KARADENİZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

FİZİK ANABİLİM DALI

RELATİVİSTİK ORTALAMA ALAN MODELİNDE ÇEKİRDEK TABAN DURUM ÖZELLİKLERİ

DOKTORA TEZİ

Tuncay BAYRAM

TEMMUZ 2012 TRABZON

KARADENİZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

FİZİK ANABİLİM DALI

RELATİVİSTİK ORTALAMA ALAN MODELİNDE ÇEKİRDEK TABAN DURUM ÖZELLİKLERİ

Fizikçi Tuncay BAYRAM

Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsünce "DOKTOR (FİZİK)" Unvanı Verilmesi İçin Kabul Edilen Tezdir.

Tezin Enstitüye Verildiği Tarih: 28.05.2012Tezin Savunma Tarihi: 09.07.2012

Tez Danışmanı: Prof. Dr. A. Hakan YILMAZ

Trabzon 2012

Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü Fizik Ana Bilim Dalında **Tuncay BAYRAM Tarafından Hazırlanan**

RELATIVISTIK ORTALAMA ALAN MODELINDE ÇEKİRDEK TABAN DURUM ÖZELLİKLERİ

başlıklı bu çalışma, Enstitü Yönetim Kurulunun 29 / 05 / 2012 gün ve 1458 sayılı kararıyla oluşturulan jüri tarafından yapılan sınavda

DOKTORA TEZİ

olarak kabul edilmiştir.

Jüri Üyeleri

Başkan : Prof. Dr. Osman YILMAZ

Üye : Prof. Dr. A. Hakan YILMAZ

Üye : Prof. Dr. Belgin KÜÇÜKÖMEROĞLU

Üye : Doç. Dr. Selçuk Han AYDIN

Üye : Yrd. Doc. Dr. Coşkun AYDIN

Prof. Dr. Sadettin KORKMAZ Enstitü Müdürü

ÖNSÖZ

Doktora tezi olarak sunduğum bu çalışmada periyodik tabloda $10 \le Z \le 110$ aralığında ki çift-çift çekirdek izotop zincirlerinde yer alan ve proton damlama çizgisinden (dripline) nötron damlama çizgisine uzanan çekirdeklerin taban-durum nükleer özellikleri Relativistik Ortalama Alan (RMF) modeli çerçevesinde hesaplandı ve bu özellikler teorik nükleer veri tablosu olarak sunuldu. Ek olarak son yıllarda süper-ağır çekirdeklerin sentezlenmesindeki başarılar nedeni ile de bazı süper-ağır çekirdeklerin taban-durum nükleer özellikleri ayrıntılı irdelendi. Ayrıca, ancak relativistik bir formda açıklanabilen sözdespin (pseudospin) simetrisi ile ilgili olarak deforme çekirdekte sözdespin çiftlerinin kuadrupol deformasyona bağlı değişimleri incelendi.

Bu çalışmanın ortaya çıkmasında değerli görüş ve yardımlarını esirgemeyen kıymetli hocam ve danışmanım sayın Prof. Dr. A. Hakan YILMAZ'a en içten saygı ve teşekkürlerimi sunarım.

Değerlendirmeleri ile bu çalışmaya yön veren Prof. Dr. Georgios LALAZISSIS'e ve katkılarından dolayı Yrd. Doç. Dr. Coşkun AYDIN'a şükranlarımı sunarım.

Araştırma Görevlisi olduğum Sinop Üniversitesi'nin doktora öğrenimimi tamamlayabilmem için beni KTU Fen Bilimleri Enstitüsüne görevlendirmesinden dolayı teşekkürü bir borç bilirim.

Doktora öğrenciliğim süresince BİDEB 2211 Yurtiçi Doktora Burs Programı çerçevesinde maddi destek sağlayan TÜBİTAK'a teşekkür ederim.

Ayrıca maddi ve manevi desteklerini esirgemeyen aileme, eşim Ömür ve kızım Defne'ye en içten saygı, teşekkür ve minnetlerimi sunarım.

Tuncay BAYRAM

Trabzon 2012

TEZ BEYANNAMESİ

Doktora tezi olarak sunduğum "Relativistik Ortalama Alan Modelinde Çekirdek Taban Durum Özellikleri" başlıklı bu çalışmayı baştan sona kadar danışmanım Prof. Dr. A. Hakan YILMAZ'ın sorumluluğunda tamamladığımı, verileri/örnekleri kendim topladığımı, deneyleri/analizleri ilgili laboratuvarlarda yaptığımı/yaptırdığımı, başka kaynaklardan aldığım bilgileri metinde ve kaynakçada eksiksiz olarak gösterdiğimi, çalışma sürecinde bilimsel araştırma ve etik kurallara uygun olarak davrandığımı ve aksinin ortaya çıkması durumunda her türlü yasal sonucu kabul ettiğimi beyan ederim. 28/05/2012

Tuncay BAYRAM

İÇİNDEKİLER

ÖNGÖ	Ö7	<u>Sayfa No</u>
UNSU		
TEZ I	BEYANNAMESI	IV
IÇINI	DEKILER	V
ÖZET	Г	VII
SUM	MARY	VIII
ŞEKİ	LLER DİZİNİ	IX
TABI	LOLAR DİZİNİ	XI
SEMI	BOLLER DİZİNİ	XII
1.	GENEL BİLGİLER	1
1.1.	Giriş	1
1.2.	Nükleer Deformasyonlar	6
1.2.1.	Deformasyonlar ile İlişkili Genel Parametrizasyonlar	
1.2.2.	Deformasyon Çeşitleri	
1.2.3.	Kuadrupol Deformasyonlar	11
1.2.4.	Anizotropik Harmonik Osilatör	13
1.3.	Relativistik Ortalama Alan (RMF) Modeli	
1.4.	Eksenel Simetrili RMF Denklemleri ve Sayısal Çözümleri	
1.5.	Çiftlenim İlişkileri	
2.	YAPILAN ÇALIŞMALAR	
2.1.	RMFAXIAL Programının Yapısı	
2.2.	Yapılan Hesapların Ayrıntıları	
3.	BULGULAR VE TARTIŞMA	47
3.1.	Taban Durum Enerjileri	47
3.1.1.	. Bağlanma Enerjisi	
3.1.2.	İki-nötron ve İki-proton Ayırma Enerjisi	
3.1.3.	. Süper-ağır Çekirdekler İçin α-bozunumu Enerjisi ve Yarı-ömür Süreleri	61
3.1.4.	. Tek-parçacık Enerji Seviyeleri	65
3.2.	Çekirdek Boyutları	
3.3.	Çekirdek Deformasyonları	76
3.4.	Sözdespin (Pseudospin) Simetrisi	

4.	SONUÇLAR VE ÖNERİLER	
5.	KAYNAKLAR	
6.	EKLER	
ÖZGEÇMİŞ		

Doktora Tezi

ÖZET

RELATİVİSTİK ORTALAMA ALAN MODELİNDE ÇEKİRDEK TABAN DURUM ÖZELLİKLERİ

Tuncay BAYRAM

Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalı Danışman: Prof. Dr. A. Hakan YILMAZ 2012, 111 Sayfa, 67 Sayfa Ek

Bu çalışmada, Relativistik Ortalama Alan (RMF) modeli çerçevesinde Neon (Z = 10) izotop zincirinden başlanarak süper-ağır Darmstadtiyum (Z = 110) izotop zincirine kadar proton damlama çizgisinden (dripline) nötron damlama çizgisine kadar uzanan 51 çift-çift cekirdek izotop zincirinin nükleer taban durum özellikleri sistematik olarak incelendi. Bu çekirdeklerin taban durum bağlanma enerjileri, iki-nötron ayırma enerjileri, nötron, proton ve yük yarıçapları, elektrik kuadrupol momentleri ve deformasyon parametreleri hesaplandı. Bununla beraber bazı çekirdek izotopları için nötron ve proton tek-parçacık enerji seviyeleri, potansiyel enerji eğrileri, süper-ağır çekirdekler için α -bozunumu enerjileri ve ortalama yarı-ömür süreleri, taban durumdan ilk uyarılmış seviyeye elektrik kuadrupol geçiş olasılıkları ve sözdespin (pseudospin) çiftlerinin deformasyona bağlı değişimleri incelendi. Sonuç olarak RMF modeli periyodik tabloya başarılı bir şekilde uygulandı ve 51 çift-çift çekirdek izotop zinciri için bir nükleer veri tablosu oluşturuldu. Ayrıca RMF modelinin çekirdek deformasyon ve boyutlarını belirlemede bazı nükleer modeller ile karşılaştırıldığında daha başarılı olduğu deneysel sonuçlar yardımıyla gösterildi ve RMF modelinin sözdespin simetrisi ile olan ilişkisi önceki çalışmalarla uyumlu olarak ortaya koyuldu.

Anahtar Kelimeler: Relativistik Ortalama Alan Modeli, Nükleer taban durum özellikleri, Nükleer Deformasyonlar, Sözdespin simetrisi, Süper-ağır çekirdekler

PhD. Thesis

SUMMARY

GROUND STATE PROPERTIES OF NUCLEI IN THE RELATIVISTIC MEAN FIELD MODEL

Tuncay BAYRAM

Karadeniz Technical University The Graduate School of Natural and Applied Sciences Physics Graduate Program Supervisor: Prof. A. Hakan YILMAZ 2012, 111 Pages, 67 Pages Appendix

In this work, starting from isotopic chain of Neon (Z=10) to those of superheavy darmstadtium (Z = 110), nuclear ground state properties of even-even 51 isotopic chains of nuclei which are lay between proton dripline and neutron dripline were systematically investigated by using the Relativistic Mean Field (RMF) model. Ground state binding energies, two-neutron separation energies, neutron, proton and charge radii, quadrupole moments and deformations of the nuclei were calculated. In addition, for some isotopes single-particle energies of neutrons and protons, potential energy curves, α -decay energies and half-life of Superheavy nuclei, electric quadrupole transition probabilities for ground state to first excited state and evolution of pseudospin doublets through quadrupol deformation were investigated in detail. As a result, the RMF model was employed on a wide range of periodic chart successfully and a nuclear data table were built up for 51 even-even isotopic chains of nuclei. Besides, it was clearly indicated that the predictions of the RMF model for describing sizes and deformations of nuclei are in agreement with experimental results more than those of some nuclear models. Also relation between RMF model and pseudospin symmetry was discussed and behavior of pseudospin doublets through quadrupol deformation was carried out as agreement with previous studies.

Key Words: Relativistic Mean Field Model, Nuclear ground state properties, Nuclear deformations, Pseudospin symmetry, Superheavy nuclei

ŞEKİLLER DİZİNİ

<u>Sayfa No</u>

Şekil 1.1.	Çok-kutup deformasyonların sembolik gösterimi 11
Şekil 1.2.	Anizotropik harmonik osilatör seviyeleri16
Şekil 1.3.	Nötronlar ve protonlar için asimtotik Nilsson gösterimi 17
Şekil 1.4.	RMF modelinde dikkate alınan mezonlar ve ilişkili kuantum sayıları 18
Şekil 1.5.	Kararlı çekirdek için sembolik çiftlenim ilişkileri
Şekil 2.1.	Küresel ve elipsoidal deforme çekirdekler için temsili görünüm
Şekil 2.2.	RMFAXIAL kodunun işlem basamaklarının şematik gösterimi 42
Şekil 2.3.	Ca ve Er izotoplarının farklı osilatör kabuk sayıları için hesaplanmış nükleon başına bağlanma enerjilerinin (B/A) deneysel değerlerden farkları 46
Şekil 3.1.	İzotop zincirleri için nükleon başına bağlanma enerjileri 49
Şekil 3.2.	Çift-çift çekirdekler için deneysel ve teorik bağlanma enerjisi (BE) farkları 51
Şekil 3.3.	Ca, Mo, Gd ve Rn çift-çift çekirdek izotop zincirleri için nötron sayısının fonksiyonu olarak nükleon başına bağlanma enerjileri
Şekil 3.4.	No, Rf, Sg ve Hs çift-çift süper-ağır çekirdek izotop zincirleri için nükleon başına bağlanma enerjileri
Şekil 3.5.	Ca, Mo, Gd ve Rn çift-çift izotop zincirleri için iki-nötron ayırma enerjileri 58
Şekil 3.6.	Süper-ağır No, Rf, Sg ve Hs izotop zincirleri için iki-nötron ayırma enerjileri
Şekil 3.7.	N=28, 50, 82 ve 126 çekirdek izoton zincirleri için iki-proton ayırma enerjileri
Şekil 3.8.	Süper-ağır No, Rf, Sg ve Hs çekirdek izotopları için α -bozunum enerjileri 63
Şekil 3.9.	⁴⁰ Ca çekirdeği için tek-nötron ve tek-proton enerji seviyeleri
Şekil 3.10.	No ve Hs çekirdek izotopları için nötron tek-parçacık enerji seviyeleri 67
Şekil 3.11.	Mo izotopları için prolate ve oblate şekilli durumlar için bağlanma enerjisi farkları

Şekil 3.12.	Deforme Mo izotopları için nötron tek-parçacık enerji seviyeleri	70
Şekil 3.13.	Ca, Mo, Gd ve Rn çift-çift izotop zincirleri için hesaplanmış nötron ve proton yarıçapları ile nötron deri kalınlıklarının nötron sayısına göre değişimi.	72
Şekil 3.14.	Mo, Gd ve Rn çekirdek izotopları için kok yük yarıçapları	73
Şekil 3.15.	Mo çift-çift çekirdek izotopları için RMF çerçevesinde NL1, NL3, NL3* ve NLZ2 Lagranjiyen parametre setleri ile hesaplanmış izotopik kayma ve ilgili deneysel değerler	74
Şekil 3.16.	Çift-çift Mo (Z=42) çekirdekleri için B(E2; $0 \rightarrow 2^+$) değerleri	77
Şekil 3.17.	Çift-çift çekirdek izotopları için RMF-NL3* ile hesaplanmış β_2 kuadrupol deformasyon parametreleri	79
Şekil 3.18.	Gd ve Er izotopları için β_2 deformasyon parametreleri	80
Şekil 3.19.	RMF, HFB ve FRDM modellerinin çift-çift No, Rf, Sg ve Hs süper-ağır çekirdek izotopları için β_2 öngörüleri	82
Şekil 3.20.	 ²⁸²Hs ve ²⁸⁶Hs süper-ağır çekirdekleri için RMF-NL3* ile hesaplanmış potansiyel enerji eğrileri (PEC) 	83
Şekil 3.21.	Bazı çift-çift Mo izotopları için RMF-NL3* ile hesaplanmış potansiyel enerji eğrileri (PEC)	86
Şekil 3.22.	Bazı çift-çift Ti izotopları için RMF modeli çerçevesinde NL1, NLSH ve NL3* ile hesaplanmış potansiyel enerji eğrileri (PEC)	87
Şekil 3.23.	Bazı Ti izotopları için RMF-NLSH ile PEC hesapları (Guo vd., 2008)	38
Şekil 3.24.	Çekirdek yarıçapının fonksiyonu olarak ortalama alan potansiyelleri	91
Şekil 3.25.	Radyal dalga fonksiyonları (a) $\tilde{1}\tilde{p}_{1/2}$ (2 $s_{1/2}$),	93
Şekil 3.26.	166 Gd çekirdeği için toplam bağlanma enerjisinin kuadrupol deformasyon parametresi $β_2$ ye göre değişimi	94
Şekil 3.27.	¹⁶⁶ Gd için tek-parçacık enerji seviyelerinde sözdespin çiftlerinin kuadrupol deformasyon parametresine (β_2) göre değişimleri	96

TABLOLAR DİZİNİ

<u>Sayfa No</u>

Tablo 1.1.	N = 3 için Nilsson kuantum sayıları	16
Tablo 2.1.	Bazı RMF Lagranjiyen parametre setleri	39
Tablo 2.2.	Bazı Lagranjiyen parametre setleri için nükleer madde özellikleri	40
Tablo 3.1.	Çeşitli nükleer modellerin çekirdek kütle öngörüleri için kare ortalama karekök dağılımları	50
Tablo 3.2.	Bazı süper-ağır çekirdeklerin yarı-ömür sürelerinin doğal logaritmaları	54

SEMBOLLER DİZİNİ

А	: Kütle Numarası		
BCS	: Bardeen-Cooper-Schieffer		
В	: Bağlanma enerjisi		
B/A	: Nükleon başına bağlanma enerjisi		
$B(E2; 0 \rightarrow 2^+)$: Taban durumdan (0^+) , 2^+ durumuna elektrik kuadrupol geçiş olasılığı		
β	: Dirac matrisi		
β_2	: Kuadrupol deformasyon parametresi		
Δ	: Çiftlenim boşluk (gap) parametresi		
DDHF	: Yoğunluk bağımlı Hartree-Fock		
FRDM	: Sonlu Sıvı Damlası Modeli (Finite Range Droplet Model)		
GSI	: Gesellschaft für Schwerionenforschung (Ağır-iyon Araştırma Merkezi)		
ε _i	: Tek-parçacık özdeğeri		
HF	: Hartree-Fock		
HFB	: Hartree-Fock-Bogoliubov		
JNIR	: Joint Institute for Nuclear Research		
J^{μ}	: ω-mezon alanı için akım yoğunluğu		
Ĵ ^μ	: p-mezon alanı için izovektör akım yoğunluğu:		
J_p^{μ}	: Foton alanı için proton akım yoğunluğu		
k _F	: Fermi momentumu		
Κ	: Sıkıştırılamazlık		
KED	: Kuantum elektrodinamiği		
KHD	: Kuantum hidrodinamiği		
KRD	: Kuantum renk dinamiği		
Kok	: Kare ortalama karekök		
L	: Yörünge açısal momentumu		
М	: Nükleon kütlesi		
$m_{ ho}$: ρ-mezonu kütlesi		
m_{σ}	: σ-mezonu kütlesi		
m_{ω}	: ω-mezonu kütlesi		

n _i	: İşgal olasılığı	
Ν	: Nötron sayısı	
PEC	: Potansiyel enerji eğrisi (Potential energy curve)	
$ ho_{\mathrm{n}(\mathrm{p})}$: nötron (proton) yoğunluk dağılımı	
$ ho_s$: σ-mezon alanı için skaler yoğunluk	
RIKEN	: Rikagaku Kenkyūjo (The Institute of Physical and Chemical Research)	
RMF	: Relativistik Ortalama Alan (Relativistic Mean Field)	
RMFAXIAL	: Eksenel deforme olmuş çekirdeklerin Relativistik Ortalama Alan	
	modeli hesapları için kullanılan bilgisayar programı	
R_c	: Çekirdek yük yarıçapı	
R_n	: Nötron yarıçapı	
R_p	: Proton yarıçapı	
S _{2n}	: İki-nötron ayırma enerjisi	
S_{2p}	: İki-proton ayırma enerjisi	
σ	: Pauli matrisi	
T_{α}	: α-bozunumu yarı-ömür süresi	
Q_0	: İçsel elektrik kuadrupol moment	
Q_{lpha}	: α-bozunum enerjisi	
Q_n	: Nötron kuadrupol momenti	
Q_p	: Proton kuadrupol momenti	
Q_T	: Toplam kuadrupol moment	
WS	: Woods-Saxon	
$V_{ m s}$: Skaler Potansiyel	
$V_{ m v}$: Vektör Potansiyeli	
Ζ	: Proton Sayısı	

1. GENEL BİLGİLER

1.1. Giriş

1911 yılında Rutherford α-parçacıklarını ince bir altın levha ile çarpıştırarak çekirdeğin varlığını ortaya çıkardı. Çekirdeğin kütlesi izotopların varlığını ortaya çıkaran Thomson tarafından ölçüldü. 1918'de proton ve 1932'de nötron keşfedildi. Artık çekirdek proton ve nötron yapıtaşlarından oluşan bir bileşik yapı görünümündeydi. Söz konusu tarihlerde fizikçilerin çekirdeğin doğasını, yapısını ve elbette özelliklerini tanımlayabilmek için yaptıkları uğraşların sonucu olarak çekirdek içerisinde nötron ve protonları bir arada tutacak ve kütle çekimi kuvveti ile elektromanyetik kuvvet dışında bir diğer temel etkileşme olan güçlü etkileşmenin var olması gerekliliği ortaya atıldı.

Nükleer etkileşmenin kısa erimli ve güçlü bir özellik içerdiği ilk olarak hafif çekirdeklerin (iki nükleona sahip döteron) bağlanma enerjisinden elde edildi. 1930'larda nükleer etkileşmenin yükten bağımsız olduğu proton-proton saçılma deneyleri ile gösterildi. Güçlü etkileşmeler için ilk teorik öngörü Japon Fizikçi Hideki Yukawa (1935) tarafından ileri sürülen güçlü etkileşmenin kaynağının nükleon kütleleri ile karşılaştırıldığında orta ağırlığa sahip kütleli bir parçacık (mezon) olduğudur.

1937 yılında kozmik ışınlarda müon keşfedildi ve bu parçacığın Yukawa'nın öngördüğü parçacık olduğu düşünüldü. Daha sonra bunun doğru olmadığı ortaya çıkarılsa da, bu tarihlerde bu parçacık Yukawa'nın fikrinin destekleyicisi olarak kullanıldı. 1947 yılında ilk olarak kozmik ışınlarda hemen bunun ardında da Berkeley'de π -mezonu keşfedildi. Bu gelişmelerin sonucu olarak 1950'li yıllarda güçlü etkileşmeler üzerine yapılan teorik çalışmalar için güçlü etkileşen mezon varlığı bir motivasyon kaynağı oldu. Pionun, Kuantum Elektrodinamiği'ndeki (KED) foton ile bir benzerliğe sahip olduğu öngörüldü. Nükleon-nükleon saçılmaları ve döteron üzerine yapılan çalışmalar bir pion değiş-tokuşunun güçlü etkileşmenin uzun-erimini açıklayabildiğini ancak iki-pion değiştokuşunun kısa erimi deneysel sonuçlarla uyumlu bir şekilde tanımlamada başarısız olduğu ortaya çıktı.

Özellikle yüksek enerjili saçılmalarda daha ayrıntılı bilgi veren nükleon-nükleon saçılma deneylerindeki başarılı gelişmeler nükleer potansiyelin olgusal tanımının kurulmasına katkı sağladı. Bu deneyler sayesinde spinin ve spin-yörünge etkileşmesinin önemi kavrandı. Bu süreçte bir-pion yaklaşımında çok-parçacık sisteminin ilk tanımı yapıldı. Schiff (1951), nükleer doyma mekanizmasının skaler alanın kendisi ile olan güçlü lineer olmayan öz-etkileşmesinden kaynaklanabileceğini ileri sürdü. Johnson ve Teller (1955) klasik yoğun bir alanın doğurduğu potansiyeldeki nükleon varsayımının, nükleer yapının birçok deneysel özelliklerini açıkladığını gösterirken, Duerr'de (1956) vektör ve skaler mezonları kullanarak, alan teorisi çerçevesinde çekirdeğin birçok özelliğini açıkladı.

1961 yılında ağır mezonlardan ρ -mezonunun Brookhaven'da ve ω -mezonunun Berkeley'de keşfi güçlü etkileşmenin doğasının anlaşılması açısından önemli birer adım oldu. Yukawa'nın nükleer etkileşmenin aracı mezonlar ile sağlandığı fikrine dayanarak ve mezonların sonlu kütleli ve kuantum sayılı bir tek-parçacık olarak davranma eğilimi ile beraber kendileri ile olan etkileşmelerinin deneysel olarak gözlemlenmesinin sonucundan Bir-Bozon Değiş-Tokuşu Modeli ileri sürüldü. Bu kurgunun güçlü etkileşmeler için en büyük katkısı tek bir izoskaler σ -mezonunun değiş-tokuşu ile 2-pion (2π) değiş-tokuşunun nükleer etkileşmenin uzun ve kısa erim arasında dengeleyici bir katkı sağlayan parçacık olarak ele alınabileceğini göstermesiydi. Bu gelişmeler ve diğer mezonların keşfi çokparçacık sistemlerinin tanımlanmasında önemli birer gelişme oldu. Böylece, nükleer madde nükleon başına bağlanma enerjisi ve doyma yoğunluğu gibi parametreler ile karakterize edilebildi.

Bunların dışında, çok-parçacık sisteminin tanımlanmasında relativistik olmayan diğer yaklaşımlarda geliştirildi. Bunlardan biri nükleonların nükleonlar ile etkileşmelerinden ileri gelen tek-parçacık potansiyeli içerisinde serbest hareket ettiği varsayımına dayalı Hartree-Fock teorisidir ve özellikle yoğunluk bağımlı etkileşmeleri içeren Hartree-Fock (DDHF) hesapları büyük bir ilgi gördü. Bu etkileşme türleri içerisinde en iyi bilinenler Skyrme (Skyrme, 1956; Vautherin ve Brink, 1972) ve Gogny kuvvetleridir (Gogny, 1975). Bu etkileşme türleri ile çekirdek yoğunlukları ve bağlanma enerjileri gibi birçok nükleer özelliği iyi bir şekilde tanımlamak mümkün olmuştur. Ayrıca, tek kapalı kabuklu çekirdeklerde çiftlenim ilişkileri ve açık kabuklu çift-çift çekirdeklerin taban durum boyut ve deformasyonlarını doğru bir şekilde sağladılar (Gogny, 1975; Vautherin, 1973; Flocard vd., 1973; Libert ve Quentin, 1982). Deney ile çelişkili yanları da olmasına rağmen bu teori günümüze değin birçok çalışmada başarılı bir biçimde kullanıldı (Bunta, 2003).

1974 yılında az sayıda çiftlenim sabiti ve kütle ile karakterize edilen mezonların ve baryonların renormalize edilebilir alan teorisi, Relativistik Ortalama Alan (RMF) modeli

geliştirildi (Walecka, 1974; Serot ve Walecka 1986). Bu model, deneysel nükleer özelliklerin kullanılarak parametrelerin ayarlanabilmesini ve yüksek yoğunluk ve sıcaklık durumlarına ilave bir parametreye gerek kalmaksızın dışkestirimi mümkün kılıyor. Bu modelde, mezonlar ve baryonlar serbestlik derecesi olarak kullanıldıklarından Kuantum Hidrodinamiği (KHD) olarak bilinmektedir. Bu noktada belki de en önemli soru nükleonların çekirdek içerisinde relativistik olarak ele alınıp alınamayacağıdır:

Geleneksel görüş, düşük enerjili nükleer yapı problemlerinde relativistik etkilerin önemsiz olduğu yönündedir. Gerçekten, çekirdek içindeki nükleonların kinetik enerjisi

$$T_{\text{maks}} = \frac{\hbar^2 k_F^2}{2m} \approx 38 \text{ MeV}$$
(1.1)

dir ve buna karşılık gelen sürat $v \cong 0,29c$ olduğundan göreli kinematikten dolayı sadece küçük düzeltmeler gereklidir (Greiner ve Maruhn, 1996). Yine de nükleer yapı için geliştirilen RMF modeli aşağıda sıralanan nedenlerden dolayı önemli hale gelmiştir:

a) RMF modeli çekirdeğin tek-parçacık yapısının tanımlanmasında başarılı olup spin-yörünge etkileşmesini doğal bir şekilde içeriyor.

b) Nükleer maddenin relativistik teorisi, relativistik olmayan teorilerin karşılaştığı uzun süreli çözülemeyen izotopik kaymanın doğru bir biçimde üretilmesi gibi bazı problemleri ortadan kaldırdı (Brockman ve Machleidt, 1984; Haar ve Malfliet, 1986).

c) Mezon alanları ile etkileşen nükleonların RMF modeli relativitenin önemli olduğu yoğun ve sıcak nükleer madde için dışkestirim (ekstrapolasyon) yapmaya olanak sağlıyor (Greiner ve Maruhn, 1996).

Bu konuda ayrıntılı bir inceleme Gambhir ve Bhagwat'ın (2006) derlemesinde bulunabilir.

Nükleer çok-parçacık probleminin relativistik kuantum alan teorisi için başlangıç noktası nükleonik ve mezonik serbestlik derecelerini içeren Lagranjiyen yoğunluğudur. Bu teoride, karmaşıklıktan kaçınmak için deneysel veriler yardımıyla elde edilen yalın nükleon-nükleon etkileşmeleri türetilerek, elde edilen kuvvetler Brueckner-Hartree-Fock hesaplarında kullanılmaktadır. Bazı çekirdeklerin deneysel verilerini kullanarak yapılan ayarlamalar sonucunda elde edilen çiftlenim sabitleri ve mezon kütlelerinden oluşan parametreleri kullanarak relativistik ortalama alan yaklaşımını çekirdeklerin nükleer özelliklerini ortaya çıkarmak için kullanımı mümkün olmaktadır. Bu metodu kullanan en yaygın model en basit formu olan Hartree yaklaşımıdır (Gambhir vd., 1990). RMF modelinin en basit formunda mezonların kendileri ile olan etkileşmeleri ihmal edildiğinden nükleer maddenin sıkıştırılamazlığı (K) oldukça büyük olmuş ve çekirdeğin yüzey özelliklerinin iyi bir biçimde üretilebilmesi için Boguta ve Bodmer (1977), Lagranjiyen yoğunluğuna σ -alanının lineer olmayan öz-etkileşme terimlerini eklemişlerdir ve bu günümüze değin RMF modeli ile yapılan hesapların birçoğunda etkin bir biçimde kullanılmıştır. Bu teoride değiş-tokuş terimleri ve karşıt-parçacık katkıları mezon alanlarının kaynakları için ihmal edilmekle birlikte σ -, ω - ve ρ -mezonları dikkate alınmaktadır. Bu metodun en büyük başarısı olgusal olarak ayarlanmış oldukça az sayıda parametrenin kullanılmı ile nükleer maddenin taban durum özelliklerini iyi bir şekilde açıklayabilmesi, mikroskopik tabanlı olması, izospin simetrisini sağlaması, relativistik etkileri barındırması ve spin-yörünge katkılarını doğal bir biçimde içermesidir. Relativistik Ortalama Alan Modeli bahsedilen bu karmaşık etkileri sadece olgusal bir yöntem ile ele alıyor olmasından dolayı Skyrme veya Gogny etkileşmeleri kullanılarak yapılan yoğunluk bağımlı Hartree-Fock hesapları ile yakın bir benzerliğe sahiptir. Ancak, RMF modeli ile yapılan hesaplar nümerik karmaşıklık açısından Gogny ve Skyrme hesapları ile karşılaştırıldığında, yoğunluklar $\rho(\mathbf{r})$ ve alanlar gibi sadece yerel yoğunlukları icermesinden dolayı daha basittir (Ring, 1996).

Relativistik ortalama alan (RMF) modeli birçok araştırmacı tarafından periyodik tablonun genişçe bir bölgesinde çekirdeklerin bağlanma enerjisi, nötron ve proton ayırma enerjileri, nükleer yarıçaplar ve kuadrupol deformasyonlar gibi birçok taban durum nükleer özelliklerini ortaya çıkarmak için kullanılmıştır (Serot ve Walecka, 1986; Reinhard, 1989; Gambhir vd., 1990; Lalazissis vd., 1996; Ring vd., 1997; Lalazissis vd., 1999; Gangopadhyay, 1999; Ren, 2002; Geng vd., 2004a,b; Geng, 2005; Zhang vd., 2006; Sheng vd., 2010; Yao ve Guo, 2010; Yılmaz vd., 2010; Bayram vd., 2010; Yılmaz ve Bayram, 2011a). RMF modeli kullanılarak egzotik çekirdeklerin nükleer taban durum özellikleri (Bunta, 2003; Win, 2007) ve astrofiziksel süreçler ve nötron yıldızları (Ban 2005; Diener, 2008) üzerine başarılı çalışmalar gerçekleştirilmiştir. Son yıllarda literatürde RMF modeli çerçevesinde kuadrupol kısıtlamalı hesaplar aracılığı ile elde edilen potansiyel enerji eğrileri (PEC) kullanılarak çekirdeğin şekil evrimi ve karakter tayini (örnek: γ-kararsız çekirdek tayini) yaygınlaşmıştır (Meng vd., 2005; Fossion vd., 2006; Yu vd., 2006; Guo vd., 2008; Yao ve Guo, 2010; Yılmaz ve Bayram, 2011b). Bahri vd. (1992) tarafından ancak relativistik durumda açıklanabilen sözdespin (pseudospin) simetrisinin RMF modeli ile ilişkisi ortaya çıkarıldıktan sonra bu alanda çalışmalar hız kazanmıştır.¹⁵⁴Dy deforme çift-çift çekirdeğinin nötron ve proton tek-parçacık enerjileri kuadrupol deformasyonun bir fonksiyonu olarak incelenmiş ve sözdespin çiftlerinin kuadrupol deformasyona bağlı değişimleri RMF modeli çerçevesinde irdelenmiştir (Lalazissis vd. 1998). Ayrıca, sözdespin simetrisinin izospin bağımlılığı (Lisboa vd., 2004a) çalışıldı.

Bu çalışmada RMF modelinin bahsedilen bu başarılı uygulamalarından dolayı, Lalazissis vd. (2009) tarafından daha iyi izospin özellikleri vermesi için geliştirilen NL3* Lagranjiyen parametre seti yardımı ile RMF modeli çerçevesinde Neon (Z = 10) izotop zincirinden başlayarak süper-ağır Darmstadtiyum (Z = 110) izotop zincirine kadar uzanan her bir çift-çift izotop zincirindeki çekirdeklerin bağlanma enerjisi, iki-nötron ayırma enerjisi, nötron, proton ve yük yarıçapı, toplam kuadrupol moment ve kuadrupol bozulma (deformasyon) parametresi gibi taban durum nükleer özellikleri hesaplanarak bir nükleer veri tablosu oluşturuldu.

Hesaplarda çekirdeklerin eksenel simetriye sahip olduğu kabul edilip hem prolate (puro gibi) ve hem de oblate (domates gibi) şekillenimi dikkate alınmış olmakla beraber çekirdeklerin nükleer taban durum özellikleri ile ilgilenildiğinden en düşük enerjili şekle sahip şekil (prolate veya oblate) dikkate alındı. Ayrıca, nükleer taban durum özellikleri için relativistik olmayan nükleer model sonuçlarını, RMF hesapları ile karşılaştırabilmek için Skyrme etkileşimli Hartree-Fock-Bogoliubov (SHFB) metodu ile de yapılan hesaplarda da RMF modeli ile yapılan hesaplar ile aynı yol izlendi.

Bu çalışmada periyodik tablonun belirli bölgelerinden seçilen Ca (Z = 20), Mo (Z = 42), Gd (Z = 64), Rn (Z = 86) çift-çift izotop zincirleri ile Z = 102 - 108 aralığındaki çift-çift süper-ağır izotop zincirleri üzerine ayrıntılı bir analiz yapıldı. RMF modeli ile elde edilen sonuçlar çeşitli nükleer model öngörüleri ve ulaşılabilir deneysel sonuçlar ile karşılaştırıldı. Söz konusu çekirdekler, RMF modelinin periyodik tablonun geniş bir bölümünde etkin olup olmadığını araştırma, ele alınan bazı izotopların ilginç şekil değişimlerine, büyük deformasyonlara ve deneysel olarak gözlenen belirgin bir izotopik kayma göstermeleri, yine bazı izotop zincirlerinin astrofizik araştırmalarında model oluşturma açısından önem teşkil etmesi, geçmişten günümüze aktinitler bölgesinde yoğun araştırmaların yapılıyor olması ve günümüzde radyoaktif demet üretme tekniklerinin gelişmesine paralel olarak süper-ağır çekirdeklerin sentezlenmesindeki ilerlemenin nükleer modellerin aşırı izospin durumlarında çalışıp çalışmadığını test etmeyi olanaklı hale getirmesi nedeniyle seçilmiştir.

Özellikle, bu çalışmada süper-ağır çekirdekler üzerine ayrı bir önem verildi; No (Z = 102), Rf (Z = 104), Sg (Z = 106) ve Hs (Z = 108) izotop zincirleri için taban durum özelliklerinin yanı sıra α -bozunumu enerjileri ve yarı-ömürleri hesaplandı. Ayrıca bu bölgede yer alan sihirli nötron sayısı için RMF sonuçları elde edildi.

Son yıllarda potansiyel enerji eğrisi (PEC) kullanılarak çekirdeğin şekil bakımından karakter tayini yapılmaktadır. Bu olgu Mo (Z=42) ve Ti (Z=22) izotopları ile yapılan hesaplarda ayrıntılı olarak incelendi.

Ayrıca önemli bir araştırma konusu olan ve sadece relativistik olarak açıklanabilen sözdespin (pseudospin) simetrisi ve deforme ¹⁶⁶Gd çekirdeği için hesaplanan nötron ve proton tek-parçacık enerji seviyelerinin deformasyona bağlı değişimleri ile sözdespin çiftlerinin davranışı incelendi.

Bu çalışmada çekirdeklerin eksenel simetriye sahip (eksenel deforme) olarak ele alınmasından dolayı bu bölümde çekirdek deformasyonları üzerine ayrıntılı bir bilgi verilmektedir. Ardından RMF modelinin genel formalizmi ve eksenel simetrik RMF denklemlerinin sayısal çözümleri verilmektedir. Sonra çekirdekler için bu çalışmada ele alınan çiftlenim ilişkileri irdelenmektedir. İkinci bölümde bu çalışmada yapılan hesaplar için kullanılan bilgisayar kodlarının yapısı, söz konusu programların bu çalışmada tercih edilen girdileri ve yapılan hesaplar üzerine bazı önemli ayrıntılar verilmektedir. Üçüncü bölümde, bu çalışmadan elde edilmiş bulgular sunulmakta ve tartışılmaktadır. Dördüncü bölümde bu çalışmadan elde edilen sonuçlar ve bu sonuçlardan yola çıkılarak türetilen öneriler verilmektedir. Beşinci bölümde, bu çalışmanın hazırlanmasında faydalanılan kaynaklar listelenmektedir. Son olarak bazı matematiksel işlem adımları, HFB modelinin genel yapısı ile bu tez çalışmasından elde edilmiş nükleer veri tabloları EKLER Bölümünde verilmektedir.

1.2. Nükleer Deformasyonlar

Nükleer Kabuk Modeli ve mikroskopik teoriler nükleonların ortalama bir alan içerisinde serbest bir şekilde hareket ettiği varsayımı üzerine kuruludur. Bu noktada ortalama alan nükleonların kendi kendilerine ürettikleri ve diğer nükleonlar ile etkileşmelerinden kaynaklı potansiyel olup bu tür potansiyellerin en basit formu küresel şekle sahip olan potansiyellerdir. Küresel bir potansiyel kullanımı kapalı kabuklu veya kapalı kabuğa sahip olmaya çok yakın çekirdekler için oldukça başarılı sonuçlar vermektedir. Kütle numarası $A \cong 25$ (Al, Mg), nadir-toprak izotopları (150 < A < 190) ve aktinitler bölgesindeki (A > 220) kapalı kabuğa sahip olmaktan uzak çekirdekler için yukarıda bahsedilen ortalama alan içerisinde bağımsız hareket eden nükleon yaklaşımı iyi çalışmaktadır (Ring ve Schuck, 1980). Bununla beraber bu bölgelerde deforme tekparçacık potansiyelini kullanarak da bir yaklaşımda bulunmak mümkündür (Rainwater, 1950; Bohr, 1951; Rainwater, 1976). Çekirdeklerin deforme olduğu varsayımı birçok deneysel olgunun açıklanmasında kullanılmıştır. Bunların en önemlilerini aşağıda verildiği gibi maddeler halinde sıralamak mümkündür:

- i. Deneysel nükleer fizik araştırmalarında ortaya çıkarılan dönel bantların varlığı, durağan nükleer deformasyonlar ile yakından ilişkilidir (Ring ve Schuck, 1980; Greiner ve Maruhn, 1996). 2 MeV e kadar uzanan enerji aralığında çift-çift çekirdeklerin uyarılmış spektrumunun Geometrik Kolektif Modelde nükleer yüzeyin titreşim ve dönmeleri şeklinde ifade edilebileceği karakteristik bant yapıları sergilediği ilk olarak Bohr (1954) tarafından önerilmiş ve Faessler vd. (1965) tarafından geliştirilmiştir.
- ii. Küresel Tek-parçacık Modeli merkezindeki içöz (core) nedeni ile kapalı kabuğa sahip olmaktan çok uzak çekirdeklerde ki büyük kuadrupol moment değerlerinin deneysel olarak elde edilebilmesi olanaklı değildir (Ring ve Schuck, 1980). Bu nedenle deneysel araştırmalar, merkezi içözün kuadrupol momente katkı sağladığı durağan nükleer deformasyonların varlığını işaret etmektedir.
- iii. Rotational Modelde 0⁺ durumundan 2⁺ durumuna elektrik kuadrupol geçiş olasılıkları B(E2; $0 \rightarrow 2^+$), çekirdeğin içsel kuadrupol momenti, Q_0 ile ilişkilidir. Dönel bantlarda, şiddetli bir şekilde artan B(E2; $0 \rightarrow 2^+$) değerleri durağan kuadrupol deformasyonun varlığına işaret etmektedir.
- iv. Oldukça hassas deneyler sonucunda deformasyona oldukça sıkı bir şekilde bağlı tek-parçacık enerjileri deformasyonların varlığını ortaya koymaktadır.
- v. Bazı, büyük deformasyonlara sahip (β≈0.6) ağır çekirdeklerde uzun ömürlü durumlar (izomerler, τ≤1 ms) bulunmuştur (Polikanov vd., 1962; Vandenbosch, 1977). Bu tür büyük deformasyonlar nükleer fizyon sürecinde önemli bir rol oynamaktadır.

1.2.1. Deformasyonlar ile İlişkili Genel Parametrizasyonlar

Çekirdek deformasyonları ile ilişkili parametrizasyonlar Greiner ve Maruhn (1996) tarafından ele alındığı şekliyle aşağıdaki varsayımlar üzerine kuruludur:

- i. Çekirdek yüklü bir sıvı damlası olarak ele alınır. Bu durum nükleer maddenin sıkıştırılamaz olduğu varsayımına neden olur.
- ii. Nükleer yüzey tabakasının kalınlığı ihmal edilir. Bu nedenle çekirdek keskin sınırlara sahip bir yapı olarak ele alınır.
- iii. Çekirdek içinde nükleonların tek başına varlıkları dikkate alınmaz. Çekirdek içerde yoğunluğun sabit kaldığı homojen bir sıvı-benzeri yapı olarak ele alınır.

Bu varsayımlar altında hareketli nükleer yüzey, zaman bağımlı şekil parametrelerinin birer sabit olarak ele alındığı küresel harmonikler cinsinden

$$R(\theta,\phi,t) = R_0 \left(1 + \sum_{\lambda=0}^{\infty} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu}^*(t) Y_{\lambda\mu}(\theta,\phi) \right)$$
(1.2)

ile tanımlanır (Ring ve Schuck, 1980). Zamana bağlı $\alpha_{\lambda\mu}^{*}(t)$ genliği çekirdeğin titreşimlerini tanımlar ve böylece kollektif koordinatlar olarak görev yapar. $\alpha_{\lambda\mu}$ parametresinin fiziksel anlamı ve bazı özellikleri denklem (1.2) yardımıyla şu şekilde sıralanabilir:

i. Nükleer yarıçap gerçel olmalıdır ($R(\theta, \phi, t) = R^*(\theta, \phi, t)$). Bunu denklem (1.2)'ye uyguladığımızda ve küresel harmoniklerin denklem (1.3) ile verilen özelliğinden faydalanarak denklem (1.4)'ü elde etmek mümkündür.

$$Y_{\lambda\mu}^{*}\left(\theta,\phi\right) = \left(-1\right)^{\mu} Y_{\lambda-\mu}\left(\theta,\phi\right) \tag{1.3}$$

$$\alpha_{\lambda\mu}^{*}(\theta,\phi) = (-1)^{\mu} \alpha_{\lambda-\mu} \tag{1.4}$$

ii. $\alpha_{\lambda\mu}$ nün dönmeler altındaki davranışı, dönmeler altında skaler olması gereken $R(\theta, \phi)$ fonksiyonunun değişmezliğine bağlıdır. Nükleer şekil $R(\theta, \phi)$ fonksiyonuna bağlıdır. Bir dönme sonrasında (θ, ϕ) yönü (θ', ϕ') yönüne dönüşür

ve bu durumda yeni fonksiyonumuz $R'(\theta', \phi')$ şeklini alır. Dönmeler altında yarıçap genliği değişmeyeceğinden $R'(\theta', \phi') = R(\theta, \phi)$ eşitliği sağlanır. Bu bağlamda nükleer yüzey dönmeler altında değişmez kalmalıdır. Dönmüş nükleer yüzeyi, aynı fonksiyon formunda ifade etmek mümkün olmakla beraber $\alpha_{\lambda\mu}$ parametresi $\alpha'_{\lambda\mu}$ ye dönüşmüş olacaktır. $\alpha'_{\lambda\mu}$ yü,

$$\sum_{\lambda\mu} \alpha'^{*}_{\lambda\mu} Y'_{\lambda\mu}(\theta, \phi) = \sum_{\lambda\mu} \alpha^{*}_{\lambda\mu} Y_{\lambda\mu}(\theta, \phi)$$
(1.5)

denkleminde ki $Y_{\lambda\mu}$ 'yü dönme matrisi yardımıyla $Y_{\lambda\mu}$ ifadesinden elde etmek mümkündür. Denklem (1.6)'da sıfır açısal momentum durumunun bir çiftlenimi olarak ifade edilebilen μ üzerinden alınan toplam ile $\alpha_{\lambda\mu}$ nün nasıl dönüşeği gösterilmektedir:

$$\sum_{\mu} \alpha_{\lambda\mu}^{*} Y_{\lambda\mu} = \sum_{\mu} (-1)^{\mu} \alpha_{\lambda-\mu} Y_{\lambda\mu}$$
$$= (-1)^{\lambda} \sqrt{2\lambda + 1} \sum_{\mu} \frac{(-1)^{\lambda-\mu}}{\sqrt{2\lambda + 1}} \alpha_{\lambda-\mu} Y_{\lambda\mu}$$
$$= (-1)^{\lambda} \sqrt{2\lambda + 1} \sum_{\mu\mu'} (\lambda\lambda 0 | \mu\mu' 0) \alpha_{\lambda\mu'} Y_{\lambda\mu}$$
(1.6)

Böylece eğer $\alpha_{\lambda\mu}$ ($\mu = -\lambda, ..., \lambda$) parametreler seti λ açısal momentumuna sahip bir küresel tensör olarak dönüşürse, denklem (1.2)'de yapılan tanımın değişmezliğine ulaşılır.

iii. Benzer bir durum, parite dönüşümü için geçerlidir. Eğer küresel harmoniklere parite dönüşümü uygulanırsa ki bu durumda $(-1)^{\lambda}$ pariteli olurlar, $\alpha_{\lambda\mu}$ nükleer yüzey tanımının değişmezliğini korumak için aynı işaret değişimini sağlamalıdır.

1.2.2. Deformasyon Çeşitleri

Denklem (1.2) ile verilen nükleer yüzey tanımı ifadesinin genel açılımı birçok türden deformasyonları içerisinde barındırır. Burada çeşitli çok-kutup mertebelerine (λ) göre deformasyonlar ve bunların fiziksel anlamları irdelenmektedir:

- i. $\lambda = 0$ durumuna karşılık gelen tek-kutup kipinde, kürenin yarıçapının değişimi ile ilişkili a_{00} 'ın değerinin "sıfır" olmasından dolayı küresel harmonik, $Y_{00}(\theta, \phi)$ sabit olur. Bu durumdaki çekirdeğin ilişkili uyarılmış durumu "nefes alma modu (breathing mode)" olarak adlandırılır. Nükleer maddenin sıkıştırılabilmesi için çok büyük miktarlarda enerji gerektiğinden bu kipin burada ele alınan durağan deformasyonların enerji göstergesi çerçevesinde önemli bir rol oynaması beklenmez. Burada dikkat edilmesi gereken nokta, çekirdeğin keskin sınırlara sahip olduğu varsayımının çok ta iyi bir yaklaşım olmamasıdır. Çünkü bu kipin enerjisi titreşim sırasında yüzeydeki değişimler ile ilişkili yoğunluk durumuna hassas bir biçimde bağlıdır.
- ii. $\lambda = 1$ durumuna karşılık gelen dipol kipi gerçek anlamda çekirdeğin deformasyonu ile ilişkili olmaktan ziyade sadece çekirdeğin döndürülmesi anlamını taşır ve nükleer uyarım açısından göz ardı edilebilir.
- iii. $\lambda = 2$ durumuna karşılık gelen kuadrupol kipi çekirdeklerin kollektif uyarılmalarının en önemlisi olarak karşımıza çıkmaktadır. Bu tez çalışmasında da kuadrupol çekirdek deformasyonları incelendiğinden bir sonraki bölümde bu kip ayrıntılı irdelenmektedir.
- iv. $\lambda = 3$ durumuna karşılık gelen oktupol kipi ilkede negatif parite bantları ile ilişkili çekirdeğin asimetrik kipidir.
- v. $\lambda = 4$ durumuna karşılık gelen hegzadekupol kip nükleer yapı incelemelerinde herhangi bir önemine rastlanmamış yüksek bir açısal momentum durumuna karşılık gelmektedir. Nükleer spektrumda tek başına hegzadekupol uyarılmanın var olabileceği yönünde herhangi bir kanıt bulunmazken, ağır çekirdeklerin taban durum şekilleri için kuadrupol uyarılma ile beraber bir görevi bulunmaktadır (Greiner ve Maruhn, 1996).

Daha yüksek açısal momentum durumlarının uygulamada bir önemi bulunmamaktadır ancak $\beta \approx 0.6$ gibi büyük deformasyonlar için λ ile ilişkili bazı temel kısıtlamalar mevcuttur (bkz. Greiner ve Maruhn, 1996).

Şekil 1.1. Çok-kutup deformasyonların sembolik gösterimi

1.2.3. Kuadrupol Deformasyonlar

Daha önce ifade edildiği gibi, $\lambda = 2$ durumuna karşılık gelen kuadrupol deformasyonlar, çekirdeklerin titreşim serbestlik dereceleri içerisinde en önemlilerindendir. Bundan dolayı da bu bölümde kuadrupol deformasyon tensörü, $\alpha_{\lambda\mu}$ de gizli bazı parametreler daha açık bir biçimde irdelenecektir.

Kuadrupol deformasyon elipsoidal deformasyona benzer. Saf kuadrupol deformasyon durumu için, nükleer yüzey,

$$R(\theta,\phi) = R_0 \left(1 + \sum_{\mu} \alpha_{2\mu}^* Y_{2\mu}(\theta,\phi) \right)$$
(1.7)

şeklinde tanımlanır. Bu durumda, bir tanesi α_{00} ve diğer dört tanesi de α_{21} ve α_{22} 'nin sanal ve reel kısımlarından oluşan toplamda beş tane bağımsız serbestlik derecesi vardır.

Çekirdeğin şeklini araştırmak için en iyi yol, küresel harmoniklerin (θ, ϕ) yönündeki birim vektörlerinin dik bileşenler

$$\xi = \sin\theta\cos\phi, \quad \eta = \sin\theta\sin\phi \quad \text{ve} \quad \zeta = \cos\theta$$
 (1.8)

cinsinden ifade etmektir. Bu birim vektörler ile ilişkili sınır koşulu, $\xi^2 + \eta^2 + \zeta^2 = 1$ sağlanır. Bu durumda küresel harmonikler

$$Y_{20}(\theta,\phi) = \sqrt{\frac{5}{16\pi}} (3\cos^2\theta - 1) = \sqrt{\frac{5}{16\pi}} (2\zeta^2 - \xi^2 - \eta^2)$$

$$Y_{2\pm 1}(\theta,\phi) = \mp \sqrt{\frac{15}{8\pi}} \sin\theta\cos\theta e^{\pm i\phi} = \mp \sqrt{\frac{15}{8\pi}} (\xi\zeta \pm i\eta\zeta)$$

$$Y_{2\pm 2}(\theta,\phi) = \mp \sqrt{\frac{15}{32\pi}} \sin^2\theta e^{\pm 2i\phi} = \sqrt{\frac{15}{32\pi}} (\xi^2 - \eta^2 \pm 2i\xi\eta)$$
(1.9)

şeklinde olup bunlar eğer denklem (1.7)'de yerleştirilirse, deformasyonun kartezyen bileşenlerinin küresel olanlarla,

$$\alpha_{20} = \frac{1}{6} \sqrt{\frac{16\pi}{15}} \left(2\alpha_{\zeta\zeta} - \alpha_{\xi\xi} - \alpha_{\eta\eta} \right)$$

$$\alpha_{2\pm 1} = \mp \sqrt{\frac{8\pi}{15}} \left(\alpha_{\xi\zeta} \pm 2i\alpha_{\xi\eta} \right)$$

$$\alpha_{2\pm 2} = \frac{1}{2} \sqrt{\frac{8\pi}{15}} \left(\alpha_{\xi\xi} - \alpha_{\eta\eta} \pm 2i\alpha_{\xi\eta} \right)$$
(1.10)

denklemleri ile ilişkili olarak kartezyen koordinatlar cinsinden çekirdek yarıçapı,

$$R(\xi,\eta,\zeta) = R_0(1 + \alpha_{\xi\xi}\xi^2 + \alpha_{\eta\eta}\eta^2 + \alpha_{\zeta\zeta}\zeta^2 + 2\alpha_{\xi\eta}\xi\eta + 2\alpha_{\xi\zeta}\xi\zeta + 2\alpha_{\eta\zeta}\eta\xi$$

$$(1.11)$$

olarak elde edilir. Eğer çekirdeğin herhangi bir simetri ekseni varsa, çekirdek uzayda keyfi bir yönelime sahip olabilir. Bundan dolayı, $\alpha_{2\mu}$ 'de, çekirdeğin şekli ve yöneliminin birleşimini barındırır. Çekirdeğin geometrisi yeni bir koordinat dönüşümü ile yönelimin ayrılmasıyla daha açık hale gelir. Bu yeni koordinat sistemi üslü sembol ile temsil edildiğinde (Simetriden dolayı burada sadece ξ , ζ ve η 'lere göre köşegen olan bileşenler alınır) denklem (1.11)

$$R(\xi',\eta',\zeta') = R_0(1+\alpha'_{\xi\xi}\xi^2 + \alpha'_{\eta\eta}\eta^2 + \alpha'_{\zeta\zeta}\zeta^2)$$
(1.12)

olur. $\alpha'_{\xi\eta} = \alpha'_{\xi\zeta} = \alpha'_{\eta\zeta} = 0$ koşulu $\alpha'_{2\pm 1} = 0$ olmasını gerektirir. $\alpha_{2\mu}$ 'nün beş katsayısı, α'_{20} ve $\alpha'_{20} = \alpha'_{2-2}$ ($\alpha'_{2\pm 1} = 0$) ile iki gerçel bağımsız değişkene indirgenir. Bu değişkenler $x'_{, y'}$ ve z' üç eksen ile karakterize edilen yeni tanımlanmış koordinat sisteminden laboratuvar sistemine göre sabitlenmiş x, y ve z eksenlerine göre yönelimini belirleyen üç Euler açısı $\theta = (\theta_1, \theta_2, \theta_3)$ ile birlikte çekirdeğin şekli belirlenir. Bu koordinat dönüşümünün en önemli yararı dönme ve şekil titreşimlerini birbirinden ayırmasıdır. Euler açılarındaki bir değişim, çekirdeğin şeklinde bir değişime sebep olmaz ve sadece yalın bir çekirdek dönmesi elde edilir.

Deformasyon parametreleri ile ilişkili olarak çekirdek deformasyonlarını betimleyen bir başka parametre seti, Bohr (1954) tarafından ortaya konmuştur. β ve γ değişkenleri ile betimlenen deformasyon parametreleri ile nükleer yüzey betimlenebilir (bkz. Ring ve Schuck, 1980; Greiner ve Maruhn, 1996).

1.2.4. Anizotropik Harmonik Osilatör

Deforme çekirdek için potansiyelinde deforme olduğu varsayımı doğal bir yaklaşımdır. Nükleer kuvvet kısa erimli (~1 fm) olduğundan potansiyelin şeklinin nükleer yoğunluk dağılımına benzer bir şekle sahip olması beklenir. Küresel kabuk modelinden de iyi bilindiği gibi Woods-Saxon potansiyeli (Woods ve Saxon, 1954) $R_0 = 1.2A^{1/3}$, $V_0 \cong 50$ (MeV), $a \cong 0.5$ (fm) olmak üzere;

$$V^{W.S.}(r) = -V_0 \left[1 + \exp\left[\frac{r - R_0}{a}\right] \right]^{-1}$$
(1.13)

ile verilir ve bunu deforme durum için, $a(\theta, \phi)$ açıya bağlı çekirdek yüzey dağılımı olmak üzere,

$$V(r,\theta,\phi) = -V_0 \left[1 + \exp\left(\frac{r - R(\theta,\phi)}{a(\theta,\phi)}\right) \right]^{-1}$$
(1.14)

şeklinde genellemek mümkündür (Faessler ve Sheline, 1966).

Küresel Woods-Saxon potansiyeli durumunda olduğu gibi gerek küresel ve gerekse deforme durumlar için bir başka iyi yaklaşım ilk olarak Nilsson tarafından ortaya konan harmonik osilatördür (Ring ve Schuck, 1980).

Çekirdeğin yük dağılımının ideal bir elipsoidal yapıda olduğu düşünülürse çekirdeğin potansiyelinin de elipsoidal şekilde olduğu varsayılabilir. Denklem (1.14) için harmonik osilatör yaklaşımında bu durum anizotropik harmonik osilatör Hamiltonyeni

$$h_0 = \frac{-h^2}{2m}\vec{\nabla}^2 + \frac{m}{2}\left(\omega_x^2 x^2 + \omega_y^2 y^2 + \omega_z^2 z^2\right)$$
(1.15)

kullanımıyla kolayca başarılabilir. Denklem (1.15)'de yer alan ω_x , ω_y ve ω_z frekansları elipsoidin yarı eksenlerinin (a_x , a_y ve a_z) tersi ile

$$\omega_{\nu} = \omega_0 \frac{R_0}{a_{\nu}}, \quad \left(\nu = x, y, z\right) \tag{1.16}$$

şeklinde orantılı olmalıdır. Hacim korunumu gereği olarak,

$$\omega_x \omega_y \omega_z = \omega_0^3 = \text{sabit}$$
(1.17)

eşitliğini yazmak mümkündür. Denklem (1.15) ile verilen Hamiltonyeni x, y ve z cinsinden değişkenlerine ayırmak mümkündür. Bu durumda öz-durumlar n_x , n_y ve n_z ile gösterilmek üzere, özdeğerler

$$\varepsilon_0(n_x, n_y, n_z) = \hbar \omega_x \left(n_x + \frac{1}{2}\right) + \hbar \omega_y \left(n_y + \frac{1}{2}\right) + \hbar \omega_z \left(n_z + \frac{1}{2}\right)$$
(1.18)

olur.

Çekirdeğin eksenel simetriye sahip olması durumunda z-ekseni simetri ekseni olarak seçilir ve δ deformasyon parametresi

$$\omega_{\perp}^{2} = \omega_{x}^{2} = \omega_{y}^{2} = \omega_{0}^{2} \left(\delta\right) \left(1 + \frac{2}{3}\delta\right) \quad \text{ve} \quad \omega_{z}^{2} = \omega_{0}^{2} \left(\delta\right) \left(1 - \frac{4}{3}\delta\right) \tag{1.19}$$

ile tanımlanır. δ , $\omega_0(\delta)$ teriminin hacim korunumunu sağlaması amacıyla belirlendiğinden, sadece deformasyon parametresi olmaktadır ve δ^2 'li terimlerde dikkate alındığında

$$\omega_0(\delta) = \omega_0 \left(1 + \frac{2}{3}\delta^2\right) \tag{1.20}$$

elde edilir. Bundan dolayı Nilsson deformasyona bağlı osilatör uzunluğu, $b(\delta) = (\hbar / m\omega_0(\delta))^{1/2}$ ve boyutsuz koordinatlar ($\mathbf{r'} = \mathbf{r} / b$) tanımlamıştır. Bu yeni koordinatlarda denklem (1.15) ile verilen Hamiltonyen,

$$h_0(\delta) = \hbar \omega_0(\delta) \left(-\frac{1}{2} \nabla'^2 + \frac{1}{2} r'^2 - \frac{1}{3} \sqrt{\frac{16\pi}{5}} \delta r'^2 Y_{20}(\theta', \phi') \right)$$
(1.21)

şeklini alır. Bu durumda eşpotansiyel yüzeyler elipsoid şeklinde olup, $r' \sim (1 + \beta Y_{20}(\theta', \phi'))$ ve $\beta = \frac{1}{3}\sqrt{16\pi/5}\delta + ... = 1.057\delta + ...$ olmak üzere denklem (1.19)'de ki δ deformasyon parametresi 1. mertebeli terimler dikkate alındığında kabaca β 'ya eşit olur.

Eksenel simetri durumunda, silindirik koordinatların kullanılması daha yararlıdır. Bu durumda m_l yörünge açısal momentumunun simetri ekseni üzerindeki izdüşümü olmak üzere, özdurumlar n_x , n_y ve n_z kuantum sayıları ile betimlenirler ve denklem (1.18),

$$N = n_z + 2n_\rho + m_l = n_x + n_y + n_z \tag{1.22}$$

eşitliği yardımı ile

$$\mathcal{E}_{0}\left(n_{z}, n_{\rho}, m_{l}\right) = \hbar \omega_{z}\left(n_{z} + \frac{1}{2}\right) + \hbar \omega_{\perp}\left(2n_{\rho} + m_{l} + 1\right)$$
$$\cong \hbar \omega_{0}\left\{\left(N + \frac{3}{2}\right) + \delta\left(\frac{N}{3} - n_{z}\right)\right\}$$
(1.23)

şeklini alır. Eksenel simetride m_l iyi bir kuantum sayısıdır. Benzer durum spin bileşeni s_z ve $\Omega = m_l + m_s$ özdeğerine sahip toplam açısal momentumun z-ekseni üzerindeki izdüşümü, J_z için de doğrudur. Silindirik koordinatlarda h_0 'ın özdurumları π (parite) olmak üzere $\Omega^{\pi}[Nn_zm_l]$ ile gösterilen Nilsson kuantum sayıları seti ile betimlenebilir. Nükleer seviye yapılarının irdelenmesi açısından denklem (1.23)'de N = 3 alınırsa, bu durumda

$$\varepsilon_0^{N=3}\left(n_z, n_\rho, m_l\right) \cong \frac{9}{2}\hbar\omega_0 + \hbar\omega_0\delta\left(1 - n_z\right) \tag{1.24}$$

eşitliği elde edilir. Bu durumda farklı kuantum sayılarına karşılık gelen olasılıklar Tablo 1'de örneklem olarak verilmektedir.

n _z	m_l	$n_ ho$	Ω
0	1	1	1/2 3/2
	3	0	5/2 7/2
1	0	1	1/2
	2	0	3/2 5/2
2	1	0	1/2 3/2
3	0	0	1/2

Tablo 1.1. N = 3 için Nilsson kuantum sayıları

Şekil 1.2. Anizotropik harmonik osilatör seviyeleri

Denklem (1.23) ve (1.24)'e göre deformasyon parametresi δ ile orantılı küçük deformasyonlar için n_z nin farklı değerlerine karşılık gelen seviyeler arasındaki ayrışma Şekil 1.2'de sembolik olarak gösterilmekte, Şekil 1.3'te ise nükleer tabaka modeline göre n, l ve j kuantum sayıları ile klasik olarak temsil edilen nötron ve proton tek-parçacık durumlarına karşılık gelen asimtotik Nilsson gösterimi verilmektedir (Kuşoğlu, 2009).

Şekil 1.3. Nötronlar ve protonlar için asimtotik Nilsson gösterimi

1.3. Relativistik Ortalama Alan (RMF) Modeli

Nükleer yapı için geliştirilen ilk modeller Sıvı Damlası Modeli (FRDM), Fermi Gazı Modeli ve Nükleer Tabaka Modelidir. Bununla beraber son yirmi yılda oldukça karmaşık nükleer modellerin ortaya konması ile beraber çekirdeğin yapısının anlaşılmasında önemli ilerlemeler olmuştur. Bu modellerden biri Relativistik Ortalama Alan (RMF) modelidir.

Relativistik Ortalama Alan Modeli Walecka'nın (1974) önerdiği relativistik kuantum alan teorisi modeli olup bu modelde Dirac spinoru ile betimlenen nükleonlar mezonların değiş-tokuşu ile etkileşirler. Bu modelde, skaler σ -mezonu ile nükleonlar (ψ), Yukawa terimi ($\overline{\psi}\sigma\psi$) şeklinde çiftlenmekte olup, çekirdek içerisindeki güçlü çekici alan kaynağıdır. İzoskaler vektör ω -mezonu korunumlu nükleon akımı ($\overline{\psi}\gamma_{\mu}\psi\omega^{\mu}$) ile nükleonlarla çiftlenip, çekirdek içerisindeki güçlü itici alanı üretir. Bunlara ek olarak elektromanyetik etkileşmeyi üretmek için izovektör akımı ve fotonlarla çiftlenmiş izovektör ρ -mezonu vardır.

J, π ve T sırası ile toplam açısal momentum, parite ve izospin kuantum sayılarını temsil etmek üzere dikkate alınan mezonlar ve bunlar ile ilgili kuantum sayıları Şekil 1.4'te gösterilmektedir.

Şekil 1.4. RMF modelinde dikkate alınan mezonlar ve ilişkili kuantum sayıları

Bu modelde Slater determinantı formundaki ψ_i (i=1,...,A) tek-parçacık spinoru ile temsil edilen A tane nükleonun bu mezon alanları içerisinde bağımsız bir şekilde (Hartree formalizmi) hareket ettiği varsayımından yola çıkıldığı için, modelin başlangıç noktası bir Lagranjiyen yoğunluğudur. *M*, m_{σ} , m_{ω} ve m_{ρ} sırasıyla nükleon, σ -, ω - ve ρ -mezonun kütlesini; g_{σ} , g_{ω} , g_{ρ} ve e²/4 π =1/137 ise sırasıyla σ -, ω -, ρ -mezonu ve foton için çiftlenim sabitleri olmak üzere Lagranjiyen yoğunluğu

$$L \equiv \overline{\psi}_{i} \left\{ i\gamma^{\mu} \partial_{\mu} - M \right\} \psi_{i}$$

$$+ \frac{1}{2} \partial^{\mu} \sigma \partial_{\mu} \sigma - U(\sigma) - g_{\sigma} \overline{\psi}_{i} \psi_{i} \sigma$$

$$- \frac{1}{4} \Omega^{\mu\nu} \Omega_{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega^{\mu} \omega_{\mu} - g_{\omega} \overline{\psi}_{i} \gamma^{\mu} \psi_{i} \omega_{\mu}$$

$$- \frac{1}{4} \vec{R}^{\mu\nu} \vec{R}_{\mu\nu} + \frac{1}{2} m_{\rho}^{2} \vec{\rho}^{\mu} \vec{\rho}_{\mu} - g_{\rho} \overline{\psi}_{i} \gamma^{\mu} \vec{\tau} \psi_{i} \vec{\rho}_{\mu}$$

$$- \frac{1}{4} F^{\mu\nu} F_{\mu\nu} - e \overline{\psi}_{i} \gamma^{\mu} \frac{(1 - \tau_{3})}{2} \psi_{i} A_{\mu}$$
(1.25)

dir. Standart Walecka modeli sadece σ ve ω mezonlarını dikkate alır ve lineer bir modeldir. Denklem (1.25) ile verilen Lagranjiyende yer alan ρ -mezonu ile ilişkili terimler asimetrik çekirdeğin daha iyi bir tanımı için ilave edilir. Ayrıca standart Walecka modelinde sıkıştırılamazlak (K) çok büyük olduğundan çekirdek yüzey özelliklerinin iyi bir biçimde betimlenebilmesi için σ -mezonunun lineer olmayan bir potansiyel içerisinde hareket ettiği varsayımından yola çıkarılarak türetilmiş olan $U(\sigma)$ terimi

$$U(\sigma) = \frac{1}{2}m_{\sigma}\sigma^{2} + \frac{1}{3}g_{2}\sigma^{3} + \frac{1}{4}g_{3}\sigma^{4}$$
(1.26)

ile verilir (Boguta ve Bodmer, 1977). Bu haliyle model lineer olmayan Walecka modeli olarak adlandırılmaktadır. Denklem (1.26) ile verilen ifadede g_2 ve g_3 çiftlenim sabitleri etkin bir yoğunluk bağımlılığı olup nükleer yüzeyin uygun tanımı için deneysel verilerden ayarlanır. Vektör mezonlar ve elektromanyetik alan için alan tensörleri,

$$\Omega^{\mu\nu} = \partial^{\mu} \omega^{\nu} - \partial^{\nu} \omega^{\mu}$$

$$\vec{R}_{\mu\nu} = \partial^{\mu} \vec{\rho}^{\nu} - \partial^{\nu} \vec{\rho}^{\mu} - g_{\rho} (\vec{\rho}^{\mu} \times \vec{\rho}^{\nu})$$

$$F^{\mu\nu} = \partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu}$$
(1.27)

şeklindedir.

Klasik relativistik alan teorisi çerçevesinde alanlar, $q_i = \phi, V, \psi$ kuantum sayıları ile temsil edilirler. Alanların dinamiği, Lagranjiyen yoğunluğu $L(q, \partial_{\mu}q, t)$ olmak üzere varyasyon ilkesi,

$$\delta \int dt L = \delta \int d^4 x L \left(q_i, \partial_\mu q_i, t \right) = 0.$$
(1.28)

ile verilir. Alanların Euler-Lagrange denklemleri

$$\partial_{\mu} \left(\frac{\partial L}{\partial \left(\partial_{\mu} q_{i} \right)} \right) - \frac{\partial L}{\partial q_{i}} = 0$$
(1.29)

dir. Enerji momentum tensörü

$$T^{\mu\nu} = -g^{\mu\nu}L + \frac{\partial L}{\partial \left(\partial_{\mu}q_{i}\right)}\partial^{\nu}q_{i}$$
(1.30)

ile verilir. Denklem (1.28) bu tensörün korunumunu garantilemekle birlikte, süreklilik denklemini

$$T^{\mu\nu} = \partial_{\mu}T^{\mu\nu} = 0 \tag{1.31}$$

sağlar ve 4-momentum

$$P^{\mu} = \int d^3 r T^{o\gamma} \tag{1.32}$$

korunur. Enerji, bu momentumun sıfırıncı bileşeni olup, Hamiltonyen yoğunluğu

$$H = T^{oo} = \frac{\partial L}{\partial \dot{q}_i} \dot{q}_i - L \tag{1.33}$$

olmak üzere,

$$P^{o} = E = \int d^{3}r H(r) \tag{1.34}$$

ile verilir.

Denklem (1.25) ile verilen Lagranjiyen yoğunluğu denklem (1.29) ile verilen Euler-Lagrange denkleminde kullanıldığında, alanlar ile ilişkili hareket denklemleri elde edilir. Bu hareket denklemleri, nükleonları betimleyen Dirac denklemi

$$\left\{\gamma^{\mu}\left(i\partial_{\mu}+g_{\omega}\omega_{\mu}+g_{\rho}\vec{\tau}\vec{\rho}_{\mu}+e\frac{\left(1-\tau_{3}\right)}{2}A_{\mu}\right)+\left(M+g_{\sigma}\sigma\right)\right\}\psi_{i}=0$$
(1.35)

ve mezonları betimleyen Klein-Gordon denklemleri,

$$\left\{ \partial^{\nu} \partial_{\nu} + \partial_{\sigma} U(\sigma) \right\} \sigma = -g_{\sigma} \rho_{s}$$

$$\left\{ \partial^{\nu} \partial_{\nu} + m_{\omega}^{2} \right\} \omega^{\mu} = g_{\omega} J^{\mu}$$

$$\left\{ \partial^{\nu} \partial_{\nu} + m_{\rho}^{2} \right\} \vec{\rho}^{\mu} = g_{\rho} \vec{J}^{\mu}$$

$$\left\{ \partial^{\nu} \partial_{\nu} A^{\mu} = e J_{p}^{\mu} \right\}$$

$$(1.36)$$

şeklindedir. Mezon alanlarının kaynakları, baryonların Slater determinantındaki tüm dolu (işgal edilmiş) seviyelerin toplanması ile elde edilir. σ-mezonu alanı için skaler yoğunluk;

$$\rho_s(x) = \sum_{i=1}^{A} \overline{\psi}_i(x) \psi_i(x)$$
(1.37a)

ω-mezon alanı için akım yoğunluğu;

$$J^{\mu}(x) = \sum_{i=1}^{A} \overline{\psi}_i(x) \gamma^{\mu} \psi_i(x)$$
(1.37b)

ρ-mezon alanı için izovektör akım yoğunluğu;

$$\vec{J}^{\mu}(x) = \sum_{i=1}^{A} \overline{\psi}_{i}(x) \gamma^{\mu} \vec{\tau} \psi_{i}(x)$$
(1.37c)

ve foton alanı için proton akım yoğunluğu;

$$J_{p}^{\mu}(x) = \sum_{i=1}^{A} \overline{\psi}_{i}(x) \gamma^{\mu} \frac{(1-\tau_{3})}{2} \psi_{i}(x)$$
(1.37d)

ile verilir. Relativistik Ortalama Alan Modelinin uygulamalarında karşıt parçacık katkısı ihmal edilir. RMF modelinin tam anlamıyla kuantum alan teorisi çerçevesinde ele alınması durumunda vakum polarizasyonunun ihmal edilmesinin ciddi bir problem teşkil edeceğinin bilinmesinde fayda vardır. Buna yönelik olarak karşıt parçacıkların katkılarının bir-ilmek yaklaşımında nükleer madde, küresel çekirdek ve deforme çekirdekler için çok küçümsenmeyecek orandadır (Chin ve Walecka, 1977; Serr ve Walecka, 1978; Horowitz ve Serot, 1984; Perry, 1986; Wasson, 1988; Zhu vd., 1991). Lagranjiyenin parametre setlerinin yeniden düzenlenmesi ile elde edilen sonuçlar karşıt parçacık olmaması yaklaşımı (no-sea approach) kullanılarak elde edilen sonuçlardan çok az farklı sonuçlar elde edilmektedir. İki-ilmek yaklaşımı için durum tamamen farklı olup ciddi problemler ile karşılaşılmıştır (Gambhir vd., 1990). Bu çalışmada, boşluk kutuplanmasının göz ardı edildiği ve buna bağlı olarak negatif enerjili durumların yoğunluk ve akımlara katkı sağlamadığı RMF modeli sadece olgusal bir araç olarak kullanılmaktadır.

