KARADENİZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

FİZİK ANABİLİM DALI

RİZE İLİ SAHİL KUMLARINDA VE BAZI KAYAÇLARDA DOĞAL GAMA RADYOAKTİVİTE SEVİYELERİNİN BELİRLENMESİ

DOKTORA TEZİ

Recep KESER

TEMMUZ 2009 TRABZON

KARADENİZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

FİZİK ANABİLİM DALI

RİZE İLİ SAHİL KUMLARINDA VE BAZI KAYAÇLARDA DOĞAL GAMA RADYOAKTİVİTE SEVİYELERİNİN BELİRLENMESİ

Recep KESER

Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsünce "Doktor (Fizik)" Unvanı Verilmesi İçin Kabul Edilen Tezdir.

Tezin Enstitüye Verildiği Tarih: 04.06.2009Tezin Savunma Tarihi: 09.07.2009

Tez Danışmanı : Prof. Dr. Nazmi Turan OKUMUŞOĞL	ŞOĞLU	zmi Turan OKUMUŞOČ)r. Nazmi	: Prof.	Tez Danışmanı
---	-------	--------------------	-----------	---------	---------------

2	
Jüri Üyesi	: Prof. Dr. Belgin KÜÇÜKÖMEROĞLU
Jüri Üyesi	: Prof. Dr. Selami KARSLIOĞLU
Jüri Üyesi	: Prof. Dr. Hasan GÜMÜŞ
Jüri Üyesi	: Doç. Dr. Ahmet Hakan YILMAZ

Enstitü Müdürü: Prof. Dr. Salih TERZİOĞLU

Trabzon 2009

ÖNSÖZ

Bu çalışma, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalı'nda 'Doktora Tezi' olarak gerçekleştirildi.

Bu çalışmada, Rize ili sahil boyunca deniz kumlarındaki ve yukarı bölgelerden bazı kayaç ve kum örneklerinde tanecik büyüklüğü ve mineralojik ayrıştırma yöntemleri kullanılarak doğal gama radyasyon değerleri, gama spektroskopi sistemi kullanılarak incelendi. Deneysel çalışmalar Rize Üniversitesi Fen-Edebiyat Fakültesi Fizik Bölümü Nükleer Fizik Araştırma Laboratuarı'nda ve Karadeniz Teknik Üniversitesi Maden Mühendisliği Cevher ve Kömür İnceleme Laboratuarı'nda yapıldı.

Başta, Doktora öğrenciliğimin her aşamasında bilgi ve tecrübeleriyle bana yol gösteren değerli hocam Prof. Dr. Nazmi Turan OKUMUŞOĞLU' na en içten dileklerimle teşekkür ederim. Doktora Tez çalışmalarımda deneysel ve teorik bilgi yönünden yararlandığım Prof. Dr. Belgin KÜÇÜKÖMEROĞLU'na, Yrd. Doç. Dr. İbrahim ALP'e, Yrd. Doç. Dr. Ali VAN'a ve Dr. Gürsel KARAHAN'a teşekkürü bir borç bilirim. Ayrıca maddi ve manevi desteklerinden dolayı Rize Üniversitesi Fen-Edebiyat Fakültesi Fizik Bölümü öğretim üyeleri ve elemanlarına teşekkür ederim. Bu tez çalışması, 107T910 no'lu TÜBİTAK projesi kapsamında desteklenmiştir. Bu desteğinden ötürü TÜBİTAK'a da teşekkürlerimi sunarım.

Bu zamana kadar her türlü desteğini esirgemeyen anneme, babama, kardeşlerime ve sevgili eşime büyük bir sevgiyle şükranlarımı sunuyorum.

Recep KESER Trabzon 2009

İÇİNDEKİLER

	<u>Sayfa No</u>
ÖNSÖZ	
İÇİNDE	KİLER III
ÖZET .	
SUMMA	ARYVII
ŞEKİLL	ER DİZİNİ VIII
TABLO	LAR DİZİNİXII
SEMBO	LLER DİZİNİ XV
1.	GENEL BİLGİLER1
1.1.	Giriş1
1.2.	Radyoaktivite Hakkında Genel Bilgi4
1.2.1.	Radyoaktif Bozunma
1.2.2.	Ardışık Bozunma7
1.2.3.	Radyoaktif Denge
1.2.3.1.	Geçici Denge9
1.2.3.2.	Sürekli Denge9
1.2.4.	Radyoaktivite ve Radyasyon Ölçüm Birimleri10
1.3.	Radyonüklidler
1.3.1.	Yerkabuğunda Başlangıçta Mevcut Olan Radyonüklidler11
1.3.1.1.	Uranyum Serisi
1.3.1.2.	Toryum Serisi
1.3.1.3.	Potasyum-40
1.3.2.	Kozmik Işınların Etkileşimi Sonucu Oluşan Radyonüklidler
1.3.3.	Yapay Radyonüklidler
1.4.	Gama Işınlarının Maddeyle Etkileşmesi ve Dedeksiyonu15
1.4.1.	Fotoelektrik Soğurma16
1.4.2.	Compton Saçılması
1.4.3.	Çift Oluşumu 17
1.5.	Gama Işını Detektörleri 17
1.5.1.	Yarıiletken Detektörler

150	Sintilaavan Dadaktörlari	10
1.5.2.		. 18
1.5.3.	Gama Işınlarının Enerji Ölçümleri	. 20
1.5.4.	Dedektör Seçimi	. 22
1.6.	Çalışma Bölgesinin Ozellikleri	. 24
1.6.1.	Genel Jeoloji	. 25
1.6.1.1.	Hamurkesen Formasyonu (JLh)	. 25
1.6.1.2.	Berdiga Formasyonu (JKr)	. 26
1.6.1.3.	Çatak Formasyonu (Krü-1)	. 26
1.6.1.4.	Kızılkaya Formasyonu (Krü-2)	. 26
1.6.1.5.	Çağlayan Formasyonu (Krü-3)	. 27
1.6.1.6.	Çayırbağ Formasyonu (Krü-4b)	. 27
1.6.1.7.	Bakırköy Formasyonu (Krü-5a)	. 27
1.6.1.8.	Kaçkar Granitoyidleri I,II (γ_2, γ_3)	. 27
1.6.1.9.	Kabaköy Formasyonu (Ev)	. 28
1.6.1.10.	Pazar Formasyonu (Mp)	. 28
1.6.1.11.	Hamidiye Formasyonu (Pl)	. 28
1.6.1.12.	Çağrankaya Formasyonu (Ma, Obs)	. 28
2.	YAPILAN ÇALIŞMALAR	. 29
2.1.	Giriş	. 29
2.2.	Arazi Çalışmaları	. 29
2.2.1.	Sahil Kum Örneklemelerinin Yapılması, Örneklerin Toplanması	. 29
2.2.2.	İkizdere ve Çayeli-Kaptanpaşa Vadileri Kum ve Kayaç Örneklemeleri	. 30
2.3.	Laboratuar Çalışmaları	. 31
2.3.1.	Örneklerin Hazırlanması	. 31
2.3.1.1.	Kum Örneklerinde Mineral Ayrıştırma İşlemi	. 31
2.3.1.2.	Kum Örneklerinde Tane Boyutu Belirleme İşlemi	. 35
2.3.1.3.	Kayaç Örneklerinin Hazırlanması	. 35
2.3.2.	Mikroskobik Çalışma	. 37
2.3.3.	X-ışını kırınımı Ölçümleri	. 37
2.3.4.	Elemental Analiz Ölçümleri	. 38
2.3.5.	Toplam Alfa-Toplam Beta Radyoaktivite Ölçümleri	. 39
2.3.6.	Gama Spektrometrik Ölçümler	. 40
	IV	

2.3.6.1.	Enerji Kalibrasyonu	. 41
2.3.6.2.	Verim Kalibrasyonu	. 44
2.3.6.3.	Minimum Dedeksiyon Limiti	. 46
2.3.6.4.	Aktivite Konsantrasyonu	. 46
2.4.	Hesaplanan Radyasyon Parametreleri	. 47
2.4.1.	Radyum Eşdeğer Aktivitesi	. 47
2.4.2.	Soğurulan Gama Doz H1z1 (D)	. 48
2.4.3.	Yıllık Etkin Doz	. 48
2.4.4.	Dış Tehlike İndeksi (H _{ex})	. 48
3.	BULGULAR VE TARTIŞMA	. 49
3.1.	Sahil Boyu Kum Örneklerinde Farklı Mineral Gruplarındaki Gama Radyoaktivite Değerleri	. 49
3.2.	Sahil Boyu Kum Örneklerinde Tane Boyutuna Göre Gama Radyoaktivite Değerleri	. 67
3.3.	Yukarı Bölge Kum Örneklerinde Tane Boyutuna Göre Doğal Gama Radyoaktivite Değerleri	. 74
3.4.	Kayaç Örneklerinde Doğal Gama Radyoaktivite Değerleri	. 86
3.5.	Toplam Alfa - Toplam Beta Radyoaktivite Değerleri	. 89
3.6.	ICP-MS Ölçüm Değerleri	. 92
3.7.	X-Işını Kırınım Desenleri	. 98
3.8.	Mikroskobik Bulgular	113
4.	SONUÇLAR	115
5.	ÖNERİLER	121
6.	KAYNAKLAR	122
7.	EKLER	126
ÖZGEÇ	MİŞ	

ÖZET

Bu çalışmada esas olarak Rize ili sahil kumlarında ve bazı kayaçlarda doğal gama radyoaktivite seviyeleri belirlendi. Bunun yanında ayrıca kumların tane büyüklüğü, ağır ve hafif kum mineralleri gibi fiziksel parametrelerle radyoaktivitenin ilişkisi araştırıldı, sahilin radyometrik haritası çıkarıldı ve Rize sahili boyunca ağır kum minerallerinin varlığı ve özellikleri incelendi. Kum mineralleri x-ışını kırınımı metodu kullanılarak teşhis edildi. Minerallerin oksit ve nadir toprak element içerikleri ICP-MS kullanılarak analiz edildi. ²³⁸U ve ²³²Th radyoaktivite değerlerinin ağır minerallerin elemental analiz değerleri ile arasında düzgün bir ilişki, hafif minerallerin elemental analiz değerleri ile zayıf bir ilişki bulundu. ⁴⁰K radyoaktivite değerleri için ise bunun tersi gözlendi. Ayrıca jeolojik haritanın incelenmesi sonucu ilginç bulunan İkizdere-Güneyce ve Çayeli-Kaptanpaşa bölgesindeki kum ve kayaç örneklerinin de doğal radyoaktivite düzeyleri belirlendi.

