Eq. 9 into Eq. 12 yields 

 

{ } [ ][ ]{ }L N d     or  { } [ ]{ }B d                                                                            (13) 
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The matrix [ ]B  is the strain-nodal displacement matrix and defined as (Cook, 1989): 

 

11 12 1

21 22 2

[ ] [ ] [ ] .... [ ]
[ ]

[ ] [ ] [ ] .... [ ]
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                                                              (14) 
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,

1

,

0

[ ] 0

0

j r

j
j

j z

N

N
B

r

N

 
 
 


 
 
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, 2 , ,[ ] j j z j rB N N           (j=1, 2, 3, …, b)                         (15) 

 

It is seen from the strain-nodal displacement matrix that there are partial derivatives with 

respect to r and z. However, the shape functions Ni are functions of natural coordinates ξ 

and η as given in Eqs.4 and 5. Therefore, the transformation of derivatives must be made to 

natural coordinates. This transformation can be done by Jacobian matrix. The element 

geometry is defined by 2b coordinates {ri,zi}, i=1,2,3,…, b. These are collected in arrays as 

 

   1 2 1 2......  and ......
T T

b br r r r z z z z                                                 (16) 

 

By the chain rule, derivatives with respect to r and z can be expressed as  
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r r r
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    
                                     (17) 

 

Unfortunately, the partial derivatives of   and   with respect to r and z are not directly 

available from above equations. An inversion is required here as shown below 

 

N N r N z

r z  

    
 

    
     and      

N N r N z

r z  

    
 

    
                                      (18) 

 

or     
, ,

, ,

[ ]
r

z

N N
J

N N





   
   

  
                                                                                            (19) 
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where [J] is called as Jacobian matrix and in expanded form it is 

 

, ,11 12

, ,21 22

[ ]

r z

N r N zJ J
J

N r N zJ Jr z

 

 

 

 

  
      
      
      

   

                                                      (20) 

 

Finally, the derivatives of shape functions with respect to r and z can be obtained with 

respect to natural coordinates as 

 

,,

,,

[ ]
r

z

NN

NN





  
    

   
 where 

11 12 22 121

21 22 21 11

1
[ ] [ ]

J J
J

J JJ

     
      

     
                 (21) 

 

where J is the determinant of the Jacobian matrix, which can be regarded as a scale factor 

that yields area drdz  from d d  , given as 

 

11 22 21 12det[ ]J J J J J J                                                                                        (22) 

 

Eq. 20 is valid for all plane isoparametric elements. Partial derivatives in the strain-nodal 

displacement matrix are obtained with respect to natural coordinates and can be easily 

implemented into the Gauss numerical integration procedures. The stress vector for a plane 

axisymmetric problemin the cylindrical coordinate system is related to the strain vector 

through the constitutive relationship for an isotropic material as follows (Bhatti, 2006): 

 

[ ]

r r

z z

rz rz

D
 

 

 

 

 

   
   
   

   
   
      

                                                                                                     (23) 

 

in which [D] is the material property matrix ,which links the vectors of strains and stresses, 

in the hypothesis of isotropic material has the following form:  
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[ ] 0
[ ]

0 [ ]

E
D

E





 
  
 

                                                                                                  (24) 

 

1

[ ] 1
(1 )(1 2 )

1

v v v
E

E v v v
v v

v v v



 
 

 
  
  

 and [ ]
2(1 )

E
E

v
 


                                 (25) 

 

where E and v  are modulus of elasticity and Poisson‟s ratio, respectively. 

 

1.10.  Plane Axi-antisymmetric Finite Element 

 

An interesting application is represented by the study of axisymmetric structures 

subjected to axi-antisymmetric loadings. An example is a shaft of variable diameter under 

a torsion load applied at the ends (Timoshenko and Goodier, 1951). In this configuration, 

load is antisymmetric with respect to each plane crossing z-axis and it is also independent 

of angle θ. In fact, in this configuration each node has only one degree of freedom (the 

hoop displacementu ), while radial and axial displacements ru  and zu  (warping), as well 

as normal stresses r ,  , z , shear stress rz  and their related strain components vanish. 

By symmetry, the hoop displacement does not depend on angle θ and only two non-null 

strains r  and z  are present. By analogy with Eq. 9, the displacement of a point within 

an b-node element is: 

 

1

( , ) [ ]{ }
b

j j

j

u r z N u N d 


                                                                                    (26)

 

 

where uθj, (j=1 to b), are the nodal values of the displacements, {d} is the nodal 

displacement vector and [N] is the shape functions matrix, which are expressed as: 

 

1 2 3{ } [ .............. ]T
nd u u u u                                                                        (27)

 

 

 1 2[ ] ( , ) ( , ) ...... ( , )nN N r z N r z N r z                                                               (28) 
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The strain can be stated in a vector form as 

 

{ } [ ] ( , )
r

z

u u

r r
L u r z

u

z

 




 






 
    

     
   

  

 where 

1

[ ]
r r

L

z

 
 

  
 

  

                               (29) 

 

Substituting Eq. 26 into Eq. 29 produces the followings: 

 

{ } [ ]{ }B d   and [ ] [ ][ ]B L N                                                                                 (30) 

 1 2[ ] [ ] [ ] .... [ ]nB B B B  where ,

,

( )
[ ]

j
j r

j

j z

N
N

B r

N

 
 

 
  

, (j=1, 2, 3… n)          (31) 

 

Jacobian matrix obtained in plane axisymmetric case is also valid in this case to transform 

shape function derivatives from global coordinates to natural coordinates. Similar to Eq. 23 

the stress- strain relationship for an axi-antisymmetric problem can be expressed as 

  

[ ]
r r

z z

D
 

 

 

 

   
   

   
                                                                                                    (32) 

 

1 0
[ ]

0 12(1 )

E
D



 
  

  
                                                                                               (33) 

 

1.11. Harmonic Finite Element 

 

A third type of problem, of more practical interest, is when the structure is axially 

symmetric but the loading is not, so that the analysis is really three dimensional. A great 

simplification can be obtained by using a semi-analytical approach, based on a harmonic 

finite element model and Fourier series expansion of loads. As it will be shown, in linear 

analysis, a harmonic load produces a harmonic response in terms of stress and 

displacements. The solution is then obtained by superimposing results of each harmonic 

(Cook et al., 1989; Zienkiewicz and Taylor, 2000). 
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To start with, the nodal loads applied to the structure can be expanded in Fourier 

series which will be explained later on as: 

 

 

 

 

 

0
1

0
1

0
1

( , ) cos ( , )sin

( , , )

( , , ) ( , )sin ( , )cos

( , , )

( , ) cos ( , )sin

r rm rm
m

r

m m
m

z

z zm zm
m

q q r z m q r z m

q r z

q q r z q q r z m q r z m

q r z

q q r z m q r z m

   

 



  



 













 
  

 
      

      
   
   

  
  







                   (34) 

 

in which m is the circumferential mode (harmonic) number and symbols rq , q  and zq  

indicate the radial, hoop and axial load components, respectively. In Eq. 34 all barred 

quantities are amplitudes, which are functions of r, z but not of  . Single barred 

amplitudes represent symmetric load components (loads which have 0   as a plane of 

symmetry), while double barred amplitudes represent antisymmetric load terms. The sine 

expansion in q  load is necessary to ensure symmetry, as the direction of q  has to change 

for  . The constant terms 0rq  and 0zq  permit axisymmetric load condition to be 

described, while the term 0q refers to the axi-antisymmetric load. It is possible to 

demonstrate (Cook et al., 1989) that in a linear analysis, when the loads are expanded as in 

Eq. 34, displacement components are described by Fourier series as well: 

 

 

0 0

0 0

0 0

cos sin

( , , )

( , , ) sin cos

( , , )

cos sin

rm rm

m m

r

m m

m m
z

zm zm

m m

u m u m

u r z

u u r z u m u m

u r z

u m u m

 

 



  



 

 

 

 

 

 

 

 
 

 
      

     
   
   

 
  

 

 

 

                                          (35) 

 

All three displacements are needed because the physical problem is three dimensional. The 

motivation of the arbitrarily chosen negative sign in the u  series is that it greatly 

simplifies the computation of the element stiffness matrix, as it will be explained later on. 

As for the loads, the single and double barred terms refer to amplitudes of symmetric and 
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antisymmetric displacement components. A Fourier series expansion similar to Eq. 35 can 

be equally used also for the nodal displacements of a finite element. Within a finite 

element, one can thus interpolate the amplitudes rmu , rmu , mu , mu , etc. of the 

displacements components in Eq. 35 from the corresponding nodal amplitudes (

( ), ( ), ( ), ( ), ( ), ( )rim rim im im zim zimu u u u u u  ), where subscript im specifies that amplitude 

refers to node i  and harmonic m . Therefore, the vector of displacement field within the 

element can be described in the following form: 

 

     
0 1 0 1

( , ) ( , )

r b b

im imi m i m
u um i m i

z

u

u u N r z g u N r z g u

u

  

 

   

 
            
 
 

                  (36) 

 

where the harmonic functions for harmonic m 

 

cos 0 0

0 sin 0

0 0 cos

m
u

m

g m

m









 
      
  

                                                                     (37) 

and 

sin 0 0

0 cos 0

0 0 sin

m
u

m

g m

m









 
    

    
  

                                                                   (38) 

 

 
rim

im im

zim

u

u u

u



 
  

  
 
  

     and    
rim

im im

zim

u

u u

u



 
 
 

  
 
  

                                                                   (39) 

Also it can be expressed as:  

 

       
0

( , , )

( , , )

( , , )

r

m mm m
u um

z

u r z

u u r z g N d g N d

u r z

  











 
                
 

                              (40) 
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where  
m

d  and  
m

d  are the nodal displacement vectors for the Fourier term (mode) m 

and  N  is the shape functions matrix, which are defined as written by, 

 

       

       

1 2

1 2

....

....

T
T T T

m m bm
m

T
T T T

m m bm
m

d u u u

d u u u

 

  

 
  
 

                                                             (41)
 

 1 2[ ] [ ] [ ] ....... [ ]bN N N N   where   

0 0

[ ] 0 0

0 0

i

i i

i

N

N N

N

 
 


 
  

                        (42) 

The strain vector can be expressed as: 

 

   
0

{ } [ ]{ }
m m mmm

L u B d B d




           
                                                          (43) 

 

where [L] is the differential operator matrix, with dimension 6x3 as given below: 

 

  1

2

[ ]
 

[ ]

L
L

L

 
  
 

                                                                                                            (44) 

where 

   
1 2

0 0 0

1 1
0  and ( ) 0

( ) ( )

0 0 0
( )

r z r

L L
r r r r r

z z r

 



    
  

    
    

      
  
    
       

 

 

Therefore, also strains are expanded in Fourier series and the contribution of m
th

 harmonic 

thus is: 

 

         m mm mm mm
B d B d                     

                                               (45) 
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Eq. 45 defines, for harmonic m, the strain displacement matrices as follows: 

 

 
 

 

     

     
11 12 1

21 22 2

....

....

m m m bm
m m mmm

m m m bm

B B B B
B g B g g

B B B B


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

   
                   

     

    (46) 

 
 

 

     

     
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21 22 2

....

....
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B g B g g

B B B B


  



   
                               

    (47) 

 

where the matrices mg 
  and mg

 
  

 of the harmonic functions for the harmonic m are: 

 

 
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m
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u

m

g
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g


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

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                                                              (48) 

and 

 
0

0

m
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u

m

g
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g




 




  
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                                                              (49) 

where  

1 0 0
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0 0 1
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 
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                                                                      (51) 
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                                                                                   (52) 
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                                                                (53)

 

 

and for the i
th

 node, submatrices are given as: 
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                                                                 (55)

 

 

and complete forms of strain displacement matrices for the i
th

 node can be expressed as:  
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                                 (56) 

and 
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 
 
 
 

 
 

                                     (57)

 

 

It can be seen from mg 
  and mg

 
  

 that sin m  and cosm  are interchanged and, in 

addition, there is an algebraic sign change in the last two rows of mg
 
  

, that is to say 

im
B 
  

 can be obtained from that of 
im

B 
 

 by simply substituting (- sin m ) with ( cosm ) 

and cosm  with sin m . Shape functions depend on   and  . Therefore, strain 

displacement matrices are functions of  , , , and m. The usual transformation of 

derivatives from global coordinates to natural coordinates can be made as: 

 

, 11 , 12 ,i r i iN N N         and    , 21 , 22 ,i z i iN N N                                          (58) 

 

where the matrix [ ]  is as defined in Eq. 21 in the plane axisymmetric finite element 

section. The stress vector for the m
th

 harmonic in the cylindrical coordinate system related 

to the strain vector through the constitutive equations is given for an isotropic material as 

follows (Bhatti, 2006): 
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m m
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


 







  
  
  
  

   
    

   
   
   
   
   

                                                             (59) 
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in which [D] is the material property matrix for isotropic material given by the following 

equation where E and v  are as defined before. 