Çekirdeklerin taban durum özelliklerini tanımlayabilmek için ortalama alan yaklaşımı çerçevesinde mezon alan operatörleri beklenen değerleri ile yer değiştirirler. Böylece A tane nükleon, klasik mezon alanlarında bağımsız bir şekilde hareket eden tekparçacık spinorlarının (ψ_i) Slater determinantı $|\phi\rangle$ ile tanımlanır ve mezon alanlarının kaynakları nükleon akım ve yoğunlukları ile tanımlanır.

Denklem (1.36)'nın durağan çözümleri için nükleon spinorları ε_i özdeğerli

$$\left\{\boldsymbol{\alpha}\left(-i\nabla-\mathbf{V}(\mathbf{r})\right)+\beta M^{*}(\mathbf{r})+V(\mathbf{r})\right\}\psi_{i}(\mathbf{r})=\varepsilon_{i}\psi_{i}(\mathbf{r})$$
(1.38)

durağan Dirac denkleminin öz-vektörü olurlar. Bu denklemde etkin kütle,

$$M^*(\mathbf{r}) = M + g_\sigma \sigma(\mathbf{r}) \tag{1.39}$$

 $\sigma(\mathbf{r})$ skaler alanı ile belirlenir. Denklem (1.38)'deki vektör potansiyeli ω^{μ} , ρ^{μ} ve A^{μ} Lorentz vektörlerinin zamansal kısmını içerecek

$$V(\mathbf{r}) = g_{\omega}\omega^{0}(\mathbf{r}) + g_{\rho}\vec{\tau}\rho^{0}(\mathbf{r}) + e\frac{(1-\tau_{3})}{2}A^{0}(\mathbf{r})$$
(1.40)
şeklinde ve uzaysal bileşenlerini içerecek

$$\mathbf{V}(\mathbf{r}) = g_{\omega}\omega(\mathbf{r}) + g_{\rho}\vec{\tau}\vec{\rho}(\mathbf{r}) + e\frac{(1-\tau_3)}{2}\mathbf{A}(\mathbf{r})$$
(1.41)

şekilde yazılabilir. Bu alanlar,

$$\left\{ -\nabla^{2} + m_{\sigma}^{2} \right\} \sigma(\mathbf{r}) = -g_{\sigma} \rho_{s}(\mathbf{r}) - g_{2} \sigma^{2}(\mathbf{r}) - g_{3} \sigma^{3}(\mathbf{r})$$

$$\left\{ -\nabla^{2} + m_{\omega}^{2} \right\} \omega^{\mu}(\mathbf{r}) = g_{\omega} J^{\mu}(\mathbf{r})$$

$$\left\{ -\nabla^{2} + m_{\rho}^{2} \right\} \vec{\rho}^{\mu}(\mathbf{r}) = g_{\rho} \vec{J}^{\mu}(\mathbf{r})$$

$$\left\{ -\nabla^{2} A^{\mu}(\mathbf{r}) = e J_{p}^{\mu}(\mathbf{r})$$

$$(1.42)$$

Klein-Gordon denklemlerinin çözümleridirler.

Denklem (1.38) ve (1.42) birlikte kapalı bir denklem seti oluştururlar. Bu denklemler çözümü için iteratif bir yöntemle önce mezon alanlarının makul tahminleri ile Dirac denklemi çözülerek nükleonları betimleyen spinorlar ile yoğunluklar ve akımlar elde edilir. Denklem (1.42) ile verilen Klein-Gordon denklemleri bu kaynakların kullanılması ile yeni mezon alanları ve elektromanyetik alanı verir. Bu alanlar $V^{\mu}(\mathbf{r})$ potansiyellerinin etkin kütlenin hesaplanması için kullanılır. Bir sonraki iterasyon için, bu hesaplanan nicelikler denklem (1.38) ile verilen Dirac denkleminde kullanılarak yeni spinorlar elde edilir. Bu iteratif yöntem öz-uyum sağlanıncaya kadar sürdürülerek Dirac ve Klein-Gordon denklemlerinden oluşan kapalı denklem setinin çözümü öz-uyumlu bir şekilde elde edilmiş olur.

İteratif çözümün ardından kok (kare ortalama karekök) yarıçapının, kuadrupol ve hegzadekupol momentlerin beklenen değerleri ve

$$H(\mathbf{r}) = \sum_{i} \psi_{i}^{+} \left\{ \alpha \left(-i\nabla - V(\mathbf{r}) \right) + \beta M^{*}(\mathbf{r}) + V(\mathbf{r}) \right\} \psi_{i}$$
$$+ \frac{1}{2} (\nabla \sigma)^{2} + U(\sigma)$$

$$-\frac{1}{2}\left\{\left(\nabla\omega^{0}\right)^{2} + m_{\omega}^{2}\left(\omega^{0}\right)^{2} - \left(\nabla\mathbf{x}\boldsymbol{\omega}\right)^{2} - m_{\omega}^{2}\boldsymbol{\omega}^{2}\right\}$$

$$-\frac{1}{2}\left\{\left(\nabla\vec{\rho}^{0}\right)^{2} + m_{\rho}^{2}\left(\vec{\rho}^{0}\right)^{2} - \left(\nabla\mathbf{x}\vec{\boldsymbol{\rho}}\right)^{2} - m_{\omega}^{2}\vec{\boldsymbol{\rho}}^{2}\right\}$$

$$-\frac{1}{2}\left\{\left(\nabla A^{0}\right)^{2} - \left(\nabla\mathbf{x}\mathbf{A}\right)^{2}\right\}$$
(1.43)

Hamiltonyeni yardımıyla toplam enerji denklem (1.34) ifadesinden hesaplanabilir.

Simetriler, hesapları basitleştirir. RMF modelinde zaman tersinmesi (time reversal) simetrisi dikkate alındığından nükleon içinde akımlar olmaz ve sadece A^0 , ω^0 ve $\vec{\rho}^0$ zamansal bileşenler kalır. Manyetik momentlerin tanımlanmasında (Hofmann ve Ring, 1988) ve dönel çekirdeklerde (Koepf ve Ring, 1990) uzaysal bileşenlerin önemli bir işlevi olduğu unutulmamalıdır.

Yük korunumu, izovektörün sadece üçüncü bileşeninin ρ^0 dikkate alınmasını gerektirir. Sadece $V(\mathbf{r})$ potansiyelini ve $M^*(\mathbf{r})$ etkin kütleyi içeren, Dirac denklemi

$$\left\{-i\boldsymbol{\alpha}\nabla + \boldsymbol{\beta}\boldsymbol{M}^{*}(\mathbf{r}) + \boldsymbol{V}(\mathbf{r})\right\}\boldsymbol{\psi}_{i}(\mathbf{r}) = \varepsilon_{i}\boldsymbol{\psi}_{i}(\mathbf{r})$$
(1.44)

ve Klein-Gordon denklemleri

$$\left\{ -\nabla^{2} + m_{\sigma}^{2} \right\} \sigma(\mathbf{r}) = -g_{\sigma} \rho_{s}(\mathbf{r}) - g_{2} \sigma^{2}(\mathbf{r}) - g_{3} \sigma^{3}(\mathbf{r})$$

$$\left\{ -\nabla^{2} + m_{\omega}^{2} \right\} \omega^{0}(\mathbf{r}) = g_{\omega} \rho_{v}(\mathbf{r}),$$

$$\left\{ -\nabla^{2} + m_{\rho}^{2} \right\} \rho^{0}(\mathbf{r}) = g_{\rho} \rho_{3}(\mathbf{r})$$

$$-\nabla^{2} A^{0}(\mathbf{r}) = e \rho_{p}(\mathbf{r})$$

$$(1.45)$$

şeklinde olup bu denklemlerde ki yoğunluklar,

$$\rho_{s}(\mathbf{r}) = \sum_{i=1}^{A} \overline{\psi}_{i}(\mathbf{r}) \psi_{i}(\mathbf{r})$$

$$\rho_{v}(\mathbf{r}) = \sum_{i=1}^{A} \psi_{i}^{\dagger}(\mathbf{r}) \psi_{i}(\mathbf{r})$$

$$\rho_{3}(\mathbf{r}) = \sum_{i=1}^{A} \psi_{i}^{\dagger}(\mathbf{r}) \tau_{3} \psi_{i}(\mathbf{r})$$

$$\rho_{p}(\mathbf{r}) = \sum_{i=1}^{A} \psi_{i}^{\dagger}(\mathbf{r}) \frac{(1-\tau_{3})}{2} \psi_{i}(\mathbf{r})$$
(1.46)

ile verilir. Skaler yoğunluk ρ_s , spinorun küçük bileşenine olan katkısı açısından vektör yoğunluğu olan ρ_v ' ye göre işaret bakımından zıtlık göstermektedir. ρ_3 proton ve nötron yoğunluklarının arasındaki fark, ρ_p ise baryon yoğunluğudur. Eşit nötron ve proton sayısına sahip çekirdeklerde ρ -mezonu alanının kendisi ve kaynağı çok küçük olmakla birlikte, nötron sayısının proton sayısına göre oldukça büyük olduğu ağır çekirdeklerde önemli bir role sahiptir ve hesaba katılmak zorundadır (Gambhir vd., 1990).

RMF modelinde hesaba katılabilecek bir başka simetri türü dönme simetrisi olup, bu durumda yoğunluklar uzayda birer sabit olur ve Dirac denkleminin analitik çözümü neredeyse serbest halde olduğu kadar basit ve tek boyutlu bir integrale indirgenir (Serot ve Walecka, 1986).

Küresel simetrik durumlar için RMF denklemlerinin çözümü daha kolay ve daha az program çalışma zamanı gerektirir. Sihirli sayıda nötron ve protonu olan çekirdekler dışında neredeyse bütün çekirdekler deforme olarak incelenebilirler. Bu nedenle bu tez çalışmasında RMF modeli çerçevesinde yapılan hesaplar eksenel deforme (eksenel simetrik) çekirdekler için yapılmıştır. Bundan dolayı bir sonraki kısımda eksenel simetrik durumlar için RMF denklemleri ve bunların sayısal çözümleri irdelenmektedir.

1.4. Eksenel Simetrili RMF Denklemleri ve Sayısal Çözümleri

Birçok deforme çekirdek, eksenel simetrili olarak ele alınabilir. Bu durumda, dönme simetrisi kırıldığından açısal momentum kuantum sayısı j iyi bir kuantum sayısı olmaz. Ancak yoğunluklar,

$$x = r_{\perp} \cos \varphi, \quad y = r_{\perp} \sin \varphi \quad \text{ve} \quad z$$
 (1.47)

silindirik koordinatlarda *z*-ekseni etrafında dönmelere karşın değişmez kalırlar. Eksenel deforme olmuş bir çekirdek için Dirac denklemi r_{\perp} ve *z* değişkenleri cinsinden iki parçalı diferansiyel denklemden oluşan bir sete indirgenebilir. Bu durumda ψ_i Dirac spinoru $\Omega_i = m_{l_i} + m_{l_s}$ (simetri işlemcisi j_z 'nin özdeğeri), π_i (parite) ve t_i (izospin) kuantum sayıları ile betimlenebilirler. Bu durumda, Dirac spinoru,

$$\psi_{i}(\mathbf{r}, t) = \begin{pmatrix} f_{i}(\mathbf{r}) \\ ig_{i}(\mathbf{r}) \end{pmatrix} = \frac{1}{\sqrt{2\pi}} \begin{pmatrix} f_{i}^{+}(z, r_{\perp})e^{i(\Omega_{i}-1/2)\varphi} \\ f_{i}^{-}(z, r_{\perp})e^{i(\Omega_{i}+1/2)\varphi} \\ ig_{i}^{+}(z, r_{\perp})e^{i(\Omega_{i}-1/2)\varphi} \\ ig_{i}^{-}(z, r_{\perp})e^{i(\Omega_{i}+1/2)\varphi} \end{pmatrix} \chi_{t_{i}}(t)$$
(1.48)

şeklinde yazılabilir. İki spin yukarı $f_i^{\pm}(z, r_{\perp})$ ve iki spin aşağı $g_i^{\pm}(z, r_{\perp})$ bileşenden oluşan dört bileşen ile

$$\begin{pmatrix} M^* + V \end{pmatrix} f_i^+ + \partial_z g_i^+ + \left(\partial_{r_\perp} + \frac{\Omega + 1/2}{r_\perp} \right) g_i^- = \varepsilon_i f_i^+$$

$$\begin{pmatrix} M^* + V \end{pmatrix} f_i^- - \partial_z g_i^- + \left(\partial_{r_\perp} - \frac{\Omega - 1/2}{r_\perp} \right) g_i^+ = \varepsilon_i f_i^-$$

$$\begin{pmatrix} M^* - V \end{pmatrix} g_i^+ + \partial_z f_i^+ + \left(\partial_{r_\perp} + \frac{\Omega + 1/2}{r_\perp} \right) f_i^- = -\varepsilon_i g_i^+$$

$$\begin{pmatrix} M^* - V \end{pmatrix} g_i^- - \partial_z f_i^- + \left(\partial_{r_\perp} - \frac{\Omega - 1/2}{r_\perp} \right) f_i^+ = -\varepsilon_i g_i^-$$

$$(1.49)$$

Dirac denklemleri elde edilir. + Ω 'ya sahip her bir çözüm

$$\psi_{i} = \left\{ f_{i}^{+}, f_{i}^{-}, g_{i}^{+}, g_{i}^{-}, \Omega_{i} \right\}$$
(1.50)

şeklinde olup aynı enerji değerine sahip zaman tersinmesi ($T = i\sigma_y K$ zaman tersinmesi operatörüdür) altında çözüm

$$\psi_{i} = T\psi_{i} \equiv \left\{-f_{i}^{-}, f_{i}^{+}, g_{i}^{-}, -g_{i}^{+}, -\Omega_{i}\right\}$$
(1.51)

şeklindedir. Zaman tersinmesi simetrisine uyan çekirdek için iki zaman durumları i ve \overline{i} 'nin yoğunluk dağılımları eşit olduğundan skaler ve vektör alan yoğunluklar

$$\rho_{s,v} = 2\sum_{i>0} n_i \left(\left(\left| f_i^+ \right|^2 + \left| f_i^- \right|^2 \right) \pm \left(\left| g_i^+ \right|^2 + \left| g_i^- \right|^2 \right) \right)$$
(1.52)

şeklinde yazılabilir (i > 0 toplamı + Ω_i değerli durumlar üzerinden toplam alındığını ifade ediyor). Bu yoğunluklar silindirik koordinatlarda,

$$\left(-\frac{1}{r_{\perp}}\partial_{r_{\perp}}r_{\perp}\partial_{r_{\perp}} - \partial_{z}^{2} + m_{\varphi}^{2}\right)\phi(z, r_{\perp}) = s_{\varphi}(z, r_{\perp})$$

$$(1.53)$$

formunda Klein-Gordon denklemi ile belirlenen $\phi = \sigma$, ω^0 , ρ^0 ve A^0 alanları için kaynak görevi görürler. Eksenel simetrik durum için denklem (1.49) ile verilen Dirac denklemleri ve denklem (1.53) ile verilen Klein-Gordon denklemleri harmonik osilatör tabanına genişletilerek sayısal çözümü yapılabilir. Uygulamada bu genişleme uygun bir noktada ki harmonik osilatör kuantum sayısı $N_{\text{maks.}}$ da (ana kabuğun kuantum sayısı) sonlandırılmalıdır. Bu maksimum kuantum sayısı Dirac denklemindeki fermiyon spinorları için N_{F} ve Klein-Gordon denklemi tarafından belirlenen bozon alanları için N_{B} 'dir. Hesaplar iterasyon yolu ile yapıldığından bu kuantum sayıları ilgilenilen duruma göre uygun şekilde seçilmelidir (bkz. Bölüm 2).

Eksenel deforme olmuş çekirdek için RMF denklemlerinin nümerik çözümü temel genişleme metoduyla (Gambhir vd., 1990; Ring vd., 1997) elde edilebilir. Bu metot temel olarak denklem (1.48)'de yer alan Dirac spinorlarının ($f_i^{\pm}(r)$ ve $g_i^{\pm}(r)$), eksenel deforme olmuş harmonik osilatör potansiyeli

$$V_{H,O}(z,r_{\perp}) = \frac{1}{2}M\omega_z^2 z^2 + \frac{1}{2}M\omega_{\perp}^2 r_{\perp}^2$$
(1.54)

kullanılarak dalga fonksiyonları açısından genişletilmesidir. Ek 1'de ispatı verilen hacim korunumunu dikkate alarak

$$\hbar \omega_z = \hbar \omega_0 \exp(-\sqrt{5/(4\pi)}\beta_0)$$

$$\hbar \omega_\perp = \hbar \omega_0 \exp(+\frac{1}{2}\sqrt{5/(4\pi)}\beta_0)$$
(1.55)

denklemleri ile verilen osilatör frekansları, deformasyon parametresi β_0 cinsinden ifade edilebilir. Burada ilişkili osilatör uzunluğu parametreleri,

$$b_z = \sqrt{\hbar/M\omega_z}$$
 ve $b_\perp = \sqrt{\hbar/M\omega_\perp}$ (1.56)

şeklindedir. Bu durumda denklem (1.55)'ten osilatör potansiyeli $\hbar \omega_0$ ve β_0 olmak üzere iki sabit ile belirlenebilir (Hesaplarda program girdisi olarak kullanılacak olan bu sabitlerin seçimi ile ilgili olarak ayrıntılı bilgi Bölüm 2'de verilmektedir). m_l ve m_s , sırasıyla yörünge açısal momentumunun ve spinin simetri eksenindeki bileşenlerini temsil etmek üzere, deforme harmonik osilatör potansiyelinin öz fonksiyonları

$$|\alpha\rangle = |n_z, n_r, m_l, m_s\rangle \tag{1.57}$$

şeklindedir. Hesaplarda korunan nicelik toplam açısal momentumun z-ekseni üzerinde ki bileşeninin (J_z) özdeğeri

$$\Omega = m_{l} + m_{s} \tag{1.58}$$

olup, parite

$$\pi = (-1)^{n_z + m_l} \tag{1.59}$$

ifadesi ile verilir.

$$\xi = z / b_z \quad \text{ve} \quad \eta = r_\perp^2 / b_\perp^2 \tag{1.60}$$

eşitlikleri ile Hermit polinomları, $H_n(\zeta)$ ve Eklenmiş (Asosiye) Laguerre polinomları $L_n^m(\eta)$ yardımı ile elde edilen,

$$\phi_{n_{z}}(z) = \frac{N_{n_{z}}}{\sqrt{b_{z}}} H_{n_{z}}(\zeta) e^{-\frac{\zeta^{2}}{2}}$$
(1.61)

$$\phi_{n_{r}}^{m_{l}}(r_{\perp}) = \frac{N_{n_{r}}^{m_{l}}}{b_{\perp}} \sqrt{2\eta^{\frac{m_{l}}{2}}} L_{n_{r}}^{m_{l}}(\eta) e^{-\frac{\eta}{2}}$$
(1.62)

ifadeleri ile deforme harmonik osilatörün özfonksiyonları,

$$\Phi_{\alpha}(z, r_{\perp}, \varphi, s, t) = \phi_{n_{z}}(z)\phi_{n_{r}}^{m_{l}}(r_{\perp})\frac{1}{\sqrt{2\pi}}e^{im_{l}\varphi}\chi_{ms}(s)$$
(1.63)

ile verilir. Denklem (1.61) ve denklem (1.62) de yer alan N_{n_z} ve $N_{n_z}^{m_l}$ normalizasyon sabitleri

$$N_{n_z} = \frac{1}{\sqrt{2^{n_z} n_z! \sqrt{\pi}}} \quad \text{ve} \quad N_{n_r}^{m_l} = \sqrt{\frac{n_r!}{(n_r + m_l)!}}$$
(1.64)

matris elemanlarının değerlendirilebilmesi için, $\tilde{H}_n(\zeta)$ ve $\tilde{L}_n^m(\eta)$ sırasıyla Hermit polinomlarının ve Eklenmiş Laguerre polinomlarının türevlerini temsil etmek üzere,

$$\tilde{H}_{n_{z}}(\zeta) = \zeta H_{n_{z}}(\zeta) - H_{n_{z}+1}(\zeta)$$
(1.65)

$$\tilde{L}_{n_r}^{m_l}(\eta) = (2n_r + m_l - \eta)L_{n_r}^{m_l}(\eta) - 2(n_r + m_l)L_{n_r-1}^{m_l}(\eta)$$
(1.66)

türev bağıntıları yardımı ile

$$\partial_z \phi_{n_z}(z) = \frac{N_{n_z}}{b_z^{3/2}} \tilde{H}_{n_z}(\zeta) e^{-\zeta^2/2}$$
(1.67)

$$\partial_{r_{\perp}}\phi_{n_{r}}^{m_{l}}(r_{\perp}) = \frac{N_{n_{r}}^{m_{l}}}{b_{\perp}^{2}}\sqrt{2}\eta^{(m_{l}-1)/2}\tilde{L}_{n_{r}}^{m_{l}}(\eta)e^{-\eta/2}$$
(1.68)

ifadeleri elde edilir. Eksenel simetrik durum için Dirac denkleminin çözümlerinde denklem (1.58) ve (1.59) ile verilen Ω ve π iyi birer kuantum sayısı olurlar ve genişletme,

$$f_{i}(\mathbf{r}, s, t) = \frac{1}{\sqrt{2\pi}} \begin{pmatrix} f_{i}^{+}(z, r_{\perp})e^{i(\Omega-1/2)\varphi} \\ f_{i}^{-}(z, r_{\perp})e^{i(\Omega+1/2)\varphi} \end{pmatrix} = \sum_{\alpha}^{\alpha_{\max}} f_{\alpha}^{(i)} \Phi_{\alpha}(\mathbf{r}, s) \chi_{t_{i}}(t)$$

$$g_{i}(\mathbf{r}, s, t) = \frac{1}{\sqrt{2\pi}} \begin{pmatrix} g_{i}^{+}(z, r_{\perp})e^{i(\Omega-1/2)\varphi} \\ g_{i}^{-}(z, r_{\perp})e^{i(\Omega+1/2)\varphi} \end{pmatrix} = \sum_{\alpha}^{\tilde{\alpha}_{\max}} g_{\alpha}^{(i)} \Phi_{\alpha}(\mathbf{r}, s) \chi_{t_{i}}(t)$$
(1.69)

şeklinde yazılabilir. Denklem (1.69)'da , α_{max} ve $\tilde{\alpha}_{max}$ kuantum sayıları; N ana kuantum sayısına ($N = n_z + 2n_r + m_l$) karşılık gelen spin yukarı bileşen, f^+ için N_F ($N_{max} = N_F$) den büyük ve spin aşağı bileşen g^+ için $N_F + 1$ ($\tilde{N}_{max} = N_F + 1$) den büyük olmayacak şekilde seçilirler (Gambhir vd., 1990).

Denklem (1.49) ile verilen Dirac denklemleri matris formunda

$$\begin{bmatrix} (M^* + V) & 0 & \frac{\partial}{\partial z} & (\frac{\partial}{\partial r_{\perp}} + \frac{\Omega + 1/2}{r_{\perp}}) \\ 0 & (M^* + V) & (\frac{\partial}{\partial r_{\perp}} - \frac{\Omega + 1/2}{r_{\perp}}) & -\frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & (\frac{\partial}{\partial r_{\perp}} + \frac{\Omega + 1/2}{r_{\perp}}) & (M^* - V) & 0 \\ \frac{\partial}{\partial r_{\perp}} - \frac{\Omega + 1/2}{r_{\perp}}) & -\frac{\partial}{\partial z} & 0 & (M^* - V) \end{bmatrix} \begin{bmatrix} f_i^+ \\ f_i^- \\ g_i^+ \\ g_i^- \end{bmatrix} = \varepsilon_i \begin{bmatrix} f_i^+ \\ f_i^- \\ -g_i^+ \\ -g_i^- \end{bmatrix}$$
(1.70)

şeklinde gösterilebilir. Denklem (1.69) çerçevesinde Dirac denklemi ($\alpha_{max} + \tilde{\alpha}_{max}$) boyutunda simetrik matris

$$\begin{pmatrix} A_{\alpha,\alpha'} & B_{\alpha,\tilde{\alpha}'} \\ B_{\tilde{\alpha},\alpha'} & -C_{\tilde{\alpha},\tilde{\alpha}'} \end{pmatrix} \begin{pmatrix} f_{\alpha'}^{(i)} \\ g_{\tilde{\alpha}'}^{(i)} \end{pmatrix} = \mathcal{E}_i \begin{pmatrix} f_{\alpha}^{(i)} \\ g_{\tilde{\alpha}}^{(i)} \end{pmatrix}$$
(1.71)

köşegenleştirme problemine indirgenir. Hermit ve Eklenmiş Laguerre polinomlarının,

$$\int_{0}^{\infty} e^{-x} x^{k} L_{n}^{k}(x) L_{m}^{k}(x) dx = \frac{(n+k)!}{n!} \delta_{mn}$$

$$N_{m} N_{n} \int_{-\infty}^{\infty} H_{m}(x) H_{n}(x) e^{-x^{2}} dx = \delta_{mn}$$

$$N_{m} N_{n} \int_{-\infty}^{\infty} H_{m}(x) H_{n+1}(x) e^{-x^{2}} dx = \sqrt{2m} \delta_{mn+1}$$

$$N_{m} N_{n} \int_{-\infty}^{\infty} H_{m}(x) x H_{n}(x) e^{-x^{2}} dx = \begin{cases} \sqrt{\frac{n+1}{2}} \iff m = n+1 \\ \sqrt{\frac{n}{2}} \iff m = n-1 \\ 0 \iff \text{Diger} \end{cases}$$
(1.72)

özellikleri yardımıyla denklem (1.71) ile verilen matris elemanları

$$\begin{pmatrix} A_{\alpha,\alpha'} \\ C_{\tilde{\alpha},\tilde{\alpha}'} \end{pmatrix} = N_{n_r}^{m_l} N_{n_z} N_{n'_r}^{m'_l} N_{n'_z} \delta_{m_l m'_l} \delta_{m_s m'_s} \int_0^\infty d\eta e^{-\eta} \eta^{m_l} L_{n_r}^{m_l}(\eta) L_{n'_r}^{m_l}(\eta) \times \int_0^\infty d\zeta e^{-\zeta^2} H_{n_z}(\zeta) H_{n'_z}(\zeta) (M^*(b_z \zeta, b_\perp \sqrt{\eta}) \pm V(b_z \zeta, b_\perp \sqrt{\eta}))$$
(1.73)

$$\mathcal{B}_{aa'} = \delta_{m_{l}m'_{l}} \delta_{m_{s}m'_{s}} \delta_{n_{r}n'_{r}} \frac{(-)^{1/2-m_{s}}}{b_{z}} \left(\delta_{n'_{z}n_{z}+1} \sqrt{\frac{n'_{z}}{2}} - \delta_{n_{z}n'_{z}+1} \sqrt{\frac{n_{z}}{2}} \right) \\ + \delta_{m_{l}m'_{l}} \delta_{n_{z}n'_{z}} \frac{N_{n_{r}}^{m_{l}} N_{n'_{r}}^{m'_{l}}}{b_{\perp}} \\ \times \{ \delta_{m'_{s}m_{s}+1} \int_{0}^{\infty} d\eta e^{-\eta} \eta^{m_{l}-1/2} L_{n_{r}}^{m_{l}} (\eta) (\tilde{L}_{n'_{r}}^{m_{l}} (\eta) - m_{l} L_{n'_{r}}^{m_{l}} (\eta)) \\ + \delta_{m_{s}m'_{s}+1} \int_{0}^{\infty} d\eta e^{-\eta} \eta^{m_{l}-1/2} L_{n_{r}}^{m_{l}} (\eta) (\tilde{L}_{n'_{r}}^{m_{l}} (\eta) + (m_{l}+1) L_{n'_{r}}^{m_{l}} (\eta)) \}$$
(1.74)

şeklindedir. Bu köşegenleştirmeden spinorları kullanarak, nükleer kabuk modelinde yoğunluk matrisleri spinor dalga fonksiyonu cinsinden proton ve nötron için izospin $t_i = \pm 1/2$ olmak üzere,

$$\rho_{\alpha'\alpha}^{s,v} = 2\sum_{i>0} n_i \left(f_{\alpha}^{(i)} f_{\alpha'}^{(i)} \mp g_{\alpha}^{(i)} g_{\alpha'}^{(i)} \right)$$

$$\rho_{\alpha\alpha'}^3 = 2\sum_{i>0} n_i t_i \left(f_{\alpha}^{(i)} f_{\alpha'}^{(i)} + g_{\alpha}^{(i)} g_{\alpha'}^{(i)} \right)$$

$$\rho_{\alpha\alpha'}^c = 2\sum_{i>0} n_i \left(\frac{1-t_i}{2} \right) \left(f_{\alpha}^{(i)} f_{\alpha'}^{(i)} + g_{\alpha}^{(i)} g_{\alpha'}^{(i)} \right)$$
(1.75)

şeklinde ve koordinat uzayında,

$$\rho_{s,\nu}(z,r_{\perp}) = \frac{1}{b_0^3} \frac{1}{\pi} e^{-\xi^2 - \eta} \sum_{\alpha \alpha'} \rho_{\alpha \alpha'}^{s,\nu} \delta_{m'_1 m_l} \delta_{m'_s m_s}
x N_{n_z} N_{n'_z} H_{n_z}(\xi) H_{n'_z}(\xi) N_{n_r}^{m_l} N_{n'_r}^{m_l} \eta^{m_l} L_{n_r}^{m_l}(\eta) L_{n'_r}^{m_l}(\eta)$$
(1.76)

ve ρ^3 ve ρ^c benzer şekilde elde edilebilir. Bu ifadeler denklem (1.53) ile verilen Klein-Gordon denkleminin çözümü için kaynak teşkil ederler. Bir sonraki adım aynı temel genişleme metodu ile Klein-Gordon denklemini denklem (1.54) ile verilen deforme osilatör için aynı deformasyon parametresi β_0 ve farklı osilatör uzunluğu $b_B = b_0/\sqrt{2}$ ile çözmektir. Bu durumda $\zeta = \sqrt{2}z/b_z$ ve $\eta = 2r_{\perp}^2/b_{\perp}^2$ eşitlikleri ile mezon alanları,

$$\phi(z, r_{\perp}) = \frac{1}{b_{B}^{3/2}} e^{-\zeta^{2}/2 - \eta/2} \sum_{n_{z}n_{r}}^{N_{B}} \phi_{n_{z}n_{r}} N_{n_{z}} H_{n_{z}}(\zeta) \sqrt{2} L_{n_{r}}^{0}(\eta)$$
(1.77)

olup, bu ifade Klein-Gordon denkleminde yerine yazılırsa matris elemanları,

$$H_{n_{z}n_{r}n'_{z}n'_{r}} = \delta_{n_{z}n'_{z}}\delta_{n_{r}n'_{r}} \left(-\frac{2}{b_{z}^{2}}\left(n_{z}+\frac{1}{2}\right)-\frac{2}{b_{\perp}^{2}}\left(2n_{r}+1\right)+m_{\phi}^{2}\right)$$

$$+\frac{2}{b_{z}^{2}}\left(\frac{1}{2}\sqrt{(n_{z}+1)n'_{z}}\delta_{n'_{z}n_{z}+1}+\frac{1}{2}\sqrt{(n'_{z}+1)}\delta_{n_{z}n'_{z}+1}\right)$$
$$-\frac{2}{b_{\perp}^{2}}\left(n'_{r}\delta_{n'_{r}n_{r}+1}+n_{r}\delta_{n_{r}n'_{r}+1}\right)$$
(1.78)

olmak üzere homojen olmayan lineer denklemler seti

$$\sum_{n'_{z}n'_{r}}^{N_{B}}H_{n_{z}n_{r}n'_{z}n'_{r}}\phi_{n'_{z}n'_{r}} = S_{n_{z}n_{r}}^{\phi}$$
(1.79)

elde edilir. Coulomb alanının uzun erimli olmasından dolayı osilatör temel genişletme metodu ile ele alınamazlar. Bundan dolayı bu durumda Green fonksiyonu metodu kullanılır. (Bkz. Ek 3).

1.5. Çiftlenim İlişkileri

Çekirdekte çiftlenim etkisi, nükleon-nükleon etkileşmesinin kısa erimli olmasından ileri gelmektedir. Çekirdekler için çiftlenim faktörü açık-kabuklu ve ağır çekirdeklerin betimlenmesinde oldukça önemlidir (Ring, 1996). Bundan dolayı çiftlenimin dikkate alınmadığı relativistik bir teoride sadece ¹⁶O, ⁴⁰Ca, ⁴⁸Ca, ¹⁰⁰Sn, ²⁰⁸Pb gibi sihirli sayıda nötron ve protona sahip çekirdekler veya çiftlenimin çok küçük olduğu (söndüğü) oldukça büyük açısal momentumlara sahip çekirdekler için uygulanabilirdir (Ring, 1996). Diğer bütün durumlarda çiftlenim ilişkilerinin dikkate alınması gerekir. Yalın çiftlenim etkisi ortalama alan çerçevesinde tanımlanamamaktadır. Bu noktada ortalama alan çerçevesinde, çiftlenim hesabı için ilk kez katılarda süperiletkenliğin izahı için Bardeen-Cooper-Schieffer (1957) tarafından geliştirilen BCS yaklaşımı iyi bir yöntemdir. Bu model Bohr vd. (1958), tarafından çekirdeğe uyarlanmıştır. BCS yaklaşımının daha da geliştirilmiş hali Lipkin-Nogami (Lipkin, 1960; Nogami, 1964) metodu olarak adlandırılmaktadır. Ancak, oldukça fazla bir bilgisayar zamanı gerektiren ortalama alan hesaplarında BCS Modelinin dikkate alınması kayda değer bir bilgisayar zamanı avantajı sağlamaktadır.

Klasik ortalama alan (Hartree-Fock) yaklaşımında nükleer taban durum, en alt seviyeden başlanarak Fermi seviyesine kadar olan tek-parçacık seviyeleri doldurularak tasvir edilebilir. Her bir tek-parçacık seviyelerinin işgal (dolma) olasılığı Fermi düzeyinin üzerinde "sıfır", altında ise "bir" olarak alınır. Şekil 1.5'de kararlı çekirdek için çiftlenim ilişkileri sembolik olarak gösterilmektedir. Elbette burada protonların nötronlara göre daha yüksek enerji seviyesinden yerleştirilmeye başlanmasının sebebi protonların taşıdığı elektrik yükünden ileri gelmektedir. Kararlı çekirdek için genel olarak son nükleon yaklaşık 8 MeV lik bir bağlanma enerjisine sahiptir.

Şekil 1.5. Kararlı çekirdek için sembolik çiftlenim ilişkileri

Çiftlenim ilişkilerinin ortalama alan çerçevesinde ele alınışı daha önce Bölüm 1.5'te değinildiği gibi parçacık sayısı doluluk oranı (işgal) ile ilişkilidir. Bununla beraber denklem (1.25) ile verilen Lagranjiyen $\psi^{\dagger}\psi$ türü terimler içerirken, ortalama alan yaklaşımında $\psi^{\dagger}\psi^{\dagger}$ formunda çiftlenim alanına indirgenebilecek $\psi^{\dagger}\psi^{\dagger}$ veya $\psi\psi$ türü veya iki- parçacık etkileşme türü, $\psi^{\dagger}\psi^{\dagger}\psi\psi$, terimler içermez. Bu noktada çiftlenimin uygun bir biçimde hesaba katılabilmesi için geleneksel yöntem çiftlenimin yoğunluk bağımlı Skyrme kuvvetlerinde Vautherin (1973) tarafından ele alınış şekliyle hesaba katmaktır (Gambhir vd., 1990). Bu temel olarak denklem (1.34) ile verilen enerji fonksiyonunun zaman tersinmesi simetrisi ve çiftlenim içerecek şekilde toplam bağlanma enerjisi

$$E(\psi_{i}^{+},\psi_{i},\sigma,\omega^{0},\rho^{0},A^{0},\nu_{i}) = E_{par.} + E_{kin.} + E_{\sigma} + E_{\omega} + E_{\rho} + E_{c} + E_{cift.} + E_{KM} - AM , \qquad (1.80)$$

ile elde etmek mümkündür (Furnstahl vd., 1987). Bu denklemdeki terimler

$$\begin{split} E_{par.} &= \sum_{i} n_{i}^{2} \mathcal{E}_{i} \\ E_{kin.} &= \int d^{3}r \bigg(2\sum_{i} n_{i}^{2} f_{i}^{+}(r) \sigma \nabla g_{i}(r) + M(g_{s}(r) - \rho_{v}(r)) \bigg) \\ E_{\sigma} &= \frac{1}{2} g_{\sigma} \int d^{3}r \rho_{s}(r) \sigma(r) + \frac{1}{2} \int d^{3}r \bigg\{ \frac{1}{3} g_{2} \sigma(r)^{3} + \frac{1}{2} g_{3} \sigma(r)^{4} \bigg\} \\ E_{\omega} &= \frac{1}{2} g_{\omega} \int d^{3}r \rho_{v}(r) \omega^{0}(r) \\ E_{\rho} &= \frac{1}{2} g_{\rho} \int d^{3}r \rho_{s}(r) \rho^{0}(r) \\ E_{c} &= \frac{e^{2}}{8\pi} \int d^{3}r \rho_{c}(r) A^{0}(r) \\ E_{ciff.} &= -\Delta \sum_{i} \sqrt{n_{i}(1 - n_{i})} \\ E_{KM} &= -\frac{3}{4} \hbar \omega_{0} = -\frac{3}{4} 41 A^{-1/3} \end{split}$$

şeklindedir. İlk terim, mezonların oluşturduğu ortalama alan içerisinde hareket eden parçacık enerjilerine karşılık gelirken, 2. terim bu parçacıkların kinetik enerjisine karşılık gelir. 3., 4., 5. ve 6. terimler ilgili mezon alanlarının ve Coulomb alanının katkılarına karşılık gelirken, E_{KM} kütle merkezi katkısı, $E_{cift.}$ terimi çiftlenim enerjisini temsil etmekte olup, denklem (1.81)'de daha açık bir formda,

$$E_{\text{ciff.}} = -G\left(\sum_{i>0} u_i v_i\right)^2 \tag{1.82}$$

şeklindedir. Burada çiftlenim kuvveti sabiti G, işgal olasılıkları v_i^2 ve $u_i^2 = 1 - v_i^2$ dir.

Denklem (1.80) ile verilen enerji fonksiyonunun, Dirac spinorlarına göre varyasyonu, denklem (1.49) ile verilen Dirac denklemlerini verirken, mezon alanları ve Coulomb alanlarına göre varyasyonu ise denklem (1.53) ile verilen mezon alanları ve Coulomb alanı ile ilişkili olan Klein-Gordon denklemlerini verir. Denklem (1.52) ile verilen yoğunluk ifadelerinde işgal sayısı n_i yerine v_i^2 alıp bu ifadelerin v_i^2 'ye göre varyasyonları,

$$\Delta = G \sum_{i>0} u_i v_i \tag{1.83}$$

olmak üzere,

$$2\varepsilon_{i}u_{i}v_{i} - \Delta(u_{i}^{2} - v_{i}^{2}) = 0$$
(1.84)

BCS denklemleri elde edilir (BCS denklemlerinin türetilişi Ek 2'de verilmektedir). Denklem (1.84)'ün çözümü

$$\begin{pmatrix} u_i^2 \\ v_i^2 \end{pmatrix} = \frac{1}{2} \left(1 \pm \frac{\varepsilon_i - \lambda}{\sqrt{(\varepsilon_i - \lambda)^2 + \Delta^2}} \right)$$
(1.85)

ile verilir. Burada, λ kimyasal potansiyel, Δ ise boşluk (gap) parametresidir. Δ parametresi deneysel olarak ulaşılabilir tek çift-kütle farklılığından

$$\Delta = \frac{1}{2} \left[E(N+2) - E(N+1) - (E(N+1) - E(N)) \right]$$
(1.86)

hesaplanabildiği gibi farklı yöntemler de mevcuttur. Bu yöntemler Bölüm 2'de ayrıntılı bir biçimde ele alınmaktadır.

Denklem (1.83)'de görüldüğü üzere eğer sonsuz bir uzay konfigürasyonu seçilirse, toplam ıraksayacaktır. Bu nedenle belirli bir çiftlenim aralığı seçilerek bu problemi ortadan kaldırmak mümkündür (bkz. Ring, 1996; Geng, 2005).

2. YAPILAN ÇALIŞMALAR

Bu çalışmada proton sayı Z = 10 olan Neon (Ne) izotop zincirinden başlayarak proton sayısı Z = 110 olan süper-ağır Darmstadtiyum (Ds) izotop zincirine kadar uzanan çift-çift 51 adet çekirdek izotop zincirinin taban durum nükleer özellikleri eksenel deforme olmuş RMF modeliyle elde edilmiştir. Çekirdek izotop zincirleri, B çekirdek için toplam bağlanma enerjisini temsil etmek üzere, proton damlama çizgisinden nötron damlama çizgisine $(B(N, Z-2) - B(N, Z) \cong 0$ civarından $B(N+2, Z) - B(N, Z) \cong 0$ a) kadar uzanmaktadır. Ek Tablo 7'de hesaplanan taban durum özellikleri tablo halinde sunulmakla birlikte Bölüm 3'te seçilmiş bazı çift-çift çekirdek izotop zincirleri üzerine yapılan hesapların ayrıntılı analizleri ile çeşitli modellerin öngörüleri ve deneysel sonuçlar ile karşılaştırmalar yapılmakta ve bazı güncel olgular irdelenmektedir. Bu bölümde söz konusu hesapların nasıl gerçekleştirildiği ve faydalanılan bilgisayar kodları ile ilgili önemli noktalar ayrıntılı bir biçimde verilmektedir.

Orijinal Sıvı Damlası Modeli ve Kabuk Modelinde çekirdeğin küresel bir şekle sahip olduğu varsayılır. Birçok çekirdeğin küresel şekle sahip olduğu yapıdan elde edilen yük dağılımları deneysel sonuçlarla uyumlu olsa da Bölüm 1.2'de bahsedildiği gibi bazı kütle numarası aralıklarında çekirdeklerin yük dağılımının küresel yerine deforme şekle sahip olduğu varsayımı deneysel sonuçlar ile daha iyi uyum sergilemektedir. İlk olarak çekirdeklerin küremsi veya elipsoidal bir şekle sahip olabilecekleri Rainwater (1950) tarafından ortaya atılmıştır. Klasik olarak eksenel deforme olmuş çekirdek için içsel elektrik kuadrupol moment, $Q_0 = \int \rho (3z^2 - r^2) dV$ şeklinde ifade edilir. Bu durumda elipsoidal yapıya sahip çekirdeğin yarı eksen uzunluklarına bağlı olarak deforme olmuş çekirdek Şekil 2.1'in sağ tarafında temsili olarak gösterildiği gibi prolate (puro gibi) veya oblate (domates gibi) şekle sahip olabilir.

Bu çalışmada ele alınan tüm çift-çift çekirdek izotoplarının hem prolate ve hem de oblate şeklinde deforme olmuş durumları için hesaplar yapılmış ve taban durum nükleer özellikleri ile ilgilenildiğinden en büyük toplam bağlanma enerjisine sahip şekil için elde edilen sonuçlar dikkate alınmıştır. Burada oblate veya prolate şekilde hesap yapmak için yapılması gereken iş başlangıçta tanımlanan deformasyon parametresinin (β_0) uygun büyüklükte ve prolate şekil için pozitif, oblate şekil için negatif seçmektir.

Şekil 2.1. Küresel ve elipsoidal deforme çekirdekler için temsili görünüm

Hesapların ortaya çıkarılması için Ring vd. (1997) tarafından FORTRAN program dilinde yazılmış RMFAXIAL bilgisayar kodu kullanılmıştır. RMFAXIAL kodu bir sonraki bölümde ayrıntılı bir biçimde irdelenmektedir.

RMF modeli denklem (1.25) ile verilen fenomenolojik Lagranjiyen yoğunluğundan hareketle çekirdekler için hareket denklemlerini verir. Bundan dolayı bu Lagranjiyen yoğunluğunda yer alan ve m_{σ} , m_{ω} ve m_{ρ} ile temsil edilen $\sigma-$, $\omega-$ ve $\rho-$ mezonu kütleleri ile ve mezon alanlarının lineer olmayan çiftlenim sabitleri g_{σ} , g_{ω} ve g_{ρ} ile denklem (1.26)'da açık formu verilen lineer olmayan potansiyel içerisinde yer alan g_2 ve g_3 sabitleri nükleer madde özellikleri dikkate alınarak bazı çift sihirli sayıda nükleona sahip çekirdeklerin deneysel verilerine göre belirlenmektedir. Bu sabitlerden nükleon kütlesi ve mezon kütleleri deneysel sonuçlardan alınmakta ve geriye deneysel sonuçlara göre ayarlanması için sadece beş parametre kalmaktadır. Bu şekilde belirlenen parametreler seti literatürde Lagranjiyen parametre seti veya etkin etkileşme seti olarak adlandırılmaktadır.

Bu güne değin birçok lineer olmayan Lagranjiyen parametre seti verilmiştir (NL1 (Reinhard vd., 1986), PL40 (Reinhard, 1989), NL2 (Lee vd., 1986), NL-SH (Sharma vd., 1994), TM1 ve TM2 (Sugahara ve Toki, 1994), NLC (Serot ve Walecka, 1997), NL3 (Lalazissis vd., 1997), NL-Z2 (Bürvenich vd., 2002) ve NL3* (Lalazissis vd., 2009)). Bunların dışında etkileşmeyi ele alış şekilleriyle bazı küçük farklılıklar içeren TMA (Sugahara ve Toki, 1994), DD-ME1 (Niksic vd., 2002) ve DD-ME2 (Lalazissis vd., 2005) gibi etkin etkileşme setleri de mevcuttur. Örneğin DD-ME2 etkileşme Lagranjiyen parametre seti ile mezonların çiftlenim katsayıları yoğunluk bağımlı olarak hesaba katılır. Bu çalışmada on yılı aşkın bir zamandır yaygın bir biçimde kullanılan NL3 parametre setinin daha iyi izospin özellikleri sağlayacak şekilde geliştirilmiş sürümü olan NL3* (Lalazissis vd., 2009) lineer olmayan Lagranjiyen parametre seti kullanıldı. Tablo 2.1'de PL40, NL1, NL3, NL-SH, NL-Z2 ve NL3* non-lineer Lagranjiyen parametre setleri için bir önceki paragrafta açıklanan terimlerin büyüklükleri gösterilmektedir. Ek olarak Tablo 2.2'de söz konusu parametre setlerinin ρ_0 (baryon yoğunluğu), E/A (parçacık başına bağlanma enerjisi), K (nükleer sıkıştırılamazlık), J (asimetri parametresi), m^*/m (etkin kütle) gibi nükleer madde özellikleri verildi.

	PL40	NL1	NL3	NL-SH	NL-Z2	NL3*
m_N (MeV)	938.900	938.000	939.000	939.000	938.900	939.000
m_{σ} (MeV)	547.570	492.250	508.194	526.059	493.150	502.5742
m_{ω} (MeV)	780.000	783.000	782.501	783.000	780.000	782.600
m_{ρ} (MeV)	763.000	763.000	763.000	763.000	763.000	763.000
g_{σ}	10.0514	10.1380	10.2170	10.4444	10.1369	10.0944
g_{ω}	12.8861	13.2850	12.8680	12.9450	12.9084	12.8065
$g_{ ho}$	4.81014	4.9760	4.47400	4.383	4.55627	4.5748
$g_2 ({\rm fm}^{-1})$	-	-12.1720	-10.4310	-6.9099	13.7561	-10.8093
<i>B</i> ₃	-	-36.265	-28.8850	-15.8337	-41.4013	-30.1486

Tablo 2.1. Bazı RMF Lagranjiyen parametre setleri

	PL40	NL1	NL3	NL-SH	NL-Z2	NL3*
(fm^{-3})	0.152	0.153	0.148	0.146	0.151	0.150
p_0 (IIII)	1.5.100	1 < 400	1.6000	1	1 < 0 = 0	1
E/A (MeV)	-16.180	-16.488	-16.299	-16.346	-16.070	-16.310
<i>m*/m</i>	0.581	0.570	0.595	0.600	0.583	0.594
K (MeV)	165.000	211.290	271.760	355.360	172.000	258.270
J (MeV)	41.70	43.70	37.40	36.10	39.00	38.68

Tablo 2.2. Bazı Lagranjiyen parametre setleri için nükleer madde özellikleri

RMF modeli ile yapılan hesapların yanısıra bazı çekirdek izotop zincirleri için, Ek 4'te açıklanan ve nükleer yapı araştırmalarında oldukça yaygın bir şekilde kullanılan relativistik olmayan Skyrme etkileşimli HFB (Hartree-Fock-Bogoliubov) metoduyla (Ring ve Schuck, 1980; Greiner ve Maruhn, 1986; Stoitsov vd., 2005; Kuşoğlu, 2009) HFBTHO(v1.66p) bilgisayar kodu (Stoitsov vd., 2005) ile SLy5 (Chabanat vd., 1998) parametre seti kullanılarak hesaplar yapıldı. RMF modeli ile yapılan hesaplara paralel olarak bu metot ile de eksenel deforme durumlar dikkate alındı. Çekirdek prolate veya oblate şekillerden hangisinde daha büyük bağlanma enerjisine sahip oluyorsa bu şekil taban durum şekli olarak ele alındı. Her iki modelle yapılan hesaplarda da eksenel simetri ve potansiyel olarak harmonik osilatör kullanıldığından başlangıç osilatör frekansı ve genişliği eşit olarak alındı.

2.1. RMFAXIAL Programinin Yapısı

RMFAXIAL bilgisayar kodu (Ring vd., 1997) Fortran programlama dilinde yazılmış bir bilgisayar kodu olup ana program dosyasının yanında DIZ.PAR ve DIZ.DAT olarak adlandırılan iki ek dosya içermektedir. DIZ.PAR dosyası bir sonraki alt bölümde ayrıntılı olarak irdelenecek olan osilatör kabuk sayısı ile ilişkili bilgileri içerirken, DIZ.DAT dosyası hesaplar için gerekli olan girdilerin tanımlandığı dosyadır. Burada hesap girdilerine örnek olarak nükleer taban durumu ile ilgili hesabın yapılacağı izotopun nötron ve proton sayısı, başlangıç deformasyonu, osilatör taban genişliği, osilatör kabuk sayısı seçimi ve boşluk parametresi verilebilir. Program çıktısı olarak DIZ.OUT ve DIZ.WEL dosyaları elde edilir. Bu dosyalardan DIZ.OUT, ilgili çekirdeğin taban durum enerji, boyut ve deformasyonları ile ilgili bilgileri veren ana çıktı dosyası iken DIZ.WEL her bir iteratif hesap sonrasında elde edilen alanları kaydeder.

Şekil 2.2'de döngüsel süreçleri verilen RMFAXIAL kodunun kabaca işlem basamakları şu şekildedir: DIZ döngüler arasındaki iş sıralamasını ve çeşitli rutin okuma süreçlerinden sorumludur. Uygulamayı iki ana kısımda ele almak mümkündür. Birinci kısımda DIZ.DAT dosyasından gerekli girdiler okunur ve program çalışmaya başlar. Bu birinci kısım PREP, READER, START, DEFAULT ve GAUSS gibi alt bölümlerden oluşur. İkinci kısım bu bilgisayar kodunun ana parçası olup, birinci kısımda okunan ve hesaplanan bilgileri kullanarak hesap yapmaya başlar. İlk olarak alanların tahmin edilen başlangıç değerleri tarafından hesaplanmış potansiyel terimlerini kullanarak Dirac denklemini çözer ve elde edilen Dirac spinorlarını kullanarak yoğunluklar hesaplanır ve bu yoğunluklar kullanılarak Klein-Gordon denklemi çözülür. Bu çözümün ardından elde edilen alan değerleri kullanılarak skaler ve vektör potansiyelleri hesaplanır ve bu potansiyeller bir sonraki döngüde Dirac denklemini çözmek için kullanılacaktır. Bu noktada POTGH, DIRAC, FIELD, OCCUP, DENSIT ve EXPECT gibi alt komutları çalıştıran ITER döngüsü elde edilen alan değerlerinin yakınsamaya ulaşıp ulaşmadığını test eder. Eğer arzu edilen yakınsamaya ulaşıldı ise program durdurulur ve sonuçlar DIZ.OUT dosyasına yazılır. Eğer yakınsama sağlanamadı ise bu döngü yakınsama sağlanıncaya kadar çalışmaya devam eder.

RMFAXIALL kodunun bazı önemli alt programları ve bunların işlevleri alfabetik sırada şu şekildedir:

BASE: Eksenel simetrik (silindirik koordinatlarda) Dirac denkleminin çözümü için harmonik osilatör taban genişliğini tanımlar.

BCSALAM: OCCUP'da kullanılmak üzere kimyasal potansiyeli hesaplar.

COULOM: Coulomb alanını hesaplar.

DENSIT: Radyal (r) uzayda yoğunlukları hesaplar.

DIRAC: Silindirik koordinatlarda Dirac denklemini çözer.

EXPECT: Beklenen değerleri hesaplar.

FIELD: Silindirik koordinatlarda mezon alanlarını hesaplar.

GAUSS: Dalga fonksiyonlarını hesaplar.

GORDON: Temel genişletme metoduyla silindirik koordinatlarda Klein-Gordon denklemlerini çözer.

GFV: Programda yaygın bir biçimde kullanılan matematiksel fonksiyon veya eşitliklerin tamamının tanımlandığı alt döngüdür (Örnek: wgi(n)=1/sqrt(gamma(n+1/2)). RMFAXIAL programı yukarda bahsedilen bu önemli alt döngülere ilave olarak matris köşegenleştirilmesi ve hesapları için çeşitli alt döngüler, program girdi ve çıktıları ve hesaplanmış değerlerin okunmasını sağlayan çeşitli alt döngüleri de içermektedir.

Şekil 2.2. RMFAXIAL kodunun işlem basamaklarının şematik gösterimi

ITER: Eksenel simetrik Dirac denklemi çözümünün ana iterasyon döngüsüdür.

OCCUP: Barden-Cooper-Schiffer (BCS) metodunu kullanarak tüm parçacık sayıları üzerinden işgal sayısını hesaplar. İsteyen kullanıcı burada programa müdahale ederek bu hesapları sabit kappa blokları üzerinden yapabildiği gibi çiftlenim gap parametresi üzerinden iteratif süreçle de yapabilir.

POT: Skaler ve vektör potansiyellerinin toplam ve farklarını hesaplar.

PREP: Hesaplar için tüm ön düzenlemeleri yapar. Önce matematiksel tanımlamaları çağırır. Girdi (DIZ.DAT) dosyasına girilmiş çekirdeği tanımlar. Hesaplarda kullanılacak harmonik osilatör genliği ve osilatör frekansı ilk olarak PREP tarafından tanımlanır.

SINGB: Mezon ilerleticilerini hesaplar.

SINGF: Fermiyonlar için tek-parçacık matris elemanlarını hesaplar.

2.2. Yapılan Hesapların Ayrıntıları

Bu çalışma kapsamında yapılan hesaplarda harmonik osilatör yardımıyla çift-çift eksenel deforme çekirdekler için taban durum özellikleri hesaplandı. Burada kısaca nükleer yarıçap, kuadrupol momentlerin hesabı ile ilgili kısa bir özet verildikten sonra çiftlenimin nasıl ele alındığından ve hesaplar için osilatör kabuk sayısı seçiminden bahsedilmektedir.

Çekirdekler için yük yarıçapı, proton yarıçapı r_p hesabından sonra, Ring vd., (1997) tarafından verildiği şekli ile

$$r_c = \sqrt{r_p^2 + 0.64}$$
 (fm) (2.1)

eşitliği ile hesaplandı. Denklem (2.1)'deki 0,64 faktörü protonun etkin boyutunun sonlu olmasından ileri gelmektedir.

Nötron ve protonların kuadrupol momentleri

$$Q_{n,p} = \left\langle 2r^2 P_2(\cos\theta) \right\rangle_{n,p} = \left\langle 2z^2 - x^2 - y^2 \right\rangle_{n,p}$$
(2.2)

eşitliği yardımı ile hesaplandı. Nötron ve proton kuadrupol momentleri küresel harmoniklerin beklenen değeri cinsinden

$$\left\langle r^{2}Y_{20}(\theta,0)\right\rangle_{n,p} = \frac{1}{2}\sqrt{\frac{5}{4\pi}}Q_{n,p}$$
 (2.3)

ile verilir. Nötron ve protonlar için ayrı ayrı hesaplanan kuadrupol momentlerin sayısal toplamları da çekirdek için toplam kuadrupol moment değerini verir $(Q_T = Q_n + Q_p)$ ve çekirdek için kuadrupol deformasyon parametresi β_2 , ilgili izotop için kütle numarası A ve yarıçap $R_0 = 1.2A^{1/3}$ (fm) olmak üzere,

$$Q = Q_n + Q_p = \sqrt{\frac{16\pi}{5}} \frac{3}{4\pi} A R_0^2 \beta$$
(2.4)

eşitliği yardımı ile hesaplandı (Gambhir vd., 1990 ve Ring vd., 1997).

Daha önce çiftlenim ilişkilerinde belirtildiği gibi bu çalışmada çiftlenimin hesaba katılmasında BCS metodundan faydalanılmıştır. Bu yaklaşımda nümerik hesap açısından en önemli nokta denklem (1.85)'de yer alan Δ boşluk (gap) parametresinin doğru seçilmesidir. Çiftlenim ilişkilerinde değinildiği gibi denklem (1.86) ile verilen ve deneysel olarak ulaşılabilir tek çift-kütle farklılığından hesaplanan boşluk parametresinin kullanımı doğru bir tercih olmakla beraber bu çalışmada olduğu gibi deneysel olarak gözlenebilir çekirdeklerin dışında proton damlama çizgisinden nötron damlama çizgisine uzanan hesaplarda deneysel verilerin yokluğundan bu formülün kullanılması mümkün olmamaktadır. Ancak boşluk parametresi kütle formülü kullanılarak hesaplanan bağlanma enerjilerini kullanarak denklem (1.86) yardımı ile hesaplanabildiği gibi deneysel sonuçların kullanımı ile ayarlanmış formüller yardımı ilede hesaplanabilir. Örnek olarak boşluk parametresi için Ring vd., (1997) ve Geng (2005)'in seçimi sırası ile;

$$\Delta_{n,p} = \frac{12}{A^{1/2}}$$
(2.5)

$$\Delta_n = \frac{4.8}{N^{1/3}} \quad \text{ve} \quad \Delta_p = \frac{4.8}{Z^{1/3}}$$
(2.6)

şeklindedir. Bu çalışmada boşluk parametresi, son zamanlarda daha yaygın bir biçimde kullanılan ve denklem (2.6) ile verilen eşitlikler yardımıyla belirlendi.

RMF modeli çerçevesinde nükleer taban durum hesaplarında önemli bir nokta osilatör kabuk sayılarının doğru seçimidir. Bu durum RMF modeli sayısal hesaplarında fermiyon ve bozon alanlarının harmonik osilatör tabanında genişletilmesi ile ilgili bir sebepten ileri gelmekte olup sadece RMF hesaplarında değil aynı zamanda relativistik olmayan Hartree-Fock hesaplarında da geçerli bir durumdur. RMF hesaplarında

başlangıçta hem fermiyon ve hem de bozonlar için osilatör kabuk sayısı belirlenmelidir. Bozonlar için seçilen kabuk sayısından ziyade fermiyonlar için seçilen osilatör kabuk sayısı arttıkça iterasyon yoluyla gerçekleşen hesaplar için gerekli olan bilgisayar işlem süresi de ciddi oranda artmaktadır. Bu nedenle bu calışmada olduğu gibi geniş ölçekli bir aralıkta yapılan hesapların gerek uygun sonuçların elde edilmesi ve gerekse hesap sürelerinin minimum düzeyde tutulabilmesi için fermiyonlar için dikkate alınan osilatör kabuk sayısı seçimi çok önemli bir faktördür. Şekil 2.3'ün üst kısmında Ca izotop zinciri ve alt kısmında ise Er izotop zinciri için RMF çerçevesinde 10, 12, 14, 16, 18 ve 20 fermiyon kabuk sayıları kullanılarak hesaplanmış nükleon başına bağlanma enerjileri ile deneysel değerler (Audi vd., 2003) arasındaki fark gösterilmektedir. Görüldüğü gibi Ca izotop zinciri için yapılan hesaplarda fermiyonik kabuk sayılarının seçiminin sonuçları çok değiştirmediğini ancak Er izotop zincirinde 10 ve 12 fermionik kabuk sayısı ile yapılan hesapların diğer kabuk sayıları ile yapılan hesaplardan çok ayrıştığı görülüyor. Burada Ca izotopları için seçilen fermiyonik kabuk sayısının sonuçları çok değiştirmemesinin sebebi Ca izotoplarının Er ile karşılaştırıldığında oldukça az sayıda nükleon içermesinden kaynaklanmaktadır. Nükleon sayısının göreli olarak fazla olduğu Er izotop zincirinde kabuk sayısı seçiminin önemi ortaya çıkmaktadır. Şekil 2.3'ten yola çıkarak Ca ve Er izotop zincirleri için sırası ile 12 ve 16 kabuk sayısı seçiminin oldukça makul bir seçim olduğunu söylemek mümkündür. Bu nedenle bu çalışmada hafif çekirdeklerden süper-ağır çekirdeklere kadar uzanan aralıkta çeşitli çekirdekler test edilerek hesaplar için uygun fermiyonik kabuk sayıları seçilmiştir. Özetle bu çalışmada, $10 \le Z < 40$, $40 \le Z < 60$, $60 \le Z < 80$, $80 \le Z < 100$ ve $100 \le Z \le 110$ bölgelerinde sırası ile 12, 14, 16, 18 ve 20 fermiyonik kabuk sayısı kullanılmıştır.

Şekil 2.3. Ca ve Er izotoplarının farklı osilatör kabuk sayıları için hesaplanmış nükleon başına bağlanma enerjilerinin (B/A) deneysel değerlerden farkları

3. BULGULAR VE TARTIŞMA

Bu çalışmada çift-çift çekirdek izotoplarının taban durum nükleer özelliklerinin RMF modeli çerçevesinde inceleniyor olması ve genel olarak bir nükleer modelin başarısının çekirdeklerin bağlanma enerjisini doğru öngörmesi ile ölçülmesinden dolayı Bölüm 3.1 ile verilen ilk alt bölümde çekirdekler için taban durum enerjileri ayrıntılı bir şekilde irdelendi. Çekirdekler için hesaplanan bağlanma enerjileri ve bu bağlanma enerjileri yardımıyla elde edilen iki-nötron ve iki-proton ayırma enerjileri, süper-ağır çekirdekler için yine bağlanma enerjisi yardımı ile hesaplanabilen α -bozunum enerjileri (Q_{α}), ortalama α bozunum yarı-ömür süreleri ve ayrıca bazı küresel çekirdekler için (⁴⁰Ca, ⁴⁸Ca, ⁵⁶Ni, ⁹⁰Zr, ¹³²Sn ve ²⁰⁸Pb) nötron ve proton tek-parcacık enerji seviyeleri incelendi. Bölüm 3.2 çekirdeklerin proton, nötron ve yük yarıçapı gibi çekirdek boyutları ile ilişkili büyüklüklerinin tartışılmasına ayrıldı. Çekirdeklerin eksenel deformasyona sahip olduğu kabul edildiğinden çekirdeklerin deformasyonları ve şekil değişimleri gibi olguların incelenmesi önemlidir. Bu nedenle Bölüm 3.3'te çekirdek deformasyonları, elektrik kuadrupol geçiş olasılıkları B(E2; $0 \rightarrow 2^+$) ve kuadrupol moment kısıtlaması ile elde edilen potansiyel enerji eğrileri yardımıyla çekirdekler için karakter tayini gibi olgular tartışıldı. Son olarak Bölüm 3.4'te son dönemde oldukça önemli bir çalışma alanı olan sözdespin simetrisi üzerine duruldu ve RMF modeli ile, deneysel olarak iyi deforme olduğu bilinen ¹⁶⁶Gd çekirdeğinin nötron ve proton tek-parçacık sözdespin çiftlerinin kuadrupol deformasyona bağlı değişimleri irdelendi.

3.1. Taban Durum Enerjileri

Herhangi bir fiziksel sistemin kararlı olarak adlandırılabilmesi için sistemin minimum enerji durumunda olması gereklidir. Çekirdeğin kararlı olarak adlandırılması da çekirdeğin minimum enerji durumunda olmasını gerektirir. Bu çalışmada periyodik tabloda yer alan çift-çift çekirdek izotopları için taban durum nükleer özellikleri incelendi. Bu incelenen çekirdek özelliklerinin çekirdeklerin minimum enerji hali için elde edilen nükleer özellikler olduğu anlamına gelmektedir. Bu nedenle, çekirdekler hem prolate ve hem de oblate şekle sahip olarak ele alındı ve bunlar içerisinde en düşük enerjili şekil baz alındı. Bu çalışmada çekirdekler için dikkate alınan taban durum enerjileri sırası ile bağlanma enerjisi, iki-nötron ayırma enerjisi, iki-proton ayırma enerjisi ile nötron ve protonlar için tek-parçacık enerji seviyeleridir.

3.1.1. Bağlanma Enerjisi

Çekirdeğin kütlesinin kendisini oluşturan nükleonların kütleleri toplamından küçük olması, bağlı nükleonların oluşumunda bir kütle eksiği olduğu anlamına gelmektedir. Enerji korunumu çerçevesinden bakıldığında bu kütle eksiği (Δ M) bir enerji dönüşümü olarak ele alınabilir. Çekirdeğin oluşum sürecinde kütle-enerji ilişkisi çerçevesinde $\Delta E = \Delta Mc^2$ kadarlık bir enerji açığa çıkmaktadır. Bu enerji çekirdek için bağlanma enerjisidir (B) ve çekirdeğin toplam nükleon sayısına bölümü nükleon başına bağlanma enerjisi (B/A) olarak adlandırılır. Nitel bir değerlendirme açısından Şekil 3.1'de $10 \le Z \le 110$ aralığında çift-çift çekirdek izotop zincirlerinin RMF modeli çerçevesinde NL3* parametrizasyonu ile hesaplanmış B/A değerleri kütle numarasının (A) fonksiyonu olarak gösterilmektedir. Nükleon başına bağlanma enerjisi ⁵⁶Fe çekirdeğine kadar artmakta ve sonrasında yavaşça azalma göstermektedir.

Uzunca bir zamandır bir nükleer model ile bütün çekirdek kütlelerinin doğru bir sekilde öngörülebilmesi nükleer fizikciler icin büyük bir uğras olmustur (Lunney vd., 2003). Yaygınca kullanılan nükleer modelleri üç sınıfa ayırmak mümkündür (Geng, 2005). Bunlardan ilki Bethe-Weizsacker kütle formülü (Das ve Ferbel, 2003) gibi makroskopik modellerdir. İkincisi makroskopik-mikroskopik nükleer modeller olarak adlandırılan sınıfta en iyi bilinen ve deneysel değerler ile en uyumlu nükleer model Sonlu Erimli Sıvı Damlası Modelidir (Möller vd., 1995). Üçüncüsü mikroskopik nükleer modeller olup en iyi bilinen ve yaygın bir biçimde kullanılanlar Hartree-Fock (HF) metodu (Flocard vd., 1973; Decharge ve Gogny, 1980; Ring ve Schuck, 1980) ve Relativistik Ortalama Alan Modelidir (Walecka, 1974; Gambhir vd., 1990; Ring, 1996; Greiner ve Maruhn, 1996; Serot ve Walecka, 1986; 1997). Bir nükleer modelin çekirdeğin kütlesi için deneysel değerler ile uyuşan bir öngörüde bulunması model için gerekli parametrelerin iyi bir sekilde ayarlanmasını gerektirir. Çoğunlukla parametre setlerine eklenen ilave olgusal terimler aracılığı ile bu güne değin genel olarak nükleer modellerin çekirdeğin kütle öngörülerinde deneysel değerlere daha çok yaklaşan sonuçlar elde edilegelmiştir. Çekirdeklerin kütle öngörüsünde Sıvı Damlası

Şekil 3.1. İzotop zincirleri için nükleon başına bağlanma enerjileri

Modeli (FRDM) gerek relativistik ve gerekse relativistik olmayan ortalama alan modelleri ile kıyaslandığında başarılıdır (Geng, 2005). Ancak daha sonra da irdeleneceği üzere bir nükleer model için çekirdeklerin kütlelerini doğru bir şekilde öngörebilmesinin yanı sıra çekirdek deformasyon ve boyutlarını da doğru bir biçimde öngörebilmesi önemlidir.

Yaklaşık on yıl kadar önce HFB-2 Modelinde Skyrme etkileşmesine yeni parametrizasyonların eklenmesi ile çekirdeklerin kütle öngörülerindeki duyarlılığı neredeyse FRDM öngörüleri ile aynı düzeye yükselmiştir (Goriely vd., 2002 ve 2003). RMF modeli ile henüz bu düzeye ulaşılabilmiş olmamakla beraber oldukça iyi sonuçlar elde edilebilmektedir (Geng, 2005). Şekil 3.2'de bu çalışma çerçevesinde hesaplanan RMF modelinin çift-çift çekirdeklerin teorik kütle öngörüleri ile 722 çift-çift çekirdeğin deneysel kütleleri (Audi vd., 2003) arasındaki fark MeV cinsinden kütle numarasının bir fonksiyonu olarak gösterildi. Şekil 3.2'den görüldüğü üzere teorik hesaplar ile deneysel değerler arasındaki en büyük fark ~7 MeV civarındadır.

Çekirdek kütlelerinin teorik öngörülerinin deneysel sonuçlar ile uyumunu kare ortalama karekök dağılımı (σ) ile belirlemek geleneksel bir yöntemdir. $M_{teor.}^{i}$ ve M_{deney}^{i} teorik ve deneysel çekirdek kütlelerini, N ise deneysel veri sayısını göstermek üzere kare ortalama karekök dağılımı

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} \left(M_{teor.}^{i} - M_{deney}^{i}\right)^{2}}{N}}$$
(3.1)

ile verilir. Tablo 3.1'de bu çalışmada RMF-NL3*'ın çekirdek kütle öngörüleri için hesaplanmış σ değeri ile RMF-TMA (Geng, 2005), FRDM (Möller vd., 1995) ve HFB -2 (Goriely, 2002) öngörülerinin σ değerleri gösterilmektedir.

Tablo 3.1. Çeşitli nükleer modellerin çekirdek kütle öngörüleri için kare ortalama karekök dağılımları

σ (RMF-TMA)	σ (RMF-NL3*)	σ (FRDM)	σ (HFB)
2.118	2.943	0.791	0.843

Tablo 3.1'de görüldüğü üzere FRDM ve HFB-2 modelleri deneysel değerler ile oldukça uyumludur. Bu noktada FRDM nin bu başarısı 1000 den fazla çekirdeğin deneysel değerlerinin kullanımı ile ayarlanmış parametrelerden ileri gelmektedir. Bu durum HFB Modeli için de az çok benzerlik göstermektedir (Geng, 2005). Bu nedenle herhangi bir olgusal nükleer modelin çekirdek bağlanma enerjilerini kesin bir biçimde öngörme bakımından FRDM kadar başarılı olabilmesi olası görünmemektedir.