Manyetik, manyetik olmayan ve hafif kum minerallerinde ortalama aktivite konsantrasyonları sırasıyla, ²³²Th için 59.88±5.72, 79.54±7.16 ve 21.13±2.03 Bq.kg⁻¹, ²³⁸U için 35.93±3.41, 51.86±4.76 ve 18.45±1.76 Bq.kg⁻¹, ⁴⁰K için 251.32±12.64, 196.70±9.25 ve 515.63±28.50 Bq.kg⁻¹ olarak belirlendi. Çeşitli kum tane büyüklüklerinde ölçülen radyoaktivite değerleri değiş göstermektedir. ⁴⁰K hariç en yüksek aktivitenin en ince tane boyutunda olduğu bulundu. Kayaçlar için, ²³²Th, ²³⁸U ve ⁴⁰K ortalama radyoaktivite değerleri sırasıyla; 38.16±4.04, 21.68±2.72 ve 464.60±46.14 Bq/kg olarak belirlendi. Kayaçlar ve kum örnekleri için ortalama soğurulan doz değerleri sırasıyla 27.05 and 29.95 nGy.h⁻¹ olarak hesaplandı. Bu değerler nüfusa göre ağırlıklı dünya ortalama değeri olan 60 nGy.h⁻¹ değerinin yaklaşık yarısıdır. Bölge için yıllık etkin doz hızı hesaplandı. Bu değerleri 20-50 µSv.y⁻¹ aralığında değiştiği ve ortalamanın 30 µSv.y⁻¹ olduğu bulundu. Bu sonuç, tavsiye edilen 5000 µSv.y⁻¹ değerinden çok düşüktür. Radyum eşdeğer aktivitenin ortalama değeri 111.36 Bq.kg⁻¹ olarak hesaplandı ve bu değer de tavsiye edilen 370 Bq.kg⁻¹ limit değerin dörtte biri düzeyindedir.

Anahtar Kelimeler: Doğal Gama Radyoaktivite, Kum, Mineral, Yıllık Etkin Doz

SUMMARY

Determination of Natural Gamma Radioactivity in Sands along the Coastal Region of Rize and Some Rocks

In this study natural gamma radioactivity levels was primarily determined for sands from the coastal region of Rize and for some rocks. Besides, the correlation of the radioactivity with physical parameters such as grain size and heavy mineral and light mineral fractions was investigated and radiometric mapping of the coast was obtained and the asset of heavy mineral sands was investigated. Sand minerals were identified using Xray diffraction methods. Major oxides and rare-earth element contents of the minerals were analyzed using ICP-MS. It was found that between radioactivity of ²³⁸U and ²³²Th and heavy mineral elements are high correlation, while light mineral elements are weak correlation. For radioactivity of ⁴⁰K reverse found. Furthermore natural radioactivity was also determined in sand and rocks on the geologic map interested in İkizdere-Günevce and Cayeli-Kaptanpasa regions. The average activity concentrations of magnetic, nonmagnetic and light fraction mineral sand samples were respectively 59.88±5.72, 79.54±7.16 and 21.13±2.03 Bq.kg⁻¹ for ²³²Th, 35.93±3.41, 51.86±4.76 and 18.45±1.76 Bq.kg⁻¹ for ²³⁸U, 251.32 ± 12.64 , 196.70 \pm 9.25 and 515.63 \pm 28.50 Bg.kg⁻¹ for ⁴⁰K. The measured activity concentrations in various grain size fractions for sand varied significantly. It was found that higher activity was associated with the finest (<250 µm) at all except in the case of 40 K. For rocks, the average activity concentrations of 232 Th, 238 U and 40 K are 38.16±4.04, 21.68±2.72 and 464.60±46.14 Bq/kg, respectively. The average absorbed dose rate for rock and samples were calculated to be 27.05 and 29.95 nGy.h⁻¹, respectively. These values are by a factor of about two below the corresponding population-weighted worldaveraged value of 60 nGy h^{-1} . The calculated external annual effective dose rate of the region ranged from 20 to 50 μ Sv.y⁻¹, with an average value of 30 μ Sv.y⁻¹. This result is much lower than the recommended limit of 5000 μ Sv.y⁻¹. The average value of the radium equivalent activity was calculated to be 111.36 Bq.kg⁻¹ and it is by a factor of four below the recommended limit of 370 Bq.kg⁻¹.

Key Words: Natural Gamma Radioactivity, Sand, Rock, Mineral, Annual Effective Dose

ŞEKİLLER DİZİNİ

Şekil 1.	Çevresel radyasyon kaynaklarından alınan doz oranları	1
Şekil 2.	Çekirdeklere ait kararlılık eğrisi	6
Şekil 3.	Radyoaktif bozunma eğrisi	7
Şekil 4.	Ardışık bozunma grafiği	8
Şekil 5.	Uranyum (4n+2) serisi 1	3
Şekil 6.	Toryum (4n) serisi 1	4
Şekil 7.	Yarıiletken dedektör şeması 1	8
Şekil 8.	Sintilasyon dedektör şeması 2	0
Şekil 9.	Dedektörün tek enerjili gama ışınları için verdiği tipik cevap 2	1
Şekil 10.	(a) Detektör ve çevresindeki materyallere çarpan gama ışınları, (b) düşük enerji bölgesinde oluşan pikler	2
Şekil 11.	Dairesel bir detektör için katı açı 2	3
Şekil 12.	⁶⁰ Co'ın 1172 ve 1332 keV gama enerjilerinde NaI ve HPGe detektörlerinde elde edilen spektrum	4
Şekil 13.	Çalışma bölgesi	5
Şekil 14.	Mineral ayrıştırma için akış diyagramı 3	3
Şekil 15.	Gravimetrik ayırma işleminde kullanılan deney düzeneği	4
Şekil 16.	Manyetik (sağda) ve manyetik olmayan (solda) ağır mineral grupları 3	4
Şekil 17.	Kayaç örnekleri hazırlama akış diyagramı 3	6
Şekil 18.	X-ışını difraktometresi (Rigaku D/Max-IIIC)	8
Şekil 19.	ICP-MS (Perkin Elmer Elan 6000)	9
Şekil 20.	Alfa-Beta sayım cihazının blok diyagramı	9
Şekil 21.	Gama Spektrometre sisteminin şematik gösterimi 4	1

Şekil 22.	¹⁵² Eu'nin bozunma şeması
Şekil 23.	Enerji kalibrasyonu için ¹⁵² Eu standart kaynakla elde edilen spektrum 43
Şekil 24.	Enerjinin kanala göre değişimi 44
Şekil 25.	Verim değerlerinin enerjilere göre değişimi
Şekil 26.	Rize Merkez kum numunesine ait tipik gama spektrum örneği 47
Şekil 27.	Rize (Merkez) bölgesine ait farklı mineral gruplarındaki tipik gama spektrumu
Şekil 28.	Findıklı bölgesi kum örneğinde mineral konsantrasyonuna göre a) 232 Th, b) 238 U, c) 40 K ve d) 137 Cs radyoizotoplarının yüzde dağılım değerleri
Şekil 29.	Ardeşen bölgesi kum örneğinde mineral konsantrasyonuna göre a) 232 Th, b) 238 U, c) 40 K ve d) 137 Cs radyoizotoplarının yüzde dağılım değerleri
Şekil 30.	Pazar bölgesi kum örneğinde mineral konsantrasyonuna göre a) 232 Th, b) 238 U, c) 40 K ve d) 137 Cs radyoizotoplarının yüzde dağılım değerleri
Şekil 31.	Çayeli bölgesi kum örneğinde mineral konsantrasyonuna göre a) 232 Th, b) 238 U, c) 40 K ve d) 137 Cs radyoizotoplarının yüzde dağılım değerleri
Şekil 32.	Rize bölgesi kum örneğinde mineral konsantrasyonuna göre a) 232 Th, b) 238 U, c) 40 K ve d) 137 Cs radyoizotoplarının yüzde dağılım değerleri
Şekil 33.	Derepazarı bölgesi kum örneğinde mineral konsantrasyonuna göre a) 232 Th, b) 238 U, c) 40 K ve d) 137 Cs radyoizotoplarının yüzde dağılım değerleri
Şekil 34.	İyidere bölgesi kum örneğinde mineral konsantrasyonuna göre a) ²³² Th, b) ²³⁸ U, c) ⁴⁰ K ve d) ¹³⁷ Cs radyoizotoplarının yüzde dağılım değerleri
Şekil 35.	²³⁸ U'in bölgelerdeki tane boyutuna göre radyoaktivite değişimi 69
Şekil 36.	²³² Th'nin bölgelerdeki tane boyutuna göre radyoaktivite değişimi 69
Şekil 37.	⁴⁰ K'ın bölgelerdeki elek aralıklarına göre radyoaktivite değişimi
Şekil 38.	Sahil kum örneklerinin farklı tane boyutuna göre ortalama radyoizotop dağılımları
Şekil 39.	²³² Th'in İkizdere bölgesi kumunda elek aralıklarına göre radyoaktivite değişimi
Şekil 40.	²³⁸ U'in İkizdere bölgesi kumunda elek aralıklarına göre radyoaktivite değişimi
Şekil 41.	⁴⁰ K'ın İkizdere bölgesi kumunda elek aralıklarına göre radyoaktivite değişimi
Şekil 42.	²³² Th'nin Kaptanpaşa bölgesi kumunda tane boyutuna göre radyoaktivite değişimi