 

[ ] 0
[ ]

0 [ ]

E
D

E





 
  
 

                                                                                                  (60) 

 

where [ ]E  is given in Eq. 25 and  

 

 

1 0 0

[ ] 0 1 0
2(1 )

0 0 1

E
E

v


 
 


 
  

                                                                                       (61)

 

 

1.12.  Element Stiffness Matrix 

 

The element stiffness matrix of a ring element, which is used in the analyses of 

axisymmetric structures in the content of the thesis, is based on displacement fields. The 

stiffness matrix of a linear system is calculated from the derivation of the strain energy of 

an axisymmetrical solid element (Karadeniz, 2009). The strain energy is expressed for one 

element as: 

 

1
{ } { }

2

T
eU dV                                                                                                    (62) 

 

Now to obtain element stiffness matrix an interpolation scheme must be substituted 

into the strain energy expression. Substitution of Eq. 8 and Eq. 13 into strain energy 

expression yields the following: 

 

1 1
{ } [ ] [ ][ ]{ } { } [ ]{ }

2 2

T T T
eU d B D B d dV d k d                                                       (63) 

 

and the element stiffness matrix can be obtained from Eq. 63 as  
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2

0

[ ] [ ] [ ][ ] [ ] [ ][ ]

e

T T

A

k B D B dV B D B rd dA



                                                           (64) 

 

The element stiffness matrix is calculated as an integral over the element volume, which 

for axial symmetry coincides with the whole ring of material. eA  is the cross-sectional area 

of the element on a plane section. It is necessary to find out the element stiffness matrix for 

each Fourier harmonics for the analysis. Therefore, we have to express the strain-nodal 

displacement matrix for each harmonic in Eq. 64 as: 

 

     
0

m mm m
m

B g B g B 





          
                                                                       (65) 

 

So two stiffness matrices mk 
   and mk 

  
 have to be defined according to Eq. 64 for both 

single and double barred terms in Fourier series expansion: 

 

 
 

 
2

0

0

0

T

m m
T

m m mT

m m

g E g

k B d B rdrdz

g E g

   
 

  
 



     
     

      
            

 

(66) 

 

 
 

 
2

0

0

0

T

m m
T

m m mT

m m

g E g

k B d B rdrdz

g E g

   
 

  
 



     
            

                    

 

(67) 

 

It can be observed that each term in the products of  
T

m mg E g  
 

   
   

, 

T

m mg E g  
 

    
     ,  

T

m mg E g  
 

   
      

 
T

m mg E g  
 

    
       

will be a function of    

( E , v ) multiplied by either 2cos m  or 2sin m . Thus, integration over the 
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circumferential direction θ can be carried out explicitly using the following orthogonality 

property of trigonometric functions when integrated from 0 to 2 : 

 

2
2

0

0
cos ( ) for

2 0

m
m d

m

 
 




 


                                                                (68) 

 

2
2

0

0
sin ( )   for 

0 0

m
m d

m

 
 


 


                                                               (69) 

Then, 

   
2

0

2

0

    if   m>0

T

m m

T

m m

g E g d E

g E g d E



   
 



   
 

 

 


        





             






                                              (70) 
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  
                     
    
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

        (71) 
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                                                 (72) 
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           (73) 
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The integration results in a factor   that multiplies each term for each Fourier series 

harmonics except for zeroth (m=0) harmonic. For zeroth harmonic the factor will be 2 for 

the integration. It should also be mentioned that, due to choice of negative sign in the 

second expression in Eq. 35, the stiffness matrix for double barred terms is identical to that 

of single barred terms, that is  m m mk k k        
 for m>0. Additionally, 0k 

   and 0k 
  

 

can be used for particular cases of plane axisymmetric and plane axi-antisymmetric cases 

respectively. So, for the m
th

 harmonic the stiffness matrices are obtained from the 

following expressions as: 

 

        0 00 0 0 0 02
T T

k B E B B E B rdrdz 
   

                                            (74)
 

 

        0 00 0 0 0 02
T T

k B E B B E B rdrdz 
   

      
                                           (75) 

 

                for  m>0
T T

m m m m mk B E B B E B rdrdz    
                         (76) 

 

The stiffness matrix of a quadrilateral ring element is to be numerically integrated by 

Gauss quadrature rule which is most suitable for FEM applications since such rules use a 

minimal number of points to achieve a desired level of accuracy. Denote by k  and l  the 

Gauss points abcissae whereas kw  and lw  denote the corresponding integration weights, 

with indices k and l running from 1 to number of gauss points used. If both the bending (ε) 

and shear terms (γ) in the stiffness matrix are integrated using p Gauss points then it is 

called full integration (FI). In the element formulation, a constant shear locking for 4 node 

ring element and a linear shear locking for 9 node ring element is used to solve shear 

locking problem in some particular problems such as thin circular plates. In other words, 

selectively reduced integration (SRI) technique in which the bending terms are integrated 

using (p)-point Gauss quadrature rule and the shear terms are integrated using (p-1)-point 

Gauss quadrature rule is used in such problems. The stiffness matrices are calculated from 

the following expressions for selectively reduced integration technique used in the thesis: 
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for m >0 

 

 

    
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         (79) 

 

Here   ( , )m k lB

   and   ( , )m k lB


   mean that these matrices are evaluated at Gauss 

points; likewise for ( , )k lr   , the radius of the Gauss point and ( , )k lJ   , the Jacobian 

determinant that maps the area element in global coordinates (r, z) to area in the natural 

coordinates (ξ, η) as discussed previously. In general a unidimensional Gauss rule with p 

points integrates exactly polynomials of order up to 2p-1. Therefore, p=2 points in each 

direction for quadratic integrand of 4 node ring element and p=3 points in each direction 

for fourth order integrand of 9 node ring element are used in numerical integrations. 

 

1.13. Element Mass Matrix 

 

A mass matrix is a discrete representation of a continuous distribution of mass. A 

consistent element mass matrix is to be determined in the finite element formulation. It is 

termed “consistent” because shape functions used are the same functions used to generate 

the element stiffness matrix in Eq. 64 (Cook, 1989). The consistent mass matrix of an 

element is calculated from the derivation of the kinetic energy. For an axisymmetric solid 

element the kinetic energy can be expressed as: 
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1
{ } { }

2

TT u u dV                                                                                                   (80) 

 

where   is the mass density of the element and { }u  is the velocity vector at a point in the 

element (Karadeniz, 2009). The velocity vector at a point for the Fourier term m can be 

expressed using Eq. 40 as: 

 

       
0

m mm m
u um

u g N d g N d 





          
                                                      (81) 

 

Then the kinetic energy becomes for single and double barred terms and for m
th

 harmonic 

as stated by: 

 

          1 1

2 2

TT TT

m m m m m mm m
u u

T d N g g N d dV d m d                      (82) 

 

          1 1

2 2

TT TT

m m m m m mm m
u u

T d N g g N d dV d m d 
                   

       (83) 

 

From Eqs. 82 and 83 the mass matrices for single and double barred terms of an element 

for the Fourier term m can be taken out by expressing the infinitesimal volume in 

cylindrical coordinates as: 
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                                            (84) 
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T
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                                            (85) 
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It can be observed that each term in the product   and  
TT

m m m m
u u u u

g g g g   
      

          

will be a function of either 2cos m  or 2sin m . Thus, integration with respect to θ can be 

carried out explicitly using orthogonality property of trigonometric functions. The 

integration will result in a factor   that multiplies each term for each Fourier series 

harmonics except for zeroth (m=0) harmonic for both single and double barred terms. 

Therefore,  m m mm m m        
 is valid for m>0. For zeroth harmonic the factor will be 

2  for the integration. Thus, for the mth harmonic the mass matrix is obtained as (Bhatti, 

2006): 

 0

1 0 0

2 0 0 0 [ ]

0 0 1

T
m N N rdrdz 

 
      
  

                                                                 (86) 

 

 0

0 0 0

2 0 1 0 [ ]

0 0 0

T
m N N rdrdz 

 
   

    
  

                                                                 (87) 

 

[ ] [ ] [ ]T
mm N N rdrdz            (m>0)                                                                   (88) 

 

Using Gauss quadrature rule to take the integrals above we have the following 

expressions for the element mass matrices for Fourier harmonics as: 
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T
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k l

m w w N N r J         
 

    for (m>0)                  (91) 
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1.14. Element Nodal Force Vectors 

 

In harmonic finite element analysis of axisymmetric structures under non-

axisymmetric loading, the loading must be expressed in the form of Fourier series. Each 

load component is either symmetric or antisymmetric. The complete solution for the 

original non-axisymmetric loading is obtained by superimposing a reasonable number of 

solutions for these symmetric and antisymmetric terms (Bhatti, 2006).  

 

1.14.1. Fourier Series Representation of Loading 

 

If the applied loading is a function of θ, using a Fourier series it can be expressed as: 

 

0

1 1

( ) cos sinm m

m m

T a a m b m  
 

 

                                                                      (92) 

 

For a given loading, the coefficients 0, ,   for  1,2,....m ma a b m  , are obtained as follows: 
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











                                                                                       (93) 

 

The 0a  term represents the usual plane axisymmetric or axi-antisymmetric loading since it 

is independent of θ. A function ( )f   is called symmetric if ( ) ( )f f   . It is called 

asymmetric or antisymmetric if ( ) ( )f f   . For applied loads in the r and z directions, 

the cosine terms represent symmetric loads with respect to the horizontal axis (θ=0) and 

the sine terms represent antisymmetric load (Bhatti, 2006). This can be seen from Fig. 6 

which shows the symmetric and antisymmetric load components in an axisymmetric body 

and Fig. 7 shows the plots of constant and the first two cosine and sine terms. 
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 (a)                                   (b) 

Figure 6. Load components in an axisymmetric body: 

(a) symmetric (b) antisymmetric 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Plots of constant and the first two cosine and sine terms 
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1.14.2. Consistent Body Force Vector 

 

Body forces (also called volume forces) arise frequently in analysis of structures of 

revolution. The most important loads of this type are: 

1. Gravity (own weight). 

2. Centrifugal forces in rotating structures. 

3. Thermal, shrinkage and pre-stress effects. 

The consistent body force is calculated from the derivation of the external work done by 

body load. For an axisymmetric solid element the external work done by body force is 

expressed as (Karadeniz, 2009) 

 

      
0

{ } { }T
bm bmb b b bm bm

m

W u q dV d f d f




                                            (94) 

 

where  bmf  and  bmf  are the consistent body force vectors for the Fourier term m of 

symmetric and antisymmetric terms.  