Şekil 3.2. Çift-çift çekirdekler için deneysel ve teorik bağlanma enerjisi (BE) farkları

Tablo 3.1'de verilen RMF-TMA, FRDM ve HFB-2 için Geng (2005) tarafından verilen σ değerleri için 2882 adet deneysel kütle değeri kullanıldığı belirtilmiştir. Bu çalışmada çift-çift çekirdekler ile ilgilenildiğinden 722 adet deneysel kütle değeri dikkate alınarak RMF-NL3* için σ değeri hesaplandı. Bununla beraber deneysel olarak belirlenmiş güncel çift-çift, çift-tek, tek-çift ve tek-tek çekirdeklerinin toplam sayısı 2000'in altında olup (Audi vd., 2003) Geng tarafından verildiği şekli ile bu sayının 2882 olması olanaklı değildir. Bu noktada bu sayıya gerçek deneysel değerlerden ziyade deneysel değerlerin kullanımı ile uyarlanmış kütlelerin kullanımı ile ulaşılabilir. Ancak bu çalışmada σ hesabı

için daha öncede belirtildiği gibi 722 adet gerçek deneysel veri kullanılmıştır. Belirtilmesi gereken bir başka önemli nokta ise bu hesaplarda deneysel hata paylarının dikkate alınmamasıdır. Deneysel hata paylarının dikkate alınması ile σ değerleri yaklaşık % 10 kadar daha küçük elde edilebilmektedir (Geng, 2005).

Bir önceki paragrafta ifade edildiği gibi bu çalışmada çift-çift çekirdekler için σ hesabında 722 adet gerçek deneysel veri dikkate alındığından bu çalışmadan elde edilen σ değerinin Geng tarafından RMF-TMA için elde edilen σ değeri ile doğrudan bir karşılaştırması çok olanaklı değildir. Çünkü Geng çalışmasında tek-çift ve tek-tek cekirdekler icin de hesap yapmış ve gercek deneysel veriler verine bunlardan uyarlanmış deneysel verileri kullanmıştır. Bu nedenle RMF modeli için NL3* ve TMA parametre setlerinin çekirdek kütlesi öngörülerinde hangisinin daha başarılı sonuç verdiğini net ifade edebilmek olası değildir. Ancak hesaplardaki farklılıklar giderilmiş olsa dahi Tablo 3.1'den görüldüğü gibi her iki parametrizasyon için elde edilmiş değerler arasındaki farkın NL3* lehine büyük oranda kapanması ve NL3*'ın daha başarılı bir sonuç vermesini de beklemek çok mümkün olmayabilir. Burada her iki parametrizasyonunda lineer olmayan Lagranjiyen parametre seti olmasına rağmen TMA parametre setinin çekirdek kütlesi ile değişen fazladan terimler içerdiğinin altını çizmekte fayda vardır. Bu katkı terimlerinin iyi işlediğini düşünmek olasıdır. Daha önce ifade edildiği gibi nükleer yapı modellerinde daha fazla olgusal terim ve bu parametrelerin cok sayıda deneysel veri ile ayarlanması deneysel değerlere daha yakın sonuçlar vermelerini sağlayabilmektedir. 2011 yılında Avrupa'da bir nükleer fizik grubunun henüz yayınlanmamış ancak RMF-D1S ile FRDM kadar etkili sonuçlar elde etmeyi başardıkları Peter Ring tarafından sözel olarak rapor edilmiştir. Bu noktada elbette RMF modelini diğer modellerden daha özgün kılan noktatalardan birincisi kovaryant bir yapıda olmasıdır. İkincisi ise çok az sayıda parametrenin yine az sayıda deneysel verinin dikkate alınması ile ayarlanmasıdır.

Çekirdeklerin belirli nötron ve proton sayıları için deneysel olarak elde edilen bağlanma enerjilerindeki ani değişim sihirli sayılar (N veya N = 2, 8, 20, 28, 50, 82, 126) ile açıklanmaktadır. Bu çekirdeklerin atom teorisindekine benzer bir yapıda tabakalara sahip olduğunu göstermektedir. Bu çalışmada nükleer tabaka yapısını irdeleyebilmek için Şekil 3.3'te Ca, Mo, Gd ve Rn çift-çift çekirdek izotop zincirlerinin nükleon başına bağlanma enerjileri nötron sayısının fonksiyonu olarak gösterildi. Şekil 3.3'te bu çalışmada hesaplanan RMF-NL3*'ın öngörüleri yanında HFB-SLy5 ile hesaplanmış B/A değerleri,

FRDM öngörüleri (Möller vd., 1995) ve ulaşılabilir deneysel veriler (Audi vd., 2003) gösterilmektedir.

Şekil 3.3. Ca, Mo, Gd ve Rn çift-çift çekirdek izotop zincirleri için nötron sayısının fonksiyonu olarak nükleon başına bağlanma enerjileri

Şekil 3.3'te Ca, Mo, Gd ve Rn izotop zincirlerinde gerek deneysel sonuçlar ve gerekse her üç teorik hesapta B/A değerleri sırası ile N = 28, 50, 82 ve 126 değerlerinde bir zirve yapmaktadır. Bu sayılar sihirli nötron sayılarına karşılık gelmekte olup dolu tabakaları temsil eder. Dolu tabakaya sahip çekirdeğin kendi izotoplarına göre daha kararlı

bir yapıya sahip olması ve bu sayılarda nötrona sahip çekirdeklerin bağlanma enerjisinin maksimum olması gereklidir. Bu durumda FRDM, RMF-NL3* ve HFB-SLy5'in deneysel sonuçlar ile uyumlu olarak çekirdekler için sihirli sayıları başarılı bir biçimde öngördükleri görülmektedir. Yine aynı şekilden yola çıkarak seçilen bu çift-çift izotop zincirleri için RMF-NL3* ın B/A değerlerini HFB-SLy5'ten daha başarılı bir biçimde sağladığı da gözlenmektedir. Bu dört izotop zincirinden yola çıkarak bu sonucu periyodik tablonun tamamı için genelleştirebilmek olası değildir.

Özellikle N = 126 dan sonraki sihirli nötron sayısının ne olduğu sorusu halen tartışılmakta ve araştırılmaktadır. Bu noktada nükleer yapı modellerinin farklı sihirli sayı öngörüleri bulunmaktadır. Bu nedenle bu sihirli sayının bulunduğu tahmin edilen ve oldukça önemli bir araştırma alanı olan süper-ağır çekirdekler bölgesinde incelemeyi genişletmek anlamlı olacaktır.

Fermiyumdan (Z = 100) daha büyük atom numarasına sahip olan ve süper-ağır çekirdekler olarak adlandırılan izotopların varlığının 1960'lı yıllarda Mosel vd. (1969) ve Nilsson vd. (1969) tarafından öngörülmesi ve sonrasında laboratuvarlarda sentezlenmeye başlanması ile bu izotoplar deneysel çalışmalar açısından büyük ilgi görmeye başladı (Barber vd., 1991; Hofmann vd., 1995; Hofmann, 1998; Oganessian vd., 1999; Oganessian, 2010). Deneysel çalışmalara paralel olarak teorik olarak süper-ağır çekirdekler yaygın bir şekilde çalışılmıştır. Bu çalışmalarda etkin bir biçimde kullanılan nükleer modellere örnek olarak makroskopik bir model olan FRDM (Möller vd., 1995; 1997), mikroskobik bir model olan Skyrme-Hartree-Fock-Bogoliubov (Cwiok vd., 1999) ve son olarak Relativistik Ortalama Alan Modeli (Bender, 2000; Ren, 2002; Ren vd., 2003; Zhang vd., 2005; Yılmaz ve Bayram, 2011a) gösterilebilir.

Temel olarak deneysel nükleer fizikçilerin süper-ağır çekirdek sentezlenmesi için kullandığı iki yöntem vardır: Bunlar reaksiyonda kullanılan hedefe bağlı olarak sıcak veya soğuk füzyon reaksiyonları olarak adlandırılmaktadırlar. Sıcak füzyon reaksiyonlarında genel olarak aktinitler bölgesinde yer alan çekirdekler hedef olarak kullanılırken, soğuk füzyon için ise genellikle Kurşun (Pb) gibi kapalı kabuklu veya yine kapalı kabuğa sahip olmaya çok yakın Bizmut (Bi) gibi çekirdek izotopları tercih edilmektedir. Geçen yaklaşık 30 yıllık süre içerisinde deneysel çalışan nükleer fizikçiler 114 atom numarası civarında kararlı çekirdek arayışı içerisinde oldular (Hofmann, 2010). O günden bugüne ortalama olarak her bir veya yarım yıl içerisinde özellikle Rus ve Amerikan ortaklığı ile Rusya'nın Dubna şehrinde kurulu olan Nükleer Araştırma Merkezi, Almanya'nın Darmstadt şehrinde

kurulu olan GSI Ağır-İyon Araştırma Merkezi ve Japonya'da RİKEN tarafından yeni bir izotopun keşfi duyuruldu. Son olarak Dubna'daki araştırma grubu 117 proton sayılı elementi sentezlediklerini duyurdular (Oganessian, 2010). Halen isimsiz olan iki yeni izotop ²⁴⁹Bk (Berkelyum) hedefe ⁴⁸Ca (Kalsiyum) demetinin yönlendirilmesiyle meydana getirilen füzyon reaksiyonundan elde edildi. Bu keşif proton sayısı 116 ve 118 olan ve daha önce keşfedilmiş çekirdekler arasındaki boşluğu da doldurmuş oldu.

Ağır çekirdekler bölgesinde, bozunum temel olarak α -salımı, kendiliğinden fizyon, β + ve β - bozunumu şeklinde meydana gelir. İzotopun ömrü ve nasıl bir bozunuma uğrayacağı birçok faktöre bağlıdır. Çekirdeği elektrik yüklü bir sıvı damlası gibi ele alan ve nükleer modellerin en basit versiyonu olan Sıvı Damlası Modeli en kararlı çekirdeklerin elektrik ve nükleer kuvvetlerin beraberce rol aldığı kararlık çizgisi ve yakın civarında yer alacağını ve bunların β-bozunumu açısından kararlı olduğunu öngörür. Atom yörüngesindeki elektronların yerleştirilmesi ile yakın bir benzerlikte bir kabuk içerisindeki nötron (N) ve protonların (Z) dizilimi nükleer kararlılık üzerine ikinci bir etken olmaktadır. Kabuk proton veya nötronlar tarafından tam olarak dolu ise en kararlı durum ortaya çıkacak bu da doğal olarak bozunuma karşı bir unsur teşkil edecektir. Bu Nükleer Kabuk Modelinin öngördüğü sihirli sayılar 2, 8, 20, 28, 50, 82 ve 126 sayıda nötron ve protona sahip çekirdekler anlamına gelmektedir. Özellikle ²⁰⁸Pb izotopunda olduğu gibi hem nötron ve hem de protonlar sayıca kabuğu tam olarak işgal etmiş iseler bu tip çekirdekler çift-sihirli çekirdekler olarak adlandırılır ve aynı çekirdeğin diğer izotopları içerisinde maksimum bağlanma enerjisine sahip olurlar. Bununla beraber süper-ağır çekirdeklerin bulunduğu bölgede sihirli sayılar ile ilgili olarak farklı nükleer modeller proton için Z = 114, 120 veya 126, nötronlar için ise N = 172 ve 184'ü öngörmektedir. Bu noktada β -kararlılık çizgisinin doğru tahmini çekirdeklerin α -bozunumu ortalama yarı ömür sürelerinin doğru öngörüsü içinde önemlidir. İyi bilindiği gibi bir çekirdek izotop zincirinde β-kararlılık çizgisine yaklaşıldıkça izotoplar için bozunum süresi artmaktadır.

Buraya kadar bahsedilen ayrıntılar ile ilişkili olarak süper-ağır izotopların bağlanma enerjisi, deformasyonları, α-bozunum enerjileri ve α-bozunumu ortalama yarı-ömür süreleri gibi nükleer özellikleri bu bölgenin iyi bir şekilde anlaşılabilmesi açısından önem teşkil etmektedir.

Spin-yörünge etkileşmesinin relativistik yapısından dolayı herhangi bir ilave terim gerektirmeden doğal bir biçimde bu etkileşmeyi içeren mikroskopik ve öz-uyumlu RMF

7.6 7.6 **FRDM** FRDM HFB-SLy5 HFB-SLy5 Deney Deney 7.2 7.2 RMF-NL3 RMF-NL3 B/A (MeV) B/A (MeV) 6.8 6.8 6.4 6.4 No (Z=102) Rf (Z=104) 6.0 6.0 128 144 160 176 192 208 224 240 176 192 208 224 240 128 144 160 Ν Ν 7.6 7.6 ------FRDM FRDM HFB-SLy5 HFB-SLy5 Deney Deney 7.2 7.2 RMF-NL3 RMF-NL3 B/A (MeV) B/A (MeV) 6.8 6.8 6.4 6.4 Hs (Z=108) Sg (Z=106) 6.0 6.0

modeli (Meng vd., 1999) hem egzotik hem de süper-ağır çekirdeklerin tanımlanmasında başarılı olduğu gösterilmiştir (Takigawa, 2000 ve Ren vd., 2003; Meng).

Şekil 3.4. No, Rf, Sg ve Hs çift-çift süper-ağır çekirdek izotop zincirleri için nükleon başına bağlanma enerjileri

240

224

144 160 176 192 208

Ν

128

128 144 160 176 192 208 224 240 256

Ν

Bu tez çalışmasında süper-ağır çekirdeklerden proton sayısı Z = 102,104,106 ve 108 olan No, Rf, Sg ve Hs izotop zincirleri için hesaplar yapıldı ve Şekil 3.4'te söz konusu süper-ağır çekirdek izotop zincirlerinin nükleon başına bağlanma enerjileri, Şekil 3.3'te RMF-NL3* ve HFB-Sly5 ile elde edilen sonuçlar FRDM ve deneysel sonuçlar gösterilmektedir. Bu şekilden yola çıkarak FRDM ve RMF modelinin süper-ağır çekirdeklerin bağlanma enerjini betimlemede oldukça başarılı olduğunu söylemek mümkündür.

Daha sonrada ayrıntılı irdeleneceği üzere süper-ağır çekirdeklerin ortalama yarıömür sürelerini bağlanma enerjisi yardımı ile belirlemek mümkündür. Bu nedenle nükleer modellerin süper-ağır çekirdeklerin bağlanma enerjisindeki doğru ve kesin öngörüleri bu çekirdeklerin bozunum süreçleri ile ilişkili bilgi sağlamada ve deneysel çalışmalara ön hazırlık oluşturması açısından önemlidir.

Bu tez çalışması çerçevesinde RMF-NL3* ile $10 \le Z \le 110$ aralığındaki çift-çift çekirdek izotop zincirleri için hesap edilmiş toplam bağlanma enerjisi değerleri Ek Tablo 7'den incelenebilir.

3.1.2. İki-nötron ve İki-proton Ayırma Enerjisi

Nükleer yapı fiziği açısından bir başka önemli nükleer özellik nötron ve proton ayırma enerjileridir. Özellikle çekirdek bağlanma enerjisi ile kıyaslandığında bir-nükleon veya iki-nükleon ayırma enerjileri nükleer tabaka yapılarının araştırılmasında daha önemlidir. Ayrıca sistematik hatalardan kurtulabilmek için model parametrelerinin ayarlanmasında önemli rol oynamaktadır (Greiner ve Maruhn, 1996). İki-nötron ve ikiproton ayırma enerjileri hesaplanan bağlanma enerjileri yardımıyla,

$$S_{2n} = \mathbf{B} \begin{pmatrix} {}^{A} X_{N} \end{pmatrix} - \mathbf{B} \begin{pmatrix} {}^{A-2} X_{N-2} \end{pmatrix} = [m \begin{pmatrix} {}^{A-2} X_{N-2} \end{pmatrix} - m \begin{pmatrix} {}^{A} X_{N} \end{pmatrix} + 2m_{n}]c^{2}$$
(3.2)

$$S_{2p} = \mathbf{B}({}_{Z}^{A}X_{N}) - \mathbf{B}({}_{Z-2}^{A-2}X_{N}) = [m({}_{Z-2}^{A-2}X_{N}) - m({}_{Z}^{A}X_{N}) + 2m({}^{1}H)]c^{2}$$
(3.3)

ile elde edilebilir.

Bir önceki alt bölümde bazı çekirdek izotopları için nükleon başına bağlanma enerjileri sihirli nötron sayılarında maksimum değerler almışlardı. Ancak nükleer tabaka (kabuk) yapısının varlığının kuşkusuz en önemli kanıtı çekirdekten nükleon koparmak için gerekli olan enerjinin bazı sayılarda ani değişim göstermesi ile açıklanır. Dolu bir kabuktan bir nükleon ayırmak için gerekli olan enerji açık kabuklu olana göre büyük olur.

Şekil 3.5. Ca, Mo, Gd ve Rn çift-çift izotop zincirleri için iki-nötron ayırma enerjileri

Şekil 3.5'te Ca, Mo, Gd ve Rn çift-çift çekirdek izotop zincirleri için RMF-NL3* ve HFB-SLy5 ile hesaplanmış iki-nötron ayırma enerjileri nötron sayısının fonksiyonu olarak gösterilmektedir. Deneysel sonuçlar ve FRDM öngörüleri de karşılaştırma için gösterilmektedir. Şekil 3.5'ten açıkça görüldüğü üzere izotop zincirlerinden Ca için 20 ve 28, Mo için 50 ve 82, Gd için 82 ve 126 ile Rn için 126 nötron sayılarında RMF-NL3* ile
hesaplanan iki-nötron ayırma enerjilerinde ani bir düşüş gözlenmektedir. Bu durum HFB-SLy5 ve FRDM öngörüleri için geçerli olmakla beraber her üç teorik öngörü deneysel olarak ulaşılabilir değerler ile genel olarak uyum içerisindedir. Ancak bu noktada bu özel nötron sayılarının (20, 28, 50, 82 ve 126) hepsinde gerek RMF-NL3* ve gerekse HFB-SLy5 tahminlerinde gözlenen düşüş deneysel düşüşten belirgin bir farklılıkla daha büyük olmakla beraber HFB sonuçları ile kıyaslandığında RMF sonuçlarının bütün bu özel nötron sayılarında meydana gelen düşmeyi deneysel düşüş miktarına açık bir biçimde daha yakın sağladığı görülmektedir. Bu özel nötron sayılarındaki nötron ayırma enerjisindeki ani düşüş için relativistik olmayan ortalama alan teorilerinin öngörüleri deneysel sonuçlar ile iyi uyumlu olmasına rağmen büyüklük açısından belirgin bir fark ortaya çıkması bu teorilerin genel bir problemidir (Lunney vd., 2003; Bender vd., 2006).

Şekil 3.5'te kalsiyum izotop zinciri için deneysel verinin olmadığı N = 40 (yarısihirli) değerinde RMF-NL3* öngörüsündeki gözlemlenen ani düşüşte bu sayının yarısihirli olarak kabul edilmesini desteklemektedir. Bir başka önemli nokta ise Rn izotop zincirinde RMF modelinin N = 184 te ani bir düşüş göstermesidir. Bu düşüş FRDM öngörülerinde gözlemlenmemektedir. Bu durum RMF modeli için 184 sayısının 126 sayısından sonra gelen sihirli sayı olduğunu destekler durumdadır. Bu durum daha sonra çekirdek deformasyonları ile de desteklenecektir. 184 sayıda nötrona sahip Rn çekirdeği RMF modeli çerçevesinde nötron damlama çizgisine yakın bir bölgedir. Bu nedenle bu nötron sayısına sahip olmaya daha yakın süper-ağır bölgedeki çekirdekler için aynı olgunun tartışılması daha anlamlıdır.

Şekil 3.6'da bazı süper-ağır çekirdek izotop zincirleri için hesaplanmış iki-nötron ayırma enerjileri ve ulaşılabilir deneysel değerler gösterilmektedir. Şekil 3.6'da görüldüğü üzere No, Rf, Sg ve Hs izotop zincirlerinin tamamı için RMF-NL3* öngörüleri bir önceki paragrafta tartışılan olguyla paralel olarak 184 nötron sayısında ani düşüşler göstermekte ve bu sayının sihirli nötron sayısı olduğunu desteklemektedir. Bir diğer önemli nokta ise süper-ağır bölgede ulaşılabilir deneysel verilerle RMF modelinin ve FRDM nin öngörüleri ile iyi bir uyum içerisinde olmasıdır.

Bu çalışma çerçevesinde RMF-NL3* ile $10 \le Z \le 110$ aralığındaki çift-çift çekirdek izotop zincirleri için hesaplanmış iki-nötron ayırma enerjileri Ek Tablo 7'de verildi.

Şekil 3.6. Süper-ağır No, Rf, Sg ve Hs izotop zincirleri için iki-nötron ayırma enerjileri

Buraya kadar iki-nötron ayırma enerjisi yardımı ile nükleer tabaka yapısının varlığı ve sihirli sayılar irdelendi. Benzer bir şekilde bunu iki-proton ayırma enerjisi kullanarak yapmakta mümkündür. Şekil 3.7'de sihirli sayıda (28, 50, 82 ve 126) nötrona sahip çekirdeklerin iki-proton ayırma enerjileri için RMF-NL3* öngörüleri deneysel değerler ile karşılaştırılmalı biçimde proton sayısının bir fonksiyonu olarak gösterilmektedir. Her dört izoton zinciri içinde grafiklerden görüldüğü üzere ilişkili sihirli proton sayıları olan 28, 50 ve 82 de ortaya çıkan ani düşüşler bu sayıların sihirli proton sayıları olduğunu ifade etmektedir.

Şekil 3.7. N=28, 50, 82 ve 126 çekirdek izoton zincirleri için iki-proton ayırma enerjileri

3.1.3. Süper-ağır Çekirdekler İçin α-bozunumu Enerjisi ve Yarı-ömür Süreleri

Çekirdekler için α -bozunumu ${}^{A}X^{Z}$ ana çekirdeği, ${}^{A-4}Y^{Z-2}$ ürün çekirdeği ve ${}^{4}\text{He}^{2}$ de helyum çekirdeğini temsil etmek üzere ${}^{A}X^{Z} \rightarrow {}^{A-4}Y^{Z-2} + {}^{4}\text{He}^{2}$ şeklinde betimlenir. Bir çekirdek izotopunun α -bozunumu enerjisini (Q_{α}), ilgili izotopun ve bozunum sonrası oluşan ürün çekirdeklerinin bağlanma enerjilerinin (B) yardımıyla

$$Q_{\alpha} = B(N,Z) - B(N-2,Z-2) - B(2,2)$$
(3.4)

şeklinde kolayca hesaplamak mümkündür (Das ve Ferbel, 2003). Burada B(N, Z), B(N-2, Z-2) ve B(2, 2) sırasıyla ana, ürün ve Helyum (He) çekirdeğinin bağlanma enerjilerini (28.296 MeV) temsil etmektedir. Şekil 3.8'de süper-ağır No (Z=102), Rf (Z=104), Sg (Z=106) ve Hs (Z=108) çift-çift izotop zincirleri için RMF modeli çerçevesinde NL3* parametre seti ile hesaplanmış Q_{α} değerleri ile deneysel B değerlerinin (Audi vd., 2003) denklem (3.4) yardımıyla hesaplanmış Q_{α} değerleri ile karşılaştırmalı olarak verildi. Şekil 3.8'de görüldüğü gibi hesaplanan Q_{α} değerleri ulaşılabilir deneysel değerlerle küçük bir farklılık göstermekle birlikte eğrilerin davranışı iyi bir uyum içerisindedir. Yine bu grafikler yardımı ile bir önceki bölümde tartısılan sihirli nötron sayısı olgusu üzerine yorum yapmakta mümkündür. Genel olarak dolu kabuğa sahip çekirdeğin aynı izotop zincirindeki diğer çekirdeklere göre daha kararlı bir yapıya sahip olması bu çekirdeğin diğerlerine göre bozunuma karşın daha kararlı olmasına sebep olur. Bu da a-bozunum enerjisinin daha büyük olması anlamına gelmektedir. Şekil 3.8'de yer alan dört süper-ağır çekirdek izotop zincirlerinin hepsinde RMF-NL3* nötron sayısı 184 de bozunum enerjisinde ani bir artış öngörmektedir. Bu durum yine bir önceki bölümde tartışıldığı gibi RMF-NL3* için 184 sayısının sihirli bir sayı olduğunu işaret etmektedir. Yine grafiklerden görüldüğü üzere deneysel verilerle uyumlu bir biçimde 162 nötron sayısında da 184 nötron sayısındakinde ki kadar belirgin olmasa da bozunum enerjisinde belirgin bir artış görülmektedir. Bu durum RMF modelinin 162 nötron sayısını yarı-sihirli sayı olarak öngördüğü yönündeki sonuçları (Geng, 2005) destekler niteliktedir.

Bir çekirdek için α -bozunumu yarı-ömür süresi, Q_{α} (α -bozunumu enerjisi) yardımı ile Viola ve Seaborg (1966) tarafından geliştirilmiş yarı-deneysel formül

$$log_{10}T_{\alpha}(s) = \frac{aZ - b}{\sqrt{Q_{\alpha}}} - (cZ + d) + h_{log}$$
(3.5)

ile belirlemek mümkündür. Denklem (3.5)'te yer alan sabitler ve değerleri, a=1.661175, b=8.5166, c=0.20228 ve d=33.9069 şeklindedir. Yine aynı denklemde Z ilgili izotopun proton sayısını, $T_{\alpha}(s)$ saniye cinsinden α -bozunum ortalama yarı-ömür süresini temsil etmektedir. Tek çekirdekler için kullanılan h_{log} terimi, bu çalışmada ele aldığımız çekirdeklerin çift-çift çekirdekler olmasından dolayı hesaba katılmamıştır.

Şekil 3.8. Süper-ağır No, Rf, Sg ve Hs çekirdek izotopları için α -bozunum enerjileri

	$\log_{10} T_{\alpha}(s)$							
Nötron	No (Z=102)		Rf (Z=104)		Sg (Z=106)		Hs (Z=108)	
Sayısı	Deney ^a	NL3*	Deney ^a	NL3*	Deney ^a	NL3*	Deney ^a	NL3*
142		-1.631		-2.571		-3.878		-5.078
144		-0.534		-1.515		-2.835		-4.063
146	-1.872	1.443		0.151		-1.648		-3.227
148	-0.796	3.344		1.592		-0.865		-2.593
150	0.495	3.162	-0.970	1.475		-1.244		-3.138
152	1.575	4.050	-0.279	2.462	-1.968	-0.636		-2.864
154	0.394	5.875	-1.178	3.555	-2.189	-0.133		-2.627
156	1.434	7.817	0.080	4.827	-1.011	0.874	-3.125	-2.090
158	3.786	9.820	1.855	6.506	0.249	2.461	-2.686	-1.234
160	5.144	11.499	2.371	7.981	0.745	4.037	-1.528	-0.259
162	8.081	12.740	4.895	8.829	2.127	4.650	0.502	0.012
164		11.533	2.469	7.224	0.890	2.991	-2.108	-1.275
166		10.563		5.829	3.197	1.832	-0.946	-0.529
168		11.983		7.843		4.847	1.160	3.098
170		14.564		10.928		8.022		5.381
172		25.100		14.475		10.362		7.021
174		19.135		14.296		11.657		8.412
176		20.647		15.534		11.609		9.901
178		21.600		16.698		12.766		10.062
180		18.195		13.875		10.544		8.435
182		18.630		12.103		9.558		9.887
184		21.346		16.125		15.627		13.359
186		10.026		9.444		8.360		7.509
188		5.338		5.842		5.455		5.020
190		26.677		25.866		20.732		15.907
192		37.394		22.759		16.338		12.326
194		32.225		24.134		18.598		14.065
196		42.536		30.305		23.390		24.958
198		58.714		38.842		31.149		30.881
200		72.404		46.047		37.802		33.769
202		89.050		55.340		44.990		37.185
204						51.554		40.138
206						57.729		44.031
208						64.588		47.448
210						68.827		48.557
212						76.919		52.697

Tablo 3.2. Bazı süper-ağır çekirdeklerin yarı-ömür sürelerinin doğal logaritmaları

^a Audi vd., 2003

Tablo 3.2'de No, Rf, Sg ve Hs izotopları için RMF-NL3* ile hesaplanmış bağlanma enerjileri yardımı ile elde edilmiş α -bozunum enerjisi Q_{α} değerlerinin denklem (3.5)'te kullanımı ile elde edilmiş saniye biriminde α -bozunumu yarı-ömür sürelerinin doğal logaritmaları verildi. Aynı tabloda deneysel sonuçlar (Audi vd. 2003) karşılaştırma amacıyla gösterildi. Bu değerler α -bozunumu Q_{α} değerlerini kullanılarak elde edildiğinden beklendiği üzere sonuçlar α -bozunumu enerjisi hesaplarında olduğu gibi deneysel değerler ile paralellik göstermektedir.

3.1.4. Tek-parçacık Enerji Seviyeleri

Alt bölüm 3.1.2'de nükleer tabaka modelinin öngörüsü çerçevesinde sihirli nükleon sayıları dolu kabuklarla ilişkilendirilmişti. Bu olgu nötron ve proton tek-parçacık enerji seviyelerinin incelenmesi ile de detaylıca irdelenebilir. Şekil 3.9'da ⁴⁰Ca çekirdeği için RMF-NL3* ile hesaplanmış nötron ve proton tek-parçacık enerji seviyeleri klasik *nlj* notasyonu ile Skyrme etkileşimli (SKII) Hartree-Fock (HF) öngörüleri ve deneysel veriler (Vautherin ve Brink, 1972) gösterildi. Bilindiği gibi ⁴⁰Ca çekirdeği 20 proton ve 20 nötrona sahiptir. Bu durum bu çekirdeği çift-sihirli çekirdek olarak betimlememizi sağlar. Şekil 3.9'da görüldüğü gibi turuncu renkle gösterilen 20 sayısı dolu kabuğu ve dolayısı ile bu çekirdekte bağlı nötron ve proton için son enerji düzeyini temsil etmektedir. Bu seviyeye kadar enerji düzeyleri arasındaki boşluk küçük iken bir sonraki enerji düzeyine geçiş için gerekli enerji miktarının (kesikli dikey çizgiler) büyük olması da nükleer kabuk modelinin bir öngörüsüdür. Bu çalışmadan elde edilen sonuçlar Şekil 3.9'da görüldüğü gibi ruyum sağlamaktadır. Özellikle RMF modeli öngörülerinin Skyrme etkileşimli HF öngörülerinden oldukça başarılı olduğunu belirtmek gerekir.

Ek Tablo 1-6'da sırası ile ⁴⁰Ca, ⁴⁸Ca, ⁵⁶Ni, ⁹⁰Zr, ¹³²Sn ve ²⁰⁸Pb çekirdekleri için hesaplanmış nötron ve proton tek-parçacık enerji seviyeleri listelenmiştir. Bu çekirdeklerden ⁹⁰Zr hariç hepsi hem sihirli sayıda nötron hem de proton içermektedir. Aynı tablolarda nötron ve proton tek-parçacık enerji seviyeleri için HF-SKII, HFB-SLy4 ve RMF-TMA öngörüleri ile deneysel değerlerde gösterildi. Bu tablolar ayrıntılı incelendiğinde genel olarak RMF-NL3* öngörülerinin başarılı bir şekilde nötron ve proton tek-parçacık enerji seviyelerini deneysel değerlerle uyum içerisinde sağladığını görmek mümkündür. Ancak ⁵⁶Ni çekirdeği için elde edilen nötron ve proton tek-parçacık enerjileri Geng (2005) tarafından RMF-TMA ile yapılan sonuçlar ile kıyaslandığında deneysel değerlerden biraz uzak kalmaktadır. Bu durum diğer çift-sihirli sayıda nükleona sahip çekirdekler için de (Geng, 2005) benzerlik göstermektedir. Dolayısı ile TMA parametre setinin nötron ve proton tek-parçacık enerji seviyeleri öngörüleri açısından NL3* parametre setinden daha başarılı olduğu sonucuna ulaşmak mümkün olmakla beraber NL3* sonuçları da tatmin edici düzeydedir.

Şekil 3.9. ⁴⁰Ca çekirdeği için tek-nötron ve tek-proton enerji seviyeleri

Bu çalışmada RMF-NL3* ile süper-ağır çekirdeklerden No (Z=102) ve Hs (Z=108) çift-çift izotop zincirlerinin kabuk yapısını irdelemek için nötron sayısı $174 \le N \le 194$ aralığında bu çekirdekler küresel olarak ele alınıp nötron tek-parçacık enerjileri hesaplanmıştır. Şekil 3.10'da bu tek-parçacık enerji seviyeleri nötron sayısının bir fonksiyonu olarak gösterilmektedir. Şekilden açıkça görüldüğü üzere her iki süper-ağır çekirdek izotop zincirinin nötron tek-parçacık enerji seviyelerinden $1j_{15/2}$ ve $1i_{11/2}$ ile arasındaki büyük ayrışma dikkat çekmektedir. Elbette bu ayrışma nükleer tabaka yapısı ile kolayca izah edilebilir. Bu iki tek-parçacık seviyesi aynı ana kabukta yer almamaktadırlar. $1i_{11/2}$ seviyesi $1j_{15/2}$ seviyesine göre bir alt ana kabuğun son tek-parçacık enerji düzeyidir. Bu seviyelerin farklı ana kabuklar arasında yer alması bu seviyeler arasındaki büyük ayrışmanın açıklayıcısı olduğu gibi kesikli çizgi ile gösterilen nötron sayıları da N = 184

Şekil 3.10. No ve Hs çekirdek izotopları için nötron tek-parçacık enerji seviyeleri

nötron sayısında bir dolu kabuğu işaret etmektedir. Bu da Bölüm 3.1.2'de elde edilen sonuçlar ile uyum içerisindedir.

Tek parçacık enerji seviyeleri sadece nükleer tabaka yapısının araştırılması noktasında bilgi vermeyip nicel olmasa da nitel olarak çekirdek deformasyonları üzerine bilgiler verebilir (Yao vd., 2010; Radriguez-Guzman vd., 2010; Yılmaz ve Bayram, 2011).

İyi bilindiği üzere eğer çekirdek küresel olarak ele alınırsa aynı alt ana kabuğun alt kabuğunda yer alan enerji düzeylerindeki ayrışmayı ortaya çıkarmak olanaklı değildir. Bunu bir örnek ile açıklamak gerekirse Şekil 3.10'da yer alan grafiklerden No izotopları ile ilgili olan şekilde klasik *nlj* notasyonu ile gösterilen li_{11/2} seviyesi deforme kabuk modeli çerçevesinde 6 farklı seviyeye ayrılır (Nilsson gösterimi, Şekil 1.3 incelenebilir) ve bir izotop zincirinde ilerlerken deformasyon arttıkça veya çekirdekte şekil değişimleri meydana geldikçe bu seviyeler arasındaki ayrışma belirginleşir. Bu durumla paralel olarak deformasyon azaldıkça bir başka ifade ile çekirdek şekli küresel forma yaklaştıkça bu ayrışmış seviyeler birbirlerine yaklaşarak tek bir seviye gibi görüneceklerdir. Bu olguyu belirgin şekil değişimlerinin var olduğu bilinen Mo izotopları (Bayram vd., 2010) üzerinde tartışmak uygundur.

Şekil 3.11'de çift-çift Mo izotopları için RMF-NL3* ile hem prolate ve hem de oblate şekiller için hesaplanan bağlanma enerjisi değerlerinin farkları toplam nükleon sayısının (*A*) bir fonksiyonu olarak gösterildi. Şekilden görüldüğü üzere $90 \le A \le 94$ aralığında prolate ve oblate şekiller arasındaki fark sıfır civarındadır. Verilen aralıkta proton sayısı 42 olan Mo izotopları için nötron sayıları 48-52

Şekil 3.11. Mo izotopları için prolate ve oblate şekilli durumlar için bağlanma enerjisi farkları

aralığındadır. Bu bölgede her iki şekil için bağlanma enerjisi farklarının sıfır civarında olması bu bölgedeki Mo izotopların sihirli nötron sayısı 50 nedeni ile dolu kabuğa veya iki-nötron ekleme ve çıkarma ile dolu kabuğa sahip olabilecek çekirdekler olmasından ileri gelmektedir. Şekil 3.11'den görüldüğü üzere bu aralıktan sağa veya sola gidildikçe çekirdek küresel şekilden ayrılmaktadır. Bu farklılığın nötron tek-parçacık enerji seviyelerinde bir değişikliğe sebep olması beklenir. Şekil 3.12'de çift-çift Mo izotopları için RMF-NL3* çerçevesinde hesaplanan nötron tek-parçacık enerji seviyeleri Nilsson notasyonu kullanılarak gösterilmektedir. Kesikli eğri ilgili izotopun nötron Fermi enerjisini temsil etmektedir. Şekilden görüldüğü üzere A=92-94 (N=50-52) izotopları için Nilsson deforme nötron tek-parçacık enerji seviyelerindeki ayrışma minimum düzeyde iken diğer iyi deforme izotoplar için tek-parçacık enerji seviyelerindeki ayrışma oldukça belirgindir. Bu durum RMF modelinin tek-parçacık enerji seviyesi öngörüleri ile nükleer tabaka yapısını öngörmesi yanında çekirdek şekil değişimlerini de belirlemede nitel bir bilgi sağlayabileceğinin mümkün olduğunu göstermektedir.

3.2. Çekirdek Boyutları

Çekirdek için potansiyel kısa bir mesafe için sabit sonra hızlıca sıfır olmakla birlikte çekirdek çok keskin bir yarıçapa sahip değildir. Bu nedenle net bir yarıçap yerine merkezi yoğunluğun yarıya düştüğü ortalama yarıçap ve merkezi yoğunluğun maksimum civarındaki değerinin minimum civarındaki değerine düştüğü yüzey kalınlığı kavramları nükleer boyutun tarifi için daha anlamlı olanlarıdır.

Nükleer yoğunlukların tayini yüksek enerjili elektronların çekirdekten saçılması, müonik X ışınları yöntemi, optik ve X ışını kaymaları ve ayna çekirdeklerin enerji farkları gibi çeşitli yöntemlerle yapılabilmektedir. Çekirdeğin yoğunluk dağılımları nükleon saçılma veya π^{\pm} saçılmaları gibi elastik saçılmalar yardımı ile incelenebilir. Ancak bu tür etkileşmeler taban durum özelliklerinin araştırılması için uygun değildir. Harici radyoaktif iyon demetlerinin kullanılmaya başlanması ile zayıf bağlı çekirdekler için elde edilen sonuçlar HF (Hartree-Fock) ve RMF gibi ortalama alan modellerinin kararlılık çizgisi boyunca damlama çizgisi bölgelerine kadar bu modellerin doğru sonuçlar verdiğini göstermiştir (Ring, 1996; Geng, 2005).

Şekil 3.12. Deforme Mo izotopları için nötron tek-parçacık enerji seviyeleri

Bir çekirdek için boyut çekirdek yarıçapı ile ilişkilidir ve çekirdek yarıçapı R, çekirdeği oluşturan toplam nükleon sayısı (A) ile $R_0 \cong 1.25$ fm olmak üzere $R = R_0 A^{1/3}$ şeklinde bir ilişki söz konusudur. Buraya kadar bahsedilen yarıçap çekirdek yarıçapı olup, çekirdeği oluşturan nötronlar ve protonlar için R_n ve R_p ile temsil eden yarıçap değerlerini de belirlemek mümkündür. Ayrıca çekirdekler için R_c ile temsil edilen yük yarıçapı niceliğini de yarıçap büyüklükleri fm biriminde olmak üzere,

$$R_c^2 = R_p^2 + 0.64, (3.6)$$

eşitliği ile elde edilmesi yaygındır (Ring vd., 1997).

Nükleer yoğunluk dağılımı sonlu çekirdeğin temel özelliklerinden biridir. Çekirdekler proton ve nötronlardan oluştuklarından nükleer yoğunluk nötron ve proton yoğunluk dağılımları olmak üzere iki tür yoğunluk dağılımının toplamı şeklinde ele alınır. Bu çalışmada çekirdek için öngörülen nötron (proton) yarıçapından kasıt kok (kare ortalama karekök) yarıçapıdır ve nötron (proton) yoğunluk dağılımlarının ($\rho_{n(p)}$) Krane (1988) tarafından,

$$R_{n(p)} = \left\langle r_{n(p)}^{2} \right\rangle^{1/2} = \left[\frac{\int \rho_{n(p)} r^{2} dr}{\int \rho_{n(p)} dr} \right]^{1/2}$$
(3.7)

denkleminde gösterildiği gibi yarıçapa bağlı olarak integralinin alınması ile elde edilmiştir.

Şekil 3.13'te Ca, Mo, Gd ve Rn çift-çift izotop zincirleri için RMF-NL3* ile hesaplanmış nötron ve proton yarıçapları ile nötron deri kalınlıkları nötron sayısının bir fonksiyonu olarak gösterildi. Grafiklerden görüldüğü üzere farklı izotop zincirleri için proton sayısı artışı ile beklenildiği gibi proton ve nötron yarıçapları artmaktadır. Bu izotoplar için elde edilen grafiklerden yine açıkça görüldüğü üzere sihirli nötron sayıları civarında yumuşak dirsekler gözlemlense de genel olarak ve beklenildiği gibi bir izotop zincirinde nötron sayısı arttıkça nötron yarıçapı artmaktadır. Ancak bu durum proton yarıçapı açısından farklılık göstermektedir. Sihirli nötron sayısı civarına yaklaşılırken proton yarıçapı azalmakta ve sihirli nötron sayısından sonra artma eğilimi göstermektedir. Çekirdekler için bu karakteristik yapı beklenen bir durumdur. Çünkü bir izotop zinciri boyunca ilerlerken çekirdeklerin sahip olduğu proton sayısı değişmez ve dolu kabuğa yaklaşıldıkça çekirdek küresel bir şekle sahip olacağından proton dağılımının değişiminden dolayı çekirdeğin sahip olduğu proton yarıçapı küçülecektir. Bu durum bir izoton zincirinde yer alan proton yarıçapları için de benzerlik gösterecektir. Nötron ve proton yarıçapındaki bu karakteristik yapıdan dolayı nötron ve proton yarıçapları arasındaki fark olan nötron deri kalınlığı grafiklerden de görüldüğü üzere bir izotop zincirinde nötron sayısı artışı ile sürekli artma eğilimi göstermektedir.

Şekil 3.13. Ca, Mo, Gd ve Rn çift-çift izotop zincirleri için hesaplanmış nötron ve proton yarıçapları ile nötron deri kalınlıklarının nötron sayısına göre değişimi

Şekil 3.14. Mo, Gd ve Rn çekirdek izotopları için kok yük yarıçapları

Bu çalışmada RMF-NL3* ile elde edilen proton yarıçapları denklem (3.6)'da kullanılarak Mo, Gd ve Rn çift-çift izotop zincirleri için hesaplanan kok (kare ortalama karekök) yük yarıçapları Şekil 3.14'te gösterildi. Yine aynı şekilde HFB-SLy5 öngörüleri ve Nadjakov vd. (1994) ve Angeli (2004) çalışmalarının geliştirilmiş versiyonu olan Angeli vd. (2009) çalışmasından ulaşılabilir deneysel yük yarıçapı sonuçları karşılaştırma için gösterildi. RMF-NL3* öngörülerinin ulaşılabilir deneysel sonuçlar ile oldukça iyi bir

uyum sergilediği açıktır. HFB-SLy5 öngörülerinin de bu çerçevede makul olduğu görülmektedir.

Bu çalışma kapsamında RMF-NL3* ile $10 \le N \le 110$ aralığındaki geniş çift-çift çekirdek izotop zincirleri için hesaplanan kok nötron, proton ve yük yarıçapı değerleri Ek Tablo 7'de verildi.

Şekil 3.15. Mo çift-çift çekirdek izotopları için RMF çerçevesinde NL1, NL3, NL3* ve NLZ2 Lagranjiyen parametre setleri ile hesaplanmış izotopik kayma ve ilgili deneysel değerler

Elektron saçılma deneyleri ile taban durumdaki çekirdeklerin yük yarıçapı kesin bir biçimde belirlenebilir. Kararlılık çizgisinden uzak çekirdekler için bu deneyler çekirdeklerin kısa yarı-ömüre sahip olmalarından dolayı zordur. Ancak, lazer spektroskopisinde ki gelişmeler izotopik kaymaların da gözlemlenmesini olanaklı kılmıştır.

Bilinen relativistik olmayan teorilerin başarısız olduğu durumlardan biri de hiçbir şekilde üretilemeyen Pb bölgesindeki izotop kaymasıdır (Tanihata, 1985). Bu kaymaların kökeni spin-yörünge teriminin izospin bağımlılığıdır ve bu kaymanın elde edilmesinde RMF modeli başarılı olmuştur (Ring, 1996; Niksic vd., 2004).

Şekil 3.15'te RMF modeli çerçevesinde NL1 (Reinhard vd., 1986), NL3 (Lalazissis vd., 1997), NL3* (Lalazissis vd., 2009) ve NLZ2 (Bürvenich vd., 2002) Lagranjiyen parametre seti ile çift-çift Mo (Z = 42) izotopları için elde edilmiş yük yarıçapı (R_c) değerlerinin,

$$\delta \left\langle R_c^2 \right\rangle^{N, \text{ref.}} = R_c^2(A) - R_c^2(\text{ref.}), \tag{3.8}$$

ifadesinde yerleştirilmesi ile elde edilen izotopik kaymalar ulaşılabilir deneysel sonuçlardan (Angeli vd., 2009) elde edilmiş kayma değerleri ile karşılaştırılmalı olarak gösterildi. Denklem (3.8)'de yer alan R_c^2 (ref.) ifadesi referans alınan çekirdeğin yük yarıçapının karesini betimlemektedir ve genel olarak bir izotop zincirinde sihirli nötron sayısına sahip çekirdeği referans olarak almak yaygındır (Niksic vd., 2004). Bu nedenle bu çalışmada Mo izotopları için sihirli nötron sayısına (N = 50) sahip ⁹²Mo çekirdeğinin yük yarıçapı referans yük yarıçapı olarak alındı.

Şekil 3.15 incelendiğinde dikkate alınan 4 Lagranjiyen parametre setinin de deneysel değerler ile karşılaştırıldığında küçük farklılıklara rağmen aynı eğilimi gösterdiği görüldü. Ayrıca NL3* parametre setinin diğer setleri ile karşılaştırıldığında Mo izotopları için izotopik kaymayı ortaya çıkarmada daha başarılı olduğunu söylemek mümkündür. Burada dikkat çekici nokta N = 60 (A = 102) değerinde bütün parametre setlerinin deneysel sonuçlardan az veya çok belirgin bir uzaklaşma göstermesidir. Bu durumu belki de Mo izotoplarının şekil değişimleri ile ilişkilendirmek mümkündür. Şekil 3.11'deki grafikten görüldüğü gibi A = 92 kütle numarasından itibaren oblate şekil ve A = 102 den sonra prolate şekil Mo izotopları için en düşük enerjili şekildir. Bu durum Yao ve Guo (2010) tarafından RMF ile yapılan çalışma ve Rodriguez-Guzman vd. (2010) tarafından HFB ile yapılan çalışmalar ile uyumlu olup A = 102 de teorik olarak Mo izotopları için oblate şekilden prolate şekle geçişi ifade etmektedir. Bu geçişlerde genel olarak nükleer boyutlarda ve deformasyonlar yumuşak bir geçiş yerine küçük sıçramalar göstermektedir.

3.3. Çekirdek Deformasyonları

Nükleer yapı hakkındaki bilgilerimizin çoğu, çekirdeklerin kuvvetli etkileşmelerinden değil, çok daha zayıf elektromanyetik etkileşmelerden sağlanır. Çekirdek içerisindeki nükleonların hareket ve dağılımını düzenleyen nükleer etkileşmeyi incelemek için elektromanyetik alanlar kullanılabilir. Elektromanyetik alanların nükleonlar üzerine etkisi az olduğundan ölçmeye çalışılan niceliği önemli ölçüde bozmaz. Elektrik yük ve akımlarının herhangi bir dağılımı uzaklıkla karakteristik bir tarzda değişen elektrik ve manyetik alanlar meydana getirir.

En basit yük ve akım dağılımları yalnız en düşük mertebeli multipol alanları verir. Örneğin, küresel yük dağılımı yalnızca bir monopol (Coulomb) alan verir ve daha yüksek terimlerin hepsi sıfır olur. Dairesel bir akım halkası sadece bir manyetik dipol alanı verir. Yüksüz nötronların sıfırdan farklı bir manyetik momente sahip olmaları, bunların elektron gibi temel parçacıklar olmadıklarının kanıtıdır. Çünkü bu momentler nükleonların bir içyapısının ve hareketli parçacıklardan meydana geldiğinin bir kanıtıdır (Krane, 1988).

Çekirdeklerin deforme olarak ele alınmaları Bölüm 1.2.7'de bahsedildiği gibi nükleer yapı fiziği açısından birçok olgunun anlaşılmasına katkı sağlar. Bu çalışmada dikkate alınan deforme RMF modeli sonlu çekirdeğin deformasyonlarının belirlenmesinde oldukça başarılıdır (Lalazissis vd., 1996; Lalazissis vd., 1999; Niksic vd., 2004; Geng, 2005; Yılmaz vd., 2010). Bu nedenle, burada çekirdekler için RMF modeli çerçevesinde eksenel simetrik kuadrupol deformasyonlar incelendi. Periyodik tabloda yer alan bazı çekirdeklerin deformasyon parametrelerinin belirlenmesi yanında kısıtlamalı kuadrupol deformasyonlar ile bazı çekirdek izotop zincirleri için şekil evrimleri tartışıldı.

Nükleer kuadrupol moment incelemelerinde, kuadrupol momentlerin değerleri yerine bu momentlerle denklem (2.4)'te verildiği gibi bir ilişki içerisinde olan ve deformasyonun bir ölçütü olan β_2 bozulma parametresinin kullanımı yaygındır. Bu parametrenin büyüklüğü aynı zamanda çekirdek için küresellikten ayrılmanın bir ölçüsüdür. Deneysel olarak β_2 ölçümü olanaklı değildir. Bunun yerine taban durumdan ilk uyarılmış 2⁺ durumuna indirgenmiş elektrik kuadrupol geçiş olasılığından, B(E2;0 \rightarrow 2⁺) tayin edilebilmektedir (Raman vd. 2001). Deneysel olarak elde edilmiş B(E2; $0 \rightarrow 2^+$) değerinden, *e* elektron yükü, *Z* ilgili çekirdeğin proton sayısı ve R = $1.2A^{1/3}$ çekirdek yarıçapı olmak üzere,

$$B(E2;0^{+} \to 2^{+}) = \left((3/4\pi) e Z R^{2} \beta_{2} \right)^{2}$$
(3.9)

eşitliği ile deneysel β_2 değeri elde edilir (Libert ve Quentin 1982; Greiner ve Maruhn, 1996; Raman vd. 2004). Gerek deneysel B(E2; $0 \rightarrow 2^+$) değerlerinin hata paylarının büyük olması ve gerekse deneysel sonuçların sınırlı sayıda olması deformasyonlar ile ilişkili model öngörülerinin irdelenmesinde zorluklara sebep olmaktadır.

Şekil 3.16. Çift-çift Mo (Z=42) çekirdekleri için B(E2;0 \rightarrow 2⁺) değerleri

Şekil 3.16'da çift-çift Mo izotopları için RMF modelinde farklı Lagranjiyen parametre setleri ile elde edilmiş β_2 deformasyon parametrelerinin denklem (3.9)'da kullanımı ile hesaplanmış taban durumdan ilk uyarılmış 2⁺ durumuna indirgenmiş elektrik kuadrupol geçiş olasılıkları, B(E2;0 \rightarrow 2⁺) nötron sayısının bir fonksiyonu olarak gösterildi. Aynı şekilde ulaşılabilir deneysel sonuçlar (Raman vd., 2001) hata payları ile karşılaştırma için verildi. Parametre setlerinden NL3* diğer setler ile karşılaştırıldığında deneysel değerler ile genel olarak daha iyi uyum sağladığını söylemek mümkündür. Ancak Şekil 3.16'dan görüldüğü gibi nötron sayısı N = 50 civarında bütün parametre setleri ile elde edilen sonuçlar deneysel değerlerden belirgin bir biçimde ayrılmaktadır. Çünkü bu bölgede RMF modelinin sihirli nötron sayısından dolayı çekirdeği küresel olarak öngörmesinden (Yılmaz ve Bayram; 2010), bir başka ifade ile iyi deformasyon türetememesinden ileri gelmektedir ki bu durum olgusal ortalama alan modellerinin genel bir problemidir.

Bu çalışmada çift-çift çekirdek izotop zincirleri için gerçekleştirilen elektrik kuadrupol deformasyon irdelemelerinde alışılageldiği şekli ile momentlerin kendi değerleri yerine ilişkili β_2 parametresi tercih edildi.

Bu tez çalışmasında çekirdek deformasyonları ile ilişkili olarak RMF denklemlerinin öz-uyumlu bir şekilde çözülmesi ile $10 \le Z \le 110$ aralığındaki çift-çift çekirdek izotop zincirleri için elde edilen nötron, proton ve toplam elektrik kuadrupol momentleri denklem (2.4) ile elde edilen β_2 deformasyon parametreleri Ek Tablo 7'de verildi. Bu β_2 değerleri Şekil 3.17'de çekirdek izotop zincirleri için nötron damlama çizgisinden proton damlama çizgisine uzanacak şekilde yerleştirildi. Burada belirtilmesi gereken önemli bir nokta RMF modelinde daha önce çekirdek kütleleri için yapıldığı gibi deneysel değerler yardımı ile hesaplanan kare ortalama karekök dağılımının kuadrupol deformasyonlar için uygulanmasının anlamsız olmasıdır. Çünkü ulaşılabilir çok az sayıda deneysel veri bulunmaktadır ve genel olarak ulaşılabilir bu deneysel değerlerde hata payları büyüktür. Ayrıntılı bilgi için deneysel B(E2;0 \rightarrow 2⁺) verilerinin listelendiği Raman vd. (2001) tarafından gerçekleştirilmiş çalışma incelenebilir.

Çekirdek deformasyonları nükleer tabaka yapısı ile yakından ilişkilidir. Gerek relativistik ve gerekse non-relativistik ortalama alan modellerinde dolu kabuğa sahip veya dolu kabuğa sahip olmaya yakın izotoplar küresel şekle çok yakın bir formda olup bu izotoplar için ortalama alan modellerinde çok küçük deformasyonlar elde edilir. Şekil 3.17'de bu durum açık bir biçimde gözlemlenmektedir. Bölüm 3.1'de elde edilen bulguları destekleyecek şekilde sihirli proton sayıları (Z = 20, 28, 50, 82, 126, 184) deformasyon parametresi β_2 , sıfır civarında değerler almaktadır.

Uzunca bir süredir nadir toprak elementleri deneysel ve teorik nükleer fizikçilerin büyük ilgisini çekmiştir (Geng, 2005). RMF modeli çerçevesinde ilk olarak Lalazissis vd. (1996) tarafından NL-SH parametre seti ile ardından Niksic vd. (2004) DD-ME1 ve Geng (2005) TMA parametre setleri ile $60 \le Z \le 70$ aralığındaki çift-çift çekirdek izotoplarınının deformasyonlarını sistematik bir biçimde incelemiştir. Şekil 3.17'de görüldüğü üzere nadir toprak elementleri bölgesinde ($58 \le Z \le 70$) izotopların iyi deforme oldukları görülmektedir. Bu nedenle bu bölgede yer alan Gd ve Er çekirdek izotopları için RMF-NL3* ve HFB-SLy5 ile elde edilmiş kuadrupol deformasyon parametresi β_2 , deneysel değerler (Raman vd., 2001) ve FRDM öngörüleri (Möller vd., 1995) Şekil 3.18'de gösterilmektedir.

Şekil 3.17. Çift-çift çekirdek izotopları için RMF-NL3* ile hesaplanmış β_2 kuadrupol deformasyon parametreleri

Deneysel olarak çekirdeğin şeklinin oblate veya prolate olup olmadığı belirlenemez. Teorik öngörülerde ise deformasyon parametresi β_2 oblate ve prolate şekiller için sırası ile negatif ve pozitif olarak elde edilir. Daha önce belirtildiği gibi bu çalışmada hem oblate ve hem de prolate şekiller için hesaplar yapıldı ve içlerinden en düşük enerjili şekle sahip durum dikkate alındı. Bu nedenle Şekil 3.18'de gerek RMF-NL3* ve gerekse HFB-SLy5 ile elde edilen deformasyon parametresi negatif işarete sahip olsa dahi şekilde pozitif olarak gösterildi.

Şekil 3.18. Gd ve Er izotopları için β_2 deformasyon parametreleri

Şekil 3.18'den açıkça görüldüğü gibi bu çalışmada RMF-NL3* ve HFB-SLy5 hesapları FRDM öngörüleri (Möller vd., 1995) ile benzer bir biçimde her iki izotop zincirinin belirli bölümlerinde $\beta_2 \sim 0.4$ civarında büyük deformasyonlar vermektedir. Her ne kadar az sayıda deneysel veri ile kesin değerlendirmeler yapılamasa da her iki çekirdek izotop zincirinde teorik öngörüler arasında RMF-NL3* deneysel değerlere en uyumlu olanıdır. Burada dikkati çeken bir başka nokta ise özellikle bağlanma enerjisi tayininde gerek RMF ve gerekse HFB öngörülerinden oldukça başarılı öngörülerde bulunan FRDM'nin çekirdek deformasyonlarını oldukça zayıf bir biçimde betimlemesidir. Yine bu şekilden N = 82 ve N = 126 sihirli nötron sayılarında her üç modelin deformasyon öngörülerinin "sıfır" civarında olması bu modellerin nükleer tabaka yapısını ortaya koymada başarılı olduğunu göstermektedir.

RMF modelinin özellikle çekirdek deformasyonlarının belirlenmesindeki başarılı sonuçlarından dolayı, henüz deneysel olarak deformasyonları hakkında bilgi sahibi olmadığımız süper-ağır çekirdekler için kullanmak olasıdır. Bu nedenle Sekil 3.19'da çiftçift No, Rf, Sg ve Hs çekirdek izotop zincirleri için RMF-NL3* ve HFB-SLy5 ile hesaplanmış β_2 değerleri ve FRDM öngörüleri (Möller vd., 1995) gösterildi. Her üç model bu süper ağır çekirdeklerin iyi deforme olduklarına işaret etmektedir. Yine bu şekilden her bir süper-ağır izotop zinciri için RMF-NL3* N = 184 nötron sayısında ~ 0 deformasyonu işaret etmektedir. Bu durum daha önce tartışılan RMF modelinin N = 126 dan sonra sihirli nötron sayısı olarak N = 184 sayısını öngördüğü sonucunu desteklemektedir. Bu sonuç Geng (2005) tarafından TMA parametre seti elde edilen sonuç ilede uyum içerisindedir. Bununla beraber özellikle süper-ağır çekirdeklerin deformasyonlarının doğru betimlenebilmesi için nümerik hesaplarda dikkat edilmesi gereken önemli bir ayrıntının altını çizmekte fayda vardır. Geng (2005) tarafından verilen nükleer veri tablosunda Hs (Z=108) çekirdeğinden başlayarak Z=120'ye kadar uzanan aralıkta $\beta_2 \cong 0.6$ değerlerine ulaşan kuadrupol deformasyon parametre değeri bulmak mümkündür. Bu büyük değerler nümerik hesaplarda başlangıçta atanan deformasyon parametresinin doğru bir biçimde belirlenip belirlenemediği sorusunu hatırlatmaktadır. Bu olgu, örneklem oluşturması açısından bu çalışmada ve Geng (2005) tarafından gerçekleştirilen çalışmada ²⁸²Hs ve ^{286}Hs izotopları için hesaplanan β_2 değerleri üzerinden tartışılabilir.

Şekil 3.19. RMF, HFB ve FRDM modellerinin çift-çift No, Rf, Sg ve Hs süper-ağır çekirdek izotopları için β_2 öngörüleri

Bu çalışmada ²⁸²Hs ve ²⁸⁶Hs izotopları için hesaplanan β_2 değerleri sırası ile 0.145 ve 0.091 iken Geng'in çalışmasında 0.450 ve 0.423 tür. Söz konusu süper-ağır çekirdekler için kuadrupol deformasyon parametresinin bir fonksiyonu olarak RMF-NL3* ile hesaplanmış bağlanma enerjileri Şekil 3.20'de gösterilmektedir. Şekilde ²⁸²Hs ve ²⁸⁶Hs çekirdekleri için farklı β_2 değerlerinde ve farklı seviyelere uzanan birden fazla zirve görülmektedir. Bu noktada çekirdek için taban durum en büyük bağlanma enerjine karşılık gelen zirvedir. Hesaplar öz-uyumlu biçimde gerçekleştirildiğinden başlangıç deformasyonu atandıktan sonra program sonlandığında en uygun deformasyon elde edilmektedir. Eğer

seçilen başlangıç deformasyon parametresi β_0 çekirdeğin gerçek deformasyon parametresi β_2 'den çok büyük seçilir ve β_2 değeri ile β_0 arasında bir başka zirve söz konusu ise program çekirdeğin β_2 değerine ulaşamadan bu zirvede hesapları sonlandırabilir. Bu durum hesaplarda hataya sebebiyet verebilir. Örnek olarak bu çalışmada ilgili çekirdekler için başlangıç deformasyonu 0.2 olarak seçilmiştir. Bu değer bilgisayar programının uyumlu bir biçimde Şekil 3.20'de gösterilen mavi çizgi ile işaretlenen ve en büyük bağlanma enerjisine karşılık gelen taban durumlara yakınsamanın elde edilmesinde başarılıdır. Ancak başlangıç deformasyon parametresi 0.4 seçildiğinde program öz-uyumlu bir şekilde mavi çizgi ile belirlenen esas zirvelerin sağında yer alan zirvelere yakınsamakta ve doğal olarak iterasyon başarılı bir şekilde gerçekleşse dahi sonuçlar hatalı olmaktadır. Bu nedenle hesap hatalarından kaçınmak için aynı izotop zincirinde ani deformasyon değişikliklerinin olduğu noktalarda birden fazla ve belirli aralıklarda β_0 değeri atayarak hesaplar yapıp içlerinden en büyük bağlanma enerjisini sağlayanı esas almak en uygun yoldur. Bu çalışmada ele alınan tüm çekirdeklerde bu durum dikkate alınmıştır.

Şekil 3.20. ²⁸²Hs ve ²⁸⁶Hs süper-ağır çekirdekleri için RMF-NL3* ile hesaplanmış potansiyel enerji eğrileri (PEC)

Ayrıca Linn'in (2008) çalışması ayrıntılı bir biçimde incelendiğinde görüleceği üzere bazı Fm izotopları için RMF modeli bu çalışmada, hesaplanan ve Ek Tablo 7'de gösterilen deformasyonlardan çok büyük deformasyonlar veriyor. Bununla beraber yine aynı çalışmada Fm izotopları için elde edilen PEC'ler incelendiğinde bir önceki paragrafta

bahsedildiği gibi birden fazla zirve görülmektedir. Bu nedenle buradan yine bu tür eksenel deforme hesaplarda başlangıç deformasyonun çok iyi tayin edilmesi gerekliliği sonucuna ulaşılmaktadır.

Etkileşen bozon modelinde (IBM) çekirdekler bozonlardan oluşan bir sistem olarak ele alınırlar (Yılmaz ve Kuruoğlu, 2006). U(6) simetrisine sahip çekirdekler küresel titreşici, eksenel deforme rotor ve γ -kararsız rotorun geometrisi ile ilişkili U(5), SU(3) ve O(6) dinamik simetrilerine sahiptir. IBM dilinde E(5) simetrisi U(5) ve O(6) dinamik simetrileri arasındaki faz geçiş bölgesini betimlerken, X(5) simetriside U(5) ve SU(3) limitleri arasındaki kritik noktayı tanımlar. Küresel çekirdek ile eksenel deforme simetrik ve γ -kararsız çekirdek arasındaki faz geçişleri X(5) ve E5 simetrileri ile belirlenebilir (Iachello, 2000; Iachello, 2001).

Özellikle son yıllarda bazı çalışmalarda RMF teorisinin olası X(5) ve E(5) simetrisine sahip çekirdeklerin tanımlanmasında başarılı olduğu sonucuna ulaşılmış ve birçok çekirdeğin kritik-nokta simetrisine sahip olabileceği yapılan hesaplar ile öngörülmüştür (Meng vd., 2005; Sheng ve Guo, 2005; Fossion vd. 2006; Yu vd. 2006; Yao ve Guo 2010). Bu bağlamda bu çalışmada bazı çekirdekler dikkate alınarak aynı olgu tartışıldı.

RMF modeli olası X(5) simetrisine sahip kritik-nokta çekirdeklerin (Sm, Ce, Ne, Gd, ve Dy) araştırılmasında kullanılmıştır (Meng vd., 2005; Yu vd., 2006) ve ayrıca NL3 seti kullanılarak bir çok olası X(5) simetrili kritik-nokta çekirdek Fossion vd. (2006) tarafından önerilmiştir. Yao ve Guo (2010) tarafından NL3, PK1, NLSH ve TM1 parametre setleri kullanılarak Mo izotoplarının potansiyel enerji yüzeyleri incelenmiş ve ⁹⁴Mo çekirdeğinin γ -kararsız çekirdek olabileceği önerilmiştir.

RMF modeli çerçevesinde kritik-nokta çekirdek araştırmaları temel olarak potansiyel enerji eğrileri (PEC) hesaplarına dayanmaktadır. Buna göre çekirdek için PEC β eksenine göre simetrik küçük bir bombe şeklinde elde ediliyorsa çekirdek X(5) simetrisine, belirli bir genişlikte düz bir PEC elde ediliyorsa E(5) simetrisine sahip olduğu kabul edilmektedir (Fossion vd., 2006).

Bu çalışmada Mo ve Ti izotopları için PEC elde edilirken fermiyonlar ve bozonlar için osilatör kabuk sayısı sırası ile 14 ve 20 olarak seçilmiştir. Bu seçim Bölüm 2.2'deki açıklamalar dikkate alındığında oldukça makul bir seçimdir. Çiftlenim için boşluk (gap) parametresi hesabında Karatzikos vd. (2010) tarafından belirtildiği üzere deformasyonla enerjide meydana gelen değişim boyunca çiftlenim boşluğunun sabit kalması potansiyel enerji eğrilerinin hesabında çok iyi bir yaklaşım olmadığından bu çalışmada sabit gap yaklaşımı yerine çiftlenim genliğinin sabit kaldığı sabit G yaklaşımı (Karatzikos vd., 2010) kullanıldı.

Sekil 3.21'de RMF-NL3* ile cift-cift ⁹²⁻¹⁰⁸Mo izotopları için hesaplanmış potansiyel enerji eğrileri gösterildi. Düşey eksenler seçilen deformasyon aralığında en büyük bağlanma enerjisinin referans olarak alınıp bunun ilgili deformasyonda elde edilen bağlanma enerjisinden çıkarılması ile elde edildi. Bu şekilden görüldüğü üzere RMF-NL3* nötron sayısı 50 olan ⁹²Mo cekirdeğini küresel olarak öngörmektedir ve bu durum Yao ve Guo (2010) çalışması ile uyumludur. Ancak Yao ve Guo'nun çalışmasının aksine bu çalışmada ⁹⁴Mo çekirdeğinde potansiyel enerji yüzeyi $\beta_2 = -0.2$ ile $\beta_2 = 0.2$ aralığında simetrik olmayan bir bombe gözlemlenmektedir. Bu durum X(5) simetrisinden ziyade çekirdeğin prolate bir şekle sahip olduğunu ifade etmektedir. Söz konusu çekirdeğin IBM hesapları ile ilişkili incelemelerinden de bu çekirdeğin γ -kararsız çekirdek olup olmadığı tartışmalıdır (Yao and Guo, 2010). Ayrıca Şekil 3.12'de Mo izotoplarının nötron tekparçacık enerjilerinin yerleşim şekli incelendiğinde Yao ve Guo'nun çalışmasının aksine ⁹⁴Mo ve ⁹⁶Mo için deforme seviyelerin belirli seviyelerde toplanmasından bu iki çekirdeğinde küresel olarak öngörüldüğünü söylemek mümkündür. Buradan hareketle RMF modelinin ⁹⁴Mo için farklı PEC sonuçları vermesi nedeni ile sadece PEC sonuçlarından yola çıkarak Mo çekirdekleri için karakter tayini yapmanın makul bir yaklaşım olmadığı söylenebilir.

Şekil 3.21'de Mo izotopları artan nötron sayısına göre incelendiğinde küresel formda görünen ⁹⁴Mo çekirdeğinden ¹⁰⁴Mo çekirdeğine kadar pozitif deformasyon parametre değerlerinde maksimum bağlanma enerjileri elde edilmektedir. Bu durum bu aralıktaki çekirdeklerin prolate bir şekle sahip olarak öngörüldüğü anlamına gelir. ¹⁰⁴Mo çekirdeği ve sonrasında ise negatif deformasyon parametre değerlerinde elde edilen maksimum bağlanma enerjiside bu bölgedeki çekirdeklerin RMF-NL3* tarafından oblate şekle sahip olarak öngörüldüğünü ifade eder.

Benzer bir çalışma Guo vd. (2008) tarafından RMF modeli çerçevesinde NLSH, NL3, TM1 ve PK1 parametre setleri ile çift-çift Ti izotopları için gerçekleştirilmiş ve ⁴⁸Ti çekirdeğinin E(5) simetrisine sahip çekirdek olabileceği sonucuna ulaşmışlardır. İlk olarak söz konusu çalışmada araştırmacılar ⁴²⁻⁶⁴Ti çekirdek izotoplarının deformasyon parametrelerini söz konusu dört parametrizasyon içinde birbirlerine yakın biçimde

 $-0.15 \le \beta_2 \le 0.2$ aralığında hesaplamışlardır. Ancak bu aralıkta gerek Lalazissis vd. (1999) tarafından NL3 ile hesaplanan ve gerekse bu çalışmada NL3* ile hesaplanmış ve Ek

Şekil 3.21. Bazı çift-çift Mo izotopları için RMF-NL3* ile hesaplanmış potansiyel enerji eğrileri (PEC)

Şekil 3.22. Bazı çift-çift Ti izotopları için RMF modeli çerçevesinde NL1, NLSH ve NL3* ile hesaplanmış potansiyel enerji eğrileri (PEC)

Tablo 7'de sunulan deformasyon parametresi değerleri incelendiğinde bu büyüklükteki deformasyonları elde edebilmek mümkün görünmemektedir. Bu noktada farklılık Şekil 3.20 kullanılarak izah edilen başlangıç deformasyonlarının doğru atanıp atanmamasından ileri geliyor olabilir. Guo vd. söz konusu çalışmalarında Ti iztopları için PEC hesapları gerçekleştirmiş ve ⁴⁸Ti çekirdeği için PEC göreli olarak $-0.15 \le \beta_2 \le 0.15$ deformasyon parametresi aralığında düz ve simetrik bir eğri elde etmişlerdir. Buradan hareketle çeşitli modellerden ve deneylerden elde edilmiş uyarılmış durum oranlarını kullanarak ⁴⁸Ti çekirdeğinin E(5) simetrisine sahip bir çekirdek olarak tanımlanabileceğini sonucuna ulaşmışlardır.

Şekil 3.23. Bazı Ti izotopları için RMF-NLSH ile PEC hesapları (Guo vd., 2008)

Bu çalışmada ³⁸⁻⁵⁴Ti çift-çift çekirdek izotopları için RMF modeli çerçevesinde NL1, NLSH ve NL3* parametre setleri ile hesaplanmış potansiyel enerji eğrileri Şekil 3.22'de gösterildi. Şekilden görüldüğü üzere ⁴⁸Ti çekirdeği için bu 3 parametrizasyon ile hesaplanan PEC'ler $-0.15 \le \beta_2 \le 0.15$ deformasyon aralığında düz olmamakla beraber bir simetri de söz konusu değildir. Burada dikkat çekici nokta ise çift-çift Ti izotop zinciri boyunca Guo vd. (2008) tarafından gerçekleştirilen çalışma ile bu çalışmada hesaplanan PEC'lerin belirgin farklılıklar içermesidir. Guo vd. tarafından NLSH, NL3, TM1 ve PK1 parametre setleri ile hesaplanan PEC'ler birbirleri ile benzerlik göstermektedir ve Şekil 3.23'te Guo vd. tarafından NLSH ile elde edilen PEC'ler gösterilmektedir. Şekil 3.23 ile bu tez çalışmasında elde edilen ve Şekil 3.22'de gösterilen PEC'ler karşılaştırıldığında sadece eğrilerin düzgünlüğü açısından değil aynı zamanda büyüklük olarakta farklılıklar içerdiği aşikardır. Bu durum Şekil 3.23'ün elde edileş israsında büyük oranda bir eğri düzleştirme uygulanmadığı sorusunu akla getirmektedir.

Sonuç olarak bu tez çalışmasında ⁹⁴Mo çekirdeğinde olduğu gibi ⁴⁸Ti çekirdeği içinde RMF modeli ile hesaplanan potansiyel enerji eğrilerinden yola çıkarak bu çekirdeklerin kritik-nokta çekirdek olarak betimlenmesindeki güçlük ortaya konmuştur.

3.4. Sözdespin (Pseudospin) Simetrisi

Sözdespin simetrisi yaklaşık elli yıl kadar önce küresel çekirdeklerde Arima vd. (1969) ve Hecht vd. (1969), tarafından gözlenmiş daha sonra da deforme çekirdekler için de iyi bir yaklaşım olduğu Ratna Raju vd. (1973) ve Blokhin vd. (1997), tarafından gösterilmiştir. Bu simetri süper deformasyonları (Dudek vd., 1987) ve özdeş bantları da (Nazarewicz vd., 1990; Mottelson, 1991; Zeng vd., 1991) içeren nükleer yapı fiziği ile ilişkili birçok konunun açıklamasında kullanılmıştır. Günümüzde sözdespin simetrisinin izo-spin bağımlılığının araştırılması oldukça ilgi çeken bir araştırma konusudur (Ginocchio, 2005). Bu bölümde temel olarak deforme ¹⁶⁶Gd çekirdeği için RMF modeli çerçevesinde hesaplanan tek-parçacık nükleon enerjilerinin deformasyona bağlı değişimlerinden yola çıkılarak sözdespin simetrisi olgusu tartışıldı.

Sözdespin kavramı, yörünge ve spin kısmından oluşan ve J = L + S şeklinde ifade edilen toplam parçacık açısal momentumu yerine sözde açısal momentumunun ($\tilde{J} = \tilde{L} + \tilde{S}$) dikkate alınması şeklinde açıklanabilir. Sözdespin kavramı relativistik olmayan kuantum sayıları (n,l, j=l+1/2) ve (n-1,l+2, j=l+3/2) ile ifade edilen tek-parçacık seviyelerinin çok yakın enerjiye sahip olduğunu gösteren deneysel gözlemlerle de uyum içerisindedir. Bu tek-parçacık enerji seviyelerinin sözdespin çiftleri gösterimi: $(\tilde{n} = n-1, \tilde{l} = l+1, \tilde{j} = l \pm 1/2)$ şeklindedir. n=1 ve j=l+1/2 durumları ise gerçek çekirdeklerde sözdespin çiftine sahip olmayan izinsiz yörünge durumlarına karşılık gelir. Sözdespin kavramını daha detaylı bir irdeleme için Şekil 1.3'te verilen ve Nükleer Kabuk Modelinin öngördüğü tek-parçacık spektrumunun sembolik gösterimi detaylıca incelenebilir.

Şekil 1.3'te dikkat edilmesi gereken noktalardan bir tanesi *N* harmonik osilatör baş kuantum sayısı ve $\hbar \omega \approx 41 A^{-1/3}$ olmak üzere $N\hbar \omega$ ile etiketlenen ana kabuklar arasındaki büyük enerji farklılığıdır. İkinci dikkat edilmesi gereken nokta, $1p_{1/2}$ ile $1p_{3/2}$, $1d_{3/2}$ ile $1d_{5/2}$, $1f_{5/2}$ ile $1f_{7/2}$, $1g_{7/2}$ ile $1g_{9/2}$ seviyeleri gibi spin-yörünge çiftlerinin arasındaki büyük enerji farklılıklarıdır.

Yörünge açısal momentumunun büyümesi ile artan ve $1g_{9/2}$ seviyesine yol açan spinyörünge ayrışmasındaki artış, $1g_{9/2}$ seviyesinin bir alt ana kabuğun seviyesi olması için aşağı doğru iter. Böylece $1g_{7/2}$ seviyesi aynı ana kabukta kalırken, $1g_{9/2}$ seviyesi bir alt ana kabuğun seviyesi olur ve işgalci (intruder) seviye olarak adlandırılır. Daha büyük yörünge açısal momentum ve radyal kuantum sayısına sahip seviyeler için buna benzer örnekler süregelirken, $1d_{3/2}$ ile $2s_{1/2}$, $1f_{5/2}$ ile $2p_{3/2}$, $1g_{7/2}$ ile $2d_{5/2}$ gibi seviyeler kümelenir. Bu seviyeler sözdespin çiftleridirler.

Çekirdekte sözdespin simetrisi önerildikten bugüne değin bu simetrinin kaynağını anlamak amacıyla birçok çalışma ortaya konmuştur (Bohr vd., 1982; Bahri vd., 1992; Castanos vd., 1992). Sözdespin simetrisi ve RMF modeli arasındaki ilişki ilk olarak Bahri vd. (1992) tarafından sözdespin simetrisi için relativistik olmayan hesaplarda spin-yörünge ve yörünge-yörünge etkileşme kuvvetlerinin özel oranın yaklaşık bir biçimde RMF Modeli ile açıklanabildiği gösterilerek ortaya konmuştur. Ginocchio (1997) ve Ginocchio vd. (1998) tarafından sözdespin simetrisi ve eşit büyüklüklere sahip ancak zıt işaretli skaler potansiyel $V_s(r)$ ile vektör potansiyeli $V_v(r)$ arasındaki ilişki kuruluncaya kadar bu konuda bir ilerleme olmamıştır. Şekil 3.24'de ²⁰⁸Pb ve ¹⁶O çekirdekleri için izoskaler skaler ($V_s(r)$) ve izoskaler vektör ($V_v(r)$) potansiyelleri düz çizgilerle temsil ediliyor. Her iki çekirdek için de skaler potansiyeli şiddetleri büyük olmakla beraber birbirlerine yakın şiddette ve benzer bir şekle sahip olurlar ($V_s(r) \approx -V_v(r)$). Bu durum yaklaşık olarak sözdespin simetrisi ile uyum içerisindedir (Ginocchio, 2005).

Şekil 3.24'te gösterilen diğer potansiyeller izovektör vektör potansiyeli (noktalı çizgi), $v_V(r)$ ve Coulomb potansiyeli (kesikli çizgi), $v_C(r)$ dir. Bu potansiyeller sözdespin

simetri koşulları ile ilişkili olmakla beraber izoskaler potansiyeller ile karşılaştırıldıklarında şiddet olarak çok küçüktürler.

Çekici $V_s(\mathbf{r})$ skaler potansiyeli ve itici $V_v(\mathbf{r})$ vektör potansiyelinde hareket eden M kütleli bir nükleon için Dirac denklemi

$$\left[\boldsymbol{\alpha}.\hat{\boldsymbol{p}} + \beta \left(M + V_s\right) + V_v\right] \boldsymbol{\psi}_i = E_i \boldsymbol{\psi}_i \tag{3.10}$$

ile verilir. Küresel çekirdek için, çekirdek açısal momentumu \hat{J} ve $\hat{\kappa} = -\hat{\beta}(\hat{\sigma}.\hat{L}+1)$ Dirac Hamiltoniyeni ile sıra değişim bağıntısına uyarlar. Burada, $\hat{\beta}$, σ ve L sırasıyla Dirac matrisi, Pauli matrisi ve yörünge açısal momentumunu temsil etmektedir. Dalga fonksiyonları n ışınsal (radyal) kuantum sayısı ve m de açısal momentumun z-ekseni üzerindeki izdüşümü olmak üzere j ve κ açısal momentumlarına göre,

Şekil 3.24. Çekirdek yarıçapının fonksiyonu olarak ortalama alan potansiyelleri

$$\psi_{n\kappa}\left(\boldsymbol{r}\right) = \begin{pmatrix} f_{n\kappa} \\ g_{n\kappa} \end{pmatrix} = \begin{pmatrix} \frac{F_{n\kappa}}{r} Y_{jm}^{l}(\theta,\phi) \\ \frac{iG_{n\kappa}}{r} Y_{jm}^{\tilde{l}}(\theta,\phi) \end{pmatrix}$$
(3.11)

şeklindedir. $\hat{\kappa}$ nın özdeğerleri $\kappa = \pm (j+1/2)$ olur. Burada (-) işareti $s_{1/2}$, $p_{3/2}$ vb. aynı yönelimli (aligned) spinleri temsil ederken (+) işareti $p_{1/2}$, $d_{3/2}$ vb. aynı yönelimde olmayan (unaligened) spinleri temsil eder. Verilen bir $\kappa = \pm 1, \pm 2, \dots$, değeri için $j = |\kappa| - 1/2$, $l = |\kappa + 1/2|$ ve $\tilde{l} = |\kappa - 1/2| - 1/2$ olur ve burada,

$$\kappa(\kappa+1) = l(l+1) \tag{3.12}$$

$$\kappa(\kappa - 1) = \tilde{l}(\tilde{l} + 1) \tag{3.13}$$

 $\Delta = V_v - V_s$ ve $V = V_v + V_s$ olmak üzere radyal spin yukarı bileşen $F_{nk}(r)$ ve radyal spin aşağı bileşen $G_{nk}(r)$ cinsinden (denklem (3.10) ile verilen Dirac denklemi)

$$\left(\frac{d}{dr} + \frac{\kappa}{r}\right) F_{nk}\left(r\right) = \left(M + E_{nk} - \Delta\right) G_{n\kappa}\left(r\right)$$
(3.14)

$$\left(\frac{d}{dr} - \frac{\kappa}{r}\right)G_{nk}\left(r\right) = \left(M - E_{nk} + V\right)F_{n\kappa}\left(r\right)$$
(3.15)

şeklini alır. V = 0 veya dV/dr = 0 olduğunda $F_{n\kappa}(r)$ 'nın yukarıda verilen denklemler arasında yok edilmesiyle radyal spin aşağı bileşen $G_{nk}(r)$ için

$$\left[\frac{d^2}{dr^2} - \frac{\tilde{l}\left(\tilde{l}+1\right)}{r^2}\right]G_{n\kappa}(r) = \left[\left(M + E_{nk} - \Delta\right)\left(M - E_{nk} + V\right)\right]G_{n\kappa}(r)$$
(3.16)

şeklinde Schrödinger türü bir denklem elde etmek mümkündür. Bu denklemin özdeğerleri olan $E_{n\kappa} = E(n, \tilde{l}(\tilde{l}+1))$ sadece *n* ve \tilde{l} 'ye bağlıdır. $\tilde{l} \neq 0$ için $j = \tilde{l} \pm 1/2$ 'ye sahip durum dejeneredir ve bu sözdespin simetrinin açık bir göstergesidir. Bu simetride $\tilde{l} = 0$ 'a karşılık gelen sözdespin tekli durumları hariç izinsiz yörünge durumları da dahil olmak üzere her aynı yönelimli durum ($j = l + 1/2 = \tilde{l} - 1/2$) dejenere aynı yönelimli olmayan bir çiftine ($j = l - 1/2 = \tilde{l} + 1/2$) sahip olabilir.

Ginocchio, (1997) aynı zamanda sözde-yörünge açısal momentumundan daha ziyade Dirac spinorunun spin aşağı bileşeninin yörünge açısal momentumunun sözdespin simetrisi için önemli bir rol oynadığını göstermiştir. Bu olgunun daha iyi anlaşılması açısından Lisboa vd., (2004b) tarafından yapılan çalışma iyi bir kaynak durumundadır. Şekil 3.25'de Lisboa vd. tarafından harmonik osilatör potansiyeli kullanılarak hesaplanmış radyal tekparçacık dalga fonksiyonları yarıçapın bir fonksiyonu olarak gösterilmektedir. Şekil 3.25'de $g_k(r)$ ve $f_k(r)$ sırası ile Dirac denkleminin spin yukarı ve aşağı bileşenlerini temsil etmektedir. Her üç grafikte de yer alan düşey eksen kesin değerleri değil sembolik değerleri göstermektedir. Detaylar için Lisboa vd., (2004b) nin çalışması incelenebilir.

Şekil 3.25a-c'de sırasıyla $\tilde{1}\tilde{p}_{1/2}$ ($2s_{1/2}$), $\tilde{1}\tilde{p}_{3/2}(1d_{3/2})$ ve $\tilde{0}\tilde{f}_{1/2}$ ($1d_{5/2}$) tek-parçacık enerji durumlarına karşılık gelen radyal dalga fonksiyonlarının genliklerinin yarıçapa bağlı değişimlerini göstermektedir. Şekil 3.25a ve Şekil 3.25b'de kesikli çizgi ile gösterilen spin aşağı bileşen aynı iken düz çizgi ile gösterilen spin yukarı bileşen farklıdır. Bununla beraber bu iki seviye sözdespin şekilleniminde aynı ana kabuk içerisinde yer almaktadırlar. Şekil 3.25c ise tek-parçacık radyal dalga fonksiyonları diğer iki seviyeden farklılık göstermekle beraber bu seviyenin diğer iki seviyeden daha farklı bir sözdespin şekillenimine sahip olduğuna dikkat çekmek gerekir. Elbette bu sonuçlar Ginocchio'nun (1997 ve 2005) bulgusu ile uyum içerisindedir.

Şekil 3.25. Radyal dalga fonksiyonları (a) $\tilde{1}\tilde{p}_{1/2}$ (2 $s_{1/2}$), (b) $\tilde{1}\tilde{p}_{3/2}$ (1 $d_{3/2}$) ve (c) $\tilde{0}\tilde{f}_{1/2}$ (1 $d_{5/2}$)

Sözdespin simetrisinin temel olarak kaynağının çekirdek içinde zıt işaretli ancak eşit şiddete sahip çekici skaler alanın ve itici vektör alanın olması ve RMF modelinin bu tür potansiyelleri içeriyor olmasından dolayı bu tez çalışmasında sözdespin simetrisi olgusu deforme durum için irdelenmektedir. Küresel durumlar için ²⁰⁸Pb çekirdeği için yapılan hesaplar yardımıyla bu olgunun tartışıldığı Lalazissis vd., (1998) çalışması incelenebilir.

Bu çalışmada iyi deforme oldukları bilinen nadir-toprak izotopları arasından seçilmiş ¹⁶⁶Gd çekirdeği ile yapılan kuadrupol moment kısıtlamalı hesaplarda bozonlar için 20, fermiyonlar için 18 kabuk sayısı dikkate alındı. Açık kabuklu deforme çekirdeklerin tanımlanması için önemli bir faktör olan çiftlenim, BCS formalizmi ile hesaba katılmış olup proton ve nötronlar için boşluk parametresi Δ , Z proton sayısı ve N nötron sayısı olmak üzere, sırasıyla $\Delta_p = 4.8/Z^{1/3}$ ve $\Delta_n = 4.8/N^{1/3}$ şeklinde seçildi.

Şekil 3.26'da ¹⁶⁶Gd çekirdeği için RMF modeli çerçevesinde hesaplanmış potansiyel enerji eğrisi görülmektedir. ¹⁶⁶Gd çekirdeği için minimum enerji $\beta_2 \approx 0.365$ değerinde ve prolate şekil için elde edilmiştir. Bu deformasyon değerinde en düşük enerjiye karşılık gelen bağlanma enerjisi deneysel bağlanma enerji değeri olan 1344.102 MeV (Audi vd., 2003) değerine çok yakındır. Deneysel toplam bağlanma enerjisi ve yapılan hesap arasındaki fark yaklaşık 2 MeV civarındadır.

Şekil 3.26. ¹⁶⁶Gd çekirdeği için toplam bağlanma enerjisinin kuadrupol deformasyon parametresi β₂ ye göre değişimi
Şekil 3.27'de sözdespin çiftlerinin RMF modeli ile hesaplanmış bağlı nötron ve proton tek-parçacık enerjileri deformasyon parametresi, β_2 'nin bir fonksiyonu olarak gösterildi. Şekil 3.27'de hem proton hem de nötron tek-parçacık enerji seviyeleri küresel durum $\beta_2 = 0$ 'da (deformasyon yok) orbital kuantum sayıları ile temsil edilirken, deformasyonun büyük olduğu sağ bölümde sözdespin çiftleri asimptotik Nilsson kuantum sayıları [$\tilde{N}, \tilde{n}_3, \tilde{\Lambda}$] ile temsil edilmektedir. Nötron ve protonlar için hesaplanan Fermi enerjisi sırası ile -5.5 MeV ve -10 MeV değerleri civarında küçük değişimler göstermiştir.

Şekil 3.27'de gösterilen nötron ve proton tek-parçacık enerji seviyelerinden sözdespin çiftlerinin deformasyona bağlı değişimlerini şu şekilde özetlemek mümkündür:

- a. Fermi yüzeyinin hemen altında veya üstünde sözdespin çiftleri arasındaki enerji farklılığı küçüktür. Büyük sözdespin açısal momentum kuantum sayısına sahip sözdespin çiftleri arasındaki enerji farklılığı göreceli olarak daha büyüktür.
- b. Yaklaşık olarak $\beta_2 = 0.25$ değerinden sonra sözdespin çiftleri arasındaki enerji farklılığı sabit kalıp deformasyonun büyümesi ile değişmemektedir.
- c. Sözdespin çiftleri arasındaki enerji farkının işareti deformasyona bağlı olarak değişmemekle beraber [404] kuantum sayısına sahip sözdespin çiftleri için bir istisna söz konusudur. Benzer bir durum Bohr'un vd., (1982) çalışmasında ve Lalazissis vd., (1998) tarafından ¹⁵⁴Dy çekirdeği üzerine yapılan hesaplarda gözlemlenmiştir.

Yukarıda özetlenen tek-parçacık seviyeleri ile ilişkilendirilmiş sözdespin çiftlerinin deformasyona bağlı değişim durumları hem nötron ve hem de proton için benzerlik göstermektedir. Bir diğer vurgulanması gereken nokta Fermi yüzeyi civarına doğru gidildikçe sözdespin çiftlerinin oldukça iyi bir şekilde yerleşmesidir. Bu durum Ginocchio ve Leviatan'ın (1998) bulguları ve Ginocchio'nun (2005) ¹⁶⁸Er için yapmış olduğu hesaplar ile uyum içerisindedir.

Şekil 3.27. ¹⁶⁶Gd için tek-parçacık enerji seviyelerinde sözdespin çiftlerinin kuadrupol deformasyon parametresine (β₂) göre değişimleri

4. SONUÇLAR VE ÖNERİLER

Bu güne değin RMF modeli yaygın bir biçimde birçok nükleer olgunun araştırılmasında başarılı bir biçimde kullanılmış olsa da periyodik tablo boyunca sistematik bir biçimde nükleer taban durum nükleer özellikleri üzerine yapılmış çalışma sayısı azdır. Bu çalışmalar kronolojik sıraya göre parametre seti NL3 ile Lalazzissis vd. (1999), NL-Z2 ile Bürvenich vd. (2002), TMA ile Geng (2005) ve ChiM ile Linn (2008) tarafından gerçekleştirilmiştir. Bu çalışmalarda TMA seti dışında ki setlerle sadece $Z \le 100$ proton sayısına kadar nükleer veri tablosu sunulmaktadır. Bu çalışmada NL3'ün daha iyi nükleer madde özellikleri verecek şekilde yakın zamanda güncellenmiş sürümü olan NL3* seti (Lalazissis vd., 2009) ile $10 \le Z \le 110$ aralığındaki çift-çift çekirdek izotop zincirlerinin taban durum nükleer özellikleri çalışılmıştır. Bu nedenle çalışma Lalazissis vd. (1999) tarafından hazırlanmış nükleer veri tablosunun deneysel sonuçlar ile daha uyumlu olacak şekilde güncellenmiş ve süper-ağır çekirdek bölgesine uzatılmış versiyonu olarak düşünülebilir. Buna ek olarak bazı yeni araştırma konuları da bütünlükten ayrılmadan tartışılmaya çalışıldı. Bu çalışmadan elde edilen sonuçlar ve öneriler şu şekilde sıralanabilir:

1. Bölüm 3.1'de incelendiği gibi çekirdek kütlelerinin belirlenmesi dikkate alındığında RMF-NL3* öngörülerinin deneysel değerlerden en büyük sapması ~7 MeV den küçüktür. Ayrıca çok az sayıda deneysel veri olsa da yapılan hesaplarda RMF-NL3* süper-ağır bölgedeki çekirdeklerin bağlanma enerjisini deneysel sonuçlarla uyumlu bir biçimde üretmektedir. Sadece dokuz adet olgusal terimi (dört tanesi deneysel değerden) içeren ve ⁴⁰Ca, ⁴⁸Ca, ⁵⁶Ni, ¹³²Sn, ²⁰⁸Hg gibi birkaç küresel çekirdeğin nükleer özellikleri ile ayarlanan parametre seti ile elde edilen başarılı sonuçlar RMF modelinin etkin bir model olduğunu ortaya çıkarmakla beraber özellikle astrofiziksel çalışmalar açısından RMF öngörülerinin daha iyi olması gereklidir (dış kestirim yolu ile daha yoğun durumları belirlemede ki doğruluk daha az yoğun durumlarda model öngörülerin deneysel sonuçlara daha yakın olması ile orantılı olduğundan). Çekirdek kütlelerinin belirlenmesinde makroskopik FRDM ve yeni etkileşme terimlerinin eklenmesi sonucu önceki versiyonlarına göre daha büyük başarı sağlayan HFB Modellerinin daha başarılı sonuçlar verdiği açıktır. Ancak bu modellerin karmaşık ve çok sayıda parametre

ve birçok çekirdeğin deneysel özellikleri dikkate alınarak yapılan ayarlamalar sonucunda bu başarıyı sağladıklarını belirtmek gerekir. Bu bağlamda daha fazla çekirdeğin dikkate alınması ile RMF modeli için yeni bir lineer olmayan Lagranjiyen parametre seti geliştirmek iyi bir yaklaşım olabilir. Bunun dışında Lalazissis vd. (2005) tarafından geliştirilen yoğunluk bağımlı etkileşme seti DD-ME2 parametre seti ile gerçekleştirilecek bu çalışmaya benzer bir çalışma RMF modeli kapsamında periyodik tablo boyunca lineer olmayan ve yoğunluk bağımlı etkileşmelerden hangisinin daha etkin olduğunu belirlemede kullanılabilir. Ayrıca burada çekirdeklerin eksenel deformasyona sahip olduğu varsayımı ile hesaplar yapılmıştır. Bu noktada çekirdeklerin üçeksenli (triaxial) deformasyona sahip olduğu varsayımı ile yapılan hesaplar RMF çekirdek kütle öngörülerini deneysel sonuçlarla daha iyi uyumlu olmasını sağlayabilir.

- 2. İki-nötron ve iki-proton enerjileri yardımı ile geniş bir bölgede nükleer tabaka yapısı incelendi ve RMF-NL3* dolu kabuk yapısı ile ilişkili olan nötron ve proton sihirli sayılarını başarılı bir biçimde ortaya çıkardığı görüldü. İki-nötron ayırma enerjilerinin öngörüsünde RMF modelinin relativistik olmayan karşılığı olarak düşünülebilecek HFB ile karşılaştırıldığında başarılıdır. Özellikle bir izotop zincirinde sihirli nötron sayısından sonra hızla düşen iki-nötron ayırma enerjilerinin öngörülerinde deneysel değerlerden uzak sonuçlar veren relativistik olmayan alan modellerinin aksine RMF modeli göreli olarak daha başarılıdır. Bir diğer sonuç ise Geng (2005) ve Linn (2008) çalışmaları ile uyumlu olarak RMF modelinin 126 dan sonra sihirli nötron sayısı olarak 184 sayısını ve yarı-sihirli nötron sayısı olarakta 162 sayısını öngörmesidir.
- 3. Sihirli çekirdekler çoğunlukla çeşitli teorik modellerin çekirdek taban durum özellikleri öngörülerinin test edildiği çekirdeklerdir. Özellikle ¹⁶O, ⁴⁰Ca, ⁴⁸Ca, ⁵⁶Ni, ¹³²Sn ve ²⁰⁸Pb gibi çift-sihirli çekirdekler tercih edilir. Çünkü bu çekirdekler hem proton ve hem de nötron açısından tabakaları tam dolu olduğundan kolektif serbestlik dereceleri ihmal edilebilir ve bu durum nümerik açıdan büyük kolaylıklar sağlar. Ayrıca bu çekirdekler RMF modelinde elde edilen parametre setlerinin ayarlanmasında kullanılır. Bu amaç için çoğunlukla bu çekirdeklerin deneysel bağlanma enerjileri dikkate alınırken bazen de deneysel yük yarıçapı da dikkate alınır. Nükleer tabaka yapısını incelemek için bu çalışmada ⁴⁰Ca, ⁴⁸Ca, ⁵⁶Ni, ⁹⁰Zr, ¹³²Sn ve ²⁰⁸Pb çekirdekleri için nötron ve proton tek-parçacık enerjileri

99

hesaplandı ve deneyle iyi bir uyum gözlendi. Yapılan incelemelerde küresel çekirdeklerde tek-parçacık enerjileri için RMF-NL3* öngörülerinin genel olarak HF-SKII ve HFB-SLy4 gibi relativistik olmayan model öngörülerine göre deneyle daha iyi uyum gösterdiği anlaşıldı. Bu noktada tek-parçacık enerjileri için önemli olan spin-yörünge etkileşmesinin relativistik formalizminden dolayı kendiliğinden RMF modelinde ele alınırken, HFB modelinde sonradan ilave edilen bir katkı terimi olduğunu belirtmek gerekir. Bu farklılığın sonucu olarak tek-parçacık enerjilerinin tayininde RMF modelinin göreli olarak daha başarılı olduğu sonucuna ulaşmak mümkündür. Süper-ağır No ve Hs çekirdek izotop zincirleri için hesaplanan nötron tek-parçacık enerjileri yardımı ile de 184 nötron sayısının RMF modelinin öngördüğü sihirli nötron sayısı olduğu görülmüştür. Ayrıca izotop zinciri boyunca belirgin şekil değişimlerinin deneysel olarak var olduğu bilinen çift-çift Mo izotopları için eksenel deforme RMF hesapları ile elde edilen nötron tek-parçacık enerjileri ile küresel ve deforme çekirdekler için nötron tek-parçacık enerjileri ile küresel ve deforme çekirdekler için nötron tek-parçacık enerjileri ile küresel ve deforme çekirdekler için nötron tek-parçacık enerjileri ile küresel ve deforme çekirdekler için nötron tek-parçacık enerjileri ile küresel ve deforme çekirdekler için nötron tek-parçacık enerjileri ile küresel ve deforme çekirdekler için nötron tek-parçacık enerjileri ile küresel ve deforme çekirdekler için nötron tek-parçacık enerjileri ile küresel ve deforme çekirdekler için nötron tek-parçacık enerjileri ile küresel ve deforme çekirdekler için nötron tek-parçacık enerjileri ile küresel ve deforme çekirdekler için nötron tek-parçacık enerjileri ile küresel ve deforme çekirdekler için nötron tek-parçacık enerjileri ile küresel ve deforme çekirdekler için nötron tek-parçacık enerjileri ile küresel ve deforme çekirdekler için keşi tekindi.

- 4. Süper-ağır No, Rf, Sg ve Hs izotop zincirleri için proton damlama çizgisinden nötron damlama çizgisine uzanacak şekilde elde edilen bağlanma enerjileri yardımı ile hesaplanan α-bozunum enerjilerinin ulaşılabilir deneysel sonuçlar ile uyumlu olduğu gözlemlendi ve bu çekirdekler için α-bozunum yarı-ömür süreleri listelendi. Bu hesaplar 110 < Z ≤130 aralığına genişletilebilir.</p>
- 5. Ring (1996) tarafından belirtildiği gibi yük yarıçapı tayini ve izotopik kaymaların ortaya çıkarılmasında RMF modelinin başarısı bu çalışmada da görülmüştür.
- 6. Çekirdek deformasyonları incelemelerinde tüm periyodik tablo boyunca sihirli nükleon sayılarında $-0.05 \le \beta_2 \le 0.05$ aralığında kuadrupol deformasyon parametresi değerleri elde edildi. Bu durum, bu sayılarda nükleona sahip çekirdeklerin RMF modelinde küresel olarak öngörüldüğü anlamına gelmektedir. Deneysel β_2 değerleri elektrik kuadrupol geçiş olasılıkları, B(E2;0 \rightarrow 2⁺)'dan denklem (3.9) yardımı ile türetildiğinden gerek HFB ve gerekse RMF hesapları söz konusu çekirdekler için deneysel değerlerden uzak öngörülerde bulunmaktadır. Bu ayrışım belki de yeni parametre seti geliştirilmesi sürecinde dikkate alınarak ortadan kaldırılabilir. Şekil 3.17 incelendiğinde, nadir toprak elementlerinin genel olarak iyi deforme oldukları görülmektedir. Bu bölgede yer

alan Gd ve Er izotop zincirleride RMF modelinin deformasyon öngörüleri FRDM ve HFB-SLy5 ile karşılaştırıldığında deneysel sonuçlar ile daha uyumludur. Yapılan hesaplarda süper-ağır çekirdeklerin genel olarak iyi deforme oldukları ortaya çıkarıldı. Ele alınan tüm çekirdeklerin taban durum deformasyon şekilleri dikkate alındığında genel olarak prolate şekil baskındır. Ayrıca bu çalışmada nümerik hesaplar açısından başlangıç deformasyonu tayinin çok önemli olduğu gösterildi ve bunun sonuçları nasıl etkilediği detaylıca irdelenerek bir yöntem sunuldu.

- 7. RMF denklemlerinin çözümünde deneysel ve teorik olarak katkılarının önemli olduğu bilinen Dirac denizinin dikkate alınmaması tercih edilen bir durum olmamasına rağmen bilindiği kadarı ile bu güne değin Dirac denizi uygun bir biçimde RMF modeline uyarlanamamıştır (Serot ve Walecka, 1997). Problem bir-döngü yaklaşımında skaler ve vektör potansiyel şiddetlerinin yarı yarıya küçük elde edilmesi nedeniyle spin-yörünge teriminin kaybolması problemidir. RMF modelinde pionların hesaba katılmasının bu problemi ortadan kaldırabileceği belirtilmektedir (Toki vd., 2002; Ogawa vd., 2004).
- 8. Bazı çalışmalarda kuadrupol moment kısıtlamalı RMF modeli hesapları ile elde edilen potansiyel enerji eğrileri (PEC) yardımı ile X(5) ve E(5) simetrisine sahip kritik-nokta çekirdeklerin tayin edilebileceği yönündeki çalışmalar nedeni ile Ti ve Mo çekirdek izotop zincirleri üzerine yapılan incelemelerde söz konusu izotop zincirleri içerisinde Guo vd. (2008) ile Yao ve Guo'nun (2010) bazı çekirdeklerin X(5) ve E(5) simetrisine sahip olabileceği öngörülerinin tersine en azından bu çekirdekler için RMF modeli ile böyle bir sonuca ulaşmanın iyi bir yaklaşım olmadığı sonucuna varıldı. Bu nedenle deneysel olarak kritik-nokta çekirdek olarak öngörülen çekirdekler sistematik bir biçimde gözden geçirilerek bu yaklaşımın doğruluğu sınanabilir.
- 9. Sözdespin (pseudospin) simetrisi ile ilişkili olarak ilk deneysel kanıtı Arima vd. (1969) ortaya çıkarmış olmasına rağmen uzun yıllar boyunca kaynağı anlaşılamamıştır. Bu simetrinin skaler ve vektör alanlarının eşit büyüklükte ve zıt işaretli olması koşulunda açık bir biçimde ortaya çıktığı Ginocchio (1997) tarafından gösterilmiştir. RMF modelinin yapısının skaler ve vektör alanları içermesi ve bunların büyüklük olarak birbirlerine neredeyse eşit ve zıt işaretli olmaları bakımından sözdespin simetrisini anlamada RMF modelinin önemli bir

araç olacağı sonucuna ulaşmak mümkündür. Bu nedenle son yıllarda araştırma alanlarından olan sözdespin simetrisi bu çalışmada irdelendi ve deforme olduğu iyi bilinen ¹⁶⁶Gd çekirdeği için nötron ve proton tek-parçacık enerji düzeylerinde sözdespin çiftlerinin deformasyona göre değişimleri incelendi.

10. Bu çalışma sürecinde hesaplar için gerekli bilgisayar zamanı hatırı sayılır oranda büyük olmuştur. Öz-uyum gerektiren bu hesaplarda özellikle fermiyon kabuk sayısının 20 alındığı durumlarda (ağır çekirdeklerden itibaren bu gereklidir) hesap zamanı daha da artarak 10 dakika mertebelerine ulaşabilmektedir. Bu nedenle bu çalışmada olduğu gibi çok sayıda çekirdeğin ele alındığı çalışmalar çok zaman gerektirmektedir. Bu bağlamda aynı netlikte sonuçları daha kısa sürede hesaplayabilecek bir bilgisayar kodu yazmak anlamlı bir çalışma olabilir. Bu nedenle harmonik osilatör tabanı yerine sözdespin tabanında RMF denklemlerini çözen bir bilgisayar programı yazımı önerilmektedir.

5. KAYNAKLAR

- Abramowitz, M. ve Stegun, I. A., 1970. Handbook of Mathematical Functions, Ninth Edition, Dover, New York.
- Angeli, I., 2004. A consistent set of nuclear rms charge radii: properties of the Radius surface R(N,Z), <u>Atomic Data and Nuclear Data Tables</u>, 87, 185-206.
- Angeli, I., Gangrsky, Yu P., Marinova, K. P., Boboshin, I. N. vd., 2009. *N* and *Z* dependence of nuclear charge radii, <u>Journal of Physics G</u>, 36, 085102.
- Arima, A., Harvey, M. ve Shimizu, K., 1969. Pseudo LS Coupling and Pseudo SU3 Coupling Schemes, <u>Phys. Lett. B</u>, 30, 517-522.
- Audi, G., Wapstra, A. H. ve Thibault, C., 2003. The AME2003 Atomic Mass Evaluation, Nucl. Phys. A, 729, 337-676.
- Bahri, C., Draayer, J. P. ve Moszkowski, S. A., 1992. Pseudospin Symmetry in Nuclear Physics, <u>Phys. Rev. Lett</u>, 64, 2133-2136.
- Ban, S., 2005. Investigation of effective interactions in Relativistic Meson Field Theory, Yüksek Lisans Tezi, Kungl Tekniska Högskolan, Stockholm.
- Barber, R. C., Greenwood, N. N. Hrynkiewicz, A. Z. Jeannin, Y. P., Lefort, M., Sakai, M., Ulehla, I., Wapstra, A. H. ve Wilkinson, D. H., 1991. Discovery of the Transfermium Elements, <u>Pure and Applied Chemistry</u>, 63, 879-886.
- Bardeen, J., Cooper, L. N. ve Schrieffer, J. R., 1957. Theory of Superconductivity, <u>Physical Review</u>, 108, 1175-1204.
- Bayram, T., Zengin, Z., Demirci, M. ve Yılmaz, A.H., 2010. Investigation of Some Even-Even Mo Nuclei in Relativistic Mean Field Theory, <u>Balkan Physics Letters</u>, 18, 118-125.
- Bender, M., 2000. A-decay Chains of $^{289}_{175}114$ and $^{293}_{175}118$ in the Relativistic Mean-Field Model, <u>Phys. Rev. C</u>, 61, 031302.
- Bender M., Bertsch, G. F. ve Heenen, P.-H., 2006. Global study of quadrupole correlations effects, <u>Phys. Rev. C</u>, 73, 034322.
- Blokhin, A. L., Beuschel, T., Draayer, J. P. ve Bahri, C.,1997. Pseudospin and Nuclear Deformation, <u>Nucl. Phys. A</u>, 612, 163-203.
- Boas, M. L., 2006. Mathematical Methods in the Physical Sciences, John Wiley & Sons, Third Edition, USA.

- Boguta, J. ve Bodmer, A. R., 1977. Relativistic Calculation of Nuclear Matter and the Nuclear Surface, <u>Nucl. Phys. A</u>, 292, 413-428.
- Bohr, A., 1951. On the Quantization of Angular Momenta in Heavy Nuclei, <u>Physical</u> <u>Review</u>, 81, 134-138.
- Bohr, A., 1954. Rotational States in Atomic Nuclei, Doktora Tezi, University of Copenhagen, Copenhagen.
- Bohr, A., Molttelson, B. R. ve Pines, D., 1958. Possible Analogy Between the Excitation Spectra of Nuclei and Those of the Superconducting Metallic state, <u>Physical</u> <u>Review</u>, 110, 936-938.
- Bohr, A., Hamamoto, I. ve Molttelson, B. R., 1982. Pseudospin in Rotating Nuclear Potentials, *Physica Scripta*, 26, 267-272.
- Bunta, J. K., 2003. Asymmetric nuclear matter in the relativistic mean-field approach with Hyperons and vector cross interaction, Doktora Tezi, Slovak Academy of Sciences, Institute of Physics, Bratislava.
- Bürvenich, T. J., Madland, D. G., Sulaksono, A., Maruhn, J. ve Reinhard, P. G., 2002. A relativistic point coupling model for nuclear structure calculations, <u>Progress</u> of <u>Theoretical Physics Supplement</u>, 146, 130-134.
- Bürvenich, T. J., Madland, D. G. ve Reinhard, R. –G., 2004. Adjustment studies in selfconsistent relativistic mean-field models, <u>Nucl. Phys. A</u>, 744, 92-107.
- Castanos, O., Moshinsky, M. ve Quesne, C., 1992. Transformation to Pseudo-SU (3) in Heavy Deformed Nuclei, <u>Phys. Lett. B</u>, 277, 238-242.
- Chabanat, E., Bonche, P., Haensel, P., Meyer, J. ve Schaeffer, R., 1998. A Skyrme Parametrization from Subnuclear to Neutron Star Densities - Part II. Nuclei Far from Stabilities, <u>Nucl. Phys. A</u>, 635, 4, 231-256.
- Chin, S. A. ve Walecka, J. D., 1977. An equation of state for nuclear and higher-density matter based on relativistic mean-field theory, <u>Phys. Lett. B</u>, 52, 24-28.
- Cwiok, S., Nazarewicz, W. ve Heenen, P. H., 1999. Structure of odd-N Superheavy Elements, <u>Phys. Rev. Lett</u>, 83, 1108-1111.
- Das, A. ve Ferbel, T., 2003. Introduction to Nuclear and Particle Physics, World Scientific, Second Edition, New Jersey.
- Decharge, J. ve Gogny, D., 1980. Hartree-Fock-Bogolyubov calculations with the D1 effective interaction on spherical nuclei. <u>Phys. Rev. C</u>, 21, 1568-1593.
- Diener, J. P. W., 2008. Relativistic Mean-Field Theory Applied to the Study of Neutron Star Properties, Yüksek Lisans Tezi, Stellenbosch University, Matieland.

- Dudek, J., Nazarewicz, W., Szymanski, Z. ve Leander, G. A., 1987. Abundance and systematics of nuclear superdeformed states; relation to the pseudospin and pseudo-SU(3) symmetries, <u>Phys. Rev. Lett</u>, 59, 1405-1408.
- Duerr, H. P., 1956. Relativistic Effects in Nuclear Forces, Physical Review, 103, 2, 469-480.
- Faessler A., Greiner W. ve Sheline R. K., 1965. Rotation Vibration Interaction in Deformed Nuclei, <u>Nuclear Physics</u>, 70, 33-88.
- Faessler, A. ve Sheline, R. K., 1966. Eigenfunctions for a Spherical and a Deformed Saxon-Woods Potential, <u>Physical Review</u>, 148, 3, 1003-1020.
- Flocard, H., Quentin, P. ve Vautherin, D., 1973. Self-Consistent Calculation of the Ground State Properties of Some Rare Earth Nuclei, <u>Physics Letters</u>, 46, 304-308.
- Fossion, R., Bonatsos, D. ve Lalazissis, G. A., 2006. E(5), X(5), and prolate to oblate shape phase transitions in relativistic Hartree-Bogoliubov theory, <u>Phys. Rev.</u> <u>C</u>, 73, 044310.
- Furnstahl, R. J., Price, C. E. ve Walker, G. E., 1987. Systematics of Light Deformed Nuclei in Relativistic Mean-Field Models, <u>Phys. Rev. C</u>, 36, 6, 2590-2600.
- Gambhir, Y. K., Ring, P. ve Thimet, A., 1990. Relativistic Mean Field Theory for Finite Nuclei, <u>Annals of Physics</u>, 198, 132-179.
- Gambhir, Y. K. ve Bhagwat, A., 2006. The Relativistic Mean Field and Some of Its Recent Applications, <u>Phys. Part. Nuclei</u>, 37, 366-433.
- Geng, L. S., Toki, H. ve Meng, J., 2004a. A systematic Study of Neutron Magic Nuclei with N=8, 20, 28, 50, 82 and 126 in the Relativistic Mean-Field Theory, <u>J.</u> <u>Phys. G Nucl. Partic.</u>, 30, 1915-1928.
- Geng, L.S., Toki, H. ve Meng, J., 2004b. A systematic Study of Zr ve Sn Isotopes in the Relativistic Mean-Field Theory, <u>Mod. Phys. Lett. A</u>, 19, 2171-2190.
- Geng, L. S., 2005. Ground State Properties of Finite Nuclei in the Relativistic Mean Field Theory, Doktora Tezi, Osaka University, Ibraki.
- Ginocchio, J. N., 1997. Pseudospin as a Relativistic Symmetry, <u>Phys. Rev. Lett</u>, 78, 436-439.
- Ginocchio, J. N. ve Leviatan, A., 1998. On the Relativistic Foundations of Pseudospin Symmetry in Nuclei, <u>Phys. Lett. B</u>, 425, 1-5.
- Ginocchio, J. N., 2005. Relativistic Symmetries in Nuclei and Hadrons Physics Reports, 414, 165-261.

Gogny, D., 1975. Nuclear Selfconsistent Fields, North-Holland, Amsterdam.

- Goriely, S., Samyn, M., Heenen, P.-H., Pearson, J. M. ve Tondeur, F., 2002. Hartree-Fock mass formulas and extrapolation to new mass data, <u>Phys. Rev. C</u>, 66, 024326.
- Goriely, S., Samyn, M., Bender, M. ve Pearson, J. M., 2003. Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. II. Role of the effective mass, <u>Phys. Rev. C</u>, 68, 054325.
- Greiner, W. ve Maruhn, J. A., 1996. Nuclear Models, Springer-Verlag, First Edition, New York.
- Guo, J. Y., Fang, X. Z. ve Sheng, Z. Q., 2008. Shape Phase Transitions and Possible E(5) Symmetry Nuclei For Ti Isotopes, <u>Int. J. Mod. Phys. E</u>, 17, 3, 539-548.
- Haar, B.T. ve Malfliet, B., 1986. The Single-Particle Interaction in Nuclear Matter via The Relativistic Dirac-Brueckner Approach, <u>Phys. Lett. B</u>, 172, 10-16.
- Hecht, K. T. ve Adler, A., 1969. Generalized seniority for favored J≠0 pairs inmixed configurations. <u>Nucl. Phys. A</u>, 137, 129-143.
- Hofmann, U. ve Ring, P., 1988. A New Method to Calculate Magnetic Moments in Relativistic Mean Field Theories, <u>Phys. Lett. B</u>, 214, 307-311.
- Hofmann, S., Ninov, V., Berger, F. P., Armbruster, P., Folger, H., Münzenberg, G. vd., 1995. Production and Decay of 269110, <u>Zeitschrift Für Physik A: Hadrons</u> and Nuclei, 350, 277-280.
- Hofmann, S., 2010. Viewpoint: Exploring the island of superheavy elements, <u>Physics</u>, 3, 31.
- Horowitz, C. J. ve Serot, B.D., 1984. Relativistic Hartree Theory of Finite Nuclei: The Role of Quantum Vacuum, <u>Phys. Lett. B</u>, 140, 181-186.
- Iachello, F., 2000. Dynamic Symmetries at the Critical Point, Phys. Rev. Lett., 85, 17, 3580-3583.
- Iachello, F., 2001. Analytic Description of Critical Point Nuclei in a Spherical-Axxially Deformed Shape Phase Transition, <u>Phys. Rev. Lett.</u>, 87, 5, 052502.
- Johnson, M. H. ve Teller, E., 1955. Classical Field Theory of Nuclear Forces, <u>Physical</u> <u>Review</u>, 98, 3, 783-787.
- Karatzikos, S., Afanasjev, A. V., Lalazissis, G. A. ve Ring, P., 2010. The fission barriers in Actinides and superheavy nuclei in covariant density functional theory, <u>Phys. Lett. B</u>, 689, 72-81.

- Koepf, W. ve Ring, P., 1990. A Relativistic Theory of Superdeformations in Rapidly Rotating Nuclei, <u>Nucl. Phys. A</u>, 511, 279-300.
- Krane, K. S., 1988. Inductory Nuclear Physics, Second Edition, John Wiley & Sons, USA.
- Kuşoğlu, A., 2009. Spin Yörünge Potansiyelinin Valans Nükleon Sayısı ile değişimi, Yüksek Lisans Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
- Lalazissis, G. A., Sharma, M. M. ve Ring, P., 1996. Rare Earth Nuclei: Radii, Isotope Shifts and Deformation properties in the Relativistic Mean-Field Theory, <u>Nucl. Phys. A</u>, 597, 35-65.
- Lalazissis, G. A., Konig, J. ve Ring, P., 1997. New parametrization for the Lagrangian density of relativistic mean field theory, <u>Phys. Rev. C</u>, 55, 540-543.
- Lalazissis, G. A., Gambhir, Y. K. Maharana, J. P., Warke, C. S. ve Ring, P., 1998. Relativistic Mean Field Approach and the Pseudospin Symmetry, <u>Phys.</u> <u>Rev. C</u>, 58, 45-48.
- Lalazissis, G. A. ve Raman, S., 1999. Ground-State Properties of Even-Even Nuclei in the Relativistic Mean Field Theory, <u>Atomic Data and Nuclear Data Tables</u>, 71, 1-40.
- Lalazissis, G. A., Niksic, T., Vretenar D. ve Ring, P., 2005. New relativistic mean-field interaction with density-dependent meson-nucleon couplings, <u>Phys. Rev. C</u>, 71, 024312.
- Lalazissis, G. A., Karatzikos, S., Fossion, R., Pena, Arteaga D., Afanasjev, A. V. ve Ring, P., 2009. The Effective Force NL3 revisited, <u>Phys. Lett. B</u>, 671, 36-41.
- Lee, S. J., Fink, J., Balantekin, A. B., Strayer, M. R., Umar, A. S., Reinhard, P. G. Maruhn, J. A. ve Greiner, W., 1986. Relativistic Hartree Calculations for Axially Deformed-Nuclei, <u>Phys. Rev. Lett</u>, 57, 2916-2919.
- Libert, J. ve Quentin, P., 1982. Self-Consistent Description of Heavy Nuclei. I. Static Properties of Some Even Nuclei, <u>Phys. Rev. C</u>, 25, 571-585.
- Linn, K. N., 2008. Structure of Exotic Nuclei and Superheavy Elements in Meson Field Theory, Doktora Tezi, der Johann Wolfgang Goethe University, Institut für Naturwissenschaften, Frankfurt.
- Lipkin, H. J., 1960. Collective motion in many-particle systems: Part 1. The violation of conservation laws, <u>Annals of Physics</u>, 9, 2, 272-291.
- Lisboa, R., Malherio, M. ve Alberto, P., 2004a. The Nuclear Pseudospin Symmetry Along an Isotopic Chain, <u>Brazillian Journal of Physics</u>, 34, 1, 293-296.

- Lisboa, R., Malherio, M., de Casto, A. S., Alberto, P. ve Fiolhais, M., 2004b. Pseudospin Symmetry and the Relativistic Harmonic Oscillator, <u>Phys. Rev. C</u>, 69, 024319.
- Lunney, D., Pearson, J. M. ve Thibault, C., 2003. Recent trends in the determination of nuclear masses, <u>Rev. Mod. Phys.</u>, 75, 3, 1021-1082.
- Meng, J., Sugawara-Tanable, K., Yamaji, S., Ring, P. ve Arima, A, 1999. Pseudospin Symmetry in Zr and Sn Isotopes from the Proton Drip Line to the Neutron Drip Line, <u>Phys. Rev. C</u>, 58, 628-631.
- Meng, J. ve Takigawa, N., 2000. Structure of Superheavy Elements Suggested in the Reaction of 86Kr with 208Pb. <u>Phys. Rev. C</u>, 61, 064319.
- Meng, J., Zhang, W., Zhou, S. G., Toki, H. ve Geng, L. S., 2005. Shape evolution for Sm isotopes in relativistic mean-field theory, <u>Eur. Phys. J. A</u>, 25, 23-27.
- Mosel, U. ve Greiner, W., 1969. Shell Structure of Superheavy Nuclei in Self-consistent Mean-field Models, Zeitschrift Für Physik, 222, 261-282.
- Mottelson, B., 1991. Some Themes in the Study of Very Deformed Rotating Nuclei, <u>Nucl.</u> <u>Phys. A</u>, 522, 1-12.
- Möller, P., Nix, J. R., Myers, W. D. ve Swiatecki, W. J., 1995. Nuclear Ground-state Masses and Deformations, <u>Atomic Data and Nuclear Data Tables</u>, 59, 185-361.
- Nadjakov, E. G., Marinova, K. P. ve Gangrsky, Y. P., 1994. Systematics of Nuclear Charge Radii, <u>Atomic Data and Nuclear Data Tables</u>, 56, 1, 133-157.
- Nazarewicz, W., Twin, P. J., Fallon, P. ve Garrett, J. D., 1990. Natural-parity States in Superdeformed Bands and Pseudo SU(3) Symmetry at Extreme Conditions, <u>Phys. Rev. Lett</u>, 64, 1654–1657.
- Niksic, T., Vretenar, D. Finelli, P. ve Ring, P., 2002. Relativistic Hartree-Bogoliubov model with density-dependent meson-nucleon couplings, <u>Physical Review</u> <u>C</u>, 66, 2, 024306.
- Niksic, T., Vretenar, D., Lalazissis, G. A. ve Ring, P., 2004. Ground-state properties of rare-earth nuclei in the relativistic Hartree-Bogoliubov model with density-dependent meson-nucleon couplings, <u>Phys. Rev. C</u>, 69, 047301.
- Nilsson, S. G. vd., 1969. On the Nuclear Structure and Stability of Heavy and Superheavy Elements, <u>Nucl. Phys. A</u>, 131, 1-66.
- Nogami, Y., 1964. Improved Superconductivity Approximation for Pairing Interaction in Nuclei, <u>Phys. Rev. B</u>, 134, 313-321.

- Oganessian, Yu Ts., Utyonkov, V. K., Lobanov, Yu. V, Abdullin, F. Sh. ve Polyakov, A. N., 1999. Synthesis of Superheavy Nuclei in the 48Ca + 244Pu Reaction, <u>Phys. Rev. Lett</u>, 83, 3154-3157.
- Oganessian, Yu Ts., Abdullin, F. Sh, Bailey, P. D., Benker, D. E., Bennett, M. E., vd., 2010. Synthesis of a New Element with Atomic Number Z=117, <u>Phys. Rev.</u> <u>Lett</u>, 104, 142502.
- Ogawa, Y., Toki, H., Tamenaga, S., Shen, H., Hosaka, A., Sugimoto, S. ve Ikeda, K., 2004. Chiral sigma model with pion mean field in finite nuclei, <u>Prog. Theor.</u> <u>Phys.</u>, 111, 75-92.
- Perry, R. J., 1986. Effects of the Dirac Sea on Finite Nuclei, Phys. Lett. B, 182, 269-273.
- Polikanov, S. M., Druin, V. A., Karnaukhov, V. A., Mikheev vd., 1962. Spontaneous Fission with an Anomalously Short Period I, <u>Soviet Physics JETP</u>, 15, 6, 1016-1021.
- Rainwater, J., 1950. Backround for the Spheroidal Nuclear Model Proposal, <u>Reviews of Modern Physics</u>, 48, 385-391.
- Rainwater, J., 1976. Nuclear Energy Level Argument for a Spheroidal Nuclear Mode, <u>Physical Review</u>, 79, 432-434.
- Raman, S., Nestor, C. W. ve Tikkanen, P., 2001. Transition Probability from the Ground to the First-excited 2⁺ State of Even-even Nuclides, <u>Atomic Data and Nuclear</u> <u>Data Tables</u>, 78, 1-128.
- Ratna, Raju R. D, Draayer, J. P. ve Hecht, K. T., 1973. Search for a coupling scheme in heavy deformed nuclei: The pseudo SU(3) model, <u>Nucl. Phys. A</u>, 202, 433-466.
- Reinhard, P. G., Rufa, M., Maruhn, J., Greiner, W. ve Friedrich, J., 1986. Nuclear Ground-State Properties in a Relativistic Meson-Field Theory, <u>Zeitschrift Fur Physik</u> <u>a-Hadrons and Nuclei</u>, 323, 13-25.
- Reinhard, P-G., 1989. The Relativistic Mean-Field Description of Nuclei and Nuclear Dynamics, <u>Reports on Progress in Physics</u>, 52, 439-514.
- Ren, Z., 2002. Deformed Relativistic Mean-field Calculations on the Properties of Superheavy Nuclei, <u>Journal of Nuclear and Radiochemical Sciences</u>, 3-1, 195-200.
- Ren, Z., Fei Tai, Chen, D. H., Zhang, H. Y. ve Shen, W. Q., 2003. Theoretical Study on the Properties of Some Superheavy Nuclei, <u>Nucl. Phys. A</u>, 722, 543-547.
- Ring, P. ve Schuck, P., 1980. The Nuclear Many-Body Problem, First Edition, Springer-Verlag, New York.

- Ring, P., 1996. Relativistic Mean Field Theory in Finite Nuclei, <u>Progress in Particle and</u> <u>Nuclear Physics</u>, 37, 193-263.
- Ring, P., Gambhir, Y. K. ve Lalazissis, G. A., 1997. Computer Program for Relativistic Mean Field Description of the Ground-State Properties of Even-Even Axially Deformed Nuclei, <u>Comput. Phys. Commun</u>, 105, 77-97.
- Rodriguez-Guzman, R., Sarriguren, P., Robledo, L. M. ve Perez-Martin, S., 2010. Charge radii and structural evolution in Sr, Zr ve Mo isotopes, <u>Phys. Lett. B</u>, 691, 202-207.
- Schiff, L. I., 1951. Nonlinear Meson Theory of Nuclear Forces. I. Neutral Scaler Mesons with Point-Contact Repulsion, <u>Physical. Review</u>, 84, 1-9.
- Serot, B. D. ve Walecka, J. D., 1986. The Relativistic Nuclear Many-Body Problem, <u>Advances in Nuclear Physics</u>, 16, 1-320.
- Serot, B. D. ve Walecka, J. D., 1997. Recent progress in quantum hadrodynamics, <u>Int. J.</u> <u>Mod. Phys. E</u>, 6, 4, 515-631.
- Serr, F. E. ve Walecka, J. D., 1978. A Relativistic Quantum Field Theory of Finite Nuclei, <u>Phys. Lett. B</u>, 79, 10-14.
- Sharma, M. M., Nagarajan, M. A. ve Ring, P., 1994. The Relativistic Mean-Field, Effective-Mass and the Compression Properties of Nuclei, <u>Annals of</u> <u>Physics</u>, 231, 110-126.
- Sheng, Z. Q. ve Guo, J. Y., 2005. Systematic Analysis of Critical Point Nuclei in the Rareearth Region with Relativistic Mean Field Theory, <u>Mod. Phys. Lett. A</u>, 20, 35, 2711-2721
- Sheng, Z., Ren, Z. ve Jieng, W., 2010. Investigation on Ground-State Properties of Deformed Nuclei in Relativistic Mean Field Theory with Parameter Set FSU Gold, <u>Nucl. Phys. A</u>, 832, 49-61.
- Suhonen, J., 2007. From Nucleons to Nucleus; Concepts of Microscopic Nuclear Theory, Springer, First Edition, New York.
- Skyrme, T. H. R., 1956. The Nuclear Surface, Philosophical Magazine, 1, 1043-1054.
- Stoitsov, M. V., Dobaczewski, J., Nazarewicz, W. ve Ring, P., 2005. Axially Deformed Solution of the Skyrme-Hartree-Fock-Bogolyubov Equations Using the Transformed Harmonic Oscillator Basis: The Program HFBTHO (v1.66p), <u>Comput. Phys. Commun</u>, 167, 43-63
- Sugahara, Y. ve Toki, H., 1994. Relativistic Mean-Field Theory for Unstable Nuclei with Non-linear Sigma-Term and Omega-Term, <u>Nucl. Phys. A</u>, 579, 3-4, 557-572.

- Tanihata, I., Hamagaki, H., Hashimoto, O., vd., 1985. Measurements of Interaction Cross-Sections and Nuclear Radii in the Light P-Shell Region, <u>Physical Review</u> <u>Letters</u>, 55, 24, 2676-2679.
- Toki, H., Sugimoto, S. ve Ikeda, K., 2002. Relativistic mean field theory with the pion in finite nuclei, <u>Prog. Theor. Phys.</u>, 108, 903-916.
- Trache, L., Kolomiets, A., Shlomo, S. vd., 1996. 'Bare' Single-particle energies in ⁵⁶Ni, <u>Phys. Rev. C</u>, 54, 5, 2361-2368.
- Vandenbosch, R., 1977. Spontaneously Fissioning Isomers, <u>Annual Review of Nuclear and</u> <u>Particle Science</u>, 27, 1-35.
- Vautherin, D. ve Brink, D.M., 1972. Hartree-Fock Calculations with Skyrme's Interaction. I. Spherical Nuclei, <u>Phys. Rev. C</u>, 5, 626-647.
- Vautherin, D., 1973. Hartree-Fock Calculations with Skyrme's Interaction. I. Axially Deformed Nuclei, <u>Phys. Rev. C</u>, 7, 296-396.
- Viola, V. E. and Seaborg, G. T., 1966. Nuclear Systematics of the elements-I energetics and masses, Journal of Inorganic and Nuclear Chemistry, 28, 697-700.
- Walecka, J.D., 1974. A Theory of Highly Condensed Matter, <u>Annals of Physics</u>, 83, 491-529.
- Wasson, D. A., 1988. Effect of Vacuum Polarization on Nuclear Structure, <u>Phys. Lett. B</u>, 210, 41-44.
- Win, M. T., 2007. Application of Relativistic Mean-Field Approach to Deformed Hypernuclei, Yüsek Lisans Tezi, Tohoku University, Sendai.
- Woods, R. D. ve Saxon, D. S, 1954. Diffuse Surface Optical Model for Nucleon-Nuclei Scattering, <u>Physical Review</u>, 95-2, 577-578.
- Yamak, S., 2010. Nükleer Ortalama Alanda Bir Parçacık Seviyelerinin Hesaplanması, Yüksek Lisans Tezi, K.T.Ü. Fen Bilimleri Enstitüsü, Trabzon.
- Yao, B. M. ve Guo, J. Y., 2010. Systematic Analysis of Shape Evolution For Mo Isotopes with Relativistic Mean Field Theory, <u>Mod. Phys. Lett. A</u>, 25, 14, 1177-1186.
- Yılmaz, A. H. ve Kuruoglu, M., 2006. Investigation of Even-Even Ru isotopes in Interacting Boson Model-2, <u>Commun. Theor. Phys.</u>, 46, 697-703.
- Yılmaz, A. H., Bayram, T., Demirci, M. ve Engin, B., 2010. Ground-State Properties of Some Rare Earth Nuclei in Relativistic Mean Field Theory, <u>Azerbaijan</u> <u>Journal of Physics: Fizika</u>, 16, 2, 544-546.

- Yılmaz, A. H. ve Bayram, T., 2011a. Axially Deformed Relativistic Mean Field Calculations on the Properties of Isotopic Chain of Superheavy Nuclei, <u>Balkan Physics Letters</u>, 19, 85-94.
- Yılmaz, A. H. ve Bayram, T., 2011b. A Detailed Investigation on the Ground-state Nuclear Properties of Even-even Mo Isotopes by Using the Relativistic Mean Field Approach, Journal of the Korean Physical Society, 59, 6, 3329-3336.
- Yu, M., Zhang, P. F., Ruan, T. N. ve Guo, J. Y., 2006. Shape evolution for Ce isotopes in relativistic mean-field theory, Int. J. Mod. Phys. E, 15, 4, 939-950.
- Yukawa, H., 1935. On the Interaction of Elementary Particles I., Proc. Phys. Math. Soc. Japan, 17, 48-57.
- Zeng, J. Y., Meng, J., Wu, C. S, Zhao, E. G., Xing, Z. ve Chen, X. Q., 1991. SpinDetermination and Quantized Alignment in the Superdeformed Bands in ¹⁵²Dy,¹⁵¹Tb, and ¹⁵⁰Gd, <u>Phys. Rev. C</u>, 44, 1745-1748.
- Zhang, W. Meng, J., Zhang, S. Q., Geng, L. S. ve Toki, H., 2005. Magic Numbers for Superheavy Nuclei in Relativistic Continuum Hartree-Bogolyubov Theory, <u>Nuclear Physcis A</u>, 753, 106-135.
- Zhang, H.F., Li, J.Q., Zuo, W., Zhou, X.H., Gen, Z.G. ve Wong, N., 2006, Ground StateProperties of Superheavy Nuclei in Relativistic Mean Field Theory, <u>Int.</u> J. Mod. Phys. E, 15-7, 1613-1624.
- Zhu, Z. Y., Mang, H. J. ve Ring, P., 1991. Vacuum Polarization in a Relativistic Description of Open Shell Nuclei, <u>Phys. Lett. B</u>, 254, 325-331.

6. EKLER

Ek 1. Hacim Korunumu

Küresel şekilden eksenel deforme olmuş şekle hacim korunumunu dikkate alınarak geçildiğinde,

$$\frac{4\pi a^2 c}{3} = \frac{4\pi R^3}{3}$$
(E1.1)

eşitliği elde edilir. Bu niceliklerle ilişkili olarak ω parametreleri,

$$\omega_1^2 \omega_2 = \omega_0^3 \tag{E1.2}$$

eşitliğini sağlar. Bu nedenle

$$a = R_0 (1 + \beta_2 Y_{20}(\theta = 0)) = R_0 \left(1 - \frac{1}{2} \sqrt{\frac{5}{4\pi}} \beta_2 \right)$$

$$(E1.3)$$

$$c = R_0 (1 + \beta_2 Y_{20}(\theta = \frac{\pi}{2})) = R_0 \left(1 + \frac{1}{2} \sqrt{\frac{5}{4\pi}} \beta_2 \right)$$

olmak üzere ω parametresinin silindirik koordinatlarda z-ekseni bileşeni ω_z ve z-eksenine dik olan eksen üzerine izdüşümü ω_{\perp} arasında,

$$\omega_{\perp}.a = \omega_{z}.c \tag{E1.4}$$

şeklinde bir ilişki kurmak mümkündür. Denklem (E1.3)'te yer alan a ve c ifadeleri denklem (E1.4)'te yerine yazılırsa,

$$\omega_z^3 = \left(\frac{1 - \frac{1}{2}\sqrt{\frac{5}{4\pi}}\beta_2}{1 + \sqrt{\frac{5}{4\pi}}\beta_2}\right)^2 \omega_0^3 \Longrightarrow$$
(E1.5)

$$\omega_{z} = \left(\frac{1 - \frac{1}{2}\sqrt{\frac{5}{4\pi}}\beta_{2}}{1 + \sqrt{\frac{5}{4\pi}}\beta_{2}}\right)^{2/3}\omega_{0}$$
(E1.6)

elde edilir ve denklem (E1.6)'nın paydasında yer alan terim kuvvet serisine açılıp (Boas, 2006) 2. terimden sonraki terimler göz ardı edilirse yaklaşık bir biçimde,

$$\omega_z \approx \left[\left(1 - \frac{1}{2} \sqrt{\frac{5}{4\pi}} \beta_2 \right) \left(1 - \sqrt{\frac{5}{4\pi}} \beta_2 \right) \right]^{2/3} \omega_0 \tag{E1.7}$$

Ek-1'in devamı

$$\approx \left(1 - \frac{3}{2}\sqrt{\frac{5}{4\pi}}\beta_2\right)^{2/3}\omega_0 \tag{E1.8}$$

$$\approx \left(1 - \sqrt{\frac{5}{4\pi}}\beta_2\right)\omega_0 \tag{E1.9}$$

$$\approx \omega_0 \exp\left(-\sqrt{\frac{5}{4\pi}}\beta_2\right) \tag{E1.10}$$

elde edilir. Benzer bir yol izlenerek ω_{\perp} için,

$$\omega_{\perp} \approx \omega_0 \exp\left(\frac{1}{2}\sqrt{\frac{5}{4\pi}}\beta_2\right)$$
 (E1.11)

eşitliği elde edilir.

Ek 2. RMF-BCS Formalizmi

Bu formalizmde, temel nokta her zaman çiftlenim ilişkileri tarafından çiftlenmiş, k ve -k ile temsil edilen iki durumun var olduğu kabulüne dayanır. Bu iki durum birbirleri ile zaman tersinmesi altında ilişkili olup biri diğerinin karşıt durumunu temsil etmektedir. Böylece bu iki durumun çiftlenmiş hali sıfır açısal momentuma sahip fermiyon çiftine benzetilir.

İlk terimi yalın nükleon-nükleon etkileşmesini ve ikinci terimi de artık etkileşmeyi betimleyen Hamiltonyen

$$\hat{H} = \sum_{k} \varepsilon_{k}^{0} \hat{a}_{k}^{\dagger} \hat{a}_{k} + \sum_{kk'>0} \langle k, -k|V|k', -k' \rangle \hat{a}_{k}^{\dagger} \hat{a}_{-k}^{\dagger} \hat{a}_{-k'} \hat{a}_{k'}$$
(E2.1)

ile verilir. Matris elemanı, $\langle k, -k | V | k', -k' \rangle$ 'nın sabit ve -G olduğu varsayımında denklem (E2.1),

$$\hat{H} = \sum_{k} \varepsilon_{k}^{0} \hat{a}_{k}^{\dagger} \hat{a}_{k} - \sum_{kk'>0} G \hat{a}_{k}^{\dagger} \hat{a}_{-k}^{\dagger} \hat{a}_{-k'} \hat{a}_{k'}$$
(E2.2)

şekline indirgenir. Burada $\hat{a}_k^+ ve \, \hat{a}_{-k}^+$ her bir durum için yaratma operatörüdürler. Nükleer taban durum BCS durumu

$$|BCS\rangle = \prod_{k>0}^{\infty} \left(u_k + v_k \hat{a}_k^{\dagger} \hat{a}_{-k}^{\dagger} \right) |0\rangle$$
(E2.3)

ile ilişkilendirilebilir. BCS durumunun normalize olması gerekliliğinden,

$$\langle BCS | BCS \rangle = \langle 0 | \prod_{k>0}^{\infty} \left(u_k + v_k \hat{a}_{-k} \hat{a}_k \right) \prod_{k>0}^{\infty} \left(u_{k'} + v_{k'} \hat{a}_{k'}^{\dagger} \hat{a}_{-k'}^{\dagger} \right) | 0 \rangle$$
(E2.4)

elde edilir. Parantez içerisindeki terimlerden farklı indisli olanlar birbirleri ile sıra değişimli iken,

$$\left(u_{k}+v_{k}\hat{a}_{-k}\hat{a}_{k}\right)\left(u_{k}+v_{k}\hat{a}_{k}^{\dagger}\hat{a}_{-k}^{\dagger}\right)=u_{k}^{2}+u_{k}v_{k}\left(v_{k}\hat{a}_{k}^{\dagger}\hat{a}_{-k}^{\dagger}+\hat{a}_{-k}\hat{a}_{k}\right)+v_{k}^{2}\hat{a}_{-k}\hat{a}_{k}\hat{a}_{k}^{\dagger}\hat{a}_{-k}^{\dagger}$$
(E2.5)

eşitliğinden görüldüğü üzere dikkate alınması gerekenler aynı indise sahip terimlerdir. Çarpımda ki diğer terimler k ve -k durumlarını etkilemediğinden denklem (E2.5) ile verilen eşitliğin sadece birinci ve son terimi katkıda bulunacağından norm

$$\langle BCS | BCS \rangle = \prod_{k>0}^{\infty} \left(u_k^2 + v_k^2 \right)$$
(E2.6)

şeklinde olup normalizasyon için,

$$u_k^2 + v_k^2 = 1 (E2.7)$$

olmasını gerektirir.

Ek-2'nin devamı

Parçacık sayısı açısından bakıldığında denklem (E2.3) ile verilen BCS durumuna göre parçacık sayısı operatörünün

$$\hat{N} = \sum_{k>0} \left(\hat{a}_{k}^{\dagger} \hat{a}_{k} + \hat{a}_{-k}^{\dagger} \hat{a}_{-k} \right)$$
(E2.8)

N parçacık sayısını temsil etmek üzere beklenen değeri

$$N = \langle BCS \mid \hat{N} \mid BCS \rangle = \langle BCS \mid \sum_{k>0} \left(\hat{a}_k^{\dagger} \hat{a}_k + \hat{a}_{-k}^{\dagger} \hat{a}_{-k} \right) \mid BCS \rangle$$
(E2.9)

şeklindedir. Bu değer her bir k değeri ile basitçe elde edilebilir. Operatör BCS durumu dışında ki v_k ile orantılı bir bileşen verir ve bunu parçacık sayısının iki katı ile çarpar,

$$N = \sum_{k>0} 2\nu_k^2$$
(E2.10)

Burada bir diğer önemli nokta parçacık sayısı belirsizliğidir.

$$\Delta N^{2} = \langle BCS | \hat{N}^{2} | BCS \rangle - \left(\langle BCS | \hat{N} | BCS \rangle \right)^{2}$$
$$= 4 \sum_{k \neq k > 0} v_{k}^{2} v_{k'}^{2} + 4 \sum_{k > 0} v_{k}^{2} - \left(\sum_{k > 0} 2v_{k}^{2} \right)^{2}$$
(E2.11)

denklemi parçacık sayısı operatörünün karesinin beklenen değeri ile parçacık sayısı operatörünün beklenen değeri arasındaki farkı göstermektedir. Daha önce elde edilen (E2.7) eşitliği kullanılarak,

$$\Delta N^2 = 4 \sum_{k>0} u_k^2 v_k^2$$
(E2.12)

elde edilir.

Dalga fonksiyonları parçacık sayısını içermediğinden arzu edilen beklenen değerin elde edilebilmesi için Lagrange çarpanları yöntemi ile bazı kısıtlamalara başvurularak elde edilebilir. Lagrangian çarpanı λ (kimyasal potansiyel veya Fermi enerjisine karşılık gelir) olmak üzere,

$$\hat{H}' = \hat{H} - \lambda \hat{N} , \qquad (E2.13)$$

ifadesine varyasyon metodu

$$\delta \langle BCS | \hat{H}' | BCS \rangle = 0 \tag{E2.14}$$

veya

Ek-2'nin devamı

$$\frac{\partial}{\partial v_{k}} \langle BCS | \sum_{k} \left(\varepsilon_{k}^{0} - \lambda \right) \hat{a}_{k}^{\dagger} \hat{a}_{k} - \sum_{kk > 0} G \hat{a}_{k}^{\dagger} \hat{a}_{-k}^{\dagger} \hat{a}_{-k'} \hat{a}_{k'} | BCS \rangle = 0$$
(E2.15)

uygulanır. $u_k du_k + v_k dv_k = 0$ 'ı veya bir başka ifade ile

$$\frac{\partial}{\partial v_k} = \frac{\partial}{\partial v_k} |_{u_k} - \frac{v_k}{u_k} \frac{\partial}{\partial u_k} |_{v_k}$$
(E2.16)

sağlayan denklem (E2.7)'de verilen normalizasyon koşulu $(u_k^2 + v_k^2 = 1)$ ile u_k 'nın v_k 'ya bağlı olduğu açıktır.

Denklem (E2.15)'deki matris elemanlarını ayrı ayrı irdelenecek olursa

$$\langle BCS \mid \hat{a}_k^{\dagger} \hat{a}_k \mid BCS \rangle = v_k^2 \tag{E2.17}$$

ve

$$k \neq k' \quad \text{için} \quad \langle BCS \mid \hat{a}_k^{\dagger} \hat{a}_{-k}^{\dagger} \hat{a}_{-k'} \hat{a}_{k'} \mid BCS \rangle = u_k v_k u_k v_{k'}$$
(E2.18)

$$k = k' \quad \text{için} \quad \langle BCS \mid \hat{a}_k^{\dagger} \hat{a}_{-k'}^{\dagger} \hat{a}_{-k'} \hat{a}_{k'} \mid BCS \rangle = v_k^2 \tag{E2.19}$$

elde edilir. Denklem (E2.17-19) birleştirilirse Hamiltonyenin beklenen değeri

$$\langle BCS \mid \hat{H} - \lambda \hat{N} \mid BCS \rangle = 2 \sum_{k>0} \left(\varepsilon_k^0 - \lambda \right) v_k^2 - G \left(\sum_{k>0} u_k v_k \right)^2 - G \sum_{k>0} v_k^4$$
(E2.20)

olur. Bu ifadeye, denklem (E2.16) uygulanırsa,

$$4(\varepsilon_{k}^{0} - \lambda)v_{k} - 2G\left(\sum_{k'>0}u_{k'}v_{k'}\right)u_{k} - 4Gv_{k}^{3} - \frac{v_{k}^{2}}{u_{k}}\left[-2G\left(\sum_{k'>0}u_{k}v_{k}\right)\right] = 0$$
(E2.21)

elde edilir. $\Delta = G \sum_{k'>0} u_{k'} v_{k'}$ olduğu ve bilindiği ve ayrıca,

$$\varepsilon_k = \varepsilon_k^0 - \lambda - Gv_k^2 \tag{E2.22}$$

olduğu varsayımında denklem (E2.21), Bölüm 1.7'de denklem (1.84) ile verilen,

$$2\varepsilon_k u_k v_k - \Delta (u_k^2 - v_k^2) = 0$$
 (E2.23)

eşitliği elde edilir. Bu denklemin çözümü

$$v_k^2 = \frac{1}{2} \left(1 \pm \frac{\sqrt{\left(\Delta^2 + \varepsilon_k^2\right)^2 - \left(\Delta^2 + \varepsilon_k^2\right)\Delta^2}}{\Delta^2 + \varepsilon_k^2} \right) = \frac{1}{2} \left(1 \pm \frac{\varepsilon_k}{\sqrt{\Delta^2 + \varepsilon_k^2}} \right)$$
(E2.24)

Ek-2'nin devamı

ile verilir. Bu durumda çiftlenmiş durumlar için işgal olasılıkları

$$v_k^2 = \frac{1}{2} \left(1 - \frac{\varepsilon_k}{\sqrt{\varepsilon_k^2 + \Delta^2}} \right) \quad \text{ve} \quad u_k^2 = \frac{1}{2} \left(1 + \frac{\varepsilon_k}{\sqrt{\varepsilon_k^2 + \Delta^2}} \right)$$
(E2.25)

şeklinde elde edilir. Böylece u_k ve v_k nın açık formları yardımı ile boşluk denklemi

$$\Delta = \frac{G}{2} \sum_{k>0} \frac{\Delta}{\sqrt{\varepsilon_k^2 + \Delta^2}}$$
(E2.26)

elde edilir. Bu denklem Δ^2/G , çiftlenim enerjisi olmak üzere G'nin bilinen değerleri ve ε_k^0 tek-parçacık enerjileri kullanılarak iteratif bir yolla çözülebilir. Sistemin enerjisi hesaplanmak istendiğinde ise Hamiltonyenin beklenen değeri

$$E = BCS|\hat{H}|BCS$$

$$= \langle BCS | \sum_{k} \varepsilon_{k}^{0} \hat{a}_{k}^{\dagger} \hat{a}_{k} - \sum_{kk>0} G \hat{a}_{k}^{\dagger} \hat{a}_{-k}^{\dagger} \hat{a}_{-k} \hat{a}_{k'} | BCS \rangle$$

$$= \sum_{k>0} 2v_{k}^{2} \varepsilon_{k}^{0} - G \left(\sum_{k>0} u_{k} v_{k} \right)^{2}$$

$$= \sum_{k>0} 2v_{k}^{2} - \frac{\Delta^{2}}{G}$$
(E2.27)

kullanılarak elde edilebilir.

Ek 3. Coulomb Alanı

Coulomb alanının uzun erimli olmasından dolayı osilatör temel genişletme metodu ile ele alınamazlar. Bundan dolayı bu durumda Green fonksiyonu metodu kullanılır (Vautherin, 1973).

Coulomb alanı için Poisson denklemi

$$-\nabla^2 A^0 = e\rho_{\rm p} \tag{E3.1}$$

şeklindedir. A^0 , Green fonksiyonu metodu kullanılarak,

$$A^{0} = -\int d^{3}\vec{r}' G(\vec{r},\vec{r}') e\rho_{\rm p}(\vec{r}')$$
(E3.2)

şeklinde yazılabilir. Aynı ifade

$$\nabla^{2} \left(\frac{1}{|\vec{r} - \vec{r}'|} \right) = -\frac{1}{4\pi |\vec{r} - \vec{r}'|}$$
(E3.3)

eşitliği kullanılarak,

$$A^{0}(\vec{r}) = -\int d^{3}\vec{r}' \frac{1}{4\pi |\vec{r} - \vec{r}'|} e\rho_{p}(\vec{r}')$$
(E3.4)

şeklinde yazılabilir.

$$\nabla_{\vec{r}'}^2 |\vec{r} - \vec{r}'| = \frac{2}{|\vec{r} - \vec{r}'|}$$
(E3.5)

ilişkisi (Vautherin, 1973) kullanılarak denklem (E3.4) ile verilen ifade,

$$A^{0}(\vec{r}) = \frac{e}{8\pi} \int d^{3}\vec{r}' |\vec{r} - \vec{r}'| \nabla_{\vec{r}'}^{2} \rho_{p}(\vec{r}')$$
(E3.6)

şeklinde olur. Azimutal φ açısı üzerinden alınan integral sonrasında, ikinci tür tam eliptik intagral

$$E(x) = \int_{0}^{\pi/2} (1 - x \sin^2 \varphi)^{1/2} d\varphi$$
(E3.7)

olmak üzere,

$$A^{0}(r_{\perp},z) = \frac{e}{2\pi} \int_{0}^{\infty} r'_{\perp} dr'_{\perp} \int_{-\infty}^{\infty} dz' \left[(r_{\perp} - r'_{\perp})^{2} + (z - z')^{2} \right]^{1/2}$$

$$\times E\left(\frac{4rr'}{(r+r')^{2}+(z-z')^{2}}\right)\nabla^{2}\rho_{p}(r_{\perp}',z')$$
(E3.8)

olur. Bu integrali $x_1 = 1$ -x ve $|\epsilon(x)| \le 2 \times 10^{-8}$ olmak üzere x cinsinden,

$$E(x) = \left[1 + a_1 x_1 + a_2 x_1^2 + a_3 x_1^3 + a_4 x_1^4\right] + \left[b_1 x_1 + b_2 x_1^2 + b_3 x_1^3 + b_4 x_1^4\right] \ln(1/x_1) + \epsilon(x)$$
(E3.9)

şeklinde yaklaşık bir açılımla ifade etmek mümkündür. Bu açılımda ki katsayılar Abramowitz vd., (1970) tarafından

$a_1 = 0.44325 \ 141463$	$b_1 = 0.24998 \ 368310$
$a_2 = 0.06260\ 601220$	$b_2 = 0.09200\ 180037$
$a_3 = 0.04757 \ 383546$	$b_3 = 0.04069 \ 697526$
$a_4 = 0.01736\ 506451$	$b_4 = 0.00526\ 449639$

şeklinde verilmektedir.

Ek 4. Skyrme-Hartree-Fock-Bogoliubov Metodu

Hartree-Fock yaklaşımında çekirdek içerisindeki her bir nükleon, geri kalan A-1 nükleon tarafından meydana getirilen bir dış alanda hareket ediyormuş gibi ele alınır (Suhonen, 2007; Ring ve Schuck, 1980; Stoitsov vd., 2005; Kuşoğlu, 2009; Yamak, 2010). Bu yaklaşımda, kuvvetli etkileşmeler çok-fermiyon sistemi v(r) dış potansiyel alanındaki A tane etkileşmeyen fermiyonlar (kuazi parçacıklar) sistemi haline gelir. Böyle bir dış potansiyel için, durağan tek-parçacık durumlarını bulmak kolaydır. Bu temel kuantum mekaniğinde bilinen potansiyel kuyusu problemidir. Tek-parçacık durumları, A-parçacıklı dalga fonksiyonu oluşturularak elde edilir. H_{oa} , ortalama alan Hamiltonyenine karşılık gelen, A-nükleonlu Schrödinger denklemi,

$$H_{oa}\psi_0(r_1, r_2, ..., r_A) = E\psi_0(r_1, r_2, ..., r_A),$$
(E4.1)

ile verilir. Dalga denklemi

$$\psi_0(r_1, r_2, ..., r_A) = \varphi_{\alpha_1}(r_1)\varphi_{\alpha_2}(r_2)...\varphi_{\alpha_A}(r_A), \qquad (E4.2)$$

dir. Denklem (E4.1)'de verilen Schrödinger denklemine bir dalga fonksiyonu yerleştirdiğimizde, A tane özdeş nükleonlu Schrödinger denklemleri,

$$h(r)\phi_{\alpha}(r) = \varepsilon_{\alpha}\phi_{\alpha}(r), \qquad h(r) = t(r) + v(r) = \frac{-\hbar^2}{2m_N}\nabla^2 + v(r)$$
(E4.3)

 ε_{α} ayrışma sabitleriyle,

$$E = \sum_{i=1}^{A} \varepsilon_{a_i}, \tag{E4.4}$$

koşulu sağlanacak biçimde verilir. Böylece A tane nükleondan oluşan sistemin toplam enerjisi, kinetik terim ve daha sonra tanımlanacak olan fenomenolojik etkileşmeler ile betimlenebilen potansiyel teriminin toplamları ile temsil edilebilir.

Çok-nükleon Schrödinger denkleminin çözümü, bir dış potansiyel kuyusu için birnükleon Schrödinger denkleminin çözülerek elde edilen bir parçacık dalga fonksiyonlarının bir çarpımıdır. Bu yolla, ortalama alan kavramı, karmaşık çok-nükleon problemini basit bir-nükleon problemine dönüştürür.

Problem, ortalama alanın nasıl belirleneceğini özellikle kuazi-parçacıklar arasındaki etkileşmeyi minimize eden uygun (optimal) bir ortalama alanı bırakmaktadır. Bu problemi çözmek için kuazi bir-parçacık durumlarının uygun $\{\phi_{\alpha}(r)\}$ seti ele alınabilir. Burada tek-parçacık enerji seviyelerinin değişimleri varyasyon ilkesi çerçevesinde $\phi_{\alpha}(r) \rightarrow \phi_{\alpha}(r) + \delta \phi_{\alpha}(r)$ kullanılarak çekirdeğin taban durum enerjileri minimize ederek belirlenir.

$$E_{gs} = \left\langle \psi_0 \left| H \right| \psi_0 \right\rangle, \quad H = T + V_{oa} + V_{artuk}$$
(E4.5)

varyasyon hesabının başlangıç noktası olarak anti-simetrik çarpım, Hartree metodu,

$$\Psi_0(r_1, r_2, ..., r_A) = A \left[\prod_{i=1}^A \varphi_{a_i}(r_i) \right]$$
(E4.6)

kullanmak yaygındır. Bu antisimetrikleştirilmiş deneme dalga fonksiyonu, verilen birparçacık durumlarının Slater determinantı olarak adlandırılır. Burada Α antisimetriklestirme islemcisi olup, çarpım dalga fonksiyonunda bir-parçacık yörüngelerinin işaretiyle ilgili permütasyonlarını gerçekleştirir ve aynı zamanda normalizasyon faktörünü de özetlemektedir. Örneğin 3-parçacık için 1-parçacık durumlarını 1, 2 ve 3 ile etiketlediğimizde normalize antisimetrik durum veya Slater determinanti

$$\psi_{0}(r_{1}, r_{2}, r_{3}) = \frac{1}{\sqrt{6}} \begin{vmatrix} \varphi_{1}(r_{1}) & \varphi_{1}(r_{2}) & \varphi_{1}(r_{3}) \\ \varphi_{2}(r_{1}) & \varphi_{2}(r_{2}) & \varphi_{2}(r_{3}) \\ \varphi_{3}(r_{1}) & \varphi_{3}(r_{2}) & \varphi_{3}(r_{3}) \end{vmatrix}$$
(E4.7)

olur. Denklem (E4.7) enerjisi, ψ_0 'ın normalizasyonu $\langle \psi_0 | \psi_0 \rangle = 1$ sağlandığı koşul altında değişir. Bu bağ koşullu varyasyona

$$\delta\left(\frac{\left\langle\psi_{0}|H|\psi_{0}\right\rangle}{\left\langle\psi_{0}|\psi_{0}\right\rangle}\right) = 0 \tag{E4.8}$$

götürür ve Lagrange belirsiz çarpanlar yöntemi kullanılarak koşulsuz hale dönüştürülebilir. Varyasyon gerçekleştirildikten sonra, belirsiz çarpanların yok olduğu fakat tek-parçacık enerjilerinin ε_{α} olduğu kolayca görülür. Sonuçta aşağıdaki Hartree (Fock) denklemi ortaya çıkar.

$$\frac{-\hbar^2}{2m_N}\nabla^2\varphi_{\alpha}(r) + V_{H(F)}\left(\left\{\varphi_t(r)\right\}\right)\varphi_{\alpha}(r) = \varepsilon_{\alpha}\varphi_{\alpha}(r), \quad (i=1,2,...,A ; \alpha=1,2,...,\infty) \quad (E4.9)$$

Bu denklem Schrödinger denklemine benzemekle beraber bilinmeyen dalga fonksiyonlarının bir fonksiyonla yer değiştiren V(r),

$$V(r) \to V_{H(F)}(\{\phi_i(r)\}) \tag{E4.10}$$

potansiyel terimini içermektedir. Burada V_H Hartree ortalama alanı, V_{HF} ise Hartree-Fock ortalama alanı göstermektedir. Bu iki alternatif paralel olarak yürütülür.

Denklem (E4.9) lineer değildir ve bundan dolayı çözümü Schrödinger denkleminkinden daha karmaşıktır. Çözüm sadece iterasyon ile yapılabilir. Tahmini birparçacık dalga fonksiyonu $\left\{\phi_i^{(0)}(r)\right\}_{i=1}^A$ seti ile başlanır ve bunlar ilk potansiyel terimi $V_{H(F)}^{(0)}$ yi hesaplamak için kullanılır. Aşağıdaki adımlarda olduğu gibi yeni dalga fonksiyonlarını

 $\{\phi_{\alpha}^{(1)}(r)\}_{\alpha=1}^{\infty}$ ve özdeğerlerini $\mathcal{E}_{\alpha}^{(1)}$ nin tam seti için denklem çözülür. Özfonksiyonları bu yeni setiyle $V_{H(F)}^{(1)}$ gibi kuazi potansiyeli üretip özfonksiyonların ve özenerjilerin bir sonraki seti için denklem (E4.9) çözülür. Şematik olarak bu süreci,

$$\phi_i^{(0)} \to V_{H(F)}^{(0)} \to \phi_\alpha^{(1)}, \varepsilon_\alpha^{(1)} \xrightarrow{\phi_i^{(1)}} V_{H(F)}^{(1)} \to \dots \to \phi_\alpha^{(n)}, \varepsilon_\alpha^{(n)}$$
(E4.11)

ile göstermek mümkündür. Bu süreç "öz-uyum" elde edilene kadar tekrarlanır.

Daha önce ifade edildiği gibi denklem (E4.3) ile verilen hamiltonyende yer alan potansiyel teriminin uygun bir fenomenolojik tanımı gereklidir. Yoğunluk bağımlı potansiyel terimlerinin deneysel sonuçlara dayalı olarak ayarlanması sonucunda bağlanma enerjisi, tek-parçacık enerjileri, nükleer yoğunluklar ve yarıçaplar gibi çekirdeğin temel nükleer özelliklerinin aynı anda hesaplanmasını olanaklı kılar. Bu noktada Hartree-Fock yönteminin başarısı kullanılan yoğunluk bağımlı etkileşmeler ile açıklanabilir. Genel olarak iki farklı etkilesme kuvveti yaygın bir biçimde kullanılmaktadır. Bunlar: sıfır-erimli Skyrme (Skyrme, 1956; Vautherin ve Brink, 1972) ve belirli bir erime sahip Gogny (Gogny, 1975) türü etkileşmelerdir. Skyrme etkileşmesi için Hartree-Fock Hamiltonyeni yerel özellik gösterdiğinden şekillenim uzayında Hartree-Fock eşitliklerinin çözümü nispeten kolaydır. Ancak çiftlenim hesaba katılmaz. Çiftlenimin önemli olduğu çekirdekler $(N \neq Z)$ durumunda ciftlenim terimi avrıca eklenir. Yoğunluk bağımlı Hartree-Fock Kuramı, çiftlenim ilişkilerini içerecek şekilde genelleştirilebilir. Bu amaçla, sistem bağımsız kuazi-parçacık dalga fonksiyonu ile tanımlanabilir. Parçacık dalga fonksiyonlarından, kuaziparçacık dalga fonksiyonuna geçiş Bogoliubov Dönüsümü ile gerçeklestirilir. Bu dönüsümde sistemin toplam enerjisi yalnızca bir yoğunluk matrisi ile değil, yoğunluk bağımlı bir enerji fonksiyonu ile elde edilir. Kuram, bu hali ile Hartree-Fock Bogoliubov kuramı olarak adlandırılır.

Standart HFB formalizminde iki-cisim Hamiltonyeni bir dizi yaratma ve yok etme işlemcileri cinsinden ifade edilebilirler. $\overline{\nu}_{n_1n_2n_3n_4} = n_1n_2 |V| n_3n_4 - n_4n_3$ anti-simetrik iki-cisim *N-N* etkileşme matrisi elemanları olmak üzere iki-cisim Hamiltonyeni

$$H = \sum_{n_1 n_2} e_{n_1 n_2} c_{n_1}^{\dagger} c_{n_2} + \frac{1}{4} \sum_{n_1 n_2 n_3 n_4} \overline{\nu}_{n_1 n_2 n_3 n_4} c_{n_1}^{\dagger} c_{n_2}^{\dagger} c_{n_4} c_{n_3}$$
(E4.12)

şeklinde verilir. HFB formalizminde temel seviyeye ilişkin dalga fonksiyonu $|\phi\rangle$ kuaziparçacık vakumu olarak belirlenir ($\alpha_k |\phi\rangle = 0$). kuazi-parçacık operatörleri (α, α^{\dagger}), orijinal parçacık yaratma ve yok etme işlemcişlerine

$$\alpha_k = \sum_n \left(U_{nk}^* c_n + V_{nk}^* c_n^\dagger \right) \quad \text{ve} \quad \alpha_k^\dagger = \sum_n \left(V_{nk} c_n + U_{nk} c_n^\dagger \right) \tag{E4.13}$$

şeklinde verilen lineer Bogoliubov dönüşümleri ile ilişkilendirilir. Bu kuazi-parçacık işlemcileri matris formunda,

$$\begin{pmatrix} \alpha \\ \alpha^{\dagger} \end{pmatrix} = \begin{pmatrix} U^{\dagger} & V^{\dagger} \\ V^{T} & U^{T} \end{pmatrix} \begin{pmatrix} c \\ c^{\dagger} \end{pmatrix}$$
(E4.14)

şeklinde yazılabilir (Stoitsov vd., 2005). Denklem (E4.14)'te yer alan U ve V matrisleri,

$$U^{\dagger}U + V^{\dagger}V = I, \qquad UU^{\dagger} + V^{*}V^{T} = I$$

$$U^{T}V + V^{T}U = 0, \qquad UV^{\dagger} + V^{*}U^{T} = 0$$
(E4.15)

eşitliklerini sağlarlar. HFB formalizminin temel yapı blokları denklem (E4.16) ve (E4.17)'de verilen yoğunluk (ρ) ve çiftlenim tek-cisim yoğunluk (κ) matrisleridir.

$$\rho_{nn'} = \left\langle \phi \left| c_{n'}^{\dagger} c_{n} \right| \phi \right\rangle = \left(V^{*} V^{T} \right)_{nn'}$$
(E4.16)

$$\kappa_{nn'} = \left\langle \phi \left| c_{n'} c_{n} \right| \phi \right\rangle = \left(V^* U^T \right)_{nn'}$$
(E4.17)

Bu denklemlerle verilen normal yoğunluk (ρ) ve çiftlenim tek-cisim yoğunluk (κ) matrisleri cinsinden denklem (E4.12) ile verilen Hamiltonyen,

$$E[\rho,k] = \frac{\langle \phi | H | \phi \rangle}{\langle \phi | \phi \rangle} = \operatorname{Tr}\left[\left(e + \frac{1}{2}\Gamma\right)\rho\right] - \frac{1}{2}\operatorname{Tr}\left[\Delta\kappa^*\right]$$
(E4.18)

şeklinde bir enerji fonksiyoneli olarak ifade edilebilir. Bu denklemde kapalı formda verilen terimler,

$$\Gamma_{n_1n_3} = \sum_{n_2n_4} \overline{\nu}_{n_1n_2n_3n_4} \rho_{n_4n_2}, \qquad \Delta_{n_1n_2} = \frac{1}{2} \sum_{n_3n_4} \overline{\nu}_{n_1n_2n_3n_4} \kappa_{n_3n_4}$$
(E4.19)

şeklindedir. λ ortalama parçacık sayısını belirlemek üzere tanımlanan Lagrange çarpanı olmak üzere, ρ ve κ ya göre denklem (E4.18) ile verilen varyasyon ile

$$\begin{pmatrix} e+\Gamma-\lambda & \Delta\\ -\Delta^* & -(e+\Gamma)^*+\lambda \end{pmatrix} \begin{pmatrix} U\\ V \end{pmatrix} = E \begin{pmatrix} U\\ V \end{pmatrix}$$
(E4.20)

HFB eşitlikleri elde edilir.

Skyrme etkileşmesi dikkate alındığında, denklem (E4.18) ile verilen HFB enerjisi,

$$E[\rho,\tilde{\rho}] = \left[\mathbf{d}^{3} \mathbf{r} \mathcal{H}(\mathbf{r}) \right]$$
(E4.21)

şeklinde yerel enerji yoğunluğu fonksiyoneli formuna sahiptir. Bu denklemde ortalama alan ve çiftlenim enerji yoğunlukları $\mathcal{H}(\mathbf{r}) = H(\mathbf{r}) + \tilde{H}(\mathbf{r})$ ile verilir. Bu enerji yoğunlukları daha açık bir formda,

ve

$$H(\mathbf{r}) = \frac{\hbar^{2}}{2m} + \frac{1}{2}t_{0} \left[\left(1 + \frac{1}{2}x_{0} \right) \rho^{2} - \left(\frac{1}{2} + x_{0} \right) \sum_{q} \rho_{q}^{2} \right]$$

+ $\frac{1}{2}t_{1} \left[\left(1 + \frac{1}{2}x_{1} \right) \rho \left(\tau - \frac{3}{4}\Delta\rho \right) - \left(\frac{1}{2} + x_{1} \right) \sum_{q} \rho_{q} \left(\tau_{q} - \frac{3}{4}\Delta\rho_{q} \right) \right]$
+ $\frac{1}{2}t_{2} \left[\left(1 + \frac{1}{2}x_{2} \right) \rho \left(\tau + \frac{1}{4}\Delta\rho \right) - \left(\frac{1}{2} + x_{2} \right) \sum_{q} \rho_{q} \left(\tau_{q} + \frac{1}{4}\Delta\rho_{q} \right) \right]$ (E4.22)
+ $\frac{1}{12}t_{3}\rho^{\alpha} \left[\left(1 + \frac{1}{2}x_{3} \right) \rho^{2} - \left(x_{3} + \frac{1}{2} \right) \sum_{q} \rho_{q}^{2} \right] - \frac{1}{8}(t_{1}x_{1} + t_{2}x_{2}) \sum_{ij} \mathbf{J}_{ij}^{2}$
+ $\frac{1}{8}(t_{1} - t_{2}) \sum_{q,ij} \mathbf{J}_{q,ij}^{2} - \frac{1}{2}W_{0} \sum_{ijk} \mathcal{E}_{ijk} \left[\rho \nabla_{k} \mathbf{J}_{ij} + \sum_{q} \rho_{q} \nabla_{k} \mathbf{J}_{q,ij} \right]$
 $\tilde{H}(\mathbf{r}) = \frac{1}{2}V_{0} \left[1 - V_{1} \left(\frac{\rho}{\rho_{0}} \right)^{\gamma} \right] \sum_{q} \tilde{\rho}_{q}^{2}$ (E4.23)

dir (Stoitsov vd., 2005). Denklem (E4.22) ve (E4.23)'te yer alan q etiketi nötron veya protonların yoğunluklarını temsil ederken etiketin olmadığı yoğunluklar nötron ve proton yoğunluklarının toplamını temsil etmektedir. Bu denklemlerden $H(\mathbf{r})$ ve $\tilde{H}(\mathbf{r})$ nin yerel parçacık yoğunluğu $\rho(\mathbf{r})$, yerel çiftlenim yoğunluğu $\tilde{\rho}(\mathbf{r})$, kinetik enerji yoğunluğu $\tau(\mathbf{r})$ ve spin-akım yoğunluğuna $\mathbf{J}_{ij}(\mathbf{r})$ bağlı olduğu görülmektedir.

Nötron			Proton				
Düzey	SKII ^a	Bu Çalışma	Deney ^a	Düzey	SKII ^a	Bu Çalışma	Deney ^a
1s1/2	-55.33	-53.75		1s1/2	-47.11	-45.64	-50
1p3/2	-39.22	-37.90		1p3/2	-31.30	-30.13	
1p1/2	-36.08	-33.38		1p1/2	-28.23	-25.62	-34
1d5/2	-23.26	-22.78		1d5/2	-15.67	-15.36	
2s1/2	-17.08	-17.19	-18.10	2s1/2	-9.57	-9.90	-10.90
1d3/2	-17.53	-16.13	-15.60	1d3/2	-10.10	-8.80	-8.30
1f7/2	-8.34	-8.60	-8.36	1f7/2	-1.22	-1.60	-1.40
2p3/2	-3.02	-4.09	-6.20				
2p1/2	-1.56	-2.33					
1f5/2	-1.21	-1.52					

Ek Tablo 1. ⁴⁰Ca çekirdeği için MeV cinsinden tek-parçacık enerjileri.

^a Vautherin ve Brink, 1972

Nötron			Proton				
Düzey	SKII ^a	Bu Çalışma	Deney ^a	Düzey	SKII ^a	Bu Çalışma	Deney ^a
1s1/2	-55.74	-54.02		1s1/2	-53.21	-51.78	
1p3/2	-39.80	-38.74		1p3/2	-38.73	-38.07	
1p1/2	-37.60	-35.39		1p1/2	-36.24	-34.51	
1d5/2	-23.86	-23.64		1d5/2	-23.47	-23.66	
2s1/2	-18.10	-17.53	-12.55	2s1/2	-16.48	-15.76	-15.30
1d3/2	-18.95	-17.53	-12.52	1d3/2	-18.48	-17.32	-15.70
1f7/2	-9.10	-9.51	-9.94	1f7/2	-8.61	-9.41	-9.60
2p3/2	-4.13	-4.78	-5.14	2p3/2	-1.72	-2.28	-1.90
2p1/2	-2.60	-3.41	-3.11	2p1/2	-0.23	-0.79	0.00
1f5/2	-2.02	-2.16		1f5/2	-1.69	-1.52	

Ek Tablo 2. ⁴⁸Ca çekirdeği için MeV cinsinden tek-parçacık enerjileri.

^a Vautherin ve Brink, 1972

Nötron			Proton				
Düzey	TMA ^a	Bu Çalışma	Deney ^b	Düzey	TMA ^a	Bu Çalışma	Deney ^b
2s1/2	-19.83	-22.916		2s1/2	-10.09	-13.03	
1d3/2	-20.39	-25.939		1d3/2		-15.99	
1f7/2	-16.64	-17.01	-16.93	1f7/2	-7.16	-7.525	-7.49
2p3/2	-10.25	-8.917	-10.36	2p3/2	-0.70	-0.035	-0.99
1f5/2	-9.48	-8.355	-9.53	1f5/2	0.33	0.92	0.13
2p1/2	-9.14	-7.775	-8.48	2p1/2	0.41	0.96	0.84

Ek Tablo 3. ⁵⁶Ni çekirdeği için MeV cinsinden tek-parçacık enerjileri.

^a Geng, 2005; ^b Trache vd., 1996

Nötron			Proton				
Düzey	SKII ^a	Bu Çalışma	Deney ^a	Düzey	SKII ^a	Bu Çalışma	Deney ^a
1s1/2	-62.12	-59.72		1s1/2	-52.68	-50.51	-54
1p3/2	-50.35	-48.38		1p3/2	-42.19	-40.57	
1p1/2	-49.17	-46.52		1p1/2	-40.80	-38.51	-43
1d5/2	-37.47	-36.19		1d5/2	-30.22	-29.39	
1d3/2	-34.68	-32.28		1d3/2	-27.20	-25.25	-27
2s1/2	-31.99	-30.32		2s1/2	-23.70	-22.27	
1f7/2	-24.33	-23.9		1f7/2	-17.57	-17.66	
1f5/2	-19.42	-17.92	-13.50	1f5/2	-12.62	-11.51	
2p3/2	-17.63	-17.29	-13.10	2p3/2	-9.48	-9.34	
2p1/2	-15.90	-15.66	-12.60	2p1/2	-7.91	-7.76	
1g9/2	-11.53	-11.92	-12.00	1g9/2	-4.92	-5.85	
2d5/2	-5.07	-5.86	-7.20				
3s1/2	-3.12	-4.08	-5.63				
2d3/2	-2.88	-3.88	-4.88				
1g7/2	-4.64	-4.59	-4.46				

Ek Tablo 4. ⁹⁰Zr çekirdeği için MeV cinsinden tek-parçacık enerjileri.

^a Vautherin ve Brink, 1972

Nötron						Proton	
Düzey	SLy4 ^a	Bu Çalışma	Deney ^a	Düzey	SLy4 ^a	Bu Çalışma	Deney ^a
2p1/2		-20.04		2p1/2	-17.60	-17.39	-16.10
1g9/2		-17.93		1g9/2	-15.60	-16.18	-15.80
1g7/2	-11.40	-12.01	-9.80	1g7/2	-9.30	-10.07	-9.70
2d5/2	-11.70	-10.48	-9.00	2d5/2	-9.20	-7.45	-8.70
3s1/2	-9.40	-8.44	-7.70	3s1/2	-6.40	-4.75	
1h11/2	-7.70	-7.35	-7.60	1h11/2	-6.20	-5.43	-6.80
2d3/2	-9.10	-8.83	-7.40	2d3/2	-6.90	-5.76	-7.20
2f7/2	-2.00	-1.46	-2.40				
3p3/2	-0.30	-0.64	-1.60				
1h9/2	0.80	-0.32	-0.90				
3p1/2	0.30	-0.3	-0.80				
2f5/2	0.60	-0.04	-0.40				

Ek Tablo 5. ¹³²Sn çekirdeği için MeV cinsinden tek-parçacık enerjileri.

^a Goriely vd., 2003

Nötron			Proton				
Düzey	SLy4 ^a	Bu Çalışma	Deney ^a	Düzey	SLy4 ^a	Bu Çalışma	Deney ^a
1g9/2		-27.807		1g9/2	-17.70	-19.401	-15.40
1g7/2		-23.787		1g7/2	-13.50	-15.212	-11.40
2d5/2		-20.397		2d5/2	-11.50	-11.175	-9.70
1h11/2		-18.59		1h11/2	-9.70	-10.367	-9.40
2d3/2		-18.724		2d3/2	-9.60	-9.522	-8.40
3s1/2		-17.987		3s1/2	-8.80	-8.409	-8.00
1h9/2	-12.50	-13.12	-10.90	1h9/2	-3.80	-4.742	-3.80
2f7/2	-12.00	-10.961	-9.70	2f7/2	-2.90	-1.704	-2.90
1i13/2	-9.60	-9.333	-9.00	1i13/2	-1.50	-1.164	-2.20
3p3/2	-9.20	-8.28	-8.30	3p3/2	0.40	1.581	-1.00
2f5/2	-9.10	-8.944	-8.00	2f5/2	-0.40	0.308	-0.50
3p1/2	-8.10	-7.55	-7.40				
2g9/2	-3.20	-2.392	-3.90				
1i11/2	-1.70	-2.726	-3.20				
1j15/2	-0.60	-0.226	-2.50				
3d5/2	-0.70	-0.685	-2.40				
4s1/2	0.00	-0.457	-1.90				
2g7/2	0.00	-0.507	-1.50				
3d3/2	0.30	-0.084	-1.40				

Ek Tablo 6. ²⁰⁸Pb çekirdeği için MeV cinsinden tek-parçacık enerjileri.

^a Goriely vd., 2003
N	Α	$BE \; (\text{MeV})$	$S_{2n}(\text{MeV})$	$r_n(\mathrm{fm})$	$r_p(\text{fm})$	$r_{c}(\mathrm{fm})$	$Q_{n}(\mathbf{b})$	$Q_{p^{(\mathrm{b})}}$	$Q_T^{(\mathrm{b})}$	β_2
Z =	= 10 (Neon)								
8	18	133.984	35.708	2.718	2.987	3.092	0.008	0.018	0.026	0.019
10	20	154.050	20.066	2.890	2.932	3.040	0.040	0.045	0.085	0.053
12	22	175.010	20.960	3.033	2.921	3.028	0.417	0.315	0.732	0.388
14	24	189.026	14.016	3.111	2.883	2.992	0.263	0.185	0.448	0.206
16	26	200.799	11.773	3.236	2.884	2.993	0.000	0.000	0.000	0.000
18	28	209.369	8.570	3.379	2.925	3.032	0.000	0.000	0.000	0.000
20	30	216.685	7.316	3.499	2.971	3.077	0.000	0.000	0.000	0.000
22	32	217.481	0.796	3.648	3.000	3.105	0.000	0.000	0.000	0.000
24	34	219.092	1.611	3.788	3.054	3.157	0.929	0.304	1.233	0.317
26	36	219.081	-0.011	3.912	3.089	3.191	1.210	0.359	1.569	0.367
28	38	217.843	-1.238	4.021	3.110	3.211	1.278	0.351	1.629	0.348
Z =	= 12 (Magnezvu	m)							
_8	20	135.534	41.358	2.720	3.149	3.247	0.008	0.027	0.035	0.022
10	22	165.849	30.315	2.896	3.094	3.195	0.314	0.437	0.751	0.399
12	24	193.267	27.418	3.007	3.047	3.151	0.495	0.506	1.001	0.460
14	26	212.199	18.932	3.089	3.004	3.109	0.426	0.409	0.835	0.335
16	28	228.144	15.945	3.200	3.004	3.109	0.393	0.339	0.732	0.260
18	30	240.490	12.346	3.322	3.023	3.127	0.297	0.259	0.556	0.176
20	32	251.431	10.941	3.422	3.048	3.152	0.016	0.008	0.024	0.007
22	34	256.481	5.050	3.562	3.088	3.190	0.433	0.262	0.695	0.179
24	36	262.849	6.368	3.699	3.153	3.253	1.105	0.523	1.628	0.387
26	38	265.733	2.884	3.808	3.186	3.285	1.388	0.574	1.962	0.419
28	40	267.936	2.203	3.924	3.211	3.309	1.549	0.583	2.132	0.418
30	42	268.295	0.359	4.028	3.233	3.330	1.595	0.576	2.171	0.393
32	44	267.696	-0.599	4.116	3.238	3.336	1.358	0.514	1.872	0.313
7 -	- 11 (Siliouum)								
2 = 10	- 1+(160 <i>161</i>	33 886	2871	3 201	3 200	0.216	0 220	0 545	0.251
10	∠4 26	201 609	22.000	2.074 2.082	3.201	3.300	0.210	0.529	0.343	0.231
14	20	201.096	20 256	2.905	2,000	3.238	0.420	0.472	0.090	0.301
14	20 20	251.034	29.550	2 1 5 9	2.099 2.077	3.200	-0.409	-0.410	-0.627	-0.294
10	30 20	230.380 267.056	17.352	3.130 2.266	5.077	5.16U 2.102	-0.100	-0.200	-0.388	-0.194
10	52 24	201.930 202 757	17.370	3.200 2.265	0.090	3.19Z	-0.231	-0.189	-0.420	-0.119
20	54 26	203.131	13.801	5.505 2.492	3.114	3.213	0.010	0.008	0.018	0.003
22	20 20	291.704	ð.UU/ 7.600	3.48Z	5.155 2.102	3.230 2.202	0.031	0.015	0.040	0.011
24	38 40	299.402	/.098	3.009	5.195 2.210	5.292 2.216	0.848	0.420	1.208	0.28/
20	40	303.030	0.108	5./12 2.826	3.218	3.310	-0.868	-0.442	-1.510	-0.25/
28	42	512.495	0.803	3.826	3.260	3.331	-1.224	-0.543	-1./6/	-0.520

Ek Tablo 7. RMF Modelinde çift-çift çekirdeklerin taban-durum nükleer özellikleri

N	A	$BE \ (\text{MeV})$	$S_{2n}(\text{MeV})$	r_n (fm)	$r_p(\mathrm{fm})$	$\Gamma_{\mathcal{C}}(\mathrm{fm})$	$Q_n(\mathbf{b})$	$Q_{p^{(\mathrm{b})}}$	$Q_T(\mathbf{b})$	β_2
Z =	= 14 (Silisvum)								
30	44	315.642	3.147	3.926	3.280	3,376	-1.296	-0.536	-1.832	-0.307
32	46	317.583	1.941	4.010	3.285	3.381	-1.191	-0.468	-1.659	-0.258
34	48	319.643	2.060	4.069	3.245	3.342	0.087	0.009	0.096	0.015
36	50	320.143	0.500	4.163	3.283	3.379	0.092	0.019	0.111	0.015
Z =	: 16 (Kükürt)								
12	28	206.173	36.118	2.985	3.279	3.375	0.353	0.428	0.781	0.277
14	30	239.025	32.852	3.048	3.223	3.321	-0.316	-0.353	-0.669	-0.212
16	32	265.294	26.269	3.141	3.190	3.289	0.251	0.258	0.509	0.145
18	34	287.162	21.868	3.262	3.213	3.311	-0.259	-0.235	-0.494	-0.127
20	36	306.990	19.828	3.354	3.227	3.325	0.001	0.001	0.002	0.004
22	38	318.940	11.950	3.460	3.240	3.338	0.026	0.017	0.043	0.009
24	40	331.780	12.840	3.567	3.271	3.368	0.765	0.458	1.223	0.240
26	42	342.243	10.463	3.659	3.293	3.339	0.976	0.529	1.505	0.272
28	44	349.953	7.710	3.764	3.318	3.413	1.184	0.565	1.749	0.293
30	46	355.681	5.728	3.847	3.327	3.421	1.105	0.492	1.597	0.248
32	48	360.382	4.701	3.982	3.344	3.438	-1.001	-0.420	-1.421	-0.206
34	50	364.452	4.070	4.028	3.360	3.454	-0.799	-0.349	-1.148	-0.155
36	52	367.518	3.066	4.112	3.379	3.472	-0.553	-0.257	-0.810	-0.103
38	54	369.571	2.053	4.187	3.411	3.504	0.207	0.098	0.305	0.036
40	56	371.474	1.903	4.263	3.452	3.544	0.055	0.005	0.060	0.007
42	58	369.813	-1.661	4.360	3.478	3.569	0.121	0.020	0.141	0.015
7	10 (A								
L =	: 18 (. 20	Argon)	20 572	2 0 1 0	2 410	2 5 1 2	0.200	0.250	0 (54	0.207
12	30	206.359	39.573	3.010	3.419	3.512	0.296	0.358	0.654	0.207
14	32 24	243.620	37.201	3.062	3.342	3.430	-0.197	-0.243	-0.440	-0.125
10	34 26	2/4.318	30.098	3.1/1	3.324	3.419	-0.225	-0.250	-0.481	-0.124
18	30 20	302.137	27.839	3.280	3.332	5.420 2.420	-0.340	-0.333	-0.099	-0.103
20	38	326.021	23.804	3.300	3.331	3.420	0.006	0.006	0.012	0.003
22	40	342.151	10.130	3.450	3.330	3.431	0.009	0.005	0.014	0.003
24	42	357.064	14.913	3.541	3.347	3.442	0.473	0.292	0.765	0.138
26	44	3/1.031	13.967	3.617	3.357	3.451	0.629	0.352	0.981	0.164
28	46	383.777	12.746	3.691	3.366	3.459	-0.602	-0.368	-0.970	-0.151
30	48	392.763	8.986	3.795	3.388	3.481	-0.754	-0.402	-1.156	-0.167
32	50	400.142	7.379	3.899	3.416	3.508	-0.924	-0.438	-1.362	-0.184
34	52	406.537	6.395	3.993	3.449	3.540	-1.054	-0.468	-1.522	-0.193
36	54	411.684	5.147	4.072	3.466	3.558	-0.813	-0.386	-1.199	-0.143
38	56	415.770	4.086	4.142	3.485	3.575	0.054	0.014	0.068	0.008
40	58	420.200	4.430	4.214	3.522	3.611	0.039	0.004	0.043	0.005
42	60	420.238	0.038	4.302	3.547	3.636	0.074	0.010	0.084	0.008

Ek Tablo 7'nin devamı

Ek Tablo 7'nin devamı

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ν	A	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\mathrm{fm})$	$r_p(\text{fm})$	$r_{\mathcal{C}}(\mathrm{fm})$	$Q_{n}(\mathbf{b})$	$Q_{p^{(b)}}$	$Q_T(\mathbf{b})$	β_2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_	• • • •									
14 34 245,360 41,715 3.077 3.492 3.583 0.004 0.021 0.021 0.005 16 36 280.176 3.4816 3.221 3.468 3.559 0.006 0.015 0.021 0.004 20 40 341.827 29.880 3.394 3.452 3.543 0.007 0.011 0.010 0.021 0.004 22 42 362.205 20.378 3.444 3.535 0.011 0.009 0.020 0.003 26 46 397.725 17.559 3.617 3.442 3.533 0.011 0.009 0.020 0.003 25 443.529 0.689 3.887 3.479 3.570 0.012 0.008 0.031 0.004 35 56 451.563 7.764 4.064 3.534 3.623 0.025 0.008 0.033 0.004 3.68 3.623 0.026 0.007 0.032 0.003 0.004 3.664 3.623 0.025 0.007 0.33 0.004 3.664 3.025 0.006	Z =	20 (Kalsiyum)								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	34	245.360	41.715	3.077	3.492	3.583	0.004	0.021	0.025	0.006
18 38 311,947 31,71 3.313 3.455 3.546 0.007 0.013 0.020 0.004 20 40 341,827 29,880 3.394 3.452 3.543 0.009 0.012 0.021 0.004 24 44 380,166 17,961 3.555 3.443 3.535 0.011 0.009 0.020 0.003 26 46 397,725 17,559 3.617 3.442 3.533 0.011 0.008 0.019 0.003 30 50 425,550 11,505 3.784 3.460 3.551 0.018 0.008 0.026 0.003 32 52 435,239 9.689 3.887 3.770 0.025 0.007 0.033 0.004 36 54 443,787 8.548 3.981 3.503 3.523 0.025 0.007 0.032 0.003 454 443,787 8.548 3.981 3.503 3.526 0.007 0.034 0.003 42 62 468.362 2.251 4.295	16	36	280.176	34.816	3.221	3.468	3.559	0.006	0.015	0.021	0.005
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	38	311.947	31.771	3.313	3.455	3.546	0.007	0.013	0.020	0.004
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	40	341.827	29.880	3.394	3.452	3.543	0.009	0.012	0.021	0.004
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	42	362.205	20.378	3.484	3.447	3.539	0.011	0.010	0.021	0.004
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	44	380.166	17.961	3.555	3.443	3.535	0.011	0.009	0.020	0.003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	46	397.725	17.559	3.617	3.442	3.533	0.011	0.008	0.019	0.003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	48	414.045	16.320	3.682	3.445	3.536	0.012	0.007	0.019	0.003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	50	425.550	11.505	3.784	3.460	3.551	0.018	0.008	0.026	0.003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	52	435.239	9.689	3.887	3.479	3.570	0.023	0.008	0.031	0.004
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	54	443.787	8.548	3.981	3.503	3.593	0.025	0.008	0.033	0.004
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	56	451.563	7.776	4.064	3.534	3.623	0.026	0.007	0.033	0.004
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	38	58	459.203	7.640	4.138	3.567	3.655	0.025	0.007	0.032	0.003
4262468.3622.2514.2953.6213.7080.0430.0070.0500.0054464468.3800.0184.3773.6413.7280.0690.0090.0780.0074666468.323-0.0574.4523.6613.7480.1340.0190.1530.013Z = 22 (Titanyum)Z313.65135.7223.3253.5763.6650.0040.0160.0200.0042042347.66234.0113.3993.5583.6470.0080.0160.0240.0042244371.90524.2433.4813.5433.6330.0100.0140.0240.0042446393.76321.8583.5473.5313.620-0.002-0.002-0.004-0.0012648415.18021.4173.6043.5223.6120.0130.0120.0310.0020.0033052449.00313.7973.7623.5343.6230.0190.0120.0310.0043254460.71811.7153.8613.5553.6430.0280.0140.0440.0053456471.50210.7843.9503.5793.6680.0310.0130.0440.0053456471.50210.7843.9503.5750.0320.0080.0290.003456440.90610.0964.1003.6393.726 <th< td=""><td>40</td><td>60</td><td>466.111</td><td>6.908</td><td>4.209</td><td>3.598</td><td>3.686</td><td>0.028</td><td>0.006</td><td>0.034</td><td>0.003</td></th<>	40	60	466.111	6.908	4.209	3.598	3.686	0.028	0.006	0.034	0.003
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	42	62	468.362	2.251	4.295	3.621	3.708	0.043	0.007	0.050	0.005
4666468.323 -0.057 4.4523.6613.748 0.134 0.019 0.153 0.013 $Z = 22$ (Titanyum)1840313.65135.7223.3253.5763.665 0.004 0.016 0.020 0.004 2042347.66234.0113.3993.5583.647 0.008 0.016 0.024 0.004 2244371.90524.2433.4813.5433.633 0.010 0.014 0.024 0.004 2446393.76321.8583.5473.5313.620 -0.002 -0.002 -0.004 -0.001 2648415.18021.4173.6043.5223.612 0.013 0.013 0.026 0.004 2850435.20620.0263.6633.5193.609 0.012 0.010 0.022 0.003 3052449.00313.7973.7623.5343.623 0.019 0.012 0.031 0.044 2054460.71811.7153.8613.5553.643 0.028 0.014 0.042 0.005 3456471.50210.7843.9503.5793.668 0.031 0.013 0.044 0.005 3460491.90610.0964.1003.6393.726 0.021 0.008 0.029 0.003 4062501.2009.2944.1703.6673.754 0.022 0.007 0.29 <	44	64	468.380	0.018	4.377	3.641	3.728	0.069	0.009	0.078	0.007
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46	66	468.323	-0.057	4.452	3.661	3.748	0.134	0.019	0.153	0.013
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
1840313.65135.7223.3253.5763.6650.0040.0160.0200.0042042347.66234.0113.3993.5583.6470.0080.0160.0240.0042244371.90524.2433.4813.5433.6330.0100.0140.0240.0042446393.76321.8583.5473.5313.620 -0.002 -0.002 -0.004 -0.001 2648415.18021.4173.6043.5223.6120.0130.0130.0260.0042850435.20620.0263.6633.5193.6090.0120.0100.0220.0033052449.00313.7973.7623.5343.6230.0190.0120.0310.0043254460.71811.7153.8613.5553.6430.0280.0140.0420.0053456471.50210.7843.9503.5793.6680.0310.0130.0440.0053860491.90610.0964.1003.6393.7260.0210.0080.0290.0034062501.2009.2944.1703.6673.7540.0220.0070.0290.0034264505.5984.3984.2473.6893.7750.0320.0080.0400.0044466507.9162.3184.3163.7093.8451.555	Z =	22 (Titanyum)								
2042347.66234.0113.3993.5583.6470.0080.0160.0240.0042244371.90524.2433.4813.5433.6330.0100.0140.0240.0042446393.76321.8583.5473.5313.620 -0.002 -0.002 -0.004 -0.001 2648415.18021.4173.6043.5223.6120.0130.0130.0260.0042850435.20620.0263.6633.5193.6090.0120.0100.0220.0033052449.00313.7973.7623.5343.6230.0190.0120.0310.0043254460.71811.7153.8613.5553.6430.0280.0140.0420.0053456471.50210.7843.9503.5793.6680.0330.0150.0480.0063658481.81010.3084.0313.6093.6960.0310.0130.0440.0053860491.90610.0964.1003.6393.7260.0210.0080.0290.0034062501.2009.2944.1703.6673.7540.0220.0070.0290.0034264505.5984.3984.2473.6893.7750.0320.0080.0400.0044466507.9162.3184.3163.7093.8421.501	18	40	313.651	35.722	3.325	3.576	3.665	0.004	0.016	0.020	0.004
2244371.90524.2433.4813.5433.6330.0100.0140.0240.0042446393.76321.8583.5473.5313.620 -0.002 -0.002 -0.004 -0.001 2648415.18021.4173.6043.5223.6120.0130.0130.0260.0042850435.20620.0263.6633.5193.6090.0120.0100.0220.0033052449.00313.7973.7623.5343.6230.0190.0120.0310.0043254460.71811.7153.8613.5553.6430.0280.0140.0420.0053456471.50210.7843.9503.5793.6680.0330.0150.0480.0063658481.81010.3084.0313.6093.6960.0310.0130.0440.0053860491.90610.0964.1003.6393.7260.0210.0080.0290.0034062501.2009.2944.1703.6673.7540.0220.0070.0290.0034264505.5984.3984.2473.6893.7750.0320.0080.0400.0044466507.9162.3184.3163.7093.7841.5010.5262.0270.1644870514.0312.3414.4743.7613.8451.955<	20	42	347.662	34.011	3.399	3.558	3.647	0.008	0.016	0.024	0.004
2446393.76321.8583.5473.5313.620 -0.002 -0.002 -0.004 -0.001 2648415.18021.4173.6043.5223.6120.0130.0130.0260.0042850435.20620.0263.6633.5193.6090.0120.0100.0220.0033052449.00313.7973.7623.5343.6230.0190.0120.0310.0043254460.71811.7153.8613.5553.6430.0280.0140.0420.0053456471.50210.7843.9503.5793.6680.0330.0150.0480.0063658481.81010.3084.0313.6093.6960.0310.0130.0440.0053860491.90610.0964.1003.6393.7260.0210.0080.0290.0034062501.2009.2944.1703.6673.7540.0220.0070.0290.0034264505.5984.3984.2473.6893.7750.0320.0080.0400.0044466507.9162.3184.3163.7093.7940.0490.0120.0610.0054668511.6903.7744.3963.7393.8241.5010.5262.0270.1644870514.0312.3414.4743.7613.8451.955 </td <td>22</td> <td>44</td> <td>371.905</td> <td>24.243</td> <td>3.481</td> <td>3.543</td> <td>3.633</td> <td>0.010</td> <td>0.014</td> <td>0.024</td> <td>0.004</td>	22	44	371.905	24.243	3.481	3.543	3.633	0.010	0.014	0.024	0.004
2648415.18021.4173.6043.5223.6120.0130.0130.0260.0042850435.20620.0263.6633.5193.6090.0120.0100.0220.0033052449.00313.7973.7623.5343.6230.0190.0120.0310.0043254460.71811.7153.8613.5553.6430.0280.0140.0420.0053456471.50210.7843.9503.5793.6680.0310.0130.0440.0053658481.81010.3084.0313.6093.6960.0210.0080.0290.0034062501.2009.2944.1703.6673.7540.0220.0070.0290.0034264505.5984.3984.2473.6893.7750.0320.0080.0400.0044466507.9162.3184.3163.7093.7940.0490.0120.0610.0054668511.6903.7744.3963.7393.8241.5010.5262.0270.1644870514.0312.3414.4743.7613.8451.9550.6172.5720.1985072515.5841.5534.5483.7793.8741.9820.5082.4900.1755476517.2740.7324.6753.7993.8831.3700.311 </td <td>24</td> <td>46</td> <td>393.763</td> <td>21.858</td> <td>3.547</td> <td>3.531</td> <td>3.620</td> <td>-0.002</td> <td>-0.002</td> <td>-0.004</td> <td>-0.001</td>	24	46	393.763	21.858	3.547	3.531	3.620	-0.002	-0.002	-0.004	-0.001
2850435.20620.0263.6633.5193.6090.0120.0100.0220.0033052449.00313.7973.7623.5343.6230.0190.0120.0310.0043254460.71811.7153.8613.5553.6430.0280.0140.0420.0053456471.50210.7843.9503.5793.6680.0330.0150.0480.0063658481.81010.3084.0313.6093.6960.0310.0130.0440.0053860491.90610.0964.1003.6393.7260.0210.0080.0290.0034062501.2009.2944.1703.6673.7540.0220.0070.0290.0034264505.5984.3984.2473.6893.7750.0320.0080.0400.0044466507.9162.3184.3163.7093.7940.0490.0120.0610.0054668511.6903.7744.3963.7393.8241.5010.5262.0270.1644870514.0312.3414.4743.7613.8451.9550.6172.5720.1985072515.5841.5534.5483.7793.8741.9820.5082.4900.1755476517.2740.7324.6753.7993.8831.3700.311 </td <td>26</td> <td>48</td> <td>415.180</td> <td>21.417</td> <td>3.604</td> <td>3.522</td> <td>3.612</td> <td>0.013</td> <td>0.013</td> <td>0.026</td> <td>0.004</td>	26	48	415.180	21.417	3.604	3.522	3.612	0.013	0.013	0.026	0.004
30 52 449.003 13.797 3.762 3.534 3.623 0.019 0.012 0.031 0.004 32 54 460.718 11.715 3.861 3.555 3.643 0.028 0.014 0.042 0.005 34 56 471.502 10.784 3.950 3.579 3.668 0.033 0.015 0.048 0.006 36 58 481.810 10.308 4.031 3.609 3.696 0.031 0.013 0.044 0.005 38 60 491.906 10.096 4.100 3.639 3.726 0.021 0.008 0.029 0.003 40 62 501.200 9.294 4.170 3.667 3.754 0.022 0.007 0.299 0.003 42 64 505.598 4.398 4.247 3.689 3.775 0.032 0.008 0.040 0.004 44 66 507.916 2.318 4.316 3.709 3.794 0.049 0.012 0.061 0.005 46 68 511.690 3.774 4.396 3.739 3.824 1.501 0.526 2.027 0.164 48 70 514.031 2.341 4.474 3.761 3.845 1.955 0.617 2.572 0.198 50 72 515.584 1.553 4.548 3.778 3.862 2.155 0.611 2.766 0.204 52 74 516.54	28	50	435.206	20.026	3.663	3.519	3.609	0.012	0.010	0.022	0.003
3254460.71811.7153.8613.5553.6430.0280.0140.0420.0053456471.50210.7843.9503.5793.6680.0330.0150.0480.0063658481.81010.3084.0313.6093.6960.0310.0130.0440.0053860491.90610.0964.1003.6393.7260.0210.0080.0290.0034062501.2009.2944.1703.6673.7540.0220.0070.0290.0034264505.5984.3984.2473.6893.7750.0320.0080.0400.0044466507.9162.3184.3163.7093.7940.0490.0120.0610.0054668511.6903.7744.3963.7393.8241.5010.5262.0270.1644870514.0312.3414.4743.7613.8451.9550.6172.5720.1985072515.5841.5534.5483.7783.8622.1550.6112.7660.2045274516.5420.9584.6143.7903.8741.9820.5082.4900.1755476517.2740.7324.6753.7993.8831.3700.3111.6810.1135678518.0620.7884.7503.8093.8920.5700.026 <td>30</td> <td>52</td> <td>449.003</td> <td>13.797</td> <td>3.762</td> <td>3.534</td> <td>3.623</td> <td>0.019</td> <td>0.012</td> <td>0.031</td> <td>0.004</td>	30	52	449.003	13.797	3.762	3.534	3.623	0.019	0.012	0.031	0.004
34 56 471.502 10.784 3.950 3.579 3.668 0.033 0.015 0.048 0.006 36 58 481.810 10.308 4.031 3.609 3.696 0.031 0.013 0.044 0.005 38 60 491.906 10.096 4.100 3.639 3.726 0.021 0.008 0.029 0.003 40 62 501.200 9.294 4.170 3.667 3.754 0.022 0.007 0.029 0.003 42 64 505.598 4.398 4.247 3.689 3.775 0.032 0.008 0.040 0.004 44 66 507.916 2.318 4.316 3.709 3.794 0.049 0.012 0.061 0.005 46 68 511.690 3.774 4.396 3.739 3.824 1.501 0.526 2.027 0.164 48 70 514.031 2.341 4.474 3.761 3.845 1.955 0.617 2.572 0.198 50 72 515.584 1.553 4.548 3.778 3.862 2.155 0.611 2.766 0.204 52 74 516.542 0.958 4.614 3.790 3.874 1.982 0.508 2.490 0.175 54 76 517.274 0.732 4.675 3.799 3.883 1.370 0.311 1.681 0.113 56 78 518.062	32	54	460.718	11.715	3.861	3.555	3.643	0.028	0.014	0.042	0.005
36 58 481.810 10.308 4.031 3.609 3.696 0.031 0.013 0.044 0.005 38 60 491.906 10.096 4.100 3.639 3.726 0.021 0.008 0.029 0.003 40 62 501.200 9.294 4.170 3.667 3.754 0.022 0.007 0.029 0.003 42 64 505.598 4.398 4.247 3.689 3.775 0.032 0.008 0.040 0.004 44 66 507.916 2.318 4.316 3.709 3.794 0.049 0.012 0.061 0.005 46 68 511.690 3.774 4.396 3.739 3.824 1.501 0.526 2.027 0.164 48 70 514.031 2.341 4.474 3.761 3.845 1.955 0.617 2.572 0.198 50 72 515.584 1.553 4.548 3.778 3.862 2.155 0.611 2.766 0.204 52 74 516.542 0.958 4.614 3.790 3.874 1.982 0.508 2.490 0.175 54 76 517.274 0.732 4.675 3.799 3.883 1.370 0.311 1.681 0.113 56 78 518.062 0.788 4.750 3.809 3.892 0.570 0.026 0.596 0.044 Z = 24 (Krom)<	34	56	471.502	10.784	3.950	3.579	3.668	0.033	0.015	0.048	0.006
3860491.90610.0964.1003.6393.7260.0210.0080.0290.0034062501.2009.2944.1703.6673.7540.0220.0070.0290.0034264505.5984.3984.2473.6893.7750.0320.0080.0400.0044466507.9162.3184.3163.7093.7940.0490.0120.0610.0054668511.6903.7744.3963.7393.8241.5010.5262.0270.1644870514.0312.3414.4743.7613.8451.9550.6172.5720.1985072515.5841.5534.5483.7783.8622.1550.6112.7660.2045274516.5420.9584.6143.7903.8741.9820.5082.4900.1755476517.2740.7324.6753.7993.8831.3700.3111.6810.1135678518.0620.7884.7503.8093.8920.5700.0260.5960.044Z = 24 (Krom)2044350.64337.9633.4353.6873.7720.0080.0200.0280.005	36	58	481.810	10.308	4.031	3.609	3.696	0.031	0.013	0.044	0.005
4062501.2009.2944.1703.6673.7540.0220.0070.0290.0034264505.5984.3984.2473.6893.7750.0320.0080.0400.0044466507.9162.3184.3163.7093.7940.0490.0120.0610.0054668511.6903.7744.3963.7393.8241.5010.5262.0270.1644870514.0312.3414.4743.7613.8451.9550.6172.5720.1985072515.5841.5534.5483.7783.8622.1550.6112.7660.2045274516.5420.9584.6143.7903.8741.9820.5082.4900.1755476517.2740.7324.6753.7993.8831.3700.3111.6810.1135678518.0620.7884.7503.8093.8920.5700.0260.5960.044Z = 24 (Krom)2044350.64337.9633.4353.6873.7720.0080.0200.0280.005	38	60	491.906	10.096	4.100	3.639	3.726	0.021	0.008	0.029	0.003
42 64 505.598 4.398 4.247 3.689 3.775 0.032 0.008 0.040 0.004 44 66 507.916 2.318 4.316 3.709 3.794 0.049 0.012 0.061 0.005 46 68 511.690 3.774 4.396 3.739 3.824 1.501 0.526 2.027 0.164 48 70 514.031 2.341 4.474 3.761 3.845 1.955 0.617 2.572 0.198 50 72 515.584 1.553 4.548 3.778 3.862 2.155 0.611 2.766 0.204 52 74 516.542 0.958 4.614 3.790 3.874 1.982 0.508 2.490 0.175 54 76 517.274 0.732 4.675 3.799 3.883 1.370 0.311 1.681 0.113 56 78 518.062 0.788 4.750 3.809 3.892 0.570 0.026 0.596 0.044 Z = 24 (Krom) 20 44 350.643 37.963 3.435 3.687 3.772 0.008 0.020 0.028 0.005	40	62	501.200	9.294	4.170	3.667	3.754	0.022	0.007	0.029	0.003
4466507.9162.3184.3163.7093.7940.0490.0120.0610.0054668511.6903.7744.3963.7393.8241.5010.5262.0270.1644870514.0312.3414.4743.7613.8451.9550.6172.5720.1985072515.5841.5534.5483.7783.8622.1550.6112.7660.2045274516.5420.9584.6143.7903.8741.9820.5082.4900.1755476517.2740.7324.6753.7993.8831.3700.3111.6810.1135678518.0620.7884.7503.8093.8920.5700.0260.5960.044Z = 24 (Krom)2044350.64337.9633.4353.6873.7720.0080.0200.0280.005	42	64	505.598	4.398	4.247	3.689	3.775	0.032	0.008	0.040	0.004
4668511.690 3.774 4.396 3.739 3.824 1.501 0.526 2.027 0.164 4870514.031 2.341 4.474 3.761 3.845 1.955 0.617 2.572 0.198 5072515.584 1.553 4.548 3.778 3.862 2.155 0.611 2.766 0.204 5274516.542 0.958 4.614 3.790 3.874 1.982 0.508 2.490 0.175 5476517.274 0.732 4.675 3.799 3.883 1.370 0.311 1.681 0.113 5678518.062 0.788 4.750 3.809 3.892 0.570 0.026 0.596 0.044 Z = 24 (Krom)2044 350.643 37.963 3.435 3.687 3.772 0.008 0.020 0.028 0.005	44	66	507.916	2.318	4.316	3.709	3.794	0.049	0.012	0.061	0.005
4870514.0312.3414.4743.7613.8451.9550.6172.5720.1985072515.5841.5534.5483.7783.8622.1550.6112.7660.2045274516.5420.9584.6143.7903.8741.9820.5082.4900.1755476517.2740.7324.6753.7993.8831.3700.3111.6810.1135678518.0620.7884.7503.8093.8920.5700.0260.5960.044Z = 24 (Krom)2044350.64337.9633.4353.6873.7720.0080.0200.0280.005	46	68	511.690	3.774	4.396	3.739	3.824	1.501	0.526	2.027	0.164
5072515.5841.5534.5483.7783.8622.1550.6112.7660.2045274516.5420.9584.6143.7903.8741.9820.5082.4900.1755476517.2740.7324.6753.7993.8831.3700.3111.6810.1135678518.0620.7884.7503.8093.8920.5700.0260.5960.044Z = 24 (Krom)2044350.64337.9633.4353.6873.7720.0080.0200.0280.005	48	70	514.031	2.341	4.474	3.761	3.845	1.955	0.617	2.572	0.198
5274516.542 0.958 4.614 3.790 3.874 1.982 0.508 2.490 0.175 5476517.274 0.732 4.675 3.799 3.883 1.370 0.311 1.681 0.113 5678518.062 0.788 4.750 3.809 3.892 0.570 0.026 0.596 0.044 Z = 24 (Krom)2044 350.643 37.963 3.435 3.687 3.772 0.008 0.020 0.028 0.005	50	72	515.584	1.553	4.548	3.778	3.862	2.155	0.611	2.766	0.204
5476517.274 0.732 4.675 3.799 3.883 1.370 0.311 1.681 0.113 5678518.062 0.788 4.750 3.809 3.892 0.570 0.026 0.596 0.044 Z = 24 (Krom)2044350.64337.963 3.435 3.687 3.772 0.008 0.020 0.028 0.005	52	74	516.542	0.958	4.614	3.790	3.874	1.982	0.508	2.490	0.175
56 78 518.062 0.788 4.750 3.809 3.892 0.570 0.026 0.596 0.044 Z = 24 (Krom) 20 44 350.643 37.963 3.435 3.687 3.772 0.008 0.020 0.028 0.005	54	76	517.274	0.732	4.675	3.799	3.883	1.370	0.311	1.681	0.113
Z = 24 (Krom) 20 44 350.643 37.963 3.435 3.687 3.772 0.008 0.020 0.028 0.005	56	78	518.062	0.788	4.750	3.809	3.892	0.570	0.026	0.596	0.044
Z = 24 (Krom) 20 44 350.643 37.963 3.435 3.687 3.772 0.008 0.020 0.028 0.005											
20 44 350.643 37.963 3.435 3.687 3.772 0.008 0.020 0.028 0.005	Z =	24 (Krom)								
	20	44	350.643	37.963	3.435	3.687	3.772	0.008	0.020	0.028	0.005

Ek Tablo 7'nin devamı

N	Α	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\mathrm{fm})$	$r_p(\text{fm})$	$\Gamma_{\mathcal{C}}(\mathrm{fm})$	$Q_n(\mathbf{b})$	$Q_{p^{(\mathrm{b})}}$	$Q_T(\mathbf{b})$	β2
7	24 (1	(more)								
$\Sigma =$	24 (r	10III) 277.017	27.274	2 400	2 (21	2 709	0.000	0.012	0.021	0.002
22	40 40	377.917	27.274	5.460 2.571	5.021 2.621	5.708 2.719	0.008	0.015	0.021	0.005
24	48	408.013	24.090	5.571 2.625	5.051 2.615	5./18 2.702	0.879	0.903	1.720	0.238
20	50 50	452.099	24.080	3.023 2.652	3.013 2.592	5.702 2.671	0.895	0.857	1./30	0.234
28	52 54	452.971	20.872	3.032 2.755	3.383	3.0/1	0.313	0.507	0.620	0.079
30	54	4/0.164	1/.193	3./33	3.612	3.699	0.751	0.393	1.340	0.160
32	50	485.094	14.930	3.853	3.044	3.731	1.00/	0.754	1.821	0.204
34	38	498.164	13.070	3.934	3.000	3.753	1.076	0.721	1.797	0.190
36	60	510.015	11.851	4.006	3.683	3.769	0.849	0.575	1.424	0.142
38	62	521.321	11.306	4.068	3.699	3.785	-0.154	-0.104	-0.258	-0.024
40	64	532.915	11.594	4.136	3.724	3.809	0.020	0.008	0.028	0.002
42	66	539.673	6.758	4.206	3.744	3.829	0.025	0.009	0.034	0.003
44	68	547.198	7.525	4.283	3.784	3.867	1.483	0.835	2.318	0.188
46	70	553.108	5.910	4.357	3.810	3.893	1.980	0.995	2.975	0.230
48	72	557.423	4.315	4.435	3.916	0.240	2.453	1.084	3.537	0.260
50	74	560.494	3.071	4.508	3.852	3.934	2.721	1.103	3.824	0.269
52	76	562.556	2.062	4.578	3.866	3.948	2.827	1.058	3.885	0.261
54	78	563.986	1.430	4.644	3.877	3.959	2.701	0.956	3.657	0.236
56	80	565.151	1.165	4.706	3.882	3.964	2.273	0.771	3.044	0.188
58	82	566.070	0.919	4.775	3.886	3.968	1.655	0.561	2.216	0.131
60	84	566.835	0.765	4.846	3.888	3.970	0.516	0.166	0.682	0.039
62	86	567.498	0.663	4.916	3.905	3.987	0.107	0.012	0.119	0.007
_										
Z =	: 26 (I	Demir)				• • • • •	-	0.010	0.000	0.004
20	46	350.390	40.015	3.411	3.721	3.806	0.007	0.019	0.026	0.004
22	48	382.481	32.091	3.483	3.693	3.779	0.179	0.270	0.449	0.065
24	50	415.172	32.691	3.567	3.702	3.787	0.845	0.959	1.804	0.244
26	52	443.743	28.571	3.616	3.677	3.763	0.869	0.895	1.764	0.223
28	54	468.620	24.877	3.635	3.632	3.720	0.027	0.029	0.056	0.007
30	56	488.285	19.665	3.742	3.669	3.755	0.778	0.673	1.451	0.163
32	58	505.927	17.642	3.838	3.706	3.791	1.136	0.880	2.016	0.213
34	60	521.914	15.987	3.917	3.731	3.816	1.227	0.892	2.119	0.211
36	62	535.915	14.001	3.986	3.745	3.829	1.030	0.756	1.786	0.169
38	64	549.252	13.337	4.041	3.751	3.836	0.245	0.182	0.427	0.038
40	66	563.075	13.823	4.107	3.773	3.857	0.015	0.008	0.023	0.002
42	68	572.318	9.243	4.171	3.791	3.875	0.021	0.009	0.030	0.003
44	70	581.350	9.032	4.239	3.824	3.907	1.217	0.766	1.983	0.153
46	72	589.690	8.340	4.309	3.851	3.933	1.725	0.986	2.711	0.200
48	74	595.931	6.241	4.374	3.871	3.953	2.030	1.050	3.080	0.217
50	76	601.146	5.215	4.456	3.892	3.973	2.403	1.106	3.509	0.236
52	78	604.778	3.632	4.526	3.911	3.992	2.671	1.123	3.794	0.244
54	80	607.603	2.825	4.589	3.921	4.002	2.569	1.011	3.580	0.221
56	82	610.085	2.482	4.655	3.932	4.013	2.433	0.905	3.338	0.198
-						-				

Ek Tablo 7'nin devamı

Ν	A	$BE \ (\text{MeV})$	$S_{2n}(\text{MeV})$	$r_n(\mathrm{fm})$	$r_p(\text{fm})$	$r_{\mathcal{C}}(\mathrm{fm})$	$Q_{n}(\mathbf{b})$	$Q_p(\mathbf{b})$	$Q_T(\mathbf{b})$	β_2
7		• \								
L =	26 (D	emir)	1.050	4 700	2 0 4 4	4 00 4	2 200	0.010	2 0 1 0	0 170
58 60	84 96	611.943	1.858	4.720	3.944	4.024	2.208	0.810	3.018	0.172
60	80	613.398	1.455	4.795	3.949	4.029	1.590	0.603	2.193	0.120
Z =	28 (N	ikel)								
24	52	417.944	33.732	3.552	3.753	3.753	0.541	0.618	1.159	0.147
26	54	450.382	32.438	3.589	3.714	3.799	0.366	0.366	0.732	0.087
28	56	481.592	31.210	3.628	3.688	3.774	0.011	0.014	0.025	0.003
30	58	502.508	20.916	3.719	3.703	3.789	0.018	0.017	0.035	0.004
32	60	521.730	19.222	3.816	3.746	3.830	0.832	0.607	1.439	0.144
34	62	540.537	18.807	3.900	3.778	3.861	-1.030	-0.002	-1.032	-0.165
36	64	557.732	17.195	3.962	3.790	3.873	-0.820	-0.529	-1.349	-0.121
38	66	574.632	16.900	4.018	3.801	3.884	0.012	0.008	0.020	0.002
40	68	590.639	16.007	4.084	3.821	3.904	0.012	0.007	0.019	0.002
42	70	602.427	11.788	4.144	3.837	3.919	0.015	0.007	0.022	0.002
44	72	612.505	10.078	4.196	3.851	3.934	0.024	0.012	0.036	0.003
46	74	622.532	10.027	4.250	3.872	3.954	0.784	0.432	1.216	0.086
48	76	631.762	9.230	4.291	3.882	3.964	0.037	0.017	0.054	0.004
50	78	640.184	8.422	4.344	3.898	3.979	0.026	0.010	0.036	0.002
52	80	645.048	4.864	4.424	3.914	3.995	0.047	0.014	0.061	0.004
54	82	648.357	3.309	4.512	3.929	4.009	0.143	0.040	0.183	0.011
56	84	651.579	3.222	4.597	3.945	4.025	0.710	0.203	0.913	0.052
58	86	654.622	3.043	4.675	3.958	4.038	0.524	0.145	0.669	0.037
60	88	657.091	2.469	4.744	3.972	4.051	0.166	0.040	0.206	0.011
62	90	659.558	2.467	4.812	3.992	4.072	0.084	0.015	0.099	0.005
64	92	661.559	2.001	4.871	4.021	4.100	0.052	0.004	0.056	0.003
66	94	663.521	1.962	4.923	4.055	4.134	0.034	-0.003	0.031	0.001
68	96	665.644	2.123	4.971	4.091	4.168	0.042	-0.001	0.041	0.002
7	20.00	· · · · · · · · · · · · · · · · · · ·								
L =	: 30 (Ç 56	INKO) 451 572	21616	2 620	2 8 2 0	2 0 1 2	0.610	0 760	1 200	0 155
20	50 50	431.373	54.040 22.450	5.020 2.647	5.829 2.706	5.912 2.970	0.019	0.709	1.300	0.155
28	38	484.032	52.459 25.800	3.047	3./90 2.916	3.8/9	0.013	0.025	0.030	0.004
30 20	60	509.841	25.809	5./4/ 2.926	3.810	3.898	0.797	0.854	1.031	0.103
52 24	02 64	552.885	23.042	3.830 2.010	3.840 2.961	5.925 2.042	1.121	1.045	2.100	0.205
34 26	04	553.801	20.918	3.910	3.801	3.943	1.230	1.062	2.292	0.205
30 20	00	572.930	19.135	3.977	3.8/9	3.901	-1.13/	-0.888	-2.025	-0.1/2
38 40	08	591.383	18.44/	4.027	3.883	3.90/ 2.077	-0.738	-0.562	-1.300	-0.105
40	70 70	609.032	1/.049	4.083	3.890	3.9//	0.009	0.000	0.015	0.001
42	12	023.329	14.297	4.140	3.908	3.989	0.011	0.007	0.018	0.001
44	74 76	03/./11	14.582	4.201	<i>3.929</i>	4.010	1.120	0.809	1.929	0.150
40	/0 70	651.033	15.522	4.256	<i>3.</i> 948	4.028	1.502	1.002	2.504	0.169
48	/8	001.8/1	10.838	4.299	3.930	4.030	1.309	0.841	2.150	0.139
50	80	6/1.695	9.824	4.329	3.958	4.038	0.022	0.011	0.033	0.002

Ek Tablo 7'nin devamı

N	Α	$BE \; ({\rm MeV})$	$S_{2n}(\text{MeV})$	$r_n(\mathrm{fm})$	$r_p(\text{fm})$	$r_{\mathcal{C}}(\mathrm{fm})$	$Q_{n^{(b)}}$	$Q_{p^{(b)}}$	$Q_T(\mathbf{b})$	β_2
Z =	: 30 (Ç1	nko)	(100	4 400	2 07 4	4.054	0.050	0.000	0.074	0.004
52	82	677.804	6.109	4.408	3.974	4.054	0.052	0.022	0.074	0.004
54	84	683.603	5.799	4.504	4.009	4.088	1.981	0.8/8	2.859	0.163
56	86	688.621	5.018	4.583	4.038	4.117	2.549	1.081	3.630	0.199
58	88	692.817	4.196	4.656	4.062	4.141	2.761	1.154	3.915	0.206
60	90	697.003	4.186	4.729	4.091	4.169	-2.950	-1.170	-4.120	-0.209
62	92	700.411	3.408	4.788	4.106	4.184	-2.775	-1.084	-3.859	-0.189
64	94	703.443	3.032	4.844	4.123	4.200	-2.462	-0.967	-3.429	-0.162
66	96	706.060	2.617	4.896	4.135	4.212	-1.707	-0.724	-2.431	-0.111
68	98	708.884	2.824	4.942	4.150	4.226	0.004	-0.021	-0.017	-0.001
Z =	= 32 (Ge	ermanyum)								
28	60	483.394	33.430	3.687	3.906	3.987	0.461	0.723	1.184	0.118
30	62	513.273	29.879	3.779	3.918	3.999	0.207	0.047	0.254	0.207
32	64	539.413	26.140	3.859	3.931	4.012	1.236	1.294	2.530	0.227
34	66	564.049	24.636	3.940	3.957	4.037	-1.415	-1.323	-2.738	-0.233
36	68	585.464	21.415	4.003	3.967	4.047	-1.472	-1.308	-2.780	-0.225
38	70	605.506	20.042	4.049	3.969	4.050	-1.196	-1.058	-2.254	-0.174
40	72	624.450	18.944	4.106	3.982	4.062	-1.325	-1.098	-2.423	-0.178
42	74	641.211	16.761	4.148	3.981	4.061	0.643	0.646	1.289	0.091
44	76	658.690	17.479	4.206	3.999	4.078	1.374	1.102	2.476	0.167
46	78	674.623	15.933	4.256	4.011	4.090	1.590	1.187	2.777	0.179
48	80	688.304	13.681	4.299	4.019	4.098	1.497	1.090	2.587	0.160
50	82	699.897	11.593	4.325	4.017	4.096	0.015	0.009	0.024	0.001
52	84	707.870	7.973	4.408	4.040	4.119	1.170	0.722	1.892	0.108
54	86	715.439	7.569	4.495	4.076	4.154	2.316	1.188	3.504	0.192
56	88	722.241	6.802	4.570	4.105	4.182	2.827	1.352	4.179	0.220
58	90	728.347	6.106	4.650	4.138	4.215	-3.138	-1.458	-4.596	-0.233
60	92	733.743	5.396	4.713	4.159	4.235	-3.286	-1.475	-4.761	-0.233
62	94	738.398	4.655	4.771	4.176	4.252	-3.194	-1.414	-4.608	-0.218
64	96	742.630	4.232	4.823	4.194	4.270	-3.062	-1.344	-4.406	-0.201
66	98	746.115	3.485	4.874	4.209	4.285	-2.676	-1.211	-3.887	-0.171
68	100	749.405	3.290	4.918	4.216	4.291	-1.290	-0.689	-1.979	-0.084
70	102	753.597	4.192	4.965	4.234	4.309	0.019	-0.015	0.004	0.000
72	104	755.097	1.500	5.014	4.256	4.330	0.171	0.059	0.230	0.000
74	106	756.294	1.197	5.064	4.284	4.358	1.809	0.940	2.749	0.106
76	108	757.748	1.454	5.117	4.312	4.386	2.961	1.321	4.282	0.160
7	24.0	1								
L =	: 54 (Se	ienyum)	20.946	(000	1 005	1 104	1 000	1 400	0.760	0.000
32 24	66	543.496	29.846	6.892	4.025	4.104	-1.286	-1.482	-2.768	-0.236
34	68 70	571.845	28.349	3.959	4.035	4.114	-1.520	-1.579	-3.099	-0.251
36	70	595.687	23.842	4.024	4.045	4.123	-1./11	-1.638	-3.349	-0.258
38	12	617.537	21.850	4.073	4.049	4.126	-1.604	-1.498	-3.102	-0.228

Ek Tablo 7'nin devamı

Ν	Α	$BE \ (\text{MeV})$	$S_{2n}(\text{MeV})$	$r_n(\text{fm})$	r_p (fm)	$r_{\mathcal{C}}(\mathrm{fm})$	$Q_{n}(\mathbf{b})$	$Q_{p^{(\mathrm{b})}}$	$Q_T(\mathbf{b})$	β ₂
7 -	- 34 (Se	lenvum)								
$\frac{2}{40}$	- 34 (3 0 74	638 838	21 301	4 1 2 2	4 054	4 132	_1 572	-1407	_2 979	_0.210
42	76	658 299	19 461	4.122 4.174	4 063	4.132	-1.694	-1.431	-3.125	-0.210
$- \Delta$	78	676 407	19.401	4 200	4.005	4 137	1.074	1.431	2 529	0.163
46	80	694 747	18 340	4 257	4.070	4.137	1.555	1.170	2.32)	0.103
48	82	710.926	16 179	4.207	4.076	4 154	1.557	1.200	2.625	0.174
- -0 50	84	725 822	14 896	4 323	4.070	4 148	0.006	0.003	0.009	0.001
52	86	734 835	9.013	4 401	4 088	4 165	0.008	-0.003	0.007	0.001
54	88	743 546	8 711	4 4 9 4	4 133	4 2 1 0	-2.058	-1.262	-3.320	-0.175
56	90	752.359	8 813	4 566	4 169	4 245	-2.838	-1.572	-4410	-0.224
58	92	760.991	8.632	4.638	4.196	4.272	-3.302	-1.706	-5.008	-0.245
60	94	767,780	6.789	4,700	4.218	4.293	-3.522	-1.747	-5.269	-0.249
62	96	773.602	5.822	4.754	4.236	4.311	-3.508	-1.704	-5.212	-0.238
6 <u>4</u>	98	779.233	5.631	4.806	4.254	4.329	-3.475	-1.657	-5.132	-0.226
66	100	784.245	5.012	4.857	4.276	4.350	-3.580	-1.683	-5.263	-0.224
68	102	788.226	3.981	4.904	4.291	4.365	-3.273	-1.574	-4.847	-0.200
70	104	793.425	5.199	4.941	4.283	4.357	0.012	-0.014	-0.002	0.000
72	106	796.569	3.144	4.988	4.303	4.377	0.010	-0.019	-0.009	0.000
74	108	798.571	2.002	5.030	4.327	4.400	0.949	0.517	1.466	0.055
76	110	801.169	2.598	5.078	4.353	4.426	2.293	1.112	3.405	0.124
78	112	803.037	1.868	5.126	4.376	4.449	2.932	1.322	4.254	0.150
80	114	803.935	0.898	5.181	4.396	4.468	3.649	1.484	5.133	0.176
Z =	36 (K	ripton)								
32	68	543.807	32.186	3.911	4.103	4.180	-1.308	-1.601	-2.909	-0.236
34	70	574.676	30.869	3.978	4.113	4.190	-1.599	-1.808	-3.407	-0.263
36	72	602.036	27.360	4.050	4.126	4.203	-2.002	-2.077	-4.079	-0.300
38	74	626.417	24.381	4.134	4.160	4.236	3.189	3.049	6.238	0.439
40	76	649.553	23.136	4.124	4.109	4.187	-1.355	-1.278	-2.633	-0.177
42	78	671.189	21.636	4.178	4.119	4.196	-1.636	-1.449	-3.085	-0.198
44	80	691.223	20.034	4.209	4.110	4.187	-0.840	-0.811	-1.651	-0.102
46	82	711.476	20.253	4.254	4.118	4.195	1.221	1.020	2.241	0.133
48	84	730.123	18.647	4.291	4.120	4.197	0.983	0.808	1.791	0.102
50	86	747.751	17.628	4.324	4.120	4.197	0.004	0.002	0.006	0.000
52	88	758.194	10.443	4.395	4.137	4.214	-0.021	-0.019	-0.040	-0.002
54	90	768.150	9.956	4.474	4.171	4.247	1.841	1.035	2.876	0.146
56	92	778.680	10.530	4.559	4.224	4.299	-2.876	-1.767	-4.643	-0.227
58	94	788.967	10.287	4.630	4.257	4.332	-3.494	-2.031	-5.525	-0.261
60	96	797.805	8.838	4.693	4.287	4.361	-4.007	-2.236	-6.243	-0.285
62	98	805.244	7.439	4.749	4.311	4.385	-4.273	-2.312	-6.585	-0.290
64	100	811.887	6.643	4.795	4.323	4.396	-4.127	-2.167	-6.294	-0.268
66	102	818.409	6.522	4.841	4.335	4.408	-3.989	-2.020	-6.009	-0.248
68	104	823.828	5.419	4.887	4.349	4.422	-3.871	-1.927	-5.798	-0.231

Ν	A	$BE \ (\text{MeV})$	$S_{2n}(\text{MeV})$	$r_n(\mathrm{fm})$	$r_p(\mathrm{fm})$	$r_{c}(\mathrm{fm})$	$Q_{n}(\mathbf{b})$	$Q_{p^{(\mathrm{b})}}$	$Q_T(\mathbf{b})$	β_2
	26 (V									
L = 70	: 30 (K 106	ripion)	6 727	4 0 1 0	1 205	4 200	0.006	0.000	0.006	0.000
70	100	830.363	0./3/	4.919	4.325	4.399	-0.006	0.000	-0.006	0.000
12	108	835.111	4.546	4.964	4.344	4.41/	0.004	-0.018	-0.014	-0.001
/4 76	110	838.603	3.492	5.004	4.365	4.438	-0.6/5	-0.440	-1.115	-0.040
/6	112	842.237	3.634	5.046	4.388	4.461	1.622	0.819	2.441	0.086
/8	114	845.493	3.256	5.087	4.410	4.481	2.072	0.985	3.057	0.105
80	110	847.828	2.335	5.126	4.428	4.500	1.929	0.8/8	2.807	0.093
82	118	849.703	1.875	5.155	4.445	4.517	0.077	0.001	0.078	0.003
Z =	= 38 (St	ronsiyum)								
34	72	574.394	32.807	3.992	4.179	4.255	-1.573	-1.855	-3.428	-0.252
36	74	604.235	29.841	4.091	4.220	4.295	2.904	3.302	6.206	0.437
38	76	634.103	29.868	4.156	4.232	4.307	3.419	3.553	6.972	0.469
40	78	659.224	25.121	4.211	4.239	4.314	3.706	3.611	7.317	0.471
42	80	682.323	23.099	4.167	4.156	4.232	0.002	0.002	0.004	0.000
44	82	704.492	22.169	4.211	4.159	4.235	-0.443	-0.430	-0.873	-0.052
46	84	726.149	21.657	4.252	4.162	4.238	-0.571	-0.530	-1.101	-0.063
48	86	747.046	20.897	4.287	4.163	4.239	-0.005	-0.004	-0.009	0.000
50	88	766.790	19.744	4.327	4.168	4.244	0.005	0.004	0.009	0.001
52	90	779.062	12.272	4.394	4.184	4.260	0.000	0.000	0.000	0.000
54	92	790.101	11.039	4.468	4.214	4.289	-1.359	-0.903	-2.262	-0.111
56	94	801.728	11.627	4.545	4.261	4.335	-2.574	-1.647	-4.221	-0.199
58	96	813.346	11.618	4.618	4.301	4.375	-3.401	-2.110	-5.511	-0.251
60	98	824.173	10.827	4.685	4.343	4.417	-4.195	-2.539	-6.734	-0.297
62	100	833.319	9.146	4.740	4.367	4.440	-4.476	-2.623	-7.099	-0.302
64	102	841.515	8.196	4.779	4.368	4.441	-4.130	-2.306	-6.436	-0.265
66	104	849.773	8.258	4.821	4.374	4.447	-3.858	-2.039	-5.897	-0.235
68	106	857.516	7.743	4.856	4.356	4.429	-1.872	-0.986	-2.858	-0.110
70	108	865.371	7.855	4.900	4.363	4.436	0.009	-0.007	0.002	0.000
72	110	871.252	5.881	4.943	4.381	4.453	0.010	-0.009	0.001	0.000
74	112	875.903	4.651	4.981	4.399	4.471	-0.074	-0.060	-0.134	-0.005
76	114	880.674	4.771	5.020	4.420	4.492	-0.999	-0.616	-1.615	-0.055
78	116	884.919	4.245	5.057	4.439	4.511	1.295	0.631	1.926	0.064
80	118	888.738	3.819	5.089	4.455	4.526	-0.013	-0.025	-0.038	-0.001
82	120	892.081	3.343	5.129	4.473	4.544	0.070	0.013	0.083	0.003
84	122	893.256	1.175	5.183	4.487	4.557	0.176	0.044	0.220	0.007
86	124	893.231	-0.025	5.245	4.497	4.568	0.886	0.254	1.140	0.034
Z =	40 (Zi	rkonyum)								_
36	76	604.430	31.897	4.060	4.247	4.322	-1.251	-1.421	-2.672	-0.180
38	78	636.327	31.897	4.184	4.320	4.393	3.495	3.866	7.361	0.474
40	80	664.496	28.169	4.239	4.323	4.396	3.842	3.982	7.824	0.483
42	82	689.889	25.393	4.191	4.243	4.318	-1.692	-1.616	-3.308	-0.196

Ek Tablo 7'nin devamı

Ek Tablo 7'nin devamı

N	A	$BE \ (\text{MeV})$	$S_{2n}(\text{MeV})$	$r_n(\mathrm{fm})$	$r_p(\text{fm})$	$\Gamma_{\mathcal{C}}(\mathrm{fm})$	$Q_{n}(\mathbf{b})$	$Q_{p^{(\mathrm{b})}}$	$Q_T(\mathbf{b})$	β ₂
7 –	40 (7	irkonyum)								
$\Delta \Delta = \Delta \Delta$	• 	714 929	25 040	4 230	4 229	4 304	0.011	0.014	0.025	0.002
46	86	738 291	23.040	4 268	4 222	4 303	0.011	0.014	0.025	0.002
48	88	761 231	22.302	4.200	4.220	4 304	0.002	0.001	0.020	0.001
4 0 50	90	782 780	22.940	4 344	4 234	4 307	0.000	0.009	0.017	0.000
50 52	92	797.010	14 230	4 409	4.234	4 320	0.007	0.005	0.017	0.000
54	94	809 686	12.676	4 479	4 279	4 354	-1.607	-1.194	-2.801	-0.132
56	96	822 786	13 100	4 540	4 315	4 389	-2511	-1 694	-4.205	-0.192
58	98	835.477	12.691	4.605	4.342	4.415	-3.045	-1.912	-4.957	-0.218
60	100	847.605	12.128	4.668	4.360	4.433	-3.153	-1.900	-5.053	-0.215
62	102	858.878	11.273	4.717	4.376	4.376	-3.149	-1.821	-4.970	-0.205
64	104	869.632	10.754	4.766	4.394	4.466	-3.250	-1.814	-5.064	-0.202
66	106	879.470	9.838	4.815	4.417	4.489	-3.609	-1.970	-5.579	-0.216
68	108	888.084	8.614	4.862	4.437	4.508	-3.759	-2.028	-5.787	-0.217
70	110	895.854	7.770	4.901	4.443	4.514	-3.151	-1.741	-4.892	-0.178
72	112	903.394	7.540	4.941	4.455	4.526	-2.823	-1.595	-4.418	-0.156
74	114	910.760	7.366	4.977	4.444	4.516	0.031	0.009	0.040	0.001
76	116	916.546	5.786	5.013	4.461	4.532	0.035	0.010	0.045	0.002
78	118	922.205	5.659	5.047	4.477	4.458	0.042	0.013	0.055	0.002
80	120	927.645	5.440	5.082	4.494	4.565	0.040	0.011	0.051	0.002
82	122	932.286	4.641	5.122	4.511	4.581	0.044	0.010	0.054	0.002
84	124	934.603	2.317	5.179	4.524	4.595	0.071	0.014	0.085	0.003
86	126	935.477	0.874	5.244	4.535	4.605	0.152	0.030	0.182	0.005
88	128	936.191	0.714	5.308	4.545	4.615	0.502	0.104	0.606	0.017
90	130	937.459	1.268	5.380	4.578	4.648	-4.001	-1.406	-5.407	-0.149
92	132	938.903	1.444	5.441	4.607	4.676	-5.218	-1.794	-7.012	-0.188
94	134	939.987	1.084	5.497	4.630	4.699	-5.857	-1.964	-7.821	-0.205
96	136	940.681	0.694	5.549	4.647	4.716	-6.108	-1.999	-8.107	-0.207
98	138	941.168	0.487	5.598	4.663	4.731	-6.193	-1.989	-8.182	-0.204
7	. 12 (M	[alibdan]								
2 — 40	· +2 (10) 87	666 350	30 687	A 166	4 300	1 371	_1 /00	_1 655	_3 15/	_0.187
42	84	695 475	29 116	4.100	4 300	4 374	-1.755	-1.000	-3 563	-0.203
$\frac{12}{\Delta \Delta}$	86	722 073	26 598	4 256	4.300	4 373	-1.755	-1.832	-3.692	-0.203
46	88	746 966	20.570	4.230	4.277	4 352	0.004	0.009	0.013	0.202
48	90	772 102	25.136	4 307	4 277	4 351	0.007	0.009	0.013	0.001
50	92	795 787	23.130	4 345	4 277	4 351	0.007	0.010	0.017	0.001
52	94	811 704	15,917	4.408	4.291	4.365	0.010	0.007	0.017	0.001
54	96	826 629	14.925	4,477	4.328	4.401	1.956	1.414	3,370	0.154
56	98	842.058	15.429	4.542	4.364	4.437	2.912	2.091	5.003	0.220
58	100	855.960	13.902	4.604	4.383	4.455	-2.886	-1.973	-4.859	-0.207
60	102	869.438	13.478	4.659	4.404	4.476	-3.174	-2.058	-5.232	-0.216
62	104	882.353	12.915	4.708	4.423	4.495	-3.335	-2.085	-5.420	-0.216
							2.000			

Ek Tablo 7'nin devamı

N	A	BE (MeV)	$S_{2n}(\text{MeV})$	<i>r</i> _n (fm)	$r_p(\text{fm})$	$r_{\mathcal{C}}(\mathrm{fm})$	$Q_{n}(\mathbf{b})$	$Q_{p^{(b)}}$	$Q_T(\mathbf{b})$	β2
Z = 4	42. (Ma	olibden)								
64	106	894,760	12.407	4,756	4.442	4.514	-3.545	-2.140	-5.685	-0.220
66	108	906.409	11.649	4.803	4.462	4.534	-3.798	-2.220	-6.018	-0.225
68	110	916.756	10.347	4.849	4.482	4.552	-3.987	-2.279	-6.266	-0.228
70	112	925.806	9.050	4.890	4.494	4.565	-3.858	-2.210	-6.068	-0.214
72	114	934.454	8.648	4.928	4.504	4.574	-3.407	-2.016	-5.423	-0.186
74	116	942.578	8.124	4.966	4.516	4.587	-3.213	-1.921	-5.134	-0.171
76	118	949.281	6.703	4.992	4.498	4.568	0.037	0.015	0.052	0.002
78	120	956.527	7.246	5.026	4.513	4.583	0.048	0.020	0.068	0.002
80	122	963.515	6.988	5.060	4.529	4.599	0.036	0.013	0.049	0.002
82	124	969.578	6.063	5.099	4.544	4.614	0.037	0.010	0.047	0.001
84	126	972.679	3.101	5.155	4.558	4.627	0.059	0.013	0.072	0.002
86	128	974.111	1.432	5.219	4.569	4.639	0.119	0.026	0.145	0.004
88	130	975.389	1.278	5.281	4.580	4.650	0.368	0.009	0.377	0.013
90	132	977.526	2.137	5.352	4.623	4.692	-4.313	-1.707	-6.020	-0.161
92	134	979.942	2.416	5.412	4.654	4.722	-5.492	-2.107	-7.599	-0.199
94	136	981.783	1.841	5.467	4.676	4.743	-6.056	-2.246	-8.302	-0.212
96	138	983.170	1.387	5.518	4.694	4.761	-6.340	-2.295	-8.635	-0.215
98	140	984.381	1.211	5.566	4.712	4.779	-6.508	-2.314	-8.822	-0.214
100	142	985.355	0.974	5.612	4.729	4.796	-6.569	-2.311	-8.880	-0.211
102	144	985.825	0.470	5.657	4.743	4.810	-6.379	-2.255	-8.634	-0.200
104	146	985.919	0.094	5.699	4.754	4.821	-5.857	-2.119	-7.976	-0.181
Z = 4	44 (Ru	tenyum)								
42	86	696.776	30.090	4.199	4.335	4.408	0.010	0.018	0.028	0.002
44	88	726.364	29.588	4.263	4.350	4.223	-1.901	-1.958	-3.859	-0.203
46	90	754.770	28.406	4.282	4.331	4.404	1.161	1.123	2.284	0.116
48	92	781.076	26.306	4.311	4.322	4.396	0.663	0.639	1.302	0.064
50	94	806.628	25.552	4.345	4.319	4.393	0.006	0.008	0.014	0.000
52	96	824.184	17.556	4.406	4.332	4.406	-0.004	-0.004	-0.008	0.000
54	98	841.964	17.780	4.476	4.371	4.444	2.010	1.561	3.571	0.157
56	100	858.790	16.826	4.537	4.401	4.473	2.746	2.024	4.770	0.203
58	102	874.114	15.324	4.594	4.424	4.496	3.167	2.245	5.412	0.223
60	104	888.210	14.096	4.652	4.447	4.518	-3.240	-2.231	-5.471	-0.218
62	106	902.768	14.558	4.702	4.467	4.538	-3.482	-2.305	-5.787	-0.224
64	108	916.821	14.053	4.748	4.486	4.556	-3.698	-2.363	-6.061	-0.227
66	110	930.100	13.279	4.793	4.504	4.574	-3.899	-2.412	-6.311	-0.229
68	112	942.164	12.064	4.837	4.522	4.592	-4.097	-2.465	-6.562	-0.231
70	114	952.731	10.567	4.878	4.536	4.606	-4.066	-2.423	-6.489	-0.222
72	116	962.616	9.885	4.914	4.544	4.614	-3.621	-2.209	-5.830	-0.194
74	118	972.255	9.639	4.950	4.554	4.624	-3.305	-2.043	-5.348	-0.173
76	120	981.029	8.774	4.978	4.540	4.610	1.758	1.130	2.888	0.091
78	122	989.766	8.737	5.012	4.554	4.624	1.723	1.083	2.806	0.086

Ek Tablo 7'nin devamı

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
30124197.4121.0463.0394.0324.0326.0330.0390.00410.003821261004.9997.5875.0764.5774.6460.0310.0100.0410.001841281008.8383.8395.1324.5914.6600.0480.0120.0600.002861301010.7731.9355.1954.6034.6720.1250.0370.1620.004881321013.7042.9315.2614.6274.6963.2131.1834.3960.118901341016.4022.6985.3204.6564.7244.6231.6896.3120.165921361018.5682.1665.3754.6794.7475.3111.9187.2290.184941381020.9792.4115.4394.7144.781-6.058-2.389-8.447-0.210961401023.0782.0995.4894.7344.801-6.415-2.476-8.891-0.216981421025.0691.9915.5364.7534.820-6.651-2.520-9.171-0.2181001441026.8121.7435.5824.7724.839-6.806-2.542-9.348-0.2171021461028.0031.1915.6264.7894.855-6.806-2.542-9.348-0.2121041481028.7260.7235.6774.801<
10011001100110011001100110011001100841281008.8383.8395.1324.5914.6600.0480.0120.0600.002861301010.7731.9355.1954.6034.6720.1250.0370.1620.004881321013.7042.9315.2614.6274.6963.2131.1834.3960.118901341016.4022.6985.3204.6564.7244.6231.6896.3120.165921361018.5682.1665.3754.6794.7475.3111.9187.2290.184941381020.9792.4115.4394.7144.781-6.058-2.389-8.447-0.210961401023.0782.0995.4894.7344.801-6.415-2.476-8.891-0.216981421025.0691.9915.5364.7534.820-6.651-2.520-9.171-0.2181001441026.8121.7435.5824.7724.839-6.806-2.542-9.348-0.2171021461028.0031.1915.6264.7894.855-6.806-2.542-9.348-0.2121041481028.7260.7235.6674.8014.868-6.420-2.419-8.839-0.1601081521030.1470.8875.7354.7834.8490.104
861301000.0505.0575.1954.0000.0400.0120.00120.0002861301010.7731.9355.1954.6034.6720.1250.0370.1620.004881321013.7042.9315.2614.6274.6963.2131.1834.3960.118901341016.4022.6985.3204.6564.7244.6231.6896.3120.165921361018.5682.1665.3754.6794.7475.3111.9187.2290.184941381020.9792.4115.4394.7144.781-6.058-2.389-8.447-0.210961401023.0782.0995.4894.7344.801-6.415-2.476-8.891-0.216981421025.0691.9915.5364.7534.820-6.651-2.520-9.171-0.2181001441026.8121.7435.5824.7724.839-6.806-2.542-9.348-0.2171021461028.0031.1915.6264.7894.855-6.806-2.536-9.342-0.2121041481028.7260.7235.6674.8014.868-6.420-2.419-8.839-0.1601081521030.1470.8875.7354.7834.8490.1040.0050.1090.0021101541032.0801.9335.7734.803 <t< td=""></t<>
801501610.171311555.1554.0054.0120.1120.0050.1120.005881321013.7042.9315.2614.6274.6963.2131.1834.3960.118901341016.4022.6985.3204.6564.7244.6231.6896.3120.165921361018.5682.1665.3754.6794.7475.3111.9187.2290.184941381020.9792.4115.4394.7144.781-6.058-2.389-8.447-0.210961401023.0782.0995.4894.7344.801-6.415-2.476-8.891-0.216981421025.0691.9915.5364.7534.820-6.651-2.520-9.171-0.2181001441026.8121.7435.5824.7724.839-6.806-2.542-9.348-0.2171021461028.0031.1915.6264.7894.855-6.806-2.536-9.342-0.2121041481028.7260.7235.6674.8014.868-6.420-2.419-8.839-0.1961061501029.2600.5345.7054.8054.871-5.350-2.028-7.378-0.1601081521030.1470.8875.7354.7834.8490.1040.0050.0780.0021101541032.0801.9335.773
301321015.7042.5913.2014.0274.0274.0214.0211.1034.13700.111901341016.4022.6985.3204.6564.7244.6231.6896.3120.165921361018.5682.1665.3754.6794.7475.3111.9187.2290.184941381020.9792.4115.4394.7144.781 -6.058 -2.389 -8.447 -0.210 961401023.0782.0995.4894.7344.801 -6.415 -2.476 -8.891 -0.216 981421025.0691.9915.5364.7534.820 -6.651 -2.520 -9.171 -0.218 1001441026.8121.7435.5824.7724.839 -6.806 -2.542 -9.348 -0.217 1021461028.0031.1915.6264.7894.855 -6.806 -2.536 -9.342 -0.212 1041481028.7260.7235.6674.8014.868 -6.420 -2.419 -8.839 -0.196 1061501029.2600.5345.7554.8054.871 -5.350 -2.028 -7.378 -0.160 1081521030.1470.8875.7354.7834.8490.1040.0050.1090.0021101541032.0801.9335.7734.8034.8690.083 -0.003 0.0910.002 </td
921361010.4022.0365.3204.0304.7475.0111.0930.3120.103921361018.5682.1665.3754.6794.7475.3111.9187.2290.184941381020.9792.4115.4394.7144.781 -6.058 -2.389 -8.447 -0.210 961401023.0782.0995.4894.7344.801 -6.415 -2.476 -8.891 -0.216 981421025.0691.9915.5364.7534.820 -6.651 -2.520 -9.171 -0.218 1001441026.8121.7435.5824.7724.839 -6.806 -2.542 -9.348 -0.217 1021461028.0031.1915.6264.7894.855 -6.806 -2.536 -9.342 -0.212 1041481028.7260.7235.6674.8014.868 -6.420 -2.419 -8.839 -0.160 1061501029.2600.5345.7054.8054.871 -5.350 -2.028 -7.378 -0.160 1081521030.1470.8875.7354.7834.8490.1040.0050.1090.0021101541032.0801.9335.7734.8034.8690.083 -0.005 0.0780.0021121561033.2691.1895.8124.8214.8870.094 -0.003 0.0910.002
941381020.9792.4115.4394.7144.781-6.058-2.389-8.447-0.210961401023.0782.0995.4894.7344.801-6.415-2.476-8.891-0.216981421025.0691.9915.5364.7534.820-6.651-2.520-9.171-0.2181001441026.8121.7435.5824.7724.839-6.806-2.542-9.348-0.2171021461028.0031.1915.6264.7894.855-6.806-2.542-9.348-0.2121041481028.7260.7235.6674.8014.868-6.420-2.419-8.839-0.1961061501029.2600.5345.7054.8054.871-5.350-2.028-7.378-0.1601081521030.1470.8875.7354.7834.8490.1040.0050.1090.0021101541032.0801.9335.7734.8034.8690.083-0.0050.0780.0021121561033.2691.1895.8124.8214.8870.094-0.0030.0910.0021141581032.518-0.7515.8544.8384.9040.117-0.0020.1150.002124490729.07932.3244.2494.3814.4541.0981.2082.3060.1174692759.95830.8794.2
961601626.7752.4115.4554.7144.7616.63562.5056.4476.216961401023.0782.0995.4894.7344.801-6.415-2.476-8.891-0.216981421025.0691.9915.5364.7534.820-6.651-2.520-9.171-0.2181001441026.8121.7435.5824.7724.839-6.806-2.542-9.348-0.2171021461028.0031.1915.6264.7894.855-6.806-2.536-9.342-0.2121041481028.7260.7235.6674.8014.868-6.420-2.419-8.839-0.1961061501029.2600.5345.7054.8054.871-5.350-2.028-7.378-0.1601081521030.1470.8875.7354.7834.8490.1040.0050.1090.0021101541032.0801.9335.7734.8034.8690.083-0.0050.0780.0021121561033.2691.1895.8124.8214.8870.094-0.0030.0910.0021141581032.518-0.7515.8544.8384.9040.117-0.0020.1150.002Z = 46 (Palladyum)4490729.07932.3244.2494.3814.4541.0981.2082.3060.1174692
981401025.0732.0995.4094.7544.8010.4152.4766.8910.216981421025.0691.9915.5364.7534.820 -6.651 -2.520 -9.171 -0.218 1001441026.8121.7435.5824.7724.839 -6.806 -2.542 -9.348 -0.217 1021461028.0031.1915.6264.7894.855 -6.806 -2.536 -9.342 -0.212 1041481028.7260.7235.6674.8014.868 -6.420 -2.419 -8.839 -0.196 1061501029.2600.5345.7054.8054.871 -5.350 -2.028 -7.378 -0.160 1081521030.1470.8875.7354.7834.8490.1040.0050.1090.0021101541032.0801.9335.7734.8034.8690.083 -0.005 0.0780.0021121561033.2691.1895.8124.8214.8870.094 -0.003 0.0910.0021141581032.518 -0.751 5.8544.8384.9040.117 -0.002 0.1150.0021141581032.518 -0.751 5.8544.8384.9040.117 -0.002 0.1150.00212449788.55728.5994.3164.3674.4390.9290.9521.8810.08950 <td< td=""></td<>
1421025.0031.3315.3504.7334.0200.0312.3205.1710.2131001441026.8121.7435.5824.7724.839-6.806-2.542-9.348-0.2171021461028.0031.1915.6264.7894.855-6.806-2.536-9.342-0.2121041481028.7260.7235.6674.8014.868-6.420-2.419-8.839-0.1961061501029.2600.5345.7054.8054.871-5.350-2.028-7.378-0.1601081521030.1470.8875.7354.7834.8490.1040.0050.1090.0021101541032.0801.9335.7734.8034.8690.083-0.0050.0780.0021121561033.2691.1895.8124.8214.8870.094-0.0030.0910.0021141581032.518-0.7515.8544.8384.9040.117-0.0020.1150.002Z = 46 (Palladyum)4490729.07932.3244.2494.3814.4541.0981.2082.3060.1174692759.95830.8794.2884.3774.4491.2731.3102.5830.1264894788.55728.5994.3164.3674.4390.9290.9521.8810.0895096815.892<
1001441020.0121.1455.3024.1724.0550.0002.5425.3430.2171021461028.0031.1915.6264.7894.855 -6.806 -2.536 -9.342 -0.212 1041481028.7260.7235.6674.8014.868 -6.420 -2.419 -8.839 -0.196 1061501029.2600.5345.7054.8054.871 -5.350 -2.028 -7.378 -0.160 1081521030.1470.8875.7354.7834.8490.1040.0050.1090.0021101541032.0801.9335.7734.8034.8690.083 -0.005 0.0780.0021121561033.2691.1895.8124.8214.8870.094 -0.003 0.0910.0021141581032.518 -0.751 5.8544.8384.9040.117 -0.002 0.1150.002Z = 46 (Palladyum)4490729.07932.3244.2494.3814.4541.0981.2082.3060.1174692759.95830.8794.2884.3774.4491.2731.3102.5830.1264894788.55728.5994.3164.3674.4390.9290.9521.8810.0895096815.89227.3354.3454.3594.4310.0030.0050.0080.000
102 140 1028.005 1.191 3.020 4.739 4.053 0.000 2.050 9.542 0.212 104 148 1028.726 0.723 5.667 4.801 4.868 -6.420 -2.419 -8.839 -0.196 106 150 1029.260 0.534 5.705 4.805 4.871 -5.350 -2.028 -7.378 -0.160 108 152 1030.147 0.887 5.735 4.783 4.849 0.104 0.005 0.109 0.002 110 154 1032.080 1.933 5.773 4.803 4.869 0.083 -0.005 0.078 0.002 112 156 1033.269 1.189 5.812 4.821 4.887 0.094 -0.003 0.091 0.002 114 158 1032.518 -0.751 5.854 4.838 4.904 0.117 -0.002 0.115 0.002 114 158 1032.518 -0.751 5.854 4.838 4.904 0.117 -0.002 0.115 0.002 114 158 1032.518 -0.751 5.854 4.838 4.904 0.117 -0.002 0.115 0.002 144 90 729.079 32.324 4.249 4.381 4.454 1.098 1.208 2.306 0.117 46 92 759.958 30.879 4.288 4.377 4.449 1.273 1.310 2.583 0.126
104 146 1026.726 0.725 5.007 4.001 4.006 0.426 2.419 0.039 0.196 106 150 1029.260 0.534 5.705 4.805 4.871 -5.350 -2.028 -7.378 -0.160 108 152 1030.147 0.887 5.735 4.783 4.849 0.104 0.005 0.109 0.002 110 154 1032.080 1.933 5.773 4.803 4.869 0.083 -0.005 0.078 0.002 112 156 1033.269 1.189 5.812 4.821 4.887 0.094 -0.003 0.091 0.002 114 158 1032.518 -0.751 5.854 4.838 4.904 0.117 -0.002 0.115 0.002 114 158 1032.518 -0.751 5.854 4.838 4.904 0.117 -0.002 0.115 0.002 114 158 1032.518 -0.751 5.854 4.838 4.904 0.117 -0.002 0.115 0.002 14 90 729.079 32.324 4.249 4.381 4.454 1.098 1.208 2.306 0.117 46 92 759.958 30.879 4.288 4.377 4.449 1.273 1.310 2.583 0.126 48 94 788.557 28.599 4.316 4.367 4.431 0.003 0.005 0.008 0.000 <td< td=""></td<>
100 150 1023.200 0.334 3.703 4.303 4.371 -5.350 -2.023 -7.573 -0.100 108 152 1030.147 0.887 5.735 4.783 4.849 0.104 0.005 0.109 0.002 110 154 1032.080 1.933 5.773 4.803 4.869 0.083 -0.005 0.078 0.002 112 156 1033.269 1.189 5.812 4.821 4.887 0.094 -0.003 0.091 0.002 114 158 1032.518 -0.751 5.854 4.838 4.904 0.117 -0.002 0.115 0.002 114 158 1032.518 -0.751 5.854 4.838 4.904 0.117 -0.002 0.115 0.002 $2 = 46$ (Palladyum) 44 90 729.079 32.324 4.249 4.381 4.454 1.098 1.208 2.306 0.117 46 92 759.958 30.879 4.288 4.377 4.449 1.273 1.310 2.583 0.126 48 94 788.557 28.599 4.316 4.367 4.439 0.929 0.952 1.881 0.089 50 96 815.892 27.335 4.345 4.359 4.431 0.003 0.005 0.008 0.000
100 + 152 + 1030.147 $0.307 + 3.733 + 4.763 + 4.849$ $0.104 + 0.003 + 0.003 + 0.109 + 0.002$ $110 + 154 + 1032.080 + 1.933 + 5.773 + 4.803 + 4.869 + 0.083 - 0.005 + 0.078 + 0.002 + 0.003 + 0.002 + 0.003 + 0.001 + 0.002 + 0.003 + 0.001 + 0.002 + 0.003 + 0.001 + 0.002 + 0.001 + 0.002 + 0.001 + 0.002 + 0.001 + 0.002 + 0.001$
I10 $I34$ $I032.030$ $I.1353$ $S.175$ 4.303 4.305 0.005 0.005 0.076 0.002 $I12$ $I56$ $I033.269$ $I.189$ 5.812 4.821 4.887 0.094 -0.003 0.091 0.002 $I14$ $I58$ $I032.518$ -0.751 5.854 4.838 4.904 0.117 -0.002 0.115 0.002 $I14$ $I58$ $I032.518$ -0.751 5.854 4.838 4.904 0.117 -0.002 0.115 0.002 $I44$ 90 729.079 32.324 4.249 4.381 4.454 1.098 1.208 2.306 0.117 $I6$ 92 759.958 30.879 4.288 4.377 4.449 1.273 1.310 2.583 0.126 $I8$ 94 788.557 28.599 4.316 4.367 4.439 0.929 0.952 1.881 0.089 50 96 815.892 27.335 4.345 4.359 4.431 0.003 0.005 0.008 0.000
I12 $I30$ $I033.203$ $I1103$ $I103$ $I103$ $I103$ $I103$ $I103$ $I103$ $I103$ $I103$ $I113$ $I103$ $I113$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
4490729.07932.3244.2494.3814.4541.0981.2082.3060.1174692759.95830.8794.2884.3774.4491.2731.3102.5830.1264894788.55728.5994.3164.3674.4390.9290.9521.8810.0895096815.89227.3354.3454.3594.4310.0030.0050.0080.000
4692759.95830.8794.2884.3774.4491.2731.3102.5830.1264894788.55728.5994.3164.3674.4390.9290.9521.8810.0895096815.89227.3354.3454.3594.4310.0030.0050.0080.000
4894788.55728.5994.3164.3674.4390.9290.9521.8810.0895096815.89227.3354.3454.3594.4310.0030.0050.0080.000
50 96 815.892 27.335 4.345 4.359 4.431 0.003 0.005 0.008 0.000
52 98 835.157 19.265 4.404 4.372 4.445 -0.019 -0.018 -0.037 -0.002
54 100 854.728 19.571 4.474 4.409 4.481 1.907 1.541 3.448 0.147
56 102 873.134 18.406 4.533 4.435 4.507 2.538 1.903 4.441 0.183
58 104 890.046 16.912 4.587 4.456 4.527 2.853 2.036 4.889 0.195
60 106 905.841 15.795 4.636 4.472 4.543 2.920 2.010 4.930 0.191
62 108 920.830 14.989 4.683 4.488 4.559 2.989 1.992 4.981 0.187
64 110 936.061 15.231 4.740 4.524 4.594 -3.750 -2.506 -6.256 -0.227
66 112 950.851 14.790 4.784 4.541 4.611 -3.916 -2.533 -6.449 -0.227
68 114 964.490 13.639 4.827 4.558 4.627 -4.120 -2.588 -6.708 -0.230
70 116 976.550 12.060 4.867 4.571 4.641 -4.130 -2.548 -6.678 -0.222
72 118 987.743 11.193 4.899 4.575 4.645 -3.531 -2.195 -5.726 -0.185
74 120 998.705 10.962 4.928 4.562 4.632 1.849 1.227 3.076 0.097
76 122 1010.523 11.818 4.962 4.574 4.644 1.920 1.296 3.216 0.098
78 124 1020.932 10.409 4.995 4.587 4.656 1.802 1.205 3.007 0.090
80 126 1029.943 9.011 5.021 4.593 4.662 0.037 0.019 0.056 0.002
82 128 1039.086 9.143 5.057 4.607 4.676 0.025 0.009 0.034 0.001
84 130 1043.657 4.571 5.112 4.621 4.690 0.040 0.099 0.139 0.001
86 132 1046.127 2.470 5.174 4.635 4.703 0.090 0.027 0.117 0.003

Ek Tablo 7'nin devamı

N	A	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\text{fm})$	$r_p(\text{fm})$	$r_{\mathcal{C}}(\mathrm{fm})$	$Q_{n^{(b)}}$	$Q_{p^{(b)}}$	Q_T (b)	β_2
Z = 4	46 (Pa	lladvum)								
88	134	1050.000	3.873	5.238	4.662	4.730	3.413	1.364	4.777	0.125
90	136	1053.523	3.523	5.296	4.690	4.757	4.671	1.814	6.485	0.165
92	138	1056.514	2.991	5.349	4.713	4.780	5.324	2.025	7.349	0.183
94	140	1059.229	2.715	5.400	4.733	4.800	5.714	2.134	7.848	0.191
96	142	1061.643	2.414	5.449	4.751	4.818	5.873	2.168	8.041	0.191
98	144	1063.727	2.084	5.496	4.766	4.833	5.761	2.122	7.883	0.183
100	146	1066.019	2.292	5.553	4.809	4.875	-6.942	-2.683	-9.625	-0.218
102	148	1068.148	2.129	5.598	4.835	4.901	-7.437	-2.891	-10.328	-0.229
104	150	1069.706	1.558	5.639	4.854	4.920	-7.537	-2.938	-10.475	-0.227
106	152	1071.273	1.567	5.666	4.815	4.881	-3.730	-1.236	-4.966	-0.105
108	154	1072.843	1.570	5.702	4.821	4.887	0.257	0.077	0.334	0.007
110	156	1075.495	2.652	5.741	4.840	4.905	0.081	0.004	0.085	0.002
112	158	1077.380	1.885	5.780	4.857	4.922	0.079	-0.004	0.075	0.001
114	160	1077.428	0.048	5.819	4.874	4.939	0.092	-0.005	0.087	0.002
7	40 (17	1 • • •								
L = 4	48 (Ka	idmiyum)	22.126	4 000	4 415	4 407	0.072	1 0 1 0	1 002	0.004
46	94	762.013	33.130	4.289	4.415	4.487	0.973	1.010	1.983	0.094
48	96	/93.11/	31.104	4.314	4.401	4.4/3	-0.007	-0.002	-0.009	0.000
50	98	823.600	30.483	4.348	4.397	4.469	0.003	0.007	0.010	0.000
52 54	100	844.002	21.062	4.404	4.410	4.482	-0.004	-0.002	-0.000	0.000
54	102	804.332	19.870	4.407	4.440	4.512	1.430	1.134	2.390	0.107
30 50	104	884.433	19.901	4.527	4.408	4.559	2.197	1.040	5.845 4.222	0.155
38 60	100	903.170	18.743	4.380	4.488	4.439	2.328	1.805	4.555	0.10/
60	108	920.999	17.823	4.028	4.505	4.570	2.017	1.805	4.422	0.100
02 64	110	937.094	10.093	4.0/3	4.521	4.391	2.037	1.//9	4.430	0.101
04	112	955.204	15.570	4./1/	4.551	4.002	2.383	1.371	5.950	0.140
00 69	114	909.012	15.748	4.//4	4.5/1	4.041	-5.750	-2.479	-0.229	-0.213
08	110	984.130	13.144	4.010	4.391	4.000	-4.070	-2.040	-0./10	-0.225
70	110	997.625	13.007	4.050	4.500	4.050	-0.002	-0.004	-0.000	0.000
74	120	1011.322	12,499	4.074	4.575	4.042	1.140	0.000	1.870	0.000
74 76	122	1024.121	12.799	4.912	4.590	4.039	1.140	0.750	1.070	0.057
70	124	1037.391	12 150	4.944	4.001	4.070	1.557	0.091	1.440	0.007
70 80	120	1049.550	12.139	4.970 5.004	4.013	4.082	0.158	0.704	0.288	0.030
82	120	1071 812	10.713	5.004	4.025	4.091	0.138	0.130	0.200	0.001
87	130	1077 120	5 317	5.040	4.050	4.705	0.021	0.007	0.020	0.001
86	134	1077.129	3 053	5 155	4 665	4 733	0.054	0.000	0.042	0.001
88	134	1083 347	3 165	5 213	4 681	4 740	1 540	0.012	2 100	0.002
90 90	138	1087 947	4 600	5 272	4 716	4 783	4 192	1 582	5 774	0.034
92	140	1001 767	3 820	5 325	4 741	4 808	5 018	1.302	6.912	0.144
94	142	1095 361	3 594	5 376	4 763	4 830	5 502	2.062	7 564	0.180
96	144	1098 673	3 312	5 423	4 782	4 849	5.302	2.002	7 854	0.187
70	1-4-4	1070.075	5.512	5.425	T. / UZ	T.UT/	5.125	2.12)	7.054	0.102

N	Α	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\mathrm{fm})$	$r_p(\text{fm})$	$r_{\mathcal{C}}(\mathrm{fm})$	$Q_{n}(\mathbf{b})$	$Q_{p^{(b)}}$	$Q_T(\mathbf{b})$	β_2
7 – 4	18 (Ka	dmiyum)								
2	1/16	1101 63 <i>/</i>	2 961	5 /60	1 700	1 866	5 668	2 100	7 768	0 176
100	1/18	1101.034	2.901 2.751	5 513	4.799	4.800	5 384	2.100	7.700	0.170
100	150	1104.505	2.751	5 574	4.879	4.001 4 Q 44	_7 963	-3 268	-11231	-0.243
102	152	1100.775	2.500	5 596	4.839	4 905	4 191	1 608	5 799	0.243
104	152	1111.836	2.738	5.636	4.847	4.913	2.966	1.183	4.149	0.086
Z = S	50 (Ka	lay)								
48	98	795.982	34.331	4.318	4.444	4.515	0.001	0.001	0.002	0.000
50	100	828.687	32.705	4.351	4.438	4.510	0.003	0.010	0.013	0.001
52	102	851.627	22.940	4.406	4.451	4.522	-0.001	-0.001	-0.002	0.000
54	104	872.260	20.633	4.461	4.471	4.542	-0.095	-0.055	-0.150	-0.006
56	106	892.752	20.492	4.516	4.495	4.565	1.130	0.774	1.904	0.074
58	108	912.821	20.069	4.568	4.515	4.586	1.623	1.064	2.687	0.101
60	110	932.138	19.317	4.614	4.531	4.601	1.540	0.961	2.501	0.091
62	112	951.089	18.951	4.652	4.542	4.612	-0.227	-0.130	-0.357	-0.013
64	114	969.353	18.264	4.696	4.555	4.625	-0.061	-0.033	-0.094	-0.003
66	116	986.507	17.154	4.740	4.569	4.638	-0.019	-0.009	-0.028	-0.001
68	118	1002.714	16.207	4.784	4.582	4.651	-0.007	-0.003	-0.010	0.000
70	120	1018.287	15.573	4.825	4.595	4.664	0.004	0.002	0.006	0.000
72	122	1033.589	15.302	4.863	4.606	4.675	0.006	0.003	0.009	0.000
74	124	1047.844	14.255	4.897	4.618	4.686	0.004	0.001	0.005	0.000
76	126	1062.107	14.263	4.929	4.629	4.698	0.006	0.003	0.009	0.000
78	128	1076.122	14.015	4.960	4.641	4.709	0.014	0.007	0.021	0.001
80	130	1089.768	13.646	4.991	4.653	4.721	0.018	0.009	0.027	0.001
82	132	1102.041	12.273	5.026	4.665	4.733	0.018	0.007	0.025	0.001
84	134	1108.146	6.105	5.080	4.680	4.748	0.029	0.008	0.037	0.001
86	136	1111.853	3.707	5.138	4.696	4.763	0.045	0.011	0.056	0.001
88	138	1115.434	3.581	5.193	4.711	4.779	0.081	0.020	0.101	0.003
90	140	1119.856	4.422	5.250	4.741	4.808	3.302	1.111	4.413	0.107
92	142	1124.244	4.388	5.303	4.769	4.835	4.452	1.578	6.030	0.143
94	144	1128.425	4.181	5.354	4.793	4.859	5.111	1.862	6.973	0.162
96	146	1132.411	3.986	5.402	4.814	4.880	5.453	2.008	7.461	0.169
98	148	1136.123	3.712	5.446	4.831	4.897	5.446	4.831	10.277	0.163
100	150	1139.977	3.854	5.490	4.841	4.906	-5.150	-1.707	-6.857	-0.149
102	152	1143.648	3.671	5.530	4.856	4.921	-4.887	-1.575	-6.462	-0.137
104	154	1146.797	3.149	5.596	4.939	5.003	-8.433	-3.619	-12.052	-0.250
106	156	1149.428	2.631	5.633	4.953	5.017	-8.301	-3.529	-11.830	-0.240
108	158	1154.429	5.001	5.645	4.892	4.957	0.098	0.015	0.113	0.002
110	160	1158.341	3.912	5.685	4.907	4.972	0.070	0.006	0.076	0.002
112	162	1161.555	3.214	5.724	4.922	4.986	0.064	0.002	0.066	0.001
114	164	1163.410	1.855	5.759	4.938	5.003	0.068	0.002	0.070	0.001
116	166	1164.372	0.962	5.790	4.957	5.021	0.071	0.013	0.084	0.001

Ek Tablo 7'nin devamı

Ek Tablo 7'nin devamı

N	Α	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\mathrm{fm})$	$r_p(\text{fm})$	$r_{\mathcal{C}}(\mathrm{fm})$	$Q_{n}(\mathbf{b})$	$Q_{p^{(b)}}$	$Q_T(\mathbf{b})$	β2
Z = 4	50 (Ka	lav)								
118	168	1165.103	0.731	5.819	4.977	5.041	0.073	0.002	0.075	0.001
120	170	1165.789	0.686	5.846	4.997	5.060	0.102	0.013	0.115	0.002
122	172	1166.452	0.663	5.874	5.017	5.080	0.113	0.017	0.130	0.002
		11001102	01000	01071	01017	0.000	01110	01017	0.120	0.002
Z = S	52 (Tel	llür)								
54	106	873.337	24.641	4.485	4.542	4.612	1.540	1.404	2.944	0.114
56	108	896.412	23.075	4.540	4.561	4.631	2.085	1.761	3.846	0.144
58	110	918.069	21.657	4.589	4.577	4.647	2.365	1.878	4.243	0.154
60	112	938.612	20.543	4.633	4.591	4.660	2.365	1.782	4.147	0.146
62	114	958.523	19.911	4.672	4.603	4.672	-1.924	-1.366	-3.290	-0.113
64	116	978.334	19.811	4.717	4.617	4.686	-2.312	-1.578	-3.890	-0.129
66	118	997.515	19.181	4.762	4.633	4.702	-2.831	-1.873	-4.704	-0.152
68	120	1015.362	17.847	4.801	4.645	4.714	-2.952	-1.905	-4.857	-0.153
70	122	1032.139	16.777	4.835	4.653	4.721	-2.608	-1.659	-4.267	-0.130
72	124	1047.799	15.660	4.866	4.659	4.728	1.987	1.311	3.298	0.098
74	126	1063.960	16.161	4.900	4.669	4.737	1.696	1.122	2.818	0.082
76	128	1079.667	15.212	4.933	4.678	4.746	1.270	0.840	2.110	0.060
78	130	1094.887	15.220	4.961	4.686	4.754	-0.004	-0.004	-0.008	0.000
80	132	1110.280	15.393	4.992	4.697	4.764	0.015	0.009	0.024	0.001
82	134	1124.221	13.941	5.025	4.708	4.776	0.017	0.008	0.025	0.001
84	136	1131.329	7.108	5.078	4.724	4.791	0.026	0.009	0.035	0.001
86	138	1135.914	4.585	5.134	4.741	4.808	0.043	0.014	0.057	0.001
88	140	1142.806	6.892	5.193	4.774	4.840	3.477	1.576	5.053	0.123
90	142	1148.898	6.092	5.246	4.799	4.866	4.574	2.026	6.600	0.157
92	144	1154.201	5.303	5.297	4.822	4.887	5.234	2.269	7.503	0.174
94	146	1159.219	5.018	5.345	4.843	4.909	5.766	2.461	8.227	0.186
96	148	1163.961	4.742	5.392	4.864	4.930	5.392	4.864	10.256	0.197
98	150	1168.662	4.701	5.446	4.903	4.968	5.446	4.903	10.349	0.252
100	152	1173.608	4.946	5.498	4.940	5.004	9.653	4.282	13.935	0.295
102	154	1178.093	4.485	5.520	4.917	4.982	-6.704	-2.626	-9.330	-0.194
104	156	1182.203	4.110	5.558	4.933	4.998	-6.649	-2.579	-9.228	-0.187
106	158	1186.023	3.820	5.594	4.944	5.009	-6.093	-2.331	-8.424	-0.167
108	160	1189.743	3.720	5.629	4.956	5.097	-5.421	-2.066	-7.487	-0.146
110	162	1193.445	3.702	5.667	4.949	5.013	0.064	0.007	0.071	0.001
112	164	1197.410	3.965	5.705	4.963	5.027	0.054	0.002	0.056	0.001
114	166	1200.361	2.951	5.738	4.979	5.043	0.052	-0.001	0.051	0.001
116	168	1202.620	2.259	5.768	4.997	5.060	0.045	-0.057	-0.012	0.001
118	170	1204.845	2.225	5.797	5.017	5.080	1.233	0.618	1.851	0.033
_										
Z = 3	54 (Ks	enon)	05.005		4	4 60 -	A /A=	o = = = =	F 400	0.400
56	110	897.445	25.306	4.565	4.627	4.695	2.637	2.552	5.189	0.189
58	112	921.055	23.610	4.614	4.641	4./10	3.026	2.737	5.763	0.203

Ek Tablo 7'nin devamı

N	A	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\text{fm})$	$r_p(\text{fm})$	$r_{\mathcal{C}}(\mathrm{fm})$	$Q_{n}(\mathbf{b})$	$Q_{p^{(b)}}$	$Q_T(\mathbf{b})$	β_2
Z = L	54 (Ks	enon)								
60	114	943.436	22.381	4.661	4.656	4.724	3.424	2.916	6.340	0.217
62	116	965.301	21.865	4.713	4.675	4.743	4.239	3.386	7.625	0.254
64	118	986.427	21.126	4.761	4.693	4.761	4.813	3.715	8.528	0.276
66	120	1006.692	20.265	4.806	4.712	4.779	5.243	3.966	9.209	0.289
68	122	1026.033	19.341	4.847	4.726	4.794	5.464	4.051	9.515	0.291
70	124	1044.244	18.211	4.857	4.714	4.781	4.208	3.006	7.214	0.215
72	126	1062.297	18.053	4.886	4.719	4.786	3.722	2.654	6.376	0.185
74	128	1079.512	17.215	4.916	4.725	4.793	3.300	2.366	5.666	0.160
76	130	1096.045	16.533	4.946	4.731	4.798	2.707	1.983	4.690	0.129
78	132	1112.164	16.119	4.973	4.737	4.804	1.954	1.470	3.424	0.092
80	134	1127.844	15.680	4.997	4.741	4.808	0.023	0.016	0.039	0.001
82	136	1143.449	15.605	5.030	4.752	4.819	0.017	0.009	0.026	0.001
84	138	1151.663	8.214	5.081	4.768	4.835	0.027	0.011	0.038	0.001
86	140	1159.131	7.468	5.138	4.797	4.863	2.660	1.561	4.221	0.103
88	142	1167.423	8.292	5.193	4.825	4.891	4.176	2.243	6.419	0.152
90	144	1174.816	7.393	5.244	4.848	4.914	5.098	2.593	7.691	0.178
92	146	1181.407	6.591	5.293	4.870	4.935	5.731	2.808	8.539	0.194
94	148	1187.674	6.267	5.340	4.891	4.956	6.324	3.007	9.331	0.207
96	150	1193.586	5.912	5.386	4.913	4.978	7.065	3.284	10.349	0.224
98	152	1199.475	5.889	5.434	4.942	5.006	8.422	3.849	12.271	0.260
100	154	1205.121	5.646	5.481	4.970	5.034	9.524	4.329	13.853	0.287
102	156	1210.196	5.075	5.524	4.992	5.055	10.072	4.564	14.636	0.297
104	158	1214.871	4.675	5.549	4.981	5.045	-7.383	-3.137	-10.520	-0.209
106	160	1219.423	4.552	5.584	4.994	5.058	-7.161	-3.011	-10.172	-0.198
108	162	1223.906	4.483	5.618	5.007	5.070	-6.735	-2.809	-9.544	-0.182
110	164	1228.215	4.309	5.652	5.019	5.083	-6.381	-2.653	-9.034	-0.169
112	166	1232.040	3.825	5.685	5.032	5.095	-5.760	-2.432	-8.192	-0.150
114	168	1235.661	3.621	5.717	5.040	5.103	-4.491	-2.009	-6.500	-0.117
116	170	1239.309	3.648	5.751	5.047	5.110	3.204	1.755	4.959	0.087
118	172	1243.304	3.995	5.783	5.064	5.127	3.492	1.907	5.399	0.093
120	174	1246.734	3.430	5.813	5.080	5.143	3.454	1.877	5.331	0.090
122	176	1249.431	2.697	5.839	5.096	5.158	2.977	1.612	4.589	0.076
124	1/8	1251.467	2.036	5.859	5.111	5.173	0.122	0.044	0.166	0.003
126	180	1253.682	2.215	5.890	5.127	5.189	0.088	0.018	0.106	0.002
Z = 3	56 (Ba	ryum)								
56	112	895.914	27.844	4.588	4.690	4.757	3.008	3.192	6.200	0.219
58	114	921.630	25.716	4.636	4.702	4.769	3.455	3.412	6.867	0.235
60	116	945.951	24.321	4.686	4.717	4.784	4.146	3.794	7.940	0.264
62	118	969.991	24.040	4.743	4.741	4.809	5.240	4.546	9.786	0.316
64	120	992.616	22.625	4.780	4.750	4.817	5.363	4.474	9.837	0.309
66	122	1014.379	21.763	4.818	4.761	4.827	5.557	4.489	10.046	0.307

Ek Tablo 7'nin devamı

N	A	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\mathrm{fm})$	$r_p(\text{fm})$	$\Gamma_{\mathcal{C}}(\mathrm{fm})$	$Q_{n^{(b)}}$	$Q_{p^{(\mathrm{b})}}$	$Q_{T}(\mathbf{b})$	β ₂
7 –	56 (Ba	ryum)								
L	10 (Da 124	1035 065	20.686	1 851	4 770	1 836	5 618	4 405	10.023	0 208
70	124	1053.005	10/116	4.034	4.770	4.830	5 1 1 0	3 000	0.023	0.298
70	120	1073 457	19.410	4.070	4.709	4.830	1 381	3.309	9.020	0.202
74	120	10/3.437	18 387	4.900	4.770	4.830	4.301	2.016	6757	0.216
74	120	1100 460	17.621	4.927	4.774	4.040	2 120	2.910	5 5 4 9	0.160
70	132	1109.400	17.021 17.447	4.955	4.///	4.044	2.139	2.409	J.J40 4 086	0.149
70 80	134	1120.907	17.447	4.901 5.002	4.701	4.040	2.207	1.799	4.060	0.107
80	130	1144.007	17.100	5.005	4.703	4.049	0.038	0.030	0.008	0.002
02 84	130	1101.192	0.445	5.055	4.795	4.039	0.019	0.013	0.032	0.001
04 86	140	1170.037	9.445	5 1 2 8	4.010	4.070	0.031 2 5 2 1	1.600	0.055	0.001
80	142	11/0.900	0.331	5 102	4.039	4.905	4 282	2 500	4.130	0.090
00	144	1100.445	9.457	5 242	4.000	4.955	4.200	2.309	0.797 8 208	0.130
90	140	1205 206	8,000	5 280	4.091	4.950	5.527	2.971	0.290	0.100
92	140	1203.200	7 560	5 3 3 5	4.913	4.977	6.730	3.236	9.200	0.203
9 4 06	150	1212.775	7.309	5 382	4.954	5 023	7 886	3.004	11.234	0.222
90	154	1220.009	7.294	5.382	4.939	5.025	0.370	1 660	1/ 030	0.252
100	156	1227.301	6 758	5.451	4.990 5.015	5.034	10 246	4.000 5.024	14.039	0.291
100	158	12/0 186	5 027	5 517	5.013	5.076	10.240	5 137	15.270	0.313
102	160	1240.100	5 38/	5 5 5 1	5.033	5 107	10.022	1 030	15 350	0.313
104	162	1245.570	5 287	5 584	5.044	5 117	10.411	4 680	13.330 14.717	0.299
100	164	1256.037	5.207	5 618	5.054	5 1 2 9	9 767	4 503	14.717 14.270	0.261
110	166	1250.055	4 851	5 651	5.007	5 141	9.707	4 320	13 751	0.250
112	168	1265 440	4.651	5 673	5.073	5 136	-6 555	-2.859	-9.414	-0.169
112	170	1269.110	4 344	5 703	5.073	5 145	-5.610	-2.037	-8.085	-0.142
116	172	1202.701	4 4 5 6	5 734	5.003	5 1 5 5	4 830	2.173	7 293	0.112
118	174	1279.040	4 800	5 765	5 103	5 165	3 942	2.405	6.067	0.120
120	176	1279.010	4 593	5 795	5 1 1 6	5 178	3 4 3 9	1 901	5 340	0.089
122	178	1287 681	4 048	5 821	5 1 3 0	5 192	2,738	1.501	4 274	0.009
122	180	1291 268	3 587	5 842	5 145	5 206	0.083	0.027	0.110	0.002
126	182	1294.612	3,344	5.873	5.161	5.222	0.074	0.018	0.092	0.002
128	184	1294.977	0.365	5.917	5.173	5.234	0.107	0.019	0.126	0.002
Z = 3	58 (Sei	ryum)								
58	116	919.909	28.200	4.664	4.768	4.835	4.277	4.529	8.806	0.293
60	118	948.393	28.484	4.735	4.803	4.870	5.806	5.757	11.563	0.374
62	120	973.663	25.270	4.779	4.817	4.883	6.265	5.964	12.229	0.384
64	122	997.463	23.800	4.812	4.821	4.887	6.356	5.825	12.181	0.372
66	124	1020.320	22.857	4.843	4.824	4.890	6.361	5.616	11.977	0.356
68	126	1041.919	21.599	4.873	4.826	4.892	6.223	5.286	11.509	0.333
70	128	1062.417	20.498	4.897	4.823	4.889	5.798	4.735	10.533	0.297
72	130	1082.367	19.950	4.915	4.819	4.885	4.898	3.939	8.837	0.243
74	132	1101.838	19.471	4.939	4.820	4.886	4.227	3.400	7.627	0.205

Ek Tablo 7'nin devamı

N	Α	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\mathrm{fm})$	$r_p(\text{fm})$	$r_{\mathcal{C}}(\mathrm{fm})$	$Q_n(\mathbf{b})$	$Q_{p^{(\mathrm{b})}}$	$Q_T(\mathbf{b})$	β2
Z =	58 (Sei	rvum)								
76	134	1120.460	18.622	4.964	4.822	4.888	3.491	2.834	6.325	0.165
78	136	1138.803	18.343	4.988	4.823	4.889	2.448	2.014	4.462	0.114
80	138	1158.358	19.555	5.010	4.823	4.889	0.032	0.026	0.058	0.001
82	140	1176.996	18.638	5.041	4.833	4.898	0.022	0.017	0.039	0.001
84	142	1187.779	10.783	5.089	4.850	4.916	0.031	0.019	0.050	0.001
86	144	1196.239	8.460	5.136	4.873	4.939	0.106	0.065	0.171	0.004
88	146	1206.916	10.677	5.192	4.907	4.972	4.319	2.711	7.030	0.159
90	148	1217.169	10.253	5.242	4.932	4.996	5.535	3.357	8.892	0.197
92	150	1226.571	9.402	5.288	4.953	5.018	6.283	3.678	9.961	0.216
94	152	1236.699	10.128	5.352	5.007	5.071	9.294	5.499	14.793	0.313
96	154	1245.624	8.925	5.395	5.028	5.091	9.941	5.692	15.633	0.324
98	156	1254.087	8.463	5.437	5.048	5.111	10.607	5.896	16.503	0.335
100	158	1261.975	7.888	5.481	5.069	5.132	11.331	6.151	17.482	0.347
102	160	1268.715	6.740	5.521	5.086	5.149	11.762	6.256	18.018	0.351
104	162	1274.591	5.876	5.553	5.095	5.158	11.570	6.013	17.583	0.335
106	164	1280.487	5.896	5.578	5.097	5.160	10.713	5.374	16.087	0.300
108	166	1286.550	6.063	5.610	5.106	5.168	10.247	5.021	15.268	0.279
110	168	1292.295	5.745	5.643	5.117	5.179	9.957	4.821	14.778	0.265
112	170	1297.364	5.069	5.673	5.125	5.188	9.403	4.541	13.944	0.245
114	172	1301.998	4.634	5.697	5.130	5.192	8.092	3.966	12.058	0.208
116	174	1307.043	5.045	5.720	5.128	5.190	-4.907	-2.219	-7.126	-0.121
118	176	1312.311	5.268	5.747	5.137	5.199	-3.553	-1.628	-5.181	-0.086
120	178	1317.982	5.671	5.776	5.147	5.208	2.273	1.177	3.450	0.056
122	180	1323.606	5.624	5.801	5.160	5.222	0.113	0.046	0.159	0.003
124	182	1329.166	5.560	5.828	5.176	5.238	0.065	0.020	0.085	0.001
126	184	1333.595	4.429	5.858	5.191	5.253	0.062	0.016	0.078	0.001
128	186	1334.418	0.823	5.903	5.204	5.265	0.009	0.017	0.026	0.002
Z = 0	50 (Ne	odim)								
60	120	948.302	30.527	4.766	4.877	4.942	6.195	6.518	12.713	0.400
62	122	975.246	26.944	4.806	4.884	4.949	6.591	6.624	13.215	0.404
64	124	1000.502	25.256	4.840	4.888	4.953	6.770	6.554	13.324	0.396
66	126	1024.596	24.094	4.872	4.891	4.957	6.840	6.410	13.250	0.384
68	128	1047.266	22.670	4.904	4.896	4.961	6.863	6.230	13.093	0.369
70	130	1068.771	21.505	4.932	4.897	4.962	6.732	5.908	12.640	0.348
72	132	1089.333	20.562	4.941	4.882	4.947	5.534	4.733	10.267	0.275
74	134	1109.655	20.322	4.959	4.877	4.943	4.684	3.991	8.675	0.227
76	136	1129.166	19.511	4.982	4.877	4.942	3.922	3.371	7.293	0.186
78	138	1148.282	19.116	5.004	4.875	4.940	2.801	2.448	5.249	0.131
80	140	1168.956	20.674	5.022	4.872	4.937	0.009	0.010	0.019	0.000
82	142	1188.834	19.878	5.054	4.880	4.945	0.012	0.010	0.022	0.001
84	144	1200.965	12.131	5.101	4.896	4.961	0.587	0.437	1.024	0.000

Ek Tablo 7'nin devamı

N	Α	$BE \; (\text{MeV})$	$S_{2n}(\text{MeV})$	𝑘(fm) 𝑘	$r_p(\text{fm})$	$r_{\mathcal{C}}(\mathrm{fm})$	$Q_n(\mathbf{b})$	$Q_{p^{(b)}}$	$Q_T(\mathbf{b})$	β2
7-0	50 (Ne	odim)								
2 – V 86	146	1210 691	9 726	5 147	4 9 1 9	4 984	_0 139	-0 101	-0.240	-0.005
88	148	1210.071	12 688	5 203	4 954	5.018	4 550	3 100	7 650	0.005
90	150	1225.575	11 772	5 253	4 983	5.010	6.026	4 037	10.063	0.170
92	152	1233.131	12,731	5 320	5.037	5 101	9.010	5 976	14 986	0.210
94	154	1258 957	11.075	5 365	5.057	5 124	9 900	6 340	16 240	0.310
96	156	1269,103	10.146	5.405	5.079	5.142	10,488	6.497	16.985	0.345
98	158	1278.819	9.716	5.447	5.099	5.161	11,155	6.695	17.850	0.355
100	160	1287.889	9.070	5.489	5.119	5.181	11.832	6.897	18.729	0.364
102	162	1295.600	7.711	5.530	5.136	5.198	12.354	7.016	19.370	0.369
104	164	1302.271	6.671	5.567	5.150	5.212	12.603	6.995	19.598	0.366
106	166	1308.683	6.412	5.591	5.153	5.215	11.868	6.456	18.324	0.335
108	168	1315.240	6.557	5.618	5.158	5.219	11.173	5.935	17.108	0.307
110	170	1321.548	6.308	5.649	5.166	5.228	10.771	5.626	16.397	0.288
112	172	1327.229	5.681	5.681	5.175	5.236	10.362	5.356	15.718	0.271
114	174	1332.262	5.033	5.707	5.180	5.242	9.480	4.929	14.409	0.244
116	176	1337.515	5.253	5.722	5.174	5.235	-6.232	-2.985	-9.217	-0.153
118	178	1343.283	5.768	5.747	5.179	5.240	-4.631	-2.215	-6.846	-0.112
120	180	1349.162	5.879	5.773	5.184	5.246	2.655	1.415	4.070	0.065
122	182	1355.446	6.284	5.797	5.196	5.258	0.009	-0.006	0.003	0.000
124	184	1361.918	6.472	5.824	5.211	5.272	0.023	0.002	0.025	0.000
126	186	1367.269	5.351	5.855	5.226	5.287	0.032	0.002	0.034	0.001
128	188	1368.860	1.591	5.901	5.238	5.299	0.052	0.001	0.053	0.001
130	190	1368.160	-0.700	5.954	5.249	5.310	0.086	0.004	0.090	0.001
Z = 0	52 (Sai	maryum)								
64	126	999.977	27.162	4.854	4.936	5.000	6.928	7.004	13.932	0.404
66	128	1025.682	25.705	4.884	4.937	5.001	6.972	6.816	13.788	0.389
68	130	1049.947	24.265	4.915	4.940	5.004	7.003	6.629	13.632	0.375
70	132	1073.150	23.203	4.947	4.943	5.008	7.039	6.448	13.487	0.362
72	134	1095.096	21.946	5.002	4.973	5.037	8.055	7.040	15.095	0.395
74	136	1115.748	20.652	4.976	4.928	4.992	5.370	4.861	10.231	0.261
76	138	1135.905	20.157	4.993	4.922	4.986	4.411	4.013	8.424	0.210
78	140	1156.328	20.423	5.010	4.913	4.978	-2.854	-2.420	-5.274	-0.128
80	142	1177.102	20.774	5.027	4.909	4.973	-0.041	-0.036	-0.077	-0.002
82	144	1198.184	21.082	5.057	4.916	4.981	0.006	0.005	0.011	0.000
84	146	1211.519	13.335	5.103	4.932	4.996	-0.003	-0.007	-0.010	0.000
86	148	1224.368	12.849	5.153	4.961	5.025	2.681	2.054	4.735	0.105
88	150	1238.264	13.896	5.206	4.996	5.060	4.981	3.704	8.685	0.188
90	152	1252.102	13.838	5.262	5.035	5.098	/.168	5.241	12.409	0.263
92	154	1265.884	13.782	5.319	5.073	5.136	9.103	6.337	15.440	0.320
94	156	12/8.212	12.328	5.362	5.095	5.157	9.894	6.646	16.540	0.336
96	158	1289.713	11.501	5.401	5.113	5.176	10.509	6.831	17.340	0.345

Ek Tablo 7'nin devamı

N	A	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\text{fm})$	$r_p(\text{fm})$	$\Gamma_{\mathcal{C}}(\mathrm{fm})$	$Q_{n}(\mathbf{b})$	$Q_{p^{(b)}}$	$Q_T(\mathbf{b})$	β2
7 – 1	67 (Sa	maraum)								
2 - 0	160	1300 710	10 007	5 112	5 1 3 3	5 105	11 107	7.050	18 247	0 355
100	162	1310 035	10.997	5.442	5 1 5 1	5 213	11.197	7.030	10.247	0.353
100	164	1310.935	8 870	5 521	5 168	5 220	12 300	7.233	19.007	0.303
102	104	1319.603	0.070	5.521	5 1 9 1	5.229	12.300	7.525	19.023	0.300
104	160	1327.073	7.670	5.550	5 100	5 251	12.452	6.075	19.700	0.301
100	100	1333.233	7.556	5.505	5 100	5.251	12.100	6715	19.141	0.345
100	170	1342.407	6 201	5.010	5 209	5.200	11.075	0.715 6.477	10.300	0.527 0.212
110	1/2 174	1349.208	0.801 6.240	5.048	5.208	5.209	11.304	0.477	18.001	0.312
112	174	1333.317	0.249	5.079	5.217	5.270	10.690	5 006	17.545	0.297
114	170	1300.974	5 201	5.707	5.224	5.285	10.089	2 805	10.373	0.273
110	1/0	1300.808	J.094 5.076	5.715	5.212	5.275	-7.565	-5.605	-11.190	-0.162
110	100	1372.744	5.870	5.759	5.210	5.277	-0.024	-5.125	-9.149	-0.140
120	182	13/8.940	0.202	J./02	5.221	5.282	-4.550	-2.380	-0.910	-0.109
122	104	1363.393	0.44 /	J./8/	5.225	5.200	2.401	1.444	5.845	0.039
124	100	1392.212	0.819	5.810	5.257	5.298	-0.003	-0.010	-0.019	0.000
120	100	1398.390	0.184	5.841	5.251	5.511	0.024	-0.002	0.022	0.000
128	190	1400.532	2.130	5.880	5.203	5.324	0.041	-0.002	0.039	0.001
130	192	1400.320	-0.212	5.930	5.275	3.333	0.009	0.002	0.071	0.001
Z = 0	64 (Ga	dolinyum)								
66	130	1024.479	27.546	4.894	4.978	5.042	6.946	77.043	83.989	0.385
68	132	1050.531	26.052	4.924	4.980	5.044	6.986	6.861	13.847	0.371
70	134	1075.505	24.974	4.956	4.984	5.048	7.067	6.724	13.791	0.361
72	136	1098.643	23.138	5.002	5.004	5.067	7.733	7.049	14.782	0.377
74	138	1120.367	21.724	5.000	4.985	5.049	6.378	6.005	12.383	0.308
76	140	1141.315	20.948	5.008	4.969	5.033	5.034	4.796	9.830	0.239
78	142	1163.018	21.703	5.021	4.956	5.020	-3.411	-3.099	-6.510	-0.155
80	144	1184.253	21.235	5.038	4.951	5.015	-2.042	-1.926	-3.968	-0.092
82	146	1205.986	21.733	5.061	4.950	5.015	-0.001	-0.002	-0.003	0.000
84	148	1220.532	14.546	5.106	4.966	5.030	-0.031	-0.034	-0.065	-0.001
86	150	1235.147	14.615	5.156	4.999	5.063	-2.742	-2.432	-5.174	-0.112
88	152	1251.381	16.234	5.209	5.034	5.098	5.209	4.121	9.330	0.198
90	154	1266.202	14.821	5.263	5.070	5.132	7.160	5.457	12.617	0.262
92	156	1281.065	14.863	5.318	5.106	5.168	9.055	6.578	15.633	0.317
94	158	1294.804	13.739	5.360	5.128	5.190	9.891	6.944	16.835	0.335
96	160	1307.756	12.952	5.399	5.148	5.209	10.561	7.182	17.743	0.345
98	162	1320.133	12.377	5.438	5.166	5.228	11.248	7.411	18.659	0.356
100	164	1331.600	11.467	5.478	5.184	5.245	11.839	7.570	19.409	0.362
102	166	1341.805	10.205	5.515	5.200	5.261	12.286	7.655	19.941	0.365
104	168	1350.937	9.132	5.549	5.214	5.275	12.449	7.601	20.050	0.360
106	170	1359.486	8.549	5.579	5.225	5.285	12.311	7.410	19.721	0.347
108	172	1367.505	8.019	5.611	5.234	5.295	12.155	7.227	19.382	0.334
110	174	1375.050	7.545	5.643	5.244	5.305	11.960	7.035	18.995	0.321

Ek Tablo 7'nin devamı

N	A	BE (MeV)	$S_{2n}(\text{MeV})$	𝑘(fm) 𝑘	$r_p(\text{fm})$	$r_{\mathcal{C}}(\mathrm{fm})$	$Q_n(\mathbf{b})$	$Q_{p^{(b)}}$	$Q_T(\mathbf{b})$	β_2
Z = 0	54 (Ga	dolinvum)								
112	176	1382.145	7 095	5 675	5 2 5 4	5 315	11 816	6 859	18 675	0 310
112	178	1388 338	6 193	5 711	5 267	5 328	12.026	6.832	18 858	0.307
116	180	1394.697	6.359	5.708	5.245	5.305	-7.860	-4.283	-12.143	-0.194
118	182	1401.155	6.458	5.733	5.252	5.313	-7.167	-3.912	-11.079	-0.174
120	184	1407.597	6.442	5.755	5.256	5.316	-5.686	-3.206	-8.892	-0.137
122	186	1414.198	6.601	5.777	5.261	5.321	-4.167	-2.432	-6.599	-0.100
124	188	1421.117	6.919	5.798	5.261	5.321	-0.074	-0.066	-0.140	-0.002
126	190	1428.142	7.025	5.828	5.274	5.335	0.009	-0.012	-0.003	0.000
128	192	1430.849	2.707	5.872	5.287	5.347	0.028	-0.009	0.019	0.000
130	194	1431.166	0.317	5.920	5.299	5.359	0.013	-0.003	0.010	0.000
132	196	1434.457	3.291	5.970	5.336	5.395	6.443	2.920	9.363	0.130
134	198	1437.043	2.586	6.016	5.363	5.422	8.498	3.721	12.219	0.167
136	200	1438.883	1.840	6.060	5.384	5.443	9.912	4.195	14.107	0.189
138	202	1440.442	1.559	6.103	5.404	5.463	11.191	4.608	15.799	0.208
140	204	1442.229	1.787	6.183	5.480	5.538	18.093	8.025	26.118	0.339
142	206	1444.312	2.083	6.226	5.506	5.563	19.534	8.502	28.036	0.358
144	208	1445.815	1.503	6.265	5.526	5.583	20.530	8.768	29.298	0.368
146	210	1446.899	1.084	6.301	5.542	5.599	21.181	8.868	30.049	0.372
148	212	1447.686	0.787	6.334	5.554	5.612	21.525	8.828	30.353	0.370
150	214	1448.412	0.726	6.351	5.514	5.572	-15.469	-6.104	-21.573	-0.259
152	216	1449.163	0.751	6.386	5.531	5.588	-15.961	-6.218	-22.179	-0.262
154	218	1449.417	0.254	6.420	5.546	5.603	-16.232	-6.260	-22.492	-0.261
Z = 0	56 (Dis	sprosiyum)								
70	136	1075.863	26.807	4.965	5.023	5.087	7.052	6.940	13.992	0.357
72	138	1100.050	24.187	5.000	5.032	5.095	7.242	6.917	14.159	0.352
74	140	1123.010	22.960	5.013	5.027	5.090	6.601	6.410	13.011	0.316
76	142	1145.143	22.133	5.022	5.012	5.076	5.481	5.373	10.854	0.258
78	144	1168.068	22.925	5.031	4.996	5.059	-3.731	-3.555	-7.286	-0.169
80	146	1190.479	22.411	5.052	4.994	5.058	-3.130	-3.013	-6.143	-0.139
82	148	1212.180	21.701	5.065	4.984	5.048	-0.008	-0.010	-0.018	0.000
84	150	1227.971	15.791	5.108	4.999	5.062	-0.110	-0.119	-0.229	-0.005
86	152	1245.744	17.773	5.163	5.041	5.104	3.873	3.473	7.346	0.156
88	154	1262.356	16.612	5.212	5.068	5.131	5.265	4.361	9.626	0.200
90	156	1278.058	15.702	5.259	5.095	5.158	6.675	5.228	11.903	0.242
92	158	1293.632	15.574	5.312	5.130	5.192	8.551	6.406	14.957	0.297
94	160	1308.543	14.911	5.357	5.157	5.219	9.701	7.046	16.747	0.326
96	162	1322.725	14.182	5.398	5.178	5.240	10.510	7.414	17.924	0.342
98	164	1336.313	13.588	5.437	5.197	5.259	11.230	7.686	18.916	0.353
100	166	1348.988	12.675	5.475	5.214	5.275	11.794	7.838	19.632	0.359
102	168	1360.505	11.517	5.510	5.229	5.290	12.191	7.896	20.087	0.360
104	170	1370.978	10.473	5.541	5.242	5.302	12.267	7.795	20.062	0.353

Ek Tablo 7'nin devamı

N	Α	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\text{fm})$	$r_p(\text{fm})$	$r_{\mathcal{C}}(\mathrm{fm})$	$Q_n(\mathbf{b})$	$Q_{p^{(b)}}$	$Q_{T^{(b)}}$	β2
Z = 0	66 (Dis	sprosivum)								
106	172	1380.837	9.859	5.571	5.252	5.313	12.124	7.599	19.723	0.340
108	174	1390.026	9.189	5.602	5.262	5.323	12.003	7.435	19.438	0.329
110	176	1398.700	8.674	5.634	5.272	5.332	11.861	7.272	19.133	0.318
112	178	1406.912	8.212	5.666	5.283	5.343	11.766	7.126	18.892	0.308
114	180	1413.861	6.949	5.702	5.296	5.356	11.893	7.070	18.963	0.303
116	182	1420.881	7.020	5.701	5.274	5.334	-8.108	-4.637	-12.745	-0.200
118	184	1428.083	7.202	5.727	5.283	5.343	-7.722	-4.395	-12.117	-0.187
120	186	1434.955	6.872	5.749	5.288	5.348	-6.582	-3.853	-10.435	-0.158
122	188	1442.062	7.107	5.770	5.292	5.352	-5.119	-3.125	-8.244	-0.123
124	190	1448.801	6.739	5.788	5.287	5.347	1.394	1.032	2.426	0.035
126	192	1456.589	7.788	5.816	5.298	5.358	-0.002	-0.020	-0.022	0.000
128	194	1459.883	3.294	5.859	5.310	5.370	0.007	-0.023	-0.016	0.000
130	196	1460.748	0.865	5.906	5.323	5.383	-0.110	-0.101	-0.211	-0.003
132	198	1465.856	5.108	5.957	5.370	5.429	7.186	3.650	10.836	0.148
134	200	1469.143	3.287	6.002	5.395	5.454	8.979	4.342	13.321	0.179
136	202	1471.733	2.590	6.045	5.417	5.476	10.337	4.800	15.137	0.200
138	204	1474.090	2.357	6.087	5.439	5.498	11.699	5.254	16.953	0.220
140	206	1476.481	2.391	6.129	5.468	5.526	13.636	6.000	19.636	0.251
142	208	1479.198	2.717	6.218	5.549	5.607	20.438	9.440	29.878	0.375
144	210	1481.527	2.329	6.258	5.572	5.629	21.648	9.833	31.481	0.389
146	212	1483.166	1.639	6.295	5.588	5.645	22.351	9.932	32.283	0.393
148	214	1484.409	1.243	6.323	5.596	5.653	22.341	9.697	32.038	0.384
150	216	1485.516	1.107	6.347	5.601	5.658	21.977	9.319	31.296	0.369
152	218	1486.684	1.168	6.362	5.556	5.614	-15.897	-6.413	-22.310	-0.259
154	220	1487.558	0.874	6.396	5.571	5.628	-16.153	-6.446	-22.599	-0.259
156	222	1488.061	0.503	6.427	5.582	5.639	-16.109	-6.377	-22.486	-0.253
158	224	1488.503	0.442	6.457	5.593	5.650	-15.889	-6.252	-22.141	-0.246
160	226	1488.888	0.385	6.487	5.604	5.660	-15.668	-6.135	-21.803	-0.239
162	228	1489.009	0.121	6.517	5.617	5.672	-15.480	-6.049	-21.529	-0.232
Z = 0	68 (Erl	nivum)								
72	140	1099.675	25.421	5.086	5.070	5.134	7.164	7.195	14.359	0.349
74	142	1123.860	24,185	5.018	5.062	5.125	6.411	6.478	12.889	0.306
76	144	1147.281	23.421	5.031	5.049	5.112	5.513	5.569	11.082	0.257
78	146	1171.403	24.122	5.040	5.033	5.096	-3.911	-3.872	-7.783	-0.176
80	148	1194.925	23.522	5.061	5.033	5.096	-3.462	-3.440	-6.902	-0.153
82	150	1216.838	21.913	5.070	5.018	5.081	-0.036	-0.044	-0.080	-0.002
84	152	1234.961	18.123	5.116	5.039	5.102	-1.756	-1.913	-3.669	-0.078
86	154	1253.486	18.525	5.167	5.074	5.137	3.965	3.712	7.677	0.159
88	156	1271.318	17.832	5.214	5.100	5.162	5.239	4.511	9.750	0.198
90	158	1288.087	16.769	5.258	5.123	5.185	6.364	5.146	11.510	0.229
92	160	1304.363	16.276	5.305	5.150	5.212	7.789	5.968	13.757	0.268

Ek Tablo 7'nin devamı

N	Α	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\mathrm{fm})$	$r_p(\text{fm})$	$r_{\mathcal{C}}(\mathrm{fm})$	$Q_n(\mathbf{b})$	$Q_{p^{(\mathrm{b})}}$	$Q_T(\mathbf{b})$	β_2
7_4	68 (Er	hivum)								
Z = 0	162	1220 227	15 874	5 251	5 177	5 220	0.058	6 605	15 752	0 200
94 06	164	1320.237	15.074	5 202	5 201	5.259	9.038	0.095	13.735	0.300
90	104	1333.402	17.102	5 425	5.201	5 205	11.022	7.280 7.770	17.372	0.324
90 100	160	1350.065	14.005	5.455	5.224	5 202	11.050	7.084	10.010	0.344
100	100	1304.012	13.927	5.505	5 256	5.302	11.041	7.90 4 9.010	19.023	0.352
102	170	1370.094	12.002	5.505	5.250	5 2 2 7	11.905	0.019 7.868	20.002	0.332
104	172	1300.030	11.942	5.555	5.207	5 2 2 8	11.901	7.600	19.049	0.342
100	174	1400.131	10.406	5 505	5 288	5 3 4 8	11.001	7.005	19.344	0.331
100	170	1410.047	0.024	5.595	5 200	5 250	11./0/	7.347	19.334	0.321
110	1/0	1420.361	9.934	5.650	5 211	5 271	11.097	7.410	19.115	0.311
112	100	1429.963	9.404	5.602	5 2 2 2	5 202	11.055	7.294	10.927	0.305
114	102	1437.718	1.100	5.695	5.322	J.382 5 261	0 026	1.179	10./91	0.293
110	104	1445.290	7.372 9.014	5.094	5 211	5 271	-8.230	-4.908	-13.144 12 701	-0.203
110	100	1433.304	8.014 7.502	5.720	5 217	5.5/1	-7.984	-4./1/	-12.701	-0.192
120	100	1400.800	7.502	5.745	5 210	5.377	-7.139	-4.290	-11.429	-0.170
122	190	1406.433	7.029	5.702	5 2 2 0	5 200	-5.505	-5.510	-9.075	-0.155
124	192	14/3.833	7.398 8.002	5 206	5.320	5.280	-3.377	-2.530	-3.727	-0.082
120	194	1405.055	0.002 2.905	5.000	5.522	5.204	-0.017	-0.033	-0.030	-0.001
120	190	1467.750	2.095	J.040 5 804	5 256	5 416	-0.013	-0.039	-0.034	-0.001
120	200	1409.999	2.209	5.094	5 206	5 455	-2.004	-1.803	-4.529	-0.002
134	200	1493.373	3.374	5.945	5 421	5.455	7.528	0.590	12 722	0.132
134	202	1499.570	4.003	5.900	5 4 4 2	5.400	9.079	4.034	15.755	0.101
120	204	1502.752	5.574 2.144	0.030 6.071	5.445	5.502	10.455	J.120 5 597	13.301	0.202
130	200	1509.690	5.144 2.072	0.071	5.400	5.524	11./01	5.387	1/.308	0.222
140	208	1510 200	5.072	0.113	5.494	5.552	15.030	0.300	19.930	0.231
142	210	1510.288	1.320	6.125	5.517	5.574	15.0/9	/.155	22.832	0.282
144	212	1515.289	2.001	0.204	5.502 5.596	5.019	1/.998	8.142	20.140	0.318
140	214	1510.527	2.388	0.243	5.580 5.604	5.045 5.660	19.301	8.084 9.019	28.043	0.330
148	210	1519.527	1.630	0.282	5.004 5.619	5.000	20.109	8.918	29.087	0.343
150	218	1521.150	1.009	0.310	J.018	5.075	20.700	9.017	29.717	0.343
154	220	1522.845	1.707	0.541	5.505	5.058	-13.833	-0.015	-22.408	-0.237
154	222	1524.559	1.490	0.3/4	5.595	5.052 5.665	-10.109	-0.040	-22.733	-0.257
150	224	1525.405	1.120	0.405	5.008	5.005	-10.114	-0.004	-22.718	-0.252
138	220	1520.515	1.048	0.433	5.019	J.0/0	-15.980	-0.319	-22.499	-0.240
100	228	1527.490	0.977	0.404	5.051	5.088	-15.854	-0.433	-22.209	-0.240
164	230	1528.208	0.718	6.494	5.644	5.700	-15./11	-0.30/	-22.078	-0.235
104	232	1528.445	0.233	0.324	3.030	5./12	-13.490	-0.291	-21.787	-0.228
$Z = \tilde{Z}$	70 (İte	rbivum)								
-76	146	1147.638	24,869	5.035	5.081	5.143	5.247	5.448	10.695	0.242
78	148	1172.716	25.078	5.047	5.069	5.131	-3.921	-4.007	-7.928	-0.176
80	150	1197.490	24,774	5.068	5.067	5.130	-3.503	-3.580	-7.083	-0.153
82	152	1220.151	22,661	5.075	5.051	5.114	-0.127	-0.161	-0.288	-0.006
02	104	10,101	-2.001	2.075	2.021		0.121	0.101	0.200	5.000

Ek Tablo 7'nin devamı

N	Α	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\mathrm{fm})$	$r_p(\text{fm})$	$r_{\mathcal{C}}(\mathrm{fm})$	$Q_n(\mathbf{b})$	$Q_{p^{(b)}}$	$Q_{T}(\mathbf{b})$	β_2
Z = Z'	70 (İte	rbivum)								
84	154	1239 736	19 585	5 120	5 072	5 1 3 5	-1 823	-2 039	-3 862	-0.080
86	156	1259.404	19.668	5 170	5 105	5 167	3 859	3 734	7 593	0.000
88	158	1278 292	18 888	5 215	5 1 2 9	5 191	5 073	4 515	9 588	0.191
90	160	1296.189	17.897	5.258	5.151	5.212	6.070	5.071	11.141	0.217
92	162	1313,337	17.148	5.301	5.173	5.234	7.144	5.663	12.807	0.244
94	164	1330.245	16.908	5.346	5.199	5.260	8.518	6.449	14.967	0.280
96	166	1346.572	16.327	5.389	5.223	5.284	9.623	7.075	16.698	0.306
98	168	1362.273	15.701	5.431	5.247	5.308	10.660	7.677	18.337	0.329
100	170	1377.345	15.072	5.470	5.267	5.328	11.413	8.044	19.457	0.342
102	172	1391.526	14.181	5.502	5.281	5.341	11.720	8.067	19.787	0.341
104	174	1404.908	13.382	5.530	5.291	5.352	11.664	7.871	19.535	0.331
106	176	1417.641	12.733	5.559	5.302	5.362	11.590	7.712	19.302	0.320
108	178	1429.437	11.796	5.589	5.314	5.374	11.562	7.603	19.165	0.312
110	180	1440.590	11.153	5.621	5.325	5.385	11.505	7.492	18.997	0.304
112	182	1451.102	10.512	5.653	5.337	5.397	11.440	7.376	18.816	0.295
114	184	1459.705	8.603	5.683	5.346	5.406	11.220	7.155	18.375	0.283
116	186	1467.687	7.982	5.688	5.328	5.387	-8.265	-5.095	-13.360	-0.202
118	188	1476.591	8.904	5.713	5.337	5.396	-8.056	-4.912	-12.968	-0.193
120	190	1484.876	8.285	5.735	5.343	5.402	-7.342	-4.518	-11.860	-0.173
122	192	1493.187	8.311	5.754	5.344	5.403	-5.628	-3.633	-9.261	-0.133
124	194	1501.467	8.280	5.775	5.346	5.406	-3.866	-2.651	-6.517	-0.092
126	196	1509.917	8.450	5.796	5.346	5.406	-0.035	-0.049	-0.084	-0.001
128	198	1514.432	4.515	5.837	5.359	5.419	-0.038	-0.058	-0.096	-0.001
130	200	1517.559	3.127	5.883	5.383	5.442	3.338	2.201	5.539	0.074
132	202	1523.237	5.678	5.932	5.418	5.477	7.120	4.018	11.138	0.147
134	204	1527.931	4.694	5.975	5.444	5.502	8.926	4.759	13.685	0.178
136	206	1532.075	4.144	6.016	5.466	5.524	10.300	5.267	15.567	0.199
138	208	1535.959	3.884	6.056	5.488	5.546	11.607	5.723	17.330	0.218
140	210	1539.590	3.631	6.097	5.513	5.571	13.227	6.339	19.566	0.242
142	212	1543.786	4.196	6.150	5.563	5.620	16.612	7.983	24.595	0.299
144	214	1547.579	3.793	6.193	5.592	5.649	18.297	8.690	26.987	0.323
146	216	1550.653	3.074	6.230	5.612	5.669	19.295	9.012	28.307	0.334
148	218	1553.131	2.478	6.264	5.627	5.683	19.847	9.100	28.947	0.336
150	220	1555.405	2.274	6.295	5.640	5.696	20.204	9.099	29.303	0.335
152	222	1557.590	2.185	6.328	5.653	5.710	20.581	9.121	29.702	0.335
154	224	1559.581	1.991	6.361	5.667	5.723	21.006	9.185	30.191	0.335
156	226	1561.143	1.562	6.393	5.679	5.735	21.250	9.179	30.429	0.333
158	228	1562.736	1.593	6.415	5.649	5.705	-16.164	-6.848	-23.012	-0.248
160	230	1564.302	1.566	6.445	5.661	5.717	-16.031	-6.762	-22.793	-0.242
162	232	1565.616	1.314	6.474	5.673	5.729	-15.907	-6.684	-22.591	-0.237
164	234	1566.420	0.804	6.503	5.685	5.741	-15.738	-6.604	-22.342	-0.231
166	236	1566.734	0.314	6.531	5.696	5.752	-15.322	-6.470	-21.792	-0.222

Ek Tablo 7'nin devamı

N	Α	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\mathrm{fm})$	$r_p(\text{fm})$	$\Gamma_{\mathcal{C}}(\mathrm{fm})$	$Q_{n}(\mathbf{b})$	$Q_{p^{(b)}}$	$Q_{T}(\mathbf{b})$	β_2
7 – '	72 (Ha	fnivum)								
80	152 (11u	1198 187	26 213	5 071	5 097	5 1 5 9	_3 222	_3 354	-6 576	_0 139
82	154	1222 277	20.213	5 081	5.027	5 146	5.081	5 083	10 164	-0.012
84	156	1222.277	20.639	5 124	5 102	5 164	-1.595	-1.828	-3423	-0.012
86	158	1263 684	20.057	5 172	5 132	5 194	3 560	3 536	7 096	0.070
88	160	1283 550	19 866	5 216	5 1 5 7	5 218	4 742	4 342	9.084	0.177
90	162	1302.602	19.000	5 2 5 9	5 178	5 240	5 731	4 926	10.657	0.203
92	164	1320.819	18.217	5.300	5.198	5.259	6.668	5.446	12.114	0.226
94	166	1338.522	17.703	5.343	5.222	5.283	7.990	6.219	14.209	0.260
96	168	1356.039	17.517	5.391	5.251	5.312	9.478	7.175	16.653	0.299
98	170	1372.910	16.871	5.433	5.275	5.335	10.515	7.786	18.301	0.322
100	172	1388.979	16.069	5.470	5.293	5.353	11.156	8.057	19.213	0.331
102	174	1404.230	15.251	5.499	5.304	5.364	11.314	7.949	19.263	0.326
104	176	1418.862	14.632	5.524	5.312	5.372	11.160	7.646	18.806	0.312
106	178	1432.741	13.879	5.552	5.322	5.382	11.077	7.456	18.533	0.302
108	180	1445.624	12.883	5.582	5.333	5.392	11.019	7.314	18.333	0.293
110	182	1457.807	12.183	5.612	5.344	5.403	10.920	7.168	18.088	0.284
112	184	1469.320	11.513	5.642	5.354	5.414	10.761	6.996	17.757	0.274
114	186	1479.365	10.045	5.666	5.360	5.419	10.085	6.512	16.597	0.251
116	188	1489.143	9.778	5.681	5.361	5.420	8.755	5.693	14.448	0.215
118	190	1497.614	8.471	5.704	5.360	5.419	-7.879	-4.907	-12.786	-0.187
120	192	1506.918	9.304	5.726	5.365	5.424	-7.081	-4.439	-11.520	-0.165
122	194	1516.315	9.397	5.744	5.365	5.424	-5.266	-3.438	-8.704	-0.123
124	196	1525.652	9.337	5.766	5.369	5.428	-3.713	-2.544	-6.257	-0.087
126	198	1534.890	9.238	5.788	5.370	5.429	-0.028	-0.041	-0.069	-0.001
128	200	1540.054	5.164	5.828	5.383	5.443	-0.053	-0.069	-0.122	-0.002
130	202	1543.599	3.545	5.872	5.405	5.464	2.812	1.967	4.779	0.063
132	204	1549.576	5.977	5.918	5.438	5.497	6.571	3.817	10.388	0.135
134	206	1554.881	5.305	5.961	5.464	5.522	8.495	4.637	13.132	0.168
136	208	1559.737	4.856	6.002	5.487	5.545	9.945	5.218	15.163	0.191
138	210	1564.316	4.579	6.042	5.509	5.567	11.265	5.714	16.979	0.210
140	212	1568.557	4.241	6.082	5.533	5.590	12.739	6.295	19.034	0.232
142	214	1573.646	5.089	6.140	5.590	5.647	16.859	8.471	25.330	0.304
144	216	1578.158	4.512	6.179	5.614	5.671	18.211	8.981	27.192	0.321
146	218	1581.961	3.803	6.214	5.632	5.689	19.029	9.211	28.240	0.328
148	220	1585.260	3.299	6.246	5.648	5.704	19.516	9.278	28.794	0.330
150	222	1588.348	3.088	6.278	5.663	5.719	19.938	9.317	29.255	0.330
152	224	1591.239	2.891	6.310	5.677	5.733	20.381	9.373	29.754	0.330
154	226	1593.867	2.628	6.343	5.691	5.747	20.751	9.402	30.153	0.330
156	228	1596.030	2.163	6.374	5.702	5.758	20.859	9.324	30.183	0.325
158	230	1597.809	1.779	6.401	5.710	5.766	20.507	9.059	29.566	0.314
160	232	1599.470	1.661	6.426	5.718	5.774	19.853	8.692	28.545	0.299
162	234	1601.096	1.626	6.453	5.727	5.783	19.207	8.373	27.580	0.285

Ek Tablo 7'nin devamı

N	Α	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\mathrm{fm})$	$r_p(\text{fm})$	$\Gamma_{\mathcal{C}}(\mathrm{fm})$	$Q_{n}(\mathbf{b})$	$Q_{p^{(\mathrm{b})}}$	$Q_{T^{(b)}}$	β ₂
7 _ '	72 (Ua	(fnivum)								
L - 164	226	1602 621	1 525	6 181	5 726	5 702	18 665	8 126	26 801	0 272
166	230	1602.021	1.525	0.401 6 511	5.750	5 802	18.003	0.130 7 040	20.001	0.273
168	230	1604 723	0.823	6.540	5 755	5.002	10.212	7.949	20.101	0.203
100	240	1605.062	0.825	6 5 6 0	5.755	5 9 1 7	16.062	7.709	23.322	0.235
170	242	1605.002	0.529	6 5 0 5	5.762	5.017	10.902	7.312	24.474	0.239
174	244	1605.172	0.110	0.393	5.765	5.820	13.492	6 1 1 9	22.390	0.218
174	240	1605.014	0.160	0.017	5.705	5.021	10.250	0.440	19.390	0.160
170	240	1606 720	0.550	6.660	5.765	5.020	10.559 0 115	3.370	12.955	0.149
1/0	250	1607.256	0.800	0.000	5.700	5.025	0.44J	4.939	15.504	0.124
100	252	1607.230	0.330	0.084	5.706	J.851 5.941	6 2 2 9	4.484	10.204	0.108
182	234	1007.088	-0.108	0.708	3.780	3.841	0.338	3.900	10.304	0.093
$Z = \tilde{Z}$	74 (Tu	ngsten)								
82	156	1223.242	26.768	5.087	5.115	5.177	-0.110	-0.143	-0.253	-0.005
84	158	1244.810	21.568	5.127	5.131	5.193	-1.225	-1.435	-2.660	-0.053
86	160	1266.395	21.585	5.173	5.159	5.220	3.085	3.127	6.212	0.121
88	162	1287.141	20.746	5.216	5.182	5.243	4.193	3.908	8.101	0.154
90	164	1307.002	19.861	5.258	5.202	5.263	5.163	4.499	9.662	0.180
92	166	1326.026	19.024	5.298	5.221	5.282	6.080	5.022	11.102	0.203
94	168	1344.358	18.332	5.340	5.244	5.305	7.338	5.802	13.140	0.236
96	170	1363.591	19.233	5.404	5.292	5.352	9.968	7.889	17.857	0.314
98	172	1381.653	18.062	5.442	5.311	5.371	10.759	8.282	19.041	0.328
100	174	1398.743	17.090	5.477	5.327	5.387	11.306	8.471	19.777	0.335
102	176	1414.952	16.209	5.507	5.339	5.399	11.532	8.423	19.955	0.331
104	178	1430.482	15.530	5.530	5.346	5.405	11.312	8.031	19.343	0.315
106	180	1445.275	14.793	5.553	5.350	5.410	10.976	7.576	18.552	0.297
108	182	1459.276	14.001	5.578	5.357	5.417	10.714	7.226	17.940	0.282
110	184	1472.607	13.331	5.606	5.366	5.425	10.480	6.951	17.431	0.269
112	186	1485.254	12.647	5.634	5.375	5.434	10.193	6.680	16.873	0.255
114	188	1496.808	11.554	5.655	5.380	5.439	9.438	1.939	11.377	0.232
116	190	1508.009	11.201	5.673	5.384	5.443	8.370	5.478	13.848	0.202
118	192	1518.712	10.703	5.694	5.387	5.446	7.385	4.916	12.301	0.177
120	194	1528.522	9.810	5.718	5.389	5.448	6.255	4.320	10.575	0.149
122	196	1538.116	9.594	5.740	5.389	5.448	4.738	3.500	8.238	0.114
124	198	1548.484	10.368	5.758	5.390	5.449	-3.343	-2.286	-5.629	-0.077
126	200	1558.746	10.262	5.781	5.393	5.452	-0.016	-0.029	-0.045	-0.001
128	202	1564.592	5.846	5.820	5.407	5.466	-0.021	-0.039	-0.060	-0.001
130	204	1568.324	3.732	5.861	5.426	5.485	1.758	1.271	3.029	0.039
132	206	1574.447	6.123	5.905	5.456	5.515	5.649	3.348	8.997	0.115
134	208	1580.266	5.819	5.948	5.481	5.540	7.750	4.257	12.007	0.151
136	210	1585.656	5.390	5.988	5.505	5.563	9.261	4.889	14.150	0.175
138	212	1590.742	5.086	6.028	5.527	5.585	10.620	5.439	16.059	0.196
140	214	1595.970	5.228	6.084	5.581	5.638	14.661	7.758	22.419	0.269

Ek Tablo 7'nin devamı

N	Α	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\text{fm})$	$r_p(\text{fm})$	$r_{\mathcal{C}}(\mathrm{fm})$	$Q_n(\mathbf{b})$	$Q_{p^{(b)}}$	$Q_{T}(\mathbf{b})$	β_2
7 –	74 (Tu	ngsten)								
$\frac{2}{1/2}$	74 (1u 216	1601 703	5 873	6 1 2 0	5 613	5 670	16 701	8 7 3 7	25 528	0 301
1+2 1AA	210	1607.050	5 257	6 166	5.636	5.692	18.054	9 208	25.528	0.301
146	$210 \\ 220$	1611 667	<i>4</i> 617	6 200	5.655	5 711	18.878	9.200	27.202	0.317
140	220	1615 848	4 181	6 232	5.671	5 728	10.020	9 550	28.205	0.325
150	222 224	1617 130	1 282	6 280	5 673	5 730	_17.004 _17.030	-8 205	-26.914	-0.290
150	224	1620 689	3 559	6 299	5 674	5 730	-16817	-7.806	-24.623	-0.290
154	220	1620.009	3 377	6 3 2 7	5 686	5 742	-16783	-7.748	-24531	-0.265
156	230	1626.967	2.901	6 3 5 7	5 699	5 7 5 5	-16.823	-7 716	-24539	-0.261
158	232	1629.507	2.501	6 385	5 711	5 767	-16711	-7.621	-24332	-0.251
160	234	1632,199	2.558	6 4 1 3	5 722	5 778	-16515	-7.481	-23.996	-0.233
162	236	1634,555	2.356	6.440	5.733	5.788	-16.322	-7.333	-23.655	-0.241
164	238	1637.661	3.106	6.466	5.766	5.821	18.804	8.472	27.276	0.274
166	240	1639.455	1.794	6.493	5.774	5.829	18.158	8.150	26.308	0.260
168	242	1640.884	1.429	6.520	5.783	5.838	17.575	7.868	25.443	0.248
170	244	1641.749	0.865	6.547	5.790	5.845	16.772	7.552	24.324	0.234
172	246	1642.248	0.499	6.572	5.792	5.847	15.259	7.058	22.317	0.212
174	248	1642.708	0.460	6.584	5.769	5.824	-10.580	-4.782	-15.362	-0.144
176	250	1643.665	0.957	6.606	5.773	5.828	-8.644	-4.153	-12.797	-0.118
Z =	76 (Os	miyum)								
82	158	1223.055	27.552	5.093	5.147	5.209	-0.032	-0.038	-0.070	-0.001
84	160	1245.450	22.395	5.131	5.159	5.221	-0.498	-0.591	-1.089	-0.021
86	162	1267.471	22.021	5.174	5.184	5.245	2.375	2.428	4.803	0.092
88	164	1289.086	21.615	5.216	5.206	5.267	3.455	3.240	6.695	0.125
90	166	1309.648	20.562	5.256	5.225	5.286	4.327	3.795	8.122	0.149
92	168	1329.387	19.739	5.295	5.243	5.303	5.215	4.310	9.525	0.171
94	170	1348.600	19.213	5.363	5.294	5.354	8.575	7.095	15.670	0.276
96	172	1368.569	19.969	5.408	5.321	5.381	9.852	7.981	17.833	0.308
98	174	1387.667	19.098	5.446	5.341	5.401	10.714	8.474	19.188	0.325
100	176	1405.871	18.204	5.482	5.358	5.418	11.312	8.741	20.053	0.332
102	178	1423.312	17.441	5.513	5.372	5.431	11.621	8.779	20.400	0.332
104	180	1440.054	16.742	5.539	5.382	5.441	11.592	8.555	20.147	0.322
106	182	1455.748	15.694	5.562	5.388	5.445	11.364	8.186	19.550	0.307
108	184	1470.583	14.835	5.585	5.392	5.451	11.019	7.738	18.757	0.289
110	186	1484.676	14.093	5.610	5.398	5.457	10.612	7.279	17.891	0.271
112	188	1498.113	13.437	5.633	5.402	5.461	10.055	6.751	16.806	0.250
114	190	1510.950	12.837	5.648	5.401	5.459	8.853	5.823	14.676	0.214
116	192	1523.718	12.768	5.664	5.401	5.460	7.689	5.026	12.715	0.183
118	194	1535.652	11.934	5.685	5.402	0.159	6.687	4.415	11.102	0.157
120	196	1547.146	11.494	5.708	5.405	5.464	5.540	3.779	9.319	0.129
122	198	1558.057	10.911	5.729	5.405	5.464	3.947	2.865	6.812	0.093
124	200	1569.873	11.816	5.749	5.409	5.468	-2.470	-1.707	-4.177	-0.056

Ek Tablo 7'nin devamı

N	A	BE (MeV)	$S_{2n}(\text{MeV})$	<i>r</i> _n (fm)	$r_p(\text{fm})$	$r_{\mathcal{C}}(\mathrm{fm})$	$Q_n(\mathbf{b})$	$Q_{p^{(\mathrm{b})}}$	$Q_T(\mathbf{b})$	β_2
Z = '	76 (Os	mivum)								
126	202	1581 400	11 527	5 775	5 4 1 5	5 474	-0.002	-0.014	-0.016	0.000
128	202	1587.966	6.566	5.813	5.429	5.488	0.005	-0.014	-0.009	0.000
130	206	1592.124	4.158	5.852	5.447	5.506	-0.188	-0.154	-0.342	-0.004
132	208	1597.826	5.702	5.892	5.474	5.532	4.115	2.472	6.587	0.083
134	210	1604.102	6.276	5.934	5.499	5.557	6.654	3.605	10.259	0.127
136	212	1609.930	5.828	5.974	5.521	5.579	8.289	4.314	12.603	0.153
138	214	1615.444	5.514	6.013	5.543	5.601	9.699	4.923	14.622	0.175
140	216	1621.390	5.946	6.071	5.600	5.657	14.215	7.680	21.895	0.258
142	218	1627.783	6.393	6.116	5.633	5.689	16.367	8.732	25.099	0.292
144	220	1633.816	6.033	6.156	5.659	5.715	17.887	9.409	27.296	0.312
146	222	1639.276	5.460	6.190	5.680	5.736	18.764	9.731	28.495	0.321
148	224	1644.320	5.044	6.222	5.699	5.754	19.392	9.919	29.311	0.326
150	226	1649.047	4.727	6.255	5.716	5.772	20.004	10.093	30.097	0.329
152	228	1653.333	4.286	6.288	5.732	5.788	20.539	10.218	30.757	0.332
154	230	1657.186	3.853	6.320	5.747	5.802	20.949	10.280	31.229	0.332
156	232	1660.560	3.374	6.351	5.761	5.816	21.196	10.272	31.468	0.330
158	234	1663.474	2.914	6.379	5.773	5.828	21.114	10.125	31.239	0.323
160	236	1666.131	2.657	6.403	5.782	5.837	20.606	9.790	30.396	0.309
162	238	1668.617	2.486	6.428	5.790	5.845	19.931	9.392	29.323	0.294
164	240	1670.931	2.314	6.455	5.798	5.852	19.200	8.992	28.192	0.279
166	242	1673.150	2.219	6.481	5.805	5.860	18.472	8.602	27.074	0.264
168	244	1675.091	1.941	6.507	5.813	5.868	17.823	8.251	26.074	0.251
170	246	1676.371	1.280	6.533	5.819	5.874	16.966	7.854	24.820	0.236
172	248	1677.593	1.222	6.537	5.779	5.834	-11.293	-4.891	-16.184	-0.152
174	250	1679.245	1.652	6.561	5.787	5.842	-10.104	-4.470	-14.574	-0.135
176	252	1680.822	1.577	6.584	5.793	5.848	-8.418	-3.934	-12.352	-0.113
178	254	1682.315	1.493	6.606	5.801	5.856	-6.986	-3.434	-10.420	-0.094
180	256	1683.527	1.212	6.627	5.808	5.863	-4.715	-2.607	-7.322	-0.065
$Z = \tilde{Z}$	78 (Pla	utin)								
84	162	1245.162	23.567	5.138	5.190	5.251	-0.042	-0.044	-0.086	-0.002
86	164	1267.519	22.357	5.177	5.209	5.270	-1.547	-1.595	-3.142	-0.059
88	166	1289.476	21.957	5.216	5.229	5.290	2.416	2.211	4.627	0.085
90	168	1310.774	21.298	5.254	5.247	5.307	3.052	2.656	5.708	0.102
92	170	1331.130	20.356	5.290	5.263	5.323	3.767	3.098	6.865	0.121
94	172	1350.675	19.545	5.360	5.314	5.374	7.946	6.600	14.546	0.251
96	174	1371.469	20.794	5.407	5.343	5.403	9.433	7.721	17.154	0.290
98	176	1391.527	20.058	5.449	5.368	5.427	10.498	8.468	18.966	0.315
100	178	1410.858	19.331	5.485	5.387	5.446	11.176	8.854	20.030	0.326
102	180	1429.582	18.724	5.517	5.402	5.461	11.532	8.955	20.487	0.328
104	182	1447.635	18.053	5.545	5.414	5.473	11.670	8.881	20.551	0.323
106	184	1464.356	16.721	5.571	5.423	5.481	11.630	8.686	20.316	0.313

Ek Tablo 7'nin devamı

N	Α	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\mathrm{fm})$	$r_p(\text{fm})$	$r_{\mathcal{C}}(\mathrm{fm})$	$Q_n(\mathbf{b})$	$Q_{p^{(\mathrm{b})}}$	$Q_T(\mathbf{b})$	β_2
7 '	70 (DL	(tin)								
L =	196 (Pla	$\frac{1480.060}{1480.060}$	15 712	5 507	5 420	5 490	11 405	0 176	10.011	0.202
108	100	1480.009	13./13	5.597	5.430	5.489	11.483	8.420 8.059	19.911	0.302
110	100	1494.799	14./50	5.022 5.641	5 427	5.490	11.191	8.038 7.201	19.249	0.280
112	190	1508.729	13.930	5.620	5.45/	5.495	10.403	7.291	17.094	0.239
114	192	1522.039	13.910	5.039	5.410	5.475	/.99/ 6.401	5.257 4.027	15.254	0.190
110	194	155/.200	14.021	5.055	5.400	5.405	-0.481	-4.037	-10.518	-0.149
110	190	1550.918	13.038	5.077	5.412	5.4/1	-5.999	-5.700	-9.099	-0.133
120	198	1564.170	13.252	5.098	5.418	5.470	-5.029	-3.129	-8.138	-0.111
122	200	15//.410	13.240	5.720	5.424	5.482	-3.850	-2.454	-6.310	-0.085
124	202	1590.096	12.686	5.741	5.427	5.486	-0.016	-0.01/	-0.033	-0.001
120	204	1602.646	12.550	5.770	5.436	5.495	0.007	-0.004	0.003	0.000
128	206	1609.964	/.318	5.807	5.450	5.509	0.012	-0.005	0.007	0.000
130	208	1614.934	4.970	5.845	5.469	5.527	-0.021	-0.029	-0.050	-0.001
132	210	1620.334	5.400	5.881	5.492	5.550	-2.241	-1.448	-3.689	-0.046
134	212	1626.539	6.205	5.921	5.516	5.573	4.982	2.599	7.581	0.092
136	214	1632.736	6.197	5.960	5.537	5.595	6.926	3.447	10.373	0.124
138	216	1638.606	5.870	5.999	5.559	5.616	8.453	4.146	12.599	0.149
140	218	1645.071	6.465	6.056	5.613	5.670	13.254	7.168	20.422	0.237
142	220	1651.959	6.888	6.101	5.647	5.703	15.575	8.402	23.977	0.274
144	222	1658.638	6.679	6.143	5.677	5.733	17.341	9.294	26.635	0.300
146	224	1664.850	6.212	6.178	5.700	5.756	18.363	9.734	28.097	0.312
148	226	1670.671	5.821	6.210	5.720	5.775	19.078	9.991	29.069	0.318
150	228	1676.128	5.457	6.243	5.738	5.794	19.724	10.198	29.922	0.323
152	230	1681.050	4.922	6.275	5.754	5.810	20.246	10.329	30.575	0.325
154	232	1685.530	4.480	6.307	5.769	5.824	20.635	10.391	31.026	0.325
156	234	1689.644	4.114	6.337	5.784	5.839	20.855	10.380	31.235	0.323
158	236	1693.379	3.735	6.364	5.797	5.852	20.742	10.222	30.964	0.315
160	238	1696.838	3.459	6.390	5.808	5.863	20.354	9.948	30.302	0.304
162	240	1699.930	3.092	6.416	5.818	5.873	19.932	9.684	29.616	0.293
164	242	1702.695	2.765	6.444	5.827	5.882	19.430	9.412	28.842	0.282
166	244	1705.322	2.627	6.471	5.836	5.890	18.866	9.119	27.985	0.270
168	246	1707.676	2.354	6.498	5.844	5.899	18.323	8.827	27.150	0.258
170	248	1709.287	1.611	6.524	5.850	5.904	17.572	8.444	26.016	0.244
172	250	1711.948	2.661	6.518	5.799	5.854	-11.070	-4.759	-15.829	-0.146
174	252	1714.251	2.303	6.541	5.807	5.861	-9.990	-4.344	-14.334	-0.131
176	254	1716.441	2.190	6.564	5.812	5.867	-8.322	-3.771	-12.093	-0.109
178	256	1718.676	2.235	6.584	5.820	5.875	-6.697	-3.155	-9.852	-0.088
180	258	1720.676	2.000	6.600	5.823	5.877	0.153	0.056	0.209	0.002
-		、 、								
Z = 2	80 (Civ	va)	00 (0)	5 005	E 0/2	F 225	0 500	0.000	1 0 50	0.024
88	168	1288.854	22.684	5.227	5.267	5.327	0.722	0.636	1.358	0.024
90	170	1311.256	22.402	5.262	5.283	5.343	1.032	0.874	1.906	0.034
92	172	1333.084	21.828	5.295	5.297	5.357	-0.031	-0.019	-0.050	-0.001

Ek Tablo 7'nin devamı

N	A	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\text{fm})$	$r_p(\text{fm})$	$r_{\mathcal{C}}(\mathrm{fm})$	$Q_{n^{(b)}}$	$Q_{p^{(b)}}$	$Q_{T}(\mathbf{b})$	β2
Z = S	80 (Civ	va)								
94	174	1353.728	20.644	5.328	5.309	5.369	-0.009	-0.005	-0.014	-0.001
96	176	1372.521	18.793	5.414	5.377	5.436	8.868	7.300	16.168	0.268
98	178	1393.567	21.046	5.457	5.402	5.461	10.112	8.268	18.380	0.299
100	180	1413.874	20.307	5.493	5.421	5.480	10.800	8.690	19.490	0.312
102	182	1433.600	19.726	5.525	5.436	5.494	11.189	8.840	20.029	0.314
104	184	1452.692	19.092	5.554	5.449	5.508	11.452	8.886	20.338	0.313
106	186	1470.473	17.781	5.581	5.458	5.517	11.471	8.747	20.218	0.306
108	188	1487.210	16.737	5.607	5.467	5.525	11.374	8.534	19.908	0.296
110	190	1502.907	15.697	5.633	5.474	5.532	11.131	8.214	19.345	0.283
112	192	1519.202	16.295	5.609	5.421	5.479	-6.512	-4.248	-10.760	-0.155
114	194	1535.296	16.094	5.634	5.428	5.487	-6.332	-4.044	-10.376	-0.146
116	196	1550.788	15.492	5.657	5.436	5.494	-6.081	-3.808	-9.889	-0.137
118	198	1565.705	14.917	5.679	5.441	5.500	-5.551	-3.424	-8.975	-0.122
120	200	1580.192	14.487	5.699	5.446	5.505	-4.463	-2.747	-7.210	-0.097
122	202	1594.415	14.223	5.717	5.449	5.507	0.164	0.097	0.261	0.003
124	204	1608.851	14.436	5.745	5.456	5.514	0.069	0.043	0.112	0.002
126	206	1622.161	13.310	5.774	5.464	5.522	0.046	0.029	0.075	0.001
128	208	1630.394	8.233	5.812	5.478	5.536	0.058	0.031	0.089	0.001
130	210	1636.168	5.774	5.849	5.496	5.554	0.079	0.041	0.120	0.002
132	212	1641.824	5.656	5.884	5.516	5.574	0.165	0.088	0.253	0.003
134	214	1647.856	6.032	5.918	5.538	5.595	-1.918	-1.110	-3.028	-0.036
136	216	1654.100	6.244	5.953	5.559	5.616	-3.366	-1.913	-5.279	-0.062
138	218	1660.829	6.729	5.994	5.580	5.637	6.583	3.032	9.615	0.112
140	220	1667.328	6.499	6.050	5.629	5.686	11.771	6.228	17.999	0.206
142	222	1674.750	7.422	6.096	5.666	5.722	14.536	7.842	22.378	0.252
144	224	1681.967	7.217	6.137	5.695	5.751	16.385	8.832	25.217	0.280
146	226	1688.773	6.806	6.172	5.719	5.774	17.531	9.371	26.902	0.294
148	228	1695.182	6.409	6.205	5.739	5.795	18.343	9.711	28.054	0.303
150	230	1701.214	6.032	6.238	5.759	5.814	19.081	10.001	29.082	0.309
152	232	1706.707	5.493	6.271	5.777	5.832	19.669	10.198	29.867	0.313
154	234	1711.785	5.078	6.303	5.793	5.848	20.099	10.310	30.409	0.314
156	236	1716.624	4.839	6.334	5.809	5.864	20.358	10.344	30.702	0.313
158	238	1721.181	4.557	6.361	5.823	5.878	20.301	10.225	30.526	0.306
160	240	1729.170	7.989	6.415	5.847	5.901	19.738	9.818	29.556	0.289
162	242	1732.493	3.323	6.444	5.857	5.911	19.363	9.612	28.975	0.279
164	244	1735.646	3.153	6.472	5.866	5.920	18.896	9.376	28.272	0.269
166	246	1738.524	2.878	6.499	5.874	5.929	18.400	9.118	27.518	0.258
168	248	1741.482	2.958	6.491	5.818	5.873	-12.068	-5.259	-17.327	-0.160
170	250	1744.787	3.305	6.515	5.826	5.880	-11.168	-4.843	-16.011	-0.146
172	252	1747.736	2.949	6.537	5.833	5.888	-10.172	-4.406	-14.578	-0.131
174	254	1750.536	2.800	6.558	5.838	5.893	-8.501	-3.747	-12.248	-0.109
176	256	1753.537	3.001	6.577	5.843	5.897	-6.341	-2.853	-9.194	-0.081

EK Tablo / nin devan

N	A	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\mathrm{fm})$	$r_p(\text{fm})$	$r_{\mathcal{C}}(\mathrm{fm})$	$Q_n(\mathbf{b})$	$Q_{p^{(b)}}$	$Q_T(\mathbf{b})$	β2
Z = S	80 (Civ	va)								
178	258	1756.904	3.367	6.595	5.844	5.898	0.063	0.012	0.075	0.001
180	260	1760.766	3.862	6.620	5.856	5.910	0.073	0.015	0.088	0.001
182	262	1763.639	2.873	6.648	5.867	5.921	0.082	0.013	0.095	0.001
184	264	1763.946	0.307	6.684	5.877	5.931	0.115	0.014	0.129	0.001
Z = S	82 (Ku	rsun)								
100	182	1415.010	21.180	5.494	5.445	5.503	10.456	8.526	18.982	0.298
102	184	1435.621	20.611	5.526	5.459	5.517	10.870	8.713	19.583	0.302
104	186	1455.625	20.004	5.556	5.473	5.531	11.189	8.815	20.004	0.303
106	188	1474.416	18.791	5.544	5.434	5.493	-7.491	-5.455	-12.946	-0.193
108	190	1492.659	18.243	5.569	5.442	5.500	-7.474	-5.327	-12.801	-0.187
110	192	1510.375	17.716	5.593	5.448	5.506	-7.168	-5.013	-12.181	-0.175
112	194	1527.751	17.376	5.617	5.455	5.513	-6.898	-4.743	-11.641	-0.164
114	196	1544.682	16.931	5.640	5.462	5.521	-6.694	-4.522	-11.216	-0.156
116	198	1561.070	16.388	5.663	5.469	5.527	-6.452	-4.282	-10.734	-0.146
118	200	1576.868	15.798	5.684	5.474	5.533	-5.993	-3.910	-9.903	-0.133
120	202	1592.577	15.709	5.689	5.460	5.518	0.200	0.111	0.311	0.004
122	204	1608.774	16.197	5.715	5.468	5.526	0.099	0.057	0.156	0.002
124	206	1624.375	15.601	5.742	5.476	5.534	0.058	0.037	0.095	0.001
126	208	1638.597	14.222	5.771	5.485	5.543	0.043	0.028	0.071	0.001
128	210	1647.633	9.036	5.808	5.499	5.557	0.051	0.028	0.079	0.001
130	212	1654.237	6.604	5.844	5.517	5.575	0.067	0.035	0.102	0.001
132	214	1660.720	6.483	5.878	5.537	5.594	0.096	0.048	0.144	0.002
134	216	1667.278	6.558	5.911	5.557	5.615	0.184	0.091	0.275	0.003
136	218	1673.929	6.651	5.943	5.578	5.635	0.604	0.291	0.895	0.010
138	220	1680.927	6.998	5.982	5.599	5.656	4.822	2.180	7.002	0.080
140	222	1688.248	7.321	6.038	5.643	5.699	10.592	5.471	16.063	0.181
142	224	1696.036	7.788	6.082	5.678	5.734	13.446	7.138	20.584	0.229
144	226	1703.644	7.608	6.122	5.706	5.762	15.340	8.191	23.531	0.258
146	228	1710.941	7.297	6.158	5.730	5.785	16.617	8.850	25.467	0.275
148	230	1717.864	6.923	6.191	5.751	5.806	17.547	9.299	26.846	0.285
150	232	1724.416	6.552	6.224	5.771	5.826	18.378	9.685	28.063	0.294
152	234	1730.455	6.039	6.257	5.790	5.845	19.014	9.946	28.960	0.299
154	236	1736.133	5.678	6.289	5.807	5.862	19.451	10.089	29.540	0.301
156	238	1741.664	5.531	6.319	5.824	5.879	19.698	10.130	29.828	0.299
158	240	1746.988	5.324	6.346	5.838	5.893	19.616	9.994	29.610	0.293
160	242	1751.969	4.981	6.372	5.851	5.905	19.372	9.790	29.162	0.285
162	244	1756.382	4.413	6.400	5.862	5.916	19.107	9.604	28.711	0.277
164	246	1760.333	3.951	6.427	5.872	5.927	18.744	9.399	28.143	0.267
166	248	1764.416	4.083	6.429	5.827	5.882	-13.854	-6.188	-20.042	-0.188
168	250	1768.379	3.963	6.453	5.836	5.891	-13.208	-5.885	-19.093	-0.177
170	252	1772.275	3.896	6.478	5.844	5.899	-12.348	-5.513	-17.861	-0.163

Ek Tablo 7'nin devamı

N	Α	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\text{fm})$	$r_p(\text{fm})$	$\Gamma_{\mathcal{C}}(\mathrm{fm})$	$Q_{n}(\mathbf{b})$	$Q_{p^{(b)}}$	$Q_T(\mathbf{b})$	β_2
7 – 9	87 (Ku	reun)								
2 - 0 172	254 (IXu	1776 061	3 786	6 501	5 8 5 2	5 907	_11 523	-5 146	-16 669	_0.150
174	254	1779 552	3 491	6 524	5.861	5.915	-10.683	-4.761	-15444	-0.130
176	258	1782 760	3 208	6 5 4 5	5 867	5 921	-9.343	-4 186	-13529	-0.137
178	250	1785 957	3 197	6 5 5 6	5.857	5 911	-4.495	-1.847	-6.342	-0.055
180	260	1790.636	4 679	6 578	5 860	5 914	0.063	0.016	0.042	0.000
182	262	1795 107	4 471	6 603	5 871	5 925	0.005	0.015	0.072	0.001
184	266	1798.542	3,435	6.631	5.882	5.936	0.075	0.014	0.089	0.001
186	268	1799.205	0.663	6.667	5.892	5.946	0.102	0.013	0.115	0.001
188	270	1797.777	-1.428	6.708	5.902	5.956	0.152	0.016	0.168	0.001
Z = S	84 (Po	lonyum)								
102	186	1436.080	21.460	5.495	5.449	5.507	-6.903	-5.498	-12.401	-0.188
104	188	1456.877	20.797	5.525	5.460	5.518	-7.372	-5.729	-13.101	-0.195
106	190	1476.993	20.116	5.553	5.470	5.528	-7.684	-5.832	-13.516	-0.198
108	192	1496.288	19.295	5.579	5.478	5.536	-7.720	-5.738	-13.458	-0.193
110	194	1514.978	18.690	5.603	5.484	5.542	-7.486	-5.472	-12.958	-0.183
112	196	1533.310	18.332	5.626	5.491	5.549	-7.223	-5.204	-12.427	-0.172
114	198	1551.193	17.883	5.650	5.499	5.556	-7.011	-4.976	-11.987	-0.164
116	200	1568.526	17.333	5.672	5.505	5.563	-6.778	-4.733	-11.511	-0.154
118	202	1585.264	16.738	5.693	5.510	5.568	-6.363	-4.364	-10.727	-0.142
120	204	1601.633	16.369	5.693	5.490	5.548	0.408	0.240	0.648	0.008
122	206	1618.693	17.060	5.719	5.498	5.556	0.134	0.084	0.218	0.003
124	208	1635.070	16.377	5.746	5.507	5.565	0.066	0.046	0.112	0.001
126	210	1650.031	14.961	5.774	5.516	5.574	0.046	0.033	0.079	0.001
128	212	1660.001	9.970	5.810	5.530	5.588	0.054	0.034	0.088	0.001
130	214	1667.683	7.682	5.845	5.548	5.606	0.075	0.044	0.119	0.001
132	216	1675.271	7.588	5.878	5.568	5.626	0.145	0.084	0.229	0.003
134	218	1682.951	7.680	5.910	5.589	5.646	0.589	0.330	0.919	0.011
136	220	1691.449	8.498	5.949	5.611	5.667	4.582	2.372	6.954	0.080
138	222	1699.518	8.069	5.989	5.633	5.689	7.135	3.633	10.768	0.121
140	224	1707.653	8.135	6.032	5.664	5.721	10.314	5.410	15.724	0.175
142	226	1715.978	8.325	6.073	5.693	5.749	12.663	6.687	19.350	0.212
144	228	1724.005	8.027	6.110	5.718	5.774	14.334	7.552	21.886	0.236
146	230	1731.737	7.732	6.145	5.741	5.796	15.607	8.203	23.810	0.253
148	232	1739.104	7.367	6.178	5.762	5.817	16.625	8.731	25.356	0.266
150	234	1743.683	4.579	6.256	5.830	5.885	-19.273	-10.587	-29.860	-0.308
152	236	1/52.685	9.002	6.244	5.803	5.858	18.282	9.595	27.877	0.284
154	238	1/58.939	6.254	6.275	5.820	5.874	18.682	9.734	28.416	0.285
156	240	1/05.092	6.153	6.303	5.835	5.889	18.809	9.697	28.506	0.282
158	242	1//1.104	6.012	6.329	5.848	5.902	18.674	9.511	28.185	0.275
160	244	1/0./08	5.664	6.356	5.860	5.914	18.456	9.307	27.763	0.267
162	246	1/81.833	5.065	6.382	5.871	5.925	18.166	9.096	27.262	0.259

Ek Tablo 7'nin devamı

N	Α	BE (MeV)	$S_{2n}(\text{MeV})$	𝑘(fm) 𝑘	$r_p(\text{fm})$	$r_{\mathcal{C}}(\mathrm{fm})$	$Q_n(\mathbf{b})$	$Q_{p^{(b)}}$	$Q_T(\mathbf{b})$	β_2
Z = 2	84 (Po	lonvum)								
164	248	1787.052	5 219	6 393	5 842	5 897	-14.062	-6 521	-20 583	-0 193
166	250	1792.050	4,998	6.418	5.853	5.907	-13.852	-6.357	-20.209	-0.187
168	252	1796.642	4.592	6.443	5.863	5.917	-13.337	-6.097	-19.434	-0.177
170	254	1801.079	4.437	6.467	5.872	5.926	-12.565	-5.756	-18.321	-0.165
172	256	1805.410	4.331	6.491	5.880	5.935	-11.773	-5.405	-17.178	-0.153
174	258	1809.488	4.078	6.513	5.889	5.943	-10.998	-5.040	-16.038	-0.141
176	260	1813.241	3.753	6.533	5.896	5.950	-9.890	-4.526	-14.416	-0.125
178	262	1816.640	3.399	6.540	5.877	5.931	-3.005	-1.210	-4.215	-0.036
180	264	1821.858	5.218	6.564	5.884	5.938	0.054	0.016	0.070	0.001
182	266	1826.913	5.055	6.591	5.894	5.944	1.956	0.659	2.615	0.001
184	268	1830.901	3.988	6.619	5.905	5.959	0.069	0.020	0.089	0.001
186	270	1831.931	1.030	6.654	5.915	5.969	0.094	0.015	0.109	0.001
188	272	1830.771	-1.160	6.694	5.925	5.979	0.135	0.017	0.152	0.001
190	274	1829.147	-1.624	6.732	5.935	5.989	0.192	0.024	0.216	0.002
Z = S	86 (Ra	don)								
106	192	1477.428	20.793	5.568	5.505	5.563	9.163	5.878	15.041	0.230
108	194	1497.625	20.197	5.593	5.519	5.577	-8.398	-6.597	-14.995	-0.212
110	196	1517.013	19.388	5.615	5.523	5.581	-8.069	-6.202	-14.271	-0.198
112	198	1536.094	19.081	5.637	5.528	5.585	-7.566	-5.696	-13.262	-0.181
114	200	1554.880	18.786	5.658	5.533	5.590	-7.175	-5.291	-12.466	-0.167
116	202	1573.190	18.310	5.679	5.537	5.594	-6.757	-4.860	-11.617	-0.153
118	204	1591.115	17.925	5.684	5.521	5.579	-4.213	-2.730	-6.943	-0.090
120	206	1608.864	17.749	5.704	5.526	5.583	-2.717	-1.750	-4.467	-0.057
122	208	1626.180	17.316	5.726	5.532	5.589	0.537	0.366	0.903	0.011
124	210	1643.239	17.059	5.752	5.540	5.597	0.113	0.084	0.197	0.002
126	212	1658.912	15.673	5.780	5.549	5.606	0.056	0.045	0.101	0.001
128	214	1669.903	10.991	5.815	5.563	5.620	0.067	0.049	0.116	0.001
130	216	1678.793	8.890	5.849	5.582	5.639	0.121	0.086	0.207	0.002
132	218	1687.971	9.178	5.881	5.603	5.660	1.646	1.105	2.751	0.032
134	220	1697.928	9.957	5.917	5.626	5.682	4.139	2.559	6.698	0.077
136	222	1707.283	9.355	5.955	5.645	5.701	6.293	3.594	9.887	0.111
138	224	1716.182	8.899	5.991	5.664	5.720	8.020	4.404	12.424	0.138
140	226	1725.120	8.938	6.029	5.688	5.744	10.266	5.541	15.807	0.173
142	228	1734.011	8.891	6.067	5.713	5.769	12.315	6.605	18.920	0.204
144	230	1742.625	8.614	6.104	5.737	5.793	13.970	7.472	21.442	0.228
146	232	1750.980	8.355	6.138	5.760	5.815	15.232	8.119	23.351	0.245
148	234	1758.969	7.989	6.170	5.780	5.835	16.191	8.594	24.785	0.256
150	236	1766.570	7.601	6.201	5.799	5.854	17.006	8.994	26.000	0.265
152	238	1773.692	7.122	6.232	5.815	5.870	17.505	9.184	26.689	0.268
154	240	1780.501	6.809	6.259	5.830	5.884	17.617	9.109	26.726	0.265
156	242	1787.240	6.739	6.286	5.842	5.897	17.567	8.939	26.506	0.259

Ek Tablo 7'nin devamı

N	Α	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\text{fm})$	$r_p(\text{fm})$	$\Gamma_{\mathcal{C}}(\mathrm{fm})$	$Q_{n}(\mathbf{b})$	$Q_{p^{(b)}}$	$Q_T(\mathbf{b})$	β_2
7 –	86 (Ra	don)								
158	244	1793 853	6 6 1 3	6312	5 8 5 5	5 909	17 469	8 764	26 233	0 253
160	244 246	1800 128	6 275	6 3 3 8	5 866	5 920	17.402	8 571	26.255	0.233
162	240	1805 842	5 714	6 364	5 877	5 931	16 946	8 317	25.057	0.240
164	250	1811 322	5 480	6 386	5 871	5 925	-14170	-6.823	-20.993	-0.194
166	250	1816 999	5.100	6.300 6.410	5 881	5 935	-13.958	-6.620	-20.573	-0.188
168	254	1822.243	5 244	6 4 3 4	5 890	5 945	-13467	-6.320	-19787	-0.100
170	256	1827 274	5.031	6 4 5 7	5 899	5 953	-12.660	-5.914	-18574	-0.165
172	258	1832.238	4.964	6.480	5.907	5.961	-11.755	-5.470	-17.225	-0.151
174	260	1837.031	4,793	6.501	5.914	5.967	-10.804	-4.974	-15.778	-0.137
176	262	1841.572	4.541	6.518	5.916	5.969	-9.139	-4.082	-13.221	-0.113
178	264	1846.247	4.675	6.531	5.908	5.962	-5.070	-2.131	-7.201	-0.061
180	266	1851.410	5.163	6.554	5.912	5.966	0.065	0.025	0.090	0.001
182	268	1856.947	5.537	6.581	5.921	5.975	0.053	0.016	0.069	0.001
184	270	1861.424	4.477	6.610	5.931	5.984	0.064	0.017	0.081	0.001
186	272	1862.834	1.410	6.645	5.941	5.995	0.093	0.020	0.113	0.001
188	274	1861.986	-0.848	6.683	5.952	6.006	0.120	0.018	0.138	0.001
Z = S	88 (Ra	dyum)								
112	200	1537.087	19.573	5.650	5.567	5.624	-8.341	-6.623	-14.964	-0.201
114	202	1556.447	19.360	5.666	5.566	5.623	-7.419	-5.686	-13.105	-0.173
116	204	1576.231	19.784	5.670	5.548	5.605	-4.845	-3.293	-8.138	-0.106
118	206	1595.621	19.390	5.691	5.553	5.610	-4.016	-2.681	-6.697	-0.086
120	208	1614.402	18.781	5.713	5.558	5.616	-2.868	-1.918	-4.786	-0.060
122	210	1632.540	18.138	5.735	5.564	5.622	-1.206	-0.828	-2.034	-0.025
124	212	1650.218	17.678	5.760	5.572	5.629	0.157	0.123	0.280	0.003
126	214	1666.585	16.367	5.788	5.581	5.638	0.064	0.055	0.119	0.001
128	216	1678.637	12.052	5.821	5.595	5.652	0.074	0.059	0.133	0.002
130	218	1688.774	10.137	5.853	5.614	5.671	0.220	0.167	0.387	0.005
132	220	1699.019	10.245	5.885	5.635	5.691	-1.229	-0.885	-2.114	-0.024
134	222	1709.164	10.145	5.917	5.655	5.711	-1.710	-1.185	-2.895	-0.033
136	224	1720.282	11.118	5.954	5.676	5.732	5.408	3.384	8.792	0.098
138	226	1730.071	9.789	5.991	5.694	5.750	7.978	4.637	12.615	0.138
140	228	1740.199	10.128	6.032	5.719	5.775	11.045	6.328	17.373	0.187
142	230	1750.122	9.923	6.069	5.744	5.800	13.096	7.466	20.562	0.219
144	232	1759.582	9.460	6.105	5.768	5.823	14.667	8.312	22.979	0.241
146	234	1768.663	9.081	6.138	5.789	5.844	15.777	8.864	24.641	0.255
148	236	1777.365	8.702	6.169	5.808	5.863	16.608	9.242	25.850	0.263
150	238	1785.644	8.279	6.199	5.825	5.880	17.292	9.527	26.819	0.269
152	240	1793.333	7.689	6.227	5.838	5.893	17.543	9.500	27.043	0.268
154	242	1800.674	7.341	6.251	5.848	5.902	17.312	9.133	26.445	0.258
156	244	1807.959	7.285	6.275	5.857	5.912	16.982	8.725	25.707	0.248
158	246	1815.119	7.160	6.300	5.867	5.922	16.736	8.409	25.145	0.239