Şekil 43.	²³⁸ U'in Kaptanpaşa bölgesi kumunda tane boyutuna göre radyoaktivite değişimi
Şekil 44.	 ⁴⁰K'ın Kaptanpaşa bölgesi kumunda tane boyutuna göre radyoaktivite değişimi
Şekil 45.	İkizdere bölgesi kayaç örneklerinde ²³⁸ U radyoaktivite değişimi 87
Şekil 46.	İkizdere bölgesi kayaç örneklerindeki ²³² Th radyoaktivite değişimi
Şekil 47.	İkizdere bölgesi kayaç örneklerindeki ⁴⁰ K radyoaktivite değişimi 88
Şekil 48.	Kaptanpaşa bölgesi kayaç örneklerindeki ²³⁸ U radyoaktivite değişimi
Şekil 49.	Kaptanpaşa bölgesi kayaç örneklerindeki ²³² Th radyoaktivite değişimi
Şekil 50.	Kaptanpaşa bölgesi kayaç örneklerindeki ⁴⁰ K radyoaktivite değişimi
Şekil 56.	Fındıklı bölgesi kum numunesinin X-ışını kırınım deseni
Şekil 57.	Ardeşen bölgesi kum numunesinin X-ışını kırınım deseni
Şekil 58.	Pazar bölgesi kum numunesinin X-ışını kırınım deseni 100
Şekil 59.	Çayeli bölgesi kum numunesinin X-ışını kırınım deseni 100
Şekil 60.	Rize (Merkez) bölgesi kum numunesinin X-ışını kırınım deseni 101
Şekil 61.	Derepazarı bölgesi kum numunesinin X-ışını kırınım deseni 101
Şekil 62.	İyidere bölgesi kum numunesinin X-ışını kırınım deseni 102
Şekil 63.	İyidere bölgesi hafif kum numunesinin X-ışını kırınım deseni 102
Şekil 64.	İyidere bölgesi manyetik kum numunesinin X-ışını kırınım deseni 103
Şekil 65.	İyidere bölgesi manyetik olmayan kum numunesinin X-ışını kırınım deseni. 103
Şekil 66.	Rize (Merkez) bölgesi hafif kum numunesinin X-ışını kırınım deseni 104
Şekil 67.	Rize (Merkez) bölgesi manyetik kum numunesinin X-ışını kırınım deseni 104
Şekil 68.	Rize (Merkez) bölgesi manyetik olmayan kum numunesinin X-ışını kırınım deseni
Şekil 69.	İkizdere bölgesi 1 no'lu kum örneğinin X-ışını kırınım deseni 105
Şekil 70.	İkizdere bölgesi 2 no'lu kum örneğinin X-ışını kırınım deseni 106
Şekil 71.	İkizdere bölgesi 3 no'lu kum örneğinin X-ışını kırınım deseni 106

Şekil 72.	İkizdere bölgesi 4 no'lu kum örneğinin X-ışını kırınım deseni 107
Şekil 73.	Kaptanpaşa bölgesi 1 no'lu kum örneğinin X-ışını kırınım deseni 107
Şekil 74.	Kaptanpaşa bölgesi 2 no'lu kum örneğinin X-ışını kırınım deseni 108
Şekil 75.	Kaptanpaşa bölgesi 3 no'lu kum örneğinin X-ışını kırınım deseni 108
Şekil 76.	Kaptanpaşa bölgesi 4 no'lu kum örneğinin X-ışını kırınım deseni 109
Şekil 77.	Kaptanpaşa bölgesi 4 no'lu kum örneğinin X-ışını kırınım deseni 109
Şekil 78.	Kaptanpaşa bölgesi 1 no'lu kayaç örneğinin X-ışını kırınım deseni 110
Şekil 79.	Kaptanpaşa bölgesi 2 no'lu kayaç örneğinin X-ışını kırınım deseni 110
Şekil 80.	Kaptanpaşa bölgesi 3 no'lu kayaç örneğinin X-ışını kırınım deseni 111
Şekil 81.	Kaptanpaşa bölgesi 4 no'lu kayaç örneğinin X-ışını kırınım deseni 111
Şekil 82.	Kaptanpaşa bölgesi 5 no'lu kayaç örneğinin X-ışını kırınım deseni 112
Şekil 83.	İkizdere bölgesi 1 no'lu kayaç örneğinin X-ışını kırınım deseni 112
Şekil 84.	İkizdere bölgesi 2 no'lu kayaç örneğinin X-ışını kırınım deseni 113
Şekil 85.	Kaptanpaşa bölgesine ait 1 no'lu granitik kayacındaki mineraller 113
Şekil 86.	Kaptanpaşa bölgesine ait 2 no'lu granitik kayacındaki mineraller 114
Şekil 87.	İkizdere bölgesine ait 1 no'lu granitik kayacındaki mineraller 114
Şekil 88.	²³⁸ U'in ²³² Th, ⁴⁰ K, oksitler ve elementlerle olan korelasyon değerleri 115
Şekil 89.	²³² Th'in ²³⁸ U, ⁴⁰ K, oksitler ve elementlerle olan korelasyon değerleri 116
Şekil 90.	⁴⁰ K'ın ²³² Th, ²³⁸ U, oksitler ve elementlerle olan korelasyon değerleri

TABLOLAR DİZİNİ

Tablo 1.	Dünyanın farklı bölgelerine ait kum örneklerindeki ²³⁸ U, ²³² Th ve ⁴⁰ K ortalama ve/veya radyoaktivite değişim değerleri
Tablo 2.	Doğal radyoaktif seriler ve bazı özellikleri 11
Tablo 3.	Bazı doğal radyoaktif izotoplar 12
Tablo 4.	Sahil boyunca kum örneklemeleri yapılan istasyonlar ve koordinatları 30
Tablo 5.	Sediment ve kayaç örneklemeleri yapılan istasyonlar
Tablo 6.	Elek aralıkları
Tablo 7.	Kayaç örnekleri
Tablo 8.	¹⁵² Eu kalibrasyon kaynağının özellikleri
Tablo 9.	Enerjinin kanallara göre değişimi
Tablo 10.	Standart kaynağın gama enerjilerindeki dedektörün verim değerleri 45
Tablo 11.	Detektörle algılanan radyonüklidlerin minimum dedeksiyon limit değerleri 46
Tablo 12.	Sahil kumları farklı mineral gruplarındaki Toryum serisine ait radyoizotopların gama radyoaktivite değerleri (Bq/kg)
Tablo 13.	Sahil kumları farklı mineral gruplarındaki Uranyum serisine ait radyoizotopların gama radyoaktivite değerleri (Bq/kg)
Tablo 14.	Sahil boyu kum örneklerinde mineral ayrıştırma yapılarak elde edilen doğal gama radyoaktivite değerleri (Bq/kg)
Tablo 15.	Mineral ayrıştırma yapılarak elde edilen sahil kum örneklerindeki ¹³⁷ Cs gama radyoaktivite (Bq/kg), Radyum eşdeğer aktivite (Bq/kg), Soğurulan gama doz hızı (nGy/h), Yıllık etkin doz eşdeğeri (mSv/y) ve Dış tehlike indeks değerleri
Tablo 16.	Bölgelere göre ²³² Th, ²³⁸ U, ⁴⁰ K ve ¹³⁷ Cs radyonüklidlerinin toplama ve ağır minerale göre yüzde dağılım değerleri
Tablo 17.	Yönteme göre istatistiksel çoklu değişken analizi
Tablo 18.	²³² Th'nin farklı mineral gruplarındaki sınıflandırması
Tablo 19.	²³⁸ U'in farklı mineral gruplarındaki sınıflandırması

Tablo 20.	⁴⁰ K'ın farklı mineral gruplarındaki sınıflandırması
Tablo 21.	Bölgelere göre istatistiksel çoklu değişken analizi
Tablo 22.	²³⁸ U'in bölgelerdeki sınıflandırması
Tablo 23.	Sahil kumları farklı tane boyutlarında ²³² Th, ²³⁸ U, ⁴⁰ K ve ¹³⁷ Cs radyoizotoplarının ortalama gama radyoaktivite değerleri (Bq/kg)
Tablo 24.	Sahil kumları tane boyutuna bağlı olarak ²³² Th, ²³⁸ U, ⁴⁰ K ve ¹³⁷ Cs radyonüklidlerinin yüzde dağılım değerleri
Tablo 25.	Bölgelere göre istatistiksel çoklu değişken analizi72
Tablo 26.	²³² Th'nin bölgelere göre sınıflandırması
Tablo 27.	²³⁸ U'in bölgelere göre sınıflandırması
Tablo 28.	⁴⁰ K'ın bölgelere göre sınıflandırması
Tablo 29.	Örneklerin farklı tane boyutlarına göre istatistiksel çoklu değişken analizi 74
Tablo 30.	İkizdere Vadisi kum örneklerinde tane boyutuna göre ²³² Th, ²³⁸ U, ⁴⁰ K ve ¹³⁷ Cs radyoizotoplarının gama radyoaktivite değerleri (Bq/kg)
Tablo 31.	İyidere-İkizdere Vadisi boyunca örnekleme noktalarına göre istatistiksel çoklu değişken analizi
Tablo 32.	²³² Th'nin örnekleme noktalarına göre sınıflandırması
Tablo 33.	²³⁸ U'in örnekleme noktalarına göre sınıflandırması
Tablo 34.	⁴⁰ K'ın örnekleme noktalarına göre sınıflandırması
Tablo 35.	İyidere-İkizdere Vadisi boyunca kum örneklerinin tane boyutuna göre istatistiksel çoklu değişken analizi
Tablo 36.	²³² Th'nin tane boyutuna göre sınıflandırması
Tablo 37.	²³⁸ U'in tane boyutlarına göre sınıflandırması
Tablo 38.	⁴⁰ K'ın tane boyutlarına göre sınıflandırması
Tablo 39.	Kaptanpaşa Vadisi kum örneklerinde tane boyutuna göre ²³² Th, ²³⁸ U, ⁴⁰ K ve ¹³⁷ Cs radyoizotoplarının gama radyoaktivite değerleri (Bq/kg)
Tablo 40.	İyidere-İkizdere Vadisi boyunca örnekleme noktalarına göre istatistiksel çoklu değişken analizi
Tablo 41.	²³² Th'nin örnekleme noktalarına göre sınıflandırması
Tablo 42.	²³⁸ U'in örnekleme noktalarına göre sınıflandırması

