

KARADENIZ TECHNICAL UNIVERSITY

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCE

COMPUTER ENGINEERING GRADUATE PROGRAM

QR CODE-BASED ENCRYPTION AND DECRYPTION OF TRIANGULAR

GEOMETRY PROBLEMS

MASTER THESIS

Computer Eng. CHEIKHNA LO

AUGUST 2019
TRABZON

KARADENIZ TECHNICAL UNIVERSITY

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCE

COMPUTER ENGINEERING GRADUATE PROGRAM

QR CODE-BASED ENCRYPTION AND DECRYPTION OF TRIANGULAR
GEOMETRY PROBLEMS

Computer Eng. CHEIKHANA LO

This Thesis is Accepted to Give The Degree of
“ MASTER OF SCIENCE IN COMPUTER ENGINEERING”

By
The Graduate School of Natural and Applied Science at

Karadeniz Technical University

The date of Submission : 16.05.2019
The date of Examination: 22.07.2019

Thesis Supervisor: Asst. Prof. Dr. Hüseyin PEHLİVAN

Trabzon 2019

KARADENİZ TECHNICAL UNIVERSITY

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

COMPUTER ENGINEERING GRADUATE PROGRAM

CHEIKHNA LO

QR CODE-BASED ENCRYPTION AND DECRYPTION OF TRIANGULES
GEOMETRY PROBLEMS

Has been accepted as a thesis of
MASTER OF SCIENCE

after the Examination by the Jury Assigned by the Administrative Board of
the Graduate School of Natural and Applied Sciences with the Decision Number

dated 21/05/2019

Approved By

 Chairman : Prof. Dr. Abdulsamet HAŞILOĞLU ………………………...

 Member : Asst. Prof. Dr. Hüseyin PEHLİVAN ………………………...

 Member : Asst. Prof. Dr. İbrahim SAVRAN ………………………...

Prof. Dr. Asim KADIOĞLU
Director of Graduate School

ACKOWLEDGEMENT

I want to express my gratitude and thanks to my advisor Dr.Öğr.Üyesi Hüseyin

PEHLİVAN at KARADENİZ TECHNICAL UNIVERSITY, I thank him for having

framed, guided, helped and advised, and thank also ARŞ. GÖR. MEHMET CEMİL

AYDOĞDU his office was always open whenever I come with a trouble.

I extend my sincere thanks to all the teachers, speakers and all the people who have their

words, their writings, their advice and their critics guided my thoughts and agreed to meet

me and answer my questions during my research.

I also want to thank all my family, my friends, and all people who helped me from far or

close because without all this people around I wouldn’t finish this great work.

 CHEIKHNA LO

Trabzon 2019

http://www.ktu.edu.tr/bilgisayar-akademikpersonel%23collapse36055994
http://www.ktu.edu.tr/bilgisayar-akademikpersonel%23collapse36055994
http://www.ktu.edu.tr/bilgisayar-akademikpersonel%23collapse36055994

THESIS STATEMENT

I declare that, this Master Thesis, I have submitted with the tittle “Qr code-

Based Encryption and Decryption of Triangular Geometry problems” has been completed

under the guidance of my Master supervisor Asst. Prof. Dr. Hüseyin PEHLİVAN.

I have complied this work with all examination, moral principles and following the rules of

my university KTU during my work on this, and I acknowledge all obligation whenever

demonstrated something else. 30.07.2019

 CHEIKHNA LO

 V

TABLE OF CONTENTS

 Page No

ACKNOWLEDGEMENT ... IV

STATMENT ... V

TABLE OF CONTENTS .. VI

SUMMARY ... …X

ÖZET ... XI

FIGURES LIST ... XII

TABLE LISTXIII

ABREVIATION .. .XIV

1. INTRODUCTION .. 1

2. REVIEW .. 4

3. GENEL INFORMATION .. 7

3.1. Qr-Code ... 7

3.2. Cryptography ... 8

3.2.1 Encryption and Description Algorithm ... 9

3.3 Formal Languages ... 10

3.3.1. Type of Grammars ... 11

3.3.2 Parsing Problems ... 11

3.3.2.1 Ambiguity .. 11

3. 3.2.2 Recursive Productions .. 12

VI

3. 3.2.3. Left Factoring ... 12

3.3.3. Parsing Technique ... 13

3.3.3.1. First and Follow Sets ... 13

3.3.3.2. Follow Set .. 13

3.3.3.3. LR Parser ... 13

3.4. Triangles and Their Types .. 14

3.5. Language Processor ... 15

3.5.1. Compilers ... 15

3.5.2. Interpreters .. 16

3.5.3. Variations between Compilers And Interpreters .. 17

3.5.3.1. Compiler Phases ... 17

3.5.3.1.1. Front-End .. 18

3.5.3.1.2. Back-End .. 19

3.5.3.2. Language Interpreters ... 19

3.6. Lexical Analysis ... 20

3.6.1. Interaction of Lexical Analysis With Parser .. 20

3.6.2 Issues in Lexical Analyzer .. 22

3.6.3. Regular Expressions ... 22

3.7. Syntax Analysis (Parsing) ... 23

3.8. JavaCC ... 23

3.9. Mobile App .. 24

VII

4. METHODOLOGY .. 26

4. 1. The Relevant Tools and Technologies .. 26

4. 2. Solving Triangular Problems ... 26

4.2.1. Prototypes and Mock-Ups .. 27

4.2.2. Error/Restart Program... 29

4.3. Analysis Phase .. 30

4.3.1. Lexical Analysis ... 30

4.3.1.1. Interaction of LA with the Parser ... 32

4.3.1.2. Lexeme, Token and Pattern .. 33

4.3.2. Syntax Analysis .. 34

4.3.3. Semantic Analyzer ... 36

4.4. Synthesis Phase ... 37

4.4.1. Intermediate Code Generation ... 37

4.4.2. Code Optimization ... 37

4.4.3. Code Generation .. 38

4.5. A Comparison of Some Encryption Algorithms………….………….………..38

5. STEP-BY-STEP THE ILLUSTRATION OF THE OUR APPLICATION 40

5.1. The Input Data .. 40

5.1.1. Compiler Phase .. 40

5.1.2. Encryption Phase .. 41

5.1.3. Qrcode Phase .. 42

5.1.3.1. Generating Qrcode ... 42

VIII

5.1.3. Scanning Qrcode .. 43

6. CONCLUSION ... 46

7. FUTURE WORK .. 47

8. REFERENCES .. 48

CURRICULUM VITAE 51

IX

Master Thesis

SUMMARY

QR CODE-BASED ENCRYPTION AND DECRYPTION OF TRIANGULAR
GEOMETRY PROBLEMS

CHEIKHANA LO

Karadeniz Technical University

The Graduate School of Natural and Applied Sciences
Computer Engineering Graduate Program

Supervisor: Asst. Prof. Dr. Hüseyin PEHLİVAN
2019, 50 Pages

Our thesis focuses on the planning and implementation of a QR code-based
encryption and decryption system for triangular pure mathematics issues. The encoding

stage begins with an event of a context-free synchronic linguistics to explain triangular

issues during a formal language. The geometric descriptions of triangles are then

encoded employing an ancient cryptography formula and the corresponding QR code is

generated within the cryptography stage. Then the QR code is decrypted and a

programmed that is mechanically created by the JavaCC program is used to analyze and

show the related problem graphically. The developed system provides QR code reader

like tool and presents in a chic way to be able to show mathematical issues on various

devices simply. With such a tool, the full queries of associate examination is encoded in

QR code and hold on in smaller sizes. This is able to considerably increase the

protection of exams and reduce question data, which might be notably transmitted on

smartphone, in small size.

Key words: Security, geometry, grammar, encryption, QR-code, geometry

X

Yüksek Lisans Tezi

ÖZET

ÜÇGENSEL GEOMETRİ PROBLEMLERİNİN QR KOD TABANLI ŞİFRELENMESİ

VE GÖRÜNTÜLENMESİ

CHEIKHNA LO

Karadeniz Teknik Üniversitesi
Fen Bilimleri Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı
Danışman: Dr. Öğr. Üyesi Hüseyin PEHLIVAN

2019, 46 Sayfa

Bu çalışma, üçgen geometri problemleri için QR kod tabanlı şifreleme ve şifre çözme

sisteminin tasarımına ve uygulanmasına odaklanmaktadır. Şifreleme aşaması, biçimsel bir

dilde üçgen sorunları tanımlamak için bağlamsız bir gramer geliştirilmesi ile başlar. Üçgen

açıklamaları daha sonra geleneksel bir şifreleme algoritması kullanılarak şifrelenir ve son

olarak karşılık gelen QR kodu üretilir. Şifre çözme aşamasında, QR kodunun şifresi çözülür

ve ilgili sorunu grafik olarak analiz etmek ve göstermek için JavaCC aracı tarafından

otomatik olarak üretilen bir çözümleyici kullanılır. Geliştirilen sistem, QR kod okuyucu

benzeri bir araç sağlar ve matematiksel sorunları çeşitli aygıtlarda kolayca

görüntüleyebilmek için zarif bir yol sunar. Böyle bir araçla, sınavın bütün soruları QR

kodunda kodlanabilir ve daha küçük boyutlarda saklanabilir. Bu, sınavların güvenliğini

önemli ölçüde artıracak ve özellikle mobil cihazlarda iletilebilecek soru verilerini boyut

olarak azaltacaktır.

Anahtar Kelimeler: Biçimsel dilbilgisi, şifreleme, QR kodu, güvenlik, geometri,
Bağlamsız gramerler.

XI

LIST OF FIGURES

 Pages No

Figure 1. QR-code example..7

Figure 2. Caesar-cipher technique. ..8

Figure 3. Symmetric Key Cryptography..10

Figure 4. Example of Ambiguity ...12

Figure 5. Structure of a Compiler………………………………………………………….18

Figure 6. Frond-End Analysis. ..18

Figure 7. Back-End Synthesis. ..19

Figure 8. Lexical-Analyzer to Parser..20

Figure 9. Parsing Phase. ..23

Figure 10. JavaCC Compiler..23

Figure 11. QRCODE Scanned. ..42

Figure 12. The Interface Student Scanning Phase..43

Figure 13. The Interface after the QRcode Scan. ..44

XII

LIST OF TABLES

Page No

Table 1. All Triangles Types. .. 14

Table 2. Tokens and Lexemes ... 21

Table 3. Tokens, Lexemes and Pattern ... 21

Table 4. Part of Check Method ... 31

Table 5. Convert the Code to Tokens ... 32

Table 6. The Typical Tokens ... 33

Table 7. The Declaration of our Tokens .. 34

Table 8. Our Grammar .. 35

Table 9. Our Syntax Source Code .. 35

Table 10. Parser fille.jj .. 36

Table 11. A Comparison of AES, DES and 3DES Algorithms ... 38

Table 12. A Sample Input ... 39

Table 13. The AES Algorithm .. 41

XIII

ABREVATION LIST

EBNF

BNF

CFG

 AST

JavaCC

Zxing

AES

QRcode

ASCII

SSS, SAS, ASA

AAS/SAA, SSA/ASS

Extended Backus Naur Form

Backus Naur Form

Context Free Grammar

Abstract syntax tree

Java Compiler Compiler

Zebra Crossing library

Advanced Encryption Standard or System

Quick Response Code

American Standard Code for Information Interchange

Side Side Side, Side Angle Side, Angle Side Angele

Angle Angle Side, Side Angle Angle, Angle Side Side

XIV

1

1. INTRODUCTION

Technology has and can still impose on amendments that can affect all industries.

Often, the outcomes of technology on any trade are inherently in trouble [1]. We have the

transport trade as an example; the expected exploitation of self-driving technology

threatens voluminous jobs across the planet. We also have publication trade as another

example. The increase of the online media has forced old school publication corporate

companies to rethink their business plans. The same amendment is being implemented

within the education sector [2]. The implementation of technology is reshaping our

understanding of the education sector. Here is a number of the foremost profound ways in

which technology has modified education within the last few years [3]. These are some of

the most profound ways in which technology has changed education 1- the Increasing of

the accessibility, 2- flexibility, 3- interaction between professors and students, 4- on-line

Tests And Assessments, 5-New Content, 6-Special requests In Education, 7-Long term

Learning, 8- the increase Of Mobile Learning Content, 9- price Reduction, 10-combining

fun with education and last but not least 11- the increase Of Mobile Learning Content [1].

Recent technology advancement has opened up many potential of QR codes to

enhance the educational process by changing the classical method [4] of storing and

presenting information, this potential will have increase the opportunity of being able to

learn anywhere in the world at their convenient time which in return will improve the

overall quality of the process [5,6,1]. The number of researches that address the issue of

using QR codes in education is still few [1]. However some of those studies have proven

significant improvement results which indicates that such technology could even expand to

further applications, it is not only limited to usage in exams environment but it can also be

well expanded to include pictures, text books, notes and even videos [7].

In other words, the abilities of the QR code will expand as it is used more in the

education [8] process, while enriching the classical methods it will slowly replace it in a

more efficient and easier way [9]. Yet however to prove these predictions right we will

have to conduct further more research to top into the pros and cons of such

implementation[10] and further development must be carried out to improve this sector,

which was one of the motives behind this work[11,12,13].

ANAMASA
Metin Kutusu

2

 Mathematics is one of all the foremost vital areas of scientific studies for human

beings, which is applicable in most fields: science, technology, business, medicine,

meteorology, astronomy, etc. From elementary addition and subtraction to rocket science,

arithmetic is all around. Mathematics is a huge field of studies and has developed

throughout history [14]. It is divided into many disciplines. Let us take a glance at a

number of the popular disciplines.

Arithmetic, which is the oldest discipline of mathematics, deals with numbers and

elementary operators (addition, subtraction, multiplication and division).

Algebra, which is the widely used discipline of mathematics, involves the study of

mathematical variables, functions, equations as well as the rules related to them.

The other discipline is the geometry, which is the study of shapes, sizes, distance,

location, etc. It covers length, space, volume, in one, two and three-dimensional planes.

There are several applications in our daily life, like finding the world of a plot of land,

finding the volume of a gas cylinder, etc. It conjointly has several advanced applications,

like within the field of physical science to mark locations of stars, calculative distances

between two celestial bodies, etc… [14].

Trigonometry is the discipline involving the study of the relationship between sides

and angles of a triangle. Most typically it's used for right triangles. Its special functions,

referred to as trigonometric functions that relate the angles and sides. In world applications,

it's used unremarkably for finding heights of towers, buildings, mountains, etc.

Trigonometric functions are employed in the study of waves and their characteristics.

 In the past decades, continuous improvement of programming in engineering has

enabled to develop useful programs to unravel human issues. Mathematics encompasses a

very important role in human life. The mathematical operations employed in engineering

applications can't be accomplished by human hands, therefore, mathematical programs for

with efficiency determination of mathematical issues were developed. The mathematical

programs or scientific programs are employed for mathematical modeling and statistical

analysis.

In this work, we are trying to focus on the results and outcomes of implanting an

advanced system such as QR codes based[8] on encoding and decoding of triangles

geometry problems, in an old school system such as education, which can help teachers in

preparing questions papers. Teachers traditionally provide students with a questions papers

without encryption, which is open to an exam cheating [7]. The use of the QR codes based

encryption system makes it easier for teachers to prepare the papers in a more secure way.

3

Teachers can prepare a question paper through an interface and edit the questions data. The

encryption stage encrypts a questions paper to ensure that it cannot be easily seen and

cheated on by students. In this way, teachers can use the system to prevent cheating on a

test and store the questions data in a smaller size. The information was obtained by

conducting interviews and surveys with the learners then it was compared with the results

of self-evaluation of the learners. The encoding phase begins with developing of context-

free grammar to indicate such triangles issues in a formal language. In the decoding phase

the QR codes decoded to retrieve the data of the question back. Then the data are analyzed

by a parser, which can be automatically produced by the JavaCC tool, and shown in a

question format graphically.

4

2. LITERATURE REVIEW

For years, many colleges and districts have had strict policies forbidding the use of

students’ personal electronic devices in school rooms [14, 15]. However, some faculties are

starting to embrace the academic worth of hand-held Web-enabled devices that students

already bring to faculty every day. As academics begin to explore the academic

opportunities that smartphones and different devices provide [14], it is good to remember

that the utility of any tool is simply pretty much as good as our understanding of the way to

use that tool. This text makes an attempt to introduce two easy ways in which within which

QR codes will be used with success within the schoolroom [17].

One the most time consuming processes in the university is taking the daily

attendance, with the rise of popularity of smartphone over any other utility such as

desktops or laptops especially with users above the age 26, it shows a great indicators of

possible application of such system in the university systems.[18]

Geometry is the one of the oldest and most important branch of mathematics as it

develop and reshapes the students’ ability to think crucially and come to valid logical

solutions, not to mention that it is a crucial fundamental of other arithmetic.

 In a journal published by Mustafa Zeki et. 2014 about solving geometry issue,

based on the results that he concluded all educator participants to create a strategy to take

care of a geometry issue. He faced a question which was should one improve the problem

visually or as an expression to solve out the problem faster [29].

As well M. Tolga SAKALLI et al., 2004, describes on their paper mathematical

concepts using cryptography to make students more enthusiastic about mathematics. In

their study, they represented cryptosystems systems associated with mathematics to

indicate that it's doable to show a student these ideas using illustrative. Additionally, there

are alternative cryptosystems like hill ciphers, affine ciphers, etc. they'll even be

accustomed to illustrate alternative mathematical fundamentals. Using cryptography as a

teaching tool can facilitate students: To develop their skills in mathematics science and to

grasp mathematical ideas effectively.

ANAMASA
Metin Kutusu

5

To tap into more researches, Atul Hole al. 2014 submitted a research on how the

QR-code will be embedded in the education and the technical issues, which will

demotivate creative teachers and educators to apply them in their teaching methods.

 The security of the info could be a massive drawback. And to resolve this

drawback they projected an efficient technique to demonstrate digital info presents in

their documents. If an entrant tries to alter the data of the document that intruder cannot

do this in QR-Code. During this Paper they use MASS Algorithm. Then the Data are

entered within the QR-code later the QR-code is printed. Then the data can then be

retrieved from the QR-code and decrypted using a decryption Method. And finally, it will

be verified data that are already presented within the document.

One of the most practical researches done on this topic was conducted by Hitoshi

Susono. 2014 where he used QR codes in class assessments to one class in July 2006, the

problems he concluded after the experiment can be summed up as it follows:

1) The students had to pay for the cell phones which is not very expensive in Japan

2) Not all student had QR scanner and the student who had them where above 18.

3) Old phones had the issue of not being able to read the QR code because of camera

focus, brightness and the size.

4) The displayed type on the mobile phone changes with their Contract Mobile Phone

Brand

"The result was, the forty-three of the scholars answered “Yes". As a result of this study

the students were asked if it was reasonable for them to use this method, shockingly 43%

of them answered yes.

The students who answered yes supported their claim with follows:

1) It's higher to induce and browse a lot of comments from classmates in every class than

within the additive form.

2) Easy access to the class material at any convenient time

The goal of the article they published was to explore the pros and cones of using

QR codes in education in general plus to get a hands on experiment on how it would look

like in real classrooms, the result they obtained were fairly positive and sparked creativity

in both learners and educators [17].

 49% of the students approved learning new things and 79% indicated somewhat

agreement that they learned something new while 42% indicated they needed further

6

assistance with QR code and this due to the technical issues of the phones used in their

experiment.

 67% of elementary school and primary school student indicated that it was very

simple to utilize QR-codes while 82% indicated that it was fairly easy to brows from the

phone’s screen.

 95% of the first faculty one and first school two students pointed out that QR

activities were a stimulating new approach to learn and ninety-eight of the scholars would

really like to try to QR activities one more time. Some students had difficulties with their

good phone and this is often why thirtieth of the scholars disagreed with the statement that

the phone continued to work as they needed.

What's stunning is that thirty-seven of the scholars somewhat agreed that once

using QR codes, the eye is drawn an excessive amount of on technology. This is often in all

probability as a result of the activity itself wasn't well-planned and didn't inspire the

scholars. Once the activity isn't well- planned, the eye of the scholars is also amused by

something else. Additionally, technical issues might have had a negative impact on

motivation.

In 2013, Yavuz TEKBAŞ presented the graduate thesis entitled "code production

tools using an automatic calculation of derivatives and simplification mathematical

expressions" [22]. In this work, A CFG is developed for syntactic and semantic structures

of mathematical equations, JavaCC an automatic code generating tool was used to generate

summary syntax tree (AST) as an object tree, and lastly evaluating object tree was handled

to simplify and derive the expressions.

Baki Gokgoz In his study conducted in 2016 for his graduate thesis attempting to

program numerical root finding method with simple approaches [22]. He approached with

the help of automatic code generating tool while trying to describe root finding methods

such as iterations expressions and functional translation. The way he did it is using

processing of analysis operation of mathematical expressions which can be solved for roots

using JavaCC tools.

7

3. GENERAL INFORMATION

3.1. QR-Code

 When thinking about QR-codes in an instructional context or in education, it is

necessary to see QR-code innovation as an enabler.

The center of attention should be more on education and beginners than on QR-

code technology.

When discussing the application of QR codes in the educational system [16], our

main focus should be on the learner more than the method of implanting QR codes itself,

as technology does not always guaranteed improved results of the educational process, the

more the educational sectors improves the higher our chances of implanting such systems

to enhance the process. The main idea is to shift the focus of education on the learners

themselves. Using the tools mentioned in this paper the teacher will be able to embed an

exam inside a QR code then student can simply take picture of the code using their

cellphones, the scan-able QR code looks as shown in Figure 1. The result we expect is to

complete immersion of the leaner and higher security level for the teachers.

 Figure 1. QR-code example

ANAMASA
Metin Kutusu

8

3.2 Cryptography

The phrase cryptography comes from the roots ‘crypto’ and ‘graphy’, roughly

translating to “secret writing”.

If we want to make facts secret, we use a cipher – an algorithm, which converts

plain textual content into cipher-text, which is gibberish except we have a key that lets we

undo the cipher. The system of making text secret is referred to as encryption, and the

reverse process to for getting the original text is known as decryption. The Ciphers have

been used long before computer systems showed up. Julius Caesar used the technic which

is called now a Caesar-cipher, to encrypt non-public correspondence. He was shifting the

letters in a message forward via 3 places. So, A grew to become D, and the word "ktu"

became this: "nwx". To decipher the message, recipients had to be aware of both the

algorithm and the range to shift by, which acted as the key. The Caesar-cipher is one

instance of a large classification of methods known as substitution ciphers. These substitute

each letter in a message with something else in accordance to a translation. A massive

drawback of basic substitution ciphers is that letter frequencies are preserved. For example,

E is the most common letter in English, so if your cipher interprets E to an X, then X will

exhibit up the most often in the cipher-text. An expert cryptanalyst can work backwards

from these types of data to figure out the message.

Figure 2. Caesar-cipher technique [23]

9

 3.2.1. Encryption and Description Algorithm

To convert real data into what appears like garbage or to something meaningless

cost this procedure is referred to as Encryption which means you are not allowing to

someone to see it or locking the actual information into some other form. And the

procedure of extracting actual statistics back from this meaningless textual content is called

as Decryption

First, the information to be transmitted is called as plain text (or message) is fed to

an Encryption system. The Encryption device makes use of a key to convert the plain

textual content to encrypted form which appears like rubbish value, this is additionally

called as cipher text. A corresponding key is used at the other give up to decrypt the cipher

text returned to authentic message. When we say a "key" it genuinely potential a piece of

string price which is fed to encryption and decryption algorithms alongside with the text

for transformation. This is similar to locking your valuable things in a container and

sending it across. At the different end the receiver will use the secret key to open the

container and read the message you (Sender) sent.

If a hacker have been to faucet out the message being transmitted in the community

he will get the encrypted message, say "1453" now he will not have the key to decrypt this

message so this cipher textual content will now not suggest something to him. He might

also try to use countless methods to ruin this code and get the hidden message out of this.

This artwork of trying to damage ciphers forms a distinctive department of learns

about called as Cryptanalysis. However we will no longer go into that proper now. This

encryption and Decryption together ensure security of the message being transmitted across

the network. This total encryption and decryption approach is based totally on the premise

that both sender and receiver share some unique keys which is not acknowledged with the

aid of any outsiders, like the hackers. Depending on how the keys are shared.

10

Figure 3. Symmetric Key Cryptography [24]

3.3 Formal Languages

Noam Chomsky was the first person to say that human brain is pre-wired with some

basic rules of language. He says that when a child is born he's born in this world with a

basic set of language skills, that means he's not a clean slate his mind is not empty. He

already has a language acquisition device (LAD) there in his brain. Due to which he is able

to learn language so quickly. Before Norm Chomsky a lot of psychoanalytical thinkers they

believed that how a child learns a child learns by observing and then imitating parents and

other people around him, Noam Chomsky was the first person who said that no the child

already has basic rules of grammar there in his mind.

Formal languages mean that they will be mathematically defined, so in 1959 the

linguist and philosopher gave a mathematical model of a grammar.

Formal way of representing of this Context-free grammar CFG is using this 4 variables

 V – as a finite set of variables (non-terminals)

• T – as finite set of Variable

• S – Start Symbol

• P- we usually call it production of rule

11

 3.3.1 Types of Grammars

We have generally 4 types of grammars first one is Type0 grammar, second one is

Type1 grammar and the last but the least the third one is type3 .*Type0 (Unrestricted

grammars) as the name sagest Unrestricted means this grammar has no destruction and

known as most powerful in theory of computation.

This grammar has the production like this α → β and in α we can have any

combination of variable and terminals and β belong to any variable or terminals.

*Type1 grammar is context sensitive grammars which is derived from type0 grammar. In

context sensitive grammar α can be equals of the length of β, also length of α can be less

than equals to β.

But we should know that length of α is greater than β, this kind of grammar not

allowed in Type1 context sensitive grammars but it is allowed in Type0.

*Type2 is known as Context free Grammar it derived from Type1. So if we put more

restriction on typ1 (context sensitive grammars) we get type2

 *Type3 known as Regular Grammar is delivered from type2 (Context free Grammar) It

can be classified in two types Right Linear or Left Linear.

3.3.2 Parsing problems

3.3.2.1 Ambiguity

Ambiguous grammar, so what do we mean by ambiguous? A grammar is said to be

ambiguous if there exists two or more derivation tree for a string Omega (that means two

or more left derivation trees). So let's say that we have a grammar given and there is a

string Omega that can be generated from this grammar and if this string Omega can be

derived from two or more left derivation trees then that grammar is said to be ambiguous.

So when we mean two or more derivation trees we should keep in mind that they should be

both left derivation trees. It's not that you form one using a left derivation tree and another

using a right derivation tree, and that is ambiguous because that is not the case. It is only

when it can be formed using two or more left derivation trees then it is said to be an

ambiguous grammar.

12

 Figure 4. Example of Ambiguity

 3.3.2.2. Recursive Productions

Productions are usually outlined in terms of themselves. For example an inventory

of variables in an exceedingly artificial language can be indicated by this production:

 V_L → V | V_L, V

The higher than production is referred as algorithmic. If the algorithmic

nonterminal is at the left of the right-side of the assembly, Example B → u | BA, we tend

to decision the assembly left recursive. Similarly, we will outline a right-recursive

production: B→ u | AB

3.3.2.3. Left Factoring

Removing the common left issue that seems in 2 productions of the identical

nonterminal is termed Left factorization, the method of factorization out the common

prefix of alternates.

13

It's a helpful methodology for manipulating grammars into a type appropriate for

algorithmic descent, it's done to avoid back-tracing by the computer program.

 A→ α β | α γ are 2 A-production and α ≠ null. During this case, the computer program are

going to be confused on that of the 2 productions to decide on and it'd should back-trace.

When left factorization the synchronic linguistics can become

B→ α B' B' → β | γ

3.3.3. Parsing Techniques

 On parsing we use two important function First and Follow to Construct parsing

Table.

 3.3.3.1. First and Follow

First (α) is the set of terminals that begin the string derived from α when α is any

string of grammar Symbols.

If α ⇒* ∈ then is also in First (α)

3.3.3.2. Follow Set

FOLLOW (A) for non-terminal A is the set of terminals that can appear

immediately to the right of A in some sentential form.

Example: the set of terminals 'a' such that there exists a derivation of the form S * α Aa β

for some α and β

3.3.3.3. LR Parser

It is the foremost fashionable style of bottom-up parsing technique. Here, the “L”

once more suggests that reading the input from left to right, whereas the “R” suggests that

constructing the right derivation and its synchronic linguistics will describe a lot of

languages than LL grammars.

14

LR program can handle an outsized category of context-free grammars and may

sight the syntax errors as before long as they'll occur. A lot of data regarding LL and LR

parsing algorithms is documented.

 3.4. Triangles and their Types

A triangle is a simple closed polygon which is made up of three line segments, a

triangle has three sides three boat Isis and three angles a triangle is denoted by the Greek

letter Delta the Sum of all angles in a Triangle is 180 degree. This is known as the angles

sum property.

 Triangle ABC can be written as triangle ABC triangle BCA or triangle C A B.

Table 1. All Triangles Types.

Equilateral

All the sides are same length(

shown by the line through Each of

them) and all the angles are the

same length

∠ 𝐴𝐴 = ∠ 𝐵𝐵 = ∠ 𝐶𝐶 = 60 °

Isosceles

 Two Side are equal (Shown by

the lines) Angles opposite the

equal side

are equal. ∠ 𝐴𝐴 = ∠ 𝐵𝐵

Scalene

 All three angles and all three sides

are

difference

∠ 𝐴𝐴≠∠ 𝐵𝐵≠∠ 𝐶𝐶

Right

 Has one angle equal to 90

15

Acute

 All three angles are less than 90

Obtuse

 Has one angle greater than 90

3.5. Language Processor

Language processor may be a special style of a laptop code program designed or

won't to perform tasks and has the capability of translating the ASCII text file or program

codes into machine codes. There are differing types of language processors like compilers,

Assemblers, interpreters, preprocessors, and disassemblers. During this section, we are

going to make a case for the foremost wide used language processors that are compilers

and Interpreters.

 3.5.1 Compilers

A Compiler is a program that reads a program written in one language and

translates it into an equivalent program in an others language.

Input language: Source language

Output language: Target Language

A compiler also reports errors present in the source program as a part of its translation

process.

16

So we can say that a Compiler is a computer program that transform a Source code

program written in a High level language to a Target code called machine language of a

computer

There is some of languages which are generally compiled are:

Java

C++

C

3.5.2 Interpreters.

An interpreter is a computer program which directly executes command written in a

programming language or scripting language.

Performs line by line execution of the source code which written in high level

language.

Interpreter reads source code line by line, converts it into machine understandable

from, executes the line, and then proceeds with the next line.

Unlike compiler, it does not convert the high level language into machine code.

To do this, it uses one of three techniques.

• It either Analyses the code directly to perform the execution,

• Or it translates the source code into some other intermediate code and then executes

it.

• Or it explicitly executes stored precompiled code made by a compiler which is part

of the interpreter’s system

Here are some languages which are generally interpreted are:

PHP

Perl

JavaScript

 Python

High Level Language Machine L Target Language

Source code Target Code

Compiler

17

3.5.3 Variations between Compilers and Interpreters

Both compilers and interpreters are translated the problem-oriented language into

machine language, however there are several variations between them.

The distinction between Associate in Nursing interpreter and a compiler is as

follows:

 An interpreter reads one statement and translate it, when death penalty that

statement it takes another statement in sequence. Whereas the compiler reads the entire

program and interprets it in one go so executes it.

A compiler generates the error message solely when the scanning of the entire

program. Since Associate in Nursing interpreter continues translating the program till the

primary error is met, and to interpret the following statement we've to mend the error.

A compiler generates intermediate code that desires a lot of memory, and it will be

generated each time when the program is being compiled. As Associate in nursing

interpreter no intermediate code is generated, it directly generates code.

In analyzing and process the ASCII text file a compiler takes larger quantity of your

time relatively and interpreter analyzes and processes the source code directly.

Besides the process and analyzing time, programs made by compilers run a lot of

quicker than the identical programs dead by Associate in Nursing interpreter.

3.5.3.1 Compiler Phases

The basic compiler steps are displayed in Figure 5.

The two main components of the compiler are: the front-end and the back-end

18

Figure 5. Structure of a Compiler [25].

3.5.3.1.1 Front-End

This is the structure of the Front End

 Figure 6. Frond-End Analysis [26].

19

3.5.3.1.2 Back-End

The second a part of the compiler is that the back-end part that enthusiastic about

the target machine. The back-end part embody code improvement phase, the necessary

error handling, image table operations, and therefore the final code generation. This part of

compiler is freelance of program.

The main task of the front-end part is to investigate the supply knowledge and

generate the thing tree representation whereas the rear finish synthesizes the computer

program from the object tree (intermediate code).

The generation of associate degree intermediate code is also referred as middle

finish, because it depends upon program and target machine.

Figure 7. Back-End Synthesis [26].

3.5.3.2 Language Interpreters

In any language interpreter translating any program from one language to a

different, initial the compiler breaks the supply information to know the means and also the

grammar structure of the program, then it recombines during a completely different and

meaningful manner. The compiler performs two main tasks; analysis at the face, and will

synthesis the rear finish. The analysis is sometimes variable into: Lexical analysis, Syntax

analysis and linguistics analysis.

20

3.6. Lexical Analysis (Scanning)

Lexical analysis lexical analysis is the first phase of compiler. It works closely with

the syntax instrument that reads input characters from the program and teams them into

lexemes to supply output as a sequence of tokens which may be handled more easily by a

parser, by eliminates comments and white spaces in the form of blanks, tabs and newline

characters.

 Figure 8. Lexical-Analyzer to Parser [27]

3.6.1 Interaction of lexical analysis with parser

Lexical analyzer produces the token and passes it to parser, upon receiving a

GetNextToToken command from the parser.

The lexical analyzer reads the input character until it can identify the next token.

SymbolTable module interacts with all the phases of compiler.

What is tokens and lexemes?

Tokens is a sequence of character that can be treated as a single logical unit. Tokens can be

identifier, keywords, operators, special symbols and constant

 What is lexemes?

Lexeme is a sequence of character in a source program that can be matched by a pattern for

token.

21

What is tokenization?

The process of forming tokens from the input stream of characters is called tokenization.

Ex: Time= 8*4;

Table 2. Tokens and Lexemes

Lexeme Token

Time Identifier

= Assignment Symbol

8 Num

* Multiplication operator

4 Num

; End of statement

What is pattern?

A rule that describe set of strings associated to tokens.

EX: L(L/D)*

L is considered as a letter and D as a digit, so letter by digit star is a pattern to symbolize the

set of strings which consists of letter followed by letter or digit.

Patterns are specified using regular expressions.

Ex: Table of Tokens, Lexemes and Patterns

Table 3. Tokens, Lexemes and Patterns

 Token Sample Lexemes informal Description of Pattern

if If If

while while while

Relation >,<>,=>,=,>=,< > OR <> OR =>OR =OR >= OR <

id Sun, j, count, K4 Letter followed by letter and digits

Num 0, 123, 5, 2019, 8.61E45 Any numeric constant

What is attribute for token?

When more than one pattern matches a lexeme, lexical analyzer must provide

additional information about particular lexeme.

That is matched to the subsequent face of compiler

22

Two Leseme: 0,1;

Example pattern: num matches both 0 and 1

But it is essential for the code generator to know what strings are actually matched.

Ex:19

<num 19>

in integer 19 constants are constructed by converting number to token num, and passing the

attribute number as its attribute.

 3.6.2. Issues in Lexical Analyzer

There are several reasons for separating the lexical analysis from syntax analysis the

reasons are compiler efficiency is improved and compiler portability is enhanced. Compiler

efficiency is improved.

Compiler portably is enhanced.

3.6.3. Regular Expressions

For lexical analysis, definitions are written associate degreed expressed victimization

regular expressions that is an algebraically notation designed to explain sets of strings.

Regular expressions are a useful gizmo designed for describing, matching and extracting

patterns in text. Regular descriptive linguistics is understood because the grammar outlined

by regular expressions and therefore the language defined by regular descriptive linguistics is

understood as regular language. Additional reading for normal expressions is documented by

Mogensen, and Torben Ægidius book.

The lexical analyzer must scan and acknowledge solely a finite set of valid

strings/tokens/lexemes that belong to the predefined language. It searches for the pattern

outlined by the language rules.

Every computer user ought to have the data of implementing a tool for matching

regular expressions from scratch.

23

3.7. Syntax Analysis (Parsing)

Syntax analysis or parsing is the second phase of a compiler.

After lexical analysis splits the input into tokens, the goal of parsing is to

recombine these tokens not into a list of characters, but into something that has meaning

and reflects the structure of the text.

 Figure 9. Parsing Phase [28]

3.8. Java CC

JavaCC is a compiler generator similar to Yacc that accepts language in BNF as

formatted as input. The generated computer program contains the main elements of

corresponding compiler of the desired language, which has a lexical instrument and a

syntax-analyzer. Fig a pair of shows the general the structure of a computer program

generated by JavaCC

24

Figure 10. JavaCC Compiler

3.9. Mobile Apps

What is an app? Anyway this is a simple question that millions of people ask

daily. It turns out that app is short for application, it used to be the application alluded to

the sort of software that was provided to a user's need during a business issue, then

application got abbreviated to app when software applications hit cell phones, and app is

simply faster.

 Where do people download your app? Once it has been built up, the two most

famous spots to go for app are androids Google Play and Apple's App Store. These stores

hold the file representing the application holding back to be downloaded and installed onto

their gadgets. Let's take an example real estate investors, they are spending an increasing

amount of their free time looking for good deals using various apps on a daily basis. These

apps become more and more sophisticated, and faster bringing properties that fit their

needs. Consequently they are inclined to connect more often with the app by habit to see

what the next treasure is they will find.

 But back to you in your dreams it's simple in concept you keep providing the value

of a working app on a daily basis as long as your user subscribes to using it. This leads to a

25

model of doing business that is subscription-based instead of requiring a larger one-time

payment. This model is typically known as SAS or software as a service.

Whether you're a small business and are looking to add rocket fuel to your revenue

picture, you are a part of a large company looking to streamline services to customers and

employees or maybe you just have a great idea for changing the world with a startup. No

matter who you are and what your purpose is? One thing is unavoidable the app must be

coded first, so it can be delivered to the people you want to use ıt. Let's talk about what that

entails. Code is just a set of instructions that tell the app and phone or other device what to

do, and coders are the software developers who write these instructions. So if you want

your logo to appear in an app, a coder needs to put it there, if you want a menu that gives

your users choices to navigate through your app or just have people flip through your

screens. Coders have to put those choices screens, and menu options there. Fortunately

methods of building apps have been refined over the years and there's a community of

developers that can pretty easily just code up whatever it is you need make it look

individual to your brand and infinitely appealing to your users. Coders they write their own

code from scratch to craft to shape exactly what an app does on each type of smartphone,

but most likely this often met their custom code with code from other coders. These access

points are called APIs short for application program interfaces and are bundled together in

software development kits or SDKs. to get more coders to bring value and users to their

product or service existing resources want to make it easy on coders that want to connect to

their product or service. Therefore they offer these bundles of instructions APIs and SDKs

that are pre-written to a degree so other coders can use them again and again and get

routine things done inside their app. in another example of using API what if your users

wanted to know instantly that they have a message waiting in your app? You can enable

something called push notifications that notify your users that a message is and then take

them directly to the message in your app with simply a tap. You need to re-engage

customers after a slow week of business? You can send a push notification out offering a

discount directing the customers to purchase the item through your app, and not even

bother coming into your physical location. Just have an amazing app idea, you can access

just about anything from your mobile device and combine it with what other people have

produced and any number of unique ways.

26

4. METHODOLOGY

This chapter present the methodological aspects of the work described in this thesis.

4.1. The Relevant Tools and Technologies

In this thesis we used many tools and technology, which are generally used by java

technology and in the development area in general.

These Tools and technology are:

Java Compiler Compiler (JavaCC)

1. Android Studio for the application mobile that we had built

2. The Zxing is an abbreviation of Zebra Crossing library. This bibrary developed by

Google to allow us to generate and scan the QR-Code Technology.

3. AES algorithm, which stands for Advanced Encryption Standard or System. It is a

Symmetric encryption we have used it to secure our sensitive data.

4.2. Solving Triangular Problems

After a teacher enters a geometry problem related to triangles, the program draws

the relevant triangle and tries to determine some side lengths and angles of the triangle. If

the program receives the required input for sides or angles of a triangle, then the rest is

calculated by the program. Solving angles and sides:

In order to solve for the third angle of a triangle whose two angles are given:

BAC o ∠−∠−=∠ 180

In order to solve for an angle of a triangle whose three

sides are given:

In order to solve for a side, given 2 sides and the angle in between:

Abccba ∠−+= cos2222

 −+
=∠ −

bc
acbA

2

222
1cos

ANAMASA
Metin Kutusu

27

In order to solve for an angle, given its opposite side, another angle and the opposite side to

that angle:

 ∠

=∠ −

a
AbB sinsin 1

In order to solve for a side, given its opposite angle, another side and the opposite angle to

that side:

∠
∠

=
A
Bab

sin
sin

4.2.1. Prototypes and Mock-Ups

In order to create a triangle to match the Teacher specifications, several

combinations of information can be entered.

For all cases we use the following triangle as a visual:

In order to solve the triangle to the Teacher specifications, the Teacher needs to

enter some information about the triangle. There are several combinations of fields the

Teacher can enter. The following are the different combinations:

1. SSS

• Inputs:

o a, b, c

o b, c, a

o c, a, b

o c, b, a

28

o b, a, c

o a, c, b

2. SAS

• Inputs:

o a, B, c

o b, A, c

o a, C, b

o etc.

3. ASA

• Inputs:

o A, b, C

o B, a, C

o A, c, B

o etc.

4. ASS/SSA

• Inputs:

o a, b, A

o b, a, B

o b, c, B

o c, b, C

o a, c, A

o c, a, C

o etc.

5. AAS/SAA

• Inputs:

o A, B, a

o B, A, b

o B, C, b

29

o C, B, c

o A, C, a

o C, A, c

o etc.

4.2.2. Error/Restart Program:

As soon as the Teacher enters incorrect data, an error message will be outputted

according to the type of error, there are three cases.

Case 1 (Negative Side Length)

Case 2 (Angle Out of Range)

Case 3 (The Sum of Two Side Lengths is Less Than or equal to the length of the Third

Side)

Case 4 (Ambiguous Case of Sine Law where there are no solutions)

• a<bsinA

Case 5 (The Sum of Three Angles are greater than 180o)

For all above cases, the program will output:

A triangle cannot be constructed based on these specifications.

Reinitializing...Complete

30

4.3. Analysis Phase

4.3.1. Lexical Analysis

We know that the first phase in the process of a compiler of our program will be

LA, which is lexical analysis. Let us consider an analogy to better understand the tasks

involved in the lexical analysis phase of our project.

For instance: If a student x wants to learn Turkish language or any other language,

he will start learning from the alphabets then he will learn to write words combining the

alphabets, once he is capable of writing whole words he will be eager to know the meaning

of those words, So to know the meaning he will revert to the dictionary, where the

predefined words are already explained with its meaning.

The process of our compilation also works in the similar way performing tokens

from individual characters and referring to the regular expressions that can be compared to

a dictionary.

When the source-code enters the lexical phase, the lexical analyzer or the scanner

reads the text character by character.

The main task of lexical analyzer (Scanner) is to convert Lexemes in the tokens.

31

Table 4. Part of Check Method

public static boolean Check(Double a, Double b, Double c, Double A, Double B, Double C) {

 boolean temp = true;

 int angleCount=3, int sideCount=3;

 double h;

 double s1, s2, angle;

 if (a==null) {sideCount--;} if

(b==null) {sideCount--;}

 if (c==null) {sideCount--;} if

(A==null) {angleCount--;} if

(B==null) {angleCount--;} if

(C==null) {angleCount--;} if

(angleCount >= 2) {

 if (A==null) {angleCount--;A = 0.0;}

if (B==null) {angleCount--;B = 0.0;} if

(C==null) {angleCount--;C = 0.0;}

 //no 2 obtuse, no 2 right angles, and sum of 2 angles less than 180

 if (A + B + C >= 180) {

 temp = false;

 }

 }

 else if (sideCount == 2) {

 if (a!=null && b!=null && A!=null) { //abA

s1 = a; s2 = b;

 angle = A;

 }

32

In this part of our source code in the third line (int angleCount=3, sideCount=3;)

the word int, angleCount and sideCount are denoted as lexemes similarly comma, 3, and

equal to are also like lexemes.

The lexical analyzer replaces the lexemes with tokens. For example int is a token

similarly angleCount , sideCount, = (equals), , (comma) and 3 are also tokens.

In the process of converting lexemes into tokens, first LA has to identify the

possible tokens in the source code. For this purpose it introduces the regular expressions or

RE.

Regular expressions are the notations for describing a set of character strings.

If the lexical analyzer finds any invalid Tokens, it generates an error message by

representing the line number associated with the error.

The program gets read line by line only in the lexical phase. It also performs

secondary tasks such as removing the comment lines and extra white spaces in the source

code. At the end of this program we can see only the tokens, which are the output of this

face.

Table 5. Convert the code to Tokens

Part of the program At the end of Lexical phase

int angleCount=3, int

sideCount=3;

<int><id,1><op,=><const,3><,><int><id,2><op,=>

<const,3>

 4.3.1.1. Interaction of LA with the Parser

Next the tokens that are produced as the output are used by the parser to generate

the syntax tree, which is the next phase of the compiler.

Lexical analyzer sends the tokens to the syntax analyzer whenever it demands,

upon receiving a request from the parser, the lexical analyzer reads the character string

until it recognizes the next token, then if the lexical analyzer finds any token it responds to

the parser representation. If the token is a parentheses, comma or colon then it is

represented as an integer code.

33

4.3.1.2. Lexeme, Token and Pattern

We know that the lexeme is a stream of characters in the source code. Data are

matched by the patent for a token. For every lexeme, there is a predefined rule called

patterns, which identifies if the token is valid or not. These rules are described by the

grammar rules in pattern. A pattern has a set of predefined rules, which contain a list of

valid tokens. These patterns are defined by means of regular expressions the lexemes

which are a series of atomic units that can be split further are categorized into blocks called

tokens.

The typical tokens are identifiers, keywords, operators, special symbols and

constants.

 Table 6. The typical tokens.

identifiers keywords operators special symbols constants

A,b,c,d,f,k,d double, main, print

Boolean, int, String

+, =, *, -, / %, (()), {}, ;, <>, 8, 78.5

34

Table 7. The declaration of our Tokens

TOKEN:{

| <COMM: ",">

| <ASSIG: "=">

| <DIV: "/">

| <TIM: "*">

| <PLU: "+">

| <MINS: "-">

| <UNDERL:"_">

| <TRIANG: "Tr">

| <TEXT: "Tex">

| <LPARENT: "(">

| < RPARENT: ")">

| <NUMB: (["0" - "9"] +)>

| <SEGM: ["a" - "z"] ["a" - "z"] >

| <ANGL: ["a" - "z"] ["a" - "z"] ["a" - "z"] >

4.3.2. Syntax Analysis

The next phase of the compiler after lexical analysis is the syntax analyzer, also

known as parsing. It takes the output from the lexical analysis, that mean it takes the tokens

as an input and generates a parse tree or syntax tree. Parse tree is a hierarchical structure,

which represents the semantic structure of a string. Also it check for the source code

grammar in token arrangements, scope of a variable and array bound exception.

In the Table 5 and Table 6 respectively shown our grammar roles and the Syntax

classes.

35

 Table 8. Our Grammar

 SS -> M ; SS | T

M -> numb : (E | D | F | tr "(" A ")")

E -> (K | A) "=" numb

D -> P "<-" K

...

T -> text "(" numb (, numb) ? ")"

Table 9. Our Syntax source code

 class EqualsList extends Exp {

Exp a,b;

abstract class Exp {

Object t = null;

public abstract Object accept(Visitor v);

}

class NumList extends Exp {

 public Exp a,b;

public NumList(Exp a,Exp b) {

this.a=a;

 this.b=b;

}

public Object accept(Visitor v) {

36

return v.visit(this);

}}

class Num extends Exp {

public double n;

public Num(double x) }

 n = x; }

 public Object accept(Visitor v) {

return v.visit(this); }}......

4.3.3 Semantic analyzer

The input for semantic analyzer is the pass tree. This phase checks whether the pass

tree is constructed by following the rules of the language, for example it clicks the value

assigned between the compatible data types. This analyzer keeps track of identifiers their

types and expressions, it also checks whether the identifiers are declared before use. The

output of this phase will be an annotated parse tree, annotation refers to the addition of

attributes and roles to the syntax tree.

37

Table 10. Parser fille.jj

Exp T() :{

Exp a;Token t1,t2;}

{

<TEXT><EQUALS><LCOTS>t1=<NUM>

{ a = new Num(Integer.parseInt(t1.image));

}

(<COMMA>t2=<NUM>

{ a= new NumList(a, new

Num(Integer.parseInt(t2.image))); })*<RCOTS>

{ return a; }}

4.4. Synthesis Phase

 4.4.1. Intermediate Code Generation

After semantic analysis this phase generates an intermediate code of the source code,

which makes it easier to be translated into the target machine code. This face acts as a bridge

between the analysis phase and the synthesis phase. The final machine language code is

produced in this stage.

4.4.2. Code Optimization

Code optimizer takes intermediate code as input from the previous phase this phase

performs the code optimization for the intermediate code it removes unnecessary temporary

38

variables generated in the previous phase. Compiler takes less space and avoids wastage of

resources such as CPU and memory.

4.4.3. Code Generation

The final phase of a compiler is the code generation phase. The optimized output from

the previous phase is given as the input for this space. It translates the intermediate code into

a relocatable machine code. The length of the machine language program is reduced here.

The output of the code generation phase is the machine language program.

4.5. A Comparison of Some Encryption Algorithms

We take three of encryption algorithms in order to make a comparative study. The

results are given in Table 11.

These three encryption algorithms are AES, DES and 3DES. We present them in 9

factors, which are key length, cipher type, block size, developed, cryptanalysis resistance,

security, possibility key, possible ACSII printable character keys, time required to check all

possible key at 50 billion second, these eligible proved the AES is better than DES and 3DES.

Table 11. A Comparison of AES, DES and 3DES Algorithms

Factors AES 3 DES DES

Key Lenght 128,192, Or 256 Bits (k1,k2 and k3) 168 bits, (k1 and
k2 is same)112 bits 56 bits

Cipher Type Symmetric Blok Cipher Symmetric Blok Cipher Symmetric Blok
Cipher

Block Size 128, 192, or 256 bits 64 bits 64 bits
Developed 2000 1978 1977

Cryptanalysis
Resistance

Strong against differential
truncated differential,
Linear,İnterpolation and
sguare attacks

Vulnerable to differential,Brute
Force attacker could be analyze
plaint text using differential
cryptanalysis

Vulnerable to
differential and
linear
cryptanalysis; weak
subsitıtion tables

39

Security Considered secure One only weak which is Exit in
DES. Proven İnadeguate

Possible Keys 2128
, 2192 ,or 2256

 2112 or 2168 256
Possible ASCII
printable
character keys

9516, 9524, or 9532 9514 or 9521 957

Time reguired
to check all
possible keys at
50 billion keys
per second**

For a 128-bit key: 5x1021
years For a 112-bit key:800 Days For a 56-bit

key:400 Days

40

5. STEP-BY-STEP THE ILLUSTRATION OF THE OUR APPLICATION

5.1. The Input Data

5.1.1. Interpreter Phase

The following sample input in the Table 12 will be parsed and should respect our

grammar rules otherwise it generates an error message. This error message is handled by

our program and ask the user to try again to enter a valid data.

Table 12. A Sample Input

1:t(abc);

2:ab=20;

3:ke j bc;

4:e<-bc;

5:abc=45;

6:acb=90;

7:cab=?;

8:kc=?;

9:Msg(”What kind of triangle is shown?”);

Text={1,3,4,6,7,8,9}

The parser file called TriangleParser, to generate our parser for the first time we

have to run javaCC followed by our jj file, which is ParserTriangleQr.jj that content our

ANAMASA
Metin Kutusu

41

syntax description and grammar rules. Then java files are created by the parser.One of our

class is TriangleParserTokenManager.

This class TriangleParserTokenManager contains the static method getNextToken()

Every call to getNextToken() returns the next token in the input stream. When getNextToken

is called, a regular expression is found that matches the next characters in the input stream in

our grammar the input start with T(Name), End withText {Num,Num..} in which telling us

which Num of the data we have to display for the students and in-between consist of the other

data like the angles of the triangle abc = 90 ,the sides like ab = 40, k ab, ak =?...

In addiction in our parser basis of our grammar there is a public method declaration

for each non-terminal and this method return an object of type Exp.

5.1.2 Encryption Phase

After Compiler Phase all input data are add in ArrayList object then returned by the

Parser.

This data are later encrypted by our AES algorithm

 Table 13. The AES algorithm

The Encryption method

public String Encryption_QR(Stribg inputData) throw Exception{

Key our_key=genertekey();

Cipher ci = Cipher.getInstance(ALGO_QR);

ci.init(Cipher.ENCRYPT_MODE, our_key);

byte[] encrypted_val=ci.doFinal(inputData.getBetes());

String Encry_value= BASE64Encoder().encode(encrypted_val);

Return Encry_value;

42

The Decryption method
 public String Decryption_QR(Stribg inputData1)

throw Exception{

Key our_key1=genertekey();

Cipher ci1 = Cipher.getInstance(ALGO_QR);

ci.init(Cipher.DECRYPT_MODE, our_key1);

byte[] decrypt_val= new ASE64Decoder().decodeBuffer(encryptedData)

 byte[] decrypt_value= new ci1.doFinal(decrypt_val);

String decrypted_value = new String(decrypt_value);

 Return decrypt_value;

This method generate the

secret key

Private key generatekey() throes Exception{

Key key1 =new SecretKeySpec(keyValue, ALGO_QR) Return key1;

5.1.3 QRcode Phase

5.1.3.1 Generating QRcode

After the Encryption phase the Qrcode time comes, and the data encrypted stocked in

a qrcode. The QRcode generated by our system cannot be read by another QRCODE system

because the information will be encrypted by the AES algorithm as it shows in the table

below. So later Teacher can print this QRCode on paper and give it to the students.

43

Figure 11. Qrcode Scanned

5.1.3.2 Scanning Qrcode

In the scanning phase the decryption method of AES algorithm is called and using the

same key of decryption, which can be found in the end of QRcode data.

Another algorithm is called to draw the Triangle on the phone and display to the

student on his phone.

44

Figure 12. The Interface Student Scanning Phase.

45

Figure 13. The Interface After the QRcode Scan.

46

6. CONCLUSION

In this study, we implement a QR code based encryption and decryption system to

help both the educators and learners, it helps the educators by saving time as they

provide all the necessary information of problem description and then the program

automatically encrypts it, which is a more innovative way than the classical paper-based

exam which could consume more time and energy. Even though the studies in the

literature focuses on the security or the triangle problems individually, we conduct a

study that mixes both of them, in order to present a better solution which facilitates the

education process. When it comes to security, which is a major important issue

nowadays, the application maximizes the security. Through other applications used by

the educator, no other QR code scanner will be able to decrypt the AES algorithm, which

maximizes the security and terminates any opportunity of hacking the exam questions.

Finally it reduces the paper work pressure on the educator by reducing the printed paper.

ANAMASA
Metin Kutusu

47

7. FUTURE WORK

In our work the input data is typed by teacher in the program, so to make the work

easier for teacher we will implement the OCR technology, which stand for Optical Character

Recognition. The application will be able to read a handwriting, so the teacher will be able to

write the exam on a paper by pen or pencil. Our program now is solving only the missed part

which is need to draw the triangle, our next work will focus on solving the given problem to

the students that need to solve for, but the solution will be hidden from the student only the

teacher can see this solution, and it will help him to give a great for the students in a short

time, additionally we will make the system be to be compatible others mobile operating

system like ios (IPhone), and others, and make it also available on the network.

ANAMASA
Metin Kutusu

48

8. REFERENCES

1. www.useoftechnology.com/how-has-technology-changed-education/ How Technology has

Changed Education. 22 March 2017.

2. Traxler, J., 2009. Current State of Mobile Learning. In Ally, Mohamed (Ed.).

3. Ally, M., 2009. Transforming the Delivery of Education and Training (pp. 9–24).

Athabasca University Press, Edmonton, Canada.

4. Chen, N., & Lee, C., 2010. Augmenting Paper-Based Reading Activities with Mobile

Technology to Enhance Reading Comprehension. Taiwan, pp. 201-203.

5. Crompton, H., 2013. A Historical Overview of M-Learning: Toward Learner Centered

Education.

6. Rikala, J., & Kankaanranta, M., 2012. The Use of Quick Response Codes in the

Classroom.

7. Traxler, J., 2009. Current State of Mobile Learning. In Ally, Mohamed (Ed.), Mobile

Learning: Transforming the Delivery of Education and Training (pp. 9–24).

8. Law, C., and So, S., 2010. QR Codes in Education, 3(1), pp. 85-100.

9. Rikala, J., & Kankaanranta, M., 2012. The Use of Quick Response Codes in the

Classroom. 11th Conference on Mobile and Contextual Learning. Helsinki, Finland,

pp.148-155.

10. Rikala, J., & Kankaanranta, M., 2014. Blending Classroom Teaching and Learning with

Qr Codes.

11. Osawa, N., & Noda, K., 2007. System with Location Awareness Using RFID and

Symbology Tags.

http://www.useoftechnology.com/how-has-technology-changed-education/
ANAMASA
Metin Kutusu

49

12. De Pietro, O., & Fronter, G., 2012. Mobile Tutoring for Situated Learning and

Collaborative Learning in AIML Application Using QR-Code. pp. 799-805.

13. Ozcelik, E. & Acarturk, C., 2011. Reducing the Spatial Distance between Printed and

Online Information Sources by means of Mobile Technology Enhances Learning:

Using 2D Barcodes.

14.www.study.com/academy/lesson/what-are-the-disciplines-of-mathematics.html

Disciplines of Mathematics 4-8 (114).

15. Shiobaru, D. & Naomi, F., 2006. Collecting Students’ Degree of Comprehension with

Mobile Phones.

16. Law, C., and So, S., 2010. QR codes in education. Journal of Educational Technology

Development and Exchange, 3(1), pp. 85-100.

17. Rikala, J., and Kankaanranta, M., 2012. The Use of Quick Response Codes in the

Classroom. 11th Conference on Mobile and Contextual Learning. Helsinki, Finland,

pp.148-155.

18. Osawa, N. et al., 2007. Outdoor Education Support System with Location Awareness

Using RFID and Symbology Tags. Journal of Educational Multimedia and

Hypermedia, 16(4), pp. 411-428.

19. Mustafa Zeki, 2014. Geometry Problem Solving.

20. Crompton, H., 2013. A Historical Overview of M-Learning: Toward LearnerCentered

Education. In Z. Berge & L. Muilenburg (Eds.), Handbook of mobile learning (pp.

3-14). Routledge, NewYork, USA.

21. Tekbaş, Y., Code Production Tools Using Automatic Calculation of Derivatives and

Simplification Mathematical Expressions. Master Thesis, Karadeniz Technical

University, Institute of Science and Technology, Trabzon, 2013.

22. Gökgöz, B., Design and Implementation of a general Interpreter for Numerical Root

Finding Methods Using Symbolic Approaches, Master Thesis, Karadeniz Technical

University, Institute of Science and Technology, Trabzon, 2016.

http://www.study.com/academy/lesson/what-are-the-disciplines-of-mathematics.html

50

23. https://www.geeksforgeeks.org/caesar-cipher-in-cryptography/

24. https://www.edureka.co/blog/what-is-cryptography/

25.https://www.log2base2.com/compiler/basics/analysis-and-synthesis-phase-of-

compiler.html

26. http://yoseph.tech/completely-useless-fun-project-parts-of-the-compiler/

27. https://www.thedailyprogrammer.com/2016/03/role-of-lexical-analyzer.html

28. https://www.tutorialspoint.com/compiler_design/compiler_design_quick_guide.htm

https://www.geeksforgeeks.org/caesar-cipher-in-cryptography/
https://www.edureka.co/blog/what-is-cryptography/
https://www.log2base2.com/compiler/basics/analysis-and-synthesis-phase-of-compiler.html
https://www.log2base2.com/compiler/basics/analysis-and-synthesis-phase-of-compiler.html
http://yoseph.tech/completely-useless-fun-project-parts-of-the-compiler/
https://www.thedailyprogrammer.com/2016/03/role-of-lexical-analyzer.html
https://www.tutorialspoint.com/compiler_design/compiler_design_quick_guide.htm

51

CURRICULUM VITAE

Cheikhna LO from Mauritania, eight years of higher education Master of Computer

engineering at the International Black Sea University in Trabzon Turkey, exchange student

program Erasmus+ at the University of Czestochowa in Poland, Master’s Computer Science

without thesis at the University of Sciences Technology and Medicine in Nouakchott

Mauritania, and Bachelor degree in IT Management at University of Nouakchott ISCAE in

Nouakchott Mauritania.

2017 he obtained a Higher Certificate from ICAT 6th International Conference on

Advanced Technology & Sciences after sharing the article Qr code-based encryption and

decryption of triangular geometry problems

Language Skills: Arabic as a native language, French: Fluent, English: Advanced and

Turkish: Advanced

ANAMASA
Metin Kutusu

ANAMASA
Metin Kutusu