Ek Tablo 7'nin devamı

N	Α	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\text{fm})$	$r_p(\text{fm})$	$r_{\mathcal{C}}(\mathrm{fm})$	$Q_n(\mathbf{b})$	$Q_{p^{(b)}}$	$Q_T(\mathbf{b})$	β_2
7 - 9	88 (P a	dyum)								
L = 0	218	1821.002	6 873	6 3 2 5	5 877	5 031	16 402	8 070	24 481	0 220
162	240	1828 /13	6.421	6 3 4 0	5 8 8 5	5.931	15.402	7.653	24.401	0.229
164	250	1823 584	0.421 5 171	6 3 8 1	5.000	5.940	17.031	7.055	23.464	0.217
104	252	1833.384	5.171 6.265	6 404	5.900	5.954	-14.329 14.242	-7.340	-21.009	-0.200
160	254	1839.849	5 852	0.404 6 427	5.910	5.904	-14.242	-7.042	-21.204	-0.192
100	250	1043.702	5.055	0.4 <i>21</i> 6.447	5.910	5.972	-13.709	-0.030	-20.543	-0.161
170	230	1031.200	5.500	0.447	5.924	5.970	-12.000	-3.900	-16.046	-0.104
174	200	1862 768	5 827	0.40J 6.481	5.925	5.979	-10.967	-4.998	-13.963 12.724	-0.139
174	202	1002.700	5.057	0.401 6 500	5.924	5.970	-0.950	-5.604	-12.754	-0.109
170	204	1000.300	5.620	6.500	5.929	5.905	-7.123	-2.957	-10.002	-0.083
1/0	200	10/4.2/1	5.005	0.522	5.955	5.004	-4.740	-1.905	-0.703	-0.030
100	208	18/9.94/	5.070	0.340	5.940	5.994	0.025	0.007	0.050	0.000
102	270	1003.072	3.923 1 909	0.374	5.948	6.001	0.043	0.014	0.039	0.001
104	272	1090.770	4.090	0.002	5.950	6.010	0.002	0.019	0.001	0.007
100	274	1892.381	1.811	0.030	5.90/	6.020	0.077	0.015	0.092	0.001
188	270	1892.120	-0.401	0.0/3	5.980	0.033	0.099	0.014	0.115	0.001
Z = 9	90 (To	ryum)								
114	204	1557.623	20.411	5.918	5.862	5.916	25.545	20.962	46.507	0.604
116	206	1577.953	20.330	5.676	5.577	5.634	-4.072	-2.815	-6.887	-0.088
118	208	1598.521	20.568	5.697	5.582	5.639	-2.963	-2.005	-4.968	-0.062
120	210	1618.401	19.880	5.720	5.589	5.646	-1.390	-0.939	-2.329	-0.029
122	212	1637.619	19.218	5.744	5.596	5.653	0.630	0.455	1.085	0.013
124	214	1656.031	18.412	5.768	5.604	5.661	0.129	0.102	0.231	0.003
126	216	1673.086	17.055	5.795	5.612	5.669	0.066	0.058	0.124	0.002
128	218	1686.223	13.137	5.827	5.627	5.683	0.067	0.055	0.122	0.001
130	220	1697.609	11.386	5.859	5.646	5.702	0.166	0.127	0.293	0.003
132	222	1709.206	11.597	5.890	5.667	5.723	1.771	1.280	3.051	0.034
134	224	1720.230	11.024	5.920	5.686	5.742	0.601	0.413	1.014	0.011
136	226	1731.801	11.571	5.953	5.706	5.762	0.339	0.227	0.566	0.062
138	228	1742.289	10.488	5.980	5.725	5.780	0.278	0.186	0.464	0.005
140	230	1754.119	11.830	6.042	5.761	5.816	12.908	8.108	21.016	0.223
142	232	1765.003	10.884	6.077	5.782	5.838	14.399	8.878	23.277	0.244
144	234	1775.337	10.334	6.111	5.803	5.858	15.679	9.504	25.183	0.260
146	236	1785.150	9.813	6.142	5.821	5.876	16.568	9.881	26.449	0.269
148	238	1794.597	9.447	6.171	5.839	5.894	17.349	10.217	27.566	0.277
150	240	1803.537	8.940	6.201	5.856	5.910	18.015	10.487	28.502	0.282
152	242	1811.735	8.198	6.228	5.869	5.923	18.284	10.466	28.750	0.281
154	244	1819.469	7.734	6.252	5.877	5.931	18.047	10.070	28.117	0.271
156	246	1827.139	7.670	6.274	5.883	5.938	17.476	9.440	26.916	0.256
158	248	1834.740	7.601	6.296	5.890	5.944	16.920	8.845	25.765	0.241
160	250	1842.142	7.402	6.318	5.896	5.950	16.245	8.223	24.468	0.226
162	252	1849.272	7.130	6.339	5.903	5.957	15.273	7.478	22.751	0.208

Ek Tablo 7'nin devamı

N	Α	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\text{fm})$	$r_p(\text{fm})$	$\Gamma_{\mathcal{C}}(\mathrm{fm})$	$Q_n(\mathbf{b})$	$Q_{p^{(\mathrm{b})}}$	$Q_T(\mathbf{b})$	β_2
7 – (00 (To	ryum)								
2 - 164	254	1854 480	5 208	6 377	5 930	5 984	_14 954	_7 916	_22 870	-0.206
166	256	1861 316	6.836	6 400	5.930	5 997	-14.934 -14.630	-7.510 -7.570	-22.870 -22.200	-0.200
168	258	1867 797	6.481	6.420	5.946	5 999	-14.030	-7.053	-21.087	-0.197
170	250	1874 116	6 319	6.425	5 932	5 985	-10.193	-4.437	-14630	-0.103
172	260	1880 980	6 864	6 <i>444</i>	5 937	5 990	_8.463	-3 496	_11 959	-0.1027
174	262	1887 831	6 851	6 4 6 6	5 945	5 998	-7.115	-2 843	_9 958	-0.084
176	266	1894 510	6 679	6 4 8 9	5 953	6.006	-5459	-2.013	-7 591	-0.063
178	268	1900 910	6 400	6 512	5 9 5 9	6.013	-2.225	-0.873	-3.098	-0.005
180	270	1907 438	6 528	6 5 3 9	5 966	6.020	0.014	0.005	0.019	0.000
182	272	1913 699	6 261	6 567	5 974	6.027	0.049	0.005	0.019	0.000
184	274	1918.975	5.276	6.596	5.982	6.035	0.052	0.015	0.067	0.001
186	276	1921.219	2.244	6.629	5.993	6.046	0.069	0.014	0.083	0.001
188	278	1921.236	0.017	6.663	6.007	6.060	0.089	0.015	0.104	0.001
Z = 9	92 (Ur	anyum)								
114	206	1556.099	21.136	5.668	5.607	5.664	-5.698	-4.318	-10.016	-0.128
116	208	1579.798	23.699	5.693	5.617	5.674	5.923	4.441	10.364	0.130
118	210	1600.345	20.547	5.705	5.612	5.669	1.237	0.851	2.088	0.026
120	212	1621.134	20.789	5.729	5.620	5.677	0.377	0.262	0.639	0.008
122	214	1641.048	19.914	5.752	5.628	5.684	0.215	0.154	0.369	0.004
124	216	1660.143	19.095	5.776	5.635	5.691	0.099	0.078	0.177	0.002
126	218	1677.887	17.744	5.802	5.643	5.700	0.057	0.050	0.107	0.001
128	220	1692.103	14.216	5.833	5.657	5.714	0.060	0.050	0.110	0.002
130	222	1704.715	12.612	5.864	5.676	5.732	0.105	0.080	0.185	0.002
132	224	1717.216	12.501	5.895	5.696	5.752	0.231	0.162	0.393	0.004
134	226	1729.702	12.486	5.925	5.716	5.771	0.422	0.283	0.705	0.008
136	228	1742.076	12.374	5.954	5.735	5.791	0.200	0.134	0.334	0.004
138	230	1754.042	11.966	5.983	5.754	5.809	0.126	0.084	0.210	0.002
140	232	1766.565	12.523	6.049	5.796	5.851	13.902	9.298	23.200	0.243
142	234	1778.477	11.912	6.082	5.815	5.870	15.189	9.908	25.097	0.259
144	236	1789.701	11.224	6.114	5.833	5.887	16.260	10.363	26.623	0.271
146	238	1800.327	10.626	6.144	5.849	5.904	17.055	10.653	27.708	0.278
148	240	1810.553	10.226	6.173	5.867	5.921	17.825	10.968	28.793	0.285
150	242	1820.142	9.589	6.202	5.883	5.937	18.471	11.217	29.688	0.290
152	244	1828.896	8.754	6.229	5.896	5.950	18.809	11.250	30.059	0.289
154	246	1837.118	8.222	6.254	5.906	5.960	18.797	11.037	29.834	0.283
156	248	1845.181	8.063	6.276	5.914	5.967	18.413	10.556	28.969	0.272
158	250	1853.119	7.938	6.297	5.919	5.973	17.857	9.949	27.806	0.257
160	252	1860.827	7.708	6.318	5.924	5.977	16.987	9.142	26.129	0.238
162	254	1868.406	7.579	6.336	5.928	5.982	15.661	8.067	23.728	0.214
164	256	1875.962	7.556	6.354	5.934	5.988	14.025	6.950	20.975	0.186
166	258	1881.431	5.469	6.394	5.964	6.018	-14.732	-7.876	-22.608	-0.198

Ek Tablo 7'nin devamı

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N	Α	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\text{fm})$	r_p (fm)	$r_{\mathcal{C}}(\mathrm{fm})$	$Q_n(\mathbf{b})$	$Q_{p^{(b)}}$	$Q_T(\mathbf{b})$	β_2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Z = 92 (Uranyum)											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	168	260	1888.746	7.315	6.393	5.945	5.999	-10.212	-4.586	-14.798	-0.128	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	170	262	1896.515	7.769	6.410	5.952	6.005	-7.980	-3.312	-11.292	-0.097	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	172	264	1904.215	7.700	6.431	5.960	6.014	-6.099	-2.392	-8.491	-0.072	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	174	266	1911.751	7.536	6.455	5.969	6.022	-4.436	-1.664	-6.100	-0.051	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	176	268	1919.026	7.275	6.479	5.977	6.030	-1.189	-0.426	-1.615	-0.013	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	178	270	1926.190	7.164	6.506	5.984	6.037	-0.032	-0.008	-0.040	0.000	
1822741939.7206.5866.5615.9986.0510.0310.0110.0420.001842761945.3595.6396.5896.0066.0590.0460.0140.0600.001862781948.0702.7116.6226.0176.0700.0610.0140.0750.001882801948.6540.5846.6546.0336.0860.0730.0120.0850.001902821948.9240.2706.6856.0516.1030.0740.0080.0820.001922841949.2490.3256.7146.0706.1220.058-0.0050.0530.00	180	272	1933.134	6.944	6.533	5.991	6.044	0.010	0.005	0.015	0.000	
1842761945.3595.6396.5896.0066.0590.0460.0140.0600.001862781948.0702.7116.6226.0176.0700.0610.0140.0750.001882801948.6540.5846.6546.0336.0860.0730.0120.0850.001902821948.9240.2706.6856.0516.1030.0740.0080.0820.001922841949.2490.3256.7146.0706.1220.058-0.0050.0530.00	182	274	1939.720	6.586	6.561	5.998	6.051	0.031	0.011	0.042	0.000	
1862781948.0702.7116.6226.0176.0700.0610.0140.0750.001882801948.6540.5846.6546.0336.0860.0730.0120.0850.001902821948.9240.2706.6856.0516.1030.0740.0080.0820.001922841949.2490.3256.7146.0706.1220.058-0.0050.0530.00	184	276	1945.359	5.639	6.589	6.006	6.059	0.046	0.014	0.060	0.001	
1882801948.6540.5846.6546.0336.0860.0730.0120.0850.001902821948.9240.2706.6856.0516.1030.0740.0080.0820.001922841949.2490.3256.7146.0706.1220.058-0.0050.0530.00	186	278	1948.070	2.711	6.622	6.017	6.070	0.061	0.014	0.075	0.001	
1902821948.9240.2706.6856.0516.1030.0740.0080.0820.001922841949.2490.3256.7146.0706.1220.058-0.0050.0530.00	188	280	1948.654	0.584	6.654	6.033	6.086	0.073	0.012	0.085	0.001	
192 284 1949.249 0.325 6.714 6.070 6.122 0.058 -0.005 0.053 0.00	190	282	1948.924	0.270	6.685	6.051	6.103	0.074	0.008	0.082	0.001	
	192	284	1949.249	0.325	6.714	6.070	6.122	0.058	-0.005	0.053	0.000	
194 286 1949.709 0.460 6.742 6.090 6.142 -0.052 -0.047 -0.099 -0.009	194	286	1949.709	0.460	6.742	6.090	6.142	-0.052	-0.047	-0.099	-0.001	
$196 \ 288 \ 1950.351 \ 0.642 \ 6.769 \ 6.110 \ 6.162 \ -1.554 \ -0.650 \ -2.204 \ -0.01$	196	288	1950.351	0.642	6.769	6.110	6.162	-1.554	-0.650	-2.204	-0.016	
198 290 1952.517 2.166 6.813 6.122 6.174 12.092 4.251 16.343 0.11	198	290	1952.517	2.166	6.813	6.122	6.174	12.092	4.251	16.343	0.118	
200 292 1953.541 1.024 6.846 6.140 6.192 14.915 5.395 20.310 0.14	200	292	1953.541	1.024	6.846	6.140	6.192	14.915	5.395	20.310	0.145	
202 294 1956.231 2.690 6.888 6.187 6.239 22.384 9.608 31.992 0.22	202	294	1956.231	2.690	6.888	6.187	6.239	22.384	9.608	31.992	0.226	
204 296 1957.969 1.738 6.921 6.209 6.261 24.488 10.480 34.968 0.24	204	296	1957.969	1.738	6.921	6.209	6.261	24.488	10.480	34.968	0.244	
206 298 1959.436 1.467 6.952 6.229 6.280 26.132 11.087 37.219 0.25	206	298	1959.436	1.467	6.952	6.229	6.280	26.132	11.087	37.219	0.257	
208 300 1960.672 1.236 6.982 6.247 6.298 27.569 11.571 39.140 0.26	208	300	1960.672	1.236	6.982	6.247	6.298	27.569	11.571	39.140	0.267	
210 302 1961.689 1.017 7.013 6.264 6.315 28.952 12.020 40.972 0.27	210	302	1961.689	1.017	7.013	6.264	6.315	28.952	12.020	40.972	0.277	
212 304 1962.517 0.828 7.044 6.281 6.332 30.303 12.466 42.769 0.28	212	304	1962.517	0.828	7.044	6.281	6.332	30.303	12.466	42.769	0.286	
214 306 1963.097 0.580 7.074 6.297 6.348 31.442 12.822 44.264 0.29	214	306	1963.097	0.580	7.074	6.297	6.348	31.442	12.822	44.264	0.292	
216 308 1963.372 0.275 7.103 6.311 6.362 32.213 13.007 45.220 0.29	216	308	1963.372	0.275	7.103	6.311	6.362	32.213	13.007	45.220	0.295	
218 310 1963.428 0.056 7.130 6.324 6.375 32.628 13.041 45.669 0.29	218	310	1963.428	0.056	7.130	6.324	6.375	32.628	13.041	45.669	0.295	
220 312 1963.340 -0.088 7.156 6.336 6.386 32.859 13.004 45.863 0.29	220	312	1963.340	-0.088	7.156	6.336	6.386	32.859	13.004	45.863	0.293	
Z = 94 (Plütonvum)												
114 208 1555.968 21.542 5.686 5.649 5.705 7.629 6.278 13.907 0.17	114	208	1555.968	21.542	5.686	5.649	5.705	7.629	6.278	13.907	0.175	
116 210 1577.487 21.519 5.704 5.651 5.708 6.669 5.372 12.041 0.14	116	210	1577.487	21.519	5.704	5.651	5.708	6.669	5.372	12.041	0.149	
118 212 1599.069 21.582 5.713 5.643 5.699 0.886 0.637 1.523 0.01	118	212	1599.069	21.582	5.713	5.643	5.699	0.886	0.637	1.523	0.019	
120 214 1620.634 21.565 5.736 5.651 5.708 0.401 0.292 0.693 0.00	120	214	1620.634	21.565	5.736	5.651	5.708	0.401	0.292	0.693	0.008	
122 216 1641.268 20.634 5.760 5.658 5.715 0.224 0.168 0.392 0.00	122	216	1641.268	20.634	5.760	5.658	5.715	0.224	0.168	0.392	0.005	
124 218 1661.060 19.792 5.783 5.665 5.721 0.110 0.090 0.200 0.00	124	218	1661.060	19.792	5.783	5.665	5.721	0.110	0.090	0.200	0.002	
126 220 1679.532 18.472 5.808 5.673 5.730 0.053 0.050 0.103 0.00	126	220	1679.532	18.472	5.808	5.673	5.730	0.053	0.050	0.103	0.001	
128 222 1694.731 15.199 5.838 5.687 5.743 0.067 0.059 0.126 0.00	128	222	1694.731	15.199	5.838	5.687	5.743	0.067	0.059	0.126	0.001	
130 224 1708.416 13.685 5.869 5.706 5.762 0.118 0.094 0.212 0.00	130	224	1708.416	13.685	5.869	5.706	5.762	0.118	0.094	0.212	0.002	
132 226 1721.980 13.564 5.899 5.725 5.781 0.281 0.206 0.487 0.00	132	226	1721.980	13.564	5.899	5.725	5.781	0.281	0.206	0.487	0.005	
134 228 1735.520 13.540 5.928 5.744 5.800 0.470 0.331 0.801 0.00	134	228	1735.520	13.540	5.928	5.744	5.800	0.470	0.331	0.801	0.009	
136 230 1749.065 13.545 5.987 5.787 5.843 11.715 8.669 20.384 0.21	136	230	1749.065	13.545	5.987	5.787	5.843	11.715	8.669	20.384	0.217	
138 232 1763.642 14.577 6.022 5.809 5.864 13.304 9.564 22.868 0.24	138	232	1763.642	14.577	6.022	5.809	5.864	13.304	9.564	22.868	0.240	
Ek Tablo 7'nin devamı

N	Α	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\mathrm{fm})$	$r_p(\text{fm})$	$\Gamma_{\mathcal{C}}(\mathrm{fm})$	$Q_{n}(\mathbf{b})$	$Q_{p^{(b)}}$	$Q_T(\mathbf{b})$	β_2
Z = 0	94 (Pli	itonyum)								
140	234	1777 268	13 626	6 0 5 3	5 827	5 881	14 482	10 129	24 611	0 254
142	236	1790,197	12.929	6.085	5.844	5.898	15.639	10.643	26.282	0.268
144	238	1802.341	12.144	6.116	5.860	5.914	16.583	11.004	27.587	0.277
146	240	1813.873	11.532	6.145	5.876	5.930	17.368	11.276	28.644	0.284
148	242	1824.939	11.066	6.173	5.892	5.946	18.113	11.551	29.664	0.290
150	244	1835.201	10.262	6.201	5.906	5.960	18.701	11.744	30.445	0.293
152	246	1844.567	9.366	6.228	5.919	5.973	19.046	11.780	30.826	0.293
154	248	1853.393	8.826	6.253	5.930	5.984	19.140	11.654	30.794	0.287
156	250	1862.005	8.612	6.276	5.940	5.993	18.953	11.336	30.289	0.280
158	252	1870.416	8.411	6.299	5.948	6.001	18.631	10.920	29.551	0.270
160	254	1878.488	8.072	6.320	5.953	6.007	17.969	10.277	28.246	0.254
162	256	1886.324	7.836	6.338	5.957	6.011	16.711	9.229	25.940	0.231
164	258	1894.106	7.782	6.354	5.962	6.016	15.028	8.021	23.049	0.202
166	260	1901.777	7.671	6.373	5.969	6.022	13.570	7.064	20.634	0.179
168	262	1908.792	7.015	6.388	5.972	6.025	-10.467	-4.998	-15.465	-0.132
170	264	1917.007	8.215	6.408	5.979	6.032	-9.093	-4.151	-13.244	-0.112
172	266	1924.935	7.928	6.428	5.987	6.040	-7.407	-3.230	-10.637	-0.089
174	268	1932.666	7.731	6.451	5.994	6.048	-5.623	-2.340	-7.963	-0.066
176	270	1940.183	7.517	6.475	6.002	6.055	-3.439	-1.367	-4.806	-0.039
178	272	1947.552	7.369	6.500	6.008	6.061	-0.125	-0.044	-0.169	-0.001
180	274	1954.853	7.301	6.527	6.015	6.068	-0.005	-0.001	-0.006	0.000
182	276	1961.795	6.942	6.555	6.022	6.075	0.024	0.010	0.034	0.000
184	278	1967.823	6.028	6.583	6.030	6.083	0.040	0.013	0.053	0.000
186	280	1971.031	3.208	6.614	6.042	6.094	0.053	0.013	0.066	0.001
188	282	1972.223	1.192	6.646	6.058	6.111	0.065	0.013	0.078	0.001
190	284	1973.154	0.931	6.675	6.077	6.130	0.058	0.007	0.065	0.001
192	286	1974.164	1.010	6.703	6.097	6.150	0.015	-0.015	0.000	0.000
194	288	1975.325	1.161	6.730	6.118	6.170	-0.562	-0.279	-0.841	-0.006
196	290	1973.275	-2.050	6.845	6.233	6.284	-27.006	-12.484	-39.490	-0.285
198	292	1976.276	3.001	6.883	6.253	6.304	-29.056	-13.145	-42.201	-0.301
200	294	1979.067	2.791	6.917	6.270	6.321	-30.410	-13.533	-43.943	-0.310
202	296	1981.593	2.526	6.948	6.286	6.337	-31.430	-13.792	-45.222	-0.316
204	298	1983.858	2.265	6.978	6.301	6.352	-32.296	-13.992	-46.288	-0.319
206	300	1985.899	2.041	7.006	6.315	6.366	-33.001	-14.125	-47.126	-0.322
208	302	1987.717	1.818	7.033	6.327	6.377	-33.387	-14.133	-47.520	-0.321
210	304	1989.348	1.631	7.051	6.328	6.378	-32.252	-13.611	-45.863	-0.306
212	306	1991.024	1.676	7.066	6.327	6.378	-30.661	-12.958	-43.619	-0.288
214	308	1992.472	1.448	7.090	6.336	6.387	-30.571	-12.813	-43.384	-0.283
216	310	1993.635	1.163	7.114	6.346	6.397	-30.569	-12.695	-43.264	-0.280
218	312	1994.579	0.944	7.138	6.356	6.406	-30.523	-12.556	-43.079	-0.275
220	314	1995.393	0.814	7.162	6.366	6.416	-30.408	-12.396	-42.804	-0.271
222	316	1996.096	0.703	7.185	6.375	6.425	-30.075	-12.187	-42.262	-0.265

Ek Tablo 7'nin devamı

N	A	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\mathrm{fm})$	$r_p(\text{fm})$	$\Gamma_{\mathcal{C}}(\mathrm{fm})$	$Q_{n}(\mathbf{b})$	$Q_{p^{(\mathrm{b})}}$	$Q_{T^{(b)}}$	β ₂
7_0	04 (D];	itonum)								
L = 1	94 (FIL 210	1006 702	0.606	7 207	6 201	6 121	20 161	11 025	40.006	0.254
4	510	1990.702	0.000	1.207	0.301	0.431	-29.101	-11.655	-40.990	-0.234
Z = S	96 (Kü	riyum)								
116	212	1574.245	21.828	5.716	5.686	5.742	7.635	6.614	14.249	0.173
118	214	1596.555	22.310	5.728	5.680	5.736	-5.136	-4.143	-9.279	-0.111
120	216	1618.409	21.854	5.747	5.685	5.741	-4.044	-3.220	-7.264	-0.086
122	218	1638.914	20.505	5.766	5.688	5.744	0.697	0.562	1.259	0.015
124	220	1659.374	20.460	5.788	5.694	5.750	0.194	0.169	0.363	0.004
126	222	1678.583	19.209	5.813	5.702	5.758	0.069	0.069	0.138	0.002
128	224	1694.729	16.146	5.842	5.716	5.772	0.084	0.080	0.164	0.002
130	226	1709.450	14.721	5.872	5.734	5.789	0.247	0.212	0.459	0.005
132	228	1724.497	15.047	5.903	5.754	5.809	2.000	1.588	3.588	0.039
134	230	1739.245	14.748	5.932	5.773	5.828	2.750	2.106	4.856	0.052
136	232	1755.469	16.224	5.994	5.819	5.874	12.345	9.392	21.737	0.228
138	234	1770.973	15.504	6.026	5.838	5.893	13.703	10.164	23.867	0.246
140	236	1785.616	14.643	6.057	5.855	5.910	14.868	10.759	25.627	0.261
142	238	1799.581	13.965	6.088	5.872	5.926	15.978	11.270	27.248	0.274
144	240	1812.718	13.137	6.118	5.887	5.941	16.867	11.608	28.475	0.282
146	242	1825.266	12.548	6.146	5.902	5.956	17.647	11.873	29.520	0.288
148	244	1837.308	12.042	6.174	5.917	5.971	18.360	12.108	30.468	0.293
150	246	1848.367	11.059	6.201	5.931	5.984	18.876	12.234	31.110	0.296
152	248	1858.410	10.043	6.227	5.942	5.996	19.175	12.230	31.405	0.294
154	250	1867.958	9.548	6.251	5.953	6.007	19.250	12.089	31.339	0.290
156	252	1877.256	9.298	6.275	5.964	6.017	19.120	11.813	30.933	0.282
158	254	1886.296	9.040	6.298	5.973	6.026	18.951	11.506	30.457	0.274
160	256	1894.941	8.645	6.320	5.980	6.034	18.539	11.054	29.593	0.263
162	258	1903.240	8.299	6.340	5.986	6.039	17.681	10.326	28.007	0.246
164	260	1911.258	8.018	6.357	5.991	6.044	16.258	9.294	25.552	0.221
166	262	1919.141	7.883	6.374	5.997	6.050	14.664	8.223	22.887	0.196
168	264	1926.864	7.723	6.387	5.998	6.051	-11.273	-5.775	-17.048	-0.144
170	266	1935.621	8.757	6.408	6.007	6.060	-10.525	-5.268	-15.793	-0.132
172	268	1943.952	8.331	6.429	6.015	6.068	-9.503	-4.663	-14.166	-0.117
174	270	1951.871	7.919	6.451	6.022	6.075	-8.201	-3.955	-12.156	-0.099
176	272	1959.565	7.694	6.474	6.028	6.081	-6.836	-3.239	-10.075	-0.081
178	274	1966.840	7.275	6.497	6.034	6.087	-4.750	-2.219	-6.969	-0.055
180	276	1973.908	7.068	6.522	6.039	6.092	-0.020	-0.005	-0.025	0.000
182	278	1981.195	7.287	6.549	6.045	6.098	0.016	0.007	0.023	0.000
184	280	1987.602	6.407	6.576	6.053	6.106	0.040	0.016	0.056	0.000
186	282	1991.325	3.723	6.607	6.065	6.118	0.052	0.016	0.068	0.001
188	284	1993.156	1.831	6.637	6.083	6.135	0.051	0.010	0.061	0.001
190	286	1994.772	1.616	6.665	6.103	6.155	0.015	-0.013	0.002	0.000
192	288	1996.612	1.840	6.693	6.124	6.176	1.674	0.885	2.559	0.019

Ek Tablo 7'nin devamı

N	A	BE (MeV)	$S_{2n}(\text{MeV})$	𝑘(fm) 𝑘	$r_p(\text{fm})$	$r_{\mathcal{C}}(\mathrm{fm})$	$Q_n(\mathbf{b})$	$Q_{p^{(b)}}$	$Q_T(\mathbf{b})$	β2
Z = 0	96 (Kii	irivum)								
194	290	2001 129	4 517	6 734	6 1 4 4	6 196	10 339	4 796	15 135	0 109
196	292	2001.122	2 772	6 766	6 164	6.215	12 995	5 931	18 926	0.105
198	292	2005.201	3 226	6 802	6 192	6 244	17 298	8 172	25 470	0.135
200	296	2010 688	3 561	6.838	6 2 2 1	6.272	21 107	10 120	31 227	0.100
202	298	2013 843	3 1 5 5	6 870	6 2 4 2	6 2 9 3	23 462	11 147	34 609	0.239
202	300	2016.659	2.816	6.900	6.262	6.313	25.249	11.863	37.112	0.253
206	302	2019.154	2.495	6.929	6.279	6.330	26.658	12.362	39,020	0.263
208	304	2021.346	2.192	6.958	6.295	6.346	27.983	12.798	40.781	0.272
210	306	2023.283	1.937	6.988	6.311	6.362	29.308	13.216	42.524	0.281
212	308	2024.970	1.687	7.017	6.326	6.376	30.492	13.546	44.038	0.288
214	310	2026.335	1.365	7.045	6.340	6.390	31.401	13.749	45.150	0.292
216	312	2027.394	1.059	7.072	6.353	6.403	31.972	13.820	45.792	0.293
218	314	2028.252	0.858	7.097	6.366	6.416	32.371	13.833	46.204	0.292
220	316	2028.892	0.640	7.123	6.378	6.428	32.743	13.845	46.588	0.292
222	318	2029.290	0.398	7.150	6.389	6.439	33.013	13.814	46.827	0.290
224	320	2029.512	0.222	7.176	6.398	6.448	32.987	13.669	46.656	0.286
226	322	2029.650	0.138	7.200	6.406	6.455	32.462	13.326	45.788	0.278
228	324	2029.981	0.331	7.241	6.426	6.475	-29.237	-12.098	-41.335	-0.248
230	326	2030.406	0.425	7.262	6.434	6.483	-28.631	-11.804	-40.435	-0.240
232	328	2030.575	0.169	7.284	6.442	6.492	-28.104	-11.513	-39.617	-0.233
Z = g	98 (Ka	liforniyum)								
116	214	1570.165	22.193	5.731	5.723	5.779	8.661	7.910	16.571	0.199
118	216	1592.830	22.665	5.740	5.715	5.770	-6.208	-5.285	-11.493	-0.136
120	218	1615.453	22.623	5.760	5.719	5.775	-5.599	-4.720	-10.319	-0.120
122	220	1636.379	20.926	5.777	5.721	5.777	-3.958	-3.390	-7.348	-0.084
124	222	1656.434	20.055	5.794	5.723	5.779	0.550	0.511	1.061	0.012
126	224	1676.351	19.917	5.818	5.730	5.786	0.120	0.126	0.246	0.003
128	226	1693.449	17.098	5.846	5.744	5.799	0.146	0.149	0.295	0.003
130	228	1709.703	16.254	5.877	5.763	5.818	0.019	0.017	0.036	0.039
132	230	1726.845	17.142	5.910	5.786	5.841	4.251	3.676	7.927	0.084
134	232	1743.056	16.211	5.951	5.811	5.865	7.969	6.465	14.434	0.151
136	234	1759.974	16.918	5.999	5.847	5.901	12.519	9.715	22.234	0.230
138	236	1776.327	16.353	6.030	5.865	5.919	13.791	10.455	24.246	0.247
140	238	1791.823	15.496	6.060	5.881	5.935	14.887	11.029	25.916	0.260
142	240	1806.616	14.793	6.090	5.897	5.951	15.917	11.510	27.427	0.272
144	242	1820.655	14.039	6.118	5.912	5.965	16.755	11.836	28.591	0.279
146	244	1834.184	13.529	6.146	5.926	5.980	17.554	12.123	29.677	0.286
148	246	1847.200	13.016	6.174	5.941	5.995	18.304	12.385	30.689	0.292
150	248	1859.114	11.914	6.200	5.953	6.007	18.798	12.501	31.299	0.293
152	250	1870.114	11.000	6.225	5.965	6.018	19.058	12.477	31.535	0.292
154	252	1880.626	10.512	6.249	5.976	6.029	19.073	12.296	31.369	0.286

Ek Tablo 7'nin devamı

N	Α	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\mathrm{fm})$	$r_p(\text{fm})$	$\Gamma_{\mathcal{C}}(\mathrm{fm})$	$Q_n(\mathbf{b})$	$Q_{p^{(\mathrm{b})}}$	$Q_T(\mathbf{b})$	β_2
7 (00 (V.	lifomirum)								
L = 2	90 (Na 254	1900 91 5	10 100	6 272	5 006	6 020	10.002	12.059	21.060	0.200
150	254	1890.813	10.169	6.207	5.980	0.039	19.002	12.038	20.854	0.280
130	230	1900.029	9.814	6.297	5.990	0.049	10.991	11.603	20.834	0.274
160	258	1909.996	9.307	6.320	6.005	6.058	18.807	11.381	30.388	0.267
102	200	1918.931	8.933	0.341	0.013	0.000	17.709	11.131	28.840	0.255
104	262	1927.342	8.411	0.300	6.020	6.073	17.342	10.414	27.750	0.237
100	264	1935.498	8.150	0.370	6.025	6.078	15./55	9.303	25.118	0.212
168	266	1943.433	7.935	6.394	6.030	6.083	14.198	8.315	22.513	0.188
170	268	1952.422	8.989	6.408	6.032	6.085	-14.48/	-6.123	-20.610	-0.145
172	270	1961.244	8.822	6.429	6.040	6.093	-10.682	-5.611	-16.293	-0.133
174	272	1969.537	8.293	6.450	6.047	6.100	-9.494	-4.944	-14.438	-0.116
176	274	1977.594	8.057	6.472	6.054	6.106	-8.268	-4.278	-12.546	-0.100
178	276	1985.225	7.631	6.495	6.060	6.113	-6.829	-3.538	-10.367	-0.081
180	278	1992.270	7.045	6.518	6.064	6.117	-4.027	-2.134	-6.161	-0.048
182	280	1999.421	7.151	6.543	6.069	6.121	0.008	0.005	0.013	0.000
184	282	2006.199	6.778	6.570	6.076	6.129	0.039	0.019	0.058	0.000
186	284	2010.457	4.258	6.600	6.089	6.141	0.044	0.016	0.060	0.001
188	286	2012.961	2.504	6.629	6.107	6.159	0.034	0.004	0.038	0.000
190	288	2015.935	2.974	6.658	6.130	6.182	-3.002	-2.024	-5.026	-0.037
192	290	2021.190	5.255	6.697	6.153	6.205	9.768	5.267	15.035	0.109
194	292	2025.051	3.861	6.729	6.174	6.225	12.174	6.298	18.472	0.132
196	294	2028.818	3.767	6.762	6.196	6.247	14.882	7.504	22.386	0.158
198	296	2032.779	3.961	6.795	6.221	6.272	18.047	8.971	27.018	0.189
200	298	2036.384	3.605	6.824	6.245	6.296	21.117	10.373	31.490	0.217
202	300	2039.961	3.577	6.856	6.266	6.317	23.405	11.387	34.792	0.237
204	302	2043.290	3.329	6.885	6.286	6.336	25.171	12.141	37.312	0.252
206	304	2046.297	3.007	6.913	6.303	6.353	26.560	12.667	39.227	0.262
208	306	2048.996	2.699	6.942	6.319	6.369	27.928	13.154	41.082	0.271
210	308	2051.400	2.404	6.971	6.334	6.384	29.226	13.566	42.792	0.280
212	310	2053.508	2.108	6.999	6.348	6.398	30.316	13.847	44.163	0.285
214	312	2055.336	1.828	7.026	6.361	6.411	31.080	13.993	45.073	0.288
216	314	2056.949	1.613	7.051	6.375	6.425	31.563	14.043	45.606	0.288
218	316	2058.374	1.425	7.075	6.388	6.438	32.000	14.093	46.093	0.288
220	318	2059.440	1.066	7.102	6.400	6.450	32.399	14.129	46.528	0.288
222	320	2060.151	0.711	7.129	6.410	6.460	32.613	14.091	46.704	0.286
224	322	2060.711	0.560	7.154	6.419	6.469	32.578	13.963	46.541	0.282
226	324	2061.229	0.518	7.178	6.428	6.478	32.217	13.708	45.925	0.276
228	326	2061.745	0.516	7.199	6.438	6.487	31.496	13.303	44.799	0.266
230	328	2062.213	0.468	7.220	6.447	6.497	30.713	12.882	43.595	0.256
232	330	2062.432	0.219	7.243	6.456	6.505	29.957	12.511	42.468	0.247
	102 -	• .								
Z =	100 (F	ermiyum)				_		_		
132	232	1727.788	17.854	5.929	5.828	5.883	5.980	5.404	11.384	0.119

Ek Tablo 7'nin devamı

N	Α	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\mathrm{fm})$	$r_p(\mathrm{fm})$	$\Gamma_{\mathcal{C}}(\mathrm{fm})$	$Q_n(\mathbf{b})$	$Q_{p^{(\mathrm{b})}}$	$Q_{T^{(b)}}$	β2
7 –	100 (E	ermiyum)								
L = 124	100 (I) 224	1745 102	17 215	5 067	5 8 5 1	5 006	8711	7 276	15 000	0 165
134	234	1745.105	17.313	5.907	5 880	5.900	0.714	0.623	13.990	0.105
130	230	1702.307	17.404	6.040	5 800	5.955	12.100	9.025	21.709	0.222 0.242
130	238	1705.068	16 300	6.0 4 0	5.099	5.955	13.033	10.525	24.130	0.242
140	2+0 2/2	1811617	15.500	6.000	5 020	5.900	14.755 15 7/1	11.155	25.800	0.250
142	242 244	1876 678	15.049	6 1 2 6	5.929	5 007	16 566	11.033	27.374	0.207
144	244	18/11181	14 553	6.15 <i>4</i>	5 058	6.011	17.410	12 320	20.340	0.275
140	240 248	1855 220	14.030	6 182	5 972	6.025	18 210	12.520	29.750	0.282
150	250	1868 160	12 0/0	6 208	5 08/	6.025	18 721	12.052	31 /0/	0.207
150	250	1880 232	12.940	6 233	5 995	6.048	10.721	12.773	31.793	0.291
154	252	1801 760	11 537	6 256	6.006	6.059	19.012	12.701	31.775	0.290
154	254	1002 864	11.005	6 280	6.017	6.070	19.074	12.030 12.457	31.712	0.280
158	258	1902.004	10.651	6 305	6.027	6.080	19.077	12.437	31 511	0.200
160	260	1973 669	10.051	6 3 2 9	6.037	6.000	19.171	12.540	31 279	0.277
162	262	1933 315	9 646	6 352	6.046	6 099	18 860	11 858	30.718	0.271
164	262	1942 215	8 900	6 373	6.055	6 107	18 328	11.000	29 747	0.203
166	266	1950.638	8.423	6.390	6.060	6.113	16.930	10.494	27.424	0.229
168	268	1958 904	8 266	6 406	6.065	6 1 1 7	15.412	9 488	24 900	0.225
170	270	1967.177	8.273	6.420	6.066	6.118	12.913	7.714	20.627	0.168
172	272	1977.076	9.899	6.438	6.073	6.125	-11.732	-6.493	-18.225	-0.146
174	274	1985.786	8.710	6.459	6.079	6.132	-10.670	-5.871	-16.541	-0.131
176	276	1994.222	8.436	6.480	6.086	6.138	-9.433	-5.179	-14.612	-0.115
178	278	2002.284	8.062	6.503	6.092	6.145	-8.278	-4.554	-12.832	-0.099
180	280	2009.555	7.271	6.526	6.097	6.149	-6.062	-3.428	-9.490	-0.073
182	282	2016.441	6.886	6.548	6.099	6.152	-0.282	-0.186	-0.468	-0.004
184	284	2023.643	7.202	6.575	6.106	6.159	0.013	-0.006	0.007	0.000
186	286	2028.574	4.931	6.605	6.118	6.170	0.025	-0.008	0.017	0.000
188	288	2031.780	3.206	6.634	6.136	6.188	0.005	-0.027	-0.022	0.000
190	290	2036.753	4.973	6.666	6.163	6.215	5.983	3.970	9.953	0.072
192	292	2042.489	5.736	6.703	6.186	6.238	10.662	6.191	16.853	0.120
194	294	2047.127	4.638	6.735	6.206	6.258	12.953	7.185	20.138	0.142
196	296	2051.728	4.601	6.766	6.228	6.280	15.552	8.323	23.875	0.167
198	298	2056.385	4.657	6.799	6.251	6.302	18.257	9.488	27.745	0.192
200	300	2060.812	4.427	6.830	6.272	6.323	20.605	10.454	31.059	0.212
202	302	2064.940	4.128	6.861	6.291	6.342	22.668	11.294	33.962	0.229
204	304	2068.775	3.835	6.890	6.310	6.360	24.397	12.000	36.397	0.243
206	306	2072.266	3.491	6.918	6.327	6.377	25.855	12.581	38.436	0.254
208	308	2075.437	3.171	6.947	6.342	6.393	27.259	13.126	40.385	0.264
210	310	2078.312	2.875	6.975	6.357	6.408	28.557	13.591	42.148	0.272
212	312	2080.897	2.585	7.003	6.371	6.421	29.650	13.923	43.573	0.279
214	314	2083.285	2.388	7.030	6.384	6.434	30.496	14.138	44.634	0.282
216	316	2085.524	2.239	7.055	6.398	6.448	31.141	14.280	45.421	0.284

Ek Tablo 7'nin devamı

N	A	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\mathrm{fm})$	$r_p(\text{fm})$	$\Gamma_{\mathcal{C}}(\mathrm{fm})$	$Q_n(\mathbf{b})$	$Q_{p^{(\mathrm{b})}}$	$Q_T(\mathbf{b})$	β_2
7	100 (E									
L = 10	100 (F 210		2 0 2 0	7 090	6 411	6 460	21 (02	14 200	16 072	0 205
218	220	2087.334	2.030	7.080	0.411	0.400 6 472	31.083 22.122	14.390	40.073	0.285
220	320 222	2089.198	1.044	7.107	0.422	0.4/2	52.125 22.414	14.430	40.379	0.285
222	322 224	2090.428	1.230	7.154	0.433	0.483	52.414 22.514	14.401	40.873	0.284
224	324 226	2091.447	1.019	7.100	0.445	0.492	52.514 22.202	14.390	40.910	0.282
220	320 229	2092.398	0.931	7.184	0.433	0.302	52.595 22.005	14.230	40.043	0.277
228	328 220	2093.298	0.900	7.207	0.403	0.312	52.005 21.401	13.998	40.003	0.271
230	330	2094.099	0.801	7.230	6.4/2	0.521	31.421	13.072	45.093	0.263
232	332	2094.669	0.570	1.253	6.481	6.531	30.812	13.356	44.168	0.255
234	334	2094.923	0.254	7.278	6.489	6.538	30.091	13.033	43.124	0.246
236	330	2095.001	0.078	7.302	6.495	6.544	29.072	12.626	41.698	0.236
238	338	2095.040	0.039	7.324	6.501	6.550	27.671	12.070	39.741	0.222
Z =	102 (N	obelyum)								
136	238	1763.614	18.260	6.010	5.902	5.956	11.647	9.401	21.048	0.211
138	240	1781.444	17.830	6.042	5.921	5.975	13.224	10.381	23.605	0.234
140	242	1798.500	17.056	6.072	5.937	5.991	14.509	11.161	25.670	0.251
142	244	1815.013	16.513	6.101	5.953	6.006	15.679	11.832	27.511	0.265
144	246	1831.034	16.021	6.129	5.967	6.021	16.597	12.287	28.884	0.274
146	248	1846.661	15.627	6.157	5.982	6.035	17.511	12.704	30.215	0.283
148	250	1861.748	15.087	6.184	5.995	6.049	18.296	13.023	31.319	0.290
150	252	1875.738	13.990	6.209	6.007	6.060	18.793	13.166	31.959	0.292
152	254	1888.912	13.174	6.234	6.018	6.071	19.120	13.203	32.323	0.291
154	256	1901.433	12.521	6.258	6.029	6.082	19.222	13.092	32.314	0.287
156	258	1913.405	11.972	6.282	6.040	6.093	19.254	12.936	32.190	0.282
158	260	1924.908	11.503	6.306	6.051	6.104	19.383	12.843	32.226	0.279
160	262	1935.873	10.965	6.330	6.061	6.114	19.398	12.697	32.095	0.275
162	264	1946.244	10.371	6.353	6.071	6.123	19.234	12.467	31.701	0.268
164	266	1955.679	9.435	6.376	6.080	6.133	18.939	12.168	31.107	0.259
166	268	1964.401	8.722	6.393	6.087	6.139	17.845	11.414	29.259	0.241
168	270	1973.082	8.681	6.408	6.090	6.142	16.121	10.262	26.383	0.215
170	272	1981.777	8.695	6.421	6.090	6.142	13.734	8.561	22.295	0.179
172	274	1991.390	9.613	6.437	6.095	6.147	-12.288	-7.071	-19.359	-0.154
174	276	2000.601	9.211	6.458	6.102	6.154	-11.326	-6.482	-17.808	-0.140
176	278	2009.501	8.900	6.478	6.108	6.160	-10.042	-5.743	-15.785	-0.122
178	280	2018.051	8.550	6.501	6.115	6.167	-8.997	-5.153	-14.150	-0.108
180	282	2025.685	7.634	6.523	6.120	6.172	-7.071	-4.151	-11.222	-0.085
182	284	2033.014	7.329	6.545	6.123	6.175	-4.004	-2.492	-6.496	-0.049
184	286	2040.240	7.226	6.570	6.128	6.180	-0.008	-0.021	-0.029	0.000
186	288	2045.727	5.487	6.599	6.140	6.192	0.024	-0.006	0.018	0.000
188	290	2049.647	3.920	6.627	6.158	6.210	0.231	0.155	0.386	0.003
190	292	2056.150	6.503	6.661	6.188	6.240	7.603	5.183	12.786	0.091
192	294	2061.985	5.835	6.697	6.210	6.261	11.251	6.855	18.106	0.128
					-	-		'		-

Ek Tablo 7'nin devamı

N	Α	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\mathrm{fm})$	$r_p(\text{fm})$	$\Gamma_{\mathcal{C}}(\mathrm{fm})$	$Q_{n}(\mathbf{b})$	$Q_{p^{(b)}}$	$Q_T(\mathbf{b})$	β2
7 –	102 (N	obelyum)								
194	296	2067 345	5 360	6 7 2 8	6 230	6 282	13 643	7 914	21 557	0.150
196	298	2007.545	5 330	6 760	6 2 5 3	6 304	16 306	9 091	25 397	0.130
198	300	2072.075	5 330	6 792	6 275	6 3 2 6	18 879	10 188	29.067	0.198
200	302	2083 074	5.069	6 8 2 4	6 295	6 346	21 024	11.052	32 076	0.170
200	304	2005.071	4 778	6 854	6 3 1 4	6 365	22.905	11.052	34 690	0.217
202	306	2007.052	4 4 5 3	6 882	6 3 3 2	6 382	22.903	12.357	36 781	0.232
206	308	2092.303	4 059	6 909	6 3 4 7	6 398	25 728	12.832	38 560	0.213
208	310	2100.059	3.695	6.937	6.363	6.413	27.032	13.319	40.351	0.261
210	312	2103.410	3,351	6.964	6.377	6.427	28.266	13.772	42.038	0.269
212	314	2106.482	3.072	6.991	6.391	6.441	29.349	14.141	43.490	0.275
214	316	2109.458	2.976	7.018	6.405	6.454	30.290	14.451	44.741	0.280
216	318	2112.362	2.904	7.043	6.418	6.468	31.060	14.690	45.750	0.283
218	320	2115.030	2.668	7.068	6.431	6.481	31.666	14.853	46.519	0.285
220	322	2117.217	2.187	7.094	6.443	6.492	32.123	14.943	47.066	0.286
222	324	2118.937	1.720	7.121	6.454	6.503	32.422	14.963	47.385	0.284
224	326	2120.459	1.522	7.146	6.464	6.513	32.572	14.926	47.498	0.282
226	328	2121.903	1.444	7.171	6.474	6.524	32.548	14.820	47.368	0.279
228	330	2123.228	1.325	7.194	6.485	6.534	32.262	14.603	46.865	0.273
230	332	2124.383	1.155	7.216	6.494	6.543	31.753	14.297	46.050	0.265
232	334	2125.246	0.863	7.240	6.503	6.552	31.222	14.001	45.223	0.258
234	336	2125.740	0.494	7.264	6.511	6.560	30.615	13.703	44.318	0.250
236	338	2126.032	0.292	7.288	6.518	6.567	29.721	13.321	43.042	0.241
238	340	2126.276	0.244	7.311	6.524	6.573	28.441	12.794	41.235	0.228
			<u>``</u>							
Z = 120	104 (R	utherfordiyu	im)	6.047	5.046	6 000	10.046	10 507	00.040	0.000
138	242	1/81./06	18.666	6.04/	5.946	6.000	13.246	10.597	23.843	0.233
140	244	1/99.621	17.915	6.076	5.961	6.015	14.350	11.239	25.589	0.246
142	246	1816.961	17.340	6.104	5.977	6.030	15.499	11.913	27.412	0.260
144	248	1855.859	16.898	0.133	5.992	6.045	10.383	12.531	29.114	0.273
140	250	1850.445	10.384	0.101	6.007	6.060	1/.0/5	13.120	30.795	0.285
148	252	1800.317	10.074	0.188	6.021	6.074	18.45/	13.400	31.923	0.291
150	254	1881.309	13.032	0.213	0.032 6.042	0.085	18.938	13.010	32.348	0.293
154	230	1893.848	14.279	0.237	0.043	0.093	19.277	13.039	32.930 22.042	0.293
154	238	1909.525	13.477	0.200	0.035	0.100	19.300	13.333	52.945 22.97	0.289
150	200	1922.178	12.833	0.284	0.004 6.075	0.117	19.423	13.402	32.827 22.850	0.284
130	202 261	1734.337	12.379	0.308	0.073	0.128	19.332	13.307	52.839 27 רדר 22	0.201
160	204 266	1940.391 1057 526	11.004	0.332 6.355	6.005	0.138	19.399	13.178	32.111	0.271
102 164	200 269	1937.330	11.143	0.333 6 378	6 105	0.140	19.493	12.979	32.472	0.271 0.264
104 166	208 270	1907.300	0 111	6 200	6 1 1 2	6 165	17.527	12.733	32.082 30.720	0.204
160	∠10 272	19/0.0/1	9.111 0.102	0.398	6 1 1 2	6 165	16.303	12.173 10.661	20.728 27 015	0.230
100	∠1∠ 271	1705.054	9.103	6 420	6 1 1 2	6 165	10.554	2 071	27.013	0.217 0.192
170	2/4	1995.101	9.307	0.420	0.115	0.103	14.023	0.9/1	22.990	0.103

Ek Tablo 7'nin devamı

N	A	$BE \; (\text{MeV})$	$S_{2n}(\text{MeV})$	$r_n(\mathrm{fm})$	$r_p(\mathrm{fm})$	$r_{\mathcal{C}}(\mathrm{fm})$	$Q_n(\mathbf{b})$	$Q_{p^{(\mathrm{b})}}$	$Q_T(\mathbf{b})$	β_2
Z = 1	104 (R	utherfordivu	ım)							
172	276	2004.475	9.314	6.437	6.116	6.168	12.221	7.733	19.954	0.157
174	278	2014.059	9.584	6.456	6.124	6.176	-11.701	-6.892	-18.593	-0.144
176	280	2023.466	9.407	6.476	6.130	6.182	-10.333	-6.080	-16.413	-0.126
178	282	2032.541	9.075	6.498	6.136	6.188	-9.343	-5.498	-14.841	-0.112
180	284	2040.651	8.110	6.521	6.142	6.194	-7.708	-4.620	-12.328	-0.092
182	286	2047.980	7.329	6.538	6.141	6.193	0.531	0.368	0.899	0.007
184	288	2055.969	7.989	6.565	6.148	6.200	-0.008	-0.019	-0.027	0.000
186	290	2062.029	6.060	6.593	6.161	6.213	-0.003	-0.026	-0.029	0.000
188	292	2066.722	4.693	6.621	6.180	6.231	1.103	0.860	1.963	0.014
190	294	2073.812	7.090	6.655	6.210	6.261	7.820	5.512	13.332	0.094
192	296	2079.978	6.166	6.690	6.231	6.283	11.327	7.186	18.513	0.129
194	298	2085.967	5.989	6.722	6.252	6.303	14.040	8.411	22.451	0.155
196	300	2091.929	5.962	6.755	6.276	6.327	16.955	9.741	26.696	0.182
198	302	2097.904	5.975	6.787	6.299	6.350	19.629	10.933	30.562	0.206
200	304	2103.656	5.752	6.819	6.320	6.370	21.824	11.874	33.698	0.225
202	306	2109.152	5.496	6.849	6.339	6.389	23.632	12.607	36.239	0.239
204	308	2114.302	5.150	6.877	6.356	6.406	24.971	13.097	38.068	0.249
206	310	2119.036	4.734	6.903	6.371	6.421	26.133	13.493	39.626	0.256
208	312	2123.375	4.339	6.930	6.385	6.435	27.261	13.870	41.131	0.263
210	314	2127.286	3.911	6.956	6.398	6.448	28.276	14.184	42.460	0.269
212	316	2130.883	3.597	6.982	6.411	6.461	29.191	14.448	43.639	0.273
214	318	2134.416	3.533	7.007	6.425	6.474	30.097	14.737	44.834	0.278
216	320	2137.912	3.496	7.032	6.438	6.488	30.942	15.029	45.971	0.282
218	322	2141.155	3.243	7.058	6.451	6.500	31.607	15.240	46.847	0.284
220	324	2143.874	2.719	7.083	6.463	6.512	32.078	15.353	47.431	0.285
222	326	2146.122	2.248	7.109	6.474	6.523	32.399	15.394	47.793	0.284
224	328	2148.169	2.047	7.134	6.485	6.534	32.577	15.372	47.949	0.282
226	330	2150.090	1.921	7.159	6.496	6.546	32.573	15.266	47.839	0.279
228	332	2151.836	1.746	7.182	6.506	6.555	32.293	15.038	47.331	0.273
230	334	2153.368	1.532	7.204	6.515	6.564	31.804	14.726	46.530	0.266
232	336	2154.574	1.206	7.227	6.524	6.573	31.303	14.425	45.728	0.258
234	338	2155.393	0.819	7.251	6.533	6.582	30.738	14.121	44.859	0.251
236	340	2155.978	0.585	7.275	6.540	6.589	29.920	13.739	43.659	0.242
Z =	106 (S	eaborgivum)							
142	248	1817 318	18.257	6.110	6.001	6.055	15 509	12,158	27 667	0.259
144	250	1835.075	17.757	6.137	6.015	6.068	16 402	12.620	29.022	0.268
146	252	1852.418	17.343	6.165	6.031	6.084	17,595	13.310	30,905	0.282
148	254	1869,280	16.862	6.192	6.045	6.098	18 469	13,755	32.224	0.202
150	256	1885.221	15.941	6.216	6.056	6.109	18,937	13,896	32,833	0.292
152	258	1900.485	15.264	6.239	6.066	6.119	19.254	13.930	33.184	0.291
154	260	1914 934	14.449	6.262	6.076	6.129	19.305	13.780	33.085	0.287
	_00		/ /	J. _ J _	0.070		17.000	101100	22.000	3,207

Ek Tablo 7'nin devamı

N	A	$BE \ (\text{MeV})$	$S_{2n}(\text{MeV})$	$r_n(\mathrm{fm})$	$r_p(\mathrm{fm})$	$\Gamma_{\mathcal{C}}(\mathrm{fm})$	$Q_{n}(\mathbf{b})$	$Q_{p^{(\mathrm{b})}}$	$Q_T(\mathbf{b})$	β ₂
7	106 (6	1								
L = 150	100 (5)	aborgiyum)	12 004	(295	(007	(140	10 220	12 (22	22.0(1	0.000
150	202	1928.738	13.804	0.283	0.08/	0.140	19.338	13.023	32.901	0.282
138	204	1942.072	13.334	0.309	0.098	0.131	19.489	13.347	33.030 22.027	0.279
160	266	1954.891	12.819	6.333	6.109	6.161	19.580	13.44/	33.027	0.275
162	268	1966.887	11.996	6.355	6.118	6.170	19.514	13.274	32.788	0.270
164	270	1977.582	10.695	6.379	6.128	6.180	19.3/3	13.060	32.433	0.264
166	272	1987.268	9.686	6.398	6.135	6.18/	18.597	12.456	31.053	0.249
168	274	1997.218	9.950	6.405	6.131	6.183	15.853	10.4/5	26.328	0.209
170	276	2007.158	9.940	6.420	6.134	6.186	14.186	9.267	23.453	0.184
172	278	2016.954	9.796	6.437	6.138	6.190	12.682	8.239	20.921	0.162
174	280	2026.517	9.563	6.455	6.142	6.194	11.089	7.178	18.267	0.140
176	282	2036.092	9.575	6.473	6.149	6.201	-10.277	-6.165	-16.442	-0.124
178	284	2045.710	9.618	6.495	6.156	6.208	-9.352	-5.601	-14.953	-0.112
180	286	2054.370	8.660	6.518	6.162	6.214	-7.950	-4.826	-12.776	-0.094
182	288	2062.282	7.912	6.534	6.161	6.213	0.249	0.173	0.422	0.003
184	290	2070.702	8.420	6.560	6.168	6.220	-0.037	-0.041	-0.078	-0.001
186	292	2077.347	6.645	6.587	6.180	6.232	-0.051	-0.064	-0.115	-0.001
188	294	2082.730	5.383	6.615	6.199	6.251	0.972	0.757	1.729	0.012
190	296	2090.167	7.437	6.649	6.229	6.281	7.641	5.518	13.159	0.092
192	298	2096.644	6.477	6.682	6.251	6.302	10.775	7.149	17.924	0.124
194	300	2103.139	6.495	6.716	6.272	6.323	14.176	8.720	22.896	0.156
196	302	2109.734	6.595	6.752	6.301	6.352	18.260	10.695	28.955	0.195
198	304	2116.472	6.738	6.789	6.331	6.381	21.771	12.397	34.168	0.228
200	306	2122.964	6.492	6.820	6.350	6.400	23.579	13.197	36.776	0.243
202	308	2129.163	6.199	6.848	6.366	6.416	24.839	13.688	38.527	0.252
204	310	2134.991	5.828	6.874	6.381	6.431	25.851	14.034	39.885	0.258
206	312	2140.402	5.411	6.899	6.395	6.445	26.842	14.356	41.198	0.263
208	314	2145.380	4.978	6.925	6.408	6.458	27.799	14.647	42.446	0.269
210	316	2149.850	4.470	6.950	6.421	6.470	28.601	14.836	43.437	0.272
212	318	2153.977	4.127	6.975	6.433	6.482	29.312	14.964	44.276	0.274
214	320	2158.036	4.059	6.999	6.445	6.495	30.042	15.114	45.156	0.277
216	322	2162.023	3.987	7.023	6.458	6.507	30.777	15.300	46.077	0.280
218	324	2165.720	3.697	7.048	6.470	6.519	31.379	15.453	46.832	0.281
220	326	2168.896	3.176	7.073	6.482	6.531	31.805	15.533	47.338	0.281
222	328	2171.629	2.733	7.098	6.493	6.542	32.081	15.548	47.629	0.280
224	330	2174.146	2.517	7.122	6.504	6.553	32.212	15.497	47.709	0.278
226	332	2176.522	2.376	7.146	6.514	6.563	32.130	15.343	47.473	0.274
228	334	2178.745	2.223	7.168	6.524	6.573	31.788	15.069	46.857	0.267
230	336	2180.749	2.004	7.190	6.533	6.582	31.323	14.754	46.077	0.260
232	338	2182.417	1.668	7.213	6.543	6.591	30.849	14.457	45.306	0.253
234	340	2183.690	1.273	7.236	6.552	6.600	30.297	19.264	49.561	0.246
236	342	2184.640	0.950	7.260	6.559	6.608	29.513	13.753	43.266	0.237
238	344	2185.418	0.778	7.282	6.564	6.613	28.201	13.141	41.342	0.225

Ek Tablo 7'nin devamı

N	Α	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\text{fm})$	$r_p(\text{fm})$	$r_{\mathcal{C}}(\mathrm{fm})$	$Q_{n}(\mathbf{b})$	$Q_{p^{(b)}}$	$Q_T(\mathbf{b})$	β2
7 –	108 (H	assivum)								
144	252	1834 684	18 699	6 1 4 5	6 043	6 096	16 717	13 158	29 875	0 273
146	254	1852 786	18 102	6 171	6.057	6 109	17 585	13.130	31 158	0.275
148	256	1870 380	17 594	6 197	6.069	6 1 2 2	18 351	13.972	32 273	0.201
150	258	1887 027	16 647	6 2 1 9	6.079	6 161	18 721	13.967	32.273	0.287
152	260	1903 077	16.050	6 241	6.088	6 140	18 912	13.888	32.000	0.284
154	262	1918 434	15 357	6 262	6.096	6 1 4 9	18 794	13 592	32.386	0.201
156	264	1933 089	14 655	6 284	6 106	6 1 5 9	18.812	13 416	32.228	0.272
158	266	1947.209	14.120	6.308	6.118	6.170	19.030	13.399	32.429	0.270
160	268	1960.885	13.676	6.332	6.128	6.180	19.193	13.360	32,553	0.268
162	270	1973.796	12.911	6.354	6.137	6.189	19.147	13.211	32.358	0.263
164	272	1985.343	11.547	6.377	6.146	6.198	18.889	12.920	31.809	0.256
166	274	1996.302	10.959	6.386	6.145	6.197	16.671	11.249	27.920	0.222
168	276	2007.132	10.830	6.402	6.149	6.201	15.407	10.310	25.717	0.202
170	278	2017.700	10.568	6.420	6.154	6.206	14.218	9.457	23.675	0.183
172	280	2028.043	10.343	6.439	6.159	6.210	13.019	8.630	21.649	0.166
174	282	2038.157	10.114	6.456	6.163	6.214	11.544	7.619	19.163	0.145
176	284	2048.038	9.881	6.471	6.166	6.218	9.353	6.157	15.510	0.116
178	286	2057.646	9.608	6.489	6.172	6.224	7.395	4.912	12.307	0.091
180	288	2066.918	9.272	6.513	6.180	6.232	-7.491	-4.579	-12.070	-0.088
182	290	2075.888	8.970	6.534	6.182	6.234	-4.515	-2.856	-7.371	-0.053
184	292	2084.464	8.576	6.556	6.186	6.238	-0.055	-0.052	-0.107	0.000
186	294	2091.701	7.237	6.583	6.199	6.250	-0.060	-0.067	-0.127	0.000
188	296	2097.736	6.035	6.610	6.218	6.269	0.221	0.157	0.378	0.003
190	298	2105.339	7.603	6.632	6.239	6.290	7.010	5.097	12.107	0.084
192	300	2112.162	6.823	6.663	6.261	6.312	9.655	6.640	16.295	0.111
194	302	2118.949	6.787	6.701	6.285	6.335	14.285	8.915	23.200	0.157
196	304	2126.952	8.003	6.772	6.360	6.410	26.687	15.073	41.760	0.279
198	306	2134.139	7.187	6.793	6.368	6.418	26.263	14.855	41.118	0.272
200	308	2141.124	6.985	6.816	6.377	6.427	26.221	14.803	41.024	0.268
202	310	2147.879	6.755	6.840	6.389	6.439	26.513	14.879	41.392	0.267
204	312	2154.283	6.404	6.872	6.406	6.456	26.918	14.997	41.915	0.268
206	314	2160.354	6.071	6.897	6.419	6.469	27.661	15.238	42.899	0.271
208	316	2165.956	5.602	6.922	6.432	6.481	28.405	15.450	43.855	0.274
210	318	2170.992	5.036	6.946	6.444	6.493	29.062	15.583	44.645	0.277
212	320	2175.663	4.671	6.970	6.456	6.506	29.678	15.664	45.342	0.278
214	322	2180.236	4.573	6.994	6.469	6.518	30.313	15.743	46.056	0.279
216	324	2184.684	4.448	7.018	6.480	6.530	30.918	15.814	46.732	0.281
218	326	2188.803	4.119	7.041	6.491	6.540	31.366	15.829	47.195	0.280
220	328	2192.441	3.638	7.065	6.502	6.551	31.625	15.771	47.396	0.279
222	330	2195.661	3.220	7.088	6.513	6.562	31.719	15.644	47.363	0.276
224	332	2198.613	2.952	7.111	6.523	6.571	31.627	15.435	47.062	0.271
226	334	2201.438	2.825	7.133	6.532	6.581	31.331	15.135	46.466	0.265

Ek Tablo 7'nin devamı

N	Α	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\mathrm{fm})$	$r_p(\text{fm})$	$r_{\mathcal{C}}(\mathrm{fm})$	$Q_{n}(\mathbf{b})$	$Q_{p^{(\mathrm{b})}}$	$Q_T(\mathbf{b})$	β_2
7 =	108 (H	assivum)								
2 - 228	336	2204 150	2 712	7 155	6 541	6 590	30 935	14 808	45 743	0 258
220	338	2204.150	2.712	7.176	6 5 5 0	6 598	30,510	14.000	45 010	0.250
230	340	2200.031	2.001	7 188	6 6 5 6	6 604	30 124	14 232	44 356	0.232
234	342	2200.721	1 735	7.100	6 564	6.613	29 553	13 899	43 452	0.210
236	344	2210.132	1.755	7.210	6 575	6 6 2 3	29.555	13.451	42 102	0.229
238	346	2213.149	1.168	7.265	6.580	6.628	27.250	12,791	40.041	0.215
240	348	2214.461	1.312	7.279	6.584	6.633	24.650	11.542	36,192	0.193
242	350	2215.900	1.439	7.296	6.590	6.638	22.432	10.522	32.954	0.174
244	352	2217.361	1.461	7.315	6.596	6.644	20.371	9.551	29.922	0.156
246	354	2218.820	1.459	7.334	6.602	6.651	18.243	8.514	26.757	0.139
248	356	2220.070	1.250	7.355	6.608	6.656	16.001	7.525	23.526	0.121
250	358	2221.169	1.099	7.376	6.613	6.661	13.272	6.422	19.694	0.100
Z = 1	110 (D	armstadtiyu	m)							
148	258	1870.072	18.291	6.206	6.098	6.151	18.651	14.502	33.153	0.291
150	260	1887.385	17.313	6.227	6.106	6.159	18.864	14.404	33.268	0.288
152	262	1904.085	16.700	6.246	6.112	6.165	18.765	14.046	32.811	0.281
154	264	1920.267	16.182	6.263	6.117	6.170	18.348	13.458	31.806	0.269
156	266	1935.709	15.442	6.284	6.125	6.177	18.220	13.127	31.347	0.261
158	268	1950.556	14.847	6.307	6.135	6.187	18.316	12.993	31.309	0.258
160	270	1964.992	14.436	6.330	6.144	6.196	18.431	12.910	31.341	0.255
162	272	1978.785	13.793	6.351	6.153	6.205	18.359	12.737	31.096	0.250
164	274	1991.388	12.603	6.370	6.159	6.210	17.613	12.093	29.706	0.236
166	276	2003.629	12.241	6.382	6.161	6.213	15.981	10.881	26.862	0.211
168	278	2015.374	11.745	6.400	6.167	6.219	15.013	10.163	25.176	0.195
170	280	2026.749	11.375	6.420	6.174	6.225	14.096	9.496	23.592	0.181
172	282	2037.776	11.027	6.439	6.179	6.231	13.064	8.776	21.840	0.165
174	284	2048.505	10.729	6.457	6.184	6.235	11.753	7.869	19.622	0.147
176	286	2058.872	10.367	6.471	6.187	6.238	9.698	6.473	16.171	0.120
178	288	2068.928	10.056	6.489	6.192	6.243	7.665	5.156	12.821	0.094
180	290	2078.416	9.488	6.509	6.196	6.247	5.537	3.809	9.346	0.068
182	292	2088.030	9.614	6.530	6.200	6.251	-3.866	-2.424	-6.290	-0.045
184	294	2097.243	9.213	6.552	6.204	6.256	-0.061	-0.053	-0.114	0.000
186	296	2105.076	7.833	6.579	6.217	6.268	-0.027	-0.036	-0.063	0.000
188	298	2111.783	6.707	6.605	6.235	6.287	0.013	-0.006	0.007	0.000
190	300	2119.320	7.537	6.635	6.262	6.313	5.837	4.280	10.117	0.069
192	302	2126.682	7.362	6.664	6.284	6.335	8.373	5.922	14.295	0.096
194	304	2133.629	6.947	6.696	6.304	6.354	11.265	7.512	18.777	0.125
196	306	2140.338	6.709	6.818	6.434	6.483	-29.515	-17.034	-46.549	-0.307
198	308	2147.236	6.898	6.845	6.447	6.496	-30.217	-17.183	-47.400	-0.310
200	310	2158.021	10.785	6.836	6.424	6.475	30.181	16.910	47.091	0.304
202	312	2165.161	7.140	6.853	6.428	6.478	28.999	16.352	45.351	0.289

Ek Tablo 7'nin devamı

N	A	BE (MeV)	$S_{2n}(\text{MeV})$	$r_n(\mathrm{fm})$	$r_p(\mathrm{fm})$	$r_{c}(\mathrm{fm})$	$Q_n(\mathbf{b})$	$Q_{p^{(\mathrm{b})}}$	$Q_{T^{(b)}}$	β_2
Z = 1	110 (D	armstadtiyu	m)							
204	314	2172.104	6.943	6.873	6.436	6.485	28.598	16.155	44.753	0.283
206	316	2178.749	6.645	6.896	6.445	6.495	28.646	16.126	44.772	0.280
208	318	2184.932	6.183	6.919	6.456	6.505	29.007	16.193	45.200	0.280
210	320	2190.579	5.647	6.942	6.468	6.517	29.479	16.259	45.738	0.280
212	322	2195.894	5.315	6.966	6.480	6.529	24.923	16.324	41.247	0.281
214	324	2201.052	5.158	6.990	6.493	6.542	30.649	16.409	47.058	0.283
216	326	2205.991	4.939	7.014	6.505	6.554	31.254	16.479	47.733	0.284
218	328	2210.554	4.563	7.037	6.516	6.565	31.678	16.472	48.150	0.283
220	330	2214.656	4.102	7.060	6.526	6.575	31.893	16.372	48.265	0.281
222	332	2218.305	3.649	7.082	6.536	6.585	31.889	16.164	48.053	0.277
224	334	2221.618	3.313	7.103	6.545	6.594	31.596	15.809	47.405	0.271
226	336	2224.819	3.201	7.124	6.553	6.601	31.080	15.345	46.425	0.262
228	338	2227.968	3.149	7.145	6.560	6.609	30.560	14.906	45.466	0.254
230	340	2230.980	3.012	7.165	6.568	6.616	30.026	14.493	44.519	0.247
232	342	2233.764	2.784	7.186	6.576	6.624	29.480	14.109	43.589	0.239
234	344	2236.035	2.271	7.208	6.584	6.632	28.885	13.742	42.627	0.232
236	346	2237.815	1.780	7.230	6.591	6.639	28.018	13.302	41.320	0.222
238	348	2239.430	1.615	7.251	6.596	6.645	26.610	12.636	39.246	0.209
240	350	2241.141	1.711	7.267	6.602	6.650	24.423	11.587	36.010	0.190
242	352	2242.989	1.848	7.283	6.607	6.656	22.259	10.545	32.804	0.172
244	354	2244.927	1.938	7.301	6.614	6.662	20.176	9.509	29.685	0.154
246	356	2246.803	1.876	7.321	6.620	6.668	18.240	8.562	26.802	0.138
248	358	2248.314	1.511	7.344	6.626	6.674	16.331	7.748	24.079	0.122
250	360	2249.538	1.224	7.365	6.630	6.678	13.713	6.693	20.406	0.103
252	362	2250.804	1.266	7.372	6.636	6.684	1.903	0.762	2.665	0.013
254	364	2253.195	2.391	7.399	6.639	6.687	0.229	0.061	0.290	0.001
256	366	2255,340	2.145	7.425	6.642	6.690	-0.018	-0.072	-0.090	0.000
-00	200		2.1.10		5.0 · Z	5.020	0.010	0.072	0.070	5.000

ÖZGEÇMİŞ

1979 yılında Konya'da doğdu. Orta öğrenimini Konya Karatay Lisesi'nde tamamladı. 1998 yılında Ankara Üniversitesi Fen Fakültesi Fizik Bölümü'nde öğrenim görmeye hak kazandı ve 2002 yılında mezun oldu. Aynı yıl Selçuk Üniversitesi Fen Bilimleri Enstitüsü'nde Ortaöğretim Fizik Öğretmenliği Tezsiz Yüksek Lisans öğrenimine başladı ve 2003 yılında tamamladı. 2003-2006 yılları arasında Özel Konya Olimpiyat Eğitim Kurumları'nda Fizik Öğretmenliği yaptı. 2006 yılında Kamu Personeli Seçme Sınavı ile Karadeniz Teknik Üniversitesi, Tıp Fakültesine Sağlık Fizikçisi olarak atandı. Nükleer Tıp biriminde çalışan Tuncay BAYRAM, aynı yıl İstanbul Üniversitesi, Cerrahpaşa Tıp Fakültesi, Nükleer Tıp Bölümü'nde üç ay süreli olarak uygulamalı Nükleer Tıp Fiziği eğitimi aldı. 2007 yılında Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü Fizik Doktora Programına başladı ve TÜBİTAK 2211 numaralı Yurt İçi Doktora Burs Programı'ndan burs almaya hak kazandı. 2008 yılında Sinop Üniversitesi Fen-Edebiyat Fakültesi Fizik Bölümü'ne Araştırma Görevlisi olarak atandı. 2009 yılında Yüksek Öğretim Kurumunun 35. Maddesi kapsamında Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü'ne Araştırma Görevlisi olarak görevlendirildi. 2011 yılında Yüksek Öğretim Kurumu tarafından bir yıl süreli olarak Yurtdışı Doktora Tezi Araştırma Bursu kapsamında Aristotle University of Thessaloniki, Nükleer ve Parçacık Fiziği Bölümü'ne görevlendirildi.

Doktora öğrenimi süresince nükleer ve parçacık fiziği konulu birçok uluslararası kongre ve yaz okuluna katılan Tuncay BAYRAM bu doktara tez çalışması kapsamında 1 tanesi SCI kapsamındaki dergide ve 4 tanesi uluslararası hakemli dergilerde olmak üzere toplam 5 makalesi ve uluslararası konferanslarda 4 sözlü sunumu vardır. Ayrıca tez çalışmasının dışında uluslararası hakemli dergilerde 4 makalesi, uluslararası kongrelerde sözlü sunulmuş 5 bildirisi ve 3 poster sunumu vardır.

Evli ve bir kız çocuğu babası olan Tuncay BAYRAM halen K.T.Ü. Fen Fakültesi Fizik Bölümünde görevine devam etmekte olup iyi derecede İngilizce bilmektedir.