KARADENİZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

KUM ZEMİNDEKİ KAZIKLI RADYE TEMELLERİN DAVRANIŞLARININ DENEYSEL VE NÜMERİK YÖNTEMLERLE ARAŞTIRILMASI

DOKTORA TEZİ

İnş. Yük. Müh. Bayram ATEŞ

EYLÜL 2019 TRABZON

KARADENİZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

KUM ZEMİNDEKİ KAZIKLI RADYE TEMELLERİN DAVRANIŞLARININ DENEYSEL VE NÜMERİK YÖNTEMLERLE ARAŞTIRILMASI

İnş. Yük. Müh. Bayram ATEŞ

Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsünce "DOKTOR (İNŞAAT MÜHENDİSLİĞİ)" Unvanı Verilmesi İçin Kabul Edilen Tezdir.

Tezin Enstitüye Verildiği Tarih : 16 / 08 /2019Tezin Savunma Tarihi: 05 / 09 /2019

Tez Danışmanı : Doç Dr. Erol ŞADOĞLU

KARADENİZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

İnşaat Mühendisliği Anabilim Dalında

Bayram ATEŞ Tarafından Hazırlanan

KUM ZEMİNDEKİ KAZIKLI RADYE TEMELLERİN DAVRANIŞLARININ DENEYSEL VE NÜMERİK YÖNTEMLERLE ARAŞTIRILMASI

başlıklı bu çalışma, Enstitü Yönetim Kurulunun 20 /08/2019 gün ve 1815 sayılı kararıyla oluşturulan jüri tarafından yapılan sınavda DOKTORA TEZİ olarak kabul edilmiştir.

Jüri Üyeleri

Başkan : Prof. Dr. Aykut ŞENOL

- Üye 🔡 Doç. Dr. Nejan Huvaj Sarıhan
- Üye : Doç. Dr. Erol ŞADOĞLU
- Üye 🚯 Doç. Dr. S. Banu İKİZLER
- Üve 😨 Doç. Dr. Hakan ERSOY

Prof. Dr. Asim KADIOĞLU Enstitü Müdürü

ÖNSÖZ

Kum Zemindeki Kazıklı Radye Temellerin Davranışlarının Deneysel Ve Nümerik Yöntemlerle Araştırılması konulu bu çalışma Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü İnşaat Mühendisliği Ana Bilim Dalında doktora tezi olarak gerçekleştirilmiştir.

Yaptığım doktora tez çalışmam süresince, danışmanlığımı üstlenerek çalışmalarımın yürütülmesi sırasında maddi, manevi yardımcı olup; sahip olduğu bilgi, tecrübe ve zamanını benden esirgemeyen sayın Doç. Dr. Erol ŞADOĞLU'na teşekkür eder, saygı ve minnetlerimi sunarım.

Tez çalışmam boyunca değerli vakitlerini ayırıp tez çalışmamı inceleyerek bilgi ve deneyimlerini benimle paylaşan, tez izleme komitesi üyesi değerli hocalarım sayın Doç. Dr. S. Banu İKİZLER ve Doç. Dr. Hakan ERSOY ile jüri üyeliği görevini üstlenen değerli hocalarıma ayrıca teşekkür ederim. İhtiyaç duyduğumuz her noktada yardımını esirgemeyen, gerek deney öncesi hazırlık, gerekse deney esnasında yapılan çalışmalarda büyük emeği olan Arş. Gör. Mehmet Tevfik SEFEROĞLU'a teşekkür ve minnetlerimi sunarım.

Trabzon Sosyal Güvenlik İl Müdürlüğünün değerli personelleri; Arslan CAN, Faruk YILMAZ, M. Alpay AKIN, Sena AKIN, Hasan ÇABUK, Burak ÖZTÜRK ve Öner KÜÇÜKALİ 'ye doktora çalışmalarım boyunca verdikleri destekten dolayı teşekkür ve minnetlerimi sunarım.

Bu noktaya gelmemde büyük emekleri olan, hayatımın tüm dönemlerinde, maddi ve manevi destekçim olan, başta anneme ve sevgili aileme şükranlarımı sunarım.

Tanıdığım günden beri yanımda olan ve benden desteğini karşılıksız olarak esirgemeyen saygı değer Ebru TOKGÖZ'e teşekkür eder, minnetlerimi sunarım.

Bayram ATEŞ Trabzon 2019

III

TEZ ETİK BEYANNAMESİ

Doktora Tezi olarak sunduğum "Kum Zemindeki Kazıklı Radye Temellerin Davranışlarının Deneysel Ve Nümerik Yöntemlerle Araştırılması" başlıklı bu çalışmayı baştan sona kadar danışmanım Doç. Dr. Erol ŞADOĞLU'nun sorumluluğunda tamamladığımı, verileri/örnekleri kendim topladığımı, deneyleri/analizleri ilgili laboratuvarlarda yaptığımı/yaptırdığımı, başka kaynaklardan aldığım bilgileri metinde ve kaynakçada eksiksiz olarak gösterdiğimi, çalışma sürecinde bilimsel araştırma ve etik kurallara uygun olarak davrandığımı ve aksinin ortaya çıkması durumunda her türlü yasal sonucu kabul ettiğimi beyan ederim 05/09/2019.

Bayram ATEŞ

İÇİNDEKİLER

<u>Sayfa No</u>

ÖNSÖZ		III
TEZ ETİK	BEYANNAMESİ	IV
İÇİNDEKİ	ILER	V
ÖZET		VIII
SUMMAR	Y	IX
ŞEKİLLEI	R DİZİNİ	Х
TABLOLA	AR DİZİNİ	XVII
SEMBOLI	LER DİZİNİ	XIX
1.	GENEL BİLGİLER	1
1.1.	Giriş	1
1.2.	Radye Temeller	2
1.2.1.	Radye Temellerde Taşıma Gücü Hesabı	5
1.2.2.	Radye Temellerin Tasarımı	6
1.2.2.1	Basit Gerilme Dağılışı Yöntemi	6
1.2.2.2	Yatak Katsayısı Yöntemi	8
1.2.2.3	Elastik Yarı Uzay Yöntemi	10
1.2.2.4	Eşlenik Yöntem	13
1.2.2.5	Psödo Eşlenik Yöntem	13
1.2.2.6.	Çoklu Parametre Yöntemi	14
1.2.2.7.	Sonlu Elemanlar Yöntemi	15
1.2.3.	Radye Temellerde Farklı Oturma Hesabı	15
1.3.	Kazıklı Temeller	16
1.3.1.	Kazıkların Taşıma Gücü	20
1.3.1.1.	Statik Kazık Formülleri ile Taşıma Gücünün Tespiti	21
1.3.1.2.	Arazi Deney Sonuçları ile Taşıma Gücünün Tespiti	29
1.3.1.3.	Kazık Yükleme Deneyleri ile Taşıma Gücünün Tespiti	32
1.3.2.	Kazık Grup Davranışı	33
1.4.	Kazıklı Radye Temeller	38
1.4.1.	Kazıklı Radye Temellerin Taşıma Gücü Hesabı	39

1.4.2.	Kazıklı Radye Temellerde Oturma Hesabı	42
1.4.3.	Kazıklı Radye Temellerin Analizi	44
1.4.3.1.	Basitleştirilmiş Hesap Yöntemleri	44
1.4.3.1.1.	Poulos ve Davis Yöntemi	44
1.4.3.1.2.	Randolph Yöntemi	44
1.4.3.1.3.	Poulos-Davis-Randolph (PDR) Yöntemi	46
1.4.3.1.4.	Burland Yöntemi	49
1.4.3.2.	Yaklaşık Sayısal Analiz Yöntemleri	50
1.4.3.2.1.	Yaylar Üzerinde Şerit Temel Yaklaşımı (GASP)	50
1.4.3.2.2.	Yaylar Üzerinde Plak Temel Yaklaşımı (GARP)	52
1.4.3.3.	İleri Sayısal Analiz Yöntemleri	53
1.4.3.3.1.	Sınır Eleman Yöntemi	53
1.4.3.3.2.	Basitleştirilmiş Sonlu Elemanlar Yöntemi	54
1.4.3.3.3.	Üç Boyutlu Sonlu Elemanlar Yöntemi	55
1.5.	Literatür Taraması	56
1.5.1.	Teorik Çalışmalar	56
1.5.2.	Deneysel Çalışmalar	70
2.	YAPILAN ÇALIŞMALAR	81
2.1.	Deneysel Çalışmalar	81
2.1.1.	Deney Düzeneği	81
2.1.1.1.	Deney Tankı	83
2.1.1.2.	Model Radye Temel	83
2.1.1.3.	Model Kazıklar	84
2.1.1.4.	Model Kazıklı Radye Temel	86
2.1.1.5.	Yükleme Düzeneği	87
2.1.1.6.	Yük Hücresi	87
2.1.1.7.	Deplasman Ölçer	88
2.1.1.8.	Basınç Ölçer	89
2.1.1.9.	Strain Gauge	90
2.1.1.10.	Veri Toplama Sistemi ve CoDA Locomotive Programı	91
2.1.2.	Deneylerde Kullanılan Kumun Geoteknik Özellikleri	93
2.1.3.	Deney Yöntemi	99
2.1.3.1.	Eksenel Yükleme Düzeneğinin ve Ölçüm Cihazlarının Kalibrasyonu	99

2.1.3.2.	Tipik Bir Deneyin Hazırlanışı	10
2.1.4.	Deney Programı	10
2.1.4.1.	Kazıklar Arası Optimum Mesafenin (Sopt) Tespiti	104
2.1.4.2.	Kazıklı Radye Temellerde Yük Paylaşım Oranı	10
2.1.4.3.	Kazıklı Radye Temellerde Grup Verimi	10
2.1.4.4.	Kazıklı Radye Temellerde Gerilme Dağılışı	10
2.2.	Nümerik Çalışmalar	11
2.2.1.	Sonlu Elemanlar Yöntemi	11
2.2.2.	Deneysel Çalışmaların Modellenmesi	114
2.2.2.1.	Geometrik Modelleme	114
2.2.2.2.	Sınır Koşullarının Belirlenmesi ve Yük Uygulanması	11
2.2.2.3.	Zemin Modelinin Tespiti ve Özellikleri	11
2.2.2.4.	Deney Elemanlarının Modellenmesi ve Eleman Tipleri	11
2.2.2.5.	Deney Elemanlarının Malzeme Özellikleri	12
2.2.2.6.	Sayısal Modelleme Analizleri	12
3.	BULGULAR VE TARTIŞMALAR	12
3.1.	Deneysel Bulgular	12
3.1.1	Kazıklar Arası Optimum Mesafenin (Sopt) İncelenmesi	12
3.1.2.	Kazık ve Radye Temel Arasında Yük Paylaşımının İncelenmesi	13
3.1.3.	Kazıklı Radye Temellerde Grup Veriminin İncelenmesi	14
3.1.4.	Kazıklı Radye Temellerde Gerilme Dağılışının İncelenmesi	14
3.1.4.1.	Farklı Rölatif Sıkılıklarda L=200 mm İçin Gerilme Dağılışlarının Tespiti.	15
3.1.4.2.	Farklı Rölatif Sıkılıklarda L=300 mm İçin Gerilme Dağılışlarının Tespiti.	15
3.2.	Nümerik Bulgular	16
3.2.1.	Farklı Rölatif Sıkılıklarda L=200 mm İçin Gerilme Dağılışlarının	
	Nümerik Tespiti	16
3.2.2.	Farklı Rölatif Sıkılıklarda L=300 mm İçin Gerilme Dağılışlarının	
	Nümerik Tespiti	17
3.3.	Deneysel ve Nümerik Bulguların İrdelenmesi	17
4.	SONUÇLAR VE ÖNERİLER	18
5.	KAYNAKLAR	18
6.	EKLER	19
ÖZGEÇN	ЛİŞ	

VII

Doktora Tezi

ÖZET

KUM ZEMİNDEKİ KAZIKLI RADYE TEMELLERİN DAVRANIŞLARININ DENEYSEL VE NÜMERİK YÖNTEMLERLE ARAŞTIRILMASI

Bayram ATEŞ

Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü İnşaat Mühendisliği Anabilim Dalı Danışman: Doç. Dr. Erol ŞADOĞLU 2019, 192 Sayfa, 25 Sayfa Ek

Kazıklar ve kazıklı temeller, yapı yüklerinin yüzeysel temellerle güvenle taşıtılamadığı durumlarda kullanılmaktadır. Kazıklı radye temeller, kazık ve radyenin yük taşıma kapasitelerini birleştiren bir temel sistemi olması sebebiyle son yıllarda ön plana çıkmıştır. Bu sebeple, bu temel sistemlerinin güvenilir ve ekonomik tasarım için kapsamlı analitik ve deneysel çalışmalar yapılmıştır.

Bu çalışmada, kum zemin içerisinde yer alan kazıklı radye temellerin tasarımın parametrelerinin etkileri (kazıklar arası mesafe, kazık çapı, kazık uzunluğu, rölatif sıkılık, kazıklar ve radye arasında yük paylaşım oranı, düşey gerilme artışları, kazık boyunca şekil değiştirmeler vb.) araştırılmıştır. Laboratuvar deneylerinde, çapı 20 ve 30 mm, uzunluğu 200 ve 300 mm olan model kompozit (çelik ve beton) kazıklar kullanılmıştır. Plan boyutları 160x160 mm, 240x240 mm ve kalınlığı 6 mm olan radye, çelik plakadan imal edilmiştir. Deneysel çalışmalarda iki farklı rölatif sıkılıktaki (%30-%70) kum zeminin önceden belirlenen noktalarına yerleştirilen basınçölçerler yardımıyla gerilme artışları ölçülmüştür. Model kazıklar, kazık boyunca şekil değiştirmelerini ölçebilmek için, birim deformasyon ölçerlerle donatılmıştır. Farklı tasarım parametrelerine sahip model kazıklı radye temeller test edilmiştir. Tek bir kazık ve tek radye davranışı da karşılaştırma amaçlı olarak ayrıca incelenmiştir. Ayrıca; deney programına bağlı kalarak sonlu elemanlar yöntemine dayanan ABAQUS/CAE programı ile sayısal analizler yapılmış, elde edilen sonuçların deney sonuçları ile olan uyumu araştırılmıştır.

Deney sonuçlarından, kazıklı radye temellerdeki radyelerin temel yüklerini ihmal edilemeyecek seviyelerde paylaştığı bulunmuştur. Kazıklı radye temellerde kazıklar arası mesafe arttıkça taşıma gücünün arttığı ve kazıklar arası optimum mesafe 4D olduğu belirlenmiştir. Kazık gruplarında grup veriminin 1'den küçük olacağı yönündeki genel kanaatin aksine, deneysel çalışmaların sonucunda kumlu zeminlerdeki kazık grubunun verimi 1'den büyük bulunmuş olmasıdır. Ayrıca; model kazıklı radye temellerin model radye temele göre gerilmeleri daha derine aktardığı ve oturmaları azalttığı tespit edilmiştir. Temel mühendisliği uygulamalarında kullanılmak üzere tasarım parametreleri önerilmiştir.

Anahtar Kelimeler: Kazıklı radye temel, Model deney, Sonlu elemanlar yöntemi, ABAQUS, Nümerik modelleme, Düşey gerilme artışı.

PhD. Thesis

SUMMARY

INVESTIGATION OF BEHAVIOR OF PILED RAFT FOUNDATIONS AT SANDY SOIL BY EXPERIMENTAL AND NUMERICAL METHODS

Bayram ATEŞ

Karadeniz Technical University The Graduate School of Natural and Applied Sciences Civil Engineering Graduate Program Supervisor: Doç. Dr. Erol ŞADOĞLU 2019, 192 Pages, 25 Pages Appendix

Piles and piled foundations are used in the cases where the structural loads cannot be carried safely with the shallow foundations. Piled raft foundation has become a prominent foundation system in recent years due to that it combines load bearing capacities of piles and raft. Therefore, comprehensive analytical and experimental studies are carried out for reliable and economic design of piled raft foundations.

In this study, the effects of design parameters of piled raft foundations in sand (pile spacing, pile diameter, pile lenght, relative density, load sharing ratio between pile and raft, vertical stress increments, strain along the pile etc.) have been investigated. In the laboratory tests, model composite (steel and concrete) piles with diameters of 20, 30 mm and a length of 200, 300 mm were used. The raft was made of steel plate with main dimensions of 160x160, 240x240 mm and a thickness of 6 mm. In experimental studies, vertical stress increments were measured by pressure gauges placed at predetermined locations of the sand in two different relative densities (30% -70%). The model piles were instrumented with strain gauges to measure the strains along the piles. The model piled raft foundations with different design parameters were tested. The behavior of a single pile and the single raft were also investigated for comparison purposes. Additionally, numerical analyses, adhering to the experimental program, have been carried out with finite element based software ABAQUS/CAE and the obtained results have been compared with the experimental results.

From the tests results, it has been found that rafts share foundation loads at such levels that should not be ignored. As the pile spacing getting larger, the bearing capacities of the model pile raft foundation has increased and the optimum distance between the piles was determined to be 4D. Contrary to the general belief that the group efficiency in pile group is less than 1, from the experimental studies group efficiency of the pile group is found to be greater than 1 for sands. Also, it was found that model pile raft foundation transfer stresses deeper and reduce settlements. Some design parameters have been suggested for foundation engineering applications.

Keywords: Piled raft foundation, Model test, Finite element method, ABAQUS, Numerical modelling, Vertical stress distrubition.

ŞEKİLLER DİZİNİ

<u>Sayfa No</u>

Şekil 1.1.	Radye temel çeşitleri (Uzuner, 2016)	4
Şekil 1.2.	Temel (yüzeysel) altındaki göçme mekanizması (Terzaghi ve Peck, 1968)	5
Şekil 1.3.	Basitleştirilmiş kabule göre radye temel altında taban basıncı dağılımı.	7
Şekil 1.4.	Radye temellerin yatak katsayısı yöntemi ile boyutlandırılmasında kullanılan <i>Z1</i> , <i>Z2</i> , <i>Z3</i> ve <i>Z4</i> katsayıları (Bowles, 2001)	10
Şekil 1.5.	Winkler yöntemi ve elastik yarı uzay yönteminde a) Rijit, b) Elastik temelin altında oluşan gerilme dağılımı ve oturma	12
Şekil 1.6.	Eşlenik yöntemin şematik gösterimi	13
Şekil 1.7.	Kazıklı temellerin kullanım alanları (Das, 1999)	18
Şekil 1.8.	Yükleri taşıma ve iletme şekillerine göre sürtünme ve uç kazığı	19
Şekil 1.9.	Yük altında kazık davranışı (Birand, 2007)	21
Şekil 1.10.	N_c^* ve N_q^* değerlerinin içsel sürtünme açısı ile değişimi (Meyerhof, 1976)	23
Şekil 1.11.	$(L_b/d)_{cr}$ oranının içsel sürtünme açısına göre değişimi (Mayerhof, 1976)	24
Şekil 1.12.	λ değerinin kazık boyunca değişimi (Vijayvergia ve Focht, 1972)	28
Şekil 1.13.	Kazığın hidrolik kriko vasıtası ile ankraj kazıklarından reaksiyon alarak yüklenmesi	33
Şekil 1.14.	Kazıkların birbiriyle olan etkileşimi (Kanıt, 2003)	34
Şekil 1.15.	Sürtünme kazıklarında gerilme dağılışı ve grup etkisi	35
Şekil 1.16.	Feld yönteminde sürtünme kazıklarının etkileşimi	36
Şekil 1.17.	Kazıklı radye temel, kazıklı temel ve radye temel gösterimi	38
Şekil 1.18.	Kazıklı radye temellerde yük aktarma mekanizması (Sönmez, 1994)	39
Şekil 1.19.	Kohezyonlu zeminlerde kazık grubu taşıma gücü (Terzaghi ve Peck, 1968)	41

Şekil 1.20.	Gerilmelerin süperpozisyonu (Tomlinson,2004)	42
Şekil 1.21.	Kohezyonlu zeminlerde kazıklı radye temellerde oturma hesabı için gerilme dağılımı (Vesic, 1977)	43
Şekil 1.22.	Kazıklı radyejeneral temel sisteminin basitleştirilmiş hali (Randolph,1994)	45
Şekil 1.23.	PDR yöntemi ile yük-oturma eğrisi (Poulos,2001)	48
Şekil 1.24.	Basitleştirilmiş tasarım modeli, a) plağın yük-oturma eğrisi, b) kazıklı radyejeneral temelin kesiti, c) eşdeğer radyejeneral temel kesiti (Burland, 1995)	50
Şekil 1.25.	Kazıklı şerit temelin GASP analizi için modeli (Poulos, 1991)	51
Şekil 1.26.	(a) Kazıklı radye sisteminin kiriş ve yaylarla modellenmesi, (b) Kazıkların ve çevresindeki zeminin yaylarla modellenmesi	52
Şekil 1.27.	Yaylar üzerinde plak yaklaşımı.	53
Şekil 1.28.	Düzlem deformasyon sonlu eleman yöntemi (Gök, 2007)	54
Şekil 1.29.	Eksenel simetrik sonlu eleman yöntemi (Gök, 2007)	55
Şekil 1.30.	Kullanılan sistem ve yük konfigürasyonları (Reul O. ve Randolph M.F., 2004)	61
Şekil 1.31.	Oturma azaltıcı kazık konsepti (Tan Y.C., ve Chow C.M., 2004)	62
Şekil 1.32.	Lokal deformasyon kontrolünde oturma azaltıcı kazıklar (Tan Y.C. ve Chow C.M., 2004)	63
Şekil 1.33.	Kazıklı radye konsepti (Tan Y.C. ve Chow, C.M., 2004)	64
Şekil 1.34.	Zemin-kazık modeli (Erdemir ve Okur, 2011)	68
Şekil 1.35.	Model deneylerde kullanılan enstrümante model kazılar (Fioravante, F. ve Giretti D., 2010)	78
Şekil 2.1.	Deney düzeneğinin bir görünüşü	82
Şekil 2.2.	Model radye temel	84
Şekil 2.3.	Model kazık imalatı	85
Şekil 2.4.	Deneylerde kullanılan kazıklar	85

Şekil 2.5.	Model kazıklı radye temel	86
Şekil 2.6.	Model kazıklı radye temel parametreleri	86
Şekil 2.7.	Eksenel yük presi	87
Şekil 2.8.	Yük Hücresi	88
Şekil 2.9.	Deplasman ölçer	88
Şekil 2.10.	Deneylerde kullanılan basınç ölçerler	89
Şekil 2.11.	Şekil değiştirme ölçer ve teknik özellikleri	90
Şekil 2.12.	Şekil değiştirme ölçerlerin montajı	91
Şekil 2.13.	TDG firmasının Ai8b model numaralı veri toplama ünitesi	92
Şekil 2.14.	TDG firmasının RS-485 model numaralı aygıt geçidi	92
Şekil 2.15.	CoDA Locomotive programı yardımıyla verilerin sayısal değerlere dönüştürülmesi	92
Şekil 2.16.	Deneylerde kullanılan kum	93
Şekil 2.17.	Kumun granülometri eğrisi	94
Şekil 2.18.	Rölatif sıkılık deneyleri	96
Şekil 2.19.	Dr=0,30 için kesme kutusu deney sonuçları	97
Şekil 2.20.	Dr=0,70 için kesme kutusu deney sonuçları	98
Şekil 2.21.	Yük Hücresi kalibrasyon eğrisi	99
Şekil 2.22.	1 No'lu LVDT'nin kalibrasyon eğrisi	100
Şekil 2.23.	2 No'lu LVDT'nin kalibrasyon eğrisi	100
Şekil 2.24.	Zemin genel görünüm	101
Şekil 2.25.	Deneyin yapılışı	102
Şekil 2.26.	Deney tankı genel görünüş	103
Şekil 2.27.	Sopt tespiti için hazırlanan model temel	104
Şekil 2.28.	Kazık yerleşim planı	107

Şekil 2.29.	Strain gauge bağlantılı model kazık	109
Şekil 2.30.	Pressure gauge yerleştirilmesi	109
Şekil 2.31.	Sürekli bir sistemin sonlu elemanlara ayrılması (ABAQUS, 2017)	111
Şekil 2.32.	Tipik iki boyutlu elemanlar (Keskin, 2009)	112
Şekil 2.33.	Kum tankının geometrik modeli	114
Şekil 2.34.	Nümerik analize ait sınır şartları	115
Şekil 2.35.	Nümerik analizlerde yükleme ataması	116
Şekil 2.36.	Temellerin modellenmesinde kullanılan C3D8R sonlu elemanı	117
Şekil 2.37.	Model radye temelin sonlu elemana ayrılmış sayısal modelleri	118
Şekil 2.38.	Model kazığın sonlu elemana ayrılmış sayısal modelleri	119
Şekil 2.39.	Model kazıklı radye temelin sonlu elemana ayrılmış sayısal modelleri.	119
Şekil 2.40.	Deney elemanlarına malzeme parametresi atama	120
Şekil 2.41.	Nümerik analizler sonucu elde edilen kazıklı radye temele ait düşey yer değiştirmeler	121
Şekil 2.42.	Nümerik analizler sonucu elde edilen kazıklı radye temele ait Mises gerilme dağılışı	122
Şekil 3.1.	Model kazıklar	124
Şekil 3.2.	Dr=%30, D=20 mm, B=160 mm için yük - oturma eğrileri (a) L=200 mm, (b) L=300 mm.	125
Şekil 3.3.	Dr=%70, D=20 mm, B=160 mm için yük - oturma eğrileri (a) L=200mm, (b) L=300 mm	126
Şekil 3.4.	Dr=%30, D=30 mm, B=240 mm, yük - oturma eğrileri (a) L=200 mm, (b) L=300 mm	128
Şekil 3.5.	Dr=%70, D=30 mm, B=240 mm için yük –oturma eğrileri (a) L=200 mm, (b)=300 mm	129
Şekil 3.6.	Optimum kazık aralığının tespiti için yapılan deneysel çalışmalar	131
Şekil 3.7.	$D_r=\%30$, $D=20$ mm, $B=160$ mm için Q_R , Q_K , Q_{KR} - oturma eğrileri (a) $L=200$ mm, (b)=300 mm	132

Şekil 3.8.	Dr=%30, D=20 mm, B=160 mm için radye-kazık yük paylaşım oranları (a) L=200, (b)=300	133
Şekil 3.9.	$D_r=\%70, D=20 \text{ mm}, B=160 \text{ mm}$ için Q_R, Q_K, Q_{KR} - oturma eğrileri (a) L=200 mm, (b)=300 mm	134
Şekil 3.10.	Dr=%70, D=20 mm, B=160 mm için radye-kazık yük paylaşım oranları (a) L=200 mm, (b)=300 mm	135
Şekil 3.11.	$D_r=\%30, D=30 \text{ mm}, B=240 \text{ mm}$ için Q_R, Q_K, Q_{KR} - oturma eğrileri (a) L=200 mm, (b)=300 mm	137
Şekil 3.12.	Dr=%30, D=30 mm, B=240 mm için radye-kazık yük paylaşım oranları (a) L=200 mm, (b)=300 mm	138
Şekil 3.13.	$D_r=\%70$, $D=30$ mm, $B=240$ mm için Q_R , Q_K , Q_{KR} - oturma eğrileri (a) L=200 mm, (b)=300 mm	139
Şekil 3.14.	Dr=%70, D=30 mm, B=240 mm için radye-kazık yük paylaşım oranları (a) L=200 mm, (b)=300 mm	140
Şekil 3.15.	Kazıklar ve radyenin yük taşıma oranı	142
Şekil 3.16.	Tek kazık ve iki kazığın eksenel olarak yüklenmesi	144
Şekil 3.17.	Sürtünme dirençlerinin zemine aktarılması	145
Şekil 3.18.	Dr=%30, D=20 mm için kazık sayısına bağlı olarak yük taşıma eğrileri (a) L=200 mm, (b)=300 mm	146
Şekil 3.19.	Dr=%70, D=20 mm için kazık sayısına bağlı olarak yük taşıma eğrileri (a) L=200 mm, (b)=300 mm	148
Şekil 3.20.	Basınç ölçer ve strain gauge yerleşim planı	150
Şekil 3.21.	L=200 mm, B=160 mm, D=20 mm, S=4D durumunda tek kazık, radye ve kazıklı radye temel için yük-oturma eğrileri (a) $D_r=\%30$, (b)= $D_r=\%70$	151
Şekil 3.22.	L=200 mm, D=20 mm için tek kazığın zeminde sebep olduğu gerilme- oturma eğrileri (a) Dr=%30, (b)= Dr=%70	152
Şekil 3.23.	L=200 mm, B=160 mm için model radye temelden kaynaklı zeminde meydana gelen gerilme-oturma eğrileri (a) $D_r=\%30$, (b)= $D_r=\%70$	153
Şekil 3.24.	L=200 mm, B=160 mm için kazıklı model radye temelden kaynaklı zeminde meydana gelen gerilme-oturma eğrileri (a) $D_r=\%30$, (b)= $D_r=\%70$	154

Şekil 3.25.	L=200 mm, D=20 mm için tek kazık boyunca şekil değiştirme eğrileri (a) $D_r=\%30$, (b)= $D_r=\%70$	155
Şekil 3.26.	L=200 mm, B=160 mm, D=20 mm S=4D için kazıklı radye temelde kazık boyunca şekil değiştirme eğrileri (a) $D_r=\%30$, (b)= $D_r=\%70$	156
Şekil 3.27.	L=300 mm, B=160 mm, D=20 mm, S=4D durumunda tek kazık, radye ve kazıklı radye temel için yük-oturma eğrileri (a) $D_r=\%30$, (b)= $D_r=\%70$	159
Şekil 3.28.	L=300 mm, D=20 mm için tek kazığın zeminde sebep olduğu gerilme- oturma eğrileri (a) $D_r=\%30$, (b)= $D_r=\%70$	160
Şekil 3.29.	L=300 mm, B=160 mm için kazıklı model radye temelden kaynaklı zeminde meydana gelen gerilme-oturma eğrileri (a) $D_r=\%30$, (b)= $D_r=\%70$	161
Şekil 3.30.	L=300 mm, D=20 mm için tek kazık boyunca şekil değiştirme eğrileri (a) $D_r=\%30$, (b)= $D_r=\%70$	162
Şekil 3.31.	L=300 mm, B=160 mm, D=20 mm S=4D için kazıklı radye temelde kazık boyunca şekil değiştirme eğrileri (a) $D_r=\%30$, (b)= $D_r=\%70$	163
Şekil 3.32.	Analizlerde gerilme ve strain okumalarının yapıldığı noktalar	165
Şekil 3.33.	D=20 mm, L=200 mm, B=160, S=4D için tek kazık, radye ve kazıklı radye temele ait yük-oturma eğrileri (a) Dr=%30, (b) Dr=%70	167
Şekil 3.34.	Nümerik analizler sonucunda elde edilen model radye temel (B=160mm) için Mises gerilme dağılımı (a) Dr=%30, (b) Dr=%70	169
Şekil 3.35.	Nümerik analizler sonucunda elde edilen model radye temel $(B=160mm)$ için düşey yer değiştirmeler (a) $D_r=\%30$, (b) $D_r=\%70$	169
Şekil 3.36.	Nümerik analizler sonucunda elde edilen model kazıklı radye temel için B=160 mm, L=200, S=4D durumunda Mises gerilme dağılımı (a) Dr=%30, (b) Dr=%70	170
Şekil 3.37.	Nümerik analizler sonucunda elde edilen model kazıklı radye temel için B=160 mm, L=200 mm, S=4D durumunda düşey yer değiştirmeler (a) $D_r=\%30$, (b) $D_r=\%70$	170
Şekil 3.38.	D=20 mm, L=300 mm, B=160, S=4D için tek kazık, radye ve kazıklı radye temele ait yük-oturma eğrileri (a) Dr=%30, (b)= Dr=%70	172
Şekil 3.39.	Nümerik analizler sonucunda elde edilen model kazıklı radye temel için B=160 mm, L=300, S=4D durumunda Mises gerilme dağılımı (a) $D_r=\%30$, (b) $D_r=\%70$	174

Şekil 3.40.	Nümerik analizler sonucunda elde edilen model kazıklı radye temel	
-	için B=160 mm, L=300 mm, S=4D durumunda düşey yer	
	değiştirmeler (a) Dr=%30, (b) Dr=%70 17	14

- Şekil 3.41.D=20 mm, L=200 mm, B=160, S=4D için tek kazık, radye ve kazıklı
radye temele ait yük-oturma eğrileri (a) $D_r=\%30$, (b) $D_r=\%70$176
- Şekil 3.42.D=20 mm, L=300 mm, B=160, S=4D için tek kazık, radye ve kazıklı
radye temele ait yük-oturma eğrileri (a) Dr=%30, (b) Dr=%70......179

TABLOLAR DİZİNİ

		<u>Sayfa N</u>
Tablo 1.1.	Terzaghi taşıma gücü katsayıları (Bowles,1996)	. 6
Tablo 1.2.	Kazık tipine göre K değerleri	. 25
Tablo 1.3.	Sükûnetteki yatay toprak basıncı katsayısına göre K değerleri	. 26
Tablo 1.4.	Kazık-zemin arasındaki sürtünme değerleri	. 26
Tablo 1.5.	Kulhawy ve ark (1983) ve Kulhawy (1991) tarafından önerilmiş k katsayısı değerleri (Zhang ve ark., 2005)	K . 26
Tablo 1.6.	Kulhawy ve ark (1983) ve Kulhawy (1991) tarafından önerilmiş δ katsayısı değerleri (Zhang ve ark., 2005)	. 27
Tablo 1.7.	Adhezyon katsayısı	. 28
Tablo 1.8.	Cs katsayısının değerleri	. 32
Tablo 1.9.	Kazık grubu etki katsayıları (η)	. 36
Tablo 2.1.	Model kazık parametreleri	. 84
Tablo 2.2.	Model radye temel parametreleri	. 85
Tablo 2.3.	LVDT'ye ait teknik özellikler	. 89
Tablo 2.4.	Deney kumunun geoteknik özellikleri	. 94
Tablo 2.5.	Kohezyonsuz zeminlerde sıkılık tablosu	. 95
Tablo 2.6.	Rölatif sıkılık deney sonuçları	. 96
Tablo 2.7.	Farklı rölatif sıkılık için gerekli zemin miktarı (M _k)	. 97
Tablo 2.8.	Rölatif sıkılık değerlerine göre belirlenmiş Elastisite Modülü Dilatansi Açısı ve Poisson Oranı değerleri	, . 98
Tablo 2.9.	S _{opt} Tespiti İçin deney programı	. 104
Tablo 2.10.	Yük paylaşım oranının tespiti için deney programı	. 105
Tablo 2.11.	Kazık gurup veriminin tespiti için deney programı	. 106
Tablo 2.12.	Kazık radye temellerde gerilme dağılışının tespiti deney programı	. 108
Tablo 2.13.	Model zemin parametreleri	. 117

Tablo 2.14.	Model radye temel parametreleri	120
Tablo 2.15.	Kazık radye temellerde gerilme dağılışının tespiti için analiz programı	121
Tablo 3.1.	Kazıklı radye temellerde B=160 mm, D=20 mm için taşıma gücü değerleri	127
Tablo 3.2.	Kazıklı radye temellerde B=240 mm, D=30 mm için taşıma gücü değerleri	130
Tablo 3.3.	Kazıklı radye temellerde B=160 mm, D=20 mm, L=200 mm, L=300 mm durumunda Q_R/Q_{KR} ve Q_K/Q_{KR} oranını tespitine ait deney sonuçları	136
Tablo 3.4.	Kazıklı radye temellerde B=240 mm, D=30 mm, L=200 mm, L=300 mm durumunda Q_R/Q_{KR} ve Q_{K}/Q_{KR} oranını tespitine ait deney sonuçları	141
Tablo 3.5.	Çeşitli vaka analizi gözlem sonuçlarına göre kazık grubu ve radye temel arasındaki yük paylaşım oranları (Santis ve Russo, 2008)	143
Tablo 3.6.	Dr=%30, D=20 mm, S _{opt} =4D, L=200 mm ve L=300 mm için grup veriminin (η) kazık sayısına göre değişimi	147
Tablo 3.7.	Dr=%70, D=20 mm, S _{opt} =4D, L=200 mm ve L=300 mm için grup veriminin (η) kazık sayısına göre değişimi	149
Tablo 3.8.	Dr=%30-%70, D=20 mm, S=4D, L=200 mm için deneysel çalışma sonucunda belirlenen gerilme ve şekil değiştirme değerleri	158
Tablo 3.9.	Dr=%30-%70, D=20 mm, S=4D, L=300 mm için deneysel çalışma sonucunda belirlenen gerilme değerleri	164
Tablo 3.10.	D=20 mm, S=4D, L=200 mm için Dr=%30 ve Dr=%70 zemin durumunda gerilme değerleri	168
Tablo 3.11.	D=20 mm, S=4D, L=300 mm için Dr=%30 ve Dr=%70 zemin durumunda gerilme değerleri	173
Tablo 3.12.	D _r =%30-%70, D=20 mm, S=4D, L=200 mm için deneysel ve nümerik çalışma ile elde edilen düşey gerilme artışları	177
Tablo 3.13.	D _r =%30-%70, D=20 mm, S=4D, L=300 mm için deneysel çalışma sonucunda belirlenen düşey gerilme artışları ve şekil değiştirme değerleri	180

SEMBOLLER DİZİNİ

А	: kazık grubunun plan görünümündeki alanı
Ap	: kazığın uç alanı
As	: kazık çevre alanı
В	: model radye temel genişliği
c	: kohezyon
Ca	: birim adhezyon
C _c	: konsolidasyon katsayı
Cs	: zemin cinsine bağlı katsayı
Cu	: üniformluk katsayısı
Cr	: eğrilik katsayısı
D	: kazık çapı
Dr	: rölatif sıkılık
Dd	: dane çapı
Df	: temel gömülme derinliği
D_0	: referans çap
D ₁₀	: efektif dane çapı
D ₃₀	: granülometri eğrisinde %30'a karşılık gelen dane çapı
D ₆₀	: granülometri eğrisinde %60'a karşılık gelen dane çapı
e	: boşluk oranı
emaks	: zeminin en gevşek boşluk oranı
e _{min}	: zeminin en sıkı boşluk oranı
E	: elastisite modülü
E _m	: zeminin sıkışabilirlik modülü
Es	: rijitlik modülü
E _{sl}	: kazık uç seviyesinde zeminin elastisite modülü
E_{sb}	: kazık ucu altında taşıyıcı tabakanın elastisite modülü
Esav	: kazık boyunca zeminin ortalama elastisite modülü
$\mathbf{f}_{\mathbf{s}}$: ΔL uzunluğu boyunca sabit alınan birim çevre sürtünmesi
$F_{cs}, F_{qs}, F_{\gamma s}$: şekil katsayıları

$F_{cd}, F_{qd}, F_{\gamma d}$: derinlik katsayıları
$F_{ci}, Fq_i, F_{\gamma i}$: yük eğim katsayıları
g	: yerçekim ivmesi
Gs	: tane özgül yoğunluğu
Н	: zemin tabaka yüksekliği
ΔΗ	: konsolidasyon oturması
I	: atalet momenti
I _x	: x ekseni etrafındaki atalet momenti
Iy	: y ekseni etrafındaki atalet momenti
kr	: radyenin rijitliği
kp	: kazığın rijitliği
k _{pr}	: kazıklı radye temelin rijitliği
К	: yanal zemin basınç katsayısı
K0	: sükunetteki zemin basınç katsayısı
L	: kazık uzunluğu
L/D	: narinlik oranı
ΔL	: fs ve p değerinin sabit kaldığı uzunluk
m	: kazık grubunun dizi sayısı
$M_{\rm x}$: x ekseni etrafındaki moment
$\mathbf{M}_{\mathbf{y}}$: y ekseni etrafındaki moment
M=z/d	: boyutsuz değişken
n	: kazık sayısı
N=r/d	: boyutsuz değişken
Ν	: kazık sayısı
<u>N</u>	: santrifüj ivmesi
N_c, N_q, N_γ	: taşıma gücü parametreleri
Р	: kazık grubunun plan görümündeki toplam çevre uzunluğu
P _p	: kazığın taşıdığı yük
Pr	: radyenin taşıdığı yük
q_{f}	: kazığın oturduğu derinlikteki taşıma gücü
Q _{yan}	: çevre sürtünme direnci
Quç	: kazık uç sürtünme direnci

Qp	: kazığın uç direnci
Qs	: kazığın sürtünme direnci
Qkr	: kazıklı radye temelin grup olarak toplam taşıma gücü
Qĸ	: kazıkların grup olarak toplam taşıma gücü
QR	: radyenin toplam taşıma gücü
r	: kazık ekseninden uzaklık
r _c	: kazıkların toplam çapı
r _m	: kazık başlığının ortalama yarıçapı
r ₀	: kazık yarıçapı
R	: görüş oranı
S	: kazıklı radye temelin oturma değeri
S	: kazıklar arası mesafe
S _{sf}	: radye temelin oturması
St	: tek bir kazığın oturma değeri
Sopt	: optimum kazıklar arası mesafe
S/D	: kazıklar arası mesafenin, kazık çapına oranı
φ	: içsel sürtünme açısı
γ	: zemin birim hacim ağırlığı
3	: birim şekil değiştirme
δ	: zemin ve kazık arasındaki ara yüzey sürtünme açısı
γk	: kuru birim hacim ağırlık
α_{cp}	: kazık ve radye etkileşim parametresi
{u}	: düğüm noktası deplasman vektörü
$\{u\}_e$: eleman deplasman vektörü
[k] _e	: eleman rijitlik matrisi
$\{f\}_e$: eleman yük vektörü
[K]	: sistem rijitlik matrisi
{F}	: sistem yük vektörü
{U}	: deplasman vektörü
Ψ	: dilatasyon açısı
ν	: poisson oranı
τ	: kayma mukavemeti

σ_n	: normal gerilme
γdry	: zemin kuru birim hacim ağırlığı
γsat	: zemin doygun birim hacim ağırlığı
γkmaks	: maksimum kuru birim hacim ağırlık
γkmin	: minimum kuru birim hacim ağırlık
γ_{s}	: dane birim hacim ağırlığı
λ	: kazık boyuna bağlı bir katsayı
Z	: yüzeyden itibaren derinlik
Х	: eksantrik yük mesafesi
tr	: model temel kalınlığı
σh'	: kazık gövdesi boyunca ortalama yanal efektif gerilme
σ _v '	: zeminde derinlik boyunca etkiyen düşey efektif gerilme
λ	: kazık boyuna bağlı bir katsayı
η	: grup etkisi
ρ	: sürtünme faktörü
ξ	: boyutsuz katsayı

1. GENEL BİLGİLER

1.1. Giriş

Kentleşme oranının ve insan nüfusunun hızla artması ile çok katlı yüksek yapıların, yumuşak ve gevşek zemin (geoteknik özellikleri zayıf zeminler) koşullarında da planlanıp inşa edilmeleri zorunlu hale gelmiştir. Kompleks yapıya ait temellerin, yapıdan gelen yükleri güvenle taşımasının yanı sıra talep edilen oturma koşulunu da sağlaması gerekmektedir. Ayrıca belirlenen temel çeşidinin ekonomik olması geoteknik mühendislerinin arzusudur. Bazı zemin durumlarında zemin taşıma gücü açısından yeterli olsa bile, izin verilebilir oturmaların aşılması ve farklı oturmaları engellemek için radye temellerin altına kazıklar inşaat edilmekte ve oturmaların önlenmesinde bu kazıklar önemli rol oynamaktadır.

Zayıf zeminler üzerinde inşaat yapılmasının zorunlu olduğu durumlarda, kazıklı ya da radye temel kullanılmaktadır. Kazıklı radye temel inşası, sıkça karşılaştığımız ve yapı yüklerinin zemine aktarılmasında hem radyenin hem de kazıkların kullanıldığı bir temel çeşididir. Kazıklı radye temel uygulamaları son yıllarda birçok çalışmaya konu olmuştur. Bu temel uygulamalarının; düşey, yatay ve dinamik yükler altındaki davranışları çeşitli yönleri ile araştırılmaktadır. Kazıklar, oturma ve farklı oturmaların en aza indirilmesini, yüzeysel temelin tasıma gücünün arttırılmasını, radyede oluşabilecek momentlerin kontrol edilmesini sağlar. Geleneksel tasarım yöntemlerinde kazıkların yükün tamamını taşıdığı kabul edilir. Ancak, kazıklı radye temellerin davranışı detaylı incelendiğinde, yükün taşınmasında, kazıkların yanı sıra radyeninde katkısının olduğu görülür. Çoğunlukla zeminle temas halinde olan kazık başlığı belirli oranda kazıklarla beraber yapı yükünü taşımaktadır. Kazık ile radye arasındaki yük paylaşım oranları ve kazık-radye davranışı son yıllarda birçok araştırmalara konu olmuştur. Çünkü kazık başlığının belli oranda yük taşıdığı gerçeği daha az sayıda kazık kullanılarak bir kazıklı radye temel tasarımına olanak sağladığından ekonomik açıdan büyük önem taşımaktadır. Bu tür temellerin tasarımında etkin parametreler; zemin özellikleri, kazık yerleşim düzeni, kazık sayısı, kazık çapı, kazık boyu, kazık-radye yük paylaşım oranı, yük doğrultusu ve şekli olarak sıralanabilir. Analitik yönden, kazıklı radye temeller, en karmaşık temel sistemlerinden biridir. Araştırılması gereken parametrelerin en önemlisi, temele aktarılan yüklerin radye ve kazık arasında hangi oranlarda taşınacağıdır. Bu nedenle kazıklı radye temellerde, tekil radye ve tekil kazığın yük-oturma davranışının tespiti önemlidir. Kazıklı radye temellerle ilgili teorik çalışmalar ve deneysel çalışmalar vardır ancak yetersizdir.

Tez çalışmasında; kazıklı radye temellerin düşey yükler altındaki yük-oturma davranışları ile kazık-radye yük paylaşım mekanizmalarının daha açık anlaşılması için laboratuvarda küçük ölçekli model deneyler yapılmıştır. Kazıklı radye tasarımını etkileyen kazıklar arası optimum mesafe, kazık boyu, kazık çapı ve zemin sıkılığı gibi faktörlerin, temel sisteminin taşıma gücü ve yer değiştirme tepkisine olan etkileri incelenmiştir. Basınç ölçerler ve şekil değiştirme ölçer yardımıyla hem zeminde hem de kazık boyunca meydana gelecek gerilmeler tespit edilmeye çalışılmıştır. Son olarak; ABAQUS sonlu elemanlar yazılımı ile yapılan analizlerden elde edilen sonuçlar, model deneylerden elde edilen sonuçlar.

1.2. Radye Temeller

Radye temeller, gevşek ve taşıma kapasitesi düşük zeminlerde yapıdan kaynaklı yüklerin daha geniş alana yayılması, böylece oturmaların azaltılması amacıyla kullanılan, oturma alanı çoğunlukla binanın yerleşme alanına denk olan yüzeysel temel çeşididir. Kolonların arasındaki mesafenin düşük olması, bu nedenle de kolonlar altına inşa edilen tekil temellerin üst üste bineceği durumlarda radye temeller tercih sebebidir. Radye temellerin tercih edildiği durumları şu şekilde sıralayabiliriz (Das, 1999):

- İnşa edilecek yapının oturduğu zeminin taşıma gücü düşük ve sıkışabilirliği yüksek, ayrıca yapıdan kaynaklı yüklerden dolayı zeminde farklı oturmaların meydana gelmesi bekleniyorsa,
- Tekil temellerin boyutları büyük, kapladıkları alanlar itibariyle birbirine yakınsıyor ya da üst üste biniyorsa,
- Hızlı bir çözüm yolu olarak; üstyapının temellerinin plan üzerindeki alanının yapının oturma alanının %50'sinden fazla olduğu hallerde,
- Zemin profilinin tabakalar boyunca değişken olması sebebi ile farklı oturmaların kabul edilebilir değerlerin üzerinde olacağı düşünülüyorsa,

- Yanal yüklerin bina boyunca düzgün dağılmadığı hallerde, söz konusu yük temellerde ya da kazık başlıklarında yatay deplasmanlara neden olur. Bu şekilde radye temelin rijitliği ile bunun gibi deplasmanları sınırlamak isteniyorsa,
- Zeminde su seviyesinden kaynaklı kaldırma kuvvetinin, tekil temellerin karşılayacağı seviyeden yüksek olması durumunda yapının yüzme sorunu meydana gelmektedir. Böyle hallerin meydana gelmesi durumunda radye temelin ağırlığı ve sürekliliği ile kaldırma kuvvetlerinin dengelenmesi isteniyorsa,
- Yapı temel alt kotunun yeraltı su seviyesinde ya da altında yer alması halinde temelin su yalıtımı önem arz etmektedir. Radye temelin monolitik özelliği sayesinde etkili bir yalıtım uygulamak amacıyla.

Radye temeller şekil ve yapısal olmak üzere dört ana başlık altında sıralanabilir (Şekil 1.1) (Uzuner, 2016):

- Düz (kirişsiz) radyeler,
- Kirişli radyeler,
- Hücreli radyeler,
- Kolon altları kalınlaştırılmış radyeler.

Şekil 1.1. Radye temel çeşitleri (Uzuner, 2016)

1.2.1. Radye Temellerde Taşıma Gücü Hesabı

Temeller (yüzeysel) altındaki zeminde göçme mekanizmasının Şekil 1.2'de ki gibi meydana geleceği varsayılır ve kaymaya sebep olan kuvvetler ile engel olan kuvvetler dengelenerek sınır koşullar için analiz yapılır (Terzaghi ve Peck, 1968).

Şekil 1.2. Temel (yüzeysel) altındaki göçme mekanizması (Terzaghi ve Peck, 1968)

Terzaghi'nin nihai taşıma gücü bağıntısını radye temeller için şu şekildedir:

$$q_{u} = c.N_{c}.F_{cs}.F_{cd}.F_{ci} + \gamma. D_{f}.N_{q}.F_{qs}.F_{qd}.F_{qi} + \frac{1}{2}.\gamma.B. N_{\gamma}.F_{\gamma s}.F_{\gamma d}.F_{\gamma i}$$

$$(1.1)$$

Burada;

c: kohezyon (kN/m²)

 γ : birim hacim ağırlığı (kN/m³)

- D_f: temelin derinliği (m)
- B: temelin genişliği (m)
- N_c , N_q , N_γ : taşıma gücü katsayıları
- Fcs, Fqs, Fγs: şekil katsayıları

F_{cd}, F_{qd}, F_{γd}: derinlik katsayıları

 F_{ci} , Fq_i , $F_{\gamma i}$: yük-eğim katsayılarını ifade etmekte olup; katsayıları Tablo 1.1'de verilmektedir.

(Derece)	Nc	$\mathbf{N}_{\mathbf{q}}$	Nγ
0	5,7	1,0	0,0
5	7,3	1,6	0,5
10	9,6	2,7	1,2
15	12,9	4,4	2,5
20	17,7	7,4	5,0
25	25,1	12,7	9,7
30	37,2	22,5	19,7
34	52,6	36,5	36,0
35	57,8	41,4	42,4
40	95,7	81,3	100,4
45	172,3	173,3	297,5
48	258,3	287,9	780,1
50	347,5	415,1	1153,2

Tablo 1.1. Terzaghi taşıma gücü katsayıları (Bowles, 1996).

1.2.2. Radye Temellerin Tasarımı

Radye temellerin tasarımı için birçok yöntem söz konusu olup; bu yöntemleri sırasıyla tanımlayabiliriz.

1.2.2.1. Basit Gerilme Dağılışı Yöntemi

Bu yöntemde yapıdan temele gelen yüklerden dolayı radye temelde ve zeminde oluşan yer değiştirmelerin göz ardı edilebilir düzeyde olduğu varsayılmaktadır (Smoltyczk, 2006). Buna göre radye temelde oluşacak deformasyonlar taban basınç dağılımını etkilemeyecek kadar küçük seviyededir. Temel taban basıncı dağılışı yapıdan gelen yüklere ve temelin ağırlığına endeksli olup, zemine düşey tekil yük etkimesi halinde üniform, eksantrik yük veya moment etkimesi durumunda ise lineer olarak değişmektedir (Şekil 1.3). Bu kabul radye temelde meydana gelen toplam ve farklı oturmalar ile gerilmelerin hızlıca analiz edilmesine imkân sağlamaktadır (Coduto, 2001).

Şekil 1.3. Basitleştirilmiş kabule göre radye temel altında taban basınç dağılışı

Bu metodun analiz aşamaları aşağıda açıklanmıştır (Das, 1999). Radye temelin maruz kaldığı toplam yük her bir kolona etkiyen yüklerin toplamı olarak hesaplanır.

$$P = P_1 + P_2 + P_3 + \dots \tag{1.2}$$

Zemine gelen basıncı tespit etmek için aşağıdaki denklemi kullanabiliriz.

$$q = \frac{P}{A} \pm \frac{M_y x}{I_y} \pm \frac{M_x y}{I_x}$$
(1.3)

Burada;

A: Radye temelin alanı,

I_x: (1/12)LB³, x ekseni etrafındaki atalet momenti

I_y: (1/12)BL³, y ekseni etrafındaki atalet momenti

M_x: x ekseni etrafında kolon yüklerinden kaynaklı moment, P*e_x

 M_y : y ekseni etrafındaki kolon yüklerinden meydana gelen moment, P*e_y terimlerini temsil etmektedir. Eksantrisiteyi ifade eden e_x ve e_y, kolon yükünün x ve y noktasına göre ağırlıklı ortalamasının hesaplanması ile belirlenir.

1.2.2.2. Yatak Katsayısı Yöntemi

Basit gerilme dağılışı vasıtasıyla elde edilen analizlerde hesaba katılmayan üniform olmayan zemin taban basınçları ve radyede oluşan şekil değiştirmeler, bu yöntemde dikkate alınmaktadır. Böylece, radyedeki eğilmeler daha doğru hesaplanmakta olup; güvenli ve ekonomik çözümler sunulabilmektedir. Fakat; bu yöntem kullanılırken; taban basınç dağılışı basit görünümlü olmadığından oldukça karmaşık bir yapısal çözüme gerek vardır. Hem deplasman ve taban basıncı arasındaki ilişkinin hem de yapı zemin ilişkisinin açık ifade edilmesi gereklidir. Winkler (1867) geliştirdiği hipotezi temel alınarak analiz yapılmakta, buna göre zeminin sonsuz sayıda elastik özellikli yaydan oluştuğunu varsaymakta ve bu sistemdeki yay katsayısı, zeminin yatak katsayısına eşit olmaktadır. Winkler hipotezine göre, temelin altındaki herhangi bir noktada oluşan gerilme, o noktadaki yer değiştirme ile orantılıdır. Bu sistemde, her bir yayın, sadece bulunduğu noktadaki yer değiştirmeyi temsil ettiği kabul edilmekte, ancak bu varsayım yöntemin bazı noktalarda gerçeği tam olarak yansıtamamasına sebep olmaktadır. Aslında, zemin doğrusal olmayan bir yük oturma davranışı göstermekte, ancak Winkler yönteminde zeminin lineer bir yük-oturma davranışı gösterdiği ve bu yük-oturma doğrusunun eğiminin yatak katsayısına eşit olduğu varsayılmaktadır. Bu yönteme göre, tamamen homojen bir zemin üzerinde yer alan üniform yüklü bir radye temelin, her noktada aynı oturmayı yapacağı öngörülmektedir. Fakat aslında orta bölgede oluşan düşey gerilme artışları daha fazla olacağından orta bölgede daha fazla oturma oluşacaktır. Aslında tüm yaylar birbirinden bağımsız davranmakta, tam tersine her bir noktadaki yay komşu ve hatta daha uzaktaki yaylar ile etkileşim içinde olmaktadır. Winkler yöntemine göre, radye temel üzerinde rastgele bir noktadaki oturma şu şekilde hesaplanmaktadır.

$$z = \frac{q}{k} \tag{1.4}$$

Söz konusu metodu daha açık ifade edebilmek amacıyla, Q yüküne maruz, sonsuz uzunlukta ve B genişliğinde bir kiriş analize tabi tutulursa,

$$M = E_R \cdot I_R \cdot \frac{d^2 z}{d^2 x} \tag{1.5}$$

Burada;

M: rastgele bir noktaya ait moment

 E_R : radye temele ait elastisite modülü

I_R: kirişin kesitindeki atalet momentini ifade etmektedir.

Winkler yöntemine göre yatak katsayısı ile zeminin deplasmanının çarpımıyla, temelin zeminde sebep olduğu taban basıncı tespit edilebilir. Fakat; yatak katsayısı k'nın, tüm zeminler için sabit bir değer olmadığının göz önüne alınması gerekir. Bu değer, temelin genişliği (B), uzunluğu (L) ve temel derinliği (D_f) gibi birçok parametreye bağlı olarak değişmektedir. Casagrande'nin (1955) yatak katsayısını etkileyen faktörler ile ilgili yaptığı incelemelerde, temel derinliği arttıkça yatak katsayısı azalmaktadır. K değeri sahada boyutları 30x30 cm olan plaka yardımıyla yapılan plaka yükleme deneyinden elde edilmekte olup; bu değer, boyutları BxB olan bir temel için formüller vasıtasıyla hesaplanmaktadır. Bu ampirik formüller, zeminin tane yapısına göre; iri taneli ve ince taneli zeminler için sırasıyla,

$$k = k_{0,3} \left(\frac{B+0,3}{2B}\right)^2$$
(1.6)

ve

$$k = k_{0,3} \left(\frac{0,3}{2B} \right)$$
(1.7)

olarak tanımlanmaktadır. " $k_{0.3}$ " değeri, arazideki yapılacak olan "plaka yükleme deneyi" yardımı ile belirlenen bir yatak katsayısıdır.

Yaklaşık elastik metodun çözüm adımların şu şekil de sıralayabiliriz;

- Radye temelin kalınlığının (d) ve eğilme rijitliğinin (R) belirlenmesi,
- Efektif rijitlik çapının (L') tespiti,
- Kolon yüklerinden dolayı radye temelde oluşan momentlerin (M_r, M_t) belirlenmesi,
- Radyejeneral temelin birim genişliği için bir kolondan temele aktarılan yükün oluşturduğu kayma kuvvetinin (V) tespiti ve radyenin bir noktasında meydana gelecek yer değiştirmelerin belirlenmesi olarak sıralayabiliriz. (Şekil1.4)

Şekil 1.4. Radye temellerin yatak katsayısı yöntemi ile boyutlandırılmasında kullanılan Z1, Z2, Z3 ve Z4 katsayıları (Bowles, 2001)

1.2.2.3. Elastik Yarı Uzay Yöntemi

Radye temelin oturmasının tespit edilebilmesi için, zeminin laboratuvar ya da arazi deneyleri ile tespit edilmiş v (poisson oranı) ve E (elastisite modülü) gibi faktörlerin kullanılması bu yöntemin temelini oluşturur. Söz konusu yöntemde kullanılan parametreler ampirik bağıntılar değildir. Zeminin kendi değerlerinin kullanılıyor olmasından dolayı en gerçekçi sonuçlar veren metottur (Smolytczk, 2006). Elastik yarı uzay varsayımı

yardımıyla yapılan analizlerde temel zemini, zeminin elastik parametrelerini ve rijitlik modülü parametrelerini hesaba katacak şekilde modellenmektedir. Winkler metoduyla ve elastik yarı sonsuz ortam yöntemleri ile yapılan hesaplarda radye temel tabanında oluşan gerilme dağılışları ve oturmalar Şekil 1.5'de gösterilmektedir. Buna göre elastik yarı uzay modelinde üniform yüklü rijit temel altında gerilme değerleri temel kenarlarına doğru artarken, Winkler yöntemine göre temel altında gerilme dağılımı sabittir. Radye temellerin, zeminin elastik yarı uzay olarak modellendiği yöntemle çözümünde kullanılan rijitlik modülü E_s, zeminden alınan numunenin yatay deformasyonuna izin verilmeyen konsolidasyon deneyi ile elde edilmektedir. Elastisite modülü ve rijitlik modülü arasındaki ilişki şöyledir:

$$E_{s} = \frac{1 - \nu}{(1 + \nu)(1 - 2\nu)} \tag{1.8}$$

Rijit radye temel altındaki zeminin elastik yarı uzay olarak modellenmesi durumunda temel altında oluşacak oturma şu şekilde hesaplanır:

$$s = \left(\frac{\sigma_0 \cdot B \cdot f}{E_m}\right) \tag{1.9}$$

Yukarıdaki verilen formülde B; temelin genişliğini ve f; temel boyutlarına, temel altında bulunan zeminin dayanım özelliklerine ve poisson oranına bağlı sabit bir değer ve E_m , zeminin sıkışabilirlik modülü olup; sıkışabilirlik modülü büyük ölçekli plaka yükleme deneyleri yardımıyla hesaplanabilmektedir. E_m parametresi yerine laboratuvarda konsolidasyon deneyi sonucu elde edilen E_s rijitlik modülü de kullanılabilmektedir. f değeri ise oluşturulan abaklar yardımıyla temel boyutlarına bağlı olarak elde edilmektedir (Kany, 1974). Elastik yarı uzay yöntemi, yatak katsayısı yönteminde olduğu gibi temel altında oluşan deplasmanları göz önüne aldığı, ayrıca zeminin kendi değerleri ile çalışmaya imkân verdiği için daha gerçekçi sonuçlar vermektedir.

Şekil 1.5. Winkler ve elastik yarı uzay yönteminde a) Rijit, b) Elastik temelde meydana gelen gerilme dağılışı ve oturma şekilleri (Lopes, 2000)

1.2.2.4. Eşlenik Yöntemi

Bu yöntem, Winkler yöntemiyle pratikte aynı mantık ışığında çözüm yapmakta olup; tüm yayların bağımsız olarak hareket ettiği varsayımından farklı olarak söz konusu yayların kendilerine bitişik yaylar ile etkileşim içinde olduğunu göz önüne alarak analiz yapmaktadır (Şekil 1.6). Bu yöntem Winkler yöntemine kıyasla daha gerçekçi sonuçlar sunmaktadır. Bu yöntem kompleks bir hesaba sahip olup, genellikle bilgisayar yardımı ile çözüm gerekmektedir. İlave olarak, eşlenik yaylar için neye göre k_s yatak katsayısının tercih edileceği tam olarak ifade edilmemiştir (Coduto, 2001).

Şekil 1.6. Eşlenik yöntemin şematik gösterimi

1.2.2.5. Psödo-Eşlenik Yöntem

Söz konusu yöntem, Liao (1991) ve Horvath (1993) tarafından geliştirilmiştir. Aslında, eşlenik yöntemde meydana gelen sorunları çözmek ve Winkler metodundaki eksiklikleri gidermek gayesi ile Winkler yönteminin tekrardan düzenlenmiş versiyonudur. Söz konusu yöntemin Winkler çalışmasından belirgin farkı radye temel altında tüm noktalarda serbest yaylar kullanılmış olmasına rağmen bu yayların yatak katsayısının radye temel altındaki mevcut yerlerine bağlı olarak değişken olmasıdır. Bu yüzden, düzgün yayılı yüklü radye temelin kenarlarında bulunan yayların yatak katsayısı daha yüksek, ortada bulunan yayların yatak katsayısı daha düşük olmakta ve böylece aslında meydana gelecek oturma modeline ulaşılmaktadır (Horvath, 2002). Amerikan Beton Enstitüsü'nün (1993) çalışmalarında radye temelin kenarlarında kullanılan yatak katsayılarının orta kısımlarında kullanılan yatak katsayılarının yaklaşık iki katı kadar olmaları gerçekçi
sonuçlar vermektedir. Psödo-eşlenik yöntem ile tespit edilen momentlerin Winkler yöntemi ile tespit edilen momentlerin %25'i kadar daha yüksek olduğu belirlenmiş olup; Winkler yöntemiyle belirlenen verilerin güvensiz olduğu sonucuna varılmıştır. Psödo-eşlenik yöntem yardımı ile temel tasarımı yapılırken aşağıdaki işlem basamakları takip edilebilir:

- Radye temel iki veya daha fazla yük bölgesine ayrılarak iç kısımda olan bölge radye temel uzunluk ve genişliğinin yarısına denk gelecek biçimde tesis edilmelidir.
- Tüm bölgeler için bir yatak katsayısı tespit edilir. Bu evrede yatak katsayısının iç kısımdaki bölgeden dış kısıma doğru artmasına ve en dıştaki bölgenin yatak katsayısının en içerideki bölgenin yatak katsayısının neredeyse iki katı kadar olmasına önem verilmelidir (Horwath, 1993).
- Tüm bölgeler bölge için deplasmanlar, kesme kuvvetleri ve momentler Winkler yönteminde olduğu gibi belirlenir.
- Radye temelin kalınlığı (d) ve donatılar mukavemet ve uygunluk kıstaslarını sağlayacak biçimde tespit edilir.

Son yıllarda çoğu tasarlama yazılımı Winkler hipotezine göre analiz yapmakta, fakat söz konusu yazılımlarda radye temeli psödo-eşlenik yöntemde ki gibi bölgelere ayırıp tüm bölgelere değişken yatak katsayısı vererek, daha gerçekçi sonuçlar elde etmek mümkün olmaktadır.

1.2.2.6. Çoklu Parametre Yöntemi

Elastik çözüm yöntemlerinden farklı olarak bu yöntemde, diğer yöntemlerde temel alınan doğrusal davranış sergileyen yaylardan farklı olarak zemin-yapı ilişkisini modellemek için yayların yanında farklı mekanik elemanların kullanılmış olmasıdır. Horwath (2002), kullanılacak elemanların cinsi, uygulanan yüke gösterilen direncin deplasmanın kaçıncı türeviyle orantılı olduğuna bağlı olarak değişmekte olduğunu belirtmiştir. Buna göre, yukarıda bahsedilen yöntemler geçerli olmakta ve modellemek için yay elemanları kullanılmaktadır. Uygulanan yük ile birlikte oluşan basınç, oluşan yer değiştirmenin birinci türevi ile doğru orantılı ise kullanılan fiziksel eleman birim kalınlıkta olup sadece düşey kesme kuvvetlerine karşı koyan lineer elastik bir tabaka olarak tanımlanan bir kayma tabakasıdır. Bunun pratikteki karşılığı öngermeli bir membran olabilmektedir. Uygulanan yük sonucu meydana gelen basıncın oluşan yer değiştirmenin ikinci türevi ile doğru orantılı olduğu durumlarda ise iki boyutlu bir plak mekanik eleman olarak kullanılabilmektedir.

1.2.2.7. Sonlu Elemanlar Yöntemi

Sonlu elemanlar yönteminin temelini analiz edilecek sistemi oldukça küçük elemanlara bölüp, tüm düğüm noktalarında oluşan deplasman değerlerini tespit ederek sistemin toplam deplasmanını belirlemek ilkesi oluşturmaktadır. Söz konusu yöntem Bölüm 2.2.1'de detaylı olarak anlatılacaktır.

1.2.3. Radye Temellerde Farklı Oturmaların Hesabı

Radye temellerde sürekli ve tekil temellere oranla, zeminin oldukça heterojen yapıya sahip olması veya yapıdan kaynaklı yüklerin belli bir noktada toplanması hali dışında farklı oturma sorununa oldukça az rastlanılmaktadır. Radye temellerde farklı oturmaların oluşmasında temel ve yapının oluşturduğu sistemin eğilme rijitliği önemli bir görev üstlenmektedir. Buna göre sistemin rijitliği şu şekilde hesaplanabilir:

$$E_b I_b = E_r I_r + E_B I_B \tag{1.10}$$

Burada;

 $E_b I_b$: üst yapının ve temelin oluşturduğu sistemin B'ye dik yönde eğilme rijitliği

 $E_r I_r$: radye temelin B'ye dik yönde eğilme rijitliği

 E_BI_B : üst yapının B'ye dik yönde eğilme rijitliğini ifade etmektedir.

Bu denkleme göre radye temelin eğilme rijitliği temelin genellikle basit bir şekilden oluşması, bu nedenle de atalet momentinin rahat hesaplanması ve tek bir malzemenin tercih edilmesi (çoğunlukla betonarme) nedeniyle kolayca tespit edilebilmektedir. Fakat üstyapıyı meydana getiren elemanların şekillerinin karmaşık olmasından dolayı atalet momenti I_B'nin hesaplanması oldukça zaman almaktadır. Netzel (1996), yapının inşaatı esnasında sistemin kendi içinde yaşayacağı deformasyonlar nedeniyle tespit edilen eğilme rijitliği değerine çoğunlukla ulaşamadığını belirtmiştir. Bu sebepten dolayı, yapının eğilme

rijitliğinin ya bir kısmı dikkate alınmakta, ya da bu değer tamamen ihmal edilmektedir. Farklı oturma oranının belirlenmesinde, üstyapı ve temelden oluşan sistemin rijitliğinin temelin altında yer alan zeminin rijitliğine oranı rol oynamaktadır. Bu oran şu şekilde hesaplanmaktadır:

$$K_r = \frac{E_b I_b}{E_s B l^3} \tag{1.11}$$

Bu bağıntıda;

 E_bI_b : Üstyapının ve temel sistemin birim uzunluk için B'ye dik yönde eğilme rijitliği

E_s: Zeminin elastisite modülü

B: Temel genişliği

*I*_b: Yapının birim uzunluk için B kenarına dik yönde atalet momentini temsil etmektedir.

Elde edilen K_r değerine göre, farklı oturmanın toplam oturmaya olan oranı (δ) şu şekilde hesaplanabilir:

 $K_r > 0.5$ için, $\delta = 0$ ve radye temelin rijit davranış sergilediği varsayılır,

 $K_r = 0.5$ için, $\delta = 0.1$ olarak hesaba katılabilir,

 $K_r = 0$ için, kare radye temeller için (B/L=1) δ =0.35 ve şerit temeller için (B/L=0) δ =0.5 alınabilir.

1.3. Kazıklı Temeller

Üstyapıdan kaynaklı yüklerin aşırı olması, temel altında bulunan zeminin söz konusu yükleri göçmeden veya yüksek deplasmana sebep olmadan taşıyamayacak olması ve güçlü zemin tabakalarının olmaması ya da yüzeysel temel için yapılacak zemin iyileştirmesinin ekonomik olamaması halinde yapıdan kaynaklı yükler zemine kazıklı temeller vasıtasıyla aktarılır. Kazıklı temellerin tercih edildiği halleri şu şekilde sıralayabiliriz (Das, 1999).

 Yüzeye yakın bulunan zemin tabakalarının sıkışabilirliğinin fazla olması ve yapıdan kaynaklı yükleri taşıyamayacak kadar güçsüz olması halinde, söz konusu yükler sağlam zemin tabakasına kazıklar yardımı ile aktarılması sağlanır (Şekil 1.7.a.). Kazık uç taşıma gücünün ön plana çıktığı hallerde bu kazıklar "uç kazığı" olarak adlandırılmaktadır.

- Zemin yüzeyinden itibaren belirli bir derinliğe kadar yüksek taşıma kapasitesine sahip zeminle karşılaşılmadığı takdirde, kazıklar yükü zemine kademeli olarak aktarır. Yükler zemin ve kazık yüzeyi arasında oluşan sürtünme kuvveti vasıtasıyla taşınır. Bu tür kazıklar "sürtünme kazığı" ya da bazı hallerde ise "yüzen kazık" olarak ifade edilmektedir (Şekil 1.7.b.).
- Kazıklar yanal yüklere maruz kalması halinde, hem eğilmeye zorlanırken aynı anda da düşey yükleri de karşılayabilmektedir. Bu tür durumlar çoğu kez yüksek yanal yüklerin meydana geldiği istinat yapılarının dizaynında, aşırı rüzgâr veya deprem yükünün etkisi altında kalan yüksek yapılarla kule, baca gibi mühendislik yapılarının temellerinde gözlenmektedir (Şekil 1.7.c.).
- Bazen, yapının inşa edileceği sahada şişen zemin tabakaları yer alabilmektedir. Özellikle şişen zeminlerde su muhtevasının değişimine bağlı olarak büyük hacim değişiklikleri gözlenebilmektedir. Bu gibi durumlarda şişme basıncının mutlaka hesaba katılması gerekmektedir. Söz konusu tabakaların derinliğinin fazla olduğu durumlarda, yüzeysel temellerin kullanımından uzak durulmalıdır, aksi halde farklı oturmalardan dolayı aşırı derecede hasarlar meydana gelebilmektedir. Kazıklı temellerin kullanılması halinde, kazık derinliğinin söz konusu aktif tabakanın derinliğinden fazla olması durumunda, kazıklar gerektiğinde çekme kuvvetine maruz kalmaktadır (Şekil 1.7.d.).
- Deniz yapıları ve soğutma kuleleri gibi hafif yapılar ya da temel alt kotu yer altı su seviyesinin altında yer alan radye temeller kaldırma kuvvetlerine maruz kalmaktadır. Bu durumda kazıklı temeller çekme kazığı olarak bu kuvvetlerin karşılanması amacıyla tercih edilmektedir (Şekil 1.7.e.).
- İskele ve köprü ayakları gibi yapılarda, zeminin yüzeyindeki aşınma yüzünden taşıma gücü kaybına uğrama sorunu, yüzeysel temeller yerine kazıklı temellerin tercih edilmesine sebep olmaktadır (Şekil 1.7.f.).

Şekil 1.7. Kazıklı temellerin kullanım alanları (Das, 1999)

Kazıklar, yükleri taşıma, iletme ve aktarma şekilleri, imal edildikleri malzemeler, zemin içerisine yerleştirme yöntemleri ve görevlerine göre dört ana başlık altında tasnif edilebilir. Kazıklı temellerde kullanılan kazıkları imal edildikleri malzemenin cinsine göre; kompozit kazıklar, çelik kazıklar, ahşap kazıklar, betonarme kazıklar olarak dört ana başlık altında incelememiz mümkündür. Bununla beraber, üstyapıdan gelen yükleri taşıma ve iletme şekillerini temel alınarak; kazıkların uçları sağlam ve sıkışabilirliği çok az olan bir zemine oturuyorsa veya zemin içine gömülü ise "uç kazığı", eğer kazık zeminin içinde bulunmakla beraber tabanı ayrıca sağlam bir zemine basmıyorsa da "sürtünme kazığı" olmak üzere ikiye ayrılır.

Şekil 1.8. Yükleri iletme ve taşıma biçimlerine göre sürtünme ve uç kazığı

İmalat sırasında zemin içerisine yerleştirme tarzına göre ise; zeminde meydana getirdikleri sıkışma ve ötelenme açısından sınıflandırılmalarıyla "oturma kazıkları" ve "oturma yaratmayan kazıklar" (zeminde yer değiştirmeye neden olmayan kazıklar) tanımları ortaya atılmıştır. Oturma kazıkları, zemin içerisine çakılırken yerleştikleri zemini yana doğru deplasman yaptırarak, yer değiştirmeye neden olan çakma kazıklardır. Çekme kuvveti taşıyorlarsa, "Çekme Kazığı", biraz yanal yük karşılamak için eğik çakılmışlarsa "Eğik Kazık" olarak adlandırılabilir. Kazıklar, taşıdıkları yükün niteliğine göre de adlandırılabilirler. Örneğin, "sıkıştırma kazığı" olarak adlandırılan kazıklar rölatif sıkılığı düşük kumlu zeminlerin içerisine çakılarak sebep oldukları şok sonucunda zeminin sıkışmasına neden olur. Kazıkların bir diğer bilinen sınıflandırılma şekli, zemin içerisine yerleştiriliş yöntemlerine göre olan sınıflandırmadır. Çakma yerinde dökme kazıklar, su jeti kullanılarak yerleştirilenler, hazır çakma kazıklar, delinip yerinde dökme kazıklar, iterek yerleştirilenler, burgulanarak yerleştirilenler ve vibrasyonla yerleştirilenler gibi yöntemlerin dâhil olduğu bir sınıflandırma yapmak mümkündür.

1.3.1. Kazıkların Taşıma Gücü

Kazıklar genellikle grup halinde tasarlanırlar ve çoğu kez yalnızca bir kazığın davranışı, kazık grubundan farklı olmaktadır. Yine de kazık grubunun taşıma gücü bulunurken tek bir kazığın taşıma gücünü bilmek gerekir. Tek bir kazığın taşıma gücü, kazığa etkiyen negatif sürtünme kuvvetleri ile grup etkisinin dikkate alınmasıyla bulunur. Zemin içerisindeki bir kazık yüklendiği zaman hem zemin hem de kazık bir miktar yerleşir. Ancak kazık zemine kıyasla daha fazla oturma yaptığı için kazık- zemin arasında ve deplasman yönüne zıt istikamette bir sürtünme direnci meydana gelir. Bu olay çevre sürtünmesi olarak adlandırılır. Bu tepki esnasında, kazığın tabanı da kazık ucundaki zemini sıkıştırır. Kazık tabanında ise yüzeysel temellerde olduğu gibi gerilmeler ve kayma yüzeyleri oluşur. Buna da uç direnci denir. Kazık çevresinde oluşan çevre sürtünmesi ile uç direncin toplamı kazığın toplam taşıma gücünü verir.

Kazığın oturmaya devam etmesiyle çevre sürtünmesi ve uç direnci artarak kendi sınır değerlerine ulaşırlar. Her iki direncin de sınır değeri farklıdır ve bu değerlere farklı oturma miktarlarında ulaşırlar. Çevre sürtünmesi ve uç direncinin sınır değerleri arasındaki ilişki Şekil 1.9'da verilmiştir. Das (2007) kazık yüzeyindeki maksimum sürtünme direncinin 5-10 mm oturma değerinde mobilize olduğunu, kazık ucunun %10-25D (D= kazık çapı) düşey hareketine kadar ise maksimum uç direncinin mobilize olmadığını ifade etmiştir. Almanya'daki uygulamalarda ise çevre sürtünmesinin kazığın zemine çapın yüzde biri kadar, uç direncinin ise kazığın zemine çapın yüzde onu kadar hareketi sonucunda sınır değere ulaştığı kabul edilmektedir. Fakat bu hareket değerleri yaklaşık olmakla birlikte zeminin cinsine göre değişebilir (Birand, 2007).

Şekil 1.9. Yük altında kazık davranışı (Birand, 2007)

Kazığın taşıma gücünü, kazık veya zemin açısından belirleyen özellikle iki faktör vardır. Bunlar zeminin ve kazığın mekanik özellikleridir. Yükleme sırasında hem zeminin hem de kazığın sağlam kalması gerekir. Tasarım aşamasında öncelikle uygulanan yükün, kazığın yapıldığı malzemenin direncini aşmaması gerekir. Zeminin dayanımı yönünden ise kazıkların taşıma gücü birçok yolla bulunabilir. Bunlar, statik kazık formülleri, dinamik kazık formülleri, arazi deneylerini esas alan denklemler ve kazık yükleme deneyleridir.

1.3.1.1. Statik Kazık Formülleri ile Taşıma Gücünün Tespiti

Statik kazık formülleri kullanılırken kum, çakıl gibi iri taneli zeminler için hesap efektif gerilmelere göre yani drenajlı şartlar için; kil, silt gibi ince taneli zeminlerde ise toplam gerilmelere göre yani drenajsız şartlar için yapılır (Toğrol ve Tan, 2009). Kazıkların uçları, taşıma gücü yüksek bir zemin içinde yer alır. Söz konusu zemin kaya olabileceği gibi çok sıkı çakıl veya kum (D_r>%85) da olabilir. Taşıyıcı zeminin kaya ise ve taşıma gücü kazığın yapıldığı malzemenin serbest basınç mukavemetinden büyük ise kazık uç direnci için kazığın dayanımı dikkate alınır. Taşıyıcı zemin çok sıkı kum veya çakıl ise bu sefer zeminin göçmesi dikkate alınır. Ayrıca uç kazıklarında kazığın düşey hareketi çok küçük olduğundan veya olmadığından dolayı çevre sürtünmesi dikkate alınımaz. Sürtünme

kazık ucunun yüzeysel bir temel gibi düşünülmesiyle, kazık uç direnci, taşıma gücü teorisi yardımı ile daire kesite sahip kazık için aşağıdaki şekilde ifade edilebilir (Terzaghi, 1967);

$$Qu_{\zeta} = \frac{\pi D^2}{4} (1, 3cN_c + \gamma L(N_q - 1) + 0, 3\gamma dN_{\gamma})$$
(1.12)

L = zeminin içerisinde kalan kazık boyu

c = kohezyon

- $\mathbf{v} =$ efektif birim hacim ağırlığı
- D = kazığın çapı

 N_c , N_q , N_s = zeminin içsel sürtünme açısına bağlı olarak taşıma gücü katsayıları

 N_q katsayısının bağıntılarda N_q -1 olarak hesaba katılması, kazığın toplam taşıma gücünü bulmak için alınır. Bunun nedeni ise kazık imal edilirken çıkarılan veya yer değiştiren zemin miktarının taşıma gücünden azaltılmasıdır. Kohezyonsuz zeminlerde (c=0) kazık uç direnci;

$$Q_{uc} = \frac{\pi D^2}{4} \gamma L(N_q - 1) \tag{1.13}$$

Kumlu zeminlerde, kohezyon sıfır alınırsa uç direnci;

$$Q_{u\varsigma} = \frac{\pi D^2}{4} (\gamma L N_q + 0, 3\gamma d N_\gamma)$$
(1.14)

Kohezyonlu zeminlerde ise aşağıdaki gibi alınabilir:

$$Q_{uc} = \frac{\pi D^2}{4} (1, 3cN_c + \gamma L(D_f - 1))$$
(1.15)

Taneli-kohezyonlu zeminde net uç direnci aşağıdaki bağıntı yardımıyla hesaplanabilir. Bu ifadedeki taşıma gücü katsayıları Şekil 1.10'da verilmiştir.

$$Q_{uc} = A_{uc} (cN_c^* + \sigma_v^N N_q^*)$$
(1.16)

Şekil 1.10. Nc* ve Nq* katsayılarının içsel sürtünme açısı ile değişimi (Mayerhof, 1976)

Meyerhof (1976), taneli zeminlerde uç direnci hesabı için farklı bir yöntem öne sürmüştür. Söz konusu yöntem, kazık uç direncinin derinlikle bağlı olarak arttığını ama belirli bir kritik L_b derinliğinden sonra sabit kaldığını varsaymaktadır. Söz konusu derinlik, kazık çapı (D) olarak ifade edilirse "kritik gömülme oranı (L_b/D)_{cr}" ile belirlenebilir. Bu oran Şekil 1.11'de gösterildiği gibi içsel sürtünme açısına bağlı bir fonksiyondur. Söz konusu yöntemle granüler zeminlerde (c=0) kazık uç direnci;

$$Q_{uc} = A_{uc} \sigma'_{\nu} N_q^* \le A_{uc} (50N_q^*) \tan \phi$$

$$(1.17)$$

Yukarıdaki formülde efektif gerilme hesaplanırken Şekil 1.11'deki grafik kullanılarak içsel sürtünmesine bağlı bir "kritik gömülme oranı" hesaplanır. Buradan L_b hesaplanarak bu

değere göre efektif gerilme bulunur. Taşıma gücü katsayısı ise şekil 1.10 kullanılarak bulunur.

Şekil 1.11. (L_b/D)_{cr} oranının içsel sürtünme açısına bağlı olarak değişimi (Mayerhof, 1976)

Janbu (1976) kazık uç direnci için aşağıdaki eşitliği önermiştir:

$$Q_{u_{\varsigma}} = A_{u_{\varsigma}}(cN_{c}^{*} + \sigma_{v}^{'}N_{q}^{*})$$
(1.18)

Burada;

$$N_{q}^{*} = (\tan \phi + \sqrt{1 + \tan^{2} \phi} (e^{2\eta \tan \phi})$$
(1.19)

 $N_{c}^{*} = (N_{q}^{*} - 1)\cot\phi$ (1.20)

Kohezyonsuz zeminlerde kazık ile zemin arasında fiziksel sürtünme, kohezyonlu zeminlerde ise adhezyon kuvveti sebebiyle çevre sürtünmesi direnci oluşur. Sürtünme direnci, birim alanda meydana gelen çevre sürtünmesinin kazığın yüzey alanıyla çarpılmasıyla bulunur.

$$Q_{yan} = \sum \pi . D\Delta L_i . f_i \tag{1.21}$$

Burada;

Q_{yan} = çevre sürtünmesi direnci

D= kazık çapı

 ΔL_i = kazığın farklı zemin tabakaları içindeki uzunluğu

 f_i kazığın her bir zemin tabakası içinde birim çevre sürtünmesini ifade etmektedir.

Kohezyonsuz zeminler, kazık çevresinde kemerlenme etkisini artırarak çevre yükünün bir kısmını kazığa daha üst seviyelerde aktarırlar. Bundan dolayı, bu tür zeminlerde birim çevre sürtünmesi değeri belirli bir derinliğe kadar doğrusal olarak artar, bu derinlikten sonra ise sabit kalır. Bu derinliğe "kritik kazık boyu (L_k)' denir ve zeminin sıkılığına göre değişir. L_k değeri D kazık çapını ifade edecek şekilde aşağıdaki gibi kabul edilebilir:

 $L_k = 10D$ (gevşek kum)

 $L_k = 15D$ (orta sıkı kum)

 $L_k = 20D$ (s1k1 kum)

Kritik kazık boyu hesaplandıktan sonra birim çevre sürtünmesi aşağıdaki gibi hesaplanabilir:

$$f_i = K_i \cdot \sigma_{v_i} \cdot \tan \delta_i \qquad 0 < z < L_k \tag{1.22}$$

$$f_i = (f_i)_{z=L_k}$$
 $L_k < z < L$ (1.23)

Bu bağıntıda;

 K_i = zemin tabakasının efektif yanal toprak basınç katsayısını (Tablo 1.2 ve Tablo 1.3), σ'_{vi} = zemin tabakasındaki efektif düşey gerilmeyi,

 $\delta_i = kaz_1k$ -zemin arasındaki sürtünme açısını ifade etmektedir. (Tablo1.4)

Tablo 1.2. Kazık tipine göre K değerleri

Kazık Tipi	K
Fore kazıklar	≈K₀=1-sinØ
Az deplasman yapan çakma kazıklar	$\approx K_0$ ile 1.4K ₀
Yüksek deplasman yapan çakma kazıklar	\approx K ₀ ile 1.8K ₀

Kazık Tipi	K/K ₀
Yüksek deplasman yapan çakma kazıklar	1-2
Az deplasman yapan çakma kazıklar	0.75-1.75
Fore kazıklar	0.71-1
Su jeti ile çakılan kazık	0.5-0.7

Tablo 1.3. Sükûnetteki yatay toprak basıncı katsayısına göre K değerleri

Tablo 1.4. Kazık-zemin arasındaki sürtünme değerleri

Kazık-zemin temas durumu	Kazık/zemin sürtünme açısı, δ
Pürüzsüz veya kaplanmış çelik-kum	$0.5 \emptyset - 0.7 \emptyset$
Kaba (ondüleli) çelik-kum	0.70 - 0.90
Önceden dökülmüş beton-kum	0.80 - 1.00
Yerinde dökülmüş beton-kum	1.0Ø
Ahşap-kum	0.80 - 0.90
Zemin içinde boru bırakılan kazıklar	0.70 - 0.850

Tablo 1.5. Kulhawy vd. (1983) ve Kulhawy (1991)'ın belirlemiş olduğu K katsayısı değerleri (Zhang ve ark., 2005)

Kazık tipi ve İmalat yöntemi	к
Pile-jetted	(0.5-0.7)K ₀
Küçük deplasman kazığı, çakma kazık	(0.7-1.2)K ₀
Büyük deplasman kazığı, çakma kazık	(1.0-2.0)K ₀
Kuru yöntem kullanılarak yapılan, kuyu çeperlerindeki örselenmenin min.	(0.9-1.0)K _a
olduğu ve betonlamanın çabuk yapıldığı fore kazık	
İyi bir işçilikle sulu harç yöntemi ile yapılan fore kazık	(0.9-1.0)K ₀
Kötü bir işçilikle sulu harç yöntemi ile yapılan fore kazık	(0.6-0.7)K ₀
YASS altında muhafaza borusu kullanılarak yapılan fore kazık	(0.7-0.9)K ₀

Tablo1.6. Kulhawy vd. (1983) ve Kulhawy (1991)'ın belirlemiş olduğu δ katsayısı değerleri (Zhang ve ark., 2005)

Kazık Tipi	δ
Sürtünmeli beton kazık	1 .0 φ ¹
Sürtünmesiz, pürüzsüz (prefabrik kazık)	(0.8-1.0) φ ¹
Sürtünmeli çelik (enkesiti adım adım incelen kazık)	(0.7-0.9) φ ¹
Sürtünmesiz, pürüzsüz (boru kazık yada H kazık)	(0.5-0.7) φ ¹
Ahşap kazık	(0.8-0.9) φ ¹
Kuru yöntem yada geçici muhafaza borusu ile iyi bir işçilikle yapılmış fore	10 d¹
kazık	σψ
Sulu harç yöntemi ile yapılan fore kazık	(0.8-1.0) φ ¹

Vesic (1970), zeminin rölatif sıkılığına bağlı olarak birim çevre sürtünmesini aşağıdaki gibi ifade etmiştir:

$$f = \chi_{\nu} (10)^{1.54D_{r}^{4}} \tag{1.24}$$

Burada;

 $\chi_v = 8$ (fazla miktarda zeminin yerini değiştiren kazıklar)

 $\chi_v = 2.5$ (fore kazıklar, açık uçlu boru kazıklar, H kesitli kazıklar)

Kohezyonlu zeminlerde çevre sürtünmesi direnci çoğunlukla kilin drenajsız direnci, efektif düşey gerilme, kazık kesitinin şekli, kazık uzunluğu (L) ve kazık malzemesi gibi parametrelerin bir fonksiyonudur. Bu tür zeminlerde yüzeysel sürtünmenin görevini, adhezyon üstlenmektedir (Birand, 2007). Kohezyonlu zeminlerde kazık yüzeyinde oluşan birim çevre sürtünmesi aşağıdaki gibi ifade edilir:

$$fi = \sum \alpha_i . c_{ui} \tag{1.25}$$

Burada;

 $\alpha_i = kazığın içinde bulunduğu zeminin adhezyon katsayısı$

c_{ui}= kazığın içinde bulunduğu zemin tabakasının drenajsız kayma direncini ifade etmektedir. Adhezyon katsayısı aşağıdaki eşitlik veya Tablo1.7. kullanılarak hesaplanır:

$$\alpha = 1 - 0.00615(c_u - 25) \qquad 25 > c_u > 90 \text{ (kN/m}^2 \text{)} \qquad (1.26)$$

cu (kN/m2)	α
90	0,60
100	0,58
150	0,42
200	0,35

Tablo 1.7. Adhezyon katsayıları

Vijayvergia ve Focht (1972), çevre sürtünmesi tespiti için, λ yöntemini geliştirmişlerdir. Bu yönteme göre birim çevre sürtünmesi;

 $f = \lambda(\sigma_v 2c_u)$

(1.27)

Burada; λ değeri Şekil 1.12 yardımıyla bulunur.

Şekil 1.12. λ değerinin kazık boyunca değişimi (Vijayvergia ve Focht, 1972)

Kazıklarda birim çevre sürtünmesini hesaplamada kullanılan bir başka yöntem Burland (1973) tarafından önerilmiştir.

$$f = \beta . \sigma_{v}' \tag{1.28}$$

Burada;

 $\beta = K \tan \phi_r$

 ϕ_r = yoğrulmuş kile ait efektif içsel sürtünme açısını ifade etmektedir.

1.3.1.2. Arazi Deney Sonuçları ile Kazık Taşıma Gücünün Tespiti

Kazıklarda toplam uç direnci ve sürtünme direnci SPT sonuçlarına göre kN/m² cinsinden aşağıdaki gibi önermiştir (Meyerhof, 1976):

$$Q_{u_{\varsigma}} = 40 N_{1,60} \text{ L/D} \le 400 N_{1,60} \quad \text{(kumlar ve çakıllar için, L/D} \le 10) \quad (1.29)$$

$$Q_{u_{s}} = 40 N_{1, 60} L/D \le 300 N_{1, 60} \quad \text{(siltler için, L/D} \ge 10)$$
(1.30)

$$Q_{yan} = 2N_{60}$$
 (kohezyonsuz zeminlerde b. deplasman kazıklar, L/D \ge 7,5) (1.31)

$$Q_{yan} = N_{60}$$
 (kohezyonsuz zeminlerde b. deplasman kazıklar, L/D<7,5) (1.32)

Burada;

 $L = kaz_{1}k$ boyu, $D = kaz_{1}k$ çapı, $N_{1,60} =$ teorik serbest düşme yapan tokmak enerjisinin %60'ına ve efektif jeolojik basıncı 100 kPa alarak düzeltilmiş vuruş sayısı, $N_{60} =$ teorik serbest düşme tokmak enerjisinin %60'ına göre düzeltilmiş vuruş sayısıdır.

Briaud ve ark. (1985) da SPT sonuçlarını kullanarak aşağıdaki eşitlikleri önermiştir:

$$Q_{uc} = 19,7(N_{60})^{0.36}(\text{kPa}) \tag{1.33}$$

$$Q_{u\varsigma} = 22, 4(N_{60})^{0.29} (\text{kPa}) \tag{1.34}$$

Shioi ve Fukui (1982) bazı zeminlerde kazık cinsini dikkate alarak SPT sonuçlarına göre aşağıdaki ifadeleri geliştirmişlerdir:

$$Q_{u_{s}} = 3 N_{60}$$
 (Kumlu zemin, yerinde dökme kazık) (1.35)

$$Q_{u_{s}} = 0.1N_{60}$$
 (Kumlu zemin, fore kazık) (1.36)

$$Q_{u\varsigma} = 0.15N_{60} \quad \text{(Çakıllı kum, fore kazık)} \tag{1.37}$$

$$Q_{u\varsigma} = 0.3N_{60}$$
 (Bütün zeminler, çakma kazık) (1.38)

Kanada Geoteknik Birliği (1985), SPT sonuçlarından kazık taşıma gücünün tahmini için aşağıdaki bağıntıyı önermiştir:

$$Q_{top} = m\underline{N}A_{uc} + nNDA_{yan} \tag{1.39}$$

Burada;

m = çakma kazıklar için 400, fore kazıklar için 200,

n = çakma kazıklar için 2, fore kazıklar için 1,

N = kazık uç seviyesindeki SPT sayısı,

<u>N</u>= kazık boyunca ortalama SPT sayısını ifade etmektedir.

Kanada Geoteknik Birliği (1985), CPT sonuçlarından kazık taşıma gücünün tahmini için aşağıdaki bağıntıyı önermiştir:

$$Q_{top} = q_c A_{uc} + f_c A_{yan} \tag{1.40}$$

Burada; q_c = kazık ucu civarındaki ortalama konik uç direnci (D>500mm olan kazıklar için ortalama değer yerine ölçülen en küçük değer alınır), f_c = CPT deneyinde ortalama çevre sürtünmesidir.

Nottingham (1975) ve Schmertmann (1978), CPT sonuçları ile kazıkların taşıma gücünü aşağıdaki ifadelerle bulunabileceğini ifade etmişlerdir:

$$q_{u\varsigma} = q_c \le 15MPa \tag{1.41}$$

$$q_{yan} = \lambda_1 f_c \tag{1.42}$$

Burada; q_c= konik uç direnci (kazık ucu seviyesinde 6-8D üstü ile 0.7-4D altı arasındaki ortalama direnç), f_c= koni çevre sürtünmesi, $\lambda = 0.8-2$ (ayrık daneli zeminlerde), = 0.2-1.25 (killi zeminlerde) ifade etmektedir.

Meyerhof (1956), CPT sonucunu çevre sürtünmesinin konik uç direncine (kPa) bağlı olarak aşağıdaki gibi alınabileceğini söylemiştir:

$$q_{yan} = 0.005 q_c$$
 (1.43)

Meyerhof (1983), CPT sonuçlarını kullanarak ve konik uç direncinin kazık ucundan itibaren 4D üstü ile 1.0D altı aralığındaki değerlerin ortalamasının alınması gerektiğini önererek kazıkların taşıma gücünü aşağıdaki ifadelerle bulunabileceğini ifade etmişlerdir:

$$q_{u\varsigma} = \lambda_3 \lambda_4 q_c \tag{1.44}$$

Burada;

$$\lambda_3 = \left(\frac{D+0.5}{2D}\right)^n \qquad D>0.5m \tag{1.45}$$

n=1, gevşek zemin (kum); n=2, orta sıkı zemin; n=3, sıkı zemin;

 $\lambda_3 = 1$ D<0.5 (1.46)

$$\lambda_4 = 1 \qquad \qquad L_{\text{siki kum}} > 10 \text{D} \qquad (1.48)$$

Eslami ve Fellenius (1995), CPT sonuçlarını kullanarak kazık uç direncini ve çevre sürtünmesini hesaplamak için bir yöntem geliştirmiştir. Bu yöntemde; kazık zayıf tabakadan geçip sağlam tabakaya giriyorsa kazık ucundan 4D altı ile 8D üstü kadar bir kesimde, kazık sağlam tabakadan geçip zayıf tabakaya giriyorsa kazık ucunun 4D aşağısı ile 2D üstü kadar bir kesimde ölçülen efektif koni uç dirençlerinin ortalaması alınır (q_c) ve

aşağıdaki eşitliklerde kullanılır. Eslami ve Fellenius (1995), çevre sürtünmesi hesabı için zemin cinsine göre değişen bir C_s katsayısı tanımlamışlardır.

$$q_{u\varsigma} = q_c \tag{1.49}$$

$$q_{yan} = C_s.q_c \tag{1.50}$$

Zemin Cinsi	Cs
Çok yumuşak kil	8,0
Yumuşak kil	5,0
Katı kil veya kil silt karışımı	2,5
Silt ve kum karışımı	1,0
Kum veya çakıllı kum	0,4

Tablo 1.8. C_s katsayısının değerleri

1.3.1.3. Kazık Yükleme Deneyleri ile Taşıma Gücü Tespiti

Kazık arazide yüklendiğinde, kazığın taşıma gücü-oturma davranışı en doğru şekilde belirlenmiş olur. Kazık yükleme deneylerinde asıl amaç kazığın sınır taşıma gücünü belirlemektir. Kazığın oturması bu deneyle bulunamaz. Çünkü uygulanan yük kısa sürede kaldırılmaktadır (Toğrol ve Tan, 2009). Kazık yükleme deneylerinde kazıklar deneme kazığı veya kontrol kazığı olarak yapılabilir. Deneme kazığında, projeye başlamadan önce ve sonuçlarından tasarımda faydalanmak üzere yapılır. Bu kazıklar göçme yüküne kadar yüklenir. Kontrol kazığında ise kazıklar imal edildikten sonra tasarım yükünü taşıyıp taşımadığını kontrol etmek için yapılır. Bu kazıklar ise genellikle tasarım yükünün 1.5-2 katına kadar yüklenir. Yükleme deneyleri yapılırken; deney kazığı üzerine kurulan bir platformdan, mevcut bir yapıdan veya ankraj kazıkları ile oluşturulmuş bir platformdan reaksiyon alınarak sabit bir kiriş vasıtasıyla hidrolik kriko ile yük aktarılır (Şekil 1.13).

Şekil 1.13. Kazığın hidrolik kriko vasıtası ile ankraj kazılarından reaksiyon alarak yüklenmesi

Kazık yükleme deneylerinde kazık başına 2500 tona kadar yük gelebilir. Bu yüzden, reaksiyon alınan çerçeve büyük eğilme momentlerine maruz kalacağından yeterli rijitlikte olmalıdır. Ayrıca, deney kazıkları ile reaksiyon kazıkları arasında yeterli mesafe olmalıdır. Kazık çapının 3 ile 5 katından daha az mesafe olursa kazıklar arasında etkileşim olur ve oturma miktarları yanlış ölçülür. Bununla beraber reaksiyon kazıklarının da yer değiştirmesi ölçülmelidir (Toğrol ve Tan, 2009).

1.3.2. Kazık Grup Davranışı

Birçok durumda, tek kazığın yük oturma davranışı, kazık grubunun yük oturma davranışından farklıdır. Dolayısı ile kazık grubunun taşıma gücünün belirlenmesinde farklı bir yol izlenir. Bununla birlikte, kazık grubunun taşıma gücünü belirlerken de tekil kazığın taşıma gücünün bilinmesine gereksinim vardır. Yapı yüklerini taşımak üzere tasarlanan bir kazık grubunda, eksantrik yükler bulunmuyorsa, toplam yükün kazık sayısına bölünerek, kazıklara gelen yükün hesaplanması ve bulunan yükün tekil kazığın taşıma gücü ile karşılaştırılması makul görünen bir yol gibi görünse de, kazık grubunun beklenmeyen aşırı

değerlere varabilen oturmalarını dikkate almadığı için doğru bir yol sayılmaz. Tekil kazığın taşıma gücünün belirlenmesi gereklidir ama kazık grubunun taşıma gücünün bulunması için yeterli değildir. Grup olarak kazıkların taşıyabilecekleri nihai yükün, kazıkların tek başlarına taşıyabilecekleri nihai yüklerin toplamından daha az olduğu kanaati hâkimdir. Kazıklar arası mesafeyi arttırmak ise, çoğu kez büyük ebatlarda kazık başlıkları yapılmasını zorunlu kılar ki, bu yüzden kazıklara gelen yükler artar. Kazık gruplarının taşıma güçlerinin hesaplanmasında, kazıkların grup halindeki davranışları göz önüne alınmaktadır. Kazık grubu içerisinde yer alan bir kazık ve kazık çevresindeki zemin, kazık grubunun içerisinde yer alan diğer kazıklardan iletilen gerilmelerin etki alanı içerisinde kalabilmektedir. Kazık aralıklarının az olduğu durumlarda yani birbirine yakın olarak tasarlanmış kazıklarda basınç soğanları Şekil 1.14.'de görüldüğü gibi üst üste çakışmaktadır. Bu duruma kazık-kazık etkileşimi denilmektedir. Kazıklar tarafından zemine iletilen gerilmelerin üst üste gelmesi durumunda bazı zeminlerde etkileşime giren kazıkların taşıma gücü, tekil bir kazığa göre daha az olabilir. Ayrıca kazık grubundaki kazıkların birbiriyle olan etkileşiminden ötürü kazık grubunun toplam taşıma gücü, kazık grubunu meydana getiren kazıkların taşıma kapasitesi toplamından daha düşük çıkabilmektedir (Şekil 1.15). Bu yüzden kazık grubunun taşıma gücü de ayrıca belirlenmesi gereken bir unsurdur.

Şekil 1.14. Kazıkların birbiriyle olan etkileşimi (Kanıt, 2003)

Şekil 1.15. Sürtünme kazıklarında gerilme dağılışı ve grup etkisi

Kazıklı temellerin tasarımında her kazığın taşıyabileceği yük miktarı belirlendikten sonra yapıdan gelen toplam yük, bir kazığın emniyetli taşıma gücüne bölünerek gerekli kazık sayısı bulunur. Eğer kazık grubu yetersizse kazık boylarında ve kazık sayısında değişiklik yapılarak, tasarım tamamlanır. Sürtünme kazıklarında kazık grubu etkisini hesaplamak için kullanılan deneye dayalı ve yarı deneysel formüller vardır. Bu formüller, kazıklar arası etkileşim sonucu ortaya çıkan, kazık grubu içerisinde bulunan kazıkların taşıma güçlerindeki azalmayı tespit etmek için geliştirilmiştir. Grup verimi (*1*), kazıkların taşıma güçlerinin toplanmasıyla elde edilen değerle çarpılarak grup taşıma kapasitesi elde edilir. Bu bağıntılarda zemin özellikleri göz ardı edilerek, sade kazık-kazık etkileşimi göz önünde bulundurulmuştur.

Kazık grup etkisi olarak da adlandırılan " η " katsayısının hesaplanmasında en yaygın kullanılan yöntemlerden biri Bolin (1941) tarafından hazırlanan Amerika Otoyol Birliği Şartnamesinde bulunan Converse-Labarre bağıntısıdır. Ancak bu bağıntı yalnızca kazıkların geometrik özelliklerini hesaba katmaktadır. Bu nedenle sonuçları tartışmaya açıktır. Converse-Labarre bağıntısı yardımı ile elde edilen kohezyonlu zeminlerde kazık grubu etki katsayıları Tablo 1.9.'da verilmektedir.

Tablo 1.9. Kazık grubu etki katsayıları (η) (Prakash ve Sharma, 1990)

Kazık Yerleşimi (S)	3D	4D	5D	6D	8D
η	0.70	0.75	0.85	0.90	1.00

$$\eta = \frac{Q_{g_{(v)}}}{\sum Q_{(v)}}$$
(1.51)

Burada; η ; kazık grubu verimliliğini, $Q_{g(v)}$: grubun taşıma gücünü, $Q_{(v)}$: her bir kazığın, kazık-kazık etkileşimi olmaksızın taşıma gücünü ifade etmektedir.

$$\eta = 1 - \theta \left[\frac{(n-1).m + (m-1).n}{90.m.n} \right]$$
(1.52)

Burada; η : kazık grubu verimliliğini, m: kazık grubundaki kazık sayısını, n: kazık grubundaki kazık sıra sayısını, θ : arctan(D/S)'ı, D: kazık çapını, S: merkezden merkeze kazık aralığını temsil etmektedir.

Bir kazık grubunun taşıma gücünü belirleyebilmek amacıyla Feld (1943), her bir kazığın taşıma gücünün düz ve diyagonal doğrultudaki komşu kazık sayısının 1/16 ile çarpılması kadar azaltılmasına bağlı olan bir eşitlik ifade etmiştir. Şekil 1.16 'de kazıkların birbiri ile etkileşimi gösterilmiştir. Bu kurala göre, ortadaki kazıklar taşıma güçlerinin 8/16'ını, kenardaki kazıklar 5/16'ını, köşedeki kazıklar ise 3/16'ını kaybeder.

Şekil 1.16. Feld yönteminde sürtünme kazıklarının etkileşimi

$$Q_{grup} = \sum_{i=1}^{N} (1 - \frac{1}{16}t)Q_i$$
(1.53)

Burada; Q_i : her bir kazığın toplam taşıma gücünü, Q_i : kazık grubunun taşıma gücünü, *t*: ilgili kazığa komşu kazık sayısını (3-8, düz ve diyagonal yönlerde) ifade etmektedir.

Seiler ve Kenney (1944), yaptıkları deneylerin sonuçlarına bağlı kalarak kazık grup etkisini tespit etmek amacıyla ampirik bir bağıntı ifade etmiştir.

$$\eta = 1 - \left[\frac{12 + 10(m-2) + 10(n-2) + 8(m-2)(n-2)\sqrt{2}}{8.m.n}(\frac{D}{S})\right]$$
(1.54)

Burada; η : grup etki katsayısını, *m*: kazık grubunun dizi sayısını, *n*: kazık sayısını, *S*: kazıklar arası mesafeyi göstermektedir.

1/8 etkileşim kuralı olarak adlandırılan bu yönteme göre grupta bulunan bir kazığın taşıma gücünü düşürmek amacıyla ilk olarak kendisine komşu her bir kazık için bir adet (1/8) kazık sayısı D/S (kazık çapı/kazık aralığı) oranı ile çarpılır (Yazıcı, 2013). Söz konusu kurala göre, dörtgen şeklinde m ve n adet kazıktan meydana gelen grupta, etki katsayısı aşağıdaki gibi ifade edilmektedir.

$$\eta = 1 - \left[\frac{12 + 10(m-2) + 10(n-2) + 8(m-2)(n-2)\sqrt{2}}{8.m.n} \left(\frac{D}{S}\right)\right]$$
(1.55)

Bu eşitlikte; *m*: Gruptaki kazık sıra sayısını, *n*: Bir sıradaki kazık sayısını, *S*: Kazıklar arası aks aralığını, *D*: Kazık çapını ifade etmektedir.

Sayed ve Bakeer (1992), düşey yük altında kazık gruplarında grup verimini tespit etmek amacıyla şu bağıntıyı önermiştir;

$$\eta = 2 \left[\frac{\left[\left[(n-1)S + D \right] + \left[(m-1)S + D \right] \right]}{m.n.D} \right]$$
(1.56)

$$\eta = 1 - \left(1 - \eta_s K\right) \rho \tag{1.57}$$

Bu bağıntıda; η : grup etki katsayısı, ρ : sürtünme faktörü, *K*: etkileşim faktörü, η_s : geometrik etki katsayısı = P_g / \sum P_p, *P_g*: her bir kazığın çevresi, $\sum P_p$: kazık grubundaki kazıkların çevresini ifade etmektedir.

Das (1998), düşey yüklü kazıklarda grup etkisini tespit etmek amacı ile kazık grubunu bir blok olarak düşünerek ampirik bir bağıntı belirlemiştir.

$$\eta = \left[\frac{2S(n+m-2)+4D}{mn}\right] \tag{1.58}$$

Bu bağıntıda; η : grup etki katsayısı, *m*: kazık grubuna ait sıra sayısı, *n*: kazık grubuna ait her bir sıradaki kazık sayısı, *S*: kazıklar arası mesafe, *D*: kazık çapını ifade eder.

1.4. Kazıklı Radye Temeller

Kazıklı radye temeller; kazıklar, radye ve temel zemini olmak üzere üç bölümden meydana gelen temel sistemleridir (Şekil 1.17). Yapıya gelen yükler, kazıklar ve radye aracılığıyla zemine aktarılır. Radye ve kazıklar arasındaki bu yük paylaşımı, kazıklı radye temel sistemlerini diğer kazıklı temel türlerinden ayıran önemli bir özelliktir (Şekil 1.18).

Şekil 1.17. Kazıklı radye temel, kazıklı temel ve radye temel gösterimi

Kazıklı radye temeller, taşıma gücünü arttırmak veya radye temel altında oluşabilecek farklı oturmaları engellemek amacıyla tercih edilir.

Şekil 1.18. Kazıklı radye temellerde yük aktarma mekanizması (Sönmez, 1994)

1.4.1. Kazıklı Radye Temellerin Taşıma Gücü Hesabı

Kazıklı radye temellerde, üstyapıdan kaynaklı yükler zemine aktarılırken kazık ve radyenin birlikte hareket ettiği kabul edilir. Kohezyonsuz zeminlerdeki kazıklı radye temelde bulunan kazıkların altında oluşan gerilme soğanlarının, diğer kazıklarla olan etkileşimi çok düşük olduğu için grup etki katsayısı genellikle 1 alınır. Buradan, kazıklı radye temelin taşıma gücü Vesic (1977) tarafından aşağıdaki gibi önerilmiştir. Vesic (1977) tarafından kazıklı radye temelin taşıma gücü dikkate alınmamaktadır.

$$Q_g = n \ Q_t \tag{1.59}$$

Burada; Q_g : kazıklı radye temelin toplam taşıma gücünü, Q_t : tek kazığın taşıma gücünü, n: kazık sayısını ifade etmektedir.

Kazıklar arası mesafenin 3D'den daha az olması halinde kazıklı radye temelin taşıma gücü, kazık etkileşimi sebebiyle kazıkların toplam taşıma gücünden daha düşük çıkmaktadır (Yazıcı, 2013). Kazıklı radye temelde toplam taşıma gücü, tek kazığın taşıma gücünün "n" katı ve grup etki katsayısının " η " çarpımına eşit olmaktadır.

$$Q_g = n \, \eta \, Q_t \tag{1.60}$$

Bu bağıntı da; Q_s : kazıklı radye temelin taşıma gücünü, Q_t : tekil kazığın taşıma gücünü, n: kazık sayısını, η : grup etki katsayısını ifade etmektedir.

Terzaghi ve Peck (1968), kazıklı radye temellerin "Blok Derin Temel" olarak davranacağını göz önüne alarak bir hesap yöntemi geliştirmiştir. Bu hesap yönteminde zemin özellikleri hesaba dâhil edilir. Ancak; bu hesap yönteminde kazıklı radye temelin blok halinde hesaba dâhil edilmesi kazık aralığına bağlı olarak değişen bir durum olması nedeniyle de her durumda uygulanması söz konusu değildir. Kazıklı radye temelin hangi kazık aralığında blok davranış biçiminden tek kazık davranışına geçeceği söz konusu olmaktadır. Bu durumu açıklığa kavuşturabilmek amacıyla da, Terzaghi ve Peck (1968) tek kazığın göçmesi ile blok temelin göçmesi durumlarını tek tek analiz ederek yeni bir yaklaşım öne sürmüşlerdir. Önerilen hesap yönteminde kazık başlığı rijit olarak hesaba katılır ve kazık grubu içerisinde yer alan zemin kazıklar ile birlikte bir blok olacak şekilde davranış gösterir kabulü vardır.

Şekil 1.19. Kohezyonlu zeminlerde kazık grubu taşıma gücü (Terzaghi ve Peck,1968)

$$Q_s = P L s + A q_f + A L\gamma \tag{1.61}$$

Bu bağıntıda;

- s : kazık grubunu saran zeminin ortalama kayma mukavemetini,
- *L* : kazığın zemin içinde kalan boyunu,
- P : kazık grubunun plandaki toplam çevre uzunluğunu,
- A : plandaki kazık grubunun alanını,
- B : kazık grubunun dar kenarını,
- γ : zeminin birim hacim ağırlığını,

qf: kazığın oturduğu derinlikteki taşıma gücünü belirtmektedir.

Bağıntı 1.62 yardımıyla tespit edilen taşıma gücü, "*n*" gruptaki kazıkların sayısını ifade etmek üzere, her bir kazığın taşıma gücünün " Q_t " toplamından elde edilen değer olan "*n* Q_t " ile karşılaştırılır ve küçük olan değer, kazık grubunun toplam taşıma gücü olarak kabul edilir. Kohezyonlu zeminlerde ise q_f aşağıdaki gibi ifade edilebilmektedir.

$$q_f = 1.3 c N_c + \gamma L \tag{1.62}$$

1.4.2. Kazıklı Radye Temellerde Oturma Hesabı

Kazıklı radye temellerde, kazıkların zemine aktardıkları gerilmelerin tek kazığa göre daha derinlere etkimesinden dolayı, oturma değerleri tekil kazıkların oturma değerlerinden daha fazla olacaktır. Bu nedenle, aktarılan gerilmelere bağlı olarak her bir kazığın gerilme bölgelerinin toplamı bir bütün olarak düşünülerek, süper pozisyon kuralı uygulanmaktadır (Şekil 1.20). Kazıklı radye temellerdeki taşıma gücünde, tekil kazıkların oluşturduğu taşıma gücüne göre azalma ve oturmalarda ise, artışlar meydana gelmektedir (Das, 1998).

Şekil 1.20. Gerilmelerin süperpozisyonu (Tomlinson, 2004)

Vesic (1977), kazıklı radye temellerdeki oturma miktarını tespit etmek için bir yöntem geliştirmiştir.

$$S_g = S_t (b/D)^{-1/2} \tag{1.63}$$

Bu bağıntıda; S_g : kazık grubunun oturma miktarını, S_t : tek bir kazığın oturma miktarını, b: kazık grubu genişliğini, b' : kazık aks aralığını, D: kazık çapını ifade etmektedir.

Vesic (1977), kohezyonlu zeminlerde de konsolidasyon oturma hesabı için şu bağıntıyı önermiştir;

$$\Delta H = (C_{c/(1+e_{0})}) (H-2/3L) \log ((\sigma_{v'} + \Delta \sigma_{v'})/\sigma_{v'})$$
(1.64)

Bu bağıntıda; ΔH : konsolidasyon oturmasını, e_0 : Boşluk oranını, C_c : konsolidasyon katsayısını, $\sigma_{v'}$: (H-2/3L) tabakasının ortasındaki efektif basıncı, $\Delta \sigma_{v'}$: (H-2/3L) tabakasının ortasındaki kazık yükü ile artan efektif basıncı belirtmektedir.

Şekil 1.21. Kohezyonlu zeminlerde kazıklı radye temellerde oturma analizi için gerilme dağılışı (Vesic, 1977)

Yüzeyden itibaren 2/3L zemin derinliğe etkiyen zemin basıncı değerindeki oturma miktarı ihmal edilerek, alt kısımdaki (H-2/3L) kalınlığındaki kil tabakasının üstüne etki ettiği varsayılarak, (Δ H) konsolidasyon oturması hesaplanabilir.

1.4.3. Kazıklı Radye Temellerin Analizi

Kazıklı radye temellerin analizinde kullanılan metotları; basitleştirilmiş hesap yöntemleri, yaklaşık sayısal analiz metotları, sayısal analiz yöntemleri olmak üzere üç ana başlık altında toplayabiliriz.

1.4.3.1. Basitleştirilmiş Hesap Yöntemleri

Basitleştirilmiş hesap yöntemleri, basit matematik hesaplamaları içeren teori ve ilkelere dayanmaktadır. Bu hesap metotları arasında, Poulos ve Davis (1980), Randolph (1983,1994), Van Impe ve Clerq (1995) ve Burland (1995)'ın çalışmaları yer almaktadır. Söz konusu yöntemlerin tamamı, zemin profilinin ve radye temelin üzerindeki yükleme durumlarının modellenmesi ile alakalı olarak birkaç basitleştirme yöntemi içerir. Ayrıca kazıklı radye temellerin hesap ilkeleri, kazık-zemin, kazık-kazık, kazık-radye ve radyezemin olmak üzere dört ayrı etkileşimi içerir. Zemini elastik bir ortam olarak kabul eden bu yöntemler, radye, kazıklar ve zemin arasındaki etkileşimi elastisite teorisini kullanarak hesaplamaktadır.

1.4.3.1.1. Poulos ve Davis Yöntemi

Poulos ve Davis (1980), bu metot yardımıyla tüm sistemin yani; kazıklar ve radyenin yük-oturma eğrisi basitleştirerek hesaplama yapmaktadır. Kazıklı radye temelin rijitliği, radyenin rijitliği ve kazıkların rijitliği elastik teori yardımıyla hesaplanmaktadır.

1.4.3.1.2. Randolph Yöntemi

Randolph (1983, 1994), tarafından önerilen bu metotta, kazıklı radye temel sisteminde yapıdan kaynaklı yükün kazıklar ve radye arasındaki paylaşım oranını tespit etmek için formüller önermiştir. Kazıklı radye temel sisteminin basitleştirilmiş hali Randolph tarafından Şekil 1.22'de verilmektedir.

Şekil 1.22. Kazıklı radye temel sisteminin basitleştirilmiş hali (Randolph, 1994)

Randolph'a göre kazıklı radyenin rijitliği aşağıdaki bağıntılar vasıtasıyla bulunabilir:

$$k_{pr} = \frac{1 - 0,6 * \left(\frac{k_r}{k_p}\right)}{1 - 0,64 * \left(\frac{k_r}{k_p}\right)} * k_p$$
(1.65)

Bu bağıntıda; k_{pr} : kazıklı radye temele ait rijitlik, k_r : radye temele ait rijitlik, k_p : kazıklara ait rijitliği ifade etmektedir. Radye temel tarafından taşınan yükün kazıklar tarafından taşınan yüke oranı ise aşağıda ki bağıntı ile hesaplanabilir.

$$\frac{P_r}{P_p} = \frac{0.2}{1 - 0.8 * \left(\frac{k_r}{k_p}\right)} * \frac{k_r}{k_p}$$
(1.66)

Bu bağıntıda; P_r : radye temel tarafından taşınan, P_p ise kazık tarafından taşınan yükü belirtmektedir.

1.4.3.1.3. Poulos-Davis-Randolph (PDR) Yöntemi

Poulos-Davis-Randolph yönteminde; kazıklı radye temel sisteminin düşey taşıma kapasitesi "Radyenin ve radye altında yer alan tüm kazıkların taşıma kapasitelerinin toplamı" veya "Radye, kazıklar ve radyenin kazık grubunun çevresi dışında kalan kısmının oluşturduğu bloğun toplam taşıma gücü" değerlerinden daha az olanının seçilmesi ile belirlenir. Bu yöntemde yük oturma davranışını belirlemek için, Poulos ve Davis'in (1980) yaklaşımına yakın bir yol izlenmekte olup; Randolph'un (1994) yük paylaşım metodu kullanılarak PDR yöntemi geliştirilmeye çalışılmıştır. Söz konusu yönteme, Randolph'un 1994 yılında öne sürdüğü bağıntıdan farklı olarak kazık ve radyenin etkileşimini temsil eden α_{cp} (etkileşim faktörü) parametresi de eklenerek; elde edilen veriler daha güvenilir hale getirilmiştir.

$$k_{pr} = \frac{k_{p} + k_{r}(1 - \alpha_{cp})}{1 - \alpha_{cp}^{2} \frac{k_{r}}{k_{p}}}$$
(1.67)

 α_{cp} parametresi aşağıdaki bağıntı yardımı ile hesaplayabiliriz;

$$\alpha_{cp} = 1 - \frac{\ln\left(\frac{r_c}{r_0}\right)}{\zeta}$$
(1.68)

$$\frac{P_r}{P_t} = \frac{k_r (1 - \alpha_{cp})}{k_p + k_r (1 - \alpha_{cp})} = x$$
(1.69)

$$\zeta = \ln(\frac{r_m}{r_0}) \tag{1.70}$$

$$r_m = (0,25 + \zeta [2,5\rho(1-\nu)] - 0,25)L$$
(1.71)

$$\zeta = \frac{E_{sl}}{E_{sb}} \tag{1.72}$$

$$\rho = \frac{E_{sav}}{E_{s1}} \tag{1.73}$$

Bu bağıntılarda;

Est: kazık uç seviyesinde zeminin elastisite modülü,

Esb : kazık ucu seviyesinde bulunan taşıyıcı tabakanın elastisite modülü,

*E*_{sav}: kazık gövdesi boyunca zeminin ortalama elastisite modülü,

P_r: radye tarafından paylaşılan yük,

*P*_t: toplam yük,

*r*_m: kazık başlığının yarıçapı,

 r_c : kazıkların toplam yarıçapı,

 r_0 : kazık yarıçapı, L: kazık boyu,

 α_{cp} : kazık ve radyenin etkileşimini temsil eden etkileşim parametresi,

 ζ , k_{pr} ile ρ : boyutsuz katsayılar,

 ν : zeminin poisson oranı,

 P_{up} : radyede bulunan kazıkların son taşıma gücü,

X : üst yapıdan gelen yükün radye tarafından taşınan kısmı,

I-X : toplam yükün kazıklar tarafından taşınan kısmı olarak ifade edilmiştir.

Bu denklemler vasıtasıyla Şekil 1.25'deki gibi yük-oturma eğrisi çizilir ve istenilen kazık sayısı için kazıklı radye temelin rijitliği hesaplanır. Kazık taşıma gücü (P1 yükü) aşağıdaki bağıntı vasıtası ile hesaplanır.

$$P_1 = \frac{P_{up}}{1 - X}$$
(1.74)

Şekil 1.23. PDR yöntemi ile yük-oturma eğrisi (Poulos,2001)

Radye temelin rijitliği (k_r), Fraser ve Wardle (1976) veya Mayne ve Poulos(1999)'un elastik teorileri yardımıyla bulunabilir. Kazık grubunun rijitliğide (k_{pg}) Poulos ve Davis (1980), Fleming (1992), Fleming ve diğ. (2009) veya Poulos (1989)'un elastik teori yöntemi vasıtasıyla bulunabilir. Elastik teori ile elde edilen tekil kazık rijitliği elastik çözüm yollarıyla yaklaşık olarak edilen grup rijitlik etki faktörü ile çarpılır.

Randolph (1994), kazıklı temelin deplasman analizinde faydalanılan eşdeğer radye ve eşdeğer ayak metotlarının, 'kazıklı radye temelin oturma hesabı' için de kullanılabileceğini belirtmiştir. Hangi yöntemin kullanılacağını belirlemek için görünüş oranından (R) faydalanılabilir. Gök (2007) yaptığı çalışmalar sonucunda; R > 4 olduğu hallerde eşdeğer radye yöntemini kullanmanın oldukça uygun olduğunu belirtmiştir.

$$R = \sqrt{\frac{nS}{L}} \tag{1.75}$$

Bu formülde; R: görünüş oranını, n: kazık sayısını, S: kazık aralığını, L: kazık boyunu belirtmektedir.

1.4.3.1.4. Burland Yöntemi

Burland (1995), kazıkların oturma sınırlayıcı eleman olarak tercih edildiği ve tasarım yükünde kazıkların nihai taşıma kapasitelerine ulaştıkları bu durum için basitleştirmiş bir yöntem belirlemiştir. Yalnızca radye temel için yük-oturma ilişkisi belirlenir. (Şekil 1.24). So, Po tasarım yükünde gerçekleşen oturma miktarını ifade eder. Kabul edilebilir toplam oturma miktarına (Sa) karşılık gelen Pa yükü grafik yardımı ile tespit edilir. (Po-P1) yükü kazıklar tarafından taşınması beklenen yüktür. Kazıkların çevre sürtünmesinin Psu değerine ulaşılacağı düşünüldüğünden güvenlik sayısı 1 olmaktadır. Ancak; nihai yüzey kapasitesinin belirlenmesinde güvenli sınırlar içinde kalınması amacıyla mobilizasyon faktörü 0.9 olarak kabul edilmektedir. Eğer kazıklar kolonların altında yer alıyorsa kazıklı radye sistem azaltılmış kolon yükü uygulanan radye olarak analiz edilebilir. Azaltılmış kolon yükü Qrise:

$$Q_r = Q - 0.9 P_{su}$$
 (1.76)

bağıntısı ile belirlenir.

Kazıklı radyejeneral temelin oturma miktarlarını belirlemek için Randolph (1994)'ün yaklaşık tahmini kullanılabilir:

$$S = \frac{S_{sf} \cdot K_r}{K_{pr}} \tag{1.77}$$

Bu bağıntıda; S: kazıklı radye temelin oturması, S_{sf} : radyejeneral temelin oturması, K_r : radye temelin rijitliği, K_{pr} : kazıklı radye temelin rijitliğini (PDR yöntemi ile bulunabilir) ifade eder.

Şekil 1.24. Basitleştirilmiş tasarım modeli, a) plağın yük-oturma eğrisi b) kazıklı radye temelin kesiti c) eşdeğer radyejeneral temel kesiti (Burland, 1995).

1.4.3.2. Yaklaşık Sayısal Analiz Yöntemleri

1.4.3.2.1. Yaylar Üzerinde Şerit Temel Yaklaşımı (GASP)

Söz konusu yöntemde, radye temel şeritler ile kazıklar ise yaylarla ifade edilmektedir. Poulos (1991), elastik teori yardımı ile kazık-kazık, radye-radye, radye-kazık ve kazık-radye etkileşim faktörlerini hesaplamıştır. Şekil 1.25'de bu yöntem gösterilmiştir.

Şekil 1.25. Kazıklı şerit temelin GASP analizi için modeli (Poulos, 1991).

GASP yazılımı şerit-zemin taban basıncı değerinin nihai taşıma gücünü aşmayacak durumda zemini non-lineer olarak hesaba dâhil etmektedir. Kazık yükleri de nihai çekme ve basınç yüklerini aşmayacak şekilde sınırlandırılmıştır. Ancak; kazık yükleri tespit edilirken kazıklar izole olarak göz önünde bulundurulmuştur. Aslında Katzenbach vd. (1998) tarafından ortaya konulmuştur ki plak tarafından zemine aktarılan yükün kazıklı radye temeldeki kazık davranışı üzerine faydalı bir etkisi söz konusudur. Bu nedenle GASP (Geotechnical Analysis of Strip on Springs) analizlerinde kazıkların modellenmesi güvenli tarafta kalınmasına neden olmaktadır. İki yönde gerçekleştirilen non-lineer analizlerde uzun olan doğrultuda non-lineer davranış, kısa olan doğrultuda ise lineer davranışı hesaba katmak daha uygun bir yaklaşımdır (Şekil 1.26).

Şekil 1.26. (a) Kazıklı radye sisteminin kiriş ve yaylarla modellenmesi, (b) Kazıkların ve çevresindeki zeminin yaylarla modellenmesi

1.4.3.2.2. Yaylar Üzerinde Plak Temel Yaklaşımı (GARP)

Yaylar üzerinde şerit yaklaşımından farklı olarak bu yöntemde, radyenin bir kesiti şerit temel olarak modellemenin aksine, radyenin tamamını elastik bir plak ve zemini elastik sürekli bir düzlem olarak modelleyerek çözüm yapılmaktadır. Hongladaromp (1973) daha önce bu konuda çalışma yapmıştır ancak; bazı etkileşim bileşenleri ihmal edilmiş ve kazık-radye rijitlikleri olması gerekenden çok daha yüksek değerler almıştır.

Poulos (1994) elastik teori yardımıyla Hongladaromp (1973) tarafından ihmal edilen kazık etkileşimlerini (Bu yöntemde, radyedeki elemanların etkileşimi, kazıkların etkileşimi, kazık üzerindeki radyenin etkisi ve radye altındaki kazıkların etkisi gibi 4 farklı etkileşimin belirtilebileceği ifade edilmiştir.) tanımlamış ve radyenin tanımlanması için sonlu farklar yönteminden yararlanarak GARP (Geotechnical Analysis of Raft with Piles – Kazıklı Radyelerin Geoteknik Analizi) olarak adlandırılan bir program geliştirmiştir. Bu programda tabakalı zemin profilini modelleyebilme, ayrıca kazıkların nihai taşıma gücüne erişmesinin, radyenin altında taşıma gücüne erişilmesinden dolayı oluşacak göçmelerin ve düşey zemin oturmalarının kazıklı radye sisteminin üzerinde yarattığı etkinin bulunabilmesi mümkündür.

Şekil 1.27. Yaylar üstünde plak yaklaşımı

1.4.3.3. İleri Sayısal Analiz Yöntemleri

İleri nümerik analiz yöntemlerinde kazıklı radye sistemi bileşenleri, sınır eleman metodu, sonlu elemanlar metodu veya iki metodunda aynı anda kullanıldığı spesifik yazılımlar yardımı ile çözümleme yapmaktadır.

1.4.3.3.1. Sınır Eleman Yöntemi

Sınır eleman metodunda radye ve kazıklar parçalara bölünür. Zemin davranışı Mindlin (1936), fonksiyonu yardımıyla tespit edilebilirken; temel davranışı ise, sonlu farklar veya sonlu elemanlar yöntemleri ile çözülebilir. Mindlin fonksiyonu olarak adlandırılan bağıntı; homojen doğrusal elastik ortamlar için uygun olduğundan, doğrusal olmayan davranış, kazık boyunca yük aktarım fonksiyonları kullanılarak dikkate alınabilir (Griffiths vd., 1991).

Butterfield ve Banerjee (1971), kazıklı radye ve kazık gruplarının davranışını elastik bir zemin ortamında incelemişlerdir. Kazık grubunun ebatlarına ve kazıklar arası

mesafeye bağlı olarak, radyenin zeminle temas etmesinin sistemin rijitliğini % 5-15 arasında arttırdığını, yükün % 15-25'ini radye tarafından taşıdığını belirtmiştir.

Kuwabara (1989), bu yöntem ile elastik, homojen ve izotrop yarı uzay bir zemin içinde bulunan kazıklı radye temel için oturma ve yük aktarım mekanizmasını temel-kazık etkileşimini de dikkate alarak modellemiştir. Çalışmalarının sonucunda; belirli bir L/D (kazık boyu/kazık çapı) ve s/D (kazık oturma miktarı/kazık çapı) aralığında, radyenin toplam yükün % 20-40'ını taşıdığı ve radyenin oturmayı azaltıcı etkisinin ise düşük olduğu belirtmiştir.

1.4.3.3.2. Basitleştirilmiş Sonlu Elemanlar Yöntemi

Bilgisayar kapasitelerinin yetersiz oluşu ve analizlerin uzun zaman alması sonlu elamanlar (üç boyutlu) yönteminde bazı sadeleştirmelere ihtiyaç duyulmasına neden olmuştur. Kazıklı radyenin düzlem deformasyon veya eksenel simetrik kabul edildiği bu analiz yönteminde; temel ve zemin sonlu elemanlarla ifade edildiğinden, doğrusal olmayan davranış da hesaba katılabilmektedir. Kazıkların düşey yük altındaki davranışları, eksenel rijitliklerine bağlı olduğu için üç boyutlu kazıklı radye problemini, kazık sıralarını eşdeğer rijitliğe sahip şeritlere dönüştürülerek, iki boyutlu düzlem deformasyon problemi olarak çözmek mümkün olabilir. Şekil 1.28 ve Şekil 1.29'da düzlem deformasyon ve eksenel simetrik durum gösterilmektedir (Desai vd.,1974).

Şekil 1.28. Düzlem deformasyon sonlu eleman yöntemi (Gök, 2007)

Şekil 1.29. Eksenel simetrik sonlu eleman yöntemi (Gök, 2007)

1.4.3.3.3. Üç Boyutlu Sonlu Elemanlar Yöntemi

Sonlu elemanlar yöntemi, sürekli bir ortamın sonlu eleman olarak adlandırılan farklı geometrik alt parçalara bölerek mühendislik problemlerinin çözülebildiği matematiksel biridir. Sonlu elemanlar yöntemi, inşaat mühendisliğinin yöntemlerden çoğu uygulamalarında hem araştırma amaçlı, hem de problemlerin tasarımında yaygın olarak kullanılan bir sayısal analiz metodudur. En genel anlamda sonlu elemanlar yöntemi, geoteknik mühendisliğinde, şevlerin gerilme analizinde, barajlarda, tünellerde, kazıklı radye temellerde ve kazık grupları gibi birçok problemin çözümünde kullanılmaktadır (Köksal, 1995). Yazılım ve bilgisayar teknolojisinin son yıllarda gelişmesi ile birlikte, 3 boyutlu sonlu elemanlar yöntemi ile kazıklı radye temellerin tasarım ve analizleri kullanılmaya başlanılmıştır. Söz konusu yöntem gerçekçi sonuçlar vermesine rağmen, bilgisayar yeteneklerinin sınırlı olması ve çözümlerin uzun zaman almasından dolayı beklenilen düzeyde yaygınlaşmamıştır. Bu dezavantajlarına rağmen söz konusu yöntem kazıklı radye temellerin analizinde literatürde yer almaya başlamıştır. Üç boyutlu sonlu elemanlar yöntemi ve sonlu farklar yönteminin kullanılabildiği PLAXIS 3D, FLAC 3D, ABAQUS yazılımları bu yöntem için geliştirilmiştir.

1.5. Literatür Taraması

1.5.1.Teorik Çalışmalar

Ottaviani (1975), üç boyutlu sonlu elemanlar yöntemi yardımıyla kazıklı radye temelde, radyenin zeminle temasını araştırmak için analizler yapmıştır. Temel, 3x3 ve 3x5 kazığa sahip kazıklı radye olarak araştırılmıştır. Sonuç olarak, zemine yük aktaran radyenin yükün bir kısmını direkt olarak zemine aktardığı ve kazıkların zemine aktardığı yük davranışında etkili olduğu ifade edilmiştir.

Hain ve Lee (1978), radye temel altında belirli aralıklarla yerleştirilmiş kazıklar ve zemin arasındaki etkileşimi belirleyebilmek amacıyla bir bilgisayar yazılımı geliştirmişlerdir. Geliştirilen yazılımda modellenen zemin ortamı, 4 düğümlü kare ve dikdörtgen sonlu elemanlara ayrılmıştır. Kazıklar ve zemin ortamında, belirlenen aralıklara göre düğümler oluşturulmuştur. Bu düğümler, kazık düğümleri ile zemin düğümleri olarak isimlendirilmiştir. Her bir düğüm için kazık ve zemin etkileşimleri ve daha sonra tüm sistem için düşey oturmalar ve taşıma güçleri belirlenmiştir. Yöntemin; radye temelde çok fazla eğilme mevcutsa, zemindeki düğüm sayısı çok fazla olduğu için hesaplama işlemlerinin de çok zaman alması, kazık zemin etkileşiminde radyenin etkisinin göz önüne alınamadığı ve kazığın rijitliğinin Young modülü ile korale edildiği için sonuçların hatalı olabilmesi gibi bazı kısıtlayıcı tarafları olduğu ifade edilmiştir.

Poulos (1993), problemli zeminler için (oturan ve şişen) kazıklı radyelerin tasarımını incelemiştir. Poulos çalışmasında radyenin taşıma kapasitesi açısından tek başına yeterli olduğu durumlarda bu tip zeminlerde radyeye stratejik olarak yerleştirilmiş birkaç kazık takviyesi ile temeldeki oturma ve farklı oturma problemlerinin çözülebileceğini belirtmiştir. Çalışmasında, kazıklı radye temellerin performansı üzerinde haricen oluşan zemin hareketlerinin etkisini araştırmıştır. Poulos çalışmasında, zeminde emme veya efektif gerilme değişimlerinin sonucu olarak oturma ya da şişme hareketlerine bağlı olarak zemin-radye-kazık etkileşimlerinin sonuçularını sunmaktadır. Çalışma sonucunda; zemin konsolidasyona maruz ise basınç yükleri kazıklara negatif çevre basıncı olarak etki etmekte ve zeminin küçük hareketleri için bile radyenin ağırlığı kazıklara binmektedir. Ayrıca; zemin şişme hareketine maruz ise bu sefer hem şişen zeminin hareketinden hem de radyenin altında oluşan basınç kuvvetlerinden dolayı çekme yükü kazıklara binmektedir. Her iki durumda da kazıklı radyenin hareketi tek başına kazık grubunun hareketinden daha

büyük olmaktadır. Yazar harici düşey zemin hareketlerinin olması durumunda kazıklı radye kullanımından kaçınmanın en iyi çözüm olacağını belirtmiştir.

Ta ve Small (1997), çalışmaları sonucunda, kazıklı radye temellerin bilgisayar destekli hesaplarında yeni bir yaklaşım geliştirmişlerdir. Yaklaşımla, uzun zaman alan kazık grupları ve kazıklı radye hesapları, çok küçük hatalarla kısa sürede analiz edilebilmiştir. Söz konusu çalışmada kazıklı radye temellerde ve radyelerde etki faktörlerinin yaklaşık olarak hesabında nümerik analiz metotları tasvir edilmiş ve tek sınırlandırma radyedeki tüm elemanların kare ve eşit boyutlu olması düşünülmüştür. Ayrıca; zemin tabakasına yerleştirilen 4x4 kazıklı radye grubunun davranışı deney ile araştırılmıştır. Taşıyıcı zemin tabakasının katı kıvamda olduğu durumda kazıkların daha çok, radyenin ise daha az yük taşıdığı gözlemlemişlerdir.

Kempton vd. (1998), kazık gruplarında yük aktarma ve oturma davranışını, 2D düzlem deformasyon model ve 3D çeyrek hücre dolgu olarak modelleyip 2 modeli karşılaştırmıştır. Tüm yapı elemanları, doğrusal sınırı aşmayan ve akma gerilmelerine ulaşmayan, elastik malzemeler şeklinde modellenmiştir. 2 boyutlu sonlu elemanlar modelinde, sistemin eleman sayısını azaltmak amacıyla, mevcut simetrik durum kullanılarak, kazık gruplarının yarısı modellenmiştir. 2 boyutlu ve 3 boyutlu modeller kullanılarak yapılan analizler sonucunda, kayda değer farklılıkların oluştuğu belirtilmiştir. Ayrıca, derinlikle gerilme değerlerindeki azalmaların 3 boyutlu modelde, 2 boyutlu modele göre daha az olduğu, maksimum ve farklı oturmaların ise, 3 boyutlu modelde daha fazla olduğu ifade edilmiştir.

Zhang ve Small (2000), araştırmalarında düşey ve yatay yüklere maruz başlıklı kazık gruplarını sonlu elemanlar yöntemi ile analiz yapan APPRAF isimli program yardımı ile incelemiştir. Başlık (radye) ince bir tabaka, kazıklar elastik birer kiriş ve zemin ise farklı malzemelerden oluşan yatay tabakalar halinde modellenmiştir. Çalışmada elastisite modülü derinlikle artan üç farklı zemin örneği kullanılmıştır. Sonuçlar, analizde kullanılan programın yatay ve düşey yükler altında farklı zeminlerde yapılan başlıklı kazık gruplarının davranışını değerlendirmede çok yararlı ve etkin bir yol olduğunu göstermiştir. Rijit ve esnek başlıklı kazık grubu için kazık ve başlık arasındaki yük dağılımının mukayesesinde kullandıkları bu metodun eski metotları destekler mahiyette olduğunu vurgulamışlardır.

Hartmann ve Jahn (2001), kazıklı radyelerde sınır eleman analizleri yapmışlardır. Bu yöntem bu tip temellerin formülasyonlarını modellemede genellikle kullanılan analitik bir

yöntemdir. Çalışmada iki model incelenmiştir. Bunlardan ilki tabakalı yarı-uzay üzerinde Kirşof levhası ve ikincisi ise Winkler zemini üzerinde Kirşof levhasıdır. Levhalar uygun sınır elemanlarla ve kazıklar ise lineer sonlu elemanlar kullanılarak modellenmiştir. Çalışmada geometrik model olarak "Treptowers" adlı yüksek katlı bina ele alınmıştır. Çalışmada sınır eleman metodunun, temel plakası ile zemini tanımlayan parametreleri direk olarak göz önüne aldığından zemin-yapı etkileşimini çok daha etkin şekilde çözdüğü görülmüştür.

Poulos (2001), ISSMG'de sunduğu raporunda kazıklı radye temellerin analiz metotlarından bahsetmiştir. Raporda belirtilen sonuçlar aşağıdaki gibidir:

- Basit tasarım metotları detaylı tasarım aşamasında çok daha karmaşık analizlerin yerini güvenlikle almaktadır,
- İki boyutlu analizlerde (FLAC-2D gibi), oturma ve kazık yüklerinin doğal olarak mevcut düzlem-deformasyon varsayımlarından dolayı fazla tahmin edilmesine yol açabileceği,
- Üç boyutlu analizler (FLAC-3D gibi), kazık radye analizleri için olanak dâhilinde en fazla tam doğrulukla kullanılan metotlardır. Bu analizler zamana bağlı olarak kurulup çalıştırılmalarına rağmen tutarsız eğilme momentlerine de yol açabilirler. Eğer gerilme çıktıları momentlerin hesaplanmasında direkt olarak kullanılmışsa ve radyede katı elemanlar kullanıldıysa, bu analizlerden Gauss noktasındaki gerilmelerden sonuçlar çıkararak veya momentleri elde etmek için hesaplanan yer değiştirmeleri kullanarak birçok tatminkâr sonuçlar elde edilebilir,
- Kazıklı radye temelde var olan değişik etkileşimleri (kazık-kazık, kazık-radye, radye-kazık, radye-radye) dikkate almak şarttır. Bu etkileşimler yükün çoğunluğunun radye tarafından karşılandığı, farklı oturma ve oturmaların ciddi şekillerde küçümsendiği geleneksel yapı analizlerinin çoğunda genellikle göz ardı edilir.

Çalışmada kazıklı radye analizinde düşey yükleme kadar yanal yüklemenin de göz önüne alındığı bir metot geliştirilmiştir. Bazı sadeleştirmeler yapılarak geliştirilen bu metot ile tam ölçekli arazi deneylerinden oldukça iyi bir şekilde gözlemlenen davranışların tahmini de yapılabilir. Ama rutin tasarımlarda kullanılan basit yaklaşımlar geliştirmenin, gelecekteki araştırmalarda yapılması gerektiğini ifade etmiştir. Small ve Zhang (2002), düşey ve yanal yükler altında kazıklı radyelerin davranışı incelemişlerdir. Çalışmada radye ince bir plaka olarak ve kazıklar ise elastik kirişlerle modellenmiştir. Kazıklar ve radye sonlu elemanlar metodu ile çözülürken, zemin sonlu tabaka teorisi ile çözülmüştür. Kazıklı radye, hem her yönde yüklemeye hem de momentlere maruz bırakılmıştır. Çalışmada 3x3 gruplu 0,564m dairesel kesitli 10m boyunda kazıklar, radye kalınlığı 0,25 m ve S/D=3 ve 5 olacak (aralık/çap) şekilde tasarım yapılmış ve analizler yürütülmüştür. Çalışma sonucunda sonlu tabaka metodu ile genel yükleme tiplerinde kazık gruplarının üretimi yapılabilmektedir ve hem zemin yüzeyinde hem de zemine radyenin teması durumunda bu analizin kullanılabilirliği ispatlanmıştır. Bu metot da kullanılan verilerin kıyaslama için daha kolay olduğu ve sonlu eleman çözümleri için gerekli olan büyük "mesh"lerin oluşturulmasının gerektirmediğine vurgu yapılmıştır.

Poulos (2002)'de yaptığı çalışmasında kazıklı radye temellerin tasarımında basit bir tasarım prosedürü geliştirmiştir. Poulos, sadece radye temel kullanılan bazı durumlarda bu temelin bazı tasarım gereksinimlerini sağlamayacağı ve bunun içinde radyeye kazık ilavesi ile ancak temelin performansının iyileştirilebileceğini vurgulamıştır. Stratejik olarak yerleştirilmiş sınırlı sayıdaki kazıkların kullanımı ile radyenin nihai taşıma kapasitesi, oturma ve farklı oturma davranışlarının iyileştirilebileceği belirtilmiştir. Poulos yaptığı bu çalışma ile birçok çalışmaya rehber olmuş ve kazıklı radye temellerin ön tasarımında iki durumu incelemiştir. Bunlardan ilki tüm temelin davranışının değerlendirilmesi diğeri ise sadece kolon yükleri altında temel davranışının değerlendirilmesidir. Ayrıca çalışmasında kazıklı radye basit tasarımında aşağıda sıralanan farklı iki açıdan da bu temele ait davranışı incelemiştir;

- Tüm yük kapasitesi ve oturma-yük davranışı,
- Tek kolon yükü altında kazık ve radyenin bölgesel yük taşıma kapasitesi.

Poulos, rastgele bir temel sistemindeki gibi kazıklı radye temel dizaynında da aşağıdaki bazı konuların irdelenmesi ve tartışılması gerekliliğini vurgulamaktadır. Bu konulardan bazıları şöyle sıralanmıştır:

- Yanal ve düşey nihai taşıma kapasitesi ve moment yüklemeleri,
- Maksimum oturma,
- Farklı oturmalar,
- Radyenin tasarımı amacıyla gerekli moment ve kesme kuvvetleri,
- Kazıkların tasarımı amacıyla gerekli kazık yükleri ve momentleri.

Liang vd., (2003) düşey yüke maruz yastıklı kompozit kazıklı radyenin nümerik analizini yapmışlardır. Çalışmada yazarlar geleneksel kazıklı radyenin olumsuz koşullarda uygulanabilmesi için, yastık etkisi kadar kazık modülü ve eşit olamayan uzunluklarının etkisini de birleştirdikleri ve adını kompozit kazıklı radye koydukları bir temel sistemi geliştirmişlerdir. Bu yeni tip kompozit temelde kullanılan kısa kazıklar yumuşak yüzeysel zemini güçlendirmede, uzun kazıklar oturmayı azaltmakta ve yastık ise kazıklardan zemine aktarılan gerilmeyi yeniden dağıtıp ayarlamada kullanılmaktadır. Çalışmada bu kompozit temelin taşıma gücü ve oturma davranışındaki ana faktörler üç boyutlu sonlu elemanlar metodu kullanılarak analiz edilmiş ve kazıklı radye temel kavramına yeni bir tasarım yaklaşımı sunulmuştur.

Reul ve Randolph (2004), üniform olmayan düşey yüklere maruz kazıklı radyeler için tasarım stratejilerini araştırmışlardır. Çalışmada 259 farklı kazıklı radye konfigürasyonu 3 boyutlu elasto-plastik sonlu elemanlar analizi ile hesaplanmıştır. Çalışmada kazık konumları, kazık sayısı, kazık uzunluğu ve radye üstündeki yük dağılımına ek olarak radye-zemin rijitlik oranları da değiştirilerek analizler yapılmıştır. Çalışmada parametre değişiminin amacı optimum dizayn prosedürünü araştırmak olarak belirtilmiştir. Parametrik olarak yürütülen bu çalışmada, temel tasarımının; yükleme seviyeleri, yükleme tipi ve temel zemini durumlarına bağlı olduğu gösterilmiştir (Şekil 1.30). Çalışmada bulunan sonuçlar en genel hatları ile aşağıda özetlenmeye çalışılmıştır:

- Araştırılan tüm kazık konfigürasyonları için genellikle, aynı toplam kazık boyları için yüksek sayıdaki kazıklardan ziyade uzun kazıklarla oluşturulan modellerde ortalama oturmalar, kazıksız radye ile mukayese edildiğinde azaltılan tek parametredir. Kazıklı radyenin tüm rijitlikleri yük seviyesinin artmasıyla azalmıştır.
- Farklı oturmalar, ortalama oturmalar değerlerine göre yük konfigürasyonu ve radye-zemin sertlik oranına daha hassastır. Üniform ve köşe-kenar yükleme durumlarında radye için farklı oturmalar, radyenin merkezi altında teşkil edilen kazıklarla daha etkin şekilde azaltılmıştır. Eğilme momentinin hesabı lineer olmayan kazık-zemin etkileşimleri göz önüne alınsa da alınmasa da çok hassastır. Üniform yüklemeye maruz kazıklı radyede, kazıksız radyeye kıyasla eğilme momentlerinin azalmadığı görülmüştür.

Şekil 1.30. Temel sistemleri ve yük konfigürasyonları (Reul O. ve Randolph M.F., 2004)

Tan ve Chow (2004), yumuşak zeminlerde kazıklı radye tasarımı üstüne çalışmışlardır. Çalışmada yumuşak zeminlerde inşa edilen belirli yapılar referans alınarak kazıklı radye temel sistemi tasarım konuları araştırılmıştır. Tasarım için 2 tip yaklaşım geliştirilmiştir. Bunlardan ilki, düşük katlı (3'den daha az katlı) ve orta katlı (3 ile 5 katlı) yapılar için tasarım yaklaşımıdır. Üniform yükleme durumunda, idealleştirilmiş radye oturma ile tas şeklini almaktadır. Oturma radye merkezinde en büyük ve köşelerde en küçük değerleri almaktadır. Oturma azaltıcı kazıkların radyede orta bölgede kullanılması ile farklı oturmalar azaltılmış olmaktadır (Şekiller 1.31 ve 1.32). Şekil 1.33'de kazıklı radye konsepti verilmektedir. Bu çalışmada kazık etkileşimi için PIGLET ve PIGEON adlı yazılım, yapısal analiz için ise SAFE adlı ticari yazılım kullanılmıştır. Ayrıca analizler PLAXIS 3D Foundation sonlu elemanlar metodu kullanan yazılım ile de analiz edilmiştir. Analiz sonuçları, kazık reaksiyonları ve oturmalar açısından müsaade edilebilir sınırlar içerisinde güvenli çıkmıştır. Çalışmada ayrıca düşük katlı, orta katlı ve silo altındaki kazık ilaveli radyelerdeki vaka analizlerinden de bahsedilmiştir.

Şekil 1.31. Oturma azaltıcı kazık konsepti (Tan ve Chow, 2004)

Şekil 1.32. Lokal deformasyon kontrolünde oturma azaltıcı kazıklar (Tan ve Chow, 2004)

Şekil 1.33. Kazıklı radye konsepti (Tan ve Chow, 2004)

Chow ve Small (2005), düşey yükleme altında farklı boy ve çaplarda kazıklarla oluşturulan kazıklı-radyelerin davranışını araştırmışlardır. Radyeler üniform olmayan yüklere maruz kaldıklarında farklı çap ve boydaki kazıklarla desteklenerek farklı oturmaları azaltmada ve temelin dönmesini engellemede önemli rol oynamaktadır. Çalışmada bu parametrelerin etkisini incelemek amacıyla sonlu tabaka metodu kullanılmıştır. Zemin farklı özelliklerdeki yatay tabakalara bölünmüş ve sadece radyeye düşey yükler uygulanmıştır. Radye-zemin-kazık arasındaki etkileşimler hesaplanmıştır. Analizde 0,8 m. kalınlığında 20 m. genişliğinde dikdörtgen bir radye (Radye elastisite modülü, E_r=25000MPa) kullanılmıştır. Araştırmada iki durum incelenmiştir. 1. durumda, 9 m uzunluğunda 0,4 m çapında kazıklar, 2.durumda ise 21 m uzunluğunda 0,6 m çapında ve 7 m uzunluğunda 0,4 m çapında kazıklar kullanılarak analizler yapılmıştır. Analizler sonlu tabaka ve sonlu elemanlar metodu ile ayrı ayrı yapılıp birbiri ile kıyaslanmıştır. Sonlu eleman metodu ile yapılan analizlerde yer değiştirme sonlu tabaka yöntemine göre küçük oranlarda daha az çıkmış ancak genel olarak iki metot da birbirine uyum göstermiştir. Radye merkezinde düşey yer değiştirmeler birbiri ile kıyaslandığında, radye altında farklı boy ve çaplarda kazık kullanıldığında, aynı çap ve boydaki kazıklara oranla yer değiştirmeler çok daha az mertebelerde kalmıştır. Ayrıca çalışmada "Messeturm" binasının temelindeki farklı boydaki kazıklarla inşa edilen kazıklı radyenin de bilgisayar hesapları yapılmıştır.

Sanctis ve Mandolini (2006), yumuşak killi zeminlerde kazıklı radyelerin taşıma gücünü incelemişlerdir. Kazıklı radyelerin geleneksel tasarımı radye katkısını ihmal etmekte, yalnız kazıklı temelin taşıma kapasitesi yaklaşımına göre yapılmaktadır. Neticede aşırı tutucu kriterlere göre genellikle kazıklı temeller dizayn edilirler. Geleneksel metoda karşın, radyenin tüm taşıma gücündeki katkısının hesaplanmasıyla daha ekonomik ve rasyonel çözümlerin elde edilebileceğinden bahsedilmiştir. Çalışmada sonlu elemanlar programı (ABAQUS) yardımı ile nümerik analizler yapılmıştır. Çalışmada kazık çapı 1m (D) seçilmiştir. Kazık boyu 20D ve 40D, radye genişliği B_r=12D, 20D ve 28D alınmış, kazık aralıkları S=4D ve 8D, kazık sayıları ise N=9-25-49 olarak seçilmiştir. Çalışma sonunda kırılma anında yumuşak kil bir zeminde kazıkların aldığı toplam yük oranı hemen hemen sabit ve birbirine eşit olduğu görülmüştür.

Öztürk (2008), kazıklı radye temeller hakkında genel bir açıklamada bulunmuş ve bu temellerdeki tasarım kıstaslarını sunmuştur. Çalışmada Poulos (2000) tarafından basit bir hesap yönteminin sayısal bir örneğe uygulanması üzerine çalışılıp ayrıca örnekte incelenen temel ve zemin modeli üç boyutlu bir sonlu eleman yazılımı ile de analiz edilmiş ve sonuçları karşılaştırılmıştır. Ayrıca tezin ikinci bölümünde İzmir'de yüksek katlı bir yapı modeli ele alınmış ve bu model için yalnız radye temel, geleneksel kazıklı temel ve kazıklı radye temel analizleri yapılmış, sonuçları da birbiri ile karşılaştırılmıştır.

Liang vd. (2009), düşey yükler altında, farklı kazıklarla inşa edilen kazıklı radye temellerin analizinde integral eşitliği metodunun uygulanması üzerine çalışmışlardır. Kazıklı radyelerde kazık boyu ve düzeni, radyenin eğilmesi ve gerilmeler üzerinde önemli derecede etkilere sahiptir. Radye altında farklı boyut ve özellikte kullanılan kazıklar yeni bir kavram olup, kazıklı radyenin dizaynında optimize edilebilirler. Bu çalışmada fiktif kazık modelleri ile integral eşitlik metodu farklı kazıklarla kazıklı radye temelin analizine uyarlanmıştır. Bu problemden ikinci derece Fredholm integralleri elde edilmiştir. Çalışmada temel zemini ile kazıklar arasındaki yük paylaşımı, yük transferi ve kazıklı radyelerin oturması nümerik hesaplamalar kullanılarak elde edilmiştir. Bu metottan elde edilen sonuçlar literatürdekiler ile kıyaslanmıştır. Farklı kazıklarla kazıklı radyelerin dizaynı optimizasyon tekniği ile bu çalışmada buluşturulmuştur. Çevre zeminindeki kazıkların rijitlik etkisi, geleneksel etkileşim faktörü yaklaşımıyla kıyaslanarak da tartışılmıştır. Çalışma sonucunda belirli şartlar altında farklı çap ve uzunlukta kazık

kullanımı, radyedeki yapısal değerlendirmeler dikkate alınarak kesme, moment ve kazıklı radyelerdeki toplam ve diferansiyel oturmaların azaltılmasında ekonomik olarak dikkate alınması gerekliliği vurgulanmıştır. Ayrıca bu çalışmada kazıklı radye davranışı elastik sınır durumu ile incelenmiştir.

Gök ve Toğrol (2009), yaptıkları çalışma neticesinde önerdikleri hesap yönteminde, üstyapıdan kaynaklı yükün radye ve kazıklar ile beraber taşınacağını göstermekte ve farklı paylaşım oranlarına göre radye ve kazık grubunun oturmalarını ayrı ayrı hesap etmişlerdir. Kazık grubunun oturma hesabında eşdeğer radye yönteminden faydalanmışlardır. Çalışmalarında çeşitli Q_{kazık}/Q_{toplam} paylaşım oranları için elde edilen oturma miktarlarını karşılaştırmışlar ve kazık grubu ile radyenin oturmalarının eşit olduğu paylaşım oranını belirlemişlerdir. Belirlenen sonuçlar ile hem oturma miktarı hem de kazık boyunun belirlenmesini sağlamışlardır. Çalışmada önerilen hesap yöntemi iki farklı örneğe uygulanmış ve Plaxis 3D Foundation yazılımı ile desteklenmiştir.

Yalçın ve İncecik (2010), kazıklı radye temeller ile radye temellerin düşey ve yatay yükler altında davranışlarını karşılaştırmışlardır. Çalışmada üst yapı modeli ve zemin parametreleri sabit tutularak aynı yük altında radye temelde ve kazıklı radye temelde oluşan oturmalar ve momentler hesaplanmış ve elde edilen değerler karşılaştırılmıştır. Orta-katı kil üzerinde yapılan nümerik analiz sonucunda kazıklı radye temel uygulaması ile oturma ve eğilme momentleri önemli ölçüde azaltılmış ve farklı oturmalar da önemli oranda düşmüştür.

Ziaie-Moayed vd. (2010), farklı boyutlardaki kazıklarla kazıklı radye temelleri modelleyip değerlendirmişlerdir. Çalışmada farklı kazık çaplarında tüm zemin tipleri için kazıklı radyeler 3D sonlu elemanlar programında (ANSYS) modellenmiştir. Çalışma birbirine göre farklı olarak sıralanmış 8 ayrı model zemin kullanılmış ve zeminler iki tabaka halinde modellenmiştir. Çalışmada eşit kesitte ve farklı kesitlerde kare şeklinde kazıklar kullanılmıştır. Radye, 68x30 m boyutlarında ve 1 m kalınlığında seçilmiştir. Çalışmada farklı yükler altında tüm zemin tiplerinde farklı kazık çapları ile teşkil edilen kazıklı radye modelleri aynı çaptaki kazıklarla teşkil edilen kazıklı radye modelleri diştir. Ancak kazıklı radyenin davranışı tüm zemin durumlarında aynı olmamıştır. Örneğin üst tabakanın yumuşak kil alttaki tabakanın sıkı çakıl olduğu model diğerlerine göre en iyi sonucu vermiştir. Farklı çaplarda kazık kullanılmı, aynı çapta kullanılanlara göre toplam oturmayı azaltmıştır. Farklı kazık çapı kullanılan kazıklı radyede en iyi durumda maksimum ve farklı oturmalar sırasıyla 2,3 cm (%31,9) ve 2,7 cm

(%96,4) azalmıştır. Şöyle ki, farklı çapta kazık kullanımı temellerin oturmasında uygun bir yöntem olabilmektedir. Alttaki zemin tabakalarının, sıkı zeminler olması durumunda maksimum ve farklı oturmaların kontrolünde kazıklı radyelerde farklı çaplarda kazık kullanmak ekonomiklik ve tasarım açısından iyi bir fikir olduğu vurgulanmıştır. Alttaki zeminin yumuşak olması durumunda ise kazık çapı yerine farklı kazık boyları ile kazıklı radye teşkili maksimum ve farklı oturmalar açısından önerilmektedir.

Poulos (2010), yüksek katlı yapı temellerinin tasarımına yeni bir yaklaşım getirmiştir. Yazar çalışmasında limit durum tasarım yaklaşımı ile kazıklı temel sistemini tasarlamak ve kazık grubu için kullanılan bilgisayar yazılımında bu yaklaşımı uygulama amacı gütmüştür. Bu yaklaşım ise üç analizin yapımından oluşmaktadır. Bu analizler ise şöyle sıralanabilir; tam stabilite analizi, kullanışlılık analizi, kazık ve radyenin yapısal tasarımı için yapısal hareketleri elde etme analizidir.

Erdemir ve Okur (2011), deprem yükü altında, farklı aralıklarla yerleştirilen kazıklarda grup etkisini ve farklı zemin tabakalarında oluşan zemin-kazık etkileşimini, sonlu eleman yöntemi yardımı ile incelemişlerdir. Analizlerde, 4 farklı grup kazık modeli hazırlanmış olup kullanılan deprem ivmesi ve zemin tipi her model için aynı seçilmiştir. Her bir kazık boyunca farklı derinliklerde yer değiştirmeler, eğilme momentleri ve kesme kuvvetleri tespit edilmiştir. SAP 2000 yazılımı ile elde edilen üç boyutlu zemin-kazık modelinde zemini ifade eden katı eleman boyutu X, Y ve Z yönünde 20 m olarak modellenmiştir, ağlar arası mesafe 1,0 m olarak alınmıştır (Şekil 1.34). Küçük sonlu elemanlardan oluşan zemin modelinin tabanında, her noktaya ankastre bağlantılar atanmıştır. Böylece gerçek zeminin tabanda ana kayaya olan rijit bağlantısı sağlanmıştır. Modeller 18,0 m uzunluğunda ve 0,6 m çapında, dörtlü kare gruplar halinde, sürtünme kazığı olarak oluşturulmuştur. Kazıklar çubuk (frame) eleman olarak modellenmiş, malzeme ve kesit özellikleri çubuk elemanlara yüklenmiştir. Kazık başlığı ise alan (areashell) olarak modellenmiş, aynı şekilde malzeme ve kesit özellikleri elemana yüklenmiştir. Analizler sonucunda meydana gelen yanal ver değiştirmeler değerlendirildiğinde, kazık mesafelerinin yer değiştirme miktarını etkilediği görülmüştür. Kazıklar birbirine yaklaştıkça deplasmanların arttığı, model A ve B'nin deplasmanlarının kazık ucuna doğru azaldığı, maksimum deplasmanın ise kazık başlığında oluştuğu ifade edilmiştir. Grup etkisinin fazla olduğu model C ve D'de ise, kazık ucuna doğru deplasmanların arttığı ve kazık ucunda maksimum olduğu, bu artışın sebebinin ise, kazıkların etkileşimi sonucu ortaya çıkan ilave deplasmanlardan kaynaklandığı belirtilmiştir. Dinamik yükleme etkisi altında, grup etkisi 2.5 D'den fazla ise, kazık aralığında grup etkisinin azaldığı fakat deplasmanların arttığı belirtilmiştir. Kesme kuvvetleri karşılaştırıldığında, her iki zemin tabakasında model A ve B'de kazık boyunca değerlerin değişkenlik gösterdiği fakat, kazıklar arası mesafe azaldıkça, model C ve D'de oluşan kesme kuvveti değerlerinin azaldığı ve kazık boyunca düzgün bir davranış gösterdiği görülmüştür. Kum zeminde elde edilen kesme kuvvetleri ve eğilme momentlerine bakıldığında, kazık mesafesinin değişiminin moment üzerinde de etkili olduğu görülmektedir. Grup etkisinin oluşmadığı A ve B modellerinde, kil zeminde elde edilen moment değerlerinin, kum zemine göre yaklasık % 20 büyük olduğu, grup etkisi görülen C ve D modellerinde ise yaklasık % 40 daha büyük çıktığı açıklanmıştır. Kazıklar arasındaki etkileşimin kazık performansı üzerinde oldukça etkili olduğu ve bu etkileşimin 2.5D kazık mesafesinden itibaren ortaya çıktığı görülmektedir. Deprem yükü altında kazıklardaki grup etkisinin, zemin-kazık arasındaki rijitlik farkı nedeniyle oluşan kinematik etkileri azalttığı ve kesme kuvveti ile moment değerlerinin kesit boyunca düzgün bir dağılım gösterdiği açıklanmıştır. Kazık etkileşimi kesme kuvveti ve moment değerlerinin azalmasını sağlarken, kazık ucunda yanal deplasman miktarının artmasına neden olduğu ifade edilmiştir.

Şekil 1.34. Zemin-kazık modeli (Erdemir ve Okur, 2011)

Omeman (2012)'de yaptığı çalışmasında düşey yüklere maruz kum bir zemindeki kazıklı radyelerin yük paylaşımlarını PLAXIS 2D programı yardımı ile incelemiştir. Çalışmada parametre olarak; uygulanan yük, kazık çapı, kazık boyu, kazık aralığı, kazık-zemin ve radye elastisite modülü, kazık-zemin ara yüzey dayanımını azaltma faktörü, zeminin Poisson oranı, zeminin içsel sürtünme açısı, zeminin hacimsel genleşim açısı, zeminin birim hacim ağırlığı, radye kalınlığı, radye genişliği seçilmiştir. Bu parametrelerin yük paylaşımındaki etkileri sonlu elemanlar programı yardımı ile araştırılmıştır.

Yazıcı (2013), yüksek plastisiteli killi zemin içerisine gömülü kazıklı radye temelleri farklı parametreler için PLAXIS 3D Foundation ve PLAXIS 2D programları yardımıyla araştırmıştır. Sonuç olarak;

- Kazıklı radye temel modellemesi için, üç boyutlu sonlu elemanlar yazılımının, parametrelerin tanımlanması, ölçülendirme ve hesap aşamasında yapısal elemanların alan etkisinin incelenmesi açısından daha gerçekçi ve uygun olduğu,
- Kayma deformasyonunun, radye temel kenarında en büyük değerlere ulaşıp kenar kazıklar alt kotuna doğru minimum değerlere ulaştığı,
- Kazık aks aralığı arttıkça hacimsel deformasyon ve kayma deformasyonu değerlerinin 4D'den sonra sabit kaldığı,
- İki boyutlu analizde oturma miktarının, S=6D'den sonra kazık aks aralığı arttıkça kayda değer bir azalma gösterirken, üç boyutlu analizde azalarak 6D'den sonra sabit kaldığı,
- Düşey deplasman ve hacimsel deformasyon değerlerinde, üç boyutlu analiz sonuçlarının, iki boyutlu analiz sonuçlarına göre daha yüksek değerler verdiği belirlenmiştir.

Vu vd. (2014) farklı kazık parametrelerine sahip kazıklı radye temeller üzerine nümerik analizler yapmıştır. PLAXIS 3D yazılımını kullanıldığı bu nümerik analizlerde kazık sayısının, kazık uzunluğunun, kazık boyunun, kazık çapının ve kazık yerleşim düzeninin kazıklı radye temellerin davranışını üzerine etkisini araştırmıştır. Nümerik analizlerden söz konusu parametrelerin, kazıklı radye temel davranışında önemli etkilere sahip olduğunu belirlenmiştir.

Watcharasawe vd. (2015) yumuşak zemine sahip düşük ve yüksek katlı yapıları sonlu elemanlar metodu ile çözümleme yapan PLAXIS 3D programında analiz etmiştir. Zemini modellerken Mohr-Coulomb modeli tercih edilmiş olup; yük-deplasman değerleri elde edilmiştir. Analizler sonunda radye kalınlığının temel davranışında etkili bir parametre olduğu görülmüştür. Yapının bodrum katı arttıkça kazıklı radye temelinde taşıma gücünde değişmeler meydana geldiği belirtilmiştir.

Deshpande ve Thakare (2017) kazıklı radye temelleri sonlu elamanları yöntemi ile çözüm yapan MIDAS GTS 3D programı incelemişlerdir. Optimum kazıklı radye tasarımı için farklı kazık parametrelerine sahip kazıklı radye temel analizleri yapmışlardır. Analizler sonucunda kazık sayısındaki artışın taşıma gücünde önemli artışlara sebep olduğunu ancak kazık çapındaki artışın taşıma kapasitesini etkilemediğini belirtmişlerdir. Ayrıca; optimum kazık uzunluğunun L/D=20 (kazık uzunluğu / kazık çapı) olacak şekilde tasarlanması gerektiğini vurgulamışlardır.

1.5.2. Deneysel Çalışmalar

Bu bölümde, düşey yük altında kazıklı radye temellerin, yük taşıma kapasitelerinin belirlenmesinde, literatürde yapılmış deneysel çalışmalara yer verilmiştir. Deneysel çalışmalar en genel halde, büyük ölçekli arazi deneyleri, küçük ölçekli (1g) laboratuvar model deneyleri ve santrifüj (N_g) model deneyleri olmak üzere üç farklı şekilde yürütülebilmektedir. Kazıklı radye temellerin davranışlarının deneysel olarak incelendiği ve bu tez çalışmasına faydalı olabileceği öngörülen güncel yayınlara, aşağıda yer verilmiştir.

Ashton ve Schwartz (1974), killi şist içeren bir zemin içerisinde, H şeklindeki kazıkları, kazık boyunun 1/6'sına kadar (25.4 cm'ye kadar) sağlam zemine çakarak deneyler gerçekleştirmişlerdir. İlk olarak tekil bir kazıkta deneyler yapıldıktan sonra, grup kazıklarda deneyler gerçekleştirilmiştir. Sonuçta, kazıkların bitişik olarak inşa edilmesinin yük taşıma kapasitesine önemli bir etki oluşturmadığı görülmüştür. Ayrıca çalışmalarının sonuçlarını, Chellis (1961) ile karşılaştırmışlardır. Chellis (1961), çalışmasında kazık çakma (soketleme) derinliklerini mikaşistler için 10.16 cm, killi şistler için 20.32 cm'den 43.18 cm'ye kadar, kalker kayaçları için ise 38.1 cm'den 50.8 cm'ye kadar olması gerektiğini ifade etmiştir. Yapılan bu çalışmada ise zeminin çok yumuşak olduğu durumda,

çakma derinliğinin Chellis (1961) tarafından belirtilen mesafe aralığında olmadığı ifade edilmiştir.

Garg (1979), çapı 15 cm, uzunluğu 300 cm, kazık mesafeleri 1,5D, 2,0D ve 2,5D olan serbest ve tutulu başlıklı 2, 4 ve 6 kazıktan oluşan kazık gruplarında model deneyler gerçekleştirmiştir. Deneylerin gerçekleştirildiği arazideki zemin, çimentolaşmış kum ve kil türü zemin olarak ifade edilmektedir. Deney düzeneklerinin kazıklı radye temellerin yük paylaşım mekanizmasını araştırabilmek için uygun olduğunu ifade ederek, sistemin yük-oturma davranışı da incelenmiştir. Kazıklar arası mesafeleri artırarak, gerçekleştirdikleri deney sonuçlarına göre, kil zeminde meydana gelen kabarmalarda, kayda değer bir değişimin meydana gelmediği ve kabarmaların kazık mesafesinden bağımsız olduğu belirlenmiştir. Ayrıca, serbest başlıklı kazık gruplarında, kazıklar arası mesafenin artmasının grup etkisini azaltacağını, tutulu başlıklı kazıkların taşıma gücünün serbest başlıklı kazıklara göre daha fazla olacağını belirtmişlerdir.

Thompson ve Thompson (1985), Kanada'da çakma kazıklarda, çakma sonucunda kazıkların performansındaki azalmaları belirlemek amacıyla yaptıkları çalışmada, kireçtaşı ve kil tabakalarının bulunduğu iki saha seçmişlerdir. Çeşitli boyutlarda H ve boru şeklindeki kazıklarla çalışmalarını gerçekleştirmişlerdir. Sonuçta, H şeklindeki kazıkların kapasitelerinin boru kazıklara göre 3 kat daha fazla olduğu belirtilmiştir. Ayrıca, boru kazıklar arası mesafeleri artırarak gerçekleştirdikleri deney sonuçlarına göre, kazık kabarmasında kayda değer bir azalma olmadığını ifade etmişlerdir. H şeklindeki kazıkların daha yüksek taşıma gücüne ulaştığını ve daha az kabarma meydana getirdiğini açıklamışlardır.

Sönmez (1994), altında kil tabakası bulunan orta sıkılıktaki kumdaki kazık gruplarının negatif çevre sürtünmesini araştırmıştır. 30 mm x 30 mm kesitindeki ahşap kazıklar kuma 2D, 3D, 4D ve 5,5D mesafeleri ile grup olarak çakılmıştır. Kumdaki rölatif sıkılık değeri, yağmurlama ve sıkıştırma yöntemleri kullanılarak % 67 civarında elde edilmiştir. 1000 mm çapındaki, 690 mm yüksekliğindeki tanka hava basıncı (150 kPa) verilmiştir. Kazıklar arası mesafeler 3D ve daha az olduğu zaman, kohezyonsuz malzeme ve kazıkların blok olarak davrandığı ve grup içindeki oturmaların grup dışındaki oturmalara göre daha az olduğu gözlenmiştir. Kazık arası mesafeler 4D'den fazla olduğu zaman grup içinde ve dışında benzer oturmalar ölçülmüştür. Sonuç olarak orta sıkılıktaki kumda, oturmadaki grup davranışının 3D ve 4D kazık mesafeleri arasında başladığı bulunmuştur.

Ismael (2001), 5 kazıktan oluşan iki farklı kazık grubunda kazık aralığı ve kazık çapının taşıma gücüne etkisini araştırabilmek amacıyla arazi deneyleri gerçekleştirmiştir. Deneylerin gerçekleştirildiği arazideki zemin, çimentolaşmış kum zemin olarak ifade edilmektedir. Yapılan değerlendirmeler sonucunda, kazık çapının 2-3 katından daha az aralıklarda kazık grubunun oturmasının tekil kazıktan daha fazla olduğu, elastik oturmanın ise, kazık grubunun genişliği ile arttığı ifade edilmiştir. Ayrıca, kazık çapının 2 ve 3 katı aralığa yerleştirilen kazıklarda grup etkisinin kalmadığı ve düşey yük etkisindeki, tekil kazık ile kazık grubundaki kazıklar arasında basınç ve gerilme yönünden kayda değer bir fark görülmediği belirtilmiştir.

Bakholdin (2003), yılında kazıklı radye temellerin tasarım ve imalat prosedürleri için yaptığı çalışmasında kazık-radye yük paylaşımı ve zemin-kazık etkileşimlerini araştırmıştır. Yazar çalışmasında model deneyler yapıp kazıklı radye temele ait oturma-yük eğrilerini elde etmiştir. Ayrıca model deneyinde kazıkların zemin içinde yüklemede sonunda alacağı şekil şeffaf bir tank içerisinde fotoğraflamış ve buradaki zemin tanelerinin kazıklar etrafında nasıl yer değiştirdiğini belirlenmiştir. Böylece, kazıklı radye temelin yüklendiğinde zeminde nasıl bir durum oluştuğunun model resmi, literatürde yerini almıştır.

Cao (2004), kazıklı radyedeki kazıkların oturmaları azaltmak için kullanıldığını ve bu tür temellerin tasarımında sıklıkla kazık sayısının minimize edildiğini belirtmiştir. Bu çalışmada kazıklarla desteklenmiş kumlu zeminde kazıkların radyeye temas olması ve olmaması durumuna göre birtakım analizler yapılmıştır. Radye rijitliği, kazık uzunluğu, kazık dağılımı ve kazık sayısı gibi çok çeşitli parametreler açısından model radyeler laboratuvar ortamında modellenip eğilme momentleri ve oturma açısından radyeye bağlantısız kazıklar incelenmiştir. Çalışmada plandaki boyutları 170x24 cm olan ve 80 cm derinlikteki model tank kullanılmıştır. Kum tanka rölatif sıkılığı %50 olacak şekilde 15 cm'lik tabakalar halinde yağmurlama ile bir huni vasıtasıyla yerleştirilmiştir. Daha sonra kumun sıkılığı %70 oluncaya kadar her tabaka manuel kompaktör vasıtasıyla sıkıştırılmıştır. Model radye temel, 44x22 cm boyutlarında 5-10-25 mm kalınlıklarında seçilmiştir. Kazıklar 9,5x9,5 mm kare kesitinde ve 1 mm kalınlığındadır. Kazık boyları 35 cm ve 55 cm olarak imal edilmiştir. Çelik bloklarla yükler, iki kenarda Q ve ortada 2Q olacak şekilde radye plakasına aktarılmıştır. Radye genişliğine dik 3 farklı kazık sırası seçilmiştir. (1) Radye alanının orta merkezinin %65'ini kazıklar dolduracak şekilde 4 sıra, (2) Radye alanının orta merkezinin %32,5'unu kazıklar dolduracak şekilde 4 sıra, (3) Radye alanının orta merkezinin %65'ini kazıklar dolduracak şekilde 6 sıra seçilmiştir. Laboratuvarda yapılan model deneylerin analizinden, radyeye bağlantısız kazıklarla ilgili aşağıdaki sonuçlara varılmıştır:

- Bağlantısız kazıklarla teşkil edilen kazıklı-radye temellerde eğilme momentleri ve farklı oturmaların azaldığı görülmüştür.
- Belirli bir grup kazık için kazık uzunluğunun arttırılması, kazık-radye sisteminin rijitliğinin iyileştirilmesinde etkili olduğu görülmüştür.
- Kazıkların aldığı yükler başlangıç yükleme durumunda hızlıca artmış sonra müteakip yükleme durumlarında sabit kalmıştır. Model radyenin rijitliğinin artması kazıklara transfer edilen yüklerin azalmasına yol açmıştır. Buna ilaveten kazık boyunun artmasıyla artan yükün birçoğu kazıklara iletilmiştir.
- Kazıkların üst kısımlarında yük transferlerinin etkisinde negatif çevre sürtünmesi gözlemlenmiştir.
- Model radyenin merkezinde yerleştirilen kazıkların dağılımı, plakanın eğilme momentleri ile farklı oturmalarının azaltılmasında önemli derecede rol almışlardır. Kazık sayısının artmasının, model radyenin eğilme momenti ve oturmasında etkisiz olduğu gözlenmiştir.

Katzenbach vd. (2005), çalışmasında fore kazık ile radye temelin birleşmesinden oluşan birleşik kazıklı radye temellerin teorik ve pratik olarak geliştirilmesi konularını araştırmışlardır. Çalışmada iki farklı yüksek katlı Messe-Torhaus ve Messeturm adlı binaların kazıklı radye temellerinin yerinde yapılan ölçümleri esas alınmış ve değerlendirilmelerde bulunulmuştur. Messe-Torhaus binası 1983-1985 yılları arasında inşa edilmiş çok katlı bir yapıdır. Plandaki boyutların 17,5x24,5 m olan iki radyenin her birinde 42 adet 20 m boyunda ve 0,9 m çapında fore kazık oluşturulmuştur. Kazıklar, 6x7 konfigürasyonunda ve kazık aralığı kazık çapının 3 ile 3,5 katı olacak şekilde radye altına yerleştirilmiştir. Her bir radye 200 MN'luk efektif yapı yüküne maruzdur. Ayrıca sisteme yerinde ölçümler yapabilmek için, radyeye 11 adet toprak basınç hücresi, 3 adet extansometre, 1 adet piyezometre ve 6 adet ölçüm kazığı yerleştirilmiştir. Çalışmada incelenen bir diğer yapı birleşik temelli Messeturm binasıdır. Burada kalınlığı kenarda 3 ve ortada 6 m olan ters yamuk kesitli ve plan görünüşü kare olan 58,8x58,8 m boyutlu bir radye tasarlanmıştır. En dışta, ortada ve içteki kazıkların sayısı ve uzunlukları sırasıyla; 28 adet 26,9 m, 20 adet 30,9 m ve 16 adet 34,9 m'dir. Kazık çapı 1,3 m'dir. Kazıklar arası

boşluklar kazık çaplarının 3,5-6 katı kadar alınarak yerleştirilmiştir. Toplam yük 1880 MN'dur. Burada da inşa aşamasında 12 adet ölçüm kazığı, 3 adet extansometre ve 11 toprak basınç hücresi yerleştirilmiştir. Ölçümler, oturmaların %20-30'nun yüzeyin tam altında gerçekleştiğini göstermiştir. Yazarlar çalışmalarında, ölçümlerden elde edilen sonuçlar açısından kazıklı temellere oranla, kazıklı radye temel imalatının %60 daha ekonomik olduğunu vurgulamışlardır. Ayrıca bu binaların çevresinde yine Frankfurt kili üstüne oturan yapıların radye temellerinin yaklaşık kazıklı radye temel sistemlerine oranla 3 katı daha fazla oturma yaptığına dikkat çekilmiştir.

Türkmen (2008), yapmış olduğu doktora tez çalışmaşında kazıklı radye temellerin yük taşıma davranışını incelemiş bunun içinde hem laboratuvarda hem de arazide sırasıyla küçük ve büyük ölçekte model deneyler yapmıştır. Ayrıca tezde kazıklı radye temellerin yük paylaşım mekanizmalarını incelemek için çok katlı bir binanın kazıklı radye temeli gözlem aletleriyle donatılmış ve gözlemlenmiştir. Araştırmacının yaptığı büyük ölçekli saha deneyinde, fissürlü katı Ankara kili üzerinde ve yer altı suyu olmaksızın, köşelerinde 4 mini kazıkla desteklenen bir kenarı 2.3 m olan kare şeklinde kazıklı bir radye yüklenmiş ve toplam yükün %41'ini radyenin taşıdığı gözlemlenmiştir. Ayrıca çalışmada yine kazıklı radye temel üzerine oturan bir binanın radyesinin altında, basınçölçerler yerleştirilmiş ve inşaat süresince gözlem yapılmıştır. Bu gözlemde ise radye tarafından taşınan yük oranı kenarda toplam yükün %21-24'ü ve çekirdeğin altında ise %44-56''sı kadar olduğu bulunmuştur. Yazarın ayrıca laboratuvar ölçeğinde yapmış olduğu model deneylerde ise dış çapı 22 mm, iç çapı 18 mm ve uzunluğu 200 mm olan alüminyum kazıklar model olarak kullanılmıştır. Plan boyutları 176x176 mm ve kalınlığı 10 mm olan radye çelik plakadan imal edilmiştir. Model kazıklar, kazık yüklerini ölçebilmek için birim deformasyon ölçerlerle donatılıp, değişik sayıda kazıktan oluşan model kazıklı radye grupları test edilmiştir. Çalışmada tek kazık ve tek radye durumu da ayrıca incelenmiştir. Laboratuvar ölçekli deneylerde kullanılan zemin ağırlıkça yarı yarıya kum ve kaolinit kil karışımıdır. Deneyler bittikten sonra her bir deney grubuna ait zemin su muhtevası da sonuçların kıyaslanması açısından ayrıca bulunmuştur. Model deneylerden elde olunan sonuçlara göre kazıklı radye temel kademeli olarak yüklendiğinde, başlangıçta kazıkların daha fazla yük aldığı ve tam kapasitelerine ulaştıktan sonra ancak ilave yüklerin radye tarafından karşılandığı, radye altında kazık sayısının artmasıyla radyenin taşıdığı yük azalmakta ayrıca kazık başına düşen yükün de azaldığı bulunmuştur. Yazarın çıkarttığı diğer sonuçlar, radyelerin temel yüklerini ihmal edilemeyecek seviyelerde paylaştığı ve radye altında ki merkez, kenar ve köşe kazıkların eşit olarak yüklenmediğidir.

Fioravante vd. (2008), yaptığı çalışmada oturma azaltıcı kazıkların üzerinde teşkil edilen radyenin fiziksel olarak modellenmesini amaçlamıştır. Bu çalışmada iyi derecelenmiş silika kumu üzerine oturan dairesel kazıklı radye temeller üzerinde bir takım model santrifüj deneyler icra etmiştir. Deney programında sadece radye, radye altında 1, 3, 7 ve 13 kazık yer almıştır. Her bir deneyde model kazıklar şaft boyunca yük dağılımını bulmak için yük hücreleri ile donatılmıştır. Ayrıca radyenin altında yarı yer değiştiren ve hiç yer değiştirmeyen iki tip model kazık da imal edilmiştir. Çalışmada deneylerden elde edilen sonuçlar kazıkların etkinlikleri açısından oturma azaltıcı olarak ne kadar rol oynadıklarını ve zemin-radye teması ile kazıklar arasındaki yük paylaşımının ne oranda olduğunu anlamaya imkân vermiştir. Deneylerden özellikle tasarım için kullanılan yük paylaşım mekanizmalarının anlaşılması amaçlanmıştır.

Barvashov ve Boldgrev (2009), kum bir zeminde laboratuvarda model kazıklı radye deneyleri yürütmüşlerdir. Modelde cam tank içinde kazıklı radye 1440 N merkezi olarak yüklenmiş ve yükleme sonucu zemindeki düşey yer değiştirmeler fotoğraflanarak her bir derinlikte bu yer değiştirme değerleri matematiksel olarak modellenmiştir. Modelde kazıklar 1cm çaplı ve uzunluğu 20 cm olacak şekilde çelik çubuklardan seçilmiştir. Kazıklar iki sıra halinde kazık çapının 6 katı aralıklı olacak şekilde yerleştirilmiştir. Yer değiştirme değerleri kazık çapının 0, 2, 4 ve 6 katı kadar derinliklerde ölçülmüştür.

Sawwaf (2010), çalışmasında uzun kazıklardan oluşan kazıklı radye temellerin inşa ve ekonomiklik açılarından dezavantajlı oluğunu belirtmiştir. Zaten kazıklı radyelerin teşkilinin, taşıma gücü açısından yeterli ancak oturmalar açısından müsaade edilebilir sınırların zemin açısından aşıldığı durumlarda uygulandığı bilinen bir gerçektir. Bu çalışmada eksantrik olarak yüklenmiş bir radye altında ya bağlantılı yada bağlantısız olarak teşkil edilen (uzun kazıklar yerine) kısa kazıkların kullanımının etkinliği deneysel olarak araştırılmıştır. Çalışmada düşey yükler ve momentler (döndürme) etkisinde radyeyi temsil eden yük konfigürasyonları tasarlanmıştır. Çeşitli rölatif sıkılığa sahip zeminlerde oluşturulan farklı boy ve sayılarda kazıklara eksantrik yükler uygulanmıştır. Laboratuvar model deneyleri planda 0,9x0,4 m ve 0,5 m yüksekliğindeki tank içerisinde gerçekleştirilmiştir. Tankın cidar kalınlığı 20 mm olup, model radye 39,8 cm uzunluğunda, 20 cm genişliğinde ve 1 cm kalınlığındaki çelikten imal edilmiştir. Kalınlığın 10 mm seçilmesi uygulamada sıklıkla kullanılan rijit radyeyi temsil etmek amacıyla olmuştur.

Model kazıklar dış tarafta 12mm, iç tarafta ise 10mm çapta içi boş çelik borulardan imal edilmiştir. Kazık boyları çaplarının 5, 10 ve 15 katı olacak Şekilde 60, 120 ve 180 mm olarak seçilmiştir. Çalışma sonucunda, kum üzerinde oturan eksantrik yüklü radyenin davranışında kısa kazık eklenmesinin çok önemli etkiler oluşturduğu ve eksantrik yüklü kazıklı radyelerde, kazıkların kenar boyunca yerleştirilmesinin ekonomik bir tasarım oluşturduğunu vurgulamışlardır. Ayrıca, düşük yük etkisindeki radyenin oturmasında kazık düzenlenmesinin önemli etkisinin olduğu bununla birlikte optimum kazık düzenlenmesinin ise oturma açısından radye geometrisi ve yük konfigürasyonuna bağlı olduğunu belirtmişlerdir. Radyenin kısa kazıkla kullanımının kumun rölatif sıkılığına bağlı olduğu kumun sıkılığı arttıkça radye davranışının da bu oranda arttığına vurgu yapmışlardır. Yine eksantrik yüklü kısa kazık kullanılan radyelerde, radyenin yük taşıma kapasitesini arttırdığı, ortalama oturma ve radyenin eğilmesini ekonomik dizayna bağlı kalarak kabul sınırları içinde kaldığı saptanmıştır

Fioravante ve Giretti (2010), radye ile doğrudan temasta olan veya granüler tabaka ile radyeden ayrılan kazıklı radyelerde, kazık grupları ile radye arasında yük transfer mekanizmalarını araştırmak için bir seri santrifüj model deneyleri yürütmüştür. Model deneylerde B_r =115 mm, D=8 mm, t_r =25 mm çelikten üretilmiştir. Radye kare kesitlidir. Tank ebatları 4,3B_r derinliğinde, 3,5 B_r genişliğindedir. Sadece radye, radye ortasında tek kazık, radye altında köşelerde 1 tane olmak üzere toplam 4 kazıklı ve radye altında üniform dağıtılmış 9 kazıklı radye ile temaslı ve aynı parametrelerin kullanıldığı temassız durumlarda model deneyler gerçekleştirilmiştir. Kazıkların hemen üstündeki granüler zemin 15.4 mm kalınlığındadır. Çalışmada kazık üst başlarına, orta noktalarına ve uç noktalarına yük hücreleri yerleştirilmiştir (Şekil 1.35). Ancak yük hücresi yerleştirilmemiş kazıklarda model deneylerde kullanılmıştır. Çalışma sonucunda elde edilen sonuçlar ise aşağıda verilmiştir:

Temaslı kazıklı radyelerde, kazıklar ve radye aynı miktarda oturma yapmış ve kazıklar başlıklarını oluşturan radye ile doğrudan yüklenmişlerdir. Yük paylaşım mekanizmasının, kazık-zemin arasındaki rölatif rijitliğe bağlı olduğu görülmüştür. Başlangıç yükleme durumunda, kazıklar etraflarını çevreleyen zeminden daha katı (sert) durumda ve temel zemini radye oturdukça artan şekilde yüklenirken kazıklar tam mobilize olup uygulanan yükün çoğunu karşılamışlardır. Bu aşamada radyeye temas halindeki kazıklar uygulanan toplam yükün büyük bir kısmını daha derindeki sert zemine aktararak temelin oturmasını azaltmaktadırlar. Başlangıç temel rijitliği

genelde kazık rijitliğine bağlı olduğu ifade edilmiştir. Kazıklar nihai yüklerine ulaştıklarında ve yenildiklerinde uygulanan yükteki ilave artışlar çoğunlukla hala lineer davranışa sahip temel zemini tarafından karşılanmaktadır ve kazıklı radyenin rijitliği kazıksız radye ile benzer olmaktadır.

- Temaslı kazıklı radyelerdeki yükleme deneylerinden temel zeminine radye ile aktarılan basıncın yatay ve düşey efektif gerilmeleri arttırdığı ve böylece hem yenilme öncesi hem sonrası radyeden izole edilmiş kazıklara kıyasla, kazık şaft kapasitesinin arttığı gözlemlenmiştir. Bu etki kuma sürülen kazıkların zeminin sıkışmasına sebep olması nedeniyle daha da artmıştır. Diğer taraftan deney sonuçları, kazık grubunda komşu kazıkların kendi yer değiştirmelerinin üst üste binmesiyle her bir kazığın rijitliğinde azalma olduğunu göstermiştir.
- Temassız kazıklı radyelerde ise kazık baş kısmı ile radye arasına deforme olabilen tabaka eklenmesi, kazık baş kısmından itibaren temel zemininin kazıklar boyunca rölatif yer değiştirmelerine izin vermektedir. Kazıklar, baş kısmı boyunca yüklenmiş ve üst kısımlarında negatif çevre sürtünmeleri oluşmuştur. Kazık başının yüklenmesi ve negatif çevre sürtünmesi etkisiyle oluşan uç direnci ve kazık şaftının daha alt seviyelerinde oluşan pozitif çevre sürtünmesi kazığın oturmasına sebep olmuştur. Çalışmada bu mekanizmayı muhtemelen kazıklar ile radye arasına konulan tabakanın sertliği ve kalınlığının kontrol edeceği düşünülmüştür. Granüler dolgu yeterli sertlikte kullanılmazsa, kazık taşıma kapasitesi tam mobilize olmamakta ve temassız kazıklı radyelerin verimi temaslı kazıklı radyelerden daha düşük olmaktadır.

Şekil 1.35. Model deneylerde kullanılan enstrümante model kazılar (Fioravante, F. ve Giretti D., 2010)

Nguyen vd. (2013), 9 ve 16 adet kazıktan oluşan kazıklı radye temellerin kum zeminlerdeki taşıma gücü ve oturma açısından davranışını incelemek amacıyla santrifüj deneyleri gerçekleştirmişlerdir. Deneylerde, elastisite modülü 28200 MPa, poisson oranı 0.16 ve birim hacim ağırlığı 15 kN/m³olan kazık elemanı kullanılmıştır. Laboratuvarda kullanılan kötü derecelenmiş kuru kum zeminlerin rölatif sıkılığı %40 ve %70, içsel sürtünme açıları sırasıyla (ϕ) 40⁰ ve 43⁰ ve birim hacim ağırlıkları (γ) 13.7 kN/m³ ve 14.9 kN/m³olarak belirlenmiştir. Ayrıca kum zeminin elastisite modülünün ise sıkılık derecelerine ve derinliğe bağlı olarak, 8.47 MPa'dan 74.75 MPa'ya kadar değiştiği ifade edilmiştir. Deneysel çalışma sonucunda, kazık boyunun ve kum zeminin sıkılığının artmasının taşıma gücünde sırasıyla %50-52 ve %19-20 gibi kayda değer oranlarda artış

meydana getirdiği belirlenmiştir. Toplam taşıma gücünün %10-20'si radye tarafından karşılanırken %80-90'ının kazık grupları tarafından karşılanacağı ifade edilmiştir. Ayrıca, gerçekleştirmiş oldukları santrifüj deneylerini, PLAXIS 3D ve Sap 2000 paket programları ile modelleyerek sonuçları, taşıma gücü ve oturma açısından karşılaştırmışlardır. Sonuçta, her iki programın da deney sonuçlarından, daha düşük değerler verdiği ve Sap 2000 paket programı sonuçlarının deney sonuçlarına daha yakın olduğu belirlenmiştir.

Patil vd. (2014), yapmış oldukları laboratuvar model deneylerinde, kum zemine gömülü (L/D=10) kazıklı radye temellerde taşıma güçlerini araştırmışlardır. Deneylerde, çapı 10 mm ve uzunluğu 200 mm olan model çelik kazıklar ve plan boyutları 160 mm x 160 mm ve kalınlıkları 5 mm, 10 mm ve 15 mm olan çelikten imal edilen radyeler kullanılmıştır. Yapılan çalışmada, kullanılan kum numunelerin minimum ve maksimum kuru birim hacim ağırlıkları γ_k =15.0 kN/m³ ve γ_k =17.0 kN/m³, tane birim hacim ağırlığı γ_s =26.5 kN/m³ve kayma mukavemeti açısı ise ϕ =36.5⁰ olarak belirlenmiştir. Tüm kazık dizilimlerinde, kazıklar arası mesafeler 3D olarak alınarak, radye temel kalınlığının ve kazık sayısının artmasına bağlı olarak kazıklı radye temellerdeki taşıma güçleri değişimi belirlenmiştir. Sonuçta, radye kalınlığı artıkça taşıma gücünün de yaklaşık olarak %12 civarında arttığı fakat oturma yönünden bir değişimin meydana gelmediği belirlenmiştir. Kazık sayısının artması ile taşıma gücünün arttığı ve oturma miktarının azaldığı görülmüştür. Ayrıca, kazık sayısının artması ile yük taşıma oranında iyileşmelerin meydana geldiği ve belirli bir kazık sayısından sonra kazık sayısının artmasının oturma açısından kayda değer bir katkı sağlamadığı belirlenmiştir.

Sawada ve Takemura (2014) kazıklı radye temelleri daha iyi ifade edebilmek için santrifüj deney tankında bir dizi model deneyler gerçekleştirmiştir. Model radye temel genişliği B=80x80 mm, kazık uzunluğu ise L=160 mm olarak seçilmiştir. D_r =%50 rölatif sıkılığa sahip kum zeminde üç farklı model temel hem düşey hem de yatay olarak yüklenmiştir. Böylece düşey yatay yükler, oturmalar ve momentler ölçülmüştür. Santrifüj model deneyler sonucunda kazıklı radye temel gelen yatay yüklerin deplasman üzerinde oldukça etkili olduğu görülmüş olup; kazık boyunca deplasmanın arttığı belirtilmiştir.

Fattah vd. (2015) kum zeminlerde kazıklı radye temellerin davranışını incelemek için bir dizi deneysel çalışma gerçekleştirmiştir. Kum tankına yerleştirilen model temeller düşey olarak yüklenerek deplasmanlar kayıt altına alınmıştır. Yüklemeler farklı kazık konfigürasyonunda (1×2, 1×3, 1×4, 2×2, 2×3, 2×4, 3×3, 3×4 ve 4) yapılmıştır. Ayrıca deneysel çalışmalarda radyenin zemine temas etmediği durumlarda gözlenmiştir. Deneysel

çalışmalar sonunda kazık yerleşim düzeninin ve sayısının kazıklı radye temelin davranışında önemli etkileri olduğu belirtilmiştir.

Nguyen vd. (2017) kazıklı radye temel davranışını daha iyi tespit edebilmek için bir dizi model deney gerçekleştirmişlerdir. Santrifüj tankında düşey olarak yükleme ile gerçekleştirilen model deneylerde, 9 ve 16 kazıktan oluşan model kazıklı radye temel kullanılmıştır. Deneylerde zemin olarak silis kumu kullanılmıştır. Ayrıca santrifüj model deneyleri nümerik analize de tabi tutularak sonuçlar karşılaştırılmıştır.

Sharafkhan ve Shooshpasha (2018) kazıklı radye temellerde kazık yerleşim düzeninin temel davranışı üzerinde etkilerini araştırılmıştır. Deneysel çalışmalar kum tankında gerçekleştirilmiş olup; model kazıklı temeller kullanılmıştır. Hidrolik kriko ile simetrik ve asimetrik kazık yerleşim düzenine sahip model kazıklı temellere yüklemeler yapılırken bir yandan da oturmalar ölçülüp kayıt altına alınmıştır. Yapılan çalışmalarda simetrik yerleştirilen kazıkların oturmaları büyük ölçüde azalttığı vurgulanmıştır.

2. YAPILAN ÇALIŞMALAR

2.1. Deneysel Çalışmalar

Kazık ve radyenin birlikte dikkate alındığı, kazıklı radye temellerin tasarımı kapsamında literatürde teorik ve ileri sayısal hesaplar yapabilen yazılımlar mevcuttur. Ancak kazıklı radye temellerin davranışını ve tasarımını etkileyen parametreleri incelemek amacı ile yapılmış deneysel çalışma sayısı sınırlıdır. Deneysel çalışma ve bunlardan kaynaklı veri sayısı arttıkça sayısal yöntemlerin ve mevcut yazılımların güvenilirlikleri ve uygulanabilirlikleri artacaktır. Kazıklı radye temel davranışını arazi deneyleri ile modellemek yüksek bir maliyet gerektirir. Bu nedenle kazık, radye ve kazıklı radye temelin davranışı konusundaki parametrik çalışmalar ancak model laboratuvar deneyleri ile yapılabilmektedir. Bu tez çalışmasında; kohezyonsuz zeminde düşey yüklü kazıklı radye temellerin, kazık-radye yük paylaşımı ve gerilme dağılışları laboratuvar model deneyleri ile araştırılmıştır. Deneysel çalışmalar kapsamında literatürde çok sık yer alan kazık yerleşim düzeni ve optimum kazıklar arası mesafeye (S_{opt}) bağlı kalınmıştır. Kazıklı radye temellerin, farklı rölatif sıkılıklarda (D_r), taşıma kapasitesini, oturma davranışını, yük paylaşımını, kazık grup verimini ve gerilme dağılışlarını tespit etmek amacıyla deneyler gerçekleştirilmiştir.

2.1.1. Deney Düzeneği

Deney düzeneği; deney tankı, model radye temel, model kazıklar, yükleme düzeneği, basınç ölçerler, şekil değiştirme ölçerler, LVDT, yük hücresi, kum yüzeyini düzleme aleti ve kum ana parçalarından oluşmaktadır. Deney düzeneğinin şeması Şekil 2.1'de görülmektedir. Bunlara ilaveten, deneylerde kumun istenilen rölatif sıkılıkta sıkıştırılması için sıkıştırma cihazı kullanılmıştır. Deneyler, K.T.Ü. İnşaat Mühendisliği Bölümünün Geoteknik Laboratuvarında gerçekleştirilmiş olup, laboratuvarda bulunan üç eksenli deney aletinin presi, deformasyon ölçüm saatleri, bilgisayar ile dijital fotoğraf makinesi kullanılmıştır.

Şekil 2.1. Deney düzeneğinin bir görünüşü

2.1.1.1. Deney Tankı

Deney tankının içi bir küp prizması olup, uzunluğu 1.00 m, genişliği 1.00 m ve yüksekliği 1.00 metredir. Seçilen tank boyutları, sınır etkisi oluşmayacak şekilde literatür ve sayısal analiz sonuçları dikkate alınarak hazırlanmıştır. Yükleme esnasında sınır etkisini kontrol etmek amacıyla sonlu elamanlar yöntemi ile yapılan analizlerin yanı sıra deformasyon saatleri yardımıyla hem deney tankı hem de kum zeminde ki hareket gözlenmiştir. Kasanın iskeleti çelik profillerden imal edilmiştir. Deney esnasında rijitliği sağlamak için tanka belli noktalardan kaynak yapılmış olup; çelik kuşaklar ve bulonlar ile sağlamlaştırılmıştır. Deneyler esnasında, zemini tank içine daha kolay yerleştirebilmek ve istenilen rölatif sıkılıkları sağlayabilmek için, tankın iç yüzeyleri beşer cm aralıklarda çizilerek, kum zeminin tabakalar halinde yerleşimine olanak sağlayacak biçimde hazırlanmıştır. Deney tankına üç eksenli aletin presini bağlamak için çelik kiriş eleman monte edilmiştir.

2.1.1.2. Model Radye Temel

Deneysel çalışmalarda kullanılan model radye temelin genişliği sırasıyla 160 mm, 240 mm uzunluğu ise sırasıyla 160 mm ve 240 mm olup; 6 mm kalınlığında çelik levhalardan üretilmiştir. Model temelin tabanında merkezi yükleme yapabilmek için başlık montajına uygun şeklinde delikler açılmıştır. Tam sürtünmeli ve pratikteki koşullara uygun olarak kalın bir zımpara kâğıdı temel tabanına yapıştırılmıştır. Şekil 2.2'de model temelin bir fotoğrafı gösterilmektedir.

Şekil 2.2. Model radye temel

Deneylerde kullanılan model radye temele ait genişlik (B), birim hacim ağırlık (γ), elastisite modülü (E) ve Poisson oranı (v) değerleri Tablo 2.1'de verilmiştir.

Tablo 2.1. Model radye temel parametreleri

Malzeme	B (mm)	L (mm)	γ (kN/m ³)	E (kN/m ²)	ν
Çelik	160	160	78,5	$2x10^{8}$	0,30
Çelik	240	240	78,5	$2x10^{8}$	0,30

2.1.1.3. Model Kazıklar

Laboratuvar deneylerinde kullanılacak model kazık parametreleri literatür taraması ve yapılan ön deneyler neticesinde kazık boyu L= 200 mm ve 300 mm, kazık çapı D=20 mm ve 30 mm olacak şekilde belirlenmiştir. Yükleme deneylerinde kullanılacak kazıkları imal etmek için Şekil 2.4'de görülen alüminyum kalıplar hazırlanmıştır. Model kazıklar ile kum zemin arasında gerçek zemin-beton sürtünme davranışını elde etmek amacıyla beton ve çelik çubuklar kullanılarak kompozit kazıklar hazırlanmıştır (Şekil 2.3). Deneysel çalışmalarda kullanılan model kazıklara ait çap (D), uzunluk (L) birim hacim ağırlık (γ), elastisite modülü (E) ve Poisson oranı (v) değerleri Tablo 2.2'de verilmiştir.

Malzeme	D (mm)	L (mm)	$\gamma (kN/m^3)$	E (kN/m ²)	ν
Kompozit	20	200,300	38,375	$7,25 \text{ x}10^7$	0,225
Kompozit	30	200,300	38,375	$7,25 \text{ x}10^7$	0,225

Tablo 2.2. Model kazık parametreleri

Şekil 2.3. Model kazık imalatı

Şekil 2.4. Deneylerde kullanılan kazıklar
2.1.1.4. Model Kazıklı Radye Temel

Deneysel çalışmalarda kullanılan model kazıklı radye temel; model kazıklar ve model radyenin bulonlar yardımıyla rijit olarak birleştirilmesi ile oluşturulmuştur. Şekil 2.5'de birleşim detayı, Şekil 2.6'da ise kazık parametreleri gösterilmektedir.

Şekil 2.5. Model kazıklı radye temel

Şekil 2.6. Model kazıklı radye temel parametreleri

2.1.1.5. Yükleme Düzeneği

Deneylerde yükün uygulanması için, üç eksenli deney aletinin presi kullanılmıştır. Bu pres elektrik motoru sayesinde çeşitli hızlarda (0.50 mm/dk. - 1.50 mm/dk.) sabit deformasyon uygulama ve elle kriko gibi kullanılma özelliklerine sahiptir. Pres düşey yükleme yapmak amacıyla deney tankına sabitlenmiş yük kirişine monte edilmiştir. (Şekil 2.7). Presin ucuna düşey ve sabit olarak takılan 50 kN kapasitelik yük hücresi, uygulanan yükü ölçmede kullanılmıştır. Deneylerden önce yük hücresi kalibre edilmiştir. Yük hücresine düşey olarak monte edilmiş ucu keskin yükleme bıçağı, model temeli yüklemek için kullanılmıştır.

Şekil 2.7. Eksenel Yük Presi

2.1.1.6. Yük Hücresi

Zemine uygulanan yüzey yüklerini ölçebilmek amacıyla kullanılan ekipmanlardan biri de yükleme düzeneğinde yük hücresi kullanmaktır. Yük hücresi yardımıyla ölçüm almanın diğer yöntemlere göre en önemli avantajı, hassas ve zamana bağlı yükleme değeri ölçebilmesidir. Şekil 2.8'de CAS Corporation firması tarafından üretilen 50 kN kapasiteli LS-5T model yük hücresi görülmektedir.

Şekil 2.8. Yük hücresi

2.1.1.7. Deplasman Ölçer

Deneysel çalışmalarda, model radye ve model kazıklı radye temelin düşey yüklenmesi sonucu, temelde oluşan oturmaları ölçmek amacıyla, OPKON firması tarafından üretilen ve 150 mm'ye kadar deplasman değeri ölçebilen, LPS-150 model, Şekil 2.9'da görülen, deplasman ölçerler (Lineer değişken diferansiyel transformatörler, LVDT) kullanılmıştır. Yüklemeye maruz model radye temelin oturması, temelin merkezine yakın ve eşit aralıklara sahip iki LVDT ile ölçülmüştür. Elde edilen oturma değerlerinin uyumlu olduğu görülmüş olup; ortalaması temel alınmıştır. Tablo 2.3'de LVDT'ye ait teknik özellikler verilmiştir.

Şekil 2.9. Deplasman ölçer

Ölçme boyu	150 mm
Linearite	0,50%
Direnç	5-10 kOhm
Yük direnci	100 kOhm
Maksimum besleme voltajı	28 VDC
Elektiriksel bağlantı	4 kutuplu hidrolik konnektör
Hız	5 m/s
Mekanik Ömür	100 milyon hareket
Gövde malzemesi	Eloksallı alüminyum
Mil çapı	6 mm
Mil malzemesi	Paslanmaz çelik
IP koruma sınıfı	IP 54
Çalışma sıcaklığı	-20°C+80°C

Tablo 2.3. LVDT'ye ait teknik özellikler

2.1.1.8. Basınç Ölçerler

Zemine uygulanan yüzey yüklerinden dolayı meydana gelecek düşey gerilme artışlarını belirlemek amacıyla başvurulan en yaygın yöntemlerden birisi de zemin içerisinde gerilme artışını ölçülmek istendiği derinliklere basınç ölçerler yerleştirilmesidir. Basınç ölçerler vasıtasıyla gerilme ölçmenin diğer yöntemlere göre en önemli avantajı, gerilme değerlerinin doğrudan ölçülebilmesidir. Şekil 2.10'da Tokyo Sokki Kenkyujo Co. Ltd. firması tarafından üretilen KDE-2 MPA modelli 46 mm çapında ve 2 MPA kapasiteli basınç ölçerler görülmektedir.

Şekil 2.10. Deneylerde kullanılan basınç ölçerler

2.1.1.9. Şekil Değiştirme Ölçer (Strain Gauge)

Şekil değiştirme ölçerler (strain gauge) materyal yüzeylerinde meydana gelecek birim uzamaları (strain) ölçmek amacıyla kullanılan sensörlerdir. Çok küçük kesitli iletken bir telin çok ince bir şerit üzerine tekrarlı sarımlar şeklinde yerleştirilmesiyle imal edilir. Hesaplama işleminin temel mantığı ise; uzama esnasında şekil değiştirme ölçer telinin boyu uzayarak kesiti azalır. Bilindiği gibi iletkenlerin kesiti azaldıkça dirençleri (Ω) artacağından uygulanan kuvvete bağlı olarak iletkenin direncinde artma ya da azalma meydana gelecektir. Bu durum şekil değiştirme ölçer üzerinden geçen akımın voltajını değiştirir. Bu voltaj değişimi ölçülerek tellerdeki ve dolayısıyla üzerine yapıştırılan parçadaki şekil değiştirme ölçülmüş olur. Daha sonra elastisite teorisi denklemleri kullanılarak ölçülen şekil değiştirme ile aşağıdaki formül kullanılarak gerilme elde edilir.

 $\sigma = E.\varepsilon \tag{2.1.}$

Deneysel çalışmalarda Tokyo Measuring Instruments Lab. Firması tarafından üretilen Goblet serisi FLAB-10 tipi 120 Ω şekil değiştirme ölçer kullanılmıştır (Şekil 2.11).

STRAIN GAUGE GAUGE TYPE FLAB-10-11 LOT NO. A516811 GAUGE FACTOR 2.09 ± 18 ADHESIVE P-2 THERMAL OUTPUT (c app : APPARENT STRAIN) ε app = -3.18×10'+2.77×T'-6.55×10 ² ×17'+3 TOLERANCE: ± 0.85 (μ m/m)/C;0.15 * 10 ² ×17'+3 300 (INSTRUMENT 0, F. SET : 2.00) APPA 200 100 100	TESTE DA TESTED ON SS 400 CODEFF LOTENT OF SS 400 CODEFF LOTENT OF THEBMAL EXPANSION : 11.8 TEMPERATURE COOFFF LOTENT OF G.F.: +0.1; DATA NO. : AB0000 . 28 × 10 ⁻⁴ × T ³ -3.26 × 10 ⁻⁷ × T RE RENT STRAIN GAUGE FAC	× 10 ⁻⁴ /τc ±0.05 %/10°C 4 (μπ/m) 100 6.0 300 2.0 4105 2.0 41005 2.0 4105 2.0 4105				
-100 -300 -300 -300 -300 -300 -300 -300	100 URF (*C)	0.0 III 3390 301 10390 40 1039				
Strain Gauges						
	TYPE FLAB-10-11		TEST CONDITION 23'C 50%RH			
	LOT NO. A516811	ATCHNORC29C	2 09 +1 %			
000	GAUGE RESISTANCE 120	±0.3 Ω	TEMP. COMPENSATION FOR 11 ×10-0/°C			
GOBLET CE	QUANTITY	10	TRANSVERSE SENSITIVITY -0.1 %			

Şekil 2.11. Şekil değiştirme ölçer ve teknik özellikleri

Şekil değiştirme ölçerin ince yapısı göz önüne alındığında metal yüzeye bağlanması özel önem arz etmektedir. Bunun için metal yüzeyi dikkatli bir şekilde temizlenmeli ve böylece şekil değiştirme ölçerin metal yüzeyi ile beraber çalışması sağlanmalıdır. Temizlik işlemi bittikten sonra alkol ya da kolonya gibi sıvılar yardımı ile ince tozlar yüzeyden atılmalıdır. Sonrasında alt tabanı tutkal gibi akışkan bir yapıştırıcı yardımı ile metale sabitlenmelidir (Şekil 2.12).

Şekil 2.12. Şekil değiştirme ölçerlerin montajı

2.1.1.10. Veri Toplama Sistemi ve CoDA Locomotive Programı

Deneyler sırasında basınçölçer, LVDT ve şekil değiştirme ölçerler yardımı ile ölçülen değerleri 8 kanal girişli Ai8b modelinde TDG markalı veri toplama cihazına (2 Adet) ve yine aynı markaya ait RS-485 modelindeki aygıt geçidi yardımıyla bilgisayara aktarılmıştır (Şekiller 2.13 ve 2.14). Bu veriler CoDA Locomotive programı yardımıyla sayısal değerlere dönüştürülmüştür (Şekil 2.15).

Şekil 2.13 TDG firmasının Ai8b model numaralı veri toplama ünitesi

Şekil 2.14. TDG firmasının RS-485 model numaralı aygıt geçidi

Şekil 2.15. CoDA Locomotive programı yardımıyla verilerin sayısal değerlere dönüştürülmesi

2.1.2. Deneylerde Kullanılan Kumun Geoteknik Özellikleri

Deneysel çalışmalara başlamadan önce kumun geoteknik özellikleri belirlenmiştir. Söz konusu zemin, İyidere ilçesi (Rize)'nin bitişiğindeki doğu sahilinden alınmıştır (Şekil 2.16). Kum, mevcut özelliklerini koruması ve gerçekçi bir zemin ortamı elde etmek amacıyla çok az yıkanmaya tabi tutulmuş olup doğal granülometrisi bozulmamaya çalışılmıştır. Kum için elek analizi yapılmış olup, kumun granülometri eğrisi şekil 2.17'de görülmektedir.

Şekil 2.16. Deneylerde kullanılan kum

Kumun granülometri eğrisinden, $D_{10}=0.28$ mm (efektif çap), $D_{30}=0.73$ mm ve $D_{60}=1.71$ mm olarak belirlenmiştir. Bu değerlerden üniformluluk katsayısı C_u=6.11, eğrilik katsayısı C_r =1.11 olarak elde edilir. Kumun tane çapları 0.1-5.0 mm arasında (iri-orta) olup, Birleştirilmiş Zemin Sınıflandırma Sistemine (USCS) göre sınıfı iyi derecelenmiş kum (SW). Kumun, ilgili deneylerle belirlenmiş bazı özellikleri Tablo 2.4'de gösterilmiştir. Elek analizinde ASTM D-6913 (2017) standartları kullanılmıştır.

Şekil 2.17. Deney kumunun granülometri eğrisi

Zeminin dane birim hacim ağırlığını tespit etmek amacıyla yapılan piknometre deney sonuçlarından, zeminin dane birim hacim ağırlığı, ortalama $\gamma_s=26.4$ kN/m³ olarak belirlenmiştir. Birim hacim ağırlık deneyinde ASTM D-854 (2006) standartları kullanılmıştır.

Tablo 2.4. Deney kumunun geoteknik özellikleri

Özellik	Birim	Değer
Tane özgül yoğunluğu, G _s	-	2,64
Maksimum kuru birim hacim ağırlığı, y _{kmax}	kN/m ³	18,90
Minimum kuru birim hacim ağırlığı, γ_{kmin}	kN/m ³	15,80
Efektif çap, <i>D</i> ₁₀	mm	0,28
D_{30}	mm	0,73
D_{60}	mm	1,71
Üniformluluk katsayısı, C _u	-	6,11
Eğrilik katsayısı, C _r	-	1,10
İçsel sürtünme açısı, ϕ (Kesme kutusu, $D_r=0.70$)	Derece	43,92
İçsel sürtünme açısı, ϕ (Kesme kutusu, $D_r=0.30$)	Derece	36,99

Rölatif sıkılığın çeşitli değerlerine göre kohezyonsuz zeminlerde sıkılık derecesi Tablo 2.5'de verilmektedir.

Rölatif Sıkılık, Dr	Sıkılık Derecesi
0-15	Çok Gevşek
15-35	Gevşek
35-65	Orta S1k1
65-85	S1k1
85-100	Çok Sıkı

Tablo 2.5. Kohezyonsuz zeminlerde sıkılık tablosu

Rölatif sıkılığın 0.70 ve 0.30 olması için kumun birim hacim ağırlığı Bağıntı 2.2 ve 2.3 ile hesaplanmıştır (Uzuner, 2005).

$$D_{r} = \frac{\gamma_{k \max}}{\gamma_{k}} \left(\frac{\gamma_{k} - \gamma_{k \min}}{\gamma_{k \max} - \gamma_{k \min}} \right)$$
(2.2)

$$D_r = \frac{e_{maks} - e}{e_{maks} - e_{\min}}$$
(2.3)

Burada, e_{maks} ve e_{min} sırasıyla zeminin en gevşek ve en sıkı durumundaki boşluk oranları, e zeminin rölatif sıkılığının belirlenmek istendiği durumundaki boşluk oranını göstermektedir. γ_{kmaks} ve γ_{kmin} maksimum ve minimum kuru birim hacim ağırlığı, γ_k ise, rölatif sıkılığının belirlenmek istendiği durumundaki kuru birim hacim ağırlığıdır. Kohezyonsuz zeminler, D_r değerlerine göre sınıflandırılmaktadır. Kum zeminin, minimum ve maksimum kuru birim hacim ağırlıklarını tespit etmek için 400 mm x 400 mm x 100 mm boyutlarında (V=16x10⁵ mm³) çelik bir kap içerisinde rölatif sıkılık deneyleri yapılmıştır (Şekil 2.18). γ_{kmin} değeri elde edilirken, kum çelik kutu içerisine, bir sıkıştırmaya tabi tutulmadan, γ_{kmaks} değeri belirlenirken ise, kum çelik kutu içerisine 5 tabaka halinde ve her tabaka yüksekliği 2 cm olacak şekilde, kompaksiyon cihazıyla sıkıştırılarak yerleştirilmiştir.

Şekil 2.18. Rölatif sıkılık deneyleri

Deneyler, gevşek, orta sıkı ve sıkı durumlar için 3'er kez tekrarlanmış ve elde edilen sonuçlar Tablo 2.6'da sunulmuştur.

1 auto 2.0. Rotatti Sikilik delley solidçiali

Rölatif Sıkılık Parametreleri	Birim	Değer
Dane Birim Hacim Ağırlığı(γs)	kN/m ³	26.40
Maksimum Kuru Birim Hacim Ağırlığı (γ _{kmaks})	kN /m ³	18.90
Minimum Kuru Birim Hacim Ağırlığı (γ _{kmin})	kN /m ³	15.80
Kuru Birim Hacim Ağırlığı (γκ)	kN /m ³	16.6 (D _r =%30)
Kuru Birim Hacim Ağırlığı (γκ)	kN /m ³	17.9 (D _r =%70)
Maksimum Boşluk Oranı (e _{maks})	-	0.67
Minimum Boşluk Oranı (e _{min})	-	0.39

Tablo 2.6'daki kuru birim hacim ağırlığı değerinden faydalanarak, deney tankında 50 mm yüksekliğindeki tabaka için $D_r=0.70$ ve 0.30 sıkılığında gerekli kum miktarı ($M_k=89.500$ g, 83.000 g) hesaplanmıştır. Tablo 2.7'de Bağıntı 2.2 yardımı ile elde edilen sonuçlar gösterilmiştir.

Rölatif Sıkılık (Dr)	$\begin{array}{c} Kuru \; Yoğunluk \; (\rho_k) \\ (M_g / m^3) \end{array}$	Sıkılık Derecesi	M _k (g)
0,70	1.79	S1k1	89.500
0,30	1.66	Gevşek	83.000

Tablo 2.7. Farklı rölatif sıkılıklar için gerekli zemin miktarı, M_k

Farklı rölatif sıkılıklardaki zemin numunelerini kesme etkisine maruz bırakarak; numuneye ait içsel sürtünme açısının belirlenmesi amacıyla kesme kutusu deneyleri yapılmıştır. Deneylerde kullanılan kum numune $D_r=0.70$ ve 0.30 sıkılığında 50, 100, 200 kN/m²'lik normal gerilmeler altında, ASTM D-3080 (2011) standartlarına uygun olarak yatay doğrultuda kesilmiştir. Kesme kutusu deneyinden her bir rölatif sıkılık değeri için elde edilen kayma gerilmeleri ve içsel sürtünme açıları Şekil 2.19 ve 2.20'de görülmektedir.

Şekil 2.19. Dr=0,30 için kesme kutusu deney sonuçları

Şekil 2.20. Dr=0,70 için kesme kutusu deney sonuçları

Farklı rölatif sıkılığa sahip zemin numunelerinin; Poisson oranının (v) belirlenmesi amacıyla Dutta ve Saride (2015), Dilatansi açısının (ψ) tespiti için ise Schanz ve Vermeer (1996) çalışmalarından faydalanılmıştır. Ayrıca; tek eksenli konsolidasyon deneyi yardımı ile elastisite Modülü (E) belirlenmiştir (Ek-5). Belirlenen Poisson oranı, dilatansi açısı, elastisite modülü değerleri toplu olarak Tablo 2.8'de görülmektedir.

Tablo 2.8. Kumun rölatif sıkılığına göre belirlenmiş elastisite Modülü, dilatansi açısı ve Poisson oranı değerleri

Rölatif Sıkılık	Dilatansi Açısı	Elastisite Modülü	Poisson Oranı
(D _r)	(ψ)	(E) (kN/m^2)	(ν)
0,70	17,05	17418	0,30
0,30	4,86	9226	0,35

2.1.3. Deney Yöntemi

2.1.3.1. Eksenel Yükleme Düzeneğinin ve Ölçüm Cihazlarının Kalibrasyonu

Deneysel çalışmalarda elde edilecek yük ve deplasman ölçümlerinin, güvenilir bir şekilde yapılabilmesi için, yük hücresi ve deplasman ölçerlerin kalibrasyonu yapılmıştır. Yük hücresinin kalibrasyon eğrisi Şekil 2.21'de, 1 ve 2 No'lu deplasman ölçerlerin kalibrasyon eğrileri ise sırasıyla Şekil 2.22 ve 2.23'de görülmektedir.

Şekil 2.21. Yük hücresi kalibrasyon eğrisi

Şekil 2.22. 1 No'lu LVDT'nin kalibrasyon eğrisi

Şekil 2.23. 2 No'lu LVDT'nin kalibrasyon eğrisi

2.1.3.2. Tipik Bir Deneyin Hazırlanışı

Kum, deney tankı içerisine tabakalar halinde ve iki farklı rölatif sıkılıkta (D_r=%30 (γ_k =15,80kN/m³) ve D_r=%70 (γ_k =18,90 kN/m³)) dinamik yöntemle sıkıştırılarak yerleştirilebilmesi için deney tankının kenar yüzeyleri 5'er cm olarak ölçeklendirilmiştir. D_r=%30 rölatif sıkılık durumu için 5 cm'lik tabaka için gerekli kum ağırlığı, kumun sıkışmasını önlenmek amacıyla yakın mesafeden deney tankı içerisine dökülmüş ve sonrasında su terazisi vasıtasıyla zemine basınç uygulamadan yüzey düzeltilerek, kum zeminin tabaka boyunca homojen olarak yerleşmesi sağlanmıştır. D_r=%70 rölatif sıkılık durumunda ise, zemin tabakası titreşim cihazı ile sıkıştırılmıştır. Söz konusu rölatif sıkılıklarda tabakaların yüksekliği tank yüzeyleri üzerinde bulunan ve tabaka sınırlarını belirten yatay çizgilere ile kontrol edilmiştir (Şekil 2.24).

Zemini tank içine istenilen rölatif sıkılıkta yerleştirme işlemi bittikten sonra, zemin yüzeyine model kazıklı radye temel, 0,50 mm/dk'lık sabit bir penetrasyon (Gök, 2007; Bajad ve Sahu, 2008; Nguyen vd. 2013) hızıyla yerleştirilmiştir. Model kazıklı temel zemine yerleştirilirken düzgünlüğü su terazileri yardımıyla her açıdan kontrol edilmiş ve radye temelin alt yüzeyi zemin ile temas ettiği an, yerleştirme işlemi durdurulmuş ve su terazisi vasıtasıyla yüzey kontrol edilmiştir. Deneye başlanmadan önce, düzeneğe ölçüm cihazları yerleştirilmiştir. Ölçüm cihazları, temel plakasının her iki tarafına yerleştirilen LVDT'ler, eksenel yükleme cihazı ucuna yerleştirilen yük hücresi, kum zemin içine yerleştirilen basınç ölçerler ve model kazık içine yerleştirilen şekil değiştirme ölçerden oluşmaktadır (Şekil 2.25).

Şekil 2.25. Deneyin yapılışı

Ölçüm cihazlarının başlangıç değerleri sıfırlanıp, yük düşey yönde ve statik olarak uygulanmıştır. İstenilen deplasman değeri elde edilene kadar, 0.50 mm/dk'lık sabit yükleme hızı uygulanarak beklenilmiştir. Yapılan literatür çalışmalarında gördüğümüz üzere; model kazıklı radye temellerde yükleme kademelerinde lineer olmayan bir davranış görülmektedir. Tespit edilen düşey yük ve deplasman eğrilerinden, taşıma gücü tam manasıyla belirlenemediğinden, geoteknik mühendisliğinde bu tür durumlarda taşıma gücünün belirlenmesi için 4 yöntemin (0,1B Yöntemi (B=radye temel genişliği) (Briaud ve Jeanjean, 1994), Teğet Kesiştirme Yöntemi (Trautmann ve Kulhawy, 1988), Log-Log Yöntemi (DeBeer, 1970) ve Hiperbolik Yöntem) kullanıldığı görülmektedir (Örnek, 2009; Lutenegger ve Adams, 1998; Keskin, 2009). Bu yöntemlerin her birinde farklı taşıma gücü değerleri elde edilebilmektedir. Bu yüzden, taşıma gücü değeri belirlenirken tek bir yöntemin belirlenmesi gerekmektedir. Bu çalışmada, düşey yük-oturma eğrilerinden belirgin bir taşıma gücü elde edilemediği için, diğer yöntemlere göre elde edilme yönünden daha pratik değerler veren 0,1B yöntemi esas alınmıştır.

TDG firması tarafından üretilen Ai8b model numaralı veri toplama ünitesi ve RS-485 model numaralı aygıt geçidi yardımı ile veriler deney esnasında toplanmış ve CoDA Locomotive programı yardımıyla veriler sayısal değerlere dönüştürülmüştür. Elde edilen sayısal veriler ışığında eksenel yük-oturma eğrileri, zeminde gerilme dağılışları ve kazık boyunca gerilmelere ait grafikler çizilmiştir.

Şekil 2.26. Deney tankı genel görünüş

2.1.4. Deney Programı

Deneysel çalışmalar kapsamında; kohezyonsuz zeminde düşey yüklü kazıklı radye temellerin taşıma gücü üzerinde etkili olabilecek parametrelerinin (kazık boyu, kazık çapı, kazık sayısı, grup verimi, kazıklar arası mesafe, rölatif sıkılık) incelenmesi, kazık boyunca ve zeminde meydana gelecek gerilme dağılışlarının tespiti hedeflenmiştir.

2.1.4.1. Kazıklar Arası Optimum Mesafenin (Sopt) Tespiti

Kazıklar arası optimum mesafeyi belirlemek amacıyla $D_r=\%30$ ve $D_r=\%70$ rölatif sıkılığa sahip kum zemin içine gömülü kazıklı radye temellerde, Tablo 2.9'da belirtilen deneyler yapılmıştır. Deneysel çalışmalarda kazıklar arası mesafeyi belirlemek için özel radye temeller hazırlanmıştır. Hazırlanan model radye temellere model kazıklar eklenerek deneyler yapılmıştır (Şekil 2.27). Böylece; kazıklar arası mesafenin (S) taşıma gücüne etkisi incelenmiştir. Tablo 2.9'da kazıklar arası mesafe (S) kazık çapı (D) olarak ifade edilmiştir.

Deney No	Rölatif Sıkılık (Dr)	Temel Genişliği (B, mm)	Kazık Çapı (D, mm)	Kazık Boyu (L, mm)	Kazıklar Arası Mesafe (S/D)
T_1, T_2, T_3, T_4, T_5	%30	160	20	200	2,3,4,5,6
$T_6, T_7, T_8, T_9, T_{10}$	%30	160	20	300	2,3,4,5,6
T ₁₁ ,T ₁₂ ,T ₁₃ ,T ₁₄ ,T ₁₅	%30	240	30	200	2,3,4,5,6
$T_{16}, T_{17}, T_{18}, T_{19}, T_{20}$	%30	240	30	300	2,3,4,5,6
T ₂₁ ,T ₂₂ ,T ₂₃ ,T ₂₄ ,T ₂₅	%70	160	20	200	2,3,4,5,6
T ₂₆ , T ₂₇ , T ₂₈ , T ₂₉ , T ₃₀	%70	160	20	300	2,3,4,5,6
T ₃₁ ,T ₃₂ ,T ₃₃ ,T ₃₄ ,T ₃₅	% 70	240	30	200	2,3,4,5,6
T ₃₆ , T ₃₇ , T ₃₈ , T ₃₉ , T ₄₀	%70	240	30	300	2,3,4,5,6

Tablo 2.9. Sopt tespiti için deney programı

Şekil 2.27. Sopt tespiti için hazırlanan model temel

Kazıklı radye temellerde; kazık ve radye arasında yük paylaşım oranını tespit etmek amacıyla $D_r=\%30$ ve $D_r=\%70$ rölatif sıkılığa sahip kum zeminde, Tablo 2.10'da belirtilen deneyler yapılmıştır. Böylece; kazıklar ve radye temel arasında yük paylaşım oranı incelenmiştir.

Deney No	Rölatif Sıkılık (Dr)	Temel Genişliği (B, mm)	Kazık Çapı (D, mm)	Kazık Boyu (L, mm)	Kazıklar Arası Mesafe (S/D)
T ₄₁ , Radye Temel	%30	160		-	-
T ₄₂ , Radye Temel	%30	240		-	-
T ₄₃	%30	160	20	200	4
T44	%30	160	20	300	4
T ₄₅	%30	240	30	200	4
T46	%30	240	30	300	4
T ₄₇ , Radye Temel	%70	160	-	-	-
T ₄₈ , Radye Temel	%70	240	-	-	-
T49	%70	160	20	200	4
T ₅₀	%70	160	20	300	4
T ₅₁	%70	240	30	200	4
T ₅₂	%70	240	30	300	4

Tablo 2.10. Yük paylaşım oranının tespiti için deney programı

2.1.4.3. Kazıklı Radye Temellerde Grup Verimi

Kazık grubu deneyleri için seçilen parametreler ve deney programı Tablo 2.11'de verilmiştir. Model deneylerde ilk olarak farklı boylardaki tekil kazıkların yük-oturma ilişkisi incelenmiştir. Daha sonra, 4D aralıklarla zemin içerisine yerleştirilen 2, 3 ve 4 kazıktan oluşan kazık gruplarının yük taşıma kapasiteleri incelenerek kazıklar arasındaki etkileşimler araştırılmıştır (Şekil 2.28). Model kazıklar, başlıkları zemine temas etmeyecek şekilde yüklenmiştir. Ayrıca, deneylerin güvenilirliği için ve deney hatalarını en aza indirmek amacıyla tüm deneyler en az iki kez tekrar edilmiş olup; deney sonuçlarının ortalaması esas alınmıştır.

Deney No	Rölatif Sıkılık (Dr)	Kazık Sayısı (N)	Kazık Çapı (D, mm)	Kazık Boyu (L, mm)	Kazıklar Arası Mesafe (S/D)
T ₅₃	%30	1	20	200	-
T ₅₄	%30	1	20	300	-
T ₅₅	%30	2	20	200	4
T ₅₆	%30	2	20	300	4
T57	%30	3	20	200	4
T ₅₈	%30	3	20	300	4
T ₅₉	%30	4	20	200	4
T ₆₀	%30	4	20	300	4
T ₆₁	%70	1	20	200	r
T ₆₂	%70	1	20	300	-
T ₆₃	%70	2	20	200	4
T ₆₄	%70	2	20	300	4
T ₆₅	%70	3	20	200	4
T ₆₆	%70	3	20	300	4
T ₆₇	%70	4	20	200	4
T ₆₈	%70	4	20	300	4

Tablo 2.11. Kazık grup veriminin tespiti için deney programı

Şekil 2.28. Kazık Yerleşim Planı

2.1.4.4. Kazıklı Radye Temellerde Gerilme Dağılışı

Kazıklı radye temellerde gerilme dağılışının tespiti için hazırlanan model temellere ait parametreler Tablo 2.12'de verilmiştir. Deneysel çalışmalarda kullanılacak model kazıklar imal edilirken şekil değiştirme ölçerler monte edilmiştir (Şekil 2.29). Ayrıca; farklı rölatif sıkılıklarda hazırlanan kum zemin içine radye temel genişliğine (B) bağlı olarak basınç ölçerler yerleştirilmiştir (Şekil 2.30). Böylece deney esnasında hem zeminde hem de kazık boyunca gerilmeler ölçülebilmiştir. Deneylerde radye altına 4D mesafe ile yerleştirilmiş 4 kazıktan oluşan kazıklı radye temel kullanılmıştır.

Deney No	Model Temel	Rölatif Sıkılık (Dr)	Temel Genişliği (B, mm)	Kazık Çapı (D, mm)	Kazık Boyu (L, mm)	Kazıklar Arası Mesafe (S/D)
T ₆₉	Radye Temel	%30	160	-	-	-
T ₇₀	Model Kazık	%30	-	20	200	-
T ₇₁	Model Kazık	%30	-	20	300	-
T ₇₂	Kazıklı Radye Temel	%30	20	20	200	4
T ₇₃	Kazıklı Radye Temel	%30	20	20	300	4
T74	Radye Temel	%70	160	-	-	-
T ₇₅	Model Kazık	%70	-	20	200	-
T ₇₆	Model Kazık	%70	-	20	300	-
T77	Kazıklı Radye Temel	%70	20	20	200	4
T ₇₈	Kazıklı Radye Temel	%70	20	20	300	4

Tablo 2.12. Kazık radye temellerde gerilme dağılışının tespiti için deney programı

Şekil 2.29. Şekil değiştirme ölçerlerin bağlandığı model kazıklar

Şekil 2.30. Basınç ölçerlerin yerleştirilmesi

2.2. Nümerik Çalışmalar

Bu bölümde, K.T.Ü İnşaat Mühendisliği Bölümü Geoteknik laboratuvarında yapılan model deney sonuçlarını, mukayese edebilmek ve kazıklı radye temellerde gerilme dağılışlarını araştırmak amacıyla üç boyutlu sonlu elemanlar analizleri gerçekleştirilmiştir. Analizler, sonlu elemanlar yöntemi ile çözüm yapan ABAQUS/CAE v.6.13 (2017) paket programları kullanılarak yapılmıştır. Tez kapsamında yapılan deneysel çalışmalara benzer olarak, deney kasası, yükleme koşulları, model temeller ve malzeme özellikleri ABAQUS bilgisayar programı ile modellenmiş olup deney protokolüne bağlı kalınmıştır.

2.2.1. Sonlu Elemanlar Yöntemi

Zemin davranışının incelenmesinde, çeşitli teorik ve ampirik yöntemler kullanılmaktadır. Söz konusu yöntemlerde zeminin karmaşık yapısı ve birçok parametreye bağlı olan davranış özellikleri sebebi ile lineer-elastik ve homojen bir ortam gibi düşünülmekte olup; basitleştirici kabuller yapılarak çözüme gidilmektedir. Bu yaklaşım, pratik uygulamalarda genellikle yaklaşık sonuçlar vermektedir. Ancak, zeminlerin heterojen yapısı, anizotropi, lineer olmayan, zamana ve ortama bağlı davranışı nedeniyle gerçekçi çözümlere ulaşılması zordur. Bilgisayar teknolojisindeki hızlı ilerleme, diğer mühendislik problemlerinde olduğu gibi, geoteknik problemlerin sayısal yöntemlerle kısa sürede çözümünü olanaklı hale getirmiştir. Bu yöntemlerde, diferansiyel denklemlerle ifade edilen sürekli fiziki sistemlerin davranışı sayısal yöntemlerle analiz edilmektedir. Geliştirilen bu sayısal yöntemlerden en efektif ve sistematik olanı sonlu elemanlar yöntemidir.

Sonlu elemanlar yöntemi, Zeinkiewicz (1977) tarafından, matematiksel ifadelerle tanımlanan sürekli sistemlerin genel çözüm yöntemi olarak tarif edilmiştir. Bu yöntem ile sürekli bir sistemi matematiksel olarak modellemek mümkün olmaktadır. Sürekli bir sistem, kendi içinde sonlu sayıda bileşen veya elemanlardan ve bu elemanları birleştiren düğüm noktalarından oluşan ayrık bir sistem olarak modellenmektedir (Şekil 2.31). Yani, sistem sonlu elemanlara bölünerek, denklemler bir eleman için yazılmakta ve integre edilerek sistem denklemleri elde edilmektedir. Sonuçta sürekli bir ortam için göz önüne alınan diferansiyel denklem lineer bir denklem takımına indirgenmektedir (Keskin, 2009).

Şekil 2.31. Sürekli bir sistemin sonlu elemanlara ayrılması (ABAQUS, 2017)

Sonlu elamanlar yönteminde ilk olarak çözüm bölgesi, eleman adı verilen alt bölgelere ayrıklaştırılmakta ve bu elemanlarla oluşturulan eşdeğer sonlu elemanlar ağına dönüştürülmektedir. Elemanlar, belirlenen esas bilinmeyene göre bir, iki veya üç boyutlu seçilebilmektedir. Eleman tipi seçilirken, gerekli serbestlik derecesi dikkate alınmakta ve eğri yüzeyler için eğrisel elemanlar seçilmektedir. İki boyutlu problemlerde, sonlu elemanlar genellikle üçgen veya dörtgen şeklindedir (Şekil 2.32). Bu elemanlar "node" adı verilen düğüm noktaları yardımıyla ilişkilendirilmektedir. Düz sınırlara sahip sonlu elemanlar için düğüm noktaları genellikle eleman köşelerine yerleştirilmektedir. Eğrisel sınırlara sahip elemanlar için ise, her yüzeyin orta noktalarına da düğümler eklenmektedir.

Şekil 2.32. Tipik iki boyutlu elemanlar (Keskin, 2009)

Ağ modelindeki her eleman kendisine komşu olan diğer elemanlara gerçekte sonsuz sayıda nokta ile bağlı olmasına rağmen söz konusu yöntemde sadece düğüm noktaları vasıtasıyla bağlanmaktadır. Böylece, deplasmanların uygunluğu sadece bu noktalarda sağlanmaktadır. Özellikle karmaşık sistemlerde gerçekçi sonuçlar elde etmek için çok fazla sayıda eleman kullanmak gerekeceğinden, işlem hacminin büyümesi ve çözüm süresinin artması dezavantaj olarak görünse de bu olumsuzluk bilgisayar yardımıyla aşılmaktadır. Bir sonraki adımda, bilinmeyenlerin ortamda dağılımını veren bir şekil fonksiyonu seçilmektedir. Eleman düğüm noktaları, eleman bölgesinde bilinmeyen büyüklüğün (deplasman vb.) dağılım şeklini tanımlamak üzere matematiksel bir fonksiyon yazmak için imkan sağlamaktadır. Geoteknik mühendisliğinde problemlerin çoğu, deplasman yöntemiyle formüle edilmektedir. Şekil fonksiyonu belirlenirken, polinomlar veya seriler kullanılmaktadır (Keskin, 2009):

$$\{\delta\} = [N] \{d\}_e \tag{2.4}$$

112

Burada, $\{\delta\}$ elemanın herhangi bir noktasındaki deplasman bileşenlerini, [N] şekil fonksiyonunu, $\{d\}_e$ ise, elemanın düğüm noktasındaki deplasmanlarını göstermektedir. Elemandaki şekil değiştirmeler, düğüm noktası deplasmanları cinsinden,

$$\{\epsilon\} = [B] \{d\}_e \tag{2.5}$$

şeklinde yazılmaktadır. Burada [B], eleman şekil değiştirme matrisidir. Gerilmeler ise, elastisite matrisi [D] kullanılıp, şekil değiştirmelerle ilişkilendirilerek,

$$\{\sigma\} = [D] \{\varepsilon\}$$
(2.6)

şeklinde yazılabilir. Sonraki adımda uygun bir varyasyonel prensip (enerjinin minimum olması prensibi vb.) kullanılarak her bir düğüm noktasındaki değerler için bir denklem takımı elde edilir:

$${f}=[k] {d}_{e}$$
 (2.7)

Denklemde,

{f}=Eleman yük vektörü

[k]=Eleman rijitlik matrisidir.

Her sonlu eleman için ayrı ayrı bulunan (2.7) denklemleri uygun şekilde birleştirilerek bütün sisteme ait cebrik denklemler takımı elde edilir.

$$\{F\} = [K] \{d\}$$
 (2.8)

Burada,

[K] : sistem rijitlik matrisi

{d}: sistem deplasman vektörü değerlerini göstermektedir.

Bu sisteme sınır koşulları uygun satır/sütun işlemleriyle dahil edilerek, indirgenmiş sistem elde edilir.

2.2.2. Deneysel Çalışmaların Modellenmesi

2.2.2.1. Geometrik Modelleme

ABAQUS programında zemin tabakaları, yapılar, kazı safhaları, yükler ve sınır şartlarının girişi için özel bir grafik ortamı kullanılmaktadır. Böylece program bünyesinde geometrik model, gerçek konumuna uygun olarak doğru ve detaylı bir şekilde oluşturulabilmektedir. Programda, problem tipine göre üç boyutlu düzlem şekil değiştirme koşulları kullanılabilmektedir. Düzlem şekil değiştirme durumu, cismin bir doğrultudaki boyutunun (z ekseni), bu boyuta dik diğer iki doğrultudaki boyutundan çok büyük olması durumunda kullanılabilmektedir. Düzlem sekil değiştirme durumunun uygulanabilmesi için, z doğrultusunda sadece düzgün yayılı yükler etki etmeli ve hacimsel kuvvetler z doğrultusundan bağımsız olmalıdır. Deneysel çalışmalarda kullanılan kum tankı aynı ölçülerde (x, y, z) eksen takımında modellenmiştir (Şekil 2.33).

Şekil 2.33. Kum tankının geometrik modeli

2.2.2.2. Sınır Koşullarının Belirlenmesi ve Yük Uygulanması

Sayısal çözümlemede sonuçların doğrulanmasında çözümü etkileyen en önemli faktörlerin başında sınır şartları gelmektedir. Sonlu eleman modelinin sınır şartları, deneysel modele uygun şekilde oluşturulmadığında, analiz sonucunda oluşan gerilme değerleri, deneysel ölçümlerden farklı oluşabilmektedir. Sınır koşulları olarak, modele ABAQUS/CAE v.6.13 programında mevcut standart sınır koşulları uygulanmıştır (Şekil 2.34). Geometrik modele ait sınır koşulları, aşağıda belirtilen kurallar göz önünde tutularak, otomatik olarak tanımlanmaktadır.

- y-z düzlemine paralel olan model düşey sınırlarının x doğrultusundaki hareketleri engellenmişken (u_x=0) y ve z doğrultularında hareket serbestlikleri mevcuttur.
- x-y düzlemine paralel olan model düşey sınırlarının z doğrultusundaki hareketleri engellenmişken (u_z=0) x ve y doğrultularında hareket serbestlikleri mevcuttur.
- Geometrik modelin alt sınır yüzeyinin tüm doğrultulardaki hareketleri engellenmiştir (u_x=u_y=u_z=0).
- Zemin yüzeyi her doğrultuda hareket serbestliğine sahiptir.

Şekil 2.34. Nümerik analize ait sınır şartları

Nümerik çalışmalarda yükleme; deney prosedürüne uygun olarak eksenel ve 0,5 mm/dk hızında yapılmıştır (Şekil 2.35).

Şekil 2.35. Nümerik analizlerde yükleme ataması

2.2.2.3. Zemin Modelinin Tespiti ve Özellikleri

ABAQUS sonlu elemanlar programi ile zeminin elastik davranışının modellenmesinde elastik modeller kullanılırken, plastik davranışının modellenmesinde ise, yaygın olarak kullanılan Mohr-Coulomb Modeli, Modifiye Drucker-Prager Modeli, Çift Yönlü Akma ve Drucker-Prager Plasticity, Modifiye Cam-Clay Modeli, Modifiye Cap Modeli, Sayısal Uygulama (Implementation) gibi plastik modeller kullanılabilmektedir. Tez kapsamında yapılan üç boyutlu analizlerde zemin özelliklerini ve deney koşullarını yansıtacak Mohr-Coulomb (MC) modeli kullanılmıştır. Zemin parametreleri için ABAQUS bilgisayar programı yardımı ile hassasiyet analizleri yapılmıştır. Mohr-Coulomb modeli, elastisite modülü (E), Poisson oranı (v), kohezyon (c), içsel sürtünme açısı (ϕ) ve dilatansi açısı (ψ) olmak üzere beş ayrı parametreyi içermektedir. Tablo 2.13'de analizlerde kullanılan zemin parametreleri verilmektedir.

Parametreler	Birim	Değer
Kuru birim hacim ağırlığı, γ_k (<i>D_r</i> =0,30)	kN/m ³	16,60
Kuru birim hacim ağırlığı, γ_k ($D_r=0,70$)	kN/m ³	17,90
İçsel sürtünme açısı, ϕ (<i>D_r</i> =0,30)	Derece	36,99
İçsel sürtünme açısı, ϕ (<i>D_r</i> =0,70)	Derece	43,92
Poisson oranı, v ($D_r=0,30$)	-	0,35
Poisson oranı, v ($D_r=0,70$)	-	0,30
Dilatansi açısı, ψ (<i>D_r</i> =0,30)	Derece	4,86
Dilatansi açısı, ψ (<i>D</i> _{<i>r</i>} =0,70)	Derece	17,05
Elastisite modülü, E ($D_r=0,30$)	kN/m ²	9226
Elastisite modülü, E ($D_r=0,70$)	kN/m ²	17418

Tablo 2.13 Model zemin parametreleri

2.2.2.4. Deney Elemanlarının Modellenmesi ve Eleman Tipleri

Düşey yük altında model radye, kazık ve kazıklı radye temellerin sayısal incelenmesinde; yük, deplasman, şekil değiştirme ve gerilme dağılışları irdelenmiştir. ABAQUS'te söz konusu sonuçları verebilecek en uygun, 3 boyutlu sürekli katı (C3D8R) eleman tipi seçilmiştir. C3D8R eleman tipinin köşelerinde 8 düğüm noktası bulunmaktadır. Sonlu eleman modellemesinde her düğüm noktası için rijitlik matrisi yazılmakta ve çözüm sağlanmaktadır. Ancak her düğüm noktası için yazılan rijitlik matrisi çözüm sırasında zaman kaybına sebep olmaktadır. Bu yüzden elemanı oluşturan sekiz adet düğüm noktası, düğüm noktaları azaltılmış integrasyon yönetimiyle, elemanın orta noktasında bulunan 1 adet integrasyon noktasına indirgenmiştir (Şekil 2.36).

Şekil 2.36. Temellerin modellenmesinde kullanılan C3D8R sonlu elemanı

Sonlu elemanlar yöntemiyle çözümlemede eleman boyutu küçüldükçe gerçek sonuca yakınsama kolaylaşmaktadır. Ancak sonlu eleman boyutu çok küçük olunca analizler haftalarca sürmektedir. Bunun yanında eleman boyutu büyüdükçe, çözüm süresi kısalmakta ancak analiz yakınsama hatasıyla tamamlanamamaktadır. Çeşitli boyutlardaki sonlu elemanlarla yapılan analizler sonucunda optimum sonlu eleman sıklığı belirlenmiştir. 50 mm sonlu eleman boyutunda analiz yakınsama hatası verirken, 10 mm de ise analiz haftalarca sürmektedir. Bu nedenle zeminde; model radye temelin genişliği boyunca her iki yönde sonlu eleman boyutu 10*20 mm seçilirken diğer kısımlarda sonlu eleman boyutu 20*20 mm seçilmiştir. Model radye temelde sonlu eleman boyutu 5 mm model kazıklarda ise daha hassas sonuçlar elde etmek için sonlu eleman boyutu 1mm olarak belirlenmiştir. Şekil 2.37, Şekil 2.38 ve Şekil 2.39'de üç deney elemanının sonlu eleman sıklığı gösterilmiştir.

Şekil 2.37. Model radye temelin sonlu elemana ayrılmış sayısal modelleri

2.2.2.5. Deney Elemanlarının Malzeme Özellikleri

Deneysel çalışma modellerini oluşturan bileşenlerin, deney sonuçlarından ve literatürden elde edilen mekanik özellikleri kullanılarak, sonlu eleman yöntemiyle sayısal analiz işlemi gerçekleştiren ABAQUS programıyla malzeme modellemesi yapılmıştır (Şekil 2.40).

Şekil 2.40. Deney elemanlarına malzeme parametresi atama

Sonlu eleman modellemeleri yapıldıktan sonra deney bileşenlerinin (zemin, model temel vb.) birbirlerine temas eden yüzeylerinin bağlanma şekilleri ve bu yüzeyler arasındaki davranış biçimleri oldukça önemlidir. Bu nedenle davranış biçimlerini gerçeğe en yakın olacak şekilde ABAQUS programında tanımlaması yapılmıştır. Sonlu elemanlar modellerinde kullanılan deney elemanlarına ait malzeme özellikleri Tablo 2.14'de verilmiştir.

Tablo 2.14. Model radye temel parametreleri

Model	Malzeme	D,B (mm)	L,B (mm)	γ (kN/m ³)	$E (kN/m^2)$	ν
Kazık	Kompozit	20	200, 300	38,375	$7,25 \text{ x}10^7$	0,225
Radye	Çelik	160	160	78,5	$2 \text{ x} 10^8$	0,300

2.2.2.6. Sayısal Modelleme Analizleri

Kazıklı radye temellerde gerilme dağılışının tespiti için hazırlanan nümerik analizlere ait parametreler ve analiz sırası Tablo 2.15'de verilmiştir. Sayısal modelleme çalışmalarında deney prosedürüne bağlı kalınmıştır. Farklı rölatif sıkılıklardaki kum için hazırlanan sonlu eleman modellerinde; deneysel çalışmalarda olduğu gibi yük-deplasman eğrileri, zemin gerilme dağılışları ve kazık boyunca şekil değiştirmeler tespit edilmiştir. Analizlere ait bazı görseller Şekil 2.41 ve Şekil 2.42'de sunulmuştur.

Tablo 2.15. Kazık radye temellerde gerilme dağılışının tespiti için analiz programı

Deney No	Model Temel	Rölatif Sıkılık (Dr)	Temel Genişliği (B, mm)	Kazık Çapı (D, mm)	Kazık Boyu (L, mm)	Kazıklar Arası Mesafe (S/D)
A1	Radye Temel	%30	160	-	-	-
A ₂	Model Kazık	%30	-	20	200	-
A ₃	Model Kazık	%30	-	20	300	-
A4	Kazıklı Radye Temel	%30	20	20	200	4
A ₅	Kazıklı Radye Temel	%30	20	20	300	4
A ₆	Radye Temel	%70	160	-	-	-
A7	Model Kazık	%70	-	20	200	-
A ₈	Model Kazık	%70	-	20	300	-
A ₉	Kazıklı Radye Temel	%70	20	20	200	4
A ₁₀	Kazıklı Radye Temel	%70	20	20	300	4

Şekil 2.41. Nümerik analizler sonucu elde edilen kazıklı radye temele ait düşey yer değiştirmeler

Şekil 2.42. Nümerik analizler sonucu elde edilen kazıklı radye temele ait Mises gerilme dağılışı

3. BULGULAR VE TARTIŞMALAR

3.1. Deneysel Bulgular

Bu bölümde, kum zemin içerisine yerleştirilen, düşey yük etkisindeki kazıklı radye temellerin taşıma gücü ve gerilme dağılışları üzerinde etkili olabilecek parametrelerle ilgili laboratuvar model deneylerinin sonuçları sunulmuş ve irdelenmiştir. Yapılan çalışmalar kazıklar arası optimum mesafenin tespiti, kazık grup verimi, kazık-radye arasında yük paylaşım oranı ve kazıklı radye temellerde gerilme dağılışının tespiti üzerinde yoğunlaşmıştır.

3.1.1. Kazıklar Arası Optimum Mesafenin İncelenmesi

Deneysel çalışmada, model radye temel ve radye temelin merkezinden itibaren 2D, 3D, 4D, 5D ve 6D aralıklarla yerleştirilen kazıklar kullanılarak taşıma güçleri tespit edilmiştir. Şekil 3.1'de görülen iki farklı kazık çapı, iki farklı kazık boyu ve 2 farklı genişlikte radye temeller kullanılarak Dr=%30 ve Dr=%70 rölatif sıkılığa sahip kum zeminde 80 adet deney yapılmıştır (Ek-1). Model radye genişlikleri ve kazık sayısı, çap ve boyları, tez kapsamında yapılan geniş bir literatür çalışması sonucunda seçilmiştir. Deneyler neticesinde kazıklı radye temellerde, grup etkisini en az seviyede tutan kazıklar arası mesafenin optimum değeri (S_{opt}) belirlenmesi hedeflenmiştir.

Şekil 3.1. Model kazıklar

Şekil 3.2'de D=20 mm, L=200 ve 300 mm, Dr=%30 ve B=160 mm durumu için elde edilen yük-oturma eğriler görülmektedir. Radye temel ile kazıklı radye temelin yük-oturma ilişkisi arasında belirgin bir farklılık bulunmakta, kazıkların kullanılması yük-oturma ilişkisi açısından temel sisteminin rijitliğinde önemli bir artışa sebep olmaktadır. Kazık aralığının artışıyla birlikte model kazıklı radye temelde belirli oturmalara karşı gelen yüklerde 4D kazık aralığına kadar artış meydana gelmekte, yani yük-oturma eğrisinin eğimi artmaktadır. Benzer şekilde kazık uzunluğunun artmasıyla da kazıklı radye temelin taşıdığı belirli oturmalara karşı gelen yüklerde 4D kazık aralığına kadar artış meydana gelmekte, bu kazık aralığından itibaren (5D, 6D) yüklerde çok az miktarda bir azalma oluşmaktadır.

Şekil 3.2. Dr=%30, D=20 mm, B=160 mm için yük - oturma eğrileri (a) L=200 mm, (b) L=300 mm

Şekil 3.3'de D=20 mm, L=200 ve 300 mm, Dr=%70 ve B=160 mm durumu için elde edilen yük-oturma eğrileri görülmektedir. Radye temel ile kazıklı radye temelin yükoturma ilişkisi arasında belirgin farklılık, düşük rölatif sıkılıkta olduğu gibi yüksek rölatif sıkılıkta da bulunmaktadır. Kazıkların kullanılması ve rölatif sıkılığın artması yük-oturma ilişkisi açısından temel sisteminin rijitliğinde önemli bir artışa sebep olmuştur. Yük-oturma eğrisinde belirgin iki farklı eğimin olduğu iki bölge ortaya çıkmış ve kazık uzunluğunun artmasıyla birinci bölgede belirli oturmalara karşı gelen yüklerde önemli artışlar oluşmuştur. Kazık aralığının artışıyla birlikte, model kazıklı radye temelde belirli oturmalara karşı gelen yüklerde 4D kazık aralığına kadar artış meydana gelmekte, yani yük-oturma eğrisinin eğimi artmaktadır. Benzer şekilde kazık uzunluğunun artmasıyla da kazıklı radye temelin taşıdığı belirli oturmalara karşı gelen yüklerde 4D kazık aralığına kadar artış meydana gelmekte, bu kazık aralığından itibaren (5D, 6D) yüklerde çok az miktarda bir azalma oluşmaktadır.

Şekil 3.3. $D_r=\%70$, D=20 mm, B=160 mm için yük - oturma eğrileri (a) L=200mm, (b) L=300 mm

Farklı kazık aralıklarına sahip model kazıklı radye temellerin (D=20 mm, B=160) ve radye temelin taşıma güçleri toplu olarak Tablo 3.1'de görülmektedir. Kazıklı radye temelin taşıma gücü, yük-oturma eğrilerinden tam olarak belirlenemediği için 0.1B Yöntemi ile belirlenmiştir (Cook, 1986; Briaud ve Jeanjean, 1994). D=20 mm durumu için; kazıklı radye temeldeki, kazıklar arası mesafe 4D aralığına kadar arttırıldıkça, farklı rölatif sıkılıklarda taşıma gücünde kayda değer bir artış meydana gelmiştir. Ancak kazıklar arası

mesafe 4D'den büyük olduğunda (5D ve 6D) taşıma gücünde bir miktar azalma meydana gelmektedir (Tablo 3.1). $D_r=\%30$ ve $D_r=\%70$ rölatif sıkılık değerlerinde; D=20 mm, L=200 mm için kazıklar arası mesafe 4D alındığı durumda, radye temele göre taşıma gücünde sırasıyla yaklaşık %68-74 oranında artış gözlemlenmektedir. $D_r=\%30$ ve $D_r=\%70$ rölatif sıkılık değerlerinde, kazık boyunun L=300 mm olması durumunda, radye temele göre taşıma gücünde sırasıyla yaklaşık %118-114 oranında artış olduğu gözlenmiştir.

L (mm) S (D=20 mm)		Qкr (kN) Dr=0.3	Qkr (kN) Dr=0.7	
Rad	ye Temel	3,182	8,245	
	2D	4,648	12,039	
	3D	5,210	13,807	
200	4D	5,357	14,315	
	5D	5,080	13,105	
	6D	4,909	12,777	
Rad	ye Temel	3,182	8,245	
	2D	5,609	15,095	
	3D	6,745	16,794	
300	4D	6,949	17,694	
	5D	6,599	16,202	
	6D	6,283	15,665	

Tablo 3.1. Kazıklı radye temellerde B=160 mm, D=20 mm için taşıma gücü değerleri

Şekil 3.4'de D=30 mm, L=200 ve 300 mm, $D_r=\%30$ ve B=240 mm durumları için elde edilen yük-oturma eğriler görülmektedir. D=20 mm'lık kazıklarda olduğu gibi, radye temel ile kazıklı radye temelin yük-oturma ilişkisi arasında belirgin bir farklılık bulunmakta, kazıkların kullanılması yük-oturma ilişkisi açısından temel sisteminin rijitliğinde önemli bir artışa sebep olmaktadır. Kazık aralığının artışıyla birlikte model kazıklı radye temelde belirli oturmalara karşı gelen yüklerde 4D kazık aralığına kadar artış meydana gelmektedir.

Şekil 3.4. Dr=%30, D=30 mm, B=240 mm, yük - oturma eğrileri (a) L=200 mm,
(b) L=300 mm

Şekil 3.5'de D=30 mm, L=200 ve 300 mm, $D_r=\%70$ ve B=240 mm durumları için elde edilen yük-oturma eğrileri görülmektedir. Zeminin yüksek rölatif sıkılığa sahip olduğu bu deneylerde, düşük yük mertebelerinde radye temel ile kazıklı radye temelin yük-oturma ilişkisi arasında ihmal edilebilir farklılıklar mevcuttur. Yükün artmasıyla birlikte, kazıklar etkinliğini göstermekte ve kazıklı radye temelin rijitliği radye temele göre oldukça yüksek olmaktadır. Kazık aralığının 4D'ye kadar artmasıyla kazıklı radye temelin rijitliği artmakta, bundan büyük kazık aralıklarında (5D, 6D) kazık-radye sisteminin rijitliğinde azalma meydan gelmektedir. Yani aynı yüklerde, daha büyük oturmalar oluşmaktadır.

Şekil 3.5. Dr=%70, D=30 mm, B=240 mm için yük –oturma eğrileri (a) L=200 mm, (b)=300 mm

Farklı kazık aralıklarına sahip model kazıklı radye temellerin (D=30 mm, B=240 mm) ve radye temelin taşıma güçleri toplu olarak Tablo 3.2'de görülmektedir. Model kazıklı radye temeldeki kazık çapının %50 arttırılmasıyla (D=30 mm) birlikte, kazıklar arası mesafe 4D aralığına kadar arttırıldıkça farklı rölatif sıkılıklarda taşıma gücünde gözle görülür bir artış meydana getirmiştir. Ancak 4D'den büyük kazık aralıklarında (5D ve 6D) taşıma gücünde azalma meydana geldiği görülmüştür. Dr=%30 ve Dr=%70 rölatif sıkılık değerlerinde; D=30 mm, L=200 mm için kazıklar arası mesafe 4D alındığı durumda, radye temele göre taşıma gücünde sırasıyla yaklaşık % 42-77 oranında artış gözlemlenmektedir. Ayrıca; Dr=%30 ve Dr=%70 rölatif sıkılık değerlerinde kazık boyunun L=300 mm olması

durumunda ise radye temele göre taşıma gücünde sırasıyla yaklaşık %129-124 oranında artış olduğu gözlenmiştir.

L (mm)	S (D=30 mm)	QKR(kN) Dr=0.3	QKR(kN) Dr=0.7	
Ra	dye Temel	7,359	20,477	
	2D	9,725	30,117	
	3D	11,772	35,586	
200	4D	12,688	36,245	
	5D	11,235	34,600	
	6D	10,810	31,390	
Ra	dye Temel	7,359	20,477	
	2D	13,146	33,340	
	3D	16,380	39,629	
300	4D	16,916	45,911	
	5D	15,715	38,559	
	6D	14,207	36,384	

Tablo 3.2. Kazıklı radye temellerde B=240mm, D=30 mm için taşıma gücü değerleri

Optimum kazık aralıkları; kazık çapı, kazık boyu, radye genişliği, zemin türü vb. parametrelerden etkilenmektedir. Şekil 3.6'da çeşitli araştırmacılar tarafından optimum kazık aralığının tespiti için yapılmış deneysel çalışmaların sonuçları görülmektedir (Yazıcı, 2013; Ismael, 2011; Tomlinson, 2004; Tejchman, 1973; Cooke, 1986; York ve Leahy, 1979; Erdemir ve Okur, 2001; Kishida ve ark., 1969). Bu çalışmalarda kazıklar arası optimum mesafe ile ilgili çok geniş bir değer aralığı önerilmiş olup (2.5D-12D), genellikle 4D aralığı hakim görüştür. Önerilen optimum kazık aralığı değerlerinin büyük bir varyasyona sahip olması, tasarım yapılırken tereddütlere sebep olmaktadır. Tez kapsamında yapılan deneylerde de optimum kazık aralığı 4D olarak belirlenmiştir.

Şekil 3.6. Optimum kazık aralığının tespiti için yapılan deneysel çalışmalar

3.1.2. Kazık ve Radye Temel Arasında Yük Paylaşımının İncelenmesi

Zeminin rölatif sıkılığı, kazık çapı, kazık boyu ve radye genişliği gibi parametrelerin etkisiyle, kazıklı radye temellerin taşıma güçlerinde farklılıklar meydana gelmektedir. Grup içerisindeki kazıklarda grup etkisinin minimum seviyede kaldığı kazıklar arası optimum mesafenin 4D olduğu tespit edilmiştir. Böylece, her iki rölatif sıkılıkta da, kazıklar arası mesafenin 4D olduğu durumda, kazıklı radye temelde taşıma gücünün gözle görülür şekilde arttığı belirlenmiştir. Tez kapsamında yapılan deneysel çalışmalarda farklı rölatif sıkılığa sahip kum zeminde, farklı geometrik özelliklere sahip model radye ve kazıklı radye temel yüklenmiştir. Kazıklı radye temel ve radye temele ait yük-oturma eğrileri birbirinden çıkarılarak, yalnızca kazıklara ait yük oturma eğrileri elde edilmiştir. Bu değerlendirmenin güvenilirliğini test etmek amacıyla yalnızca kazıklar yüklenerek elde edilen yük-oturma eğrileri kazıklı radye temelden radye temeli çıkararak elde ettiğimiz yük-oturma eğrileri ile karşılaştırılmış olup; söz konusu değerlerin uyumlu olduğu görülmüştür.

Şekil 3.7'de model radye, kazıklar ve kazıklı radyede D=20 mm, L=200 ve 300 mm, Dr=%30 ve B=160 mm durumu için elde edilen yük-oturma eğriler görülmektedir. Radye temel, kazıklar ve kazıklı radye temelin yük-oturma ilişkisi arasında belirgin farklılık vardır. Kazık boyunun %50 (L=300mm) arttırılması hem kazıkların hem de kazıklı radyelerin yük taşıma kapasitesini gözle görülür şekilde etkilemiştir.

Şekil 3.7. Dr=%30, D=20 mm, B=160 mm için Q_R , Q_K , Q_{KR} - oturma eğrileri (a) L=200 mm, (b)=300 mm

Şekil 3.8'de model radye ve kazıkların D=20 mm, L=200 ve 300 mm, D_r=%30 ve B=160 mm durumu için tespit edilen yük paylaşım oranları görülmektedir. Oturmaya bağlı olarak yük paylaşım oranında (Q_R/Q_K) belirgin farklılıklar görülmektedir. Gevşek kum zeminde L=200 mm için oturma başlangıcında, kazıklar yükün büyük bir miktarını

taşıyorken; oturmanın artmasıyla birlikte radyenin yük paylaşım oranı artmıştır. L=300 mm için oturma başlangıcında kazıkların yük paylaşım oranı kısa kazık durumuna göre belirgin şekilde yüksek olup; oturmanın artması ile birlikte bu oran azalmış ancak radye temelinde yük paylaşım oranının altına düşmemiştir. Kazık boyunun artmasının gevşek zeminlerde yük paylaşım oranı (Q_R/Q_K) üzerinde etkili bir parametre olduğu görülmüştür.

Şekil 3.8. Dr=%30, D=20 mm, B=160 mm için radye-kazık yük paylaşım oranları (a) L=200, (b)=300

Şekil 3.9'da model radye, kazıklar ve kazıklı radyede D=20 mm, L=200 ve 300 mm, Dr=%70 ve B=160 mm durumu için elde edilen yük-oturma eğrileri görülmektedir. Radye temel, kazıklar ve kazıklı radye temelin yük-oturma ilişkisi arasında belirgin farklılık vardır. Kazık boyunun %50 (L=300mm) arttırılması hem kazıkların hem de kazıklı

radyelerin yük taşıma kapasitesini gözle görülür şekilde etkilemiştir. Yani; uzun kazık durumunda (L=300 mm) kazıkların rijitlikleri göreceli olarak büyük olduğundan oturma başlangıcında kazıklı radye ve kazıkların yük oturma eğrileri çakışmakta olup, kazıklı radyenin yük oturma eğrisinde belirgin bir kırılma oluşmaktadır.

Şekil 3.9. Dr=%70, D=20 mm, B=160 mm için Q_R , Q_K , Q_{KR} - oturma eğrileri (a) L=200 mm, (b)=300 mm

Şekil 3.10'da model radye ve kazıkların D=20 mm, L=200 ve 300 mm, Dr=%70 ve B=160 mm durumu için tespit edilen yük paylaşım oranları görülmektedir. Oturmaya bağlı olarak yük paylaşım oranında (Q_R/Q_K) belirgin farklılıklar görülmektedir. Sıkı kum zeminde kısa kazık durumu (L=200 mm) için oturma başlangıcında, radye yükün büyük bir kısmını taşıyorken; oturmanın artmasıyla birlikte radyenin yük paylaşım oranı azalmış ama

yine de nihai oturmada kazıklardan fazla olmuştur. Uzun kazık durumu (L=300) için oturma başlangıcında kazıkların yük paylaşım yüzdesi kısa kazık durumuna göre çok yüksek olup; oturmanın artması ile birlikte bu oran büyük ölçüde azalmış ancak kısa kazıklarında yük paylaşım oranının altına inmemiştir. Kazık boyunun artmasının sıkı kum zeminlerde yük paylaşım oranı (Q_R/Q_K) üzerinde etkili bir parametre olduğu görülmektedir.

Şekil 3.10. Dr=%70, D=20 mm, B=160 mm için radye-kazık yük paylaşım oranları (a) L=200 mm, (b)=300 mm

Tablo 3.3'de Q_R/Q_{KR} oranının tespiti için yapılan deneyler sonucunda $D_r=\%30$ ve $D_r=\%70$ rölatif sıkılık değerlerinde; B=160mm, D=20 mm, L=200 mm için nihai taşıma gücünün sırasıyla yaklaşık %59-58'ini radye temelin, %41-42'sini ise kazıkların taşıdığı

belirlenmiştir. Kazık boyunun %50 artması (L=300) durumunda ise, nihai taşıma gücünün yaklaşık %46-47'si radye temel, %54-53'ünü ise kazıklar tarafından taşındığı belirlenmiştir. Ayrıca; rölatif sıkılığın bu oran üzerinde yaklaşık %1-2, kazık boyunun ise %13-14 mertebesinde etkili olduğu görülmüştür.

Model	Rölatif Sıkılık (Dr)B (mm)	S (D=30	L	Yük	Yük Paylaşım Oranı (%)		
		(mm)	mm)	(mm)	$(\mathbf{Q})(\mathbf{KN})$	Qr/Qkr	Qk/Qkr
Radye	0,3	160	-	-	3,182	-	-
Kazıklı Radye	0,3	160	4D	200	5,357	59%	41%
Kazıklı Radye	0,3	160	4D	300	6,949	46%	54%
Radye	0,7	160	-	-	8,245	-	-
Kazıklı Radye	0,7	160	4D	200	14,315	58%	42%
Kazıklı Radye	0,7	160	4D	300	17,694	47%	53%

Tablo 3.3. Kazıklı radye temellerde B=160 mm, D=20 mm, L=200 mm, L=300 mm durumunda Q_R/Q_{KR} ve Q_K/Q_{KR} oranını tespitine ait deney sonuçları

Zemin sıkılığı, kazık çapı, kazık boyu ve radye genişliği gibi parametrelerin etkisiyle taşıma gücünde farklılıklar oluşur. Şekil 3.11'de model radye, kazıklar ve kazıklı radyede D=30 mm, L=200 ve 300 mm, D_r =%30 ve B=240 mm durumu için elde edilen yük-oturma eğriler görülmektedir. Radye temel, kazıklar ve kazıklı radye temelin yük-oturma ilişkisi arasında belirgin farklılık vardır. Kazık boyunun %50 (L=300mm) arttırılması hem kazıkların hem de kazıklı radyelerin yük taşıma kapasitesini gözle görülür şekilde etkilemiştir. Uzun kazık (L=300 mm) durumunda kazıklar ve kazıklı radyenin oturma başlangıcında yük oturma eğrileri kazıkların rijitliğinin artmasından dolayı teğet ilerlemiştir.

Şekil 3.11. Dr=%30, D=30 mm, B=240 mm için Q_R , Q_K , Q_{KR} - oturma eğrileri (a) L=200 mm, (b)=300 mm

Şekil 3.12'de model radye ve kazıkların D=30 mm, L=200 ve 300 mm, D_r=%30 ve B=240 mm durumu için tespit edilen yük taşıma eğrileri görülmektedir. Oturmaya bağlı olarak paylaşım oranında (Q_R/Q_K) belirgin farklılıklar görülmektedir. Gevşek kum zeminde L=200 için oturma başlangıcında, kazıklar yükün büyük bir kısmını taşıyorken; oturmanın artmasıyla birlikte radyenin yük paylaşım oranı artmış ve kazıklardan daha fazla yük taşımaya başlamıştır. Uzun kazık durumunda (L=300 mm) için oturma başlangıcında kazıkların yük taşıma yüzdesi belirgin şekilde yüksek olup; oturmanın artması ile birlikte bu oran büyük ölçüde azalmış ancak radyenin de yük taşıma kapasitesinin altına inmemiştir. Kazık boyunun artmasının gevşek kum zeminlerde yük paylaşım oranı

 (Q_R/Q_K) üzerinde etkili bir parametre olduğu görülmektedir. Ayrıca kısa kazık durumunda kazık çapının artması kazıkların yük paylaşım oranı üzerinde önemli bir artışa sebep olmaktadır.

Şekil 3.12. Dr=%30, D=30 mm, B=240 mm için radye-kazık yük paylaşım oranları (a) L=200 mm, (b)=300 mm

Şekil 3.13'de model radye, kazıklar ve kazıklı radyede D=30 mm, L=200 ve 300 mm, D_r =%70 ve B=240 mm durumu için elde edilen yük-oturma eğrileri görülmektedir. Radye temel, kazıklar ve kazıklı radye temelin yük-oturma ilişkisi arasında belirgin farklılık vardır. Kazık boyunun %50 (L=300mm) arttırılması hem kazıkların hem de kazıklı radyelerin yük taşıma kapasitesini gözle görülür şekilde etkilemiştir.

Şekil 3.13. Dr=%70, D=30 mm, B=240 mm için Q_R , Q_K , Q_{KR} - oturma eğrileri (a) L=200 mm, (b)=300 mm

Şekil 3.14'de model radye ve kazıkların D=30 mm, L=200 ve 300 mm, D_r=%70 ve B=240 mm durumu için tespit edilen yük paylaşım oranları görülmektedir. Oturmaya bağlı olarak yük paylaşım oranları arasında (Q_R/Q_K) belirgin farklılıklar görülmektedir. Sıkı kum zeminde L=200 mm için oturma başlangıcında, kazıklar yükün büyük bir kısmını taşıyorken; oturmanın artmasıyla birlikte radyenin yük taşıma oranı artmış ve kazıklardan daha fazla yük taşımaya başlamıştır. L=300 mm için oturma başlangıcında kazıkların yük paylaşım yüzdesi belirgin şekilde yüksek olup; oturmanın artması ile birlikte bu oran büyük ölçüde azalmış belli bir oturma değerinden sonra radyenin yük paylaşım yüzdesi altına düşmüş ancak oturmanın devam etmesi ile birlikte tekrar radyenin yük taşıma

oranının üzerine çıkmıştır. Kazık boyunun artmasının sıkı kum zeminlerde yük taşıma oranı (Q_R/Q_K) üzerinde etkili bir parametre olduğu görülmektedir.

Şekil 3.14. Dr=%70, D=30 mm, B=240 mm için radye-kazık yük paylaşım oranları (a) L=200 mm, (b)=300 mm

Tablo 3.4'de Q_R/Q_{KR} ve Q_K/Q_{KR} oranlarının tespiti için yapılan deneyler sonucunda B=240 mm, D=30 mm, L=200 mm durumunda; nihai taşıma gücünün sırasıyla yaklaşık %58-56'sını radye temelin, %42-44'ünü ise kazıkların taşıdığı belirlenmiştir. Kazık boyunun %50 artması (L=300) durumunda ise, nihai taşıma gücünün sırasıyla yaklaşık %44-45'i radye temel, %56-55'inin ise kazıklar tarafından taşındığı belirlenmiştir. Ayrıca; rölatif sıkılığın bu oran üzerinde yaklaşık %1-2, kazık boyunun ise %11-14 mertebesinde etkili olduğu görülmüştür.

Model	Rölatif Sıkılık (Dr) B (mm)	S (D=30	L	Yük	Yük Paylaşım Oranı (%)		
		(mm)	mm)	(mm)	(Q)(KN)	Qr/Qkr	QK/QKR
Radye	0,3	240	-	-	7,359	-	-
Kazıklı Radye	0,3	240	4D	200	12,688	58%	42%
Kazıklı Radye	0,3	240	4D	300	16,916	44%	56%
Radye	0,7	240	-	-	20,477	-	-
Kazıklı Radye	0,7	240	4D	200	36,245	56%	44%
Kazıklı Radye	0,7	240	4D	300	45,911	45%	55%

Tablo 3.4. Kazıklı radye temellerde B=240 mm, D=30 mm, L=200 mm, L=300 mm durumunda Q_R/Q_{KR} ve Q_K/Q_{KR} oranını tespitine ait deney sonuçları

Kazıklı radye sistemini tanımlayan parametrelerin değişkenliğinden dolayı, kazık ve radye arasındaki yük paylaşım oranları ve kazık grubunun taşıma gücü çok farklı olmaktadır. Şekil 3.15'de çeşitli araştırmacılar tarafından Q_R/Q_{KR} ve Q_K/Q_{KR} oranının tespiti için yapılmış deneysel çalışmaların sonuçları görülmektedir (Butterfield ve Banerjee, 1976; Kuwabara, 1980; Ergün ve Türkmen, 2007; Nguyen ve ark., 2013). Bu çalışmalarda Q_R/Q_{KR} ve Q_K/Q_{KR} oranları ile ilgili çok geniş bir değer aralığı önerilmiştir. Kazıklı radye temellerin taşıma gücünün; %20-40'ı radye temel tarafından, %60-80'inin ise kazıklar tarafından paylaşıldığı görülmektedir.

Şekil 3.15. Kazıklar ve radyenin yük taşıma oranı

Tablo 3.5'de kazıklar arasındaki mesafenin (S/D=3-12), kazık grubunun radye temel altında kapladığı alanın (A_K/A_R=0.45-0.91) ve kazık boyunun (L_K/B=0.38-2.2) farklı değerlerde olduğu 22 tane vaka analizi sonucu incelendiğinde radye temelin üst yapıdan kaynaklı toplam yükün % 8-70 'ini taşıdığı görülmüştür (Santis ve Russo, 2008). Farkın bu kadar çok olmasının nedeni; kazıklı radye sistemi üzerinde birçok faktörün etkin olmasının yanında arazideki uygulama farklılıklarından ve ölçüm tekniklerinden kaynaklanabilmektedir. Tez kapsamında yapılan deneylerde de kazık parametrelerine bağlı olarak nihai taşıma gücünün yaklaşık %44-59'u radye temel, %41-56'sının ise kazıklar tarafından taşındığı belirlenmiştir.

Olay	Proje İsmi	Referans	s/D	L/B	Q_R/Q_T (%)
1	Multispan köprüsü	Van Impe ve De Clerq (1994)	3.8	1.00	27
2	Urawa binası	Yamashita ve ark. (1993)	7.8	0.64	51
3	Stonebridge parkı	Cooke ve ark. (1981)	3.6	0.65	23
4	Messe Turm	Sommer ve ark. (1991)	6.4	0.52	45
5	Çok katlı bina	Joustra ve ark. (1977)	5.2	0.70	22
6	Dashwood evi	Hight ve Green (1976)	3.0	0.50	19
7	Ev 1	Jendeby (1986)	6.5	2.10	8
8	Ev 2	Jendeby (1986)	10.5	2.20	66
9	Uppsala evi	Jendeby (1986)	11.2	2.20	64
10	Garigliano köprüsü	Russo (1996)	3.0	4.50	20
11	Messe Torhaus	Katzenbach ve ark. (2000)	3.5	1.14	20
12	Westend 1-DG bankası	Katzenbach ve ark. (2000)	6.0	0.63	50
13	Japan Centre	Katzenbach ve ark. (2000)	5.5	0.60	60
14	Forum	Katzenbach ve ark. (2000)	6.0	0.70	62
15	Kongre merkezi	Katzenbach ve ark. (2000)	5.8	1.00	60
16	Main Kulesi	Katzenbach ve ark. (2000)	3.3	0.50	15
17	Eurotheum	Katzenbach ve ark. (2000)	5.2	0.80	70
18	Treptowers	Katzenbach ve ark. (2000)	6.5	0.38	52
19	Ulusal Westiminister Bankası	Hooper (1979)	3.8	0.50	29
20	Hide parkı	Hooper (1979)	4.3	0.90	39
21	Serbat 12	Russo ve ark. (2004)	5.8	0.92	48
22	Serbat 14	Russo ve ark. (2004)	5.0	1.10	48

Tablo 3.5. Çeşitli vaka analizi gözlem sonuçlarına göre kazık grubu ve radye temel arasındaki yük paylaşım oranları (Santis ve Russo, 2008)

3.1.3. Kazıklı Radye Temellerde Grup Veriminin İncelenmesi

Geleneksel bakış açısına göre; sürtünme kazıklarından oluşan kazık grubunun taşıma gücünün grup etkisinden dolayı kazıkların tek tek taşıma güçlerinin toplamından daha küçük olacağı kabul edilmektedir. Ancak; deneysel çalışmamızın sonuçları kumlu zeminlerdeki kazık grubu davranışının bilinenin aksi yönde olduğunu göstermektedir. Farklı sıkılık ve kazık boyu gibi parametrelerin etkisiyle, kazıklar arası mesafe ve kazık çapı sabit olmak (S_{opt}= 4D, D=20mm) kaydı ile deneyler gerçekleştirilmiştir (Şekil 3.16). Deneyler sonucunda grup veriminin 1'den büyük olduğu görülmüştür (Ek-2).

Şekil 3.16. Tek kazık ve iki kazığın eksenel olarak yüklenmesi

Farklı araştırmacılarda benzer sonuçlar bulmuşlardır. Vesic (1977) killi zeminlerde yaptığı 5 adet tam ölçekli kazık grubu yükleme deneylerinde grup verimini 1'e yakın, kumlu zeminlerde yaptığı 6 adet tam ölçekli yükleme deneylerinde ise grup verimini 1'den büyük bulmuştur. Ismael (2001) orta sıkı kumlu zeminden oluşan ve arazide yaptığı fore kazık yükleme deneylerinde (kazıklar 0.1m çapında ve 2.25 m boyundadır) grup verimini 1'den büyük bulmuştur. Xu ve Zhang (2007) da arazideki kumlu zeminde gerçekleştirdiği ve çakma kazıklara ait 31 adet yükleme deneyinde grup verimini 1'den büyük bulmuştur.

Kazık grubu düşey olarak yüklendiğinde oturmaların artmasıyla birlikte kazıklardan kazık çevresindeki zemine gerilme aktarılmaktadır. Bu gerilme transferi hem çevre sürtünmesinden dolayı kazık yan yüzeylerinden hem de uç direncinden dolayı kazık tabanından zemine doğru olmaktadır. Bu nedenle, kazığın etrafındaki zeminde düşey ve yatay gerilmelerde artış meydana gelmekte olup kazık-zemin sürtünme direncini arttırarak kazığın veriminde artışa sebep olmaktadır. Ayrıca, çakma kazıkların kohezyonsuz zeminlerdeki imalat esnasında zeminde sıkışmaya yol açtıklarından yatay gerilmelerin de artmasına sebep olmaktadır. Bu durum da, bu tür kazıkların yüksek grup verimine sahip olmasına neden olmaktadır (Şekil 3.17).

Şekil 3.17. Sürtünme dirençlerinin zemine aktarılması

Grup verimi, tekil kazığın taşıma gücünün kazık grubu içindeki bir kazığın taşıma gücüne oranı olup; Bağıntı 3.1 ile ifade edilebilir.

$$\eta = \frac{Q_{TK}}{\sum Q_{TK(KG)}} \tag{3.1.}$$

Burada;

 $\eta = \text{grup verimi}$

 $Q_{TK(KG)}$ = kazık grubundaki bir kazığın taşıma gücü

Qтк = tekil kazığın taşıma gücünü ifade etmektedir.

Şekil 3.18'de D=20 mm, S=4D, D_r =%30, L=200 ve 300 mm, durumu için elde edilen yük-oturma eğrileri görülmektedir. Kazık sayısına bağlı olarak (N=1,2,3,4) kazıkların yük-oturma ilişkisi arasında belirgin bir farklılık bulunmaktadır. Kazık sayısının artması, yük-oturma ilişkisi açısından temel sisteminin rijitliğinde önemli bir artışa sebep olmaktadır. Kazık sayısının artışıyla birlikte model kazıklı temelde belirli oturmalara karşı gelen yüklerde artış meydana gelmekte, yani yük-oturma eğrisinin eğimi artmaktadır. Benzer şekilde kazık uzunluğunun (L=300 mm) artmasıyla da kazıklı temelin taşıdığı belirli oturmalara karşı gelen yüklerde artış meydana gelmektedir.

Şekil 3.18. Dr=%30, D=20 mm için kazık sayısına bağlı olarak yük taşıma eğrileri (a) L=200 mm, (b)=300 mm

Grup içerisindeki kazıklarda grup etkisinin minimum seviyede kaldığı kazıklar arası optimum mesafenin 4D olduğu durumda, her iki sıkılıkta da, grup veriminde gözle görülür artışlar belirlenmiştir. Dr=%30 rölatif sıkılığa sahip zeminde, kazık grup veriminin (η) tespiti için yapılan deney sonuçları Tablo 3.6'da verilmiştir. D=20 mm, S_{opt}=4D, L=200 mm durumunda grup veriminde kazık sayısına bağlı olarak %26-31 arasında bir artış olduğu gözlemlenmiştir. L=200 mm durumunda kazık sayısının artarak üç ve dört olması durumunda grup veriminin kararlı davrandığı görülmüştür. Kazık boyunu %50 arttırarak (L=300mm) tekrarlanan deneylerde; grup veriminin %38-51 arasında olduğu görülmüştür. Ayrıca; L=300 mm durumunda da kazık sayısının artarak üç ve dört olması durumunda grup veriminin kararlı davrandığı görülmüştür.

Kazık Boyu (L, mm)	Kazık Sayısı	Kazık Taşıma Gücü (kN)	Verim (η)
	Q1 kazık	0,415	1,000
200	Q2 kazık	1,045	1,259
200	Q3 kazık	1,630	1,308
	Q4 kazık	2,175	1,310
	Q1 kazık	0,589	1,000
200	Q2 kazık	1,630	1,383
500	Q3 kazık	2,668	1,510
	Q4 kazık	3,569	1,514

Tablo 3.6. Dr=%30, D=20 mm, S_{opt}=4D, L=200 mm ve L=300 mm için grup veriminin (η) kazık sayısına göre değişimi

Şekil 3.19'da D=20 mm, S=4D, Dr=%70, L=200 ve 300 mm, durumu için elde edilen yük-oturma eğrileri görülmektedir. Kazık sayısına bağlı olarak (N=1,2,3,4) kazıkların yük-oturma ilişkisi arasında belirgin bir farklılık bulunmaktadır. Kazık sayısının artması yük-oturma ilişkisi açısından temel sisteminin rijitliğinde önemli bir artışa sebep olmaktadır. Kazık sayısının artışıyla birlikte model kazıklı temelde belirli oturmalara karşı gelen yüklerde artış meydana gelmekte, yani yük-oturma eğrisinin eğimi artmaktadır. Benzer şekilde kazık uzunluğunun (L=300 mm) artmasıyla da kazıklı temelin taşıdığı belirli oturmalara karşı gelen yüklerde artış meydana gelmektedir.

Şekil 3.19. Dr=%70, D=20 mm için kazık sayısına bağlı olarak yük taşıma eğrileri (a) L=200 mm, (b)=300 mm

Grup içerisindeki kazıklarda grup etkisinin minimum seviyede kaldığı kazıklar arası optimum mesafenin 4D olduğu durumda, her iki sıkılıkta da, grup veriminde gözle görülür artışlar belirlenmiştir. Dr=%70 rölatif sıkılığa sahip zeminde, kazık grup veriminin (η) tespiti için yapılan deney sonuçları Tablo 3.7'de verilmiştir. D=20 mm, S_{opt}=4D, L=200 mm durumunda grup veriminde kazık sayısına bağlı olarak %31-54 arasında bir artış olduğu gözlemlenmiştir. L=200 mm durumunda kazık sayısının artarak üç ve dört olması durumunda grup veriminin kararlı davrandığı görülmüştür. Kazık boyunu %50 arttırarak (L=300 mm) tekrarlanan deneylerde; grup veriminde %44-65 arasında artış olduğu görülmüştür. Ayrıca; L=300 mm durumunda da kazık sayısının artarak üç ve dört olması durumunda grup veriminin kararlı davrandığı belirlenmiştir.

Kazık Boyu (L, mm)	Kazık Sayısı	Kazık Taşıma Gücü (kN)	Verim (η)
	Q1 kazık	0,984	1,000
200	Q2 kazık	2,578	1,310
200	Q3 kazık	4,430	1,501
	Q4 kazık	6,059	1,539
	Q1 kazık	1,427	1,000
200	Q2 kazık	4,110	1,440
500	Q3 kazık	6,892	1,610
	Q4 kazık	9,418	1,650

Tablo 3.7. Dr=%70, D=20 mm, S_{opt}=4D, L=200 mm ve L=300 mm için grup veriminin (η) kazık sayısına göre değişimi

3.1.4. Kazıklı Radye Temellerde Gerilme Dağılışının İncelenmesi

Kazıklı radye temellerde gerilme dağılışının tespiti için model kazık ve model radye temelin birleştirilmesi ile elde edilen model kazıklı radye temel kullanılmıştır. Deneysel çalışmalarda kullanılacak model kazıklar imal edilirken şekil değiştirme ölçerler (strain gauges) monte edilmiştir. Ayrıca; farklı rölatif sıkılıklarda hazırlanan kum zemin içine radye temel genişliğine (B) ve kazık boyuna (L) bağlı olarak basınç ölçerler (pressure Gauges) yerleştirilmiştir. Böylece deney esnasında hem zeminde hem de kazık boyunca gerilmeler belirlenebilmiştir. İlk olarak; iki farklı rölatif sıkılıkta (gevşek ve sıkı) kum zemin içerisine yerleştirilen tek kazığın yük-oturma davranışı, kazık boyunca gerilmeleri ve zeminde ortaya çıkan gerilme artışları model deneylerle belirlenmiştir. Daha sonra aynı deneyler deney programına uygun olarak model radye temele ve model kazıklı radye temele uygulanmıştır (Ek-3).

3.1.4.1. Farklı Rölatif Sıkılıklarda L=200mm İçin Gerilme Dağılışlarının Tespiti

Farklı sıkılıklarda (Dr=%30, Dr=%70) L=200 mm, kazık çapı sabit olmak (D=20 mm) durumunda deneyler gerçekleştirilmiştir. Basınç ölçerler zemine tek kazık ve kazıklı radye temelde 2,5D; 5D; 7,5D model radye temelde ise B, 2B, 3B aralıklarla eksenel olarak yerleştirilmiştir. Kazık boyunca gerilmelerin tespiti için ise kazık yüzeyine şekil değiştirme ölçerler (strain gauges) bağlanmıştır (Şekil 3.20). İlk olarak; zemine gömülü olarak tek kazık yüklenmiş olup ardından model radye ve kazıklı radye temelde 16 mm (B/10) oturma oluşuncaya kadar yükleme devam ettirilmiştir.

Şekil 3.20. Basınç ölçer ve şekil değiştirme ölçerlerin yerleşim planı

Şekil 3.21'de farklı rölatif sıkılıklara sahip zeminde ($D_r=\%30$ ve $D_r=\%70$) B=160 mm, D=20 mm, S=4D, L=200 mm için model tek kazık, radye temel ve kazıklı radye temele ait yük–oturma grafikleri sunulmuştur. Model temellere ait yük-oturma eğrilerinde belirgin farklılıklar görülmektedir. Rölatif sıkılığın %30'dan %70'e çıkması belli oturmalara karşılık gelen taşıma gücünü oldukça olumlu etkilemiştir.

Şekil 3.21. L=200 mm, B=160 mm, D=20 mm, S=4D durumunda tek kazık, radye ve kazıklı radye temel için yük-oturma eğrileri (a) Dr=%30, (b)= Dr=%70

Şekil 3.22'de L=200 mm, D=20 için farklı rölatif sıkılıklara (Dr=%30 ve Dr=%70) sahip zemin ortamında yükleme durumunda tek kazığın zemin içinde neden olacağı düşey gerilme artışları sunulmuştur. Her iki rölatif sıkılık durumunda da kazığın yüklenmesinden dolayı kazık ucundan itibaren (2.5D, 5D, 7.5D) zeminde oluşacak gerilme artışları

azalmaktadır. Ancak; rölatif sıkılığın yükselmesinin zeminde meydana gelecek düşey gerilme artışlarını arttırdığı belirgin bir şekilde görülmektedir.

Şekil 3.22. L=200 mm, D=20 mm için tek kazığın zeminde sebep olduğu gerilme-oturma eğrileri (a) Dr=%30, (b)= Dr=%70

Şekil 3.23'de B=160 mm için farklı rölatif sıkılıklara ($D_r=\%30$ ve $D_r=\%70$) sahip zemin ortamında yükleme durumunda model radye temelin zeminde sebep olacağı gerilme artışları sunulmuştur. Her iki rölatif sıkılık durumunda da radye temel orta noktasından

itibaren (B, 2B, 3B) zeminde oluşacak düşey gerilme artışları gözle görülür biçimde azalmaktadır. Ancak; rölatif sıkılığın yükselmesinin zeminde meydana gelecek gerilmeleri arttırdığı belirgin bir şekilde görülmektedir.

Şekil 3.23. B=160 mm için model radye temelden kaynaklı zeminde meydana gelen gerilme-oturma eğrileri (a) Dr=%30, (b)= Dr=%70

Şekil 3.24'de L=200 mm, B=160 mm, S=4D için farklı rölatif sıkılıklara (Dr=%30 ve Dr=%70) sahip zemin ortamında yükleme durumunda model kazıklı radye temelin sebep olacağı düşey gerilme artışları sunulmuştur. Her iki rölatif sıkılık durumunda da kazık ucundan itibaren (2.5D, 5D, 7.5D) zeminde oluşacak gerilmeler gözle görülür biçimde azalmaktadır. Ancak; rölatif sıkılığın yükselmesinin zeminde meydana gelecek gerilmeleri arttırdığı belirgin bir şekilde görülmektedir. Radye temele göre kazıklı radye temelde zeminde gerilmelerin arttırdığı ve zemin ortamında meydana gelen bu artışın taşıma gücünü olumlu etkilediği görülmektedir.

Şekil 3.24. L=200 mm, B=160 mm, S=4D için model kazıklı radye temelden kaynaklı zeminde oluşan gerilme-oturma eğrileri (a) Dr=%30, (b)= Dr=%70

Şekil 3.25'de L=200 mm, D=20 mm için farklı rölatif sıkılıklara (Dr=%30 ve Dr=%70) sahip zemin ortamında oturmaya bağlı olarak (0.1D, 0.2D, 0.4D, 0.8D) tek kazık boyunca eksenel şekil değiştirme eğrileri sunulmuştur. Her iki rölatif sıkılık durumunda da belli oturmalara karşılık gelen şekil değiştirme değerleri belirgin olup; oturmanın artmasıyla birlikte yükselmiştir. Ayrıca; rölatif sıkılığın yükselmesinin kazık boyunca oluşacak şekil değiştirmeleri arttırdığı da belirgin bir şekilde görülmektedir. Düşük yük mertebelerinde kazık-zemin ara yüzünde oluşan kayma gerilmeleri üniform bir davranış gösterirken, yüksek yük mertebelerinde bu kayma gerilmesi dağılışı üniform olmamakta ve kumlu zemin olduğu için kazığın alt kısmında daha büyük kayma gerilmeleri oluşmaktadır.

Şekil 3.25. L=200 mm, D=20 mm için tek kazık boyunca şekil değiştirme eğrileri (a) $D_r=\%30$, (b)= $D_r=\%70$

Şekil 3.26'da L=200 mm, D=20, B=160 mm, S=4D için farklı rölatif sıkılıklara (Dr=%30 ve Dr=%70) sahip zemin ortamında oturmaya (0.1D, 0.2D, 0.4D, 0.8D) bağlı olarak kazıklı radyede (grup içinde) bulunan bir kazık boyunca şekil değiştirme eğrileri sunulmuştur. Her iki rölatif sıkılık durumunda da belli oturmalara karşılık gelen şekil değiştirme değerleri belirgin olup; oturmanın artmasıyla birlikte yükselmiştir. Ayrıca; rölatif sıkılığın yükselmesinin kazık boyunca oluşacak gerilmeleri arttırdığı da görülmektedir. Kazıklı radye temellerin kazıkları tekil kazık davranışından farklı olarak düşey yükün önemli bir kısmını kazık üst yarısından zemine aktarmaktadır. Çünkü, model radye zeminde ilave düşey gerilmelere oluşturmakta ve kazık-zemin kayma direncinin kazık üst bölgesinde de artışına sebep olmaktadır.

Şekil 3.26. L=200 mm, B=160 mm, D=20 mm S=4D için kazıklı radye temelde kazık boyunca şekil değiştirme-oturma eğrileri (a) Dr=%30, (b)= Dr=%70

Farklı rölatif sıkılıklara ($D_r=\%30$ ve $D_r=\%70$) sahip zemin ortamında model radye, kazık ve kazıklı radye temel (D=20 mm, L=200 mm, B=160 mm) ile gerçekleştirilen deneylere ait sonuçlar toplu olarak Tablo 3.8'de görülmektedir. Model radye temelin altında çeşitli derinliklerde (B, 2B, 3B) yerleştirilen basınç ölçerler ile model kazıklı radye altına yerleştirilen basınç ölçerlerin derinlikleri aynı olmadığından, model radye temelin merkezi altındaki düşey gerilme artışları interpolasyon yapılarak belirlenmiştir. $D_r=\%30$ için radye temele ilave edilen kazıkların zeminde oluşacak gerilmeleri yaklaşık %45-197 oranında artırdığı belirlenmiştir. Kazıkların uçundan itibaren oluşan düşey gerilme artışları arasındaki fark, derinliği artmasıyla azalmaktadır. Yani, kazıklar yükleri daha derindeki tabakalara aktarmaktadır. $D_r=\%70$ için ise radye temele ilave edilen kazıkların zeminde oluşacak gerilmeleri yaklaşık %90-301 oranında artırdığı belirlenmiştir. Böylece radye temele ilave edilecek olan kazıkların ve rölatif sıkılığın kazıklı radye temellerde zeminde oluşacak gerilme değerlerini etkileyen çok önemli parametreler olduğu tespit edilmiştir.
Rölatif Sıkılık (Dr)	Model	Yük (kN)	Deplasman (mm)	Düşey Gerilme Artışı (kPa)	Şekil Değiştirme Ölçer (10 ⁻⁶)
		0,415	16,000	PG-1= 84,3	SG-1= 6,02
	Tek Kazık			PG-2= 56,0	SG-2= 4,03
				PG-3= 30,9	SG-3= 1,22
				PG-1= 169,7	-
	Radye Temel	3,182	16,000	PG-2= 145,9	-
Dr - % 30				PG-3= 123,0	-
D1-7030	Karuluk Dadwa			PG-1= 505,7	SG-1= 8,16
		5,357	16,000	PG-2= 287,8	SG-2= 5,73
	Temer			PG-3= 185,5	SG-3= 1,83
	Kazıklı Radye	3,182	6,620	PG-1= 445,2	-
				PG-2= 248,7	-
	Temer			PG-3= 148,4	-
		0,984	16,000	PG-1= 165,0	SG-1= 16,45
	Tek Kazık			PG-2= 97,5	SG-2= 11,87
				PG-3= 51,8	SG-3= 4,34
		8,246		PG-1= 315,0	-
-	Radye Temel		16,000	PG-2= 279,6	-
Dr=%70				PG-3= 245,5	-
D1-7070	Kazıklı Dadva			PG-1= 1.261,3	SG-1= 24,27
	Temel	14,315	16,000	PG-2=718,3	SG-2= 18,03
				PG-3= 466,8	SG-3= 6,96
	Kazıklı Radva			PG-1= 1.032,1	-
	Temel	8,246	7,174	PG-2= 632,0	-
	i chici			PG-3= 381,2	-

Tablo 3.8. D_r=%30-%70, D=20 mm, S=4D, L=200 mm için deneysel çalışma sonucunda belirlenen gerilme ve şekil değiştirme değerleri

3.1.4.2. Farklı Rölatif Sıkılıklarda L=300mm İçin Gerilme Dağılışlarının Tespiti

Farklı sıkılıklarda ($D_r=\%30$, $D_r=\%70$) L=300 mm, kazık çapı sabit olmak (D=20mm) kaydı ile radye temel, tek kazık ve model kazıklı radye temelde deneyler gerçekleştirilmiştir. Basınç ölçerler zemine 2.5D, 5D, 7.5D aralıklarla eksenel olarak yerleştirilmiştir. İlk olarak; zemine gömülü olarak tek kazık yüklenmiş olup ardından model radye ve kazıklı radye temel, 16 mm (B/10) oturma oluşuncaya kadar yükleme devam ettirilmiştir. Şekil 3.27'de farklı rölatif sıkılıklara sahip zeminde ($D_r=\%30$ ve $D_r=\%70$) B=160 mm, D=20 mm, S=4D için model tek kazık, radye temel ve kazıklı radye

temele ait yük–oturma grafikleri sunulmuştur. Model temellere ait yük-oturma eğrilerinde belirgin farklılıklar görülmektedir. Rölatif sıkılığın %30'dan %70'e çıkması belli oturmalara karşılık gelen taşıma gücünü oldukça olumlu etkilemiştir.

Şekil 3.27. L=300 mm, B=160 mm, D=20 mm, S=4D durumunda tek kazık, radye ve kazıklı radye temel için yük-oturma eğrileri (a) Dr=%30, (b)= Dr=%70

Şekil 3.28'de L=300 mm, D=20 için farklı rölatif sıkılıklara (Dr=%30 ve Dr=%70) sahip zemin ortamında yükleme durumunda tek kazığın neden olacağı gerilme eğrileri sunulmuştur. Her iki rölatif sıkılık durumunda da kazık ucundan itibaren (2.5D, 5D, 7.5D) zeminde oluşacak gerilmeler azalmaktadır. Ancak; rölatif sıkılığın yükselmesinin zeminde meydana gelecek gerilmeleri arttırdığı belirgin bir şekilde görülmektedir.

Şekil 3.28. L=300 mm, D=20 mm için tek kazığın zeminde sebep olduğu gerilme-oturma eğrileri (a) Dr=%30, (b)= Dr=%70

Şekil 3.29'da L=300 mm, B=160 mm, S=4D için farklı rölatif sıkılıklara (Dr=%30 ve Dr=%70) sahip zemin ortamında yükleme durumunda model kazıklı radye temelin sebep olacağı gerilme eğrileri sunulmuştur. Her iki rölatif sıkılık durumunda da kazık ucundan itibaren (2.5D, 5D, 7,5D) zeminde oluşacak gerilmeler gözle görülür biçimde azalmaktadır. Ancak; rölatif sıkılığın yükselmesinin zeminde meydana gelecek gerilmeleri arttırdığı belirgin bir şekilde görülmektedir. Radye temele göre kazıklı radye temelde söz konusu gerilmelerin arttığı ve zemin ortamında meydana gelen bu artışın taşıma gücünü (Şekil 3.19) olumlu etkilediği görülmektedir.

Şekil 3.29. L=300 mm, B=160 mm, S=4D için model kazıklı radye temelden kaynaklı zeminde oluşan gerilme-oturma eğrileri (a) Dr=%30, (b)= Dr=%70

Şekil 3.30'da L=300 mm, D=20 mm için farklı rölatif sıkılıklara (Dr=%30 ve Dr=%70) sahip zemin ortamında oturmaya (0.1D, 0.2D, 0.4D, 0.8D) bağlı olarak tek kazık boyunca şekil değiştirme eğrileri sunulmuştur. Her iki rölatif sıkılık durumunda da belli oturmalara karşılık gelen şekil değiştirme değerleri belirgin olup; oturmanın artmasıyla birlikte yükselmiştir. Ayrıca; rölatif sıkılığın yükselmesinin kazık boyunca oluşacak gerilmeleri arttırdığı da belirgin bir şekilde görülmektedir.

Şekil 3.30. L=300 mm, D=20 mm için tek kazık boyunca şekil değiştirme eğrileri (a) $D_r=\%30$, (b)= $D_r=\%70$

Şekil 3.31'de L=300 mm, D=20, B=160 mm, S=4D için farklı rölatif sıkılıklara (Dr=%30 ve Dr=%70) sahip zemin ortamında oturmaya (0.1D, 0.2D, 0.4D, 0.8D) bağlı olarak kazıklı radyede (grup içinde) bulunan kazık boyunca şekil değiştirme eğrileri sunulmuştur. Her iki rölatif sıkılık durumunda da belli oturmalara karşılık gelen şekil değiştirme değerleri belirgin olup; oturmanın artmasıyla birlikte yükselmiştir. Ayrıca; rölatif sıkılığın yükselmesinin kazık boyunca oluşacak şekil değiştirmeleri arttırdığı da belirgin bir şekilde görülmektedir.

Şekil 3.31. L=300 mm, B=160 mm, D=20 mm S=4D için kazıklı radye temelde kazık boyunca şekil değiştirme eğrileri (a) Dr=%30, (b)= Dr=%70

Farklı rölatif sıkılıklara ($D_r=\%30$ ve $D_r=\%70$) sahip zemin ortamında model radye, kazık ve kazıklı radye temel (D=20 mm, L=300 mm, B=160 mm) ile gerçekleştirilen deneylere ait sonuçlar toplu olarak Tablo 3.9'da görülmektedir. $D_r=\%30$ için radye temele ilave edilen kazıkların zeminde oluşacak gerilmeleri yaklaşık %181-235 oranında artırdığı belirlenmiştir. $D_r=\%70$ için ise radye temele ilave edilen kazıkların zeminde oluşacak gerilmeleri yaklaşık %247-316 oranında artırdığı belirlenmiştir. Böylece radye temele ilave edilecek olan kazıkların ve rölatif sıkılığın kazıklı radye temellerde zeminde oluşacak gerilme değerlerini etkileyen çok önemli parametreler olduğu tespit edilmiştir.

Rölatif Sıkılık (Dr)	Model	Yük (kN)	Oturma (mm)	Düşey Gerilme Artışı (kPa)	Şekil Değiştirme Ölçer (10 ⁻⁶)
				PG-1=120,2	SG-1=9,17
	Tek Kazık	0,589	16,000	PG-2= 82,0	SG-2= 6,89
				PG-3= 47,2	SG-3= 2,35
			16,000	PG-1=169,7	-
	Radye Temel	3,182		PG-2= 145,9	-
Dr = % 30				PG-3= 123,0	-
DI-%50	Komiste Dodreo			PG-1=711,5	SG-1= 14,63
	Kazikli Radye	6,949	16,000	PG-2= 383,7	SG-2= 10,84
	Temer			PG-3= 268,9	SG-3= 3,25
	Kazıklı Radye	3,182	5,226	PG-1= 620,0	-
				PG-2= 313,3	-
	Temer			PG-3= 201,3	-
		1,427	16,000	PG-1=270,5	SG-1=24,26
	Tek Kazık			PG-2= 164,0	SG-2= 17,37
				PG-3= 85,0	SG-3=7,34
		8,246		PG-1= 315,0	-
	Radye Temel		16,000	PG-2=279,6	-
$Dr = \frac{0}{70}$				PG-3= 245,5	-
DI-7070	Kamilali Dadiya			PG-1=1576,6	SG-1= 37,73
	Temel	17,694	16,000	PG-2=921,0	SG-2= 28,36
	Temer			PG-3= 598,5	SG-3= 8,57
	Vozikli Dodro			PG-1=1112,6	-
		8,246	2,201	PG-2= 585,2	-
	1 chief			PG-3= 346,1	-

Tablo 3.9. Dr=%30-%70, D=20 mm, S=4D, L=300 mm için deneysel çalışma sonucunda belirlenen gerilme değerleri

3.2. Nümerik Bulgular

Bu bölümde, kum zemin içerisine yerleştirilen, düşey yük etkisindeki kazıklı radye temellerin taşıma gücü ve gerilme dağılışları üzerinde etkili olabilecek parametrelerle ilgili nümerik analizlere ait sonuçlar verilmiş ve irdelenmiştir. Sayısal modelleme çalışmalarında deney prosedürüne bağlı kalınmıştır. Zemin ve deney parametreleri için ABAQUS bilgisayar programı yardımı ile hassasiyet analizleri yapılmıştır. Farklı rölatif sıkılıklardaki kum için hazırlanan sonlu eleman modellerinde; yük-oturma eğrileri, zemin gerilme dağılışları ve kazık boyunca şekil değiştirmeler tespit edilmeye çalışılmıştır. Bu amaçla radye temel, tek kazık ve kazıklı radye temel ayrı ayrı yüklenmiş olup; Şekil 3.32'de gösterilen noktalarda gerilme ve şekil değiştirme değerleri tespit edilmiştir.

Şekil 3.32. Analizlerde gerilme ve şekil değiştirme tespitlerinin yapıldığı noktalar

3.2.1. Farklı Rölatif Sıkılıklarda L=200 mm İçin Gerilme Dağılışlarının Nümerik Tespiti

Farklı sıkılıklarda (Dr=%30, Dr=%70) L=200 mm, kazık çapı sabit olmak (D=20mm) üzere ABAQUS programında nümerik analizler yapılmıştır. Şekil 3.33'de model radye, kazıklar ve kazıklı radyede D=20 mm, L=200, B=160 mm, Dr=%30 ve Dr=%70 durumu için elde edilen yük-oturma eğriler görülmektedir. Radye temel, lineer olmayan bir yük-oturma davranışı gösterirken, kazıklar ve kazıklı radye temelin yük-oturma ilişkisi lineer kabul edilebilir. Radye temele ait yük-oturma eğrisi başlangıçta belli bir oturmaya karşılık gelen değere kadar eğimi yüksek iken; oturmanın ilerlemesiyle eğimi azalmıştır. Kazık ilavesi büyük yük mertebelerinde radye temelin rijitliğini, yani yük/oturma oranını gözle görülür biçimde arttırmıştır.

Şekil 3.33. D=20 mm, L=200 mm, B=160, S=4D için tek kazık, radye ve kazıklı radye temele ait yük-oturma eğrileri (a) Dr=%30, (b) Dr=%70

Farklı rölatif sıkılıklara ($D_r=\%30$ ve $D_r=\%70$) sahip zeminlerde L=200 mm durumunda model radye, kazık ve kazıklı radye temellerin sebep olacakları gerilme ve kazık boyunca oluşacak şekil değiştirme değerleri toplu olarak Tablo 3.10'da görülmektedir. Rölatif sıkılıktaki artış, model temellerin tamamında taşıma gücünde belirgin bir artışına sebep olmuştur. Ayrıca rölatif sıkılığın artmasının tüm model temellerde, zeminde meydana gelen gerilmeler ve kazık boyunca oluşacak şekil değiştirmeleri de arttırdığı görülmüştür. Model radye temele kazık ilave edildiğinde zeminde oluşan gerilmelerin artarak daha derine ulaştığı belirlenmiştir (Şekiller 3.34, 3.35, 3.36 ve 3.37).

Model	Yük (kN)	Rölatif Sıkılık (Dr)	Deplasman (mm)	Düşey Gerilme Artışı (kPa)	Gerilme (kPa)
				PG-1= 94,5	SG-1=1.048,6
	0,460	30%	16,000	PG-2= 62,3	SG-2= 665,2
Tals Kasult				PG-3= 41,0	SG-3=190,4
TEK KAZIK			10,000	PG-1= 186,4	SG-1= 2.812,5
	1,105	70%		PG-2= 112,3	SG-2= 1.885,2
				PG-3= 65,2	SG-3= 659,7
				PG-1= 188,6	-
	3,430	30%		PG-2= 161,7	-
Radye			- 16,000	PG-3= 134,8	-
Temel	8,890	70%		PG-1= 342,7	_
				PG-2= 306,5	-
				PG-3= 268,7	-
	6,047	30%		PG-1= 571,4	SG-1=1.419,8
77 11				PG-2= 324,3	SG-2=948,6
Kazikli Radve			16,000	PG-3= 211,5	SG-3= 284,5
Temel		70%	10,000	PG-1= 1.324,0	SG-1= 4.150,7
	16,084			PG-2= 762,5	SG-2= 2.863,6
				PG-3= 473,5	SG-3= 1.055,7
				PG-1= 285,8	-
77 11	3,430	30%	8,003	PG-2= 162,2	-
Kazikli Radve				PG-3= 105,8	-
Temel				PG-1= 688,5	-
	8,890	70%	7,838	PG-2= 396,5	-
				PG-3= 246,2	-

Tablo 3.10. D=20 mm, S=4D, L=200 mm için Dr=%30 ve Dr=%70 zemin durumunda gerilme değerleri

Şekil 3.34. Nümerik analizler sonucunda elde edilen model radye temel (B=160mm) için Mises gerilme dağılımı (a) Dr=%30, (b) Dr=%70

Şekil 3.35. Nümerik analizler sonucunda elde edilen model radye temel (B=160mm) için düşey yer değiştirmler (a) Dr=%30, (b) Dr=%70

Şekil 3.36. Nümerik analizler sonucunda elde edilen model kazıklı radye temel için B=160 mm, L=200, S=4D durumunda Mises gerilme dağılımı (a) $D_r=\%30$, (b) $D_r=\%70$

Şekil 3.37. Nümerik analizler sonucunda elde edilen model kazıklı radye temel için B=160 mm, L=200 mm, S=4D durumunda düşey yer değiştirmeler (a) Dr=%30, (b) Dr=%70

3.2.2. Farklı Rölatif Sıkılıklarda L=300 mm İçin Gerilme Dağılışlarının Nümerik Tespiti

Farklı sıkılıklarda ($D_r=\%30$, $D_r=\%70$) L=300 mm, kazık çapı sabit olmak (D=20mm) üzere ABAQUS programında nümerik analizler yapılmıştır. Şekil 3.38'de model radye, kazıklar ve kazıklı radyede D=20 mm, L=300, B=160 mm, $D_r=\%30$ ve $D_r=\%70$ durumu için elde edilen yük-oturma eğriler görülmektedir. Radye temel, kazıklar ve kazıklı radye temelin yük-oturma ilişkisi arasında belirgin farklılık vardır. Radye temele ait yük-oturma eğrisi başlangıçta belli bir oturmaya karşılık gelen değere kadar eğimi yüksek iken; oturmanın ilerlemesiyle eğimi azalmıştır. Kazık ilavesi radye temelin rijitliğini yani belirli bir yük artışına karşılık gelen oturmaları azalttığı görülmüştür.

Şekil 3.38. D=20 mm, L=300 mm, B=160, S=4D için tek kazık, radye ve kazıklı radye temele ait yük-oturma eğrileri (a) Dr=%30, (b)= Dr=%70

Farklı rölatif sıkılıklara (Dr=%30 ve Dr=%70) sahip zeminlerde L=300 mm durumunda model radye, kazık ve kazıklı radye temellerin sebep olacakları gerilme ve kazık boyunca oluşacak şekil değiştirme değerleri toplu olarak Tablo 3.11'de görülmektedir. Rölatif sıkılıktaki artış model temellerin tamamında taşıma gücünde belirgin bir artışına sebep olmuştur. Ayrıca rölatif sıkılığın artmasının tüm model temellerde, zeminde meydana gelen gerilmeler ve kazık boyunca oluşacak şekil değiştirmeleri arttırdığı görülmüştür (Şekiller 3.39 ve 3.40). Model radye temele kazık ilave edildiğinde zeminde oluşan gerilmelerin artarak daha derine ulaştığı belirlenmiştir. Kazık boylarını arttırmak gerilmelerin derinlere aktarılmasını ve zeminin taşıma gücünün artmasını olumlu etkilemiştir.

Model	Yük (kN)	Rölatif Sıkılık (Dr)	Deplasman (mm) Düşey Gerilme Artışı (kPa)		Gerilme (kPa)
		30%	10000	PG-1= 133,4	SG-1= 1.595,4
	0,659			PG-2= 88,3	SG-2=1.073,8
Talt Kardt				PG-3= 48,8	SG-3= 319,1
TEK KAZIK			10,000	PG-1= 302,6	SG-1= 3.978,3
	1,603	70%		PG-2= 185,0	SG-2= 2.756,9
				PG-3= 95,4	SG-3=961,6
				PG-1= 188,6	-
	3,430	30%	16,000	PG-2= 161,7	-
Radye				PG-3= 134,8	
Temel	8,890	70%		PG-1= 342,7	-
				PG-2= 306,5	-
				PG-3= 268,7	-
	7,895	30%	- 16,000	PG-1= 803,4	SG-1= 2.545,8
				PG-2= 446,1	SG-2=1,628,7
Kazıklı Roduc				PG-3= 304,7	SG-3= 505,1
Temel		70%		PG-1= 1.654,8	SG-1= 6.450,3
Temer	18,481			PG-2= 876,5	SG-2= 4.503,1
				PG-3= 557,6	SG-3= 1.597,7
				PG-1= 301,9	-
77 11	3,430	30%	6,067	PG-2= 182,7	-
Kazıklı Padva				PG-3= 129,3	-
Temel		70%		PG-1=959,8	-
renter	8,890		6,648	PG-2= 508,3	-
				PG-3= 323,4	-

Tablo 3.11. D=20 mm, S=4D, L=300 mm için Dr=%30 ve Dr=%70 zemin durumunda gerilme değerleri

Şekil 3.39. Nümerik analizler sonucunda elde edilen model kazıklı radye temel için B=160 mm, L=300, S=4D durumunda Mises gerilme dağılımı (a) $D_r=\%30$, (b) $D_r=\%70$

Şekil 3.40. Nümerik analizler sonucunda elde edilen model kazıklı radye temel için B=160 mm, L=300 mm, S=4D durumunda düşey yer değiştirmeler (a) Dr=%30, (b) Dr=%70

Nümerik modelleme ile zemin ortamındaki düşey gerilme artışları, model temellerin yük-oturma ilişkileri ve kazık boyunca şekil değiştirmeleri elde edilmiştir. Elde edilen model sonuçlarını gerçek davranışı yansıtmada ne ölçüde başarılı olduğunu değerlendirmek üzere deneysel sonuçlarla karşılaştırılmıştır. Şekil 3.41'de kısa kazık durumu için (L=200 mm) nümerik ve deneysel çalışmalara ait yük-oturma eğrileri görülmektedir. Her iki rölatif sıkılıkta (%30 ve %70) kazıklı radye için nümerik olarak elde edilen yük-oturma eğrisi deneysel yük-oturma eğrisi ile uyum içindedir. Mohr-Coulomb malzeme modeli akma durumuna kadar yük-deplasman ilişkileri lineer olduğundan nümerik modelde kazıklı radye için doğrusal yakın bir yük-oturma ilişki belirlenmiştir. Model deneylerde ise yük-oturma ilişkisi belirgin bir şekilde non-linear olmuştur. Yani düşük yük mertebelerinde büyük rijitlik ve yükün artışıyla birlikte rijitlikte azalma gözlenmiştir. Radye temel için nümerik modelleme ile elde edilen yük-oturma eğrisi, deneysel eğri ile nihai yükler açısından uyumludur. Bununla birlikte yük-oturma eğilimleri açısından uyumlu değildir. Nümerik modelle elde edilen yük-oturma eğrisi düşük yükler için büyük rijitlik gösterirken, yükün artışıyla birlikte rijitlik azalmaktadır. Deneysel çalışma ve nümerik model ile tek kazık için elde edilen yük-oturma ilişkisi, hem nihai yük hem de eğilim açısından birbiriyle uyumludur.

Şekil 3.41. D=20 mm, L=200 mm, B=160, S=4D için tek kazık, radye ve kazıklı radye temele ait yük-oturma eğrileri (a) Dr=%30, (b) Dr=%70

Radye temel, kazıklı radye temel ve kazıkların yüklemeyle birlikte zeminde oluşturdukları düşey gerilme artışları toplu olarak Tablo 3.12'de görülmektedir. Deneysel çalışmalarda ölçülen düşey gerilme artışları ile nümerik modelden belirlenen düşey gerilme artışları uyum içinde olup aralıklarındaki farklılık %10 seviyesindedir. Model deneylerle belirlenen düşey gerilme artışları derinlikle azalmakta olup, bu azalma düşük rölatif sıkılıkta (%30) nümerik model sonuçları ile uyum içindedir. Yüksek rölatif sıkılıktaki (%70) kum zemine oturan model temellerle yapılan deneylerde ölçülen düşey gerilme artışları kazıklı radye temel için nümerik modelle uyumludur. Bu sıkılıkta model tek kazık ve radye temelin yüklenmesiyle ölçülen düşey gerilme artışları, nümerik modelle ciddi farklılıklar göstermektedir.

Tablo 3.12. $D_r=\%30-\%70$, D=20 mm, S=4D, L=200 mm için deneysel ve nümerik çalışma ile elde edilen düşey gerilme artışları

Rölatif Sıkılık (Dr)	Model	Yük (kN) Deneysel	Yük (kN) Nümerik	Oturma (mm) Deneysel	Oturma (mm) Nümerik	Düşey Gerilme Artışı (Deneysel) (kPa)	Düşey Gerilme Artışı (Nümerik) (kPa)
	Tek Kazık		0,460			PG-1= 84,3	PG-1=94,5
		0,415		16,000	16,000	PG-2= 56,1	PG-2= 62,4
						PG-3= 30,9	PG-3=41,2
	Doduo					PG-1=169,7	PG-1= 188,6
Dr=%30	Temel	3,182	3,430	16,000	16,000	PG-2=145,9	PG-2=161,7
						PG-3=123,40	PG-3= 134,8
	Kazıklı Radye Temel	5,357	6,047	16,000	16,000	PG-1=505,7	PG-1= 571,5
						PG-2=287,8	PG-2= 324,3
						PG-3=185,6	PG-3=211,6
	Tek Kazık	0,984	1,105	16,000	16,000	PG-1=165,1	PG-1=186,5
						PG-2=97,6	PG-2=112,3
						PG-3=51,9	PG-3= 65,2
	D - J	8,246	8,890	16,000		PG-1=315,0	PG-1= 342,7
Dr=%70	Kadye				16,000	PG-2=279,6	PG-2= 306,5
	Temer					PG-3= 245,5	PG-3= 268,7
	Kazıklı		16,084	16,000		PG-1=1261,3	PG-1=1324,1
	Radye	14,315			16,000	PG-2=718,4	PG-2=762,5
	Temel					PG-3=466,9	PG-3= 473,5

Şekil 3.42'de uzun kazık durumu için (L=300 mm) nümerik ve deneysel çalışmalara ait yük-oturma eğrileri görülmektedir. Gevşek kum zemine oturan kazıklı radye temelin deneysel yük-oturma eğrisi, nümerik modelden elde edilen eğri ile uyum halindedir. Fakat sıkı kum durumunda ve düşük yük seviyelerinde, deneysel yük-oturma eğrisi yüksek rijitlikten dolayı nümerik yük-oturma eğrisinden farklılık göstermektedir. Radye temel için nümerik modelleme ile elde edilen yük-oturma eğrisi, deneysel eğri ile nihai yükler açısından uyumludur. Bununla birlikte yük-oturma eğrisi düşük yükler için büyük rijitlik gösterirken, yükün artışıyla birlikte rijitlik azalmaktadır. Deneysel çalışma ve nümerik model ile tek kazık için elde edilen yük-oturma ilişkisi, nihai yük açısından uyumlu iken eğilim açısından uyumlu değildir.

Şekil 3.42. D=20 mm, L=300 mm, B=160, S=4D için tek kazık, radye ve kazıklı radye temele ait yük-oturma eğrileri (a) Dr=%30, (b) Dr=%70

Radye temel, kazıklı radye temel ve kazıkların yüklemeyle birlikte zeminde oluşturdukları düşey gerilme artışları uzun kazık durumu için toplu olarak Tablo 3.13'de görülmektedir. Deneysel çalışmalarda ölçülen düşey gerilme artışları ile nümerik modelden belirlenen düşey gerilme artışları her iki rölatif sıkılıkta da uyum içinde olup; aralıklarındaki farklılık %10 seviyesindedir. Model deneylerle belirlenen düşey gerilme artışları derinlikle azalmaktadır. Kazıklı radye için düşük ve yüksek rölatif sıkılıkta deneysel olarak belirlenen düşey gerilme artışları nümerik sonuçlarla uyumludur.

Tablo 3.13. $D_r=\%30-\%70$, D=20 mm, S=4D, L=300 mm için deneysel çalışma sonucunda belirlenen düşey gerilme artışları ve şekil değiştirme değerleri

Rölatif Sıkılık (Dr)	Model	Yük (kN) Deneysel	Yük (kN) Nümerik	Oturma (mm) Deneysel	Oturma (mm) Nümerik	Düşey Gerilme Artışı (Deneysel) (kPa)	Düşey Gerilme Artışı (Nümerik) (kPa)
	Tak					PG-1=120,3	PG-1=133,5
Dr=%30	Tek Kozik	0,589	0,659	16,000	16,000	PG-2= 82,0	PG-2= 88,41
	Kazik					PG-3= 47,3	PG-3=48,8
	Kazıklı Radye Temel	6,949	7,895	16,000		PG-1=711,5	PG-1= 803,4
					16,000	PG-2= 383,8	PG-2= 446,1
						PG-3= 268,0	PG-3= 304,7
	T 1		1,603	16,000		PG-1=270,6	PG-1= 302,6
	Tek	1,427			16,000	PG-2=164,0	PG-2=185,0
Dr=%70	Kazik					PG-3= 85,1	PG-3=95,4
	Kazıklı		18,481	16,000		PG-1= 1576,7	PG-1= 1654,8
	Radye	17,694			16,000	PG-2= 921,0	PG-2= 876,5
	Temel					PG-3= 598,5	PG-3= 557,6

4. SONUÇLAR VE ÖNERİLER

Bu çalışmada, kazıklı radye temellerin tasarım değişkenlerinin yük aktarma mekanizması, taşıma gücü ve yük-oturma ilişkisi üzerine etkisinin araştırılması amaçlanmıştır. Bu amaca yönelik olarak bir model deney düzeneği oluşturulmuş ve kazık, radye, kazıklı temel ve kazıklı radye durumlarını içerecek şekilde yükleme deneyleri yapılmıştır. Söz konusu deneylerle; kazıklar arası optimum mesafe, kazık grup verimi, kazık-radye arasında yük paylaşımı ve kazıklı radye temellerde gerilme dağılışları incelenmiştir. Ayrıca farklı kazık uzunlukları için kazık boyunca şekil değiştirmeler ölçülerek kazıkla zemin arasında kayma gerilmelerinin oluşumu irdelenmiştir. Deney düzeneğinin ABAQUS sonlu elemanlar programında bir nümerik modeli oluşturulmuş olup, deneylerdeki yüklemelerin bazıları için simülasyonları yapılmıştır. Yapılan deneysel ve sayısal çalışmalar sonunda elde edilen başlıca sonuçlar ve öneriler aşağıda sıralanmıştır:

- Çeşitli boyutlardaki model kazıklı radye temellerle, farklı rölatif sıkılıktaki (%30 ve %70) kum zeminde yapılan taşıma gücü deneylerinde, kazık aralığının (S) kazık çapının (D) dört katına kadar artmasıyla taşıma gücünde önemli artışlar oluşmuştur. Bu aralıktan sonra kazık aralığındaki artış, taşıma gücünde bir miktar azalmaya sebep olmuştur. Yapılan tüm deneysel çalışmalarda, kum zemine oturan kazıklı radye temellerde optimum kazık aralığı, kazık çapının dört katı (S=4D) olarak belirlenmiştir. Ayrıca optimum kazık aralığının; kazık uzunluğu (L), kazık çapı (D) ve rölatif sıkılıktan (D_r) etkilenmediğini görülmüştür.
- Gevşek kum durumunda kazıklı radye temellerde kazıklar, radye temele göre taşıma gücünde %42-129 oranlarında artışa sebep olmaktadır. Benzer şekilde, sıkı kum zeminde kazıklı radye temellerdeki kazıklar, taşıma gücünde radye temele göre %74-124 arasında artışa sebep olmaktadır. Yani kazıklı radye temellerde, kazıklar taşıma gücünde önemli artışa sebep olmaktadır ve taşıma gücü artış oranı üzerinde, kazık uzunluğu (L), kazık çapı (D) ve rölatif sıkılığın (D_r) etkilidir.

- Farklı rölatif sıkılığa sahip kum zeminde, farklı geometrik özelliklere sahip model radye ve kazıklı radye temel yüklenmiştir. Böylece, radye (Q_R), kazıklar (Q_K) ve kazıklı radyeye (Q_{KR}) ait yük-oturma eğrileri elde edilmiştir. Gevşek kum zeminde kısa kazık durumu için oturma başlangıcında, kazıklar yükün büyük bir miktarını taşıyorken; oturmanın artmasıyla birlikte radyenin yük paylaşım oranı (Q_R/Q_K) artmıştır. Uzun kazık durumunda ise oturma başlangıcında kazıkların yük paylaşım oranı kısa kazık durumuna göre belirgin şekilde yüksek olup; oturmanın artması ile birlikte bu oran azalmıştır. Nihai yükler açısından değerlendirildiğinde, gevşek kuma oturan kazıklı radye temellerde radyenin yük paylaşım oranı, kazık boyuna ve çapına bağlı olarak %44-59 aralığında değişmektedir.
- Sıkı kum zeminde kısa kazık durumu (L=200 mm) için oturma başlangıcında, radye yükün büyük bir kısmını taşıyorken; oturmanın artmasıyla birlikte radyenin yük paylaşım oranı azalmıştır. Uzun kazık durumu (L=300) için oturma başlangıcında kazıkların yük paylaşım oranı, kısa kazık durumuna göre çok yüksek olup; oturmanın artması ile birlikte bu oran büyük ölçüde azalmış ancak kısa kazıklarında yük paylaşım oranının altına inmemiştir. Nihai yükler açısından değerlendirildiğinde, gevşek kuma oturan kazıklı radye temellerde radyenin yük paylaşım oranı, kazık boyuna ve çapına bağlı olarak %45-58 aralığında değişmektedir.
- Kazıklı radye temellerle, radye ve kazıkların yük paylaşım oranları üzerinde rölatif sıkılığın yaklaşık %1-2, kazık boyunun ise %11-14 mertebesinde etkili olduğu görülmüştür.
- Zemine sürülen kazıkların kohezyonsuz zeminlerdeki imalatı esnasında zeminde sıkışmaya yol açtıklarından yatay gerilmelerin de artmasına sebep olmaktadır. Bu durum da, bu tür kazıkların yüksek grup verimine sahip olmasına neden olmaktadır. Grup içerisindeki kazıklarda grup etkisinin minimum seviyede kaldığı kazıklar arası optimum mesafenin 4D olduğu durumda, her iki sıkılıkta da, grup veriminde artışlar belirlenmiştir. Yani, gevşek kumda kazık boyuna (L) ve sayısına (N) bağlı olarak grup veriminde

%26-51 oranında bir artış belirlenmiştir. Sıkı kumda ise kazık boyuna ve sayısına bağlı olarak %31-65 oranında bir artış tespit edilmiştir.

- Kazıklı radye temellerle, grup içindeki kazık verimi kazık sayısına bağlı olarak değişmektedir. Kazık sayısı üçü geçmesi (N≥3) durumunda grup veriminin kararlı davrandığı belirlenmiştir. Yani, kazık sayısının 3'ten büyük olması durumunda kazık sayısıyla birlikte grup veriminde önemli bir değişiklik olmamaktadır.
- Nümerik modelde, deney kumu Mohr-Coulomb malzeme modeli ile modellenmiştir. Her iki rölatif sıkılıkta (%30 ve %70) kazıklı radye için nümerik model ile elde edilen yük-oturma eğrisi, deneysel yük-oturma eğrisi ile taşıma gücü ve yük-oturma davranışı açısından uyumludur. Yani, granüler zemine oturan kazıklı radye temeller modellenirken Mohr-Coulomb malzeme modeli zemin ortamını modelleme kullanılabilir.
- Deneysel çalışmalarda farklı rölatif sıkılıklardaki granüler zeminde ölçülen düşey gerilme artışları ile nümerik modelden belirlenen düşey gerilme artışları uyum içinde olup aralıklarındaki farklılık %10 seviyesindedir. Kazıklı radye temellerin zeminde oluşturduğu gerilme artışlar, nümerik modellerle yeterli doğrulukta tespit edilebilir.
- Kum zeminlerdeki kazıklı radye temellerde, radye zemin yüzeyinden itibaren düşey gerilme artışlarına sebep olduğu için zemin-kazık kayma gerilmeleri tekil kazıktan farklı oluşmaktadır. Bu tür zeminlerde, kazık boyunca kayma gerilmeleri tekil kazık için alt kısımda yüksek oluşur. Fakat kazıklı radye temelin kazıklarında, üst kısımda daha büyük kayma gerilmeleri oluşmaktadır.
- Kazıklı radye temeller son yıllarda oldukça ön plana çıkmasına rağmen konuyla ilgili az sayıda çalışma mevcuttur. Bu konu, farklı zemin ve kazıklı radye temel konfigürasyonlarında halen araştırılmamış olup, yatay ve dinamik yük etkisindeki kazıklı radyelerin davranışıyla ilgili çalışmalar yetersizdir. Bu hususları değerlendirecek deneysel, analitik ve nümerik çalışmaların yürütülmesi önerilmektedir.

5. KAYNAKLAR

Abaqus/CAE v 6.12 Documentation, Dassault Systèmes, 2011.

- Ashton, W. D. and Schwartz, P. H., 1974. H-Bearing Piles in Limestone and Clay Shales, Journal of Geotechnical Engineering, ASCE, 100, GT7, 787-806.
- A.S.T.M., 2017. Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis, D-6913, American Society for Testing and Materials, West Conshohocken, 34.
- A.S.T.M., 2006. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, D-854, American Society for Testing and Materials, West Conshohocken, 8.
- A.S.T.M., 2011. Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, D-3080 American Society for Testing and Materials, West Conshohocken, 9.
- Bakholdin. B.V., 2003. Piled-raft foundations design and characteristics of construction procedures, <u>Soil Mechanics and Foundation Engineering</u>, 40, 5, 185-189.
- Bajad, S. P. ve Sahu, R. B., 2008. An Experimental Study on the Behaviour of Vertically Loaded Piled Raft on Soft Clay, The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), India, 84-91.
- Barvashov, V. A. ve Boldyrev, G. G., 2009. Experimental and theoretical research on analytical models of piled-raft foundations, <u>Soil Mechanics and Foundation</u> <u>Engineering</u>, 46, 5, 207–217.
- Birand, A. A., 2007. Kazıklı temeller, 2. Baskı, Teknik Yayınevi, Ankara.
- Burland, J. B., 1995. Piles as Settlement Reducers, 19th National Italian Geotechnical Conference, Pavia, Italy, 21-34.
- Briaud, J. L., Tucker, L., Lytton, R. L. ve Coyle, H. M., 1985, Behavior of piles and pile groups in cohesionless soil, Federal Highway Administration, Rapor No: FHWA/RD-83/038, Washington, DC.
- Bnaik, N. ve Desai A. K., 2011. Effectiveness of piled raft foundation for seismic performance of tall buildings. Building and Construction. (Report).
- Bolin, H. W., 1941. The pile efficiency formula of the uniform building code, <u>Building</u> <u>Standarts Monthly</u>, 10, 1, 4-5.

- Bowles, J. E., 1996. Foundation analysis and design, 5th ed., The McGraw-Hill Companies, Inc.
- Briaud, J.L. ve Jeanjean, P., 1994. Load settlement curve method for spread footings on sand, <u>Vertical and Horizontal Deformations of Foundations and Embankments</u>, ASCE, 2, 1774-1804.
- Burland, J. B., 1973. "Shaft Friction Piles in Clay-A Simple Fundamental Approach"
- Butterfield, R. and Banerjee, P.K., 1971. The problem of pile group-pile cap interaction, <u>Géotechnique</u>, 21, 2, 135-142.
- Cao. X.D., Wong. I.H. ve Chang. M., 2004. Behavior of model rafts resting on pilereinforced sand, <u>Journal of Geotechnical and Geoenvironmental Engineering</u>, 130, 2, 129-138.
- Chellis, R. D., 1961. Pile Foundations, Mc Graw-Hill, 103.
- Chow. H. S. W. ve Small. J. C., 2005. Behaviour of piled rafts with piles of different lengths and diameters under vertical loading. Advances in Deep Foundations. doi: 10.1061/40778(157)20 1-15.
- Coduto, D. P., 2001. Foundation Design: Principles and Practices, Second Edition, Prentice Hall, Upper Saddle River NJ.
- Cooke, R.W., 1986. Piled Raft Foundations on Stiff Clays-A Contribution to Design Philosophy, <u>Géotechnique</u>, 36, 2, 169-203.
- Das, M. B., 1998. Principles of Foundation Engineering, Pws-Kent Pub., California, <u>Ground</u> <u>Engineering</u>, 6, 30-42.
- Das, B. M., 2000. "Principles of foundation engineering", Thomson Canada Limited, 6. Baskı, Kanada.
- Debeer, E.E., 1970. Experimental determination of the shape factors and the bearing capacity factors of sand, <u>Geotechnique</u>, 20, 4, 387-411.
- Deshpande, S.S. ve Thakare, S.W., 2017. Performance of piled raft foundation subjected to non-uniform load, <u>International Journal of Civil Engineering and Technology</u>, 8, 4, 1603-1613
- Dutte, T, T ve Saride, S., 2015. "Effect of confining pressure, relative density and shear strain on the poisson's ratio of clean sand" 50th Indian Geotechnical Conference, December.
- Erdemir, N., ve Okur. V., 2011. Kazık Gruplarının Sismik Etki Altındaki Performansı, <u>Eskişehir Osmangazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi</u>, 24, No.1, 91-107.

- Ergun M. U. ve Türkmen H. K., 2007a-2007b. Kazıklı Radye Temellerin Etkin Tasarımı. 1031007 nolu Tübitak Projesi, Ankara.
- Eslami, A. ve Fellenius, B. H., 1995. "Pile Capacity Estimated from CPT Data", 14.ICSMGE, Hamburg, 1. Baskı, 91-94.
- Fattah, M. Y., Yousif, M. A. ve Al-Tameemi, Sarmad, M.K., 2015. Effect of pile group geometry on bearing capacity of piled raft foundations, <u>Structural Engineering and</u> <u>Mechanics</u>, 54, 5, 829-853
- Feld, J., 1943. Discussion on Frictional Pile Foundation. Trans., ASCE, 108, 143-144.
- Fleming, K., Weltman, A., Randolph, M.F., ve Elson, K., 2009. Piling Engineering, (3rd Ed.), Oxford, Taylor&Francis.
- Fioravante. V., Giretti. D. ve Jamiolkowski. M., 2008. "Physical modeling of raft on settlement reducing piles." Symposium Honoring Dr. John H. Schmertmann for His Contributions to Civil Engineering at Research to Practice in Geotechnical Engineering Congress 2008. New Orleans. Louisiana. United States. March 9-12.
- Fioravante. V. ve Giretti. D., 2010. Contact versus noncontact piled raft foundations, <u>Geotech. J.</u>, 47. 1271–1287.
- Fraser, R.A. and Wardle, L. J., 1976. Numerical analysis of rectangular rafts on layered foundations, <u>Geotechnique</u>, 26, 4, 613.
- Garg, K. G., 1979. Bored pile groups under vertical load in sand, <u>Journal of the Geotechnical</u> <u>Engineering Division</u>, Asce, 105, 8, 939-955.
- Gök, S., 2007. Kazıklı Radye Temellerin Analizi. Doktora Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 101.
- Gök. S. ve Toğrol. E., 2009. Basitleştirilmiş kazıklı radye hesabı, <u>İtü Mühendislik Dergisi</u>, 8, 5, 149-156.
- Hartmann. F. ve Jahn. P., 2001. Boundary element analysis of raft foundations on piles, Meccanica, 36, 351-366.
- Horvath, J.S., 1993. Subgrade Modeling Jr Soil-Structure Interaction Analysis Of Horizontal Foundation Elements, Manhattan College Research Report No. Celge-93-I, Manhattan College, New York.
- Horvath, J.S., 2002. Soil-Structure Interaction Research Project Basic SSI Concepts And Applications Overview, Manhattan College Research Report No. Cgt-2002-2, Manhattan College, New York.

- Ismael N., F., 2001. Axial load tests on pile and pile group in cemented sands, <u>Journal of</u> <u>Geotechnical and Geoenvironmental Engineering</u>, 127, 9, 767-783.
- Keskin, M. S., 2009. Güçlendirilmiş Kumlu Şevlere Oturan Yüzeysel Temellerin Deneysel ve Teorik. Doktora Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana.
- Kanada Geoteknik Birliği, 1985. Canadian Foundation Engineering Manual, 2. Baskı, Canadian Geotechnical Society, Vancover, Canada, 456.
- Katzenbach. R., Bachmann. G., Boled-mekasha. G. ve Ramm. H., 2005. Combined pile raft foundations (cprf): an appropriate solution for the foundations of high-rise buildings. <u>Slovak Journal of Civil Engineering</u>, 3, 19 – 29.
- Kishida H., Matsushita K. ve Sakamoto I., 1969. Soil-Structure Interaction of the Elevator Tower and Concrete Footings. Proceedings of the 4th World Conference on Earthquake Engineering, 3, 101–115.
- Kulhawy, F. ve Ark, 1983. Transmission line structure foundations for uplift-compression loading, Rep. No. EL- 2870, Electric Power Research Institute, Palo Alto, California.
- Kulhawy, F. H. 1991. Drilled Shaft Foundations. Foundation Engineering Handbook. , 2nd Ed., Chap. 14, H.-Y. Fang ed., Van Nostrand Reinhold, New York.
- Kuwabara, F., 1989. An Elastic Analysis for Piled Raft Foundations in Homogeneous Soils, Soils and Foundations, 29, 1, 82-92.
- Leung. Y.D., Klar. A. ve Soga. K., 2010. Theoretical study on pile length optimization of pile groups and piled rafts, J. Geotech. Geoenviron. Eng., 136, 2, 319–330.
- Liang. F.Y., Chen. L.Z. ve Shi. X.G., 2003. Numerical analysis of composite piled raft with cushion subjected to vertical load, <u>Computers and Geotechnics</u>, 30, 443-453.
- Liang. F.Y. ve Chen. L.Z., 2004. A modified variational approach for analysis of piled raft foundation, <u>Mechanics Research Communications</u>, 31, 593-604.
- Liang. F., Chen. L. ve Han. J., 2009, Integral equation method for analysis of piled rafts with dissimilar piles under vertical loading, <u>Computers and Geotechnics</u>, 36, 419-426.
- Liao, S.S.C., 1991. Estimating the coefficient of subgrade reaction for tunnel design, Internal research report, Parsons Brinkerhoff, Inc.
- Lin. D. ve Feng. Z., 2006. A numerical study of piled raft foundations, Journal of the Chinese Institute of Engineers, 29, 6, 1091-1097.
- Lopes, F. R., 2000. Design of raft foundations on winkler springs in design applications of raft foundations, Thomas Telford Publications, London, 127-155.

- Lutenegger, A.J. ve Adams, M.T., 1998. Bearing Capacity of Footings on Compacted Sand. Proceedings of the 4th International Conference on Case Histories in Geotechnical Engineering, 1216-1224.
- Meyerhof, G. G., 1956. "Penetration Test and Bearing Capacity of Cohesionless Soils", Journal of Soil Mechanics and Foundation Division, ASCE, 82, 1-19.
- Meyerhof, G. G., 1976. "Bearing Capacity and Settlement of Pile Foundations", <u>Journal of</u> <u>Geotechnical Engineering Division</u>, 102.
- Meyerhof, G. G., 1983. Scale effects of pile capacity, <u>Journal of Geotechnical Engineering</u> <u>Division</u>, ASCE, 102, 1985-228.
- Mayne, P.W. ve Poulos, H.G., 1999, Approximate displacement influence factors for elastic shallow foundations, <u>Jnl. Geot. & Geoenv. Emg</u>., ASCE, 125, 6, 453-460.
- Mendonça. A.V. ve De Paiva. J.B., 2000. A boundary element method for the static analysis of raft foundations on piles, <u>Engineering Analysis with Boundary Elements</u>, 24, 237-247.
- Mendonça. A.V., Paiva. J.B., 2003. An elastostatic FEM/BEM analysis of vertically loaded raft and piled raft foundation, <u>Engineering Analysis with Boundary Elements</u>, 27, 919-933.
- Netzel, D., 1996. Flachengründungen aus Sicht des Konstruktiven Ingenieurbaus, <u>Bautechnik</u>, 73, 582-594.
- Nguyen, D. D. C., JO, S. B. and Kim, D. S., 2013. Design method of piled-raft foundations under vertical load considering interaction effects, <u>Computers and Geotechnics</u>, 47, 16-27.
- Nguyen, D. D. C., Nguyen, V., Abdoun, T., Kim, D. S. ve Jo, B. S., 2017. Piled raft foundation design: A method to consider interaction effects, 19th International Conference on Soil Mechanics and Geotechnical Engineering, September, South Korea, 2727-2730
- Nottingham, L. C., 1975. Use of quasi-static friction cone penetrometer data to estimate capacity of displacement piles", Doktora Tezi, Florida Üniversitesi, 553.
- Omeman, Z.M., 2012. Load sharing of piled-raft foundations in sand subjected to vertical loads, Doktora Tezi, Concordia University.
- Örnek, M, 2009. Yumuşak Kil Zeminlerin Geogrid Donatı ile Güçlendirilmesi, Doktora Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana, 318.
- Öztürk. K., 2008. Piled raft applications. Y.Lisans Tezi. Dokuz Eylül University, Graduate School of Natural Applied Sciences, İzmir.

- Patil, J. D., Vasanwala, S. A. ve Solanki, C. H., 2014. An Experimental Investigation on Behavior of Piled Raft Foundation, <u>International Journal of Geomatics and Geosciences</u>, 5, 2, 300-311.
- Poulos, H.G. and Davis, E. H., 1980. Pile Foundation Analysis and Design. Wiley, New York.
- Poulos, H.G., 1989. Pile Behaviour Theory and Application. <u>Geotechnique</u>, 39, 3, 365-415.
- Poulos, H.G., 1991. Analysis of piled strip foundations, 7th International Conference on Computer Methods and Advances in Geomechanics, Australia, 1, 183-191.
- Poulos, H.G., 1993. Piled rafts in swelling or consolidating soils, <u>ASCE Journal of</u> <u>Geotechnical Engineering</u>, 119, 2, 374-380.
- Poulos, H.G., 1994. Alternative design strategies for piled raft foundations, 3rd International Conference on Deep Foundation Practice Incorporating PILETALK'94, Singapore, 239-244.
- Poulos, H. G., 2001. Practical design of piled rafts in design applications of raft foundations, London, 127 - 155.
- Poulos, H. G., Carter, J. P., and Small, J. C., 2001. Foundations and Retaining Structures -Research and Practice, State of the Art Lecture, 14th International Congress on Soil Mechanics and Geotechnical Engineering, İstanbul.
- Poulos. H.G., 2001b. Methods of analysis of piled raft foundations. ISSMGE TC18 Subcommittee 1 Report.
- Poulos. H.G., 2001. Methods of analysis of piled raft foundations. A Report Prepared on Behalf of Technical Committee TC18 on Piled Foundations, International Society of Soil Mechanics and Geotechnical Engineering.
- Poulos. H.G., 2010. High-rise building foundations- a limit state design approach. Art of Foundation Engineering Practice Congress, Florida, 20-24.
- Prakash, S. ve Sharma, H. D., 1990. Pile foundations in engineering practice, John Wiley and Sons, New York.
- Prakoso. W.A. ve Kulhawy. F.H., 2001. Contribution to piled raft foundation design, <u>Journal</u> of Geotechnical and Geoenvironmental Engineering, 127, 17-24.
- Reul. O., 2004. Numerical study of the bearing behavior of piled rafts, <u>Int. J. Geomech</u>, 4, 2, 59–68.

- Reul. O. ve Randolph. M.F., 2004, Design strategies for piled raft subjected to nonuniform vertical loading, Journal of Geotech. Geoenviron. Eng., 130, 1, 1-13.
- Randolph, M. F., 1994. Design Methods for Pile Groups and Piled Rafts, 13th ICSMFE, New Delhi, India, 61-82.
- Rajapakse, R., 2008. Pile design and construction rules of thumb, Elsevier Inc., Oxford, UK.
- Russo, G., 2008. Analysis and Performance of piled rafts designed using innovative criteria, J. of Geotech. And Geoenv. Eng., 134, 8, 1118-1128.
- Sanctis, L. ve Mandolini. A., 2006. Bearing capacity of piled rafts on soft clay soils. <u>Journal</u> <u>Of Geotechnical And Geoenvironmental Engineering</u>, 132, 12, 1600-1610.
- Sawwaf, M., 2010. Experimental study of eccentrically Loaded Raft with connected and unconnected short Piles, <u>Journal of Geotechnical and Geoenvironmental Engineering</u>, 136, 10.
- Schanz, T. ve Vermeer, P. A., 1996. Angles of friction and dilatancy of sand, <u>Geotechnique</u>, 46, 1, 145-151
- Sawada, K. ve Takemura, J., 2014. Centrifuge model tests on piled raft foundation in sand subjected to lateral and moment loads, <u>Soil and Foundation</u>, 54, 2, 126-140
- Sayed, S. M. ve Bakeer R. M., 1992. Efficiency Formula for Pile Groups, <u>Journal of</u> <u>Geotechnical Enginerring</u>, ASCE, 118, 2, 278-299.
- Seiler, J. F. ve Kenney, W. D., 1944. The efficiency of piles in group, <u>Wood Preserving</u> <u>News</u>, 22, 11, 109-118.
- Sharafkhan, M. ve Shooshpasha, I., 2018. A laboratory study of the effect of piles asymmetric arrangement on the behavior of piled raft foundation in sand, <u>International</u> Journal of Geotechnical Engineering, February, 1-12
- Shioi, Y. ve Fukui, J., 1982. Application of N-value to design of foundations in Japan, Proceedings, Second European Symposium on Penetration Testing, 1. Baski, 159-164.
- Small. J.C., 2000. Analysis of capped pile groups subjected to horizontal and vertical loads. <u>Computers and Geotechnics</u>, 26, 1-21.
- Smoltyzck, U., 2006. Grundbau-Taschenbuch, Ernst Verlag.
- Small. J.C. ve Zhang. H.H., 2002. Behavior of piled raft foundations under lateral and vertical loading, <u>The International Journal of Geomechanics</u>, 2, 1, 29-45.
- Sönmez, D. D., 1994. Orta sıkılıktaki kumdaki kazık gruplarının negatif sürtünmesi ile ilgili bir model çalışma, Yüksek Lisans Tezi, Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 89.

- Ta. L.D., Small. J.C., 1997. An approximation for analysis of raft and piled raft foundations, <u>Computers and Geotechnics</u>, 20, 2, 105-123.
- Tan Y.C. ve Chow. C.M., 2004. Design of piled raft foundation on soft ground, Director. Gue&Partners sdn bhd, Kuala Lumpur, Malaysia.
- Tejchman A., 1973. Model Investigation of pile groups in sand, <u>Journal of the Soil</u> <u>Mechanics Foundation Division</u>, ASCE, USA, 99, SM2, 199–217.
- Terzaghi, K. ve Peck, R.B., 1968. Soil Mechanics in Engineering Practice, 2nd Edition, Wiley, New York.
- Thompson, C. D. ve Thompson, D. E., 1985. Real and apparent relaxation of driven piles, Journal of Geotech., ASCE, 3, 2, 225-237.
- Toğrol, E. ve Tan, O., 2009. Kazıklı temeller, Birsen Yayınevi, İstanbul.
- Tomlinson, M.J., 2001. Foundation design and construction, 7th Edition, Prentice Hall.
- Tomlinson, M.J., 2004. Pile design and construction practice, Chapman and Hall, London, UK.
- Trautmann, C.H. ve Kulhawy, F.H., 1998. Uplift load-displacement behavior of spread foundations, Journal of Geotechnical Engineering, ASCE, 114, 2, 168-183
- Türkmen, H.K., 2008. An experimental study into bearing of rigid piled rafts under vertical loads, Doktora Tezi, Middle East Technical University Graduate School of Natural and Applied Sciences. Ankara.
- Uzuner. B.A., 2013. Temel mühendisliğine giriş. Derya Kitabevi. Trabzon.
- Van Impe, W.F., 1991. Deformation of deep foundations, 10th ECSMFE, Florence, Italy, 3,1031-1062.
- Vesic, A. S., 1968. Load transfer in pile soil systems, Proceeding Conference and Design Installation of Piled Foundations, Lehigh University, Bettlehem, 47-73.
- Vesic, A. S., 1970. Tests on instrumented piles, Ogeechee River Sid, <u>Journal of Soil</u> <u>Mechanics and Foundation Division</u>, ASCE, 561-584.
- Vesic, A. S., 1977. Design of pile foundations, Transportation Research Board, National Research Council, Washington DC.
- Vijayvergia, V. N. ve Focht, J. A., 1972. A new way to predict capacity of piles in clay, 4. Offshore Technology Conference, Houston, TX.

- Vu, A.ve Ark, 2014. 3D finite element analysison behaviour of piled raft foundations, 4th International Conference on Civil Engineering, Architecture and Building Materials, China, 580-583
- Wang, C., Zhou. S., Wang.B. ve Wang. X., 2010. Centrifuge model tests on settlement controlling of piled raft composite foundation in high speed railway, ICCTP 2010: Integrated Transportation Systems, 2942-2953.
- Watcharasawe, K., Kitiyodom, P. ve Jongpradist, P., 2015. Numerical Analyses of Piled Raft Foundation in Soft Soil Using 3D-FEM, <u>Geotechnical Engineering Journal of the</u> <u>SEAGS & AGSSEA</u>, 46, 1, ISSN 0046-5828
- Winkler, E., 1867. Die lehre von elastizitat und festigkeit, H. Dominicus, Prag.
- Xu, Y. ve Zhang, L. M., 2007, Settlement ratio of pile groups in sandy soils from field load tests, J. of Geotech. And Geoenv. Eng., 133, 8, 1048-1054.
- Yalçın, A. ve İncecik. M., 2010. Kazıklı yayılı temeller ile yayılı temellerin düşey ve yatay yükler altında davranışlarının karşılaştırılması, Zemin Mekaniği ve Temel Mühendisliği 13.Ulusal Kongresi, 2, 635, İstanbul Kültür Üniversitesi, İstanbul.
- Yazıcı, A. G., 2013. Kazıklar arası mesafenin kazıklı radye temel Sisteminde etkisinin iki ve üç boyutlu analizi, Yüksek Lisans Tezi, Niğde Üniversitesi, Fen Bilimleri Enstitüsü, Niğde, 75.
- York, D. L. ve Leahy, R. J., 1979. Experiences with heave and relaxation of end bearing piles, Associated Pile and Fitting Corp, Pile Talk Seminer, New York, 73-85.
- Zeinkiewicz, O. C., 1977. The Finite Element Method, McGraw-Hill, 3, 23-56.
- Ziaie-Moayed, R., Kamalzare, M. ve Safavian, M. 2010. Evaluation of piled raft foundations behavior with different dimensions of piles, <u>Journal of Applied Sciences</u>, 10, 13, 1320-1325.
- Zhang, L., Silva, F ve Grismala, R., 2005. Ultimate lateral resistance to piles in cohesionless soils, Journal of Geotechnical and Geoenvironmental Engineering, 131, 1, 78-83.

6. EKLER

16x16 F Dr=	tadye- 0.3	Sopt-D S=2D-1 -D=20-	r=0.3- L=200 B=160	Sopt-D S=3D-1 -D=20-1	:=0.3- Sopt- .=200 S=4D 3=160 -D=20		Dr=0.3- -L=200 -B=160	Sopt-Dr=0.3- S=5D-L=200 -D=20-B=160		Sopt-Dr=0.3- S=6D-L=200 -D=20-B=160	
Load Cell(kN)	LVDT (mm)	L.C. (kN)	LVDT (mm)	L.C. (kN)	LVDT (mm)	L.C. (kN)	LVDT (mm)	L.C. (kN)	LVDT (mm)	L.C. (kN)	LVDT (mm)
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,171	0,500	0,156	0,500	0,289	0,500	0,383	0,500	0,367	0,500	0,292	0,500
0,298	1,000	0,365	1,000	0,517	1,000	0,745	1,000	0,704	1,000	0,518	1,000
0,423	1,500	0,558	1,500	0,730	1,500	0,964	1,500	0,889	1,500	0,713	1,500
0,549	2,000	0,751	2,000	0,941	2,000	1,192	2,000	1,090	2,000	0,877	2,000
0,676	2,500	0,945	2,500	1,153	2,500	1,438	2,500	1,274	2,500	1,047	2,500
0,782	3,000	1,110	3,000	1,334	3,000	1,645	3,000	1,434	3,000	1,214	3,000
0,900	3,500	1,284	3,500	1,524	3,500	1,885	3,500	1,597	3,500	1,374	3,500
0,997	4,000	1,437	4,000	1,692	4,000	2,097	4,000	1,753	4,000	1,523	4,000
1,100	4,500	1,594	4,500	1,864	4,500	2,319	4,500	1,895	4,500	1,661	4,500
1,205	5,000	1,734	5,000	2,018	5,000	2,577	5,000	2,057	5,000	1,843	5,000
1,302	5,500	1,871	5,500	2,167	5,500	2,802	5,500	2,222	5,500	1,961	5,500
1,389	6,000	2,029	6,000	2,340	6,000	3,002	6,000	2,348	6,000	2,128	6,000
1,511	6,500	2,171	6,500	2,496	6,500	3,142	6,500	2,512	6,500	2,290	6,500
1,625	7,000	2,313	7,000	2,652	7,000	3,308	7,000	2,645	7,000	2,444	7,000
1,738	7,500	2,445	7,500	2,796	7,500	3,450	7,500	2,817	7,500	2,558	7,500
1,830	8,000	2,558	8,000	2,920	8,000	3,640	8,000	2,945	8,000	2,732	8,000
1,905	8,500	2,690	8,500	3,064	8,500	3,769	8,500	3,087	8,500	2,893	8,500
2,010	9,000	2,837	9,000	3,225	9,000	3,918	9,000	3,242	9,000	3,040	9,000
2,079	9,500	2,982	9,500	3,385	9,500	4,050	9,500	3,397	9,500	3,191	9,500
2,167	10,000	3,101	10,000	3,515	10,000	4,179	10,000	3,526	10,000	3,338	10,000
2,262	10,500	3,272	10,500	3,702	10,500	4,279	10,500	3,679	10,500	3,486	10,500
2,333	11,000	3,401	11,000	3,843	11,000	4,419	11,000	3,816	11,000	3,620	11,000
2,408	11,500	3,541	11,500	3,997	11,500	4,530	11,500	3,978	11,500	3,765	11,500
2,506	12,000	3,711	12,000	4,184	12,000	4,629	12,000	4,092	12,000	3,891	12,000
2,579	12,500	3,851	12,500	4,336	12,500	4,737	12,500	4,237	12,500	4,013	12,500
2,685	13,000	3,978	13,000	4,475	13,000	4,822	13,000	4,372	13,000	4,154	13,000
2,771	13,500	4,104	13,500	4,614	13,500	4,919	13,500	4,492	13,500	4,306	13,500
2,847	14,000	4,200	14,000	4,719	14,000	5,019	14,000	4,633	14,000	4,403	14,000
2,906	14,500	4,292	14,500	4,820	14,500	5,097	14,500	4,747	14,500	4,525	14,500
2,992	15,000	4,438	15,000	4,979	15,000	5,191	15,000	4,851	15,000	4,658	15,000
3,096	15,500	4,567	15,500	5,121	15,500	5,270	15,500	4,984	15,500	4,773	15,500
3,182	16.000	4.648	16.000	5.210	16.000	5.357	16.000	5.080	16,000	4,909	16.000

Ek-1. Kazıklar Arası Optimum Mesafenin Tespiti İçin Yapılan Deney Sonuçları
16x16 R Dr=	ladye- 0.3	Sopt-I S=2D- -D=20	Dr=0.3- ·L=300 -B=160	Sopt-D S=3D-1 -D=20-]	r=0.3- L=300 B=160	Sopt-l S=4D -D=20	Dr=0.3- -L=300)-B=160	Sopt-Dr=0.3- S=5D-L=300 -D=20-B=160		Sopt- S=6I -D=2	Dr=0.3- D-L=300 D-B=160
Load Coll(kN)	LVDT	L.C.	LVDT	L.C.	LVDT	L.C.	LVDT (mm)	L.C.	LVDT	L.C.	LVDT
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.171	0.500	0.646	0.500	0.784	0.500	0.647	0.500	0.647	0.500	0.740	0.500
0.298	1.000	1.063	1.000	1.192	1.000	0.867	1.000	0.897	1.000	1.113	1,000
0.423	1.500	1.214	1.500	1.507	1.500	1.211	1.500	1.100	1.500	1.391	1,500
0,549	2,000	1,524	2,000	1,741	2,000	1,520	2,000	1,293	2,000	1,641	2,000
0,676	2,500	1,617	2,500	1,962	2,500	1,814	2,500	1,469	2,500	1,852	2,500
0,782	3,000	1,771	3,000	2,263	3,000	2,079	3,000	1,628	3,000	2,028	3,000
0,900	3,500	1,909	3,500	2,417	3,500	2,344	3,500	1,803	3,500	2,186	3,500
0,997	4,000	2,130	4,000	2,633	4,000	2,583	4,000	1,982	4,000	2,335	4,000
1,100	4,500	2,155	4,500	2,911	4,500	2,816	4,500	2,162	4,500	2,469	4,500
1,205	5,000	2,278	5,000	3,104	5,000	3,055	5,000	2,349	5,000	2,609	5,000
1,302	5,500	2,422	5,500	3,277	5,500	3,296	5,500	2,513	5,500	2,774	5,500
1,389	6,000	2,521	6,000	3,458	6,000	3,510	6,000	2,688	6,000	2,888	6,000
1,511	6,500	2,628	6,500	3,623	6,500	3,745	6,500	2,874	6,500	3,010	6,500
1,625	7,000	2,763	7,000	3,813	7,000	3,963	7,000	3,060	7,000	3,165	7,000
1,738	7,500	2,890	7,500	3,985	7,500	4,173	7,500	3,251	7,500	3,310	7,500
1,830	8,000	3,041	8,000	4,142	8,000	4,392	8,000	3,447	8,000	3,483	8,000
1,905	8,500	3,165	8,500	4,307	8,500	4,596	8,500	3,627	8,500	3,625	8,500
2,010	9,000	3,316	9,000	4,543	9,000	4,794	9,000	3,806	9,000	3,798	9,000
2,079	9,500	3,442	9,500	4,696	9,500	4,984	9,500	3,994	9,500	3,942	9,500
2,167	10,000	3,569	10,000	4,858	10,000	5,179	10,000	4,216	10,000	4,129	10,000
2,262	10,500	3,703	10,500	5,025	10,500	5,342	10,500	4,415	10,500	4,338	10,500
2,333	11,000	3,939	11,000	5,181	11,000	5,524	11,000	4,618	11,000	4,511	11,000
2,408	11,500	4,090	11,500	5,361	11,500	5,737	11,500	4,819	11,500	4,685	11,500
2,506	12,000	4,277	12,000	5,539	12,000	5,891	12,000	5,034	12,000	4,899	12,000
2,579	12,500	4,516	12,500	5,712	12,500	6,049	12,500	5,248	12,500	5,068	12,500
2,685	13,000	4,600	13,000	5,857	13,000	6,204	13,000	5,458	13,000	5,269	13,000
2,771	13,500	4,841	13,500	6,028	13,500	6,352	13,500	5,670	13,500	5,440	13,500
2,847	14,000	4,882	14,000	6,181	14,000	6,479	14,000	5,875	14,000	5,592	14,000
2,906	14,500	5,119	14,500	6,377	14,500	6,600	14,500	6,043	14,500	5,758	14,500
2,992	15,000	5,212	15,000	6,463	15,000	6,717	15,000	6,225	15,000	5,970	15,000
3,096	15,500	5,348	15,500	6,618	15,500	6,830	15,500	6,431	15,500	6,126	15,500
3.182	16.000	5.609	16.000	6,745	16.000	6,949	16.000	6.599	16.000	6.283	16.000

16x16 F Dr=	Radye- 0.7	Sopt-D S=2D- -D=20-	0r=0.7- L=200 ·B=160	Sopt-I S=3D- -D=20	Dr=0.7- -L=200 -B=160	Sopt-E S=4D- -D=20-	Dr=0.7- L=200 ·B=160	Sopt-I S=5D- -D=20	Dr=0.7- L=200 -B=160	Sopt-I S=6D- -D=20-	Dr=0.7- L=200 -B=160
Load	LVDT	L.C.	LVDT	L.C.	LVDT	L.C.	LVDT	L.C.	LVDT	L.C.	LVDT
	(mm)	(KN)	(mm)	(kN)	(mm)	(KN)	(mm)	(KN)	(mm)	(KN)	(mm)
1.002	0,000	1.464	0,000	2,255	0,000	1,727	0,000	1,772	0,000	1.814	0,000
1,005	1,000	1,404	1,000	2,235	1,000	2 201	1,000	2 240	1,000	2 267	1,000
1,524	1,000	2,470	1,000	2,099	1,000	2,291	1,000	2,240	1,000	2,207	1,000
2.055	2,000	2,470	2,000	2 209	2,000	2,039	2,000	2,075	2,000	2,070	2,000
2,035	2,000	2 526	2,000	3,398	2,000	3,526	2,000	2 5 5 7	2,000	2 408	2,000
2,415	2,300	3,320	2,300	5,750	2,300	3,802	2,300	2,092	2,300	2 792	2,300
2,785	3,000	4,000	3,000	4,151	3,000	4,554	3,000	3,985	3,000	3,785	3,000
3,185	3,500	4,048	3,500	4,562	3,500	4,790	3,500	4,374	3,500	4,144	3,500
2,977	4,000	5,155	4,000	5 205	4,000	5,230	4,000	4,803	4,000	4,460	4,000
1.262	5,000	6.001	5,000	5,505	5,000	5,087	5,000	5,210	5,000	4,039	5,000
4,202	5,000	6 766	5,000	5,000	5,500	6,619	5,000	5,015	5,000	5 204	5,000
4,054	5,500	7,000	5,500	6,007	5,300	7,120	6,000	5,990	6,000	5,294	6,000
5 275	6,500	7,233	6 500	6.802	6,500	7,120	6 500	6 975	6 500	6.085	6 500
5 578	7,000	8 145	7,000	7 157	7,000	8.075	7,000	7 306	7,000	6.447	7,000
5.842	7,000	8 530	7,000	7,137	7,500	8 5 6 5	7,000	7,300	7,000	6 786	7,000
6.113	8,000	8,926	8,000	7,869	8,000	9.077	8,000	8 174	8,000	7 1/3	8,000
6 364	8 500	9,720	8 500	8 288	8 500	9.536	8 500	8 586	8 500	7 510	8 500
6 572	9,000	9 596	9,000	8 717	9,000	9.965	9,000	8 982	9,000	7 863	9,000
6741	9,500	9.842	9,500	0,188	9,500	10.420	9,500	0,702	9,500	8 241	9,500
6.930	10,000	10 118	10,000	9,188	10,000	10,420	10,000	9,385	10,000	8 600	10,000
7 112	10,000	10,110	10,000	0.073	10,000	11,200	10,000	10.000	10,000	8 940	10,000
7 283	11,000	10,504	11,000	10 336	11,000	11,277	11,000	10,070	11,000	9 308	11,000
7,205	11,000	10,837	11,000	10,330	11,000	12,006	11,000	10,449	11,000	9,500	11,000
7 560	12,000	11 039	12 000	11 079	12,000	12,000	12 000	11 122	12,000	10.010	12 000
7 684	12,000	11,039	12,000	11,077	12,000	12,552	12,000	11 438	12,000	10,385	12,000
7 790	13,000	11 375	13,000	11 798	13,000	12,001	13,000	11,130	13,000	10,723	13,000
7 900	13,500	11,575	13,500	12 065	13,500	13 232	13,500	11,962	13,500	11.058	13,500
7,988	14,000	11,664	14,000	12,383	14,000	13,502	14,000	12,202	14,000	11,418	14,000
8.073	14,500	11,788	14,500	12,781	14,500	13,782	14,500	12,460	14,500	11.741	14,500
8,126	15,000	11.866	15.000	13.051	15,000	13,972	15,000	12,692	15,000	12,066	15,000
8,202	15,500	11,976	15,500	13,495	15,500	14,165	15,500	12,925	15,500	12,424	15,500
8,245	16,000	12,039	16,000	13,807	16,000	14,315	16,000	13,105	16,000	12,777	16,000

16x16 R Dr=	adye- 0.7	Sopt-E S=2D- -D=20-)r=0.7- L=300 ·B=160	Sopt-E S=3D- -D=20-)r=0.7- L=300 ·B=160	Sopt-l S=4D -D=20	Dr=0.7- -L=300 -B=160	Sopt-D S=5D-] -D=20-	r=0.7- L=300 B=160	Sopt-l S=6D -D=20	Dr=0.7- -L=300 -B=160
Load	LVDT	L.C.	LVDT	L.C.	LVDT	L.C.	LVDT	L.C.	LVDT	L.C.	LVDT
Cell(kN)	(mm)	(kN)	(mm)	(kN)	(mm)	(kN)	(mm)	(kN)	(mm)	(kN)	(mm)
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1,003	0,500	2,651	0,502	2,993	0,500	5,756	0,500	1,806	0,500	3,527	0,500
1,324	1,000	3,190	0,995	3,637	1,000	6,816	1,000	2,428	1,000	4,992	1,000
1,691	1,500	3,671	1,496	4,232	1,500	7,495	1,500	3,020	1,500	6,350	1,500
2,055	2,000	4,107	1,998	4,771	2,000	8,013	2,000	3,557	2,000	7,568	2,000
2,415	2,500	4,506	2,510	5,269	2,500	8,462	2,500	4,056	2,500	8,459	2,500
2,785	3,000	4,898	3,002	5,874	3,000	8,887	3,000	4,598	3,000	9,073	3,000
3,183	3,500	5,296	3,499	6,318	3,500	9,336	3,500	5,121	3,500	9,575	3,500
3,515	4,000	5,655	4,010	6,780	4,000	9,737	4,000	5,634	4,000	9,987	4,000
3,877	4,500	6,063	4,498	7,233	4,500	10,157	4,500	6,132	4,500	10,339	4,500
4,262	5,000	6,434	5,014	7,744	5,000	10,573	5,000	6,615	5,000	10,670	5,000
4,634	5,500	6,821	5,502	8,173	5,500	11,000	5,500	7,074	5,500	11,030	5,500
4,954	6,000	7,203	5,999	8,641	6,000	11,416	6,000	7,526	6,000	11,317	6,000
5,275	6,500	7,603	6,510	9,109	6,500	11,779	6,500	8,013	6,500	11,585	6,500
5,578	7,000	8,010	7,003	9,584	7,000	12,154	7,000	8,522	7,000	11,868	7,000
5,842	7,500	8,372	7,505	10,034	7,500	12,555	7,500	8,979	7,500	12,112	7,500
6,113	8,000	8,811	7,988	10,474	8,000	12,930	8,000	9,463	8,000	12,328	8,000
6,364	8,500	9,218	8,499	10,855	8,500	13,269	8,500	9,966	8,500	12,552	8,500
6,572	9,000	9,619	9,001	11,276	9,000	13,662	9,000	10,439	9,000	12,816	9,000
6,741	9,500	10,046	9,498	11,776	9,500	13,991	9,500	10,959	9,500	13,057	9,500
6,930	10,000	10,481	10,005	12,228	10,000	14,322	10,000	11,397	10,000	13,267	10,000
7,112	10,500	10,847	10,502	12,654	10,500	14,635	10,500	11,782	10,500	13,456	10,500
7,283	11,000	11,252	10,999	13,112	11,000	14,987	11,000	12,199	11,000	13,675	11,000
7,421	11,500	11,627	11,496	13,499	11,500	15,287	11,500	12,650	11,500	13,877	11,500
7,560	12,000	12,044	11,998	13,940	12,000	15,579	12,000	13,034	12,000	14,072	12,000
7,684	12,500	12,430	12,500	14,249	12,500	15,907	12,500	13,449	12,500	14,268	12,500
7,790	13,000	12,843	13,002	14,663	13,000	16,150	13,000	13,892	13,000	14,528	13,000
7,900	13,500	13,244	13,508	15,053	13,500	16,517	13,500	14,272	13,500	14,724	13,500
7,988	14,000	13,665	14,001	15,386	14,000	16,785	14,000	14,677	14,000	14,913	14,000
8,073	14,500	14,068	14,508	15,807	14,500	17,026	14,500	15,071	14,500	15,109	14,500
8,126	15,000	14,373	15,009	16,145	15,000	17,263	15,000	15,465	15,000	15,337	15,000
8,202	15,500	14,725	15,497	16,495	15,500	17,492	15,500	15,827	15,500	15,509	15,500
8,245	16,000	15,095	16,018	16,794	16,000	17,694	16,000	16,202	16,000	15,665	16,000

24x24 R Dr=(adye-).3	Sopt-l S=2D -D=30	Dr=0.3- -L=200 -B=240	Sopt- S=3D -D=30	Dr=0.3- -L=200 0-B=240	Sopt-E S=4D- -D=30-	0r=0.3- L=200 ⋅B=240	Sopt-D S=5D-1 -D=30-1	r=0.3- L=200 B=240	Sopt-D S=6D-I -D=30-]	r=0.3- L=200 B=240
Load Cell(kN)	LVDT (mm)	L.C. (kN)	LVDT (mm)	L.C. (kN)	LVDT (mm)	L.C. (kN)	LVDT (mm)	L.C. (kN)	LVDT (mm)	L.C. (kN)	LVDT (mm)
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,229	0,500	0,678	0,500	0,783	0,500	0,874	0,500	0,710	0,500	1,063	0,500
0,451	1,000	1,118	1,000	1,306	1,000	1,436	1,000	1,137	1,000	1,639	1,000
0,681	1,500	1,486	1,500	1,771	1,500	1,898	1,500	1,494	1,500	2,015	1,500
0,903	2,000	1,810	2,000	2,185	2,000	2,371	2,000	1,804	2,000	2,339	2,000
1,122	2,500	2,077	2,500	2,582	2,500	2,811	2,500	2,090	2,500	2,596	2,500
1,345	3,000	2,331	3,000	2,939	3,000	3,192	3,000	2,356	3,000	2,816	3,000
1,585	3,500	2,553	3,500	3,243	3,500	3,599	3,500	2,632	3,500	2,997	3,500
1,794	4,000	2,779	4,000	3,559	4,000	3,983	4,000	2,910	4,000	3,198	4,000
2,002	4,500	2,991	4,500	3,865	4,500	4,337	4,500	3,177	4,500	3,375	4,500
2,228	5,000	3,200	5,000	4,147	5,000	4,708	5,000	3,444	5,000	3,537	5,000
2,428	5,500	3,391	5,500	4,431	5,500	5,076	5,500	3,732	5,500	3,713	5,500
2,641	6,000	3,572	6,000	4,731	6,000	5,426	6,000	3,979	6,000	3,883	6,000
2,839	6,500	3,764	6,500	4,987	6,500	5,781	6,500	4,257	6,500	4,036	6,500
3,050	7,000	3,944	7,000	5,272	7,000	6,134	7,000	4,527	7,000	4,209	7,000
3,234	7,500	4,118	7,500	5,542	7,500	6,467	7,500	4,790	7,500	4,369	7,500
3,428	8,000	4,310	8,000	5,821	8,000	6,784	8,000	5,052	8,000	4,532	8,000
3,597	8,500	4,484	8,500	6,085	8,500	7,118	8,500	5,313	8,500	4,715	8,500
3,787	9,000	4,647	9,000	6,350	9,000	7,417	9,000	5,583	9,000	4,892	9,000
3,970	9,500	4,822	9,500	6,613	9,500	7,703	9,500	5,811	9,500	5,069	9,500
4,140	10,000	5,009	10,000	6,885	10,000	8,001	10,000	6,064	10,000	5,247	10,000
4,300	10,500	5,206	10,500	7,108	10,500	8,297	10,500	6,330	10,500	5,435	10,500
4,455	11,000	5,385	11,000	7,340	11,000	8,555	11,000	6,590	11,000	5,622	11,000
4,619	11,500	5,570	11,500	7,583	11,500	8,816	11,500	6,839	11,500	5,834	11,500
4,773	12,000	5,768	12,000	7,824	12,000	9,083	12,000	7,089	12,000	6,064	12,000
4,915	12,500	5,964	12,500	8,050	12,500	9,335	12,500	7,315	12,500	6,284	12,500
5,070	13,000	6,140	13,000	8,251	13,000	9,574	13,000	7,558	13,000	6,477	13,000
5,207	13,500	6,336	13,500	8,471	13,500	9,781	13,500	7,796	13,500	6,687	13,500
5,339	14,000	6,517	14,000	8,688	14,000	9,990	14,000	8,007	14,000	6,910	14,000
5,479	14,500	6,684	14,500	8,904	14,500	10,194	14,500	8,207	14,500	7,128	14,500
5,611	15,000	6,872	15,000	9,091	15,000	10,379	15,000	8,436	15,000	7,355	15,000
5,737	15,500	7,039	15,500	9,295	15,500	10,567	15,500	8,622	15,500	7,560	15,500
5,847	16,000	7,209	16,000	9,477	16,000	10,742	16,000	8,820	16,000	7,778	16,000
5,970	16,500	7,412	16,500	9,666	16,500	10,910	16,500	9,011	16,500	7,994	16,500
6,087	17,000	7,565	17,000	9,845	17,000	11,065	17,000	9,190	17,000	8,208	17,000
6,212	17,500	7,714	17,500	10,008	17,500	11,205	17,500	9,355	17,500	8,423	17,500

6,311	18,000	7,917	18,000	10,188	18,000	11,350	18,000	9,512	18,000	8,647	18,000
6,419	18,500	8,065	18,500	10,343	18,500	11,475	18,500	9,687	18,500	8,853	18,500
6,516	19,000	8,231	19,000	10,487	19,000	11,611	19,000	9,868	19,000	9,040	19,000
6,609	19,500	8,393	19,500	10,648	19,500	11,725	19,500	10,012	19,500	9,245	19,500
6,712	20,000	8,571	20,000	10,793	20,000	11,840	20,000	10,157	20,000	9,450	20,000
6,795	20,500	8,716	20,500	10,935	20,500	11,962	20,500	10,311	20,500	9,629	20,500
6,877	21,000	8,873	21,000	11,074	21,000	12,069	21,000	10,457	21,000	9,809	21,000
6,966	21,500	9,017	21,500	11,185	21,500	12,180	21,500	10,589	21,500	9,979	21,500
7,051	22,000	9,158	22,000	11,311	22,000	12,275	22,000	10,719	22,000	10,173	22,000
7,136	22,500	9,298	22,500	11,442	22,500	12,391	22,500	10,845	22,500	10,349	22,500
7,214	23,000	9,464	23,000	11,549	23,000	12,501	23,000	11,004	23,000	10,497	23,000
7,293	23,500	9,586	23,500	11,678	23,500	12,613	23,500	11,120	23,500	10,654	23,500
7,359	24,000	9,725	24,000	11,772	24,000	12,688	24,000	11,235	24,000	10,810	24,000

										7	
24x24 F Dr=	kadye- 0.3	Sopt-E S=2D- -D=30-	0r=0.3- L=300 ·B=240	Sopt-1 S=3D -D=30	Dr=0.3- -L=300 -B=240	Sopt-E S=4D- -D=30-	Dr=0.3- L=300 -B=240	Sopt-I S=5D- -D=30-	Dr=0.3- L=300 -B=240	Sopt-l S=6D -D=30	Dr=0.3- -L=300 9-B=240
Load Cell(kN)	LVDT (mm)	L.C. (kN)	LVDT (mm)	L.C. (kN)	LVDT (mm)	L.C. (kN)	LVDT (mm)	L.C. (kN)	LVDT (mm)	L.C. (kN)	LVDT (mm)
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,229	0,500	1,742	0,500	2,083	0,500	2,338	0,500	2,045	0,500	1,882	0,500
0,451	1,000	2,912	1,000	2,829	1,000	3,222	1,000	3,107	1,000	3,039	1,000
0,681	1,500	3,881	1,500	3,854	1,500	4,324	1,500	3,697	1,500	3,713	1,500
0,903	2,000	4,602	2,000	4,672	2,000	5,172	2,000	4,483	2,000	4,199	2,000
1,122	2,500	5,193	2,500	5,306	2,500	5,859	2,500	5,091	2,500	5,021	2,500
1,345	3,000	5,702	3,000	5,892	3,000	6,439	3,000	5,653	3,000	5,424	3,000
1,585	3,500	6,139	3,500	6,438	3,500	6,980	3,500	6,177	3,500	6,081	3,500
1,794	4,000	6,528	4,000	6,911	4,000	7,487	4,000	6,631	4,000	6,807	4,000
2,002	4,500	6,877	4,500	7,387	4,500	7,979	4,500	7,087	4,500	7,031	4,500
2,228	5,000	7,188	5,000	7,801	5,000	8,412	5,000	7,484	5,000	7,279	5,000
2,428	5,500	7,489	5,500	8,173	5,500	8,894	5,500	7,841	5,500	7,490	5,500
2,641	6,000	7,774	6,000	8,558	6,000	9,306	6,000	8,211	6,000	7,715	6,000
2,839	6,500	8,054	6,500	8,954	6,500	9,719	6,500	8,590	6,500	7,938	6,500
3,050	7,000	8,302	7,000	9,302	7,000	10,118	7,000	8,924	7,000	8,148	7,000
3,234	7,500	8,521	7,500	9,629	7,500	10,509	7,500	9,238	7,500	8,359	7,500
3,428	8,000	8,757	8,000	9,998	8,000	10,850	8,000	9,592	8,000	8,573	8,000
3,597	8,500	8,974	8,500	10,321	8,500	11,265	8,500	9,902	8,500	8,771	8,500
3,787	9,000	9,176	9,000	10,654	9,000	11,581	9,000	10,222	9,000	8,955	9,000
3,970	9,500	9,392	9,500	10,996	9,500	11,938	9,500	10,549	9,500	9,165	9,500
4,140	10,000	9,605	10,000	11,270	10,000	12,208	10,000	10,813	10,000	9,363	10,000
4,300	10,500	9,785	10,500	11,571	10,500	12,487	10,500	11,102	10,500	9,557	10,500
4,455	11,000	9,975	11,000	11,838	11,000	12,770	11,000	11,357	11,000	9,759	11,000
4,619	11,500	10,133	11,500	12,124	11,500	13,042	11,500	11,631	11,500	9,959	11,500

4,773	12,000	10,295	12,000	12,454	12,000	13,305	12,000	11,948	12,000	10,148	12,000
4,915	12,500	10,451	12,500	12,645	12,500	13,552	12,500	12,132	12,500	10,346	12,500
5,070	13,000	10,619	13,000	12,807	13,000	13,812	13,000	12,287	13,000	10,508	13,000
5,207	13,500	10,774	13,500	13,060	13,500	14,052	13,500	12,530	13,500	10,712	13,500
5,339	14,000	10,933	14,000	13,281	14,000	14,289	14,000	12,741	14,000	10,914	14,000
5,479	14,500	11,077	14,500	13,518	14,500	14,474	14,500	12,969	14,500	11,091	14,500
5,611	15,000	11,207	15,000	13,704	15,000	14,692	15,000	13,147	15,000	11,285	15,000
5,737	15,500	11,339	15,500	13,910	15,500	14,885	15,500	13,346	15,500	11,451	15,500
5,847	16,000	11,474	16,000	14,085	16,000	15,033	16,000	13,513	16,000	11,628	16,000
5,970	16,500	11,606	16,500	14,260	16,500	15,196	16,500	13,681	16,500	11,803	16,500
6,087	17,000	11,751	17,000	14,424	17,000	15,359	17,000	13,838	17,000	11,992	17,000
6,212	17,500	11,885	17,500	14,573	17,500	15,558	17,500	13,982	17,500	12,163	17,500
6,311	18,000	12,004	18,000	14,719	18,000	15,681	18,000	14,121	18,000	12,297	18,000
6,419	18,500	12,130	18,500	14,862	18,500	15,828	18,500	14,259	18,500	12,485	18,500
6,516	19,000	12,218	19,000	15,044	19,000	15,945	19,000	14,433	19,000	12,640	19,000
6,609	19,500	12,347	19,500	15,188	19,500	16,063	19,500	14,571	19,500	12,821	19,500
6,712	20,000	12,453	20,000	15,330	20,000	16,185	20,000	14,707	20,000	12,975	20,000
6,795	20,500	12,561	20,500	15,470	20,500	16,289	20,500	14,842	20,500	13,135	20,500
6,877	21,000	12,658	21,000	15,611	21,000	16,407	21,000	14,977	21,000	13,301	21,000
6,966	21,500	12,786	21,500	15,764	21,500	16,507	21,500	15,124	21,500	13,428	21,500
7,051	22,000	12,869	22,000	15,922	22,000	16,584	22,000	15,275	22,000	13,602	22,000
7,136	22,500	12,956	22,500	16,041	22,500	16,674	22,500	15,390	22,500	13,760	22,500
7,214	23,000	13,030	23,000	16,151	23,000	16,781	23,000	15,495	23,000	13,908	23,000
7,293	23,500	13,125	23,500	16,235	23,500	16,882	23,500	15,576	23,500	14,049	23,500
7,359	24,000	13,146	24,000	16,380	24,000	16,916	24,000	15,715	24,000	14,207	24,000

24x24 R Dr=	tadye- 0.3	Sopt-Dr=0.7- S=2D-L=200 -D=30-B=240		Sopt-Dr=0.7- S=3D-L=200 -D=30-B=240		Sopt-Dr=0.7- S=4D-L=200 -D=30-B=240		Sopt-I S=5D- -D=30	Dr=0.7- ·L=200 -B=240	Sopt- S=6D -D=30	Dr=0.7- D-L=200 D-B=240
Load Cell(kN)	LVDT (mm)	L.C. (kN)	LVDT (mm)	L.C. (kN)	LVDT (mm)	L.C. (kN)	LVDT (mm)	L.C. (kN)	LVDT (mm)	L.C. (kN)	LVDT (mm)
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1,507	0,500	2,874	0,500	3,774	0,500	5,333	0,500	2,537	0,500	2,512	0,500
2,280	1,000	4,495	1,000	5,165	1,000	6,464	1,000	3,878	1,000	3,437	1,000
3,097	1,500	6,102	1,500	6,407	1,500	7,519	1,500	5,113	1,500	4,264	1,500
3,987	2,000	7,277	2,000	7,498	2,000	8,745	2,000	6,251	2,000	5,048	2,000
4,889	2,500	8,100	2,500	8,434	2,500	9,447	2,500	7,348	2,500	5,845	2,500
5,858	3,000	9,127	3,000	9,332	3,000	10,347	3,000	8,354	3,000	6,615	3,000
6,781	3,500	10,021	3,500	10,101	3,500	11,259	3,500	9,260	3,500	7,325	3,500
7,712	4,000	10,609	4,000	10,808	4,000	12,119	4,000	10,039	4,000	8,016	4,000
8,655	4,500	11,335	4,500	11,511	4,500	12,991	4,500	10,834	4,500	8,591	4,500
9,529	5,000	12,033	5,000	12,314	5,000	13,841	5,000	11,639	5,000	9,214	5,000
10,371	5,500	12,731	5,500	13,055	5,500	14,797	5,500	12,357	5,500	9,827	5,500

	11,208	6,000	13,402	6,000	13,845	6,000	15,628	6,000	13,111	6,000	10,448	6,000
	11,890	6,500	14,087	6,500	14,603	6,500	16,528	6,500	13,939	6,500	10,909	6,500
	12,515	7,000	14,675	7,000	15,324	7,000	17,370	7,000	14,661	7,000	11,441	7,000
	13,081	7,500	15,339	7,500	16,126	7,500	18,225	7,500	15,513	7,500	11,995	7,500
	13,642	8,000	15,913	8,000	16,824	8,000	19,047	8,000	16,141	8,000	12,642	8,000
	14,188	8,500	16,545	8,500	17,533	8,500	19,758	8,500	16,866	8,500	13,171	8,500
	14,670	9,000	17,094	9,000	18,318	9,000	20,637	9,000	17,635	9,000	13,744	9,000
	15,139	9,500	17,673	9,500	19,097	9,500	21,423	9,500	18,481	9,500	14,378	9,500
	15,599	10,000	18,224	10,000	19,780	10,000	22,224	10,000	19,315	10,000	14,989	10,000
	16,011	10,500	18,646	10,500	20,532	10,500	22,968	10,500	20,052	10,500	15,600	10,500
	16,411	11,000	19,156	11,000	21,361	11,000	23,695	11,000	20,751	11,000	16,224	11,000
	16,768	11,500	19,713	11,500	22,114	11,500	24,457	11,500	21,593	11,500	16,868	11,500
	17,112	12,000	20,254	12,000	22,865	12,000	25,186	12,000	22,396	12,000	17,325	12,000
-	17,452	12,500	20,771	12,500	23,525	12,500	25,864	12,500	23,175	12,500	17,964	12,500
	17,753	13,000	21,246	13,000	24,234	13,000	26,561	13,000	23,965	13,000	18,592	13,000
	18,032	13,500	21,701	13,500	24,930	13,500	27,221	13,500	24,711	13,500	19,237	13,500
	18,284	14,000	22,242	14,000	25,685	14,000	27,825	14,000	25,271	14,000	19,893	14,000
	18,554	14,500	22,763	14,500	26,350	14,500	28,471	14,500	25,982	14,500	20,447	14,500
	18,797	15,000	23,303	15,000	27,007	15,000	29,102	15,000	26,685	15,000	21,027	15,000
	19,037	15,500	23,845	15,500	27,692	15,500	29,684	15,500	27,304	15,500	21,691	15,500
	19,245	16,000	24,352	16,000	28,306	16,000	30,242	16,000	27,803	16,000	22,344	16,000
	19,407	16,500	24,863	16,500	28,947	16,500	30,724	16,500	28,405	16,500	22,933	16,500
	19,596	17,000	25,322	17,000	29,545	17,000	31,095	17,000	29,025	17,000	23,603	17,000
	19,769	17,500	25,651	17,500	30,139	17,500	31,582	17,500	29,611	17,500	24,220	17,500
	19,915	18,000	26,131	18,000	30,719	18,000	31,941	18,000	30,132	18,000	24,751	18,000
	20,036	18,500	26,565	18,500	31,289	18,500	32,358	18,500	30,644	18,500	25,402	18,500
	20,104	19,000	27,008	19,000	31,814	19,000	32,765	19,000	30,993	19,000	25,903	19,000
	20,190	19,500	27,372	19,500	32,032	19,500	33,086	19,500	31,494	19,500	26,536	19,500
	20,258	20,000	27,664	20,000	32,392	20,000	33,432	20,000	31,795	20,000	27,167	20,000
	20,323	20,500	27,986	20,500	32,463	20,500	33,826	20,500	32,223	20,500	27,759	20,500
	20,413	21,000	28,354	21,000	32,613	21,000	34,228	21,000	32,655	21,000	28,233	21,000
	20,454	21,500	28,673	21,500	33,045	21,500	34,551	21,500	33,080	21,500	28,851	21,500
	20,471	22,000	28,938	22,000	33,795	22,000	34,908	22,000	33,325	22,000	29,393	22,000
	20,481	22,500	29,230	22,500	34,144	22,500	35,295	22,500	33,676	22,500	29,894	22,500
	20,489	23,000	29,541	23,000	34,437	23,000	35,601	23,000	34,025	23,000	30,418	23,000
	20,493	23,500	29,860	23,500	34,941	23,500	35,910	23,500	34,314	23,500	30,952	23,500
	20,477	24,000	30,117	24,000	35,586	24,000	36,245	24,000	34,600	24,000	31,390	24,000

24x24 l Dr=	Radye- :0.3	Sopt-l S=2D -D=30	Dr=0.7- -L=300 -B=240	Sopt-D S=3D- -D=30-	0r=0.7- L=300 ·B=240	Sopt-D S=4D- -D=30-	0r=0.7- L=300 ⋅B=240	Sopt-I S=5D- -D=30	Dr=0.7- ·L=300 -B=240	Sopt-D S=6D- -D=30-	Dr=0.7- L=300 ·B=240
Load Cell(kN)	LVDT (kN)	L.C. (kN)	LVDT (mm)	L.C. (kN)	LVDT (mm)	L.C. (kN)	LVDT (mm)	L.C. (kN)	LVDT (mm)	L.C. (kN)	LVDT (mm)
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1,507	0,500	3,182	0,500	3,333	0,500	6,755	0,500	2,909	0,500	3,993	0,500
2,280	1,000	4,976	1,000	4,622	1,000	8,187	1,000	4,419	1,000	5,945	1,000
3,097	1,500	6,755	1,500	6,053	1,500	9,524	1,500	5,906	1,500	7,401	1,500
3,987	2,000	8,056	2,000	7,372	2,000	11,077	2,000	7,145	2,000	8,450	2,000
4,889	2,500	8,967	2,500	8,634	2,500	11,966	2,500	8,285	2,500	9,364	2,500
5,858	3,000	10,104	3,000	9,781	3,000	13,106	3,000	9,308	3,000	10,103	3,000
6,781	3,500	11,093	3,500	10,863	3,500	14,262	3,500	10,211	3,500	10,756	3,500
7,712	4,000	11,744	4,000	11,855	4,000	15,350	4,000	11,060	4,000	11,348	4,000
8,655	4,500	12,548	4,500	12,720	4,500	16,456	4,500	11,817	4,500	11,899	4,500
9,529	5,000	13,321	5,000	13,589	5,000	17,532	5,000	12,536	5,000	12,444	5,000
10,371	5,500	14,093	5,500	14,346	5,500	18,743	5,500	13,264	5,500	12,964	5,500
11,208	6,000	14,836	6,000	15,068	6,000	19,796	6,000	13,926	6,000	13,512	6,000
11,890	6,500	15,594	6,500	15,768	6,500	20,936	6,500	14,659	6,500	14,063	6,500
12,515	7,000	16,245	7,000	16,501	7,000	22,002	7,000	15,361	7,000	14,689	7,000
13,081	7,500	16,980	7,500	17,241	7,500	23,086	7,500	16,061	7,500	15,205	7,500
13,642	8,000	17,616	8,000	17,914	8,000	24,126	8,000	16,757	8,000	15,812	8,000
14,188	8,500	18,315	8,500	18,632	8,500	25,027	8,500	17,473	8,500	16,423	8,500
14,670	9,000	18,923	9,000	19,314	9,000	26,141	9,000	18,185	9,000	17,038	9,000
15,139	9,500	19,564	9,500	19,943	9,500	27,136	9,500	18,942	9,500	17,699	9,500
15,599	10,000	20,174	10,000	20,678	10,000	28,151	10,000	19,679	10,000	18,372	10,000
16,011	10,500	20,641	10,500	21,403	10,500	29,093	10,500	20,474	10,500	19,047	10,500
16,411	11,000	21,206	11,000	22,176	11,000	30,014	11,000	21,260	11,000	19,727	11,000
16,768	11,500	21,822	11,500	22,924	11,500	30,980	11,500	22,005	11,500	20,408	11,500
17,112	12,000	22,421	12,000	23,667	12,000	31,902	12,000	22,837	12,000	21,096	12,000
17,452	12,500	22,993	12,500	24,422	12,500	32,761	12,500	23,597	12,500	21,702	12,500
17,753	13,000	23,519	13,000	25,210	13,000	33,644	13,000	24,387	13,000	22,426	13,000
18,032	13,500	24,023	13,500	25,970	13,500	34,481	13,500	25,207	13,500	23,130	13,500
18,284	14,000	24,622	14,000	26,794	14,000	35,245	14,000	26,092	14,000	23,824	14,000
18,554	14,500	25,199	14,500	27,571	14,500	36,064	14,500	26,761	14,500	24,517	14,500
18,797	15,000	25,796	15,000	28,400	15,000	36,863	15,000	27,477	15,000	25,141	15,000
19,037	15,500	26,396	15,500	29,146	15,500	37,600	15,500	28,200	15,500	25,895	15,500
19,245	16,000	26,958	16,000	29,966	16,000	38,307	16,000	28,927	16,000	26,590	16,000
19,407	16,500	27,523	16,500	30,685	16,500	38,918	16,500	29,693	16,500	27,278	16,500
19,596	17,000	28,031	17,000	31,420	17,000	<u>39</u> ,387	17,000	30,470	17,000	27,980	17,000
19,769	17,500	28,396	17,500	32,177	17,500	40,004	17,500	31,225	17,500	28,699	17,500
19,915	18,000	28,927	18,000	32,875	18,000	40,460	18,000	31,906	18,000	29,342	18,000
20,036	18,500	29,407	18,500	33,582	18, <u>5</u> 00	40 <u>,9</u> 88	<u>18,5</u> 00	<u>32,6</u> 07	18,500	<u>29,9</u> 67	<u>18,5</u> 00
20,104	19,000	29,898	19,000	34,301	19,000	41,503	19,000	33,278	19,000	30,653	19,000
20,190	19,500	30,301	19,500	34,964	19,500	41,909	19,500	33,979	19,500	31,314	19,500

20,258	20,000	30,624	20,000	35,535	20,000	42,348	20,000	34,656	20,000	31,987	20,000
20,323	20,500	30,981	20,500	36,150	20,500	42,846	20,500	35,278	20,500	32,660	20,500
20,413	21,000	31,388	21,000	36,709	21,000	43,356	21,000	35,865	21,000	33,229	21,000
20,454	21,500	31,741	21,500	37,249	21,500	43,765	21,500	36,407	21,500	33,812	21,500
20,471	22,000	32,034	22,000	37,748	22,000	44,217	22,000	36,921	22,000	34,403	22,000
20,481	22,500	32,358	22,500	38,312	22,500	44,707	22,500	37,419	22,500	34,874	22,500
20,489	23,000	32,702	23,000	38,770	23,000	45,096	23,000	37,709	23,000	35,396	23,000
20,493	23,500	33,055	23,500	39,229	23,500	45,486	23,500	38,135	23,500	35,899	23,500
20,477	24,000	33,340	24,000	39,629	24,000	45,911	24,000	38,559	24,000	36,384	24,000

Ek-2. Grup Veriminin Tespiti İçin Yapılan Deney Sonuçları

N-verim-Dr- L=200-D=2	=0.3-S=4D- 0- 1Kazık	N-verin S=4D- L= 2K	n-Dr=0.3- =200-D=20- Cazık	N-verim-Dr L=200-D=	=0.3-S=4D- 20- 3Kazık	N-verim-Dr=0.3- S=4D-L=200-D=20- 4Kazık		
L.C.(kN)	LVDT (mm)	L.C.(kN)	LVDT (mm)	L.C.(kN)	LVDT (mm)	L.C.(kN)	LVDT (mm)	
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
0,154	0,500	0,402	0,500	0,593	0,500	0,623	0,500	
0,228	1,000	0,665	1,000	0,884	1,000	0,841	1,000	
0,265	1,500	0,773	1,500	1,043	1,500	1,018	1,500	
0,285	2,000	0,828	2,000	1,154	2,000	1,182	2,000	
0,287	2,500	0,871	2,500	1,236	2,500	1,326	2,500	
0,289	3,000	0,896	3,000	1,258	3,000	1,411	3,000	
0,290	3,500	0,916	3,500	1,301	3,500	1,494	3,500	
0,295	4,000	0,911	4,000	1,328	4,000	1,557	4,000	
0,304	4,500	0,926	4,500	1,345	4,500	1,614	4,500	
0,311	5,000	0,935	5,000	1,365	5,000	1,673	5,000	
0,317	5,500	0,951	5,500	1,380	5,500	1,721	5,500	
0,319	6,000	0,958	6,000	1,407	6,000	1,765	6,000	
0,320	6,500	0,969	6,500	1,440	6,500	1,796	6,500	
0,324	7,000	0,981	7,000	1,467	7,000	1,796	7,000	
0,331	7,500	0,969	7,500	1,470	7,500	1,851	7,500	
0,335	8,000	0,987	8,000	1,483	8,000	1,886	8,000	
0,343	8,500	0,983	8,500	1,479	8,500	1,934	8,500	
0,343	9,000	1,004	9,000	1,513	9,000	1,966	9,000	
0,350	9,500	1,015	9,500	1,526	9,500	1,937	9,500	
0,354	10,000	1,006	10,000	1,528	10,000	1,963	10,000	
0,357	10,500	1,011	10,500	1,531	10,500	1,999	10,500	
0,357	11,000	1,014	11,000	1,534	11,000	2,016	11,000	
0,359	11,500	1,015	11,500	1,534	11,500	2,057	11,500	
0,359	12,000	1,013	12,000	1,547	12,000	2,050	12,000	
0,360	12,500	1,020	12,500	1,577	12,500	2,082	12,500	

0,362	13,000	1,022	13,000	1,553	13,000	2,077	13,000
0,364	13,500	1,041	13,500	1,568	13,500	2,114	13,500
0,378	14,000	1,022	14,000	1,590	14,000	2,155	14,000
0,385	14,500	1,016	14,500	1,606	14,500	2,131	14,500
0,392	15,000	1,042	15,000	1,601	15,000	2,172	15,000
0,405	15,500	1,039	15,500	1,625	15,500	2,161	15,500
0,415	16,000	1,045	16,000	1,630	16,000	2,175	16,000

Ek 2'nin devamı

N-verim-Dr=0.3-S=4D- L=300-D=20- 1Kazık		N-verim-Dr=0.3- S=4D- L=300-D=20- 2Kazık		N-verim-Dr=0.3- S=4D-L=300-D=20- 3Kazık		N-verim-Dr=0.3-S=4D- L=300-D=20-4Kazık	
L.C.(kN)	(mm)	L.C.(kN)	(mm)	L.C.(kN)	LVDT (mm)	L.C.(kN)	LVDT (mm)
0,000	0.000	0.000	0,000	0,000	0.000	0.000	0,000
0,321	0,500	0,699	0,500	1,411	0,500	1,787	0,500
0,461	1,000	0,852	1,000	1,925	1,000	2,595	1,000
0,492	1,500	0,974	1,500	2,188	1,500	2,949	1,500
0,500	2,000	1,100	2,000	2,329	2,000	3,138	2,000
0,518	2,500	1,153	2,500	2,405	2,500	3,241	2,500
0,525	3,000	1,253	3,000	2,458	3,000	3,279	3,000
0,517	3,500	1,320	3,500	2,518	3,500	3,336	3,500
0,518	4,000	1,376	4,000	2,518	4,000	3,393	4,000
0,522	4,500	1,419	4,500	2,494	4,500	3,361	4,500
0,518	5,000	1,432	5,000	2,521	5,000	3,398	5,000
0,518	5,500	1,486	5,500	2,527	5,500	3,405	5,500
0,534	6,000	1,496	6,000	2,550	6,000	3,437	6,000
0,530	6,500	1,520	6,500	2,589	6,500	3,489	6,500
0,528	7,000	1,493	7,000	2,580	7,000	3,477	7,000
0,542	7,500	1,540	7,500	2,573	7,500	3,468	7,500
0,539	8,000	1,552	8,000	2,594	8,000	3,496	8,000
0,542	8,500	1,591	8,500	2,606	8,500	3,512	8,500
0,567	9,000	1,587	9,000	2,618	9,000	3,528	9,000
0,562	9,500	1,581	9,500	2,582	9,500	3,480	9,500
0,551	10,000	1,553	10,000	2,586	10,000	3,486	10,000
0,564	10,500	1,527	10,500	2,599	10,500	3,502	10,500
0,573	11,000	1,542	11,000	2,589	11,000	3,489	11,000
0,576	11,500	1,568	11,500	2,582	11,500	3,480	11,500
0,595	12,000	1,581	12,000	2,601	12,000	3,505	12,000
0,581	12,500	1,587	12,500	2,635	12,500	3,551	12,500
0,572	13,000	1,571	13,000	2,615	13,000	3,524	13,000
0,578	13,500	1,603	13,500	2,673	13,500	3,603	13,500
0,588	14,000	1,635	14,000	2,663	14,000	3,589	14,000

0,583	14,500	1,598	14,500	2,692	14,500	3,628	14,500
0,589	15,000	1,618	15,000	2,670	15,000	3,598	15,000
0,589	15,500	1,614	15,500	2,637	15,500	3,554	15,500
0,589	16,000	1,630	16,000	2,668	16,000	3,569	16,000

Ek 2'nin devamı

N-verim-Dr=0.7-S=4D- L=200-D=20-1Kazık		N-verim-Dr=0.7-S=4D- L=200-D=20-2Kazık		N-verim-Dr=0.7-S=4D- L=200-D=20-3Kazık		N-verim-Dr=0.7- S=4D-L=200-D=20- 4Kazık	
L.C.(kN)	LVDT (mm)	L.C.(kN)	LVDT (mm)	L.C.(kN)	LVDT (mm)	L.C.(kN)	LVDT (mm)
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,523	0,500	1,655	0,500	2,809	0,500	3,971	0,500
0,582	1,000	1,797	1,000	3,095	1,000	4,290	1,000
0,637	1,500	1,883	1,500	3,325	1,500	4,490	1,500
0,651	2,000	1,951	2,000	3,452	2,000	4,610	2,000
0,650	2,500	2,016	2,500	3,544	2,500	4,701	2,500
0,667	3,000	2,065	3,000	3,638	3,000	4,838	3,000
0,694	3,500	2,111	3,500	3,659	3,500	4,922	3,500
0,732	4,000	2,152	4,000	3,699	4,000	5,023	4,000
0,733	4,500	2,205	4,500	3,731	4,500	5,059	4,500
0,742	5,000	2,232	5,000	3,807	5,000	5,065	5,000
0,742	5,500	2,270	5,500	3,834	5,500	5,123	5,500
0,766	6,000	2,279	6,000	3,906	6,000	5,207	6,000
0,787	6,500	2,312	6,500	3,920	6,500	5,256	6,500
0,796	7,000	2,343	7,000	3,980	7,000	5,312	7,000
0,802	7,500	2,349	7,500	3,997	7,500	5,338	7,500
0,836	8,000	2,352	8,000	4,026	8,000	5,381	8,000
0,845	8,500	2,355	8,500	4,084	8,500	5,471	8,500
0,855	9,000	2,367	9,000	4,098	9,000	5,482	9,000
0,868	9,500	2,377	9,500	4,130	9,500	5,518	9,500
0,892	10,000	2,383	10,000	4,144	10,000	5,539	10,000
0,888	10,500	2,390	10,500	4,197	10,500	5,559	10,500
0,904	11,000	2,396	11,000	4,199	11,000	5,576	11,000
0,918	11,500	2,416	11,500	4,202	11,500	5,589	11,500
0,919	12,000	2,456	12,000	4,244	12,000	5,642	12,000
0,919	12,500	2,470	12,500	4,299	12,500	5,704	12,500
0,930	13,000	2,515	13,000	4,361	13,000	5,770	13,000
0,927	13,500	2,520	13,500	4,375	13,500	5,780	13,500
0,949	14,000	2,526	14,000	4,408	14,000	5,819	14,000
0,951	14,500	2,560	14,500	4,415	14,500	5,912	14,500
0,974	15,000	2,563	15,000	4,421	15,000	5,966	15,000

0,975	15,500	2,571	15,500	4,427	15,500	5,984	15,500
0,984	16,000	2,578	16,000	4,430	16,000	6,059	16,000

Ek 2'nin devamı

N-verim- S=4D-L=3 1Ka	-verim-Dr=0.7- 4D-L=300-D=20- 1Kazık		n-Dr=0.7- =300-D=20- Cazık	N-verim-Dr=0.7- S=4D-L=300-D=20- 3Kazık		N-verim-Di	:=0.7-S=4D- 20- 4Kazık
	LVDT		LVDT		LVDT		LVDT
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.983	0.500	1.473	0.500	3.100	0.500	3.677	0.500
1.250	1.000	1.938	1.000	3.899	1.000	4.265	1.000
1.287	1.500	2,200	1.500	4,486	1.500	4.685	1.500
1,294	2,000	2,444	2,000	4,948	2,000	5,090	2,000
1,313	2,500	2,618	2,500	5,232	2,500	5,331	2,500
1,329	3,000	2,804	3,000	5,454	3,000	5,646	3,000
1,329	3,500	2,937	3,500	5,625	3,500	5,891	3,500
1,349	4,000	3,083	4,000	5,750	4,000	6,027	4,000
1,353	4,500	3,187	4,500	5,880	4,500	6,274	4,500
1,360	5,000	3,231	5,000	5,946	5,000	6,526	5,000
1,378	5,500	3,347	5,500	6,048	5,500	6,716	5,500
1,392	6,000	3,397	6,000	6,149	6,000	6,867	6,000
1,398	6,500	3,441	6,500	6,239	6,500	7,024	6,500
1,414	7,000	3,524	7,000	6,278	7,000	7,189	7,000
1,409	7,500	3,578	7,500	6,342	7,500	7,387	7,500
1,403	8,000	3,611	8,000	6,408	8,000	7,514	8,000
1,389	8,500	3,684	8,500	6,496	8,500	7,730	8,500
1,384	9,000	3,758	9,000	6,472	9,000	7,831	9,000
1,388	9,500	3,808	9,500	6,537	9,500	8,009	9,500
1,387	10,000	3,828	10,000	6,553	10,000	8,246	10,000
1,394	10,500	3,818	10,500	6,657	10,500	8,361	10,500
1,406	11,000	3,901	11,000	6,636	11,000	8,430	11,000
1,392	11,500	3,922	11,500	6,683	11,500	8,567	11,500
1,404	12,000	3,957	12,000	6,678	12,000	8,698	12,000
1,399	12,500	3,977	12,500	6,725	12,500	8,841	12,500
1,414	13,000	3,980	13,000	6,750	13,000	8,897	13,000
1,401	13,500	4,005	13,500	6,705	13,500	8,917	13,500
1,382	14,000	4,042	14,000	6,789	14,000	8,992	14,000
1,399	14,500	4,064	14,500	6,723	14,500	9,071	14,500
1,420	15,000	4,085	15,000	6,813	15,000	9,177	15,000
1,426	15,500	4,072	15,500	6,869	15,500	9,271	15,500
1,427	16,000	4,110	16,000	6,892	16,000	9,418	16,000

Radye Te	emel Gerilme D	ağılışı Verileri	(Dr=0,3-B=160	mm)
LVDT (mm)	PG 1(KPa)	PG 2(KPa)	PG 3(KPa)	L.C.(kN)
0,000	0,000	0,000	0,000	0,000
0,500	17,752	13,569	6,967	0,171
1,000	35,979	26,641	13,708	0,298
1,500	54,994	40,123	20,867	0,423
2,000	71,971	51,317	26,692	0,549
2,500	85,657	60,631	31,828	0,676
3,000	97,369	68,965	35,737	0,782
3,500	108,225	74,930	39,417	0,900
4,000	116,187	80,241	41,409	0,997
4,500	122,701	84,407	43,479	1,100
5,000	127,045	87,268	45,855	1,205
5,500	132,308	91,108	47,924	1,302
6,000	135,795	94,131	49,228	1,389
6,500	140,335	96,501	50,377	1,511
7,000	144,415	100,586	52,600	1,625
7,500	147,310	103,854	52,831	1,738
8,000	152,837	105,161	54,440	1,830
8,500	156,324	105,733	55,053	1,905
9,000	161,456	109,737	56,356	2,010
9,500	166,655	112,924	57,430	2,079
10,000	170,406	114,720	58,119	2,167
10,500	174,485	116,845	58,656	2,262
11,000	176,394	119,623	60,572	2,333
11,500	180,078	122,892	60,649	2,408
12,000	183,762	123,872	60,726	2,506
12,500	186,921	124,362	61,722	2,579
13,000	191,922	126,813	62,488	2,685
13,500	193,566	127,957	63,639	2,771
14,000	198,831	129,755	63,255	2,847
14,500	202,253	131,715	64,634	2,906
15,000	205,675	133,186	66,014	2,992
15,500	209,097	134,837	67,394	3,096
16,000	212,519	136,488	68,773	3,182

Ek-3. Kazıklı Radye Temellerde Derilme Dağılışlarının Tespiti İçin Yapılan Deney Sonuçları

Tek Kazık Gerilme Dağılışı ve Strain Verileri (Dr=0,3-B=160mm-L=200mm-									
			D=20	mm)					
LVDT	PG 1	PG 2	PG 3		90.1()				
(mm)	(KPa)	(KPa)	(KPa)	$\mathbf{L.C.(KIN)}$	3G I(8)	SG 2(ε)	3G 3(8)		
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000		
0,500	9,989	1,502	4,707	0,154	0,427	0,214	0,004		
1,000	14,822	10,003	5,529	0,228	0,302	0,330	0,102		
1,500	16,907	12,282	6,611	0,265	0,788	0,430	0,139		
2,000	19,975	15,237	7,513	0,285	0,923	0,575	0,170		
2,500	21,867	16,989	8,534	0,287	1,104	0,097	0,213		
3,000	23,782	18,069	9,376	0,289	1,500	0,000	0,231		
3,500	26,600	19,686	10,037	0,290	1,404	0,945	0,288		
4,000	29,643	21,102	11,998	0,295	1,043	1,005	0,525		
4,500	33,533	23,395	12,141	0,304	1,825	1,188	0,363		
5,000	34,941	25,080	12,922	0,311	1,983	1,288	0,400		
5,500	36,519	26,630	13,583	0,317	2,186	1,433	0,437		
6,000	37,154	28,182	14,425	0,319	2,367	1,556	0,474		
6,500	38,380	29,344	14,606	0,320	2,659	1,746	0,512		
7,000	41,253	30,271	15,807	0,324	2,727	1,801	0,549		
7,500	44,465	31,294	16,949	0,331	2,908	1,923	0,586		
8,000	47,795	33,961	17,924	0,335	3,088	2,046	0,624		
8,500	48,241	34,721	18,452	0,343	3,336	2,077	0,661		
9,000	48,848	35,193	18,912	0,343	3,449	2,291	0,698		
9,500	50,777	36,002	19,173	0,350	3,630	2,414	0,735		
10,000	53,032	38,024	20,315	0,354	3,810	2,536	0,773		
10,500	54,610	38,861	20,976	0,357	4,013	2,727	0,810		
11,000	56,639	39,777	21,157	0,357	4,171	2,781	0,847		
11,500	59,288	41,665	22,118	0,359	4,351	2,904	0,884		
12,000	64,416	44,295	23,501	0,359	4,532	3,027	0,922		
12,500	66,050	47,306	24,222	0,360	4,712	3,149	0,959		
13,000	67,601	48,070	25,545	0,362	4,848	3,226	0,996		
13,500	69,826	48,602	25,664	0,364	5,073	3,394	1,034		
14,000	75,688	49,755	26,987	0,378	5,254	3,517	1,071		
14,500	80,590	52,924	28,610	0,385	5,434	3,639	1,108		
15,000	81,774	53,328	29,970	0,392	5,659	3,808	1,145		
15,500	83,747	55,553	30,792	0,405	5,795	3,885	1,183		
16,000	84,381	56,093	30,913	0,415	6,020	4,030	1,220		

Kazıklı R	adye Tem	el Gerilm	e Dağılışı vo	e Strain Veri	leri (Dr=0),3-B=160	mm-
	-	L=20	00mm-D=20	0mm-S=4D)			
LVDT	PG 1	PG 2	PG 3				
(mm)	(KPa)	(KPa)	(KPa)	L.C.(kN)	SG 1(e)	SG 2(e)	SG 3(e)
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,500	181,361	81,717	48,173	0,383	1,695	1,194	0,334
1,000	289,852	128,303	75,387	0,745	2,789	1,823	0,528
1,500	363,212	155,440	94,548	0,964	3,239	2,113	0,737
2,000	381,213	176,700	103,852	1,192	3,650	2,363	0,911
2,500	395,767	192,078	115,506	1,438	4,086	2,388	1,006
3,000	414,361	204,742	122,118	1,645	4,293	2,484	1,029
3,500	423,255	213,186	125,539	1,885	4,441	2,501	1,071
4,000	430,122	221,175	130,127	2,097	4,530	2,605	1,093
4,500	435,378	227,508	134,297	2,319	4,588	2,611	1,086
5,000	438,211	231,277	137,113	2,577	4,619	2,638	1,109
5,500	442,655	237,910	141,179	2,802	4,987	2,823	1,196
6,000	443,187	240,926	143,578	3,002	5,079	2,872	1,082
6,500	444,675	247,710	147,748	3,142	5,277	3,041	1,154
7,000	447,178	252,083	150,772	3,308	5,638	3,291	1,238
7,500	451,952	255,399	153,067	3,450	5,756	3,541	1,257
8,000	453,319	258,115	155,674	3,640	5,877	3,622	1,287
8,500	454,635	258,226	157,653	3,769	5,900	3,646	1,293
9,000	457,930	259,923	158,593	3,918	6,078	3,711	1,299
9,500	461,870	265,803	162,451	4,050	6,093	3,896	1,317
10,000	466,595	269,270	164,744	4,179	6,231	3,864	1,382
10,500	471,356	271,834	167,039	4,279	6,211	3,694	1,336
11,000	475,436	272,739	168,916	4,419	6,211	3,711	1,439
11,500	478,530	271,985	168,707	4,530	6,424	3,694	1,564
12,000	483,687	272,134	169,332	4,629	6,558	3,719	1,541
12,500	485,502	276,508	172,460	4,737	6,657	3,694	1,629
13,000	487,467	278,770	174,546	4,822	6,830	3,823	1,634
13,500	490,292	282,690	176,674	4,919	6,899	4,106	1,684
14,000	492,120	285,101	179,446	5,019	6,943	4,146	1,696
14,500	493,546	283,745	180,489	5,097	7,230	4,275	1,696
15,000	497,034	285,854	182,365	5,191	7,517	4,719	1,706
15,500	502,450	286,910	184,138	5,270	7,923	5,372	1,771
16,000	505,175	287,814	185,598	5,357	8,160	5,727	1,830

Tek Ka	Tek Kazık Gerilme Dağılışı ve Strain Verileri (Dr=0,3-B=160mm-L=300mm-								
	DC 4	DCA	D=20m	m)					
LVDT	PG 1 (KPa)	PG 2	PG 3		$SC_1(a)$	$SC_2(a)$	SC 3(a)		
	$(\mathbf{K} \mathbf{I} \mathbf{a})$	$(\mathbf{K} \mathbf{I} \mathbf{a})$	$(\mathbf{K} \mathbf{I} \mathbf{a})$			0.000	0,000		
0,000	15 478	12 517	6 5 6 5	0,000	0,000	0,000	0,000		
1,000	20.876	12,317	0,505 8 506	0,321	0,560	0,550	0,124		
1,000	20,870	10,031	10,170	0,401	0,803	0,307	0,190		
2,000	23,812	22 276	11,170	0,492	1,140 1/17	0,778	0,200		
2,000	27,147	22,270	12 120	0,500	1,417	1 100	0,339		
2,300	30,796	24,030	14 425	0,510	1,094	1,199	0,411		
3,000	27.465	20,410	14,423	0,520	1,970	1,410	0,465		
3,300	41 751	20,701	16.021	0,522	2,247	1,021	0,555		
4,000	41,731	24 202	10,921	0,525	2,324	1,031	0,027		
5,000	47,229	36,667	10,070	0,529	2,001	2,042	0,098		
5,000	49,213 51.425	28.022	20.807	0,531	2 2 5 5	2,233	0,770		
5,300	52 729	<u> </u>	20,897	0,532	2,535	2,404	0,042		
6,000	54.056	41,201	22,192	0,534	3,032	2,075	0,914		
0,300	59 104	42,900	22,470	0,534	5,909	2,005	0,960		
7,000	58,104	44,230	24,318	0,538	4,180	3,090	1,057		
/,500	62,627	47,213	26,076	0,542	4,403	3,307	1,129		
8,000	64,500	49,650	27,576	0,545	4,740	3,518	1,201		
8,500	67,946	50,762	28,388	0,560	5,016	3,728	1,273		
9,000	68,800	51,452	28,480	0,560	5,293	3,939	1,345		
9,500	71,518	52,635	29,497	0,561	5,570	4,150	1,416		
10,000	74,693	55,591	31,254	0,562	5,847	4,361	1,488		
10,500	76,915	56,083	31,809	0,563	6,124	4,571	1,560		
11,000	79,773	58,154	32,549	0,563	6,401	4,782	1,632		
11,500	83,504	60,914	34,028	0,564	6,678	4,993	1,704		
12,000	90,727	64,758	36,155	0,568	6,955	5,204	1,775		
12,500	93,029	66,237	37,264	0,570	7,232	5,415	1,847		
13,000	98,029	70,277	39,300	0,574	7,509	5,625	1,919		
13,500	98,347	70,178	39,484	0,578	7,785	5,836	1,991		
14,000	106,602	72,741	41,519	0,582	8,062	6,047	2,063		
14,500	113,508	77,374	44,015	0,583	8,339	6,258	2,135		
15,000	115,175	77,965	44,569	0,589	8,616	6,468	2,206		
15,500	117,954	81,218	46,603	0,589	8,893	6,679	2,278		
16,000	120,255	82,007	47,251	0,589	9,170	6,890	2,350		

Kazık	lı Radye Te	emel Gerilm	ne Dağılışı v	ve Strain Ve	erileri (Dr	=0,3-B=160	mm-
		L=3	00mm-D=2	20mm-S=4E)		
LVDT	PG 1	PG 2	PG 3		661()		
(mm)	(KPa)	(KPa)	(KPa)		3G I(8)	$\frac{\mathbf{SG} 2(\mathbf{\epsilon})}{0.000}$	SG 3(E)
0,000	0,000	108.056	0,000	0,000	0,000	0,000	0,000
0,500	262,480	108,956	69,815	0,647	3,210	2,260	0,593
1,000	408,242	1/1,0/0	109,256	0,867	5,001	3,450	0,937
1,500	483,397	207,254	132,678	1,211	5,808	4,000	1,308
2,000	536,920	235,600	150,511	1,520	6,544	4,473	1,618
2,500	557,418	256,103	163,052	1,814	7,155	4,519	1,787
3,000	583,607	272,989	174,084	2,079	7,696	4,702	1,827
3,500	596,134	284,248	181,941	2,344	7,962	4,733	1,901
4,000	605,805	294,900	188,590	2,583	8,122	4,931	1,942
4,500	613,208	303,344	194,634	2,816	8,397	4,595	1,928
5,000	617,199	308,369	198,715	3,055	8,281	4,992	1,969
5,500	623,457	317,214	204,607	3,296	8,769	5,344	2,124
6,000	624,207	321,234	208,085	3,510	9,106	5,435	1,922
6,500	626,303	330,280	214,128	3,745	9,461	5,756	2,050
7,000	629,828	336,111	218,510	3,963	10,108	6,229	2,198
7,500	636,552	340,532	221,836	4,173	10,321	6,702	2,232
8,000	638,477	344,153	225,614	4,392	10,622	6,855	2,286
8,500	640,331	346,968	228,483	4,596	10,578	6,901	2,185
9,000	644,972	346,565	229,845	4,794	10,897	7,023	2,097
9,500	650,521	354,404	235,436	4,984	10,924	7,374	2,340
10,000	657,176	359,027	238,760	5,179	11,172	7,313	2,454
10,500	663,882	362,446	242,086	5,342	11,136	6,992	2,373
11,000	669,628	363,652	244,806	5,524	11,136	7,023	2,555
11,500	673,987	362,647	244,503	5,737	11,518	6,992	2,778
12,000	681,249	362,846	245,409	5,891	11,757	7,038	2,738
12,500	685,215	368,677	249,943	6,049	11,934	6,992	2,893
13,000	686,573	371,693	252,966	6,204	12,245	7,237	3,014
13,500	690,552	376,920	257,499	6,352	12,369	7,771	3,176
14,000	693,126	380,134	260,067	6,479	12,449	7,847	2,987
14,500	695,135	378,327	261,578	6,600	12,963	8,092	2,899
15,000	700,047	381,139	264,298	6,717	13,477	8,931	2,906
15,500	704,859	382,546	266,866	6,830	14,204	10,168	3,021
16,000	711,514	383,752	268,982	6,949	14,630	10,840	3,250

Radye Ten	nel Gerilme D	ağılışı Verileri	(Dr=0,7-B=1	60mm)
LVDT (mm)	PG 1(KPa)	PG 2(KPa)	PG 3(KPa)	L.C.(kN)
0,000	0,000	0,000	0,000	0,000
0,500	31,928	22,477	14,428	1,003
1,000	50,726	37,118	23,482	1,324
1,500	65,174	48,088	30,524	1,691
2,000	78,924	58,688	36,947	2,055
2,500	90,515	67,595	42,325	2,415
3,000	101,974	76,545	48,050	2,785
3,500	112,601	84,752	52,887	3,183
4,000	123,694	93,124	58,111	3,515
4,500	133,592	101,167	62,830	3,877
5,000	143,755	108,673	67,474	4,262
5,500	154,217	115,560	72,968	4,634
6,000	165,111	123,974	77,340	4,954
6,500	175,739	131,438	81,634	5,275
7,000	185,105	137,377	85,581	5,578
7,500	194,271	143,976	89,179	5,842
8,000	203,970	150,245	93,049	6,113
8,500	213,668	156,967	98,310	6,364
9,000	223,466	163,855	102,025	6,572
9,500	233,994	170,330	105,894	6,741
10,000	243,493	177,753	109,299	6,930
10,500	253,689	183,569	113,168	7,112
11,000	262,424	189,878	116,457	7,283
11,500	271,292	193,962	119,242	7,421
12,000	277,968	197,797	121,409	7,560
12,500	284,112	200,849	123,150	7,684
13,000	290,721	202,952	125,123	7,790
13,500	315,889	211,567	134,783	7,900
14,000	319,782	218,995	136,460	7,988
14,500	338,946	233,678	144,469	8,073
15,000	352,198	244,277	149,421	8,126
15,500	365,449	254,876	154,374	8,202
16,000	378,701	265,475	159,326	8,246

Tek Kazık Gerilme Dağılışı ve Strain Verileri (Dr=0,7-B=160mm-L=200mm-								
LVDT	DC 1	DC 1	D=20I	nm)				
(mm)	(KPa)	(KPa)	PG 3 (KPa)	L.C.(kN)	SG 1(e)	SG 2(e)	SG 3(e)	
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
0,500	19,244	13,895	7,208	0,523	1,205	0,613	0,229	
1,000	25,652	19,291	10,340	0,582	1,548	0,977	0,386	
1,500	32,682	23,107	11,167	0,637	2,352	1,340	0,494	
2,000	38,260	25,508	12,691	0,651	2,541	1,703	0,627	
2,500	42,271	29,558	14,416	0,650	3,038	2,066	0,759	
3,000	45,974	31,435	15,838	0,667	3,535	2,429	0,892	
3,500	53,421	34,250	16,955	0,694	4,032	2,792	1,024	
4,000	57,304	36,713	18,579	0,732	4,528	3,155	1,157	
4,500	64,822	40,702	20,508	0,733	5,025	3,518	1,290	
5,000	66,545	43,634	21,828	0,742	5,522	3,881	1,422	
5,500	70,595	46,331	22,945	0,742	6,019	4,245	1,555	
6,000	73,756	49,029	24,367	0,766	6,515	4,608	1,688	
6,500	74,192	49,677	25,672	0,787	7,012	4,971	1,820	
7,000	79,747	52,665	26,702	0,796	7,509	5,334	1,953	
7,500	84,956	56,183	28,631	0,802	8,006	5,697	2,085	
8,000	89,426	59,439	29,514	0,836	8,502	6,060	2,218	
8,500	93,255	60,407	31,169	0,845	8,999	6,423	2,351	
9,000	95,026	61,228	31,271	0,855	9,803	6,786	2,483	
9,500	99,158	62,635	32,388	0,868	9,992	7,149	2,616	
10,000	102,516	66,153	34,317	0,892	10,489	7,201	3,735	
10,500	105,566	66,739	34,926	0,888	10,986	7,876	2,881	
11,000	109,488	70,203	35,739	0,904	11,483	8,239	3,014	
11,500	114,610	72,488	37,363	0,918	11,979	8,602	3,146	
12,000	121,523	77,062	39,698	0,919	12,784	8,965	3,279	
12,500	127,682	78,822	40,916	0,919	12,973	9,328	3,412	
13,000	134,545	83,630	43,151	0,930	13,470	9,691	3,544	
13,500	137,781	83,912	43,353	0,927	13,966	10,054	3,677	
14,000	146,311	86,562	45,588	0,949	14,463	10,417	3,809	
14,500	155,789	92,075	48,328	0,951	15,267	10,780	3,942	
15,000	158,078	92,779	48,937	0,974	15,764	11,455	4,075	
15,500	162,891	96,650	51,170	0,975	15,953	11,507	4,207	
16,000	165,050	97,588	51,881	0,984	16,450	11,870	4,340	

Kazıklı Radye Temel Gerilme Dağılışı ve Strain Verileri (Dr=0,7-B=160mm- I -200mm D-20mm S-4D)									
I VDT	PC 1	PC 2	$\frac{\text{DEC 3}}{\text{PC 3}}$	/IIIII-5-4 <i>D)</i>					
(mm)	(KPa)	(KPa)	(KPa)	L.C.(kN)	SG 1(e)	SG 2(e)	SG 3(e)		
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000		
0,500	428,585	203,965	121,176	1,727	5,324	3,757	1,270		
1,000	666,591	320,244	189,633	2,291	8,295	5,737	2,005		
1,500	789,305	387,979	230,285	2,839	9,634	6,651	2,799		
2,000	876,699	441,043	261,237	3,328	10,854	7,438	3,462		
2,500	910,169	479,426	283,005	3,802	11,869	7,514	3,823		
3,000	952,931	511,036	302,152	4,334	12,766	7,819	3,910		
3,500	973,386	532,113	315,789	4,790	13,208	7,870	4,068		
4,000	989,178	552,053	327,330	5,250	13,472	8,200	4,155		
4,500	1001,266	567,861	337,820	5,687	13,928	7,641	4,126		
5,000	1007,781	577,268	344,904	6,154	13,737	8,301	4,213		
5,500	1018,000	593,824	355,130	6,618	14,546	8,885	4,544		
6,000	1020,703	601,351	361,166	7,120	15,105	9,037	4,112		
6,500	1022,647	618,285	371,656	7,588	15,693	9,571	4,386		
7,000	1028,359	629,200	379,261	8,075	16,767	10,357	4,703		
7,500	1039,381	637,476	385,034	8,565	17,120	11,144	4,775		
8,000	1059,167	644,254	391,592	9,077	17,620	11,398	4,891		
8,500	1077,672	649,523	396,571	9,536	17,546	11,474	4,674		
9,000	1086,995	648,769	398,934	9,965	18,076	11,678	4,487		
9,500	1105,024	663,445	408,639	10,420	18,120	12,261	5,006		
10,000	1116,435	672,098	414,408	10,906	18,532	12,160	5,251		
10,500	1133,924	678,499	420,181	11,299	18,473	11,627	5,078		
11,000	1145,384	680,756	424,902	11,645	18,473	11,678	5,468		
11,500	1166,961	678,876	424,376	12,006	19,105	11,627	5,944		
12,000	1179,651	679,247	425,949	12,352	19,503	11,703	5,857		
12,500	1202,434	690,163	433,818	12,661	19,797	11,627	6,189		
13,000	1217,948	695,809	439,065	12,956	20,312	12,033	6,449		
13,500	1226,921	705,594	446,933	13,232	20,517	12,922	6,795		
14,000	1234,629	711,612	451,391	13,502	20,650	13,048	6,391		
14,500	1244,161	708,228	454,012	13,782	21,503	13,455	6,203		
15,000	1252,058	713,492	458,733	13,972	22,356	14,851	6,218		
15,500	1258,634	716,126	463,191	14,165	23,562	16,907	6,463		
16,000	1261,348	718,384	466,865	14,315	24,268	18,024	6,954		

Tek Kazık Gerilme Dağılışı ve Strain Verileri (Dr=0,7-B=160mm-L=300mm-								
LVDT	DC 1	DC 2	$\frac{D=2011}{DC_2}$	(m)				
(mm)	(KPa)	(KPa)	(KPa)	L.C.(kN)	SG 1(e)	SG 2(e)	SG 3(e)	
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
0,500	34,826	25,034	11,817	0,983	1,550	0,898	0,387	
1,000	46,970	34,103	15,311	1,250	2,283	1,429	0,611	
1,500	53,578	38,836	18,307	1,287	3,015	1,960	0,836	
2,000	61,081	44,551	20,805	1,294	3,748	2,492	1,060	
2,500	69,296	49,677	23,634	1,313	4,481	3,023	1,284	
3,000	75,367	52,832	25,965	1,329	5,213	3,555	1,508	
3,500	84,296	57,562	27,795	1,329	5,946	4,086	1,733	
4,000	93,941	61,703	30,457	1,330	6,678	4,617	1,957	
4,500	106,266	68,406	33,620	1,335	7,411	5,149	2,181	
5,000	110,729	73,334	35,784	1,338	8,143	5,680	2,406	
5,500	115,729	77,867	37,615	1,338	8,876	6,211	2,630	
6,000	120,911	82,402	39,946	1,345	9,609	6,743	2,854	
6,500	121,625	81,809	40,446	1,346	10,341	7,274	3,078	
7,000	130,733	88,513	43,773	1,351	11,074	7,805	3,303	
7,500	140,911	94,425	46,936	1,360	11,806	8,337	3,527	
8,000	146,600	99,897	45,106	1,368	12,539	8,868	3,751	
8,500	152,877	101,524	51,098	1,371	13,271	9,399	3,976	
9,000	155,780	102,904	51,264	1,371	14,004	9,931	4,200	
9,500	160,914	105,269	53,095	1,375	14,737	10,462	4,424	
10,000	168,059	111,182	56,258	1,378	15,469	10,994	4,648	
10,500	173,059	112,167	57,256	1,378	16,202	11,525	4,873	
11,000	179,488	116,307	58,589	1,379	16,934	12,056	5,097	
11,500	187,885	121,828	61,251	1,380	17,667	12,588	5,321	
12,000	204,136	129,516	65,078	1,382	18,399	13,119	5,546	
12,500	209,314	132,474	67,076	1,384	19,132	13,650	5,770	
13,000	220,566	140,554	70,739	1,387	19,865	14,182	5,994	
13,500	225,870	140,357	71,070	1,388	20,597	14,713	6,218	
14,000	239,855	145,482	74,734	1,394	21,330	15,244	6,443	
14,500	255,392	154,748	79,226	1,399	22,062	15,776	6,667	
15,000	259,144	155,931	80,225	1,420	22,795	16,307	6,891	
15,500	265,395	162,436	83,886	1,426	23,527	16,839	7,116	
16,000	270,573	164,014	85,051	1,427	24,260	17,370	7,340	

Kazıklı Radye Temel Gerilme Dağılışı ve Strain Verileri (Dr=0,7-B=160mm- I - 300mm-D-20mm-S-4D)									
LVDT	PC 1	\mathbf{PC}	$\frac{1000000-20}{PC-3}$	<u> </u>			SG		
(mm)	(KPa)	(KPa)	(KPa)	L.C.(kN)	SG 1(E)	SG 2(e)	3(ε)		
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000		
0,500	535,731	261,494	155,354	5,756	8,275	5,901	1,565		
1,000	833,238	410,569	243,119	6,816	12,892	9,011	2,471		
1,500	986,632	497,409	295,237	7,495	14,972	10,446	3,449		
2,000	1095,874	565,440	334,919	8,013	16,870	11,682	4,267		
2,500	1137,711	614,648	362,827	8,462	18,447	11,802	4,712		
3,000	1191,164	655,174	387,374	8,887	19,841	12,280	4,818		
3,500	1216,733	682,196	404,857	9,336	20,527	12,360	5,014		
4,000	1236,472	707,760	419,654	9,737	20,938	12,879	5,121		
4,500	1251,582	728,026	433,103	10,157	21,647	12,001	5,085		
5,000	1259,727	740,087	442,184	10,573	21,350	13,038	5,192		
5,500	1272,500	761,313	455,295	11,000	22,607	13,955	5,601		
6,000	1275,878	770,963	463,034	11,416	23,476	14,194	5,067		
6,500	1278,309	792,672	476,482	11,779	24,390	15,032	5,405		
7,000	1285,449	806,667	486,232	12,154	26,059	16,268	5,796		
7,500	1299,227	817,277	493,634	12,555	26,607	17,504	5,885		
8,000	1323,958	825,966	502,041	12,930	27,384	17,902	6,027		
8,500	1347,090	832,722	508,425	13,269	27,270	18,022	5,761		
9,000	1358,744	831,755	511,454	13,662	28,093	18,341	5,530		
9,500	1381,280	850,571	523,896	13,991	28,162	19,258	6,170		
10,000	1395,544	861,664	531,292	14,322	28,802	19,099	6,472		
10,500	1417,404	869,870	538,693	14,635	28,710	18,261	6,259		
11,000	1431,730	872,764	544,746	14,987	28,710	18,341	6,739		
11,500	1458,701	870,354	544,071	15,287	29,693	18,261	7,325		
12,000	1474,564	870,830	546,089	15,579	30,310	18,381	7,219		
12,500	1503,042	884,824	556,177	15,907	30,767	18,261	7,628		
13,000	1522,435	892,063	562,903	16,150	31,568	18,899	7,948		
13,500	1533,651	904,607	572,991	16,517	31,888	20,295	8,374		
14,000	1543,286	912,323	578,706	16,785	32,093	20,494	7,877		
14,500	1555,201	907,985	582,067	17,026	33,419	21,132	7,645		
15,000	1565,073	914,733	588,120	17,263	34,745	23,325	7,663		
15,500	1573,293	918,111	593,835	17,492	36,619	26,555	7,965		
16,000	1576,684	921,005	598,544	17,694	37,716	28,309	8,570		

Dr=0,3 Rölatif sıkılık değerleri için farklı gerilmeler altında oturma miktarları									
Yükler (Q)	25 kPa	50 kPa	100 kPa	200 kPa	400 kPa	800 kPa	1600 kPa		
Dakika (t)	Oturma (mm)								
0	0,004	0,086	0,11	0,164	0,217	0,388	0,579		
0,1	0,065	0,09	0,114	0,165	0,303	0,504	0,605		
0,3	0,066	0,091	0,115	0,166	0,31	0,513	0,606		
0,5	0,068	0,092	0,118	0,167	0,313	0,517	0,607		
1	0,069	0,093	0,121	0,168	0,319	0,517	0,609		
2	0,072	0,094	0,122	0,169	0,324	0,521	0,611		
5	0,074	0,095	0,122	0,172	0,333	0,523	0,614		
10	0,075	0,095	0,125	0,174	0,338	0,527	0,616		
20	0,076	0,096	0,126	0,177	0,344	0,531	0,619		
30	0,078	0,097	0,128	0,179	0,348	0,535	0,624		
40	0,08	0,097	0,128	0,181	0,35	0,543	0,626		
60	0,08	0,098	0,132	0,183	0,353	0,549	0,629		
80	0,081	0,099	0,135	0,185	0,355	0,552	0,633		
100	0,082	0,101	0,136	0,186	0,356	0,555	0,634		
150	0,083	0,103	0,141	0,189	0,359	0,562	0,637		
200	0,084	0,105	0,145	0,191	0,362	0,569	0,639		
300	0,086	0,106	0,148	0,196	0,366	0,573	0,642		
500	0,086	0,107	0,153	0,199	0,37	0,574	0,644		
1440	0,086	0,107	0,158	0,207	0,378	0,578	0,647		

Ek-4. Konsolidasyon Deney Sonuçları

Dr=0,7 Rölatif sıkılık değerleri için farklı gerilmeler altında oturma miktarları									
Yükler(Q)	25 kPa	50 kPa	100 kPa	200 kPa	400 kPa	800 kPa	1600 kPa		
Dakika (t)	Oturma (mm)								
0	0,09	0,175	0,256	0,338	0,448	0,601	0,816		
0,1	0,142	0,219	0,256	0,404	0,448	0,738	0,973		
0,3	0,146	0,222	0,307	0,41	0,448	0,747	0,99		
0,5	0,148	0,224	0,31	0,412	0,451	0,751	0,996		
1	0,151	0,226	0,312	0,415	0,456	0,756	1,003		
2	0,154	0,228	0,314	0,418	0,56	0,761	1,01		
5	0,157	0,23	0,318	0,422	0,565	0,767	1,019		
10	0,159	0,232	0,32	0,425	0,567	0,771	1,026		
20	0,161	0,235	0,322	0,428	0,573	0,776	1,032		
30	0,163	0,236	0,323	0,43	0,575	0,778	1,036		
40	0,164	0,237	0,324	0,431	0,577	0,781	1,04		
60	0,165	0,238	0,325	0,433	0,577	0,783	1,045		
80	0,166	0,239	0,327	0,434	0,581	0,786	1,048		
100	0,167	0,24	0,328	0,435	0,582	0,787	1,05		
150	0,168	0,241	0,329	0,437	0,584	0,79	1,054		
200	0,169	0,242	0,33	0,438	0,586	0,792	1,061		
300	0,17	0,244	0,332	0,44	0,588	0,795	1,067		
500	0,171	0,247	0,334	0,442	0,592	0,799	1,078		
1440	0,174	0,248	0,334	0,447	0,598	0,807	1,078		

ÖZGEÇMİŞ

Bayram ATEŞ, 1988 yılında Trabzon'da doğdu. İlk ve orta öğrenimini Trabzon Mehmet Akif Ersoy İlkokulu'nda, lise öğrenimini ise Trabzon Fatih Lisesi'nde tamamlamış olup; 2006 yılında mezun oldu. 2006 yılında Karadeniz Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü'nde başladığı lisans öğrenimini, 2011 yılında derece ile başarılı olarak tamamladı. Aynı yıl Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü İnşaat Mühendisliği Anabilim Dalı'nda yüksek lisans eğitimine başladı. Yüksek lisans eğitimi yaptığı sırada Rize Çevre ve Şehircilik İl Müdürlüğü'nde Proje ve Yapım Şube'de kontrol mühendisi olarak görev yaptı. Söz konusu görev sırasında Van depremi, kazıklı temel uygulamaları ve birçok istinat yapısını inşaat aşamasında görme fırsatı buldu. Yüksek Lisans çalışmalarını sürdürüp 2013 yılında aynı üniversitesi'nde yüksek lisansını tamamlayan ATEŞ, 2013 yılında Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü Anabilim Dalı'nda doktora eğitimine başladı. Yazar, iyi derecede İngilizce bilmekte olup, halen Trabzon Sosyal Güvenlik Kurumu İnşaat ve Emlak Şube'de kontrol mühendisi olarak çalışmaktadır.