Tablo 43.	⁴⁰ K'ın örnekleme noktalarına göre sınıflandırması
Tablo 44.	Çayeli-Kaptanpaşa Vadisi boyunca kum örneklerinin tane boyutuna göre istatistiksel çoklu değişken analizi
Tablo 45.	²³² Th'nin tane boyutuna göre sınıflandırması
Tablo 46.	²³⁸ U'in tane boyutuna göre sınıflandırması
Tablo 47.	⁴⁰ K'ın tane boyutuna göre sınıflandırması
Tablo 48.	Sahil kum örneklerinde Toplam Alfa-Toplam Beta radyoaktivite değerleri 90
Tablo 49.	Kayaç örneklerinde Toplam Alfa-Toplam Beta radyoaktivite değerleri90
Tablo 50.	Sahil boyu başlangıç kum numunelerinde başlıca oksitlerin ortalama (Ort), standart sapma (SS) ve değişim aralıkları
Tablo 51.	Sahil boyu başlangıç kum örneklerindeki iz elementlerin ortalama (Ort) ve standart sapma (SS) değerleri
Tablo 52.	İyidere bölgesi başlangıç, hafif, manyetik ve manyetik olmayan kum örneklerindeki majör oksit değerleri
Tablo 53.	Rize (Merkez) bölgesi başlangıç, hafif, manyetik ve manyetik olmayan kum örneklerindeki başlıca oksit değerleri
Tablo 54.	İyidere bölgesi başlangıç, hafif, manyetik ve manyetik olmayan kum örneklerindeki element değerleri (ppm)
Tablo 55.	Rize (Merkez) bölgesi başlangıç, hafif, manyetik ve manyetik olmayan kum örneklerindeki element değerleri (ppm)
Tablo 56.	X-Işını kırınım deseninde elde edilen mineraller ve özellikleri
Tablo 57.	Mevcut çalışmayla kıyaslama için dünyanın farklı bölgelerine ait kum örneklerindeki ²³⁸ U, ²³² Th ve ⁴⁰ K ortalama ve/veya radyoaktivite değişim değerleri

SEMBOLLER DİZİNİ

А	: Kütle numarası	
Bq	: Birim zamanda bozunma sayısı (Bozunma/s)	
c	: Işık hızı (2.9979x10 ⁸ m/s)	
С	: Coulomb	
Ci	: Curie	
cps	: Birim zamanda sayım (counts per second)	
D	: Soğurulan doz hızı (Gy)	
e ⁻	: Elektron	
EC	: Elektron yakalama (Electron Capture)	
eV	: Elektron volt	
FWHM	: Yarı maksimumdaki tam genişlik (full width at half maximum)	
g	: Gram	
Gy	: Gray	
h	: Plank sabiti (6.626x10 ⁻³⁴ j.s)	
HPGe	: Yüksek saflıkta germanyum detektör	
IAEA	: Uluslararası Atom Enerjisi Ajansı	
ICP-MS	: İndüksiyon eşleşmeli plazma-kütle spektrometresi	
ICRP	: Uluslararası Radyasyondan Korunma Komitesi	
keV	: Kiloelektronvolt	
kg	: Kilogram	
Sv	: Sievert	
YEDE	: Yıllık Etkin Doz Eşdeğeri (Sv/y)	
α	: Alfa parçacığı $({}_{2}^{4}He)$	
β^-	: Beta (-) parçacığı	
β^+	: Beta (+) parçacığı	
3	: Dedektör verimi	
γ	: Gama ışını	
λ	: Bozunma sabiti	
Ω	: Katı açı	

1. GENEL BİLGİLER

1.1. Giriş

Doğal radyoaktivite, uzaydan dünya atmosferine gelen yüksek enerjili kozmik ışınlar ve parçacıklardan ve yer kabuğunda bulunan toprak, kayaç, kum, sediment, su ve bütün canlılarda bulunan doğal radyoaktif izotoplardan olmak üzere iki ana kaynaktan oluşur. İnsanoğlu ve diğer canlılar varoluşlarından bu yana sürekli olarak doğal radyasyonla iç içe yaşamaktadırlar. Yeryüzündeki doğal radyasyon düzeyleri, ortamın jeolojik ve kimyasal oluşumuna bağlı olarak çok geniş bir aralıkta değerler göstermektedir. Örneğin, volkanik kayaçlardaki radyoaktivite değeri, tortul kayalara göre daha yüksektir. Deniz seviyesinden yükseklere çıkıldıkça ve ekvatordan kutuplara doğru gidildikçe kozmik ışınların şiddeti artmaktadır (Eisenbud, 1987).

Nükleer teknoloji geliştirme ve uygulamaları, nükleer silah denemeleri, x-ışınları ve yapay radyoizotopların tıp, endüstri ve araştırma alanlarındaki kullanım ve uygulamaları ise yapay radyasyon etkisi oluşturmaktadır. İnsanların bu doğal ve yapay radyasyon kaynaklarından aldıkları yıllık etkin doz değerine en büyük katkı doğal kaynaklardan (Şekil 1) oluşan iyonize radyasyondan gelmektedir (NCRP, 1987; UNSCEAR, 2000; Bennet, 1997).

Şekil 1. Çevresel radyasyon kaynaklarından alınan doz oranları

Çevremizdeki sahil kumlarında, sediment ve kayaç örneklerinde doğal olarak bulunan uranyum (238 U), toryum (232 Th) ve potasyum (40 K) izotoplarının dağılımlarının ve

radyoaktivite düzeylerinin araştırılması önemlidir. Çünkü bu araştırmalar insan vücudunun gama ışınlarına maruz kalması, radon ve ürünlerinin solunum yoluyla alınmasıyla akciğer dokusunun ışınlanması gibi, bu elementlerin radyolojik etkilerinin anlaşılmasını sağlar. Bu radyonüklidlerin farklı biçimde dağılım göstermeleri nedeniyle coğrafi dağılımlarının bilinmesi, radyasyondan korunma ve değerlendirmede önemli bir rol oynar.

Kum minerali, genellikle değişik minerallerin sahil birikintilerini tanımlamakta kullanılan terimdir. Kristalleşme esnasında püskürülen materyal içine radyonüklidlerin birleşmiş oldukları bilinir. Eğer bir mineralin iyonlarından biri U ve Th 'a benzer büyüklükte ise mineralin radyoaktif çekirdek içeriği muhtemelen artmış olacaktır. Seryum (Ce), lantanyum (La) gibi nadir toprak elementlerini, zirkonyum (Zr) ve kalsiyum (Ca) elementlerini içeren minerallerde radyoaktivite beklenir. Minerallerdeki bu radyoaktivite, radyometrik birikintinin belirlenmesini sağlar (de Meijer vd., 1988).

Dünya üzerinde yüksek arkaplan (zemin-background-fon) radyasyon alanı (High Background Radiation Area, HBRA) olarak bilinen bazı bölgeler vardır (UNSCEAR, 2000). Brezilya'da (Cullen, 1977; Penna Franca, 1977; Paschoa, 2000), Çin'de (Wei vd., 2000), Hindistan'da (Sunta, 1993; Mishra, 1993; Paul vd., 1998), İran'da (Sohrabi, 1998; Ghiassi-nejad vd., 2002), Amerika Birleşik Devletleri'nde ve Kanada'da (NCRP, 1987) çok yüksek arkaplan radyasyon alanları bulunmuştur. Brezilya, Çin ve Hindistan'daki yüksek arkaplan radyasyonu ağır ve manyetik olmayan kum minerallerinden, diğer bölgelerde ise topraktan kaynaklanmaktadır.

Dünyanın değişik bölgelerindeki deniz kumlarında doğal radyasyon düzeyinin belirlenmesine yönelik olarak yapılan, çok sayıdaki çalışmalar Tablo 1'de gösterilmiştir.

Ülke	²³⁸ U	²³² Th	⁴⁰ K		
	(Bq/kg)	(Bq/kg)	(Bq/kg)	Kaynaklar	
Hindistan (Kamataka)	249.2 ± 1.9	489.6 ±3.4	55 ±6	Narayana vd., 1994	
Pakistan	14.4 ± 2.5	35.2 ±2.0	610.5 ±155	Arkam vd., 2006	
Ürdün (Adasiah)	20.1 ±2.3	9.9 ±1.7	89 ±5.3	Ahmad vd., 1997	
Ürdün (Jerash)	27.9 ±9.4	12.4 ±3	120 ±36	Ahmad vd., 1997	
Ürdün (Ghor As-Safi)	27.3 ±2.7	21.6 ±3.3	356 ±16	Ahmad vd., 1997	
Bangladeş	19.0 ±4.8	36.7 ±6.5	458 ±160	Alam vd., 1999	
Bangladeş (Zirkon)	6439 ±326	1324 ±96	472 ±57	Alam vd., 1999	
Bangladeş (Ağır Mineral)	2582 ±205	4684 ±68	639 ±21	Alam vd., 1999	
Bangladeş	14.5 ±8.2	34.8 ±2.4	302 ±142	Chowdhury vd., 1998	
Brezilya (Preta)	121 ±33	239 ±74	110 ±62	Freitas ve Alencar, 2004	
Libya (Tripoli)	10.5 ±1.5	9.5 ±1.5	270 ±9.8	Shenber, 1997	
Çin (Baoji Weihe)	(10.2-38.3)	(27.0-48.8)	(635.8-1126.7)	Xinvei vd., 2006	
Mısır	56 ±3.3	83.4 ±6.3	88 ±26	Seddeek, 2005	
Mısır	24.7 ±4.3	31.4 ±9.4	428 ±36	El-Mamoney ve Khater, 2004	
Türkiye (Çanakkale)	260.36 ±20.81	532.04 ±42.56	1165.75 ±81.55	Örgün vd., 2007	
Yugoslavya	7.8 ±2.1	6.7 ±3.6	150 ±88	Vukotic vd., 1998	
Ürdün (Adasiah)	20.1 ±2.3	9.9 ±1.7	89 ±5.3	Ahmad vd., 1997	
Ürdün (Jerash)	27.9 ±9.4	12.4 ±3	120 ±36	Ahmad vd., 1997	
Ürdün (Ghor As-Safi)	27.3 ±2.7	21.6 ±3.3	356 ±16	Ahmad vd., 1997	

Tablo 1. Dünyanın farklı bölgelerine ait kum örneklerindeki ²³⁸U, ²³²Th ve ⁴⁰K ortalama ve/veya radyoaktivite değişim değerleri

Bu çalışmanın temel amacı da Rize ili sahili boyunca deniz kumlarının doğal radyasyon düzeyinin belirlenmesidir. Bunun yanında deniz kumlarının tane büyüklüğü, içerdiği ağır mineral ve hafif mineraller, bu minerallerin manyetiklik olup olmadığı fiziksel parametrelerinin belirlenmesine, bu parametrelerle radyoaktivitenin ilişkisinin araştırılmasına, fiziksel süreçlere yönelik bilgi elde edilmesi için sahilin ayrıntılı radyometrik haritasının oluşturulmasına çalışılmıştır. Bunlarla birlikte, Rize İkizdere-Güneyce bölgesinden yukarıya doğru ve Çayeli-Kaptanpaşa Vadisi boyunca, önceden jeolojik harita üzerinde belirlenen istasyonlardaki taraça ve kayaç örneklerinde doğal gama radyoaktivite seviyelerini belirleye, bunlarla sahil kum örneklerindeki değerler arasındaki ilişkinin araştırılmasına çalışılmıştır.