 

       
0

bm bmb m m
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

          
                                                 (95) 

     
0

b m mbm bmu um

q g q g q 





          
                                                              (96) 

 

where     and bm bmq q  are the body load amplitude vectors for the Fourier term m of 

symmetric and antisymmetric loadings respectively. 
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                                                     (97) 
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Then having used Eqs. 95 and 96 in Eq. 94 the consistent force vectors for the Fourier term 

m due to body load can be expressed as: 

 

     
TT

m mbm bmu u
f N g g q dV 

                                                                     (98) 

 

     
T

T

m mbm bm
u u

f N g g q dV 

             
                                                           (99) 

 

Expressing Eqs. 98 and 99 in terms of cylindrical coordinates and taking integral with 

respect to the circumferential direction θ produces the following expressions: 
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 
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      (m=0)                                               (101) 

 

   { }
T

bm bmf N q rdrdz     and     { }
T

bm bmf N q rdrdz     for   (m>0)  (102) 

 

where  N  is defined in Eq. 42. Using p-point two dimensional Gauss quadrature rule to 

take the integrals above we have the following expressions for the consistent body force 

vector for Fourier harmonics as: 
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                for  m>0      (104) 

 

1.14.3. Consistent Surface Force Vector 

 

The consistent surface force vector is calculated from the derivation of the external 

work done by surface load. For an axisymmetric solid element the external work done by 

surface force is expressed as (Karadeniz, 2009) 

 

       
0

{ } { }T
sm sms s s sm sm

m

W u q dS d f d f




                                           (105) 

 

where { }su  is the displacement vector at a point on the surface of loads,  sq is the applied 

surface load vector and dS denotes an infinitesimal surface on which surface loads apply. 
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where .    and sm smq q are the surface load amplitude vectors for the Fourier term m. 
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Then the consistent force vector for the Fourier term m due to surface force can be 

expressed as: 
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                                                        (109) 

 

where  
s

N  is the values of  N at locations of surface load vectors. Expressing Eq. 106 in 

terms of cylindrical coordinates and taking integral with respect to the circumferential 

direction θ produces the following expressions: 
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where, 2 2ds dr dz  . Unidimensional numerical integration can be applied for the 

consistent force vector associated with surface traction. Then we have the following 

expressions in which J  is the associated arc length Jacobian. 
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1.14.4. Consistent Line and Concentrated Load Vectors 

 

The consistent line force vector is calculated from the derivation of the external work 

done by line load. For an axisymmetric solid element the external work done by line load 

is expressed as (Karadeniz, 2009) 
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where  lu  is the displacement vector at a point on the line of loads and  lq  is the applied 

line load vector and dl  denotes an infinitesimal line in the element on which line loads 

apply. Substituting Eqs. 115 and 116 into Eq. 114 gives the following expressions of the 

consistent line force vectors for the Fourier term m of symmetric and antisymmetric series 

expansions: 
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where  
l

N is the shape function matrix defined at locations of line load vectors and 

    and lm lmq q  are the line load amplitude vectors for symmetric and antisymmetric 

loading respectively. Expressing Eq. 117 in terms of cylindrical coordinates and taking 

integral with respect to the circumferential direction θ produces the following expressions: 
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where lr is the radial distance at which line load is applied. With the same manner, 

consistent force vectors due to concentrated joint forces can be expressed as follows: 
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   

   

jmjpjm

jmjpjm

f r P

f r P








             for     (m>0)                                                               (121) 

 

where jpr  is the radial distance of the joint j at which the concentrated force vector  jmP

for the Fourier term m, is applied. 
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1.15. Modal Analysis 

 

The goal of modal analysis in structural mechanics is to determine the natural mode 

shapes and frequencies of a structure during free vibration using structure's overall mass 

and stiffness. In other words, modal analysis investigates how a structure vibrates. To start 

with the equation of motion for free and undamped vibrations is of the form 

 

[ ]{ } [ ]{ } 0M u K u                                                                                                (122) 

 

where {u} is the global degree of freedom vector and [ ] and [ ]M K are, respectively, the 

system mass and stiffness matrices. When vibrating in one of the mode shapes all the 

points in the system undergo simple harmonic motion with the corresponding natural 

frequency i , which can be stated as (Weaver and Johnston, 1984) 

 

sin( )i iu t                                                                                                           (123) 

 

in which i  is the nodal amplitude vector (or mode shape) with each component 

corresponding to the specific degree of freedom. By differentiating Eq. 123 twice with 

respect to the time t, we also find 

 

2{ } sin( )i i iu t                                                                                                   (124) 

 

Substitution of Eqs. 123 and 124 into Eq. 122 allows cancellation of the term sin( )it , 

which leaves: 

 

2( ) 0i iK M                                                                                                      (125) 

 

This is the basic statement of the free vibration problem. Eq. 125 is called a generalized 

eigenvalue problem (Cook, 1989).To avoid a nontrivial solution for the Eq. 125, it follows 

that the determinant of the coefficient matrix 
2( )iK M  should vanish: 

http://en.wikipedia.org/wiki/Modal_analysis
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det([ ] [ ]) 0iK M                                                                                                (126) 

 

where 
2

i i  and the lowest nonzero i  is called as the fundamental vibration frequency. 

Solving Eq. 126 actually leads the eigenvalues, i , i=1,…..s, where s is the size of the 

mass or stiffness matrices which equals the number of degrees of freedom (dof) of the 

entire system. In fact the eigenvalue problem in Eq. 125 leads the square of natural 

frequencies (Ahmedian and Bonakdar, 2008). The Eq. 125 is satisfied by eigenvalues, 
2

i , 

and corresponding eigenvectors i . The physical interpretation of the eigenvalues and 

eigenvectors which come from solving the system are that they represent the frequencies 

and corresponding mode shapes. The solution of Eq. 125 is obtained using QR inverse 

iteration method as explained in the reference (Bathe, 1996). 

 

1.16. Static Analysis 

 

In this section we are concerned with the solution of the simultaneous equations that 

arise in the static analysis of axisymmetric structures using finite element method. The 

matrix equation for static problems is given by  

 

Ku P                                                                                                                    (127) 

 

where K is the stiffness matrix, u is the displacement vector, and P is the load vector of the 

finite element system. Since P and u may be functions of time t, we may also consider the 

equation above as the dynamic equilibrium equations of a finite element system in which 

inertia and velocity dependent damping forces have been neglected (Bathe, 1996). 

Solution of the equations by direct inversion of the stiffness matrix is inefficient and 

generally impractical for large problems. The most efficient static solution routines are 

based on the Gauss elimination procedure (Smith, 1988). 

 

 

http://en.wikipedia.org/wiki/Eigenvalues
http://en.wikipedia.org/wiki/Eigenvectors
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1.17. Linear Dynamic Analysis 

 

A structural dynamic problem differs from its static loading counterpart in various 

important respects. The main difference to be noted, by definition, is the time varying 

nature of the dynamic problem. Because the load and the response vary with time, it is 

evident that a dynamic problem does not have a single solution, as a static problem does; 

instead the analyst must establish a succession of solutions corresponding to all times of 

interest in the response history. Thus a dynamic analysis is clearly more complex and time 

consuming than a static analysis (Clough and Penzien, 1975). 

The equations of equilibrium governing the linear dynamic response of a system of 

finite elements can be expressed as: 

 

Mu Cu Ku P                                                                                                     (128) 

 

where M, C, and K are the mass, damping, and stiffness matrices; P is the vector of 

externally applied loads; and u , u , and u  are the displacement, velocity, and acceleration 

vectors of the finite element assemblage. In dynamic analysis, in principle, static 

equilibrium at time t, which includes the effect of acceleration-dependent inertia forces and 

velocity-dependent damping forces, is considered. 

Mathematically, Eq. 128 represents a system of linear differential equations of 

second order and, in principle; the solution to the equations can be obtained by standard 

procedures for the solution of differential equations with constant coefficients. However, 

the procedures proposed can become very expensive if the order of the matrices is large. In 

practical finite element analysis, we are therefore mainly interested in a few effective 

numerical methods (Bathe, 1996). Newmark direct integration method is used in this study 

for dynamic solution of the equations. In direct integration the differential equations 

represented by Eq. 128 are integrated using a numerical step-by-step procedure as 

explained in the following section. 
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1.17.1. The Newmark Method 

 

Newmark has expressed the velocities and displacements at the end of a time 

increment in terms of the known parameters at the beginning and the unknown acceleration 

at the end of the time step as (Smith, 1988): 

 

[(1 ) ]t t t t t tu u u u t                                                                                  (129) 

 

21
[( ) ]

2
t t t t t t tu u u t u u t                                                                      (130) 

 

where  and   are weighting factors. Careful study of these equations will reveal that the 

standard rules of kinematics are being used to predict the velocity and displacement at the 

end of an interval given the conditions at the start of the interval. The difference is that the 

acceleration is not constant and therefore weighting factors are used to obtain an average 

acceleration over the interval. Using Eq. 130 the acceleration at the end of the interval is 

 

2 21
(1/ )[ ( ) ]

2
t t t t t t tu t u u u t u t                                                            (131) 

 

Substituting in Eq. 129, we obtain the velocity 

 

( / )( ) (1 / ) (1 / 2 )t t t t t t tu t u u u tu                                                 (132) 

 

The equation of motion at the end of the interval is given by 

 

t t t t t t t tMu Cu Ku P                                                                                  (133) 

 

Therefore, by substituting Eqs. 131 and 132 into Eq. 133 the following equation is 

obtained and used for forward integration of the displacements from time t to t t  . Then 

Eqs. 131 and 132 are used to obtain the velocities and accelerations.  
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                                        (134) 

 

It should be apparent that Eq. 134 takes the form of an equilibrium equation,  

Ku P , with the structural motion at time t modifying the load on the right-hand side. On 

the left-hand side the stiffness matrix is modified correspondingly. No special starting 

procedure is required. In the case of dynamic response of a linear system the modified 

stiffness need only be determined and factorized at the start of the solution. Then the right-

hand side, which will vary with time, can be treated as a new load vector at each time step. 

Rapid evaluation of the full response history is therefore possible (Smith, 1988). 

 

1.18.  Model Reduction for Linear Systems 

 

Model reduction is a computational cost saving tool that enables an analyst to extract 

dynamic quantities of interest from a reduced dynamic model. The reduction consists of 

condensing out some degree of freedoms called as slave from the full size finite element 

model and remaining ones are called as master degrees of freedom. In model reduction for 

linear systems, the reduced system matrices are obtained using a linear coordinate 

reduction matrix, [R], developed by Guyan from the full model stiffness matrix as 

explained in (Rhee, 2000). Using the reduction matrix the desired reduced model matrices 

are defined by (Cook, 1989) 

 

[ ] [ ] [ ][ ]T
rK R K R                                                                                                  (135)

 

[ ] [ ] [ ][ ]T
rM R M R

                                                                                                (136) 
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If damping matrix [C] and external loads { }P  appear in the equation of motion, then 

condensed damping matrix [ ] [ ] [ ][ ]T
rC R C R  and condensed external loads 

{ } [ ] { }T
rP R P  appear in the reduced equation of motion as below: 

 

[ ]{ } [ ]{ } [ ]{ } { }r m r m r m rM u C u K u P                                                                   (137) 

 

where { }mu  represents the displacements of master degrees of freedom. 

 



2. NUMERICAL EXAMPLES AND RESULTS 

 

2.1. Accuracy Verification of the Program 

 

The program coded in this study for the static, dynamic and free vibration analysis of 

axisymmetric structures is checked for different loadings. The static deformation results of 

a hollow cylinder under various loadings, an internally pressurized thick cylinder, and a 

rotating thin disc are compared with the analytical solutions. Additionally, the modal 

results of a hollow cylinder are compared with the results obtained using hexagonal 

elements in SAP2000 commercial computer program. 

 

2.1.1. Hollow Cylinder Under Various Loadings 

 

Consider a hollow cylinder with length L=0.6m, inner radius a=0.05m and outer 

radius b=0.06m with modulus of elasticity E=2x10
11

Pa and Poisson‟s ratio v=0.3, that is 

subjected to three separate loading conditions which are axial normal load, axial torque and 

lateral point load. In the cases of axial load, axial torque and lateral load forces of 

magnitude Fz=8x10
3
N, Tz=4.4x10

3
N and P=1x10

3
N are applied, respectively. The 

boundary condition of the cylinder is completely fixed at one end and free at the other end.  

When the cylinder of length, L, and cross-sectional area, A, is subjected to axial load 

of magnitude, Fz, the exact solution for cylinder elongation, δ, is obtained from Eq.138  

 

zF L

EA
                                                                                                                    (138) 

 

In the case of torsion one end of the cylinder is completely fixed and the other end is free 

with the external torque applied at the free end. The exact solution for the rotation of free 

end is obtained from Eq. 138. 

 

zT L

JG
                                                                                                                    (139) 
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Figure 8. FEM discretization for the hollow cylinder under various loadings (a) 10-

element Ring4 discretization (b) 5-element Ring9 discretization 

 

 

in which Tz is the axial torque, J is polar moment of inertia and G is the shear modulus. 

The rotation is obtained using the following equation in coded program 

 

| |a bu u

a b

                                                                                                        (140) 

 

where |  and  |  a bu u  are the circumferential displacements and 1 2 and r r  are the radius 

of an inner and outer node, respectively. The exact solution for the free end deflection, δ, 

using the Euler beam theory is obtained from Eq. 141. 

 

3
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EI
                                                                                                                    (141) 
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where P is the lateral point load and I is the area moment of inertia of the cylinder section. 

Finite element discretizations of the cylinder are shown in Fig.8. 10 Ring4 and 5 

Ring9 elements are used in the static deformation analysis under various loadings. The 

analytical results are compared with the ones obtained from Ring4 and Ring9 elements and 

given in Table 2. All relative errors are measured with respect to the analytical method. 

The bracketed number indicates the number of elements used in each method. 

 

Table 2. Cylinder deformations under various loadings 

 

 Method Relative error 

Ring4 (10) Ring9 (5) Analytical Ring4 Ring9 

Axial 

elongation(m) 
6.870x10

-6
 6.882x10

-6
 6.945x10

-6 
1.1% 0.8% 

Rotation 

(rad) 
3.255x10

-3
 3.255x10

-3 
3.256x10

-3 
0.03% 0.03% 

Tip 

deflection(m) 
6.597x10

-5
 6.835x10

-5
 6.831x10

-5
 3.4% 0.06% 

 

 

When the relative errors are considered it can be concluded that both the ring 

elements produces close results compare with the analytical solutions. However, in the 

case of bending in which the lateral deflection is a cubic function of the longitudinal or 

axial coordinate, more elements are required to produce an accurate result which is 

attributed to the first order shape functions used in the axial direction of the Ring4. It 

seems from Table 2 that Ring9 gives better results when relative errors are considered. 

Also, it should be noted that mesh refinement can decrease the relative errors. 

 

2.1.2. Modal Analysis of a Hollow Cylinder 

 

In this section modal analysis is carried out for the single layer hollow cylinder used 

in the previous section and natural frequencies for basic mode shapes are compared with 

the results obtained in SAP2000. Finite element models with and without model reduction 

(MR) are used in the modal analysis of the cylinder. The aim of using model reduction is to 

save time in modal analysis using QR inverse iteration technique. Using model reduction 

in QR inverse iteration technique all nodes but the outer ones as shown in Fig.8 are 
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condensed out from the full finite element model to check whether the model reduction 

procedure yields inaccurate eigenvalue solutions. The natural frequencies using Ring4 

without model reduction (R4), Ring9 without model reduction (R9), Ring4 with model 

reduction (R4 (MR)), Ring9 with model reduction (R9 (MR)) and brick elements and their 

relative errors are listed in Table 3 for basic mode shapes. Relative errors are measured 

with respect to results obtained using brick elements in SAP2000. Sufficiently large 

numbers of elements (1350 brick elements) are used to assure precise frequency results 

while the model is meshed using 30 Ring4 (R4) and 15 Ring9 (R9) elements in the axial 

direction and 1 Ring4 and 1 Ring9 element in radial direction. As it is seen from Table 3 

results obtained using ring elements with and without model reduction in coded program 

and brick elements in SAP2000 are in good agreement, which verifies that the solid ring 

elements with model reduction can be used successfully for the modal analysis of 

axisymmetric structures. 

 

Table 3. Comparison of natural frequencies obtained from R4, R9 and brick elements for 

different modes (MR: model reduction) 

 

Mode 

shape 

Natural frequency (Hz) Relative error 

 R4(MR) 

(30) 

R9(MR) 

(15) 

R4 

(30) 

R9 

(15) 

Brick 

(1350) 

R4(MR) 

(%) 

R9(MR) 

(%) 

R4 

(%) 

R9 

(%) 

Bending 295 293 294 293 292 1.02 0.34 0.68 0.34 

Torsional 1308 1308 1308 1308 1302 0.46 0.46 0.46 0.46 

Bending 1459 1453 1459 1447 1443 1.10 0.69 1.10 0.27 

Axial 2119 2115 2119 2117 2118 0.04 0.14 0.04 0.04 

Bending 3331 3269 3307 3267 3250 2.5 0.58 1.75 0.52 

Torsional 3931 3929 3929 3925 3900 0.8 0.74 0.74 0.64 

 

 

2.1.3. Internally Pressurized Thick Cylinder 

 

The problem in this part is the analysis of a cylindrical hollow tube of inner radius 

a=160mm and outer radius b=320mm subjected to internal pressure P=150 MPa. The tube 

is as shown in Fig. 9. The tube extends indefinitely along the z axis and is in a plane strain 

state along that direction. The material is isotropic with elastic modulus E=2x10
5
 MPa and 
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Poisson‟s ratio v=0.2. A slice of thickness d is extracted and discretized as shown in Fig. 9 

using Ner Ring4 and Ring9 elements along the radial direction r and one along the axial 

direction z (In that figure, Ner are 4 and 2 for Ring4 and Ring9, respectively). Nodes move 

in radial direction only, which results in the support conditions as drawn in Fig.9(a, b). 

 

Figure 9. Two example FEM discretization for the pressurized thick cylinder (a) 4- 

element Ring4 discretization of a slice (b) 2-element Ring9 discretization of 

a slice 

 

The exact stress distributions and radial displacement across the wall for a condition 

of plane strain in the z direction are (Timoshenko and Goodier, 1951): 

 

2 2 2 2

2 2 2 2 2 2
1  and 1  r

a b a b
P P

b a r b a r
 

   
             

                                          (142) 

 

    
 

2 2 2

2 2

1 1 2

r

a v b r v
u P
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
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Figure 10. Computed versus exact (a) radial displacements (b) radial stresses (c) hoop stresses 

using Ring4 and (d) radial displacements (e) radial stresses (f) hoop stresses using 

Ring9 for different meshes of the pressurized hollow cylinder 
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The pressure lumping to the nodes on the inner radius r a  depends on the type of 

the element such as 1 2 2 1 3for Ring4 and 4 4  for Ring9 elements.r r r r rP P P P P    The 

subfigures in Fig.10 are obtained using two types of element (Ring4 and Ring9) with three 

radial discretizations. The numbers ( nerxnez ) given at the top of the figures show the 

number of elements used in radial (ner) and axial (nez) directions. The latter is assumed to 

be 1 since the solution only depends on r. Example meshes are pictured in Fig.9 (a, b). 

Radial displacements ru , radial stresses r  and hoop stresses or circumferential stresses 

  are graphically compared over the wall a r b  with the exact solutions in Fig.10. 

As can be seen radial displacements and hoop stresses are satisfactorily predicted 

using both ring elements. The hole-edge radial stresses, however, are significantly 

underestimated using Ring4. For instance, for the 8x1 mesh of Ring4 radial stress

120MPar    is obtained but the exact stress is 150MPar   . It seems to be a 

consequence of the impossibility of doing interelement stress averaging at that high stress 

gradient edge. For this low order model the variation of radial stress in r direction is 

limited to be constant within the element. Thus 120MPar    may represent the stress at 

the center of the element. Increasing the number of elements in radial direction results 

better solutions as shown in Fig.10(b). The higher accuracy of the hoop stress is incidental, 

reflecting a property of plane axisymmetric solids under: the hoop strain /ru r   is not 

obtained through displacement differentiation. It thus attains the same accuracy as ru . 

Ring9 produces closer radial stress results to the exact solution even for 2x1 mesh type as 

shown in Fig. 10(e). In other words, the computed radial stress is as good as can be 

expected from a linear variation over the element. Using eight Ring9 elements both radial 

and hoop stresses agree everywhere with the exact solution at plot accuracy.  

If Poisson ratio is increased over zero, Ring4 results gradually lose accuracy if the 

number of elements are kept as 16 as shown in Fig. 11(a, b). In the limit 1/ 2v   the 

material approaches incompressibility, and the computed solution deterioration accelerates. 

This phenomenon is known as volumetric locking in FEM literature. Radial and hoop 

stresses are graphically compared over a r b   with the exact solution in Fig. 11(a, b). 

Serious deficiencies can be observed. All stress components violently oscillate as getting 

closer the inner boundary and the values taken are nonsensical. A minor stress oscillation 

can be observed at the outer boundary. For example, for 0.485v   the radial stress 
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48 MPar   at r a whereas it should be -150 MPa, so it even has the wrong sign. Using 

Ring9 elements in FEM modeling makes a big difference. For an 8-element mesh radial 

and hoop stresses are graphically compared over a r b   with the exact solution in Fig. 

11(c, d). As can be seen neither volumetric locking nor stress oscillations are observed, and 

the stresses are well predicted everywhere. The agreement with the exact solution is 

excellent as shown in Fig. 11(c, d). 

 

 

 

Figure 11. Computed versus exact (a) radial stresses (b) hoop stresses using Ring4 (c) 

radial stresses (d) hoop stresses using Ring9 for different Poisson‟s ratio 
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2.1.4. Rotating Thin Disc 

 

The third verification problem is a hollow, thin circular disc of thickness h=10mm 

inner radius a=40mm and outer radius b=100mm, which spins about the z axis with 

constant angular frequency  =1000 rad/s. The material is isotropic with elastic modulus 

of E=2x10
11

 Pa and Poisson‟s ratio v=0.3 and mass density  =7800 kg/m
3
. The sample 

FEM discretizations are pictured in Fig. 12(a, b). The number of elements in radial 

direction is 4, 8 and 16 for Ring4 and 2, 4, and 8 for Ring9. Only one element is used in 

axial direction. Nodes are allowed to move radially. Unlike previous example movement in 

the axial direction is permitted to allow for disc thickness contraction due to Poisson ratio 

(Felippa, 2011). This motion is accommodated by constraining nodes in one of the 

constant z surfaces to be on rollers as shown in Fig.12 (a, b). All other nodes are left free. 

The only load is a centrifugal body force acting along direction r. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Two example FEM discretization for the rotating thin disc (a) 4-Ring4   

(b) 2-Ring9 element discretization of disc section 
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When rotating about its axis with the angular velocity, all the particles of the disc will 

undergo a center-wise force. It is evident that the axial and tangential components of body 

force are zero in a spinning cylinder.  

The exact radial displacement and stress distributions for a condition of plane stress 

in the z direction are (Timoshenko and Goodier, 1951): 

 

   2 2 2 2 2 2

2
(3 ) (1 ) (1 ) (1 ) (3 ) (1 )

8
r

a v r v b v r v b v r v
u

Er


        
              (144) 
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                                                      (146) 

 

Radial displacements ru , radial stresses r  and hoop stresses   are graphically 

compared over a r b   with the exact solution in Fig. 13 for two ring types (Ring4 and 

Ring9) and three different meshes given at the top of the sub-figures. As can be seen for 

Ring4 with a mesh of 4x1 ru  and   are satisfactorily predicted as shown in Fig. 13(a, c). 

However, the radial stress is way of especially at the inner and outer boundaries, at which 

it should be zero. This may be again a consequence of the impossibility of doing 

interelement stress averaging there. Increasing number of element will result closer 

approximation to the exact solution as shown in Fig. 13(b). The analysis is redone with 

Ring9 again the same parameters are graphically compared over the radius with the exact 

solution as shown in Fig. 13(d, e, f). The computed radial stress is as good as can be 

expected from a linear variation over the element. The computed and exact radial 

displacements are agreed at nodes and therefore the hoop stress should also be exact at the 

nodes since /rEu r  . However, the extrapolation from Gauss points introduces 

discrepancies as can be seen in Fig. 13(f). In this example the effect of Poisson ratio is not 

considered. However, it should be noted that the volumetric locking is less of a problem in 

such case since the plane stress condition allows lateral expansion and contraction 

(Felippa, 2011). 
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Figure 13. Computed versus exact (a) radial displacements (b) radial stresses (c) hoop 

stresses using Ring4 and (d) radial displacements (e) radial stresses (f) hoop 

stresses using Ring9 for different meshes of the rotating thin disc 
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2.1.5. Circular Plate Bending 

 

The last verification problem is a simply supported circular plate bent by a lateral 

point load and uniformly distributed load. The plate has radius of R=10m. and thickness 

h=1m. The point load of magnitude P=500 kN acts downward at the plate center and 

uniformly distributed load of magnitude Po=5 kN/m
2
 acts downward. The material is 

isotropic with elastic modulus E=30000 MPa and Poisson‟s ratio v=0.2. Two FEM 

discretizations are pictured in Fig. 14(a, b). For the Ring4 element type 4x2, 8x2 and 16x2 

discretizations are used, whereas for Ring9 the meshes are 2x1, 4x1 and 8x1. Nodes are 

allowed to move in the z direction except those on the edge at r=R. The nodes at r=0 must 

be constrained against radial motion because of axial symmetry. The resulting support 

conditions are shown in Fig. 14(a, b). The central point load appropriately lumped to the 

nodes on the z axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Two example FEM discretization for the circular plate bending (a) 8-Ring4   

(b) 2-Ring9 element discretization  

 

The exact solution for a Kirchhoff plate model of this problem for centered point 

load gives axial displacement and radial stress as (Ugural, 1981): 
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The axial displacement zu does not depend on z, which follows from the Kirchhoff thin 

plate theory assumptions. The values shown as exact for radial stresses are actually 

evaluated from Kirchhoff solution using Eq.12 at r=R/1000=1/100, since this equation 

have logarithmic singularity as 0r  . And radial stresses are computed at the lower or 

upper plate surfaces / 2z h . Axial displacements and radial stresses are graphically 

compared over a r b   with the exact solution in Fig. 15 and Fig. 16 for the point load at 

the center of the circular plate, respectively.  

The axial displacements have the right shape but are under-predicted using Ring4 

elements as shown in Fig. 15(a). This is a mild case of the so-called “shear locking”: a 

significant amount of element energy is spend in shear resulting in overstiffness (Felippa, 

2011). The effect would get worse if the thickness-to-diameter ratio is decreased. This 

shear locking effect will be investigated in detail for different thicknesses-to-diameter 

ratios. Considering the coarse mesh the stress predictions seem to be good sufficiently 

away from the plate center, say for r>2m. Increasing element mesh alleviates the shear 

locking but the displacement is still somewhat under-predicted. The stress distributions 

away from the center are improved but the singularity is still poorly captured using 16x2 

mesh of Ring4 element as shown in Fig. 16(a). 

 

  

Figure 15. Point loaded circular plate: axial displacements for (a) element meshes of 

Ring4 and (b) element meshes of Ring9 
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The analysis is repeated for Ring9 with half the elements: 2, 4 and 8 respectively in 

radial direction, and only one element in the axial direction. From Fig. 15(b) it can be seen 

that the transverse or axial displacement is well captured since the element does not suffer 

from shear locking. The stress distribution is fine away from the center. Capturing the 

singularity is obviously difficult with 2 elements. Increasing number of elements results 

stresses fairly close to the singularity as shown in Fig. 16(b).  

 

 

  

Figure 16. Point loaded circular plate: radial stresses for (a) element meshes of Ring4 

and (b) element meshes of Ring9 

 

As briefly explained before the shear locking phenomenon is characterized by a 

severe underestimation of the displacements, i.e. the structure is too stiff. The word 

“locking” means that the structure “locks” itself against deformations. Also, locking means 

the effect of a reduced rate of convergence for coarse meshes in dependence of a critical 

parameter (Felippa, 2011). In our case the critical parameter is the ratio of thickness to 

diameter of the circular plate, H/D. To investigate the effect of the parameter, a circular 

plate under uniformly distributed load with simple supports along the edge is analyzed for 

different thicknesses to diameter ratios. The Figs. 17 and. 18 show the convergence rates of 

the center deflection and center radial stress at the bottom of the plate with increasing 

number of elements for four different ring elements, respectively. These are the bilinear 4 

node element with full integration Ring4(FI) and selectively reduced integration 
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Ring4(SRI) and the biquadratic 9 node element with full integration Ring9(FI) and 

selective reduced integration Ring9(SRI). 
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Figure 17. Dimensionless center axial displacement versus number of elements for various 

thickness to diameter ratios (a) H/D=0.001 (b) H/D=0.005 (c) H/D=0.015        

(d) H/D=0.025 (e) H/D=0.035 (f) H/D=0.05 
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Figure 11. Center radial stresses at the bottom of the uniformly loaded 

circular plate with changing number of elements for various                       

thicknesses to diameter ratios (a) H/D=0.001 (b) H/D=0.005 (c) … 
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Figure 18. Dimensionless center radial stresses versus changing number of elements for 

various thickness to diameter ratios (a) H/D=0.001 (b) H/D=0.005 (c) H/D=0.015 

(d) H/D=0.025 (e) H/D=0.035 (f) H/D=0.05 
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In selectively reduced integration procedure the shear strain terms are integrated using 

reduced Gauss points. In other words, in the stiffness formulations the normal strain terms 

are integrated using 2x2 and 3x3 Gauss points whereas the shear strain terms are integrated 

using 1x1 and 2x2 points for Ring4 and Ring9, respectively. In full integration technique 

all terms are integrated using the same number of Gauss points required for the exact 

evaluation of integrals i.e. 2x2 and 3x3 Gauss points for Ring4 and Ring9, respectively.  

For practical applications the most important efficiency aspect of a certain finite 

element scheme is coarse mesh accuracy. This is important for the absolute error to be 

small at low computational expense. However, as shown in Figs. 17 and 18 the rate of 

convergence of the Ring4 (FI) is too slow below a certain limit of thickness to diameter 

ratio. In Fig. 17(a) it can be easily seen that the required number of elements for an 

acceptable convergence of the element Ring4(FI) to the exact solution is too large for the 

small ratio of H/D=0.001. As this number is often beyond available computer capacities 

there is strong interest to avoid such locking effects. As can be seen from Figs. 17 and 18 

increasing the ratio of thickness to diameter accelerates the convergence rate of the Ring4 

(FI). However, it possible to reach an optimal rate of convergence for coarse meshes using 

the selectively reduced element Ring4(SRI) in the analysis of even very thin plates as 

shown in Figs. 17(a) and 18(a). It can be realized from Figs. 17 and 18 that the 

convergence of Ring4(SRI) is uniform with respect to thickness to diameter H/D ratio.  

It is a fact that rate of convergence is still smaller than the elements Ring9(FI) and 

Ring9(SRI) since these are the higher-order elements based on quadratic shape functions. 

As can be seen from Figs. 17 and 18 the performance of Ring9(FI) is extremely good, 

showing no signs of shear locking. However, for different loading and boundary conditions 

its performance can be improved when its shear strain energies are integrated in a selective 

sense as explained previously. Using Ring9(FI) or Ring9(SRI) in the analysis of circular 

plate, displacement and radial stresses can be obtained with the same accuracy and rate of 

convergence for coarse meshes. The rate of convergence of these elements is independent 

of the thicknesses to diameter ratios, H/D. 

The exact solutions plotted in Figs. 17, 18, 19, and 20 are obtained using Kirchhoff 

thin plate theory. In Figs. 19 and 20, dimensionless center displacements and radial stresses 

are plotted versus the thickness to diameter ratios, respectively. 
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Figure 19. Dimensionless center axial displacements of the simply supported 

circular plate under uniformly distributed load 

 

 

 
Figure 20. Dimensionless center radial stresses at the bottom surface of the the 

simply supported circular plate under uniformly distributed load  
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radial stresses. That means that above these certain limits shear locking disappears for 

elements that suffer from locking. Also it can be observed from Figs. 19 and 20 that below 

the limit of H/D=0.05 the displacement and stress values of elements Ring9(FI) and 

Ring9(SRI) coincide with the values of Kirchhoff thin plate theory while above this limit 

values obtained using these elements move away from the Kirchhoff solution. Therefore, it 

can be concluded that the ignorance of the transverse shear deformations for circular plates 

above the limit ratio H/D=0.05 produces incorrect results in Kirchhoff thin plate theory. 

Moreover from Figs. 19 and 20 it can be concluded that Ring4(SRI) can be used as a 

locking free element. However, the absolute errors of locking free elements such as 

Ring9(FI) and Ring9(SRI) are much smaller due to the order of the shape functions used in 

the formulations as shown in Figs. 19 and 20. Table 4 and 5 present the dimensionless 

values of center axial displacements and center radial stresses at the bottom of the circular 

plates respectively for various thicknesses to diameter ratios or for different thin circular 

plates (below H/D=0.05) and for thick circular plates (above H/D=0.05) with the given 

number of elements in axial and radial directions.  

 

Table 4. Dimensionless center displacement values of the simply supported 

circular plate under uniformly distributed load for various 

thickness/diameter ratios and integration techniques 

 

H/D 

RING4 RING9 RING4 RING9  RING4 
Mesh 

(nerxnez) 

 RING9 
Mesh 

(nerxnez) 

FI FI SRI SRI 

100uzD
*/(PoR4) 

0,001 1,1527 6,7674 6,6027 6,7698 40x2 20x1 
0,005 5,0230 6,7686 6,6030 6,7702 40x2 20x1 
0,015 6,3267 6,7726 6,6063 6,7731 40x2 20x1 
0,025 6,5085 6,7805 6,6128 6,7807 40x2 20x3 

0,035 6,5703 6,7910 6,6225 6,7911 40x2 20x3 

0,050 6,7442 6,8131 6,7686 6,8132 40x4 20x3 

0,100 6,9233 6,9426 6,9259 6,9426 40x7 20x6 

0,150 7,1460 7,1541 7,1444 7,1541 40x10 20x6 

0,200 7,4366 7,4415 7,4334 7,4415 40x12 20x6 
0,250 7,7941 7,7956 7,7898 7,7956 40x16 20x7 
0,300 8,2039 8,2037 8,1991 8,2037 40x20 20x8 

0,350 8,6488 8,6474 8,6434 8,6473 40x24 20x10 
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Table 5. Dimensionless radial stress values at the bottom of the simply supported 

circular plate under uniformly distributed load for various 

thickness/diameter ratios and integration techniques 

 

H/D 

RING4 RING9 RING4 RING9  RING4 
Mesh 

(nerxnez) 

 RING9 
Mesh 

(nerxnez) 

FI FI SRI SRI 

σrH
2/PoR2 

0,001 1,7466 1,2006 1,2382 1,2007 40x2 20x1 
0,005 3,4882 1,2010 1,2382 1,2007 40x2 20x1 
0,015 1,6564 1,2007 1,2381 1,2007 40x2 20x1 
0,025 1,3942 1,2007 1,2381 1,2009 40x2 20x3 
0,035 1,3183 1,2008 1,2380 1,2010 40x2 20x3 
0,050 1,2784 1,2012 1,2274 1,2014 40x4 20x3 

0,100 1,2406 1,2042 1,2213 1,2045 40x7 20x6 
0,150 1,2342 1,2090 1,2223 1,2092 40x10 20x6 
0,200 1,2366 1,2156 1,2280 1,2158 40x12 20x6 
0,250 1,2430 1,2251 1,2358 1,2253 40x16 20x7 
0,300 1,2532 1,2371 1,2469 1,2372 40x20 20x8 

0,350 1,2657 1,2511 1,2600 1,2513 40x24 20x10 

 

 

2.2. Analysis of a Cooling Tower 

 

The algorithms utilized in the analyses of some simple axisymmetric structures are 

employed towards demonstration of their applicability to an important practical problem. 

For this, the natural draught hyperbolic cooling tower is considered. The natural draught 

cooling tower is a very important and essential component in the thermal nuclear power 

stations and industrial power plants. Due to their complexities in geometry, the analysis of 

such type of structures has attracted attention of many researchers throughout the world. 

Static responses under quasi-static wind loading, free vibration and seismic responses 

of an existing hyperbolic cooling tower at Stanwell Power Station, located west of 

Rockhampton in Queensland (Australia) are investigated. Additionally, the influences of 

thickness, height and curvature on free vibration and seismic responses are examined. 

For the finite element discretization of the cooling tower Ring 9 element is used due 

to its advantages over the Ring4 as explained in the previous sections. 
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2.2.1. Geometry and Material Properties of the Cooling Tower 

 

The cooling tower is a 121.5 m-high with base, throat and top radii of 45.30 m, 27.89 

m and 29.02 m respectively, with the throat located 95.6 m above the base of the shell. A 

constant shell-wall thickness of 240 mm, and reinforced concrete with a unit weight of 25 

kN/m
3
, Poisson‟s ratio of 0.2 and elastic modulus of 39 GPa are considered for the finite 

element numerical model. The geometry and some elements of the hyperbolic cooling 

tower are depicted in Fig. 21. 

The equation of the generating curve of the cooling tower in the form of a 

hyperboloid of revolution is obtained by setting the parameters a=27.89m, is the throat 

radius, since the hyperbolic curve has double curvature meeting at the throat the 

characteristic dimension is evaluated for the upper and lower portions of the curve as 

bH=90.07 m and bU=74.69 m, by substituting the base (dU, ZU) and the top (dH, ZH) 

coordinates. 

 

2 2 2 2
  and    

( / 2) ( / 2)
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H U
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b b
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                                                 (149) 

 

and the origin is located on the shell axis at the throat level as rc=0 m, and zc=95.6 m in 

Table 1. The shape parameter 
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K=k 1
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                                                                                                     (150) 

 

is an indicator of the deviation of the profile from the degenerate case of the cylinder 

(k
2
=1), with a larger k corresponding to a more pronounced curvature of the meridian. 

This form falls into the class of structures known as thin shells. The cross section as 

shown in Fig. 21 depicts the ideal profile of the shell generated by rotating the hyperboloid 

R=f(Z) about the vertical z axis. The coordinate z is measured from the lintel base. All 

dimensions in the r-z plane are specified on the reference surface, the inner surface of the 

shell. Dimensions through the thickness are then referred to this surface. The important 

elements of the shell include the columns at the base, which provide the necessary opening 
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for the air; the lintel, either a discrete member or more often a thickened portion of the 

shell, which is designed to distribute the concentrated column reactions into the shell wall; 

the shell wall which may be with varying thickness; and the cornice, which like the lintel 

may be discrete or a thickened portion of the wall designed to stiffen the top against 

ovaling. 

 

 

Figure 21. Geometry and elements of a cooling tower 

 

 

2.2.2. Loadings of the Cooling Tower 

 

Hyperbolic cooling towers may be subjected to a variety of loading conditions. Most 

commonly, these are dead load, wind load, earthquake load, temperature variations, 

construction loads, and settlement. In the scope of this study dead, wind and earthquake 

loads are considered. Dead load consists of the self-weight of the shell wall only.  
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2.2.2.1. Wind Loadings 

 

Wind loading is extremely important in cooling tower design for several reasons. 

First of all, the amount of reinforcement, beyond a prescribed minimum level, is often 

controlled by the net difference between the tension due to wind loading and the dead load 

compression, and is therefore especially sensitive to variations in the tension. Secondly, the 

quasi-static velocity pressure on the shell wall is sensitive to the vertical variation of the 

wind, as it is for most structures, and also to the circumferential variation of the wind 

around the tower, which is peculiar to cylindrical bodies. Vertical and circumferential 

variations of the wind loading to be considered in the static analysis of the cooling tower 

are obtained in accordance with two codes or standards, Turkish Standards (TS 498) and 

Eurocode (EN 1991-1-4:2005). 

The external wind pressure acting at any point on the shell surface is computed as  

 

( , ) ( ) ( )q z q z H                                                                                                  (151) 

 

in which ( )q z  is the effective velocity pressure at a height z above the ground level and 

( )H   is the coefficient for circumferential distribution of the external wind pressure. As 

mentioned above ( )q z  and ( )H   are obtained from applicable codes TS 498 and 

Eurocode. Figs. 22 and 23 depict the vertical variations of effective velocity pressure, ( )q z

in accordance with TS 498 and Eurocode, respectively. While the effective velocity 

pressure distribution throughout the height of the cooling tower varies uniformly in 

stepwise as shown in Fig. 22 according to TS 498 the pressure distribution changes 

parabolically according to Eurocode as shown in Fig. 23. Additionally, the maximum 

effective velocity pressure is calculated as 2080 N/m/m according to TS 498 whereas it is 

1634 N/m/m according to Eurocode at the top of the cooling tower. 

The circumferential distribution of the wind pressure is denoted by ( )H   and is shown in 

Figs. 24 and 25 in accordance with TS 498 and Eurocode respectively for the half portion 

of the cooling tower since it is symmetric with respect to plane passing through the key 

region, the windward meridian 0  . The wind pressure distribution coefficient over a 

circular section is sinusoidal in the first and fourth quadrant in TS 498 as depicted in 

Fig.24. 
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Figure 22. The wind pressure distribution over the height of the cooling 

tower according to TS 498 

 

 

 

Figure 23. The wind pressure distribution over the height of the cooling 

tower according to Eurocode 

 

 

There is no suction over the circular section and compressive pressure is applied over 

the half of the section according to TS 498 as shown in Fig. 24 whereas in Eurocode the 

large portion of the load over the circular section is suction as shown in Fig. 25. It should 

be noted that the wind pressure distribution coefficients do not change with the height of 

the cooling tower for the simplicity. For quantitative purposes, the equations of the 

pressure distribution curve for Eurocode are given in Table 6. In Eurocode the functions of 

the pressure distribution curve change according to surface roughness. The curve called as 

K1.3 is chosen and shown in Fig. 25. 
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Table 6. Functions of pressure coefficient distribution curve in Eurocode 

 

Curve 
Minimum 

pressure 73   93    > 93
 

K1.3 -1.3 
2.16690

1 2.3(sin )
73
  

2.395
90

1.3 0.8 sin[ ( 73)]
73


 

   
 

 -0.5 

 

 

                                                                                                                                                     

 

Figure 24. Circumferential wind pressure distribution coefficients according 

to TS 498 

 

 

Figure 25. Circumferential wind pressure distribution coefficients according 

to Eurocode 
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If the distribution ( )H   is represented in a Fourier cosine series of the form  

 

0

( ) cosm

m

H A m 




                                                                                              (152) 

 

the Fourier coefficients mA  for distributions most similar to curves shown in Figs. 24 and 

25 are given in Table 7. 

 

Table 7. Coefficients of Fourier harmonics for the circumferential distribution 

of the wind load according to TS 498 and Eurocode 

 

m 
TS 498 EN 1991-1-4: 2005 

Am 

0 0.3183 -0.3922 

1 0.4937 0.2602 

2 0.2122 0.6024 

3 0 0.5046 

4 -0.0424 0.1064 

5 0 -0.0948 

6 0.0182 -0.0186 

7 0 0.0468 

 

 

The distributions are approximated by using eight harmonics with the given 

coefficients in Table 7. The relatively large Fourier coefficients associated with m=2,3,4,5 

for Eurocode indicate that a significant portion of the loading will cause shell deformations 

in these modes to be explained later. In turn, the corresponding local forces are 

significantly higher than a beam-like response would produce. On the contrary, for TS 498 

the largest coefficient is obtained for m=1 which is the translational mode causes beam-

like response. 

The Fourier harmonics of the wind load distribution over the circumferential 

direction according to TS 498 and Eurocode are plotted in Fig. 26 and Fig. 28, 

respectively. The Fig. 27 and Fig. 29 depict the combination of these eight harmonics or 
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Fourier approximation and the actual wind load distribution. It can be concluded that good 

approximations are obtained using eight harmonics with the given coefficients in Table 7 

for both TS 498 and Eurocode. 

 

Figure 26. Fourier harmonics used to represent the wind load distribution coefficient 

 over the circular section of the cooling tower for TS 498 

 

 

 

Figure 27. Real distribution and Fourier approximation of the wind load distribution 

coefficients using eight Fourier harmonics for TS 498 
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Figure 28. Fourier harmonics used to represent the wind load distribution coefficient 

 over the circular section of the cooling tower for Eurocode 

 

 

 

Figure 29. Real and Fourier approximations of the wind load distribution coefficients 

using eight Fourier harmonics for Eurocode 

 

-0,8 

-0,6 

-0,4 

-0,2 

0 

0,2 

0,4 

0,6 

0,8 

0 20 40 60 80 100 120 140 160 180 

C
ir

cu
m

fe
re

n
ti

al
 w

in
d
 p

re
ss

u
re

  

 d
is

tr
ib

u
ti

o
n
 c

o
ef

fi
ci

en
t,

 H
(θ

) 

Angle  θ  (degree) 

0th 1th 2nd 3rd 4th 5th 6th 7th harmonics 

-1,50 

-1,00 

-0,50 

0,00 

0,50 

1,00 

1,50 

0 20 40 60 80 100 120 140 160 180 

C
ir

cu
m

fe
re

n
ti

al
 w

in
d
 p

re
ss

u
re

  

d
is

tr
ib

u
ti

o
n
 c

o
ef

fi
ci

en
t,

 H
(θ

) 

 

Angle θ (degree) 

Real distribution Fourier approximation 



73 

 

 

 

2.2.2.2. Earthquake Loading 

 

Earthquake loading on hyperbolic cooling towers is produced by ground motions 

transmitted from the foundation through the supporting columns and the lintel into the 

shell. If the base motion is assumed to be uniform vertically and horizontally, the 

circumferential effects are axisymmetrical (m=0) and antisymmetrical (m=1), respectively. 

The magnitude of the earthquake induced forces is a function of the mass of the tower and 

the acceleration produced by the earthquake at the base of the structure. Seismic loads are 

modeled in the finite element time history analysis as ground accelerations applied at the 

base of the structure, and the response is analyzed by direct integration, Newmark 

integration, using time history records. Transient response of the Stanwell hyperbolic 

cooling tower to earthquake loading is analyzed by direct integration using time history 

records of Düzce earthquakes as plotted in Fig. 30. The Düzce earthquake occurred on 12
th

 

November, 1999 in Turkey, and had the peak accelerations between 5.-10.seconds of the 

record as seen from Fig. 30. The maximum acceleration is 3.73 m/s
2
 in the East-West 

direction. The time step of the record is 0.005s. Since the dynamic analysis is time 

consuming for small time steps and large period of time accelerations between 5-10 

seconds of the complete record are considered in the dynamic analysis of the cooling 

tower. The considered time history of the Düzce earthquake is shown in Fig. 31. 

 

 

Figure 30. Acceleration versus time history record of the Düzce earthquake 
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Figure 31. Acceleration versus time history record of the Düzce earthquake 

between 5-10 seconds 

 

 

2.2.3. Free Vibration Analysis of the Cooling Tower 

 

In this chapter basic natural frequencies and associated mode shapes of the free 

vibration of the Stanwell tower are presented and a parametric study is conducted to 

investigate the influence of various parameters such as height, thickness and curvature. 

Ring9 elements are used in the QR inverse iteration technique with Guyan reduction in 

order to obtain eigenvalues (frequencies) and eigenvectors (mode shapes). In Guyan 

reduction only outermost nodes are chosen as the master nodes. A convergence study is 

carried out to determine the required number of elements to provide an acceptable level of 

accuracy in the modal analysis. From convergence study 40 Ring9 elements seemed to be 

good enough in axial direction and one in radial direction for the modal analysis of the 

cooling tower. 

Natural frequencies for circumferential modes of m=0,1,2,…,10 and meridional or 

longitudinal modes of n=1,2,…,5 for a fixed base boundary condition are presented in 

Table 8. This model may be regarded as preliminary in that the relatively soft column 

supports are not properly represented, but it illustrates the salient characteristics of the 

modes of vibration. Most interesting are the frequency curves on Fig. 32 for the first 10 

harmonics. It should be noted that the natural frequencies decrease with increasing 

circumferential mode number, m until a minimum is reached whereupon they increase. It 
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seems to be a very typical behavior for cylindrical type shells. Looking at the Table 8 it can 

be seen that the first five significant circumferential modes are in the order of 4, 3, 5, 4, 

and 2. Therefore, it can be concluded that the behavior of the cooling tower is not a beam-

like structure in which the first mode is the circumferential mode of m=1 corresponds a 

bending about a diametrical axis resulting in translation of the cross section. Also, 

contraction, expansion, and torsional mode shape frequencies for m=0 are the largest 

frequencies as given in Table 8. This behavior might be based on the small height to 

diameter ratio of the cooling tower. 

Representative circumferential mode shapes are shown in Fig. 33. The m=0 mode 

represents uniform expansion and contraction of the circumference as shown in Fig. 33(a), 

while m=1 corresponds to beam-like bending about a diametrical axis resulting in 

translation of the cross section as shown in Fig.33(b). The higher circumferential modes 

m>1 are peculiar to shells in that they produce undulating deformations around the cross 

section with no net translation as shown in Fig.33(c, d, e, f, g, h). Specifically for 

earthquake effects, only the first mode participates in a linear analysis for uniform 

horizontal base motion (m=1). Fig. 34 depicts the first three meridional or longitudinal 

mode shapes along the z axis (n=1,2,3) corresponding to eight circumferential modes 

(m=1,2,3,4,5,6,7,8). Also, normalized radial amplitudes of vibration are shown in Fig. 34. 

It can be easily seen that the meridional mode shapes (n=1,2,3) for circumferential mode 

shape (m=1) are similar to the first three mode shapes of a cantilever beam.  

 

 
Figure 32. Natural frequencies with respect to circumferential mode number 
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Table 8. Natural frequencies of the Stanwell cooling tower (n:meridional mode, 

m:circumferential mode) 

 

m 

Natural frequency (Hz) 

n 

1 2 3 4 5 

0 6,67 8,59 14,29 14,99 15,74 

1 3,40 7,98 12,79 14,13 14,91 

2 1,80 3,89 7,73 10,95 12,93 

3 1,48 2,03 4,64 7,47 9,97 

4 1,37 1,67 2,93 5,11 7,40 

5 1,49 1,93 2,30 3,66 5,56 

6 1,85 2,13 2,67 2,97 4,41 

7 2,16 2,70 2,97 3,30 3,90 

8 2,49 3,18 3,63 3,97 4,08 

9 2,87 3,64 4,39 4,55 4,96 

10 3,30 4,14 4,95 5,55 5,65 

 

 

The finite element numerical method is verified with respect to the first five 

circumferential mode periods and the first lateral mode of the Stanwell tower obtained by 

(Nasir et al., 2002) using three dimensional isotropic shell elements to model he shell. An 

optimum mesh size is adopted after a convergence study and periods are given in Table 9. 

 

Table 9. Finite element model verification; comparison of present results with those 

from previously established solutions 

 

Method of solution 

Periods of vibration (s) 

1 2 3 4 5 6 (lateral) 

Nasir et al. 0.723 0.666 0.662 0.593 0.549 0.294 

Present study 0.729 0.671 0.669 0.597 0.553 0.294 

Relative error 0.82% 0.75% 1.00% 0.67% 0.72% 0% 

 

 

Once the finite element numerical model was verified, a parametric study is 

conducted on the Stanwell tower to investigate the effect of three parameters namely wall 

thickness, height and meridional curvature on the free vibration response of the tower.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

Figure 33. Circumferential mode shapes for (a) m=0 (b) m=1 (c) m=2 (d) m=3 

(e) m=4 (f) m=5 (g) m=6 (h) m=7 
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Figure 34. Normalized meridional vibration modes n=1,2,3 for the circumferential 

modes (a) m=1 (b) m=2 (c) m=3 (d) m=4 
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Figure 34.(Cont.) Normalized meridional vibration modes n=1,2,3 for the 

circumferential modes (e) m=5 (f) m=6 (g) m=7 (h) m=8 
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Three separate cases are treated, with one parameter varied at a time, keeping the others 

constant. To study the effect of the shell thickness, this is varied between 180 mm and 300 

mm. In the next stage, height is varied between 101.5 m and 161.5 m by evenly adding or 

removing heights from both the upper and lower hyperbolas of the existing Stanwell tower. 

The base and top radii are altered during this process so as to maintain the same upper and 

lower curvatures. Lastly, the curvature of the 121.5 m-high Stanwell tower is varied by 

altering the throat diameter while the base and top diameters are constant. The throat 

diameter is altered between 25.78 m and 57.78 m and this provides a range of curvature as 

given in Table 11. 

Tables 10, 11 and 12 show the results for the periods of vibration for the three cases 

treated. All the early modes are circumferential in nature, while the lateral modes occur 

very much later, beyond the 10
th

 mode for the range of properties used. The variations of 

the highest period of vibration (T1) with the shell thickness and height are approximately 

linear, and the changes in T1 are 18% and 36% respectively, in the range of wall 

thicknesses and heights considered. The period of the first lateral mode is unaffected by a 

change in the thickness as given in Table 10, but it occurs earliest in the thickest shell. 

 

Table 10. Circumferential and lateral periods of vibration of hyperbolic cooling towers of 

the same height and curvature with variation in shell-wall thickness 

 

Circumferential modes 
Shell Thickness (mm) 

180 210 240 270 300 

Mode 1 Period(s) 0.796 0.758 0.729 0.699 0.671 

Mode 2 Period(s) 0.787 0.728 0.671 0.664 0.656 

Mode 3 Period(s) 0.683 0.677 0.669 0.618 0.574 

Mode 4  Period(s) 0.651 0.615 0.597 0.578 0.559 

Mode 5 Period(s) 0.633 0.588 0.553 0.553 0.552 

1
st
 lateral mode Period 0.294(29) 0.294(25) 0.294(22) 0.294(19) 0.294(17) 

 

 

Table 11 shows that the lateral mode is earliest in the tallest tower, and that the periods of 

vibration increase with height. The results in Table 12 are for the 121.5 m-high shells 

having constant wall thickness of 240 mm, but with different curvatures. The variation of 

period of vibration is observed to be an interesting phenomenon. Fig. 35 shows the 
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graphical variation of the period with upper curvature kt. It can be seen that increasing 

curvature causes the fundamental modal periods to decrease first and at large curvatures, 

this trend is reversed. 

  

Table 11. Circumferential and lateral periods of vibration of hyperbolic cooling towers of 

the same curvature and shell wall thickness with variation in height of the 

structure 

 

Circumferential modes 
Structure Height (m) 

101.5 121.5 131.5 141.5 161.5 

Mode 1 Period(s) 0.622 0.729 0.799 0.864 0.970 

Mode 2 Period(s) 0.615 0.674 0.693 0.709 0.842 

Mode 3 Period(s) 0.605 0.669 0.691 0.706 0.740 

Mode 4  Period(s) 0.538 0.599 0.603 0.656 0.732 

Mode 5 Period(s) 0.504 0.555 0.602 0.648 0.718 

1
st
 lateral mode Period 0.233(26) 0.294(22) 0.327(19) 0.363(19) 0.439(15) 

 

 

Table 12. Circumferential and lateral periods of vibration of hyperbolic cooling tower of 

the same height and shell wall thickness with variation in curvature (throat 

diameter) of the structure 

 

Throat Diameter (m) 25.78 37.78 43.78 45.78 49.78 55.78 57.78 

Upper curvature (kt) 1.417 1.313 1.241 1.214 1.154 1.047 1.006 

Lower curvature (kb) 1.098 1.089 1.083 1.080 1.076 1.067 1.065 

Circumferential modes  

Mode 1 Period (s) 0.643 0.588 0.587 0.601 0.653 0.729 0.751 

Mode 2 Period (s) 0.594 0.574 0.586 0.588 0.593 0.671 0.726 

Mode 3 Period (s) 0.506 0.504 0.536 0.548 0.572 0.669 0.709 

Mode 4 Period (s) 0.477 0.464 0.494 0.497 0.499 0.597 0.668 

Mode 5 Period (s) 0.463 0.424 0.478 0.484 0.494 0.553 0.573 

1
st
 lateral mode period (s) 0.329 0.298 0.293 0.292 0.292 0.294 0.295 

(Mode number) (12) (14) (16) (16) (18) (22) (22) 
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This trend is observed with the other early modes as shown in Fig. 35. The initial straight 

line portion of this variation shows that the stiffness of the structure increases with increase 

in meridional curvature, resulting in a decrease of T1. As a result, a change in the curvature 

can significantly influence the dynamic response of the shell. 

 

 

Figure 35. Effect of curvature on the response of first five circumferential periods 

of vibration 
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circumferential stresses around the circumference at the base of the tower subjected to 

wind loading are plotted. The finite element model used in this static analysis considers the 
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concentrated column reactions. Also, it should be remembered that the responses are 

considered under individual loading conditions. However, for design purposes the effects 

should be factored and combined to produce design values.  
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Ring9 elements in radial direction are decided to be sufficient for a good level of accuracy 
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in the static analysis. Figs. 36 and 37 depict the radial displacements at the windward 

meridian (θ=0) of the cooling tower for each wind load harmonics according to TS 498 

and Eurocode, respectively. And Figs. 38 and 39 show the axial displacements at the 

windward meridian (θ=0) of the cooling tower for each wind load harmonics according to 

TS 498 and Eurocode, respectively. The individual displacement responses of the cooling 

tower for each harmonic can be examined from these figures. The cumulative wind load 

effect on the structure in terms of radial and axial displacements for both standards can be 

observed in Figs. 40 and 41. It can be recognized from Fig.40 that the maximum radial 

displacement over the height of the tower occurs at the top (H=121.5m) with a value of 

7.64 mm for TS 498 whereas the maximum radial displacement appears to be at the throat 

level (H=91.5m) with a value of 29.3 mm for Eurocode. The latter is about four times 

greater than the former due to the relatively large wind pressure distribution coefficients 

for circumferential modes m>1 produce undulating deformations around the cross section 

for Eurocode. It should be noted that radial deflections are not just the beam-like 

deflections but the combination of both beam-like deformations and undulating 

deformations. When the Fig. 41 is considered it can be concluded that the axial 

displacements for TS 498 increase with the height since the tower under just compressive 

wind pressure on the half portion behaves like a beam while for Eurocode the 

displacements oscillate through the height due to undulating shell deformations derived 

from higher circumferential modes (m>1). 

The most important information a structural analyst looks for in a typical finite 

element static analysis is the state of stress in the structure. It is therefore very important 

for one to know points of optimal stresses in the element. It is known that the stress 

recovery at nodes from displacement elements is unreliable, as the nodes are usually the 

points where the strains and stresses are least accurate. Empirical evidence indicates that 

evaluating stresses at the Gauss integration points used in the element stiffness integration 

and extrapolating to the element node points generally deliver better stress values for 

quadrilateral elements (Felippa, 2004). Therefore, stresses given in this section are 

obtained at Gauss points and stress averaging is used to improve the stress accuracy. 

Dead load analysis results in Figs. 42 and 43 indicate that the shell is always under 

compression in both directions (meridional and circumferential), except for a small 

circumferential tension near the top due to the geometrical form of the cooling tower. The 

maximum compression stresses at the bottom of the windward meridian passes through the 
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middle surface of the wall of the tower are -498.2 kPa and -2215 kPa in circumferential 

and meridional directions, respectively. Also, the maximum circumferential tension stress 

at the top of the windward meridian is 62.4 kPa.  

In Figs. 44 through 47, the meridional and circumferential stress results of the 

analyses for each quasi-static wind load harmonics in accordance with TS 498 and 

Eurocode are shown. The cumulative or complete responses of the cooling tower under 

wind loading are depicted in Figs. 48 and 49. It can be seen from the figures that large 

tensions in both the meridional and circumferential directions are present. However, these 

values are significantly larger for Eurocode when compared with the values for TS 498. 

For instance, the maximum circumferential tension stress at the bottom of the windward 

meridian is 192.6 kPa for TS 498 whereas it is 529.8 kPa for Eurocode. Moreover, the 

maximum meridional tension stress at the bottom of the windward meridian is 851.5 kPa 

for TS 498 whereas the meridional stress appears to be maximum with a value of 2376.2 

kPa over a distance on the windward meridian from the bottom for Eurocode. As far as 

these stress values are considered it can be concluded that in contrast to bluff bodies, where 

the magnitude of the extensional stresses along the meridian would be essentially a 

function of the overturning moment, the cylindrical type body is also strongly influenced 

by the circumferential distribution of the applied pressure. Also, the regions of tension may 

extend a considerable distance along the circumference from the windward meridian and 

the magnitude is strongly dependent on the circumferential distribution as shown in Figs. 

50 and 51. These figures depict the distribution of circumferential or tangential stress 

around the circumference at the base and top of the cooling tower under different wind 

loadings. 
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Figure 36. Radial displacements at windward meridian (θ=0) of the cooling 

tower throughout the height for each wind load harmonics 

according to TS 498 

 

 

 

Figure 37. Radial displacements at windward meridian (θ=0) of the cooling 

tower throughout the height for each wind load harmonics 

according to Eurocode 
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Figure 38. Axial displacements at windward meridian (θ=0) of the cooling 

tower throughout the height for each wind load harmonics 

according to TS 498 

 

 

Figure 39. Axial displacements at windward meridian (θ=0) of the cooling 

tower throughout the height for each wind load harmonics 

according to Eurocode 
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Figure 40. Radial displacements at windward meridian (θ=0) of the cooling 

tower under wind load throughout the height according to TS 498 

and Eurocode 

 

 

Figure 41. Axial displacements at windward meridian (θ=0) of the cooling 

tower under wind load throughout the height according to TS 498 

and Eurocode 

 

0 

25 

50 

75 

100 

125 

-35 -30 -25 -20 -15 -10 -5 0 

H
ei

g
h
t 

(m
) 

Radial displacement (mm) 

TS 498 Eurocode 

0,0 

25,0 

50,0 

75,0 

100,0 

125,0 

-0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 

H
ei

g
h
t 

(m
) 

Axial displacement (mm) 

TS 498 Eurocode 



88 

 

 

 

 
Figure 42. Circumferential stresses at windward meridian (θ=0) throughout the 

height of the cooling tower under deadweight 

 

 

 

 
Figure 43. Meridional stresses at windward meridian (θ=0) throughout the 

height of the cooling tower under deadweight 
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Figure 44. Circumferential stresses at windward meridian (θ=0) throughout the 

height of the cooling tower for each wind load harmonics according 

to Eurocode 

 

 

 

 
Figure 45. Meridional stresses at windward meridian (θ=0) throughout the 

height of the cooling tower for each wind load harmonics according 

to Eurocode 
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Figure 46. Circumferential stresses at windward meridian (θ=0) throughout the 

height of the cooling tower for each wind load harmonics according 

to TS 498  

 

 

 

 
Figure 47. Meridional stresses at windward meridian (θ=0) throughout the 

height of the cooling tower for each wind load harmonics according 

to TS 498  
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Figure 48. Circumferential stresses at windward meridian (θ=0) throughout the 

height of the cooling tower under wind load according to TS 498 

and Eurocode 

 

 
Figure 49. Meridional stresses at windward meridian (θ=0) throughout the 

height of the cooling tower under wind load according to TS 498 

and Eurocode 
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Figure 50. Distribution of the circumferential stress around the circumference 

at the base of the Stanwell tower subjected to wind pressure 

 

 

 

 

 
Figure 51. Distribution of the circumferential stress around the circumference 

at the top of the Stanwell tower subjected to wind pressure 

 

 

2.2.5. Dynamic Analysis of the Cooling Tower 

 

Dynamic load of interest include only seismic actions that are time dependent. 

Seismic loads are modeled in the finite element time history analysis as ground 
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direct integration using time history records. The transient responses of the six hyperbolic 

axisymmetric shell structures with variations in wall thickness, height and curvature values 

as given in Table 13 to earthquake loading by direct integration using time history records 

of Düzce earthquake as plotted in Fig. 31 are discussed in this section and results are 

presented in graphical format. 

 

Table 13. Six different models analyzed for earthquake loading  

 

Model # Nomenclature 
Height 

(m) 

Wall thickness 

(mm) 

Throat radius  

(m) 

1 ht-141 141.5 240 27.89 

2 ht-101 101.5 240 27.89 

3 th-300 121.5 300 27.89 

4 th-180 121.5 180 27.89 

5 r-21 121.5 240 21.89 

6 
ht-121-Stanwell/th-240-

Stanwell/r-27-Stanwell 
121.5 240 27.89 

 

 

Figs. 52, 53 and 54 show the response in terms of deflections and stresses along the 

height for these different models. The results are obtained for the time step of 0.005 s when 

the maximum values are reached. During the earthquake these stresses keep on reversing 

from tension to compression and vice versa as shown in Figs. 55 and 56. From the results, 

it can be seen that the tallest shell structure experiences some of the largest deflections and 

stresses as depicted in Fig. 52. The value of the top deflection is increased by 49% in ht-

141 (the tallest structure) and decreased 60% in ht-101 (the shortest structure), compared 

with values for the Stanwell cooling tower as shown in Fig. 52(a). The meridional stress at 

the base is increased by 13% in ht-141 and decreased by 47% in ht-101, as shown in Fig. 

52(b). The hoop or circumferential stresses are more critical at the top. They are increased 

by 5.5% in ht-141 and decreased by 30% in ht-101, as shown in Fig. 52(c). Comparison of 

models of the same height but different wall thicknesses indicate higher stress resultants in 

shells with thicker walls, as shown in Fig. 53(a, b). The stress resultants are worked out by 

multiplying the average stress (stress at the center Gauss point) by the corresponding wall 
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thicknesses for better plotting. The stresses, on the other hand, are almost identical in all 

the three cases. As the top curvature kt increases (due to a decrease in throat radius), the 

meridional stress at the throat levels increases but decreases by 20% at the base as shown 

in Fig. 54(a), while the circumferential stress increases by 25% at the top as shown in Fig. 

54(b). From these figures it can be concluded that maximum circumferential stress 

increases with increase in curvature while maximum meridional stress decreases. Thus, the 

hyperbolic axisymmetric structure is observed to be quite sensitive to curvature and can be 

optimized by investigating the modal shapes and the period of vibrations. Such 

optimization can be achieved by changing curvature thus improving earthquake response. 

This may ultimately involve the variation of the shell thickness over the height of the 

structure. 

Figs. 55 and 56 show the meridional and circumferential stress responses along the 

height of the Stanwell hyperbolic cooling tower subjected to Düzce earthquake loading for 

each time step during Newmark dynamic analysis, respectively. As mentioned before 

during the earthquake these stresses carry on reversing from tension to compression and 

vice versa. Dark regions in these figures indicate that the stresses intensify within small 

interval during the earthquake. 

Fig. 57 (a, b, c) depict the time histories of the maximum lateral (radial) 

displacement at the top of the Stanwell tower, maximum meridional stress at the base of 

the Stanwell tower and maximum circumferential stress at the top of the Stanwell tower 

under Düzce earthquake loading, respectively. As shown in these figures maximum values 

within the earthquake duration are obtained at around the time of maximum ground 

acceleration appeared at the 9.135 second of the earthquake. The maximum radial 

displacement at the top, maximum tensional meridional stress at the base and maximum 

tensional circumferential stress at the top of the Stanwell cooling tower are obtained as 

33.1 mm, 5129.8 kPa and 1195.8 kPa respectively using the time-acceleration records 

within the duration of 5-10 s. of Düzce earthquake in Newmark direct integration method. 
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Figure 52. Responses along the three different heights of hyperbolic cooling tower 

under Düzce earthquake loading of (a) the lateral deflection (b) the 

meridional stress and (c) the circumferential stress when the maximum 

values are reached 
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Figure 53. (a) Meridional and (b) Circumferential stress resultants of the three different 

wall thicknesses of the hyperbolic cooling tower under Düzce earthquake 

loading along the height when the maximum values are reached 

 

 
Figure 54. (a) Meridional and (b) circumferential stress responses of two different 

curvatures of the hyperbolic cooling tower under Düzce earthquake loading 

along the height when the maximum values are reached 
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Figure 55. Meridional stress responses along the height of the Stanwell 

hyperbolic cooling tower under Düzce earthquake loading  

 

 

 

Figure 56. Circumferential stress responses along the height of the Stanwell 

hyperbolic cooling tower under Düzce earthquake loading 
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Figure 57 Time history of the (a) maximum lateral (radial) displacement (b) 

maximum meridional stress and (c) maximum circumferential 

stress of the Stanwell tower under Düzce earthquake loading 

 

-40 

-30 

-20 

-10 

0 

10 

20 

30 

40 

5 6 7 8 9 10 

R
ad

ia
l 

d
is

p
la

ce
m

en
t 

(m
m

) 

Time (s) 

(a) 

-6000 

-4000 

-2000 

0 

2000 

4000 

6000 

5 6 7 8 9 10 

M
er

id
io

n
al

 s
tr

es
s 

(k
P

a)
 

Time (s) 

(b) 

-1500 

-1000 

-500 

0 

500 

1000 

1500 

5 6 7 8 9 10 

C
ir

cu
m

fe
re

n
ti

al
 s

tr
es

s 
(k

P
a)

 

Time (s) 

(c) 



3. CONCLUSIONS AND RECOMMENDATIONS 

 

Static, forced and free vibration analysis of axisymmetric structures subjected to non-

axisymmetric loadings such as wind pressure as well as axisymmetric loading such as 

inertia force are studied using 4-noded and 9-noded quadrilateral ring elements. The 

geometry of the axisymmetric structure to be analyzed is defined parametrically and nodal 

coordinates can be obtained easily by the coded program. The verification of the program 

was done by solving several benchmark problems such as internally pressurized thick 

cylinder, rotating thin disc and circular plate bending problems. The stresses and the 

displacements were compared with the exact solutions and very good agreement was 

achieved. The analysis of cooling towers was studied next to show the applicability of the 

program to an important practical problem. Stanwell cooling tower was analyzed under 

wind loading according to TS 498 and Eurocode, and Düzce earthquake loading. Also, the 

free vibration analysis of the tower was conducted. Additionally, the influence of height, 

thickness and curvature parameters on the response of such cooling towers was examined 

by changing one parameter while keeping the others constant.  

Most important conclusions drawn from the study are as follows: 

 Almost all practically used revolutionary axisymmetric objects, such as 

cylindrical, conical, spherical, ellipsoidal, hyperboloidal, paraboloidal, etc. can be 

obtained parametrically. 

 In the case of hollow cylinder problem under axial load, axial torque and lateral 

load the relative errors compare to analytical solutions are very small for both 

Ring4 and Ring9 and decrease with the mesh refinement. 

 The natural frequencies obtained in the case of modal analysis of a hollow 

cylinder are very close to each other for FEM with and without model reduction 

technique, which verifies that solid ring elements with model reduction can be 

used successfully for the modal analysis of axisymmetric structures.  

 In the case of internally pressurized thick cylinder hole edge radial stresses using 

ring elements are underestimated due to impossibility of doing interelement 

stress averaging at that high stress edge. 

 Volumetric locking problem was observed using Ring4 in case of internally 

pressurized thick cylinder for low values of Poisson‟s ratio. 
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 Shear locking problem was observed in the case of plate bending problem for low 

values of the thickness using Ring4.  

 Convergence rate of Ring4 suffering from shear locking becomes much smaller 

as the thickness to diameter ratio of the circular plate decreases but that of Ring9 

is not that significant. 

 Results obtained using full integration and selectively reduced integration come 

so close to each other at the ratio of H/D=0.05 for center displacement and 

H/D=0.1 for radial stresses. That means that above these certain limits shear 

locking disappears. 

 Non-axisymmetric wind loadings are described according to TS 498 and 

Eurocode and can be expressed using Fourier series with eight harmonics. 

 As far as Fourier coefficients for wind loading are examined it can be concluded 

that Eurocode indicates that a significant portion of the wind loading will cause 

shell deformations in circumferential mode greater than m=1. However, TS 498 

indicates that the tower deforms in the translational mode of beam-like response. 

 The tensile and compressive stress resultants are sensitive to the type of 

circumferential distribution curve of the wind loading. 

 The natural frequencies of the Stanwell cooling tower decrease with increasing 

circumferential mode number until a minimum is reached whereupon they 

increase. 

 Height of the cooling tower is seen to have the greatest influence on the free 

vibration response, with increase of height significantly increasing the period of 

vibration. 

 Increasing curvature causes the fundamental periods to decrease first and at large 

curvatures, this trend is reversed. 

 The variations of the highest period of vibration with the shell thickness and 

height are approximately linear. 

 Dead load analysis results that the shell is always under compression in both 

meridional and circumferential directions, except for a small circumferential 

tension near the top due to the hyperbolic shape of the cooling tower. 

 Hoop stresses are greatly affected by changes in shell curvature. The response is 

quite sensitive to high curvature values, which must be avoided. 
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 Stresses due to the earthquake excitation keep on reversing from tension to 

compression and vice versa. 

 Maximum circumferential stress occurred at the top and maximum meridional 

stress was observed at the base of the structure of the Stanwell cooling tower 

under seismic loading. 

Some recommendations may be given for future studies as followings: 

 Rotational freedom can be added to the finite element model to estimate the 

behavior of the structures such as plates in bending more precisely.  

 In the work related to the analysis of hyperbolic cooling towers, under either 

dead, wind or earthquake loads, only the fixed based tower shell was considered 

in the analysis. However, the tower shell is supported by columns. In order to 

consider realistic boundary conditions, it is essential to consider the supporting 

columns in the analysis along with the shell. 

 In order to be able to consider the column effects in the analysis it may be 

possible to transform these columns into equivalent shell surfaces, so that the 

coded elements can be utilized. 

 One element type can be used for modeling of different environment such as 

structures, soil and water. Therefore, interaction problems coupled eigenvalue 

problem can be investigated. 

 The hyperbolic shape and wall thickness of the cooling towers can be optimized 

by investigating the frequency of the structure. 

 Linear elastic analysis of axisymmetric structures is performed. Nonlinearities 

may also be considered for a better analysis.  

 The study can be improved by incorporating the temperature effect on the static 

and dynamic behavior of the cooling tower. 
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