Elde edilen radyoaktivite konsantrasyon değerleriyle, bölgedeki doğal arkaplan radyasyonun çevredeki insanlarda oluşturacağı radyolojik risklerinin değerlendirilmesi yapılarak ICRP ve UNSCEAR gibi uluslararası kuruluşların tavsiye ettiği üst değerlerle kıyaslanması yapılmıştır.

1.2. Radyoaktivite Hakkında Genel Bilgi

Radyoaktivite, 1895 yılında Wilhelm Röntgen'in x-ışınlarını bulmasından sonra, 1896 yılında Henry Becquerel'in uranyumun gözle görülmeyen ışınlar yaydığını belirlemesiyle keşfedilmiştir. Bu buluşların ardından Marie ve Pierre Curie tarafından başka radyoaktif elementler bulunarak izole edilmiştir. Radyoaktif maddeler tarafından yayılan ışınların özellikleri ise, Ernest Rutherfort tarafından aydınlatılmıştır.

Atom çekirdeklerinin, parçalanmaya ve nükleer bozunmaya karşı dayanıklılığı çekirdek kararlılığı, dayanıksızlığı ise çekirdek kararsızlığı yani radyoaktivite olarak tanımlanır. Çekirdek kararlılığında en büyük etken, atom çekirdeklerinin bünyesinde yer alan nötron ve protonların birbirlerine oranıdır. Kararlı çekirdekler kararlı çekirdek bandında bulunur. Şekil 2'nin Z<20 bölgesinde Z=N, Z>20 bölgesinde ise N/Z>1 olur ve giderek 1'den uzaklaşır.

Kararlı çekirdekler şeridi dışına çıkıldığı zaman, çekirdekler kararsız bir yapı kazanırlar. Kararlı hale gelebilmek için radyoaktif ışımalar yapan bu tür çekirdekler, radyoaktif çekirdekler olarak bilinirler. Radyoaktif çekirdekler kararlı hale gelene kadar α

ve β gibi parçacık veya γ biçiminde elektromanyetik radyasyon yayınlayarak bozunmaya uğrarlar.

Özellikle ağır çekirdeklerde görülen, alfa ($\alpha - \frac{4}{2}He$) bozunmasının genel denklemi,

$${}^{A}_{z}X_{N} \rightarrow {}^{A-4}_{Z-2}Y_{N-2} + {}^{4}_{2}He$$

$${}^{226}_{88}\text{Ra}_{138} \rightarrow {}^{222}_{86}\text{Rn}_{136} + \alpha$$

Kararsızlık (radyoaktivite) oluşturan fazla protonu veya nötronundan bir protonu nötrona veya nötronunu protona dönüştürerek kurtulabilir. Bu arada reaksiyonda yük korunum gereği çekirdekten bir elektron veya pozitron fırlatılır.

 β^- -Bozunması: $n \rightarrow p + e^-$

Örnek:

$$^{32}_{15}P_{17} \rightarrow ^{32}_{17}S_{16} + \beta^{-} + \nu$$

 β^+ -Bozunması: $p \rightarrow n + e^+$

Örnek:

 $^{25}_{13}Al_{12} \rightarrow ^{25}_{12}Mg_{13} + \beta^+ + \nu$

Alfa ve beta bozunmalarının birçoğunda, ürün çekirdek enerji açısından uyarılmış durumda kalır. Ürün çekirdek bu uyarılmış durumlardan kurtulmak amacıyla bir veya iki gamma fotonu yayınlar ve enerji bakımından temel seviyeye iner. Gamma ışınları xışınları ve görünür ışık gibi elektromanyetik radyasyonlardır.

 $^{60}_{27}$ Co₃₃ $\rightarrow ^{60}_{28}$ Ni₃₂ + β^- + γ_1 + γ_2

Şekil 2. Çekirdeklere ait kararlılık eğrisi

1.2.1. Radyoaktif Bozunma Denklemi

Radyoaktif bir çekirdekte birim zaman aralığında meydana gelen bozunma sayısı, çekirdeğin bozunma hızı veya aktivitesi olarak tanımlanır. Bir radyoaktif bozunma sonunda kararlı bir çekirdeğe bozunan bir çekirdek türünden, eğer herhangi bir t anında N tane radyoaktif çekirdek varsa ve dışarıdan çekirdek ilave edilmiyorsa dt zaman aralığı içinde bozunan çekirdek sayısı N ile orantılı olacaktır.

$$\frac{\mathrm{dN}}{\mathrm{dt}} = -\lambda \mathrm{N} \tag{1}$$

Denklem (1) t=0 anındaki çekirdek sayısı N_0 durumu için çözülürse;

$$N(t) = N_0 e^{-\lambda t}$$
⁽²⁾

Denklem (2)'de t zamanı, N(t) t zamanı sonunda arta kalan çekirdek sayısını ve λ (s⁻¹) radyoaktif numunenin bozunma sabitini gösterir.

Şekil 3'te tek bir bozunma sonucu kararlı çekirdeğe dönüşen bir çekirdeğin radyoaktif bozunma eğrisini göstermektedir.

Şekil 3. Radyoaktif bozunma eğrisi

1.2.2. Ardışık Bozunma

Bir radyoaktif bozunma, N₂, N₃, ..., N_{i-1} gibi, radyoaktif ürünle sonuçlandığı zaman gerçekleşen süreç aşağıdaki gibi gösterilebilir. Bu süreç en son kararlı izotopa kadar sürdürülür.

$$N_1 \xrightarrow{\lambda_1} N_2 \xrightarrow{\lambda_2} N_3 \xrightarrow{\lambda_3} \dots \dots \xrightarrow{\lambda_{i-2}} N_{i-1} \xrightarrow{\lambda_{i-1}} N_i \text{ Kararlı} \quad (i = 1, 2, 3, \dots, n)$$

Başlangıç çekirdek ana, $(N_1 \text{ ile gösterilen})$ onun oluşturduğu çekirdek kız $(N_2 \text{ ile gösterilen})$ ve kızın oluşturduğu çekirdek ise kız torun $(N_3 \text{ ile gösterilen})$ çekirdek vb. olarak ifade edilebilir.

Burada, $N_1, N_2, \dots, N_{i-1}, N_i$ (N_i =Kararlı çekirdek) herhangi bir t zamanında bozunma serisi üyesi olan çekirdekleri ve $\lambda_1, \lambda_2, \dots, \lambda_{i-2}, \lambda_{i-1}$ ise bu radyoaktif çekirdeklere ait bozunma sabitlerini göstermektedir. Herhangi bir t anındaki bu çekirdeklerin sayıları, aktivitenin birim zamandaki bozunma sayısı şeklindeki tarifinden, aşağıdaki diferansiyel denklemlerle verilir:

$$\frac{\mathrm{dN}_1}{\mathrm{dt}} = \mathrm{N}_{10} - \lambda_1 \mathrm{N}_1 \tag{3}$$

$$\frac{\mathrm{dN}_2}{\mathrm{dt}} = \mathrm{N}_{20} + \lambda_1 \mathrm{N}_1 - \lambda_2 \mathrm{N}_2 \tag{4}$$

$$\frac{\mathrm{dN}_{i}}{\mathrm{dt}} = \mathbf{N}_{i0} + \lambda_{i-1}\mathbf{N}_{i-1} - \lambda_{i}\mathbf{N}_{i}$$
(5)

Bu denklemlerin çözümleri başlangıç koşullarına bağlıdır. t = 0 başlangıç zamanı için yalnızca ana çekirdeğin var olduğunu, kız ve kız torun çekirdeklerin mevcut olmadıklarını kabul edersek: $N_1 = N_{10}$ ve $N_2 = N_3 = N_4 = = N_i = 0$ olur. Böylece denklem (3), (4) ve (5)'in çözümleri sırasıyla;

$$N_1 = N_{10} e^{-\lambda_1 t}$$
 (6)

$$N_{2} = N_{10}\lambda_{1} \left[\frac{e^{-\lambda_{1}t}}{(\lambda_{2} - \lambda_{1})} + \frac{e^{-\lambda_{2}t}}{(\lambda_{1} - \lambda_{2})} \right]$$
(7)

Genel olarak tam çözüm ise:

$$\mathbf{N}_{i} = \mathbf{N}_{10} \prod_{j=1}^{j=i-1} \lambda_{j} \sum_{j=1}^{j=i} \frac{e^{-\lambda_{j}t}}{\prod_{\substack{k=1\\k\neq j}}^{k=i} (\lambda_{k} - \lambda_{j})}$$
(8)

Ardışık bozunmadaki çekirdek sayılarının zamanla değişimi Şekil 4'te gösterilmiştir.

Şekil 4. Ardışık bozunma grafiği

1.2.3. Radyoaktif Denge

1.2.3.1. Geçici Denge

Bir ana çekirdeğin (N₁) λ_1 bozunma sabitiyle birinci ürüne (N₂) bozunduğunu ve bunun da λ_2 bozunma sabitiyle bozunduğunu düşünelim. Denklem (7)'den,

$$N_{2} = \frac{\lambda_{1}}{\lambda_{2} - \lambda_{1}} N_{10} (e^{-\lambda_{1}t} - e^{-\lambda_{2}t})$$
(7)

ifadesinde $\lambda_2 < \lambda_1$ olduğunda yeterli derecede uzun bir zaman sonunda $e^{-\lambda_1 t}$ terimi $e^{-\lambda_2 t}$ 'ye göre ihmal edilebilir olacağından,

$$N_2 = N_{10} \frac{\lambda_1}{\lambda_1 - \lambda_2} e^{-\lambda_2 t}$$
(9)

elde edilir. Bu denklem ise belli bir zamandan sonra birinci ürün elementinin kendisi için belirlenmiş olan λ_2 bozunma sabitiyle bozunacağı anlamına gelir. Bu duruma geçici denge denir.

1.2.3.2. Sürekli Denge

Denklem (7)'de $\lambda_1 \ll \lambda_2$ durumunu ele alalım. Bu durumda $e^{-\lambda_1 t} \approx 1$ ve $\lambda_2 - \lambda_1 = \lambda_2$ yazabiliriz. Böylece bu ifade,

$$N_{2} = N_{10} \frac{\lambda_{1}}{\lambda_{2}} (1 - e^{-\lambda_{2}t})$$
(10)

elde edilir. Denklem (10)'da zamanın çok artmasıyla $e^{-\lambda_2 t}$ terimi sıfıra gideceğinden bir denge durumu oluşur ve bu sürekli denge durumunda,

$$\lambda_1 N_{10} = \lambda_2 N_2 \tag{11}$$

elde edilir. λ_1 çok küçük olduğundan ana çekirdeğin çok büyük yarı ömre sahip olduğu açıktır.

1.2.4. Radyoaktivite ve Radyasyon Ölçüm Birimleri

Aktivite birimi Becquerel (Bq) olup saniyede bir bozunma yapan herhangi bir radyoaktif maddenin aktivitesi olarak tanımlanmaktadır. Radyoaktif bir numunenin aktifliği Curie (Ci), Rutherford (rd) veya Becquerel (Bq) biriminde ifade edilebilir. Bu birimlerin birbiri ile ilişkisi

1Bq = 1bozunma/s

 $1Ci = 3.7 \times 10^{10} Bq$

 $1 \text{ rd} = 10^6 \text{Bq}$

şeklindedir. Aktiflik, bozunan aynı tür radyoaktif izotoplardan oluşan iki farklı kaynağının şiddetinin (birim zamanda saldıkları ışın yada parçacık sayılarının) karşılaştırılmasında faydalı bir kavramdır. Örneğin, 10 mCi'lik ⁶⁰Co kaynağı, 1 mCi'lik ⁶⁰Co'dan 10 kat daha şiddetlidir. Fakat farklı radyonüklidlerin farklı bozunmalarını karşılaştırabilmek için ışınlama dozu, soğurulma dozu ve doz eşdeğeri ifadelerinin tanımlanması gerekmektedir.

Işınlama dozu Coulomb/kg (C/kg): Normal şartlar altında (0 °C ve 760 mm-Hg basıncında) havanın 1 kg'ında 1 Coulomb'luk elektrik yükü değerinde (+) ve (-) iyonlar oluşturan x veya γ radyasyonu miktarıdır.

1 C/kg=3876 R (Röntgen) veya $1 \text{ R}=2.5 \times 10^{-4} \text{ C/kg'dur}$.

Soğurulan Doz (D) (Gy): Radyasyona maruz kalan bir maddenin birim miktarında soğurulan radyasyon enerjisi olarak ifade edilir. SI birim sisteminde soğurulan doz birimi Gray (Gy) olup, 1 kg'lık bir maddeye 1 Joule (J)'lük enerji veren herhangi bir iyonlaştırıcı radyasyonun dozudur. Herhangi bir madde gramı başına 100 erg'lik enerji soğurursa buna da 1 rad denir.

1 Gy = 1 J.kg⁻¹ 1 rad = 10^{-2} J.kg⁻¹ =100 erg.g⁻¹ 1 Gy = 100 rad

Doz eşdeğeri (Sv): Belirli bir radyasyonun bir biyolojik sistem üzerindeki etkisinin ölçüsüdür. Eşdeğer doz birimi Sievert (Sv) veya rem cinsinden ifade edilir.

1 Sv = 100 rem

1.3. Radyonüklidler

Dünyanın oluşumuyla birlikte yer kabuğunda bulunan, dış uzay ve güneşten gelen kozmik ışınların etkileşimleri sonucu doğal olarak oluşan ve bunlara ilave yapay olarak oluşturulan radyonüklidler üç grup altında toplanabilirler.

1.3.1. Yerkabuğunda Başlangıçta Mevcut Olan Radyonüklidler

Büyük Patlama (Big Bang) teorisine göre yeryüzü ve güneş sisteminin yaratıldığı zamanlarda oluşan elementlerin büyük bir kısmı radyoaktiftir; fakat o zamandan beri kararlı çekirdeklere bozunmaktadırlar. Birkaç radyoaktif izotopun yarılanma süresi dünyanın yaşına kıyasla çok uzundur ve bugün hala bunların radyoaktiflikleri gözlenebilmektedir. ²³⁵U, ²³⁸U ve ²³²Th serileri ve ⁴⁰K radyonüklidleri doğal çevresel radyoaktivitenin esas kısmını oluşturmaktadır.

Doğal radyoizotoplar atom numaraları 81-92 arasında değişen ağır çekirdeklerden oluşur. Bu çekirdekler α ve β yayınlayarak atom (Z) ve kütle numaralarını (A) sonuçta kararlı ve hafif bir çekirdeğe ulaşıncaya kadar azaltırlar. Alfa bozunması A'yı dört birim değiştirir, β bozunması ise A sayısını değiştirmez ve böylece n bir tam sayı olmak üzere, külte numaraları 4n, 4n+1, 4n+2, 4n+3 olan dört bağımsız bozunma serisi elde edilir. Bu dört seri Tablo 2'de verilmiştir. Neptinyum serisinin en uzun ömürlü üyesinin yarılanma süresi, yerin oluşumundan bu yana geçen süreye göre çok kısa olduğundan bu seri doğal maddelerde gözlenmez (Krane, 2001).

Seri Adı	Türü	Son Çekirdek (Kararlı)	Ana Çekirdek	Yarılanma Süresi (y)
Toryum	4n	$^{208}_{82}{\rm Pb}$	$^{232}_{90}$ Th	1.41×10^{10}
Neptinyum	4n+1	²⁰⁹ ₈₃ Bi	$^{237}_{93}{ m Np}$	2.14×10^{6}
Uranyum	4n+2	$^{206}_{82}{ m Pb}$	$^{238}_{92}{ m U}$	$4.47 \mathrm{x} 10^9$
Aktinyum	4n+3	$^{207}_{82}{ m Pb}$	$^{235}_{92}{ m U}$	7.04×10^8

Tablo 2. Doğal radyoaktif seriler ve bazı özellikleri

Dünyadaki doğal radyonüklidlerin tek kaynağı bu radyoaktif ağır element serileri değildir. Bu serilerden farklı olarak tabiatta tek başına bulunabilen ve kendilerine has özelliklere sahip olan bazı doğal radyonüklidler de vardır. ⁴⁰K bu grubun en önemlilerindendir. Çünkü temel doğal radyasyon seviyesine katkısı oldukça fazladır. Tablo 3'de doğal olarak bulunan bazı izotoplar verilmiştir.

İzotop	T _{1/2} (y1l)
40 K	1.28×10^{9}
⁸⁷ Rb	4.28×10^{10}
¹¹³ Cd	7.71×10^{15}
¹¹⁵ In	$4.41 \mathrm{x} 10^{14}$
¹³⁸ La	$1.05 x 10^{11}$
¹⁷⁶ Lu	$4.00 ext{x} 10^{10}$
¹⁸⁷ Re	4.35×10^{10}

Tablo 3. Bazı doğal radyoaktif izotoplar

1.3.1.1. Uranyum Serisi

Uranyum doğal ²³⁴U, ²³⁵U ve ²³⁸U radyoizotoplarından oluşur. ²³⁸U'in bağıl bolluğu %99.274 olup ²³⁴U (% 0.0055) ile denge konsantrasyonundadır. ²³⁵U'in bağıl bolluğu ise % 0.72'dir. ²³⁸U ve ²³⁵U sırasıyla iki radyoaktif serinin ana izotopudur. ²³⁸U, 4n+2 serisinin (n, 59'dan 51'e değişir) en uzun ömürlü ana izotopudur ve ²³⁴U bu serisinin bir üyesidir (Şekil 5). ²³⁵U ise doğal olarak mevcut olan 4n+3 serisinin (n, 58'den 51'e değişir) en uzun ömürlü ana izotopudur.

²³⁵U'in bağıl bolluğu, ²³⁸U'in bağıl bolluğundan oldukça küçük olduğu için bu serinin doğal radyasyon seviyesine katkısı ihmal edilebilir. ²³⁸U bozunma serisi Şekil 5'te gösterilmiştir. Bu seri birçok gama geçişleriyle birlikte 6 beta ve 8 alfa bozunumundan sonra ²⁰⁶Pb'da son bulan 15 üyeye sahiptir. Dünya yüzeyindeki uranyum dağılımı kayaç tiplerine ve jeolojik biçimlenime bağlıdır (Eisenbud, 1987).

Şekil 5. Uranyum (4n+2) serisi

1.3.1.2. Toryum Serisi

Doğal toryum bağıl bolluğu %100 olan ²³²Th'dir. Bu radyonüklid, 4n radyoaktif serisinin (n 58'den 51'e değişir) başlangıç üyesidir. Bu seride 12 üye vardır. Şekil 6'da görüldüğü gibi birçok gama geçişli 7 alfa ve 5 beta bozunmasıyla kararlı ²⁰⁸Pb izotopuna geçilir. ²³²Th'nin yeryüzündeki miktarı 0 ile birkaç yüz ppm (milyonda bir) değerleri arasında değişir (Eisenbud, 1987).

Şekil 6. Toryum (4n) serisi

1.3.1.3. Potasyum-40

Potasyum, temel bir elementtir ve vücutta yaşamsal bir öneme sahiptir. Doğal olarak bulunan potasyumun üç izotopundan sadece ⁴⁰K kararsız olup, yarılanma süresi 1.28 x 10⁹ yıl'dır. Doğal potasyumun % 0.0117'sini, ⁴⁰K izotopu oluşturmaktadır. Doğal potasyum, toprakta çok bol bulunduğu için doğal gama radyasyon dozunun önemli bir kesrini ⁴⁰K meydana getirmektedir.

70 kiloluk bir insan vücudunda 140 g potasyum vardır ve bu 0.0164 gram ⁴⁰K izotopu içerir. Bu miktardaki ⁴⁰K dakikada 266000 bozunma hızına sahiptir. Her 100 bozunmanın 89'unda 1.311 MeV maksimum enerjili beta parçacıkları ve 11'inde ise 1.46 MeV enerjili gama fotonu yayınlanır (Eisenbud, 1987).

1.3.2. Kozmik Işınların Etkileşimi Sonucu Oluşan Radyonüklidler

Uzaydan dünya atmosferine giren yüksek enerjili parçacıklar, birincil kozmik ışınlar olarak bilinir. Bu radyasyonun büyük çoğunluğu protonlardır. Enerjileri 10 ev ile 10¹⁹ eV mertebelerindedir. Bu parçacıklar atmosferin alt tabakalarına kadar uzanarak havada mevcut atomların çekirdekleri ile etkileşerek ikincil protonlar, nötronlar, ³H, ¹⁴C, ⁷Be ve ²²Na gibi kozmojenik radyonüklidleri oluştururlar (NCRP, 1987; UNSCEAR, 2000).

1.3.3. Yapay Radyonüklidler

Enerji, tıp, endüstri, araştırma, tarım gibi pek çok alanda ³H, ⁹⁰Sr, ⁹⁹Tc, ¹³¹I ve ¹³⁷Cs gibi doğal olmayan radyoizotoplar yapay yollarla üretilmektedir. İnsan yapımı bu radyonüklidlerin miktarları doğal miktarlara göre küçüktür ve çoğu kısa yarılanma sürelerine sahiptirler.

1.4. Gama Işınlarının Maddeyle Etkileşmesi ve Dedeksiyonu

Gama ışınlarının kaynağı atom çekirdeğidir. Bu ışınlar atom çekirdeğinin enerji seviyelerindeki farklılıklarından meydana gelir. Radyoaktif bir çekirdek alfa veya beta yayınlamasından sonra çoğu zaman kararlı durumda kalmayabilir. Bir başka deyişle, radyoaktif bozunmadan sonra geride kalan çekirdek uyarılmış halde kalabilir. Bu çekirdek

oluştuğundan çok kısa bir zaman sonra bir veya birkaç gama ışını yayınlayarak üzerindeki fazla enerjiyi atar ve kararlı hale gelir.

Gama ışınlarının dalga boyları 10⁻¹⁰ m ile 10⁻¹⁴ m arasındadır. Bu ışınlar yüksek derecede giricilik özelliğine sahiptirler. Bu nedenle canlı dokular tarafından soğurulduğunda ciddi zararlar oluştururlar. Tedbir olarak bu tür radyasyonun yanında çalışanlar, kalın kurşun tabaka benzeri iyi soğurucu maddelerle korunmalıdır.

Gama ışınları fotoelektrik soğurma, Compton saçılması ve çift oluşumu biçiminde madde ile etkileşebilirler.

1.4.1. Fotoelektrik Soğurma

Fotoelektrik soğurma olayında, hv enerjisiyle gelen foton, E_b bağlanma enerjisiyle bağlı bir elektronla etkileşir ve foton enerjisinin tümü soğurulur. Elektron E_e enerjisiyle atomdan uzaklaşır:

$$E_{e} = hv - E_{b}$$
(12)

Fotoelektrik soğurmadan sonra fotoelektrondan boş kalan yerin başka elektronlar tarafından doldurulması ile birlikte karakteristik x-ışınları yayınlanır. Bu x-ışınlarının soğurulması ve ikincil elektronların kinetik enerjilerine dönüşmeleri bir anlamda kayıp enerjiyi geri çağırmak olacaktır. Teorik olarak artık fotonların enerjisinin bir kısmı, geri tepen atomların kinetik enerjisine geçer ancak bu ihmal edilebilir.

1.4.2. Compton Saçılması

Compton saçılmasında foton, maddedeki bir atomun elektronu tarafından saçılır. Gama ışını, enerjisinin (E_{γ}) düşüşüyle beraber (E_{γ}^{1}) bir açıyla saçılabilir ve bu saçılmayla ortaya çıkan enerji kaybı, elektronlara kinetik enerji olarak geçer (Denklem 13).

$$\mathbf{E}_{\mathbf{e}} = \mathbf{E}_{\mathbf{f}} - \mathbf{E}_{\mathbf{f}} \tag{13}$$

Saçılan gama ışının enerjisi saçılmadan sonra daha azdır. Ayrıca gama ışını bir ya da birden fazla Compton saçılması da yaşayabilir. Enerji düştükçe fotoelektrik soğurulmanın oluşması olasılığı da artar. Bundan dolayı gama ışını enerjisinin sadece bir kısmını da, (Compton saçılması ile) tamamını da (Compton Saçılmasını takip eden fotoelektrik soğurulmayla) kaybedebilir. Elektronun kinetik enerjisi, enerji ve çizgisel momentumun korunumu kullanılarak (14) denklemi ile hesaplanır.

$$E_{e} = E_{\gamma} - E_{\gamma}' = \frac{E_{\gamma}^{2}(1 - \cos\theta)}{mc^{2} + E_{\gamma}(1 - \cos\theta)}$$
(14)

Burada m= $9.11x.10^{-31}$ kg değeri ile elektronun durgun kütlesi ve c= $3x10^8$ m/s ışığın boşluktaki hızıdır.

1.4.3. Çift Oluşumu

Çift oluşumu işleminde gelen gama ışını çekirdeğin yakınlarında elektron-pozitron çifti üretecek şekilde yok olur. Bir elektron ya da pozitronun durgun kütlesi 0.511 MeV'dir. Dolayısıyla çift oluşumunun gerçekleşebilmesi için en az 1.02 MeV enerjili $(2m_0c^2)$ bir foton gerekir. Bu enerjiye karşılık gelen en büyük foton dalga boyu 1000 fm'dir.

Foton enerjisinin artan kısmı, (15) denkleminde gösterildiği gibi elektron ve pozitronun kinetik enerjisi (T_e) olur.

$$2m_0c^2 + T_e = E_\gamma \tag{15}$$

Daha sonra pozitron, elektronla çarpışarak birbirlerini yok eder ve iki tane 0.511 MeV'lik gama ışını üretirler. Bunlar da enerjilerinin tamamını ya da bir kısmını madde içinde Compton saçılması ve/veya fotoelektron soğurması ile kaybederler.

1.5. Gama Işını Detektörleri

Nükleer radyasyonu tespit etmek için kullanılan tüm detektörler benzer çalışma özelliklerine sahiptirler. Radyasyon detektöre girer, detektör materyalinin atomlarıyla etkileşir, enerjisinin bir kısmını veya tamamını kaybeder ve atom yörüngelerinden daha düşük enerjili elektronların salınmasına neden olur. Bu elektronlar toplanır ve analiz edilmek için elektronik devrelerde akım pulsu ya da voltaj şekline dönüştürülür. Detektör materyalinin seçimi ölçülecek radyasyonun tipine bağlıdır. Gama ışınlarının ölçümünde yarıiletken detektörler ve sintilasyon detektörleri yaygın olarak kullanılan detektörlerdir.

Bu detektörlerin çalışması, gama ışınlarının kullanılan materyal içinde iyonlaşarak enerji kaybetmesi gerçeğine dayanır.

1.5.1. Yarıiletken Detektörler

Yarı iletken detektörler, negatif yük (elektron) veya pozitif yük (boşluk) taşıyıcıları fazla olan n ve p tipi materyaller temas ettirilerek elde edilir. Ters besleme altında detektörde, elektron ve boşluktan arınmış bir hassas bölge oluşur. Detektör veriminin yüksek olması için derin bir hassas bölge, derin hassas bölge elde etmek için de oldukça saf madde gerekir. Bir foton, eklem içinden geçtikçe, bir elektron, valans bandından iletim bandına yükseltilir ve elektron-boşluk çifti üretilmiş olur. İçerdeki elektrik alan, elektronları eklemin pozitif, boşlukları da negatif tarafa doğru sürükler. Bu da bir sayıcı ile sayılabilen bir puls meydana getirir. Şekil 7'de yarıiletken detektörlerin basit şematik gösterimi görülmektedir. Biz çalışmamızda Canberra marka GC1018 Model yüksek saflıkta Ge (HPGe) dedektörü kullandık.

Şekil 7. Yarıiletken dedektör şeması

1.5.2. Sintilasyon Dedektörleri

Gama ışınlarının algılanması için popüler bir yöntem kristal sintilatörler kullanmaktır. Genel anlamda sintilatörler, yüksek enerjili yüklü parçacıklar ona çarptığında düşük enerjili (görülebilir dalga boylarında) fotonlar yayınlayan kristallerdir.

Bir gama ışın dedektörü olarak kullanılırken de, sintilatörler, gama ışınının kendisini algılamaz. Bunun yerine gama ışınları yüklü parçacıklar üretirler ve bu parçacıklar sintilatör ile etkileşirler. Kristalin ürettiği düşük enerjili fotonlar ise daha sonra fotoçoğaltıcı tüpler tarafından toplanır.

Şekil 8'de görünen bir sintilasyon dedektör kristaline kaynaktan gelen gama ışınları, kristal tarafından birçok görünür ışık fotonuna dönüştürülür. Bu dönüşüm, fotoelektrik soğurum, Compton saçılması ve çift üretim yolları ile meydana gelir. Bu üç yöntem de yüksek enerjili elektron pozitron çiftleri oluştururlar, bu parçacıklar da sintilatör ile etkileşir.

Görünür fotonlar, fotoçoğaltıcı tüp adı verilen aygıta girerler. Bu tüp, görünür fotonları voltaj pulslarına dönüştürür. Katoda çarpan görünür bölge fotonları, katottan fotoelektrik olay yolu ile fotoelektron salınmasına neden olur. Elektronlar, elektrik alan sayesinde dinot (dynode) adı verilen metal bir plakaya doğru hızlandırılır. Dinot'a çarpan elektronlar, birçok yeni elektronun serbest bırakılmasını sağlarlar. İlk dinottan fırlatılan elektronlar, elektrik alan sayesinde ikinci dinota hareket eder ve bu böylece devam eder. Her dinot, bir öncekinden daha yüksek potansiyeldedir. Ortalama olarak bir fotoçoğaltıcı tüpte 10-12 dinot bulunur. Yani elektronlar, 10-12 kez bir dinottan diğerine hareket eder. Elektronlar, dinotlara her çarpışta çoğaltılır ve hızlandırılır.

Son dinottaki yük miktarı, tüpe giren foton sayısı ile orantılıdır. Foton sayısı ile kristale gelen gama ışınlarının sayısı da orantılı olduğundan dolayı, çıkış voltajı direk olarak gelen gama ışını ile orantılıdır.

Sintilatörler organik ve inorganik olabilirler. Gama ışın dedektörlerinde çoğunlukla kullanılan dedektörler inorganik maddeler olan sodyum iyodür (NaI) veya sezyum iyodür (CsI) gibi alkali halde (herhangi bir halojen asit tuzu) tuzlardır. Bu maddelere foton yayınlama olasılığını arttırmak ve ışığın kendisinin soğurulmasını azaltmak amacıyla bir miktar katkı eklenir. Bu maddeye, aktivatör (aktifleyici) denir. Talyum ve sodyum genellikle en çok kullanılan aktivatörlerdir. Genellikle pek çok dedektör, NaI(Tl) yani talyum aktifleyici ile sodyum iyodür kristali, ya da CsI(Na) yani sodyum aktifleyici ile sezyum iyodür şeklinde ifadelerle açıklanır. Çalışmada arazide yerinde ölçümler için Canberra marka InSpector1000 model portatif NaI dedektörü kullanılan.

Şekil 8. Sintilasyon dedektör şeması

1.5.3. Gama Işınlarının Enerji Ölçümleri

Dedektöre giren foton, dedektör kristali ile şu sıra ile etkileşebilir; Fotoelektrik soğurma yoluyla enerjisini direk dedektöre aktarabilir. Birkaç kez Compton saçılması yapar ve enerjisinin tamamını kaybetmeden dedektörü terk edebilir. Birkaç Compton saçılmasından sonra fotoelektrik soğurma yapar ve enerjisinin tümünü kaybedebilir. Çift oluşum ile bir elektron pozitron çifti üretir ve daha sonra oluşan pozitron bir elektron ile çift yokolur ve iki foton üretilir. Bu fotonlardan biri dedektörü terk edebilir. Çift oluşum yoluyla oluşan iki foton da, enerjilerini fotoelektrik soğurum ile dedektöre aktarabilir. Ya da çift yokolma fotonlarından her ikisi de dedektörü terk edebilir.

Eğer ilk foton, sonunda fotoelektrik soğurmaya maruz kalıyor ise, dedektör kristaline aktarılan enerji orijinal gama ışını enerjisine eşit olur. Yani, dedektöre giren gama ışını enerjisinde bir pik elde ederiz.

Tek bir Compton olayında saçılan elektrona aktarılan enerjiyi gözönüne alalım. Daha önce bahsedilen Denklem 14 kullanılarak elektronun kinetik enerjisini bulabiliriz;

$$E_{e} = E_{\gamma} - E_{\gamma}' = \frac{E_{\gamma}^{2}(1 - \cos\theta)}{mc^{2} + E_{\gamma}(1 - \cos\theta)}$$
(14)

Dedektör içinde bütün açılarda saçılma olacağından dolayı, saçılan elektronun enerji aralığı $\theta = 0^{0}$ ile $\theta = 180^{0}$ değerleri yukarıdaki denklemde yazılarak elde edilir. Bu elektronların hepsi, dedektörde soğurulur ve bunlar dedektörün enerji spektrumunun Compton bölgesine katkıda bulunur. Bu bölge, 0'dan Compton sınırı olarak bilinen bir maksimuma kadar uzanır.
Bir pozitron elektron çifti, $E_{\gamma} - 2mc^2$ 'lik toplam kinetik enerji ile oluşur ve bu enerjinin dedektördeki kaybı fotopiki meydana getirir. Pozitron atom elektronu ile birleşerek çift yokolma meydana gelir ve iki tane 511 keV'lik foton üretilir. Bu iki foton hiçbir etkileşme yapmadan dedektörden dışarı çıkabilir veya Compton saçılma işlemleri ile tamamen ya da kısmen soğurulabilir. Böylece, $E_{\gamma} - 2mc^2$ 'de (her iki foton kaçarsa), $E_{\gamma} - mc^2$ 'de (fotonlardan biri kaçar diğeri soğurulur ise) ve E_{γ} 'da (her ikisi de soğurulur ise) pikler görmeyi bekleriz. Şekil 9, tüm bu pikleri ve Compton sınırını göstermektedir.

Şekil 9. Dedektörün tek enerjili gama ışınları için verdiği tipik cevap

Ölçülen enerji spektrumundaki pikler, yukarıda görüldüğü gibi belli bir genişliğe (FWHM -Full Width at Half Maximum– Yarı Yükseklikteki Tam Genişlik) sahiptirler. Bu genişlik ölçme işleminin istatistiksel karakterinden kaynaklanır. FWHM=2,35 σ ile hesaplanır. Standart sapma (σ), istatistiksel dağılımın genişliğinin bir ölçüsüdür. Aynı zamanda $\sigma = \sqrt{N}$ 'dir. N, bir dedektöründe bir fotonun ortaya çıkardığı fotoelektronların sayısıdır. N, radyasyon enerjisi E' ye bağımlı olduğundan FWHM = \sqrt{E} 'dir. Dedektöre giren gama ışınları birden fazla, çoklu Compton saçılmaları yaparsa, Compton sınırı ile fotopik arasındaki enerji boşluğu doldurulacaktır.

Ayrıca bu spektrumun düşük enerji bölgesinde çeşitli pikler oluşabilir (Şekil 10). Bunlardan biri, geri saçılma (backscatter) pikidir. Kaynaktan çıkan gama ışınları, dedektör civarındaki materyallerden Compton saçılması yapabilir ve enerjisinin düşüşü ile beraber tekrar dedektöre girebilir. Geri saçılma pikinin enerji değeri, saçılma açısı $\theta = \pi$ ve yüksek enerjiler için,

$$hv' \cong \frac{m_0 c^2}{2}$$
(16)

olarak verilir. Buradan, bu enerjinin 0.2-0.25 MeV civarında olduğu görülür.

En düşük enerji değerinde gözlenen pik ise, dedektör çevresindeki materyallerin gama ışınlarını fotoelektrik soğurması sonucunda, materyal çekirdeğinin foton yayınlamak yerine enerjisini atomun bir elektronuna aktarması (iç dönüşüm) ve boş kalan elektronun yerine başka bir elektronun düşmesi ile oluşan X- ışınlarını göstermektedir.

Şekil 10. (a) Detektör ve çevresindeki materyallere çarpan gama ışınları, (b) düşük enerji bölgesinde oluşan pikler

Eğer kaynaktan çıkan gama ışınlarının enerjileri yüksek ise, dedektör çevresindeki materyallerde çift oluşum olasılığı olacaktır. Bu çift oluşum fotonlarından bir tanesi dedektöre girer ve 0.511 MeV değerinde yokolma piki gözlenir (Knoll, 1999).

1.5.4. Dedektör Seçimi

Gama ışınları yüksüz olduklarından dolayı kendileri iyonizasyon yapamazlar. Ölçülebilmeleri için enerjilerinin tümünü veya bir kısmını elektronlara aktarmaları gerekmektedir. Gama ışınları hiçbir etkileşmeye girmeden materyal içerisinde uzun bir yol kat edebilirler, hatta kolaylıkla materyali delip geçebilirler. Bu nedenle detekte edilmeleri zordur. Kullanılacak olan dedektörün seçimi, yapılmak istenen ölçümün tipine bağlı olacaktır. Detektör seçiminde, dedektörün verimi, enerji ve zaman çözme gücü gibi özelliklerine dikkat edilir.

Detektör verimi, mutlak (absolute) ve gerçek (intrinsic) olarak ikiye ayrılır. Mutlak verim (ε_{abs}), kaynaktan saçılan fotonların detektör tarafından ölçülebilme olasılığını, gerçek verim (ε_i) ise, detektöre çarpan fotonların ölçülebilme olasılığını anlatmaktadır. Yani, $\varepsilon_i = \frac{4\pi}{\Omega} \varepsilon_{abs}$ 'dir. Burada Ω , dedektörün kapladığı katı açıyı göstermektedir.

Mutlak verim, detektörün kapladığı katı açıya, yani alanı ve kaynaktan uzaklığına bağlıdır. Dairesel bir detektör için $\Omega = \pi .a^2 .d$ olarak verilir (Şekil 11). Gerçek verim ise, katı açıdan bağımsız, detektör materyaline, radyasyon enerjisine ve dedektörün kalınlığına bağlıdır.

Şekil 11. Dairesel bir detektör için katı açı

Enerji çözme gücü R = FWHM/ \overline{E} olarak verilir. Burada \overline{E} , pikin ortalama enerjisidir.

Gama spektroskopisinde en çok kullanılan sintilasyon (NaI) ve yarıiletken detektörler (Ge) karşılaştırıldığında, NaI detektörleri daha yüksek verime sahiptir, daha ucuzdur ve çalışma şartları daha basittir. Örneğin NaI detektörleri için soğutma gerekli değildir. NaI, Ge'dan daha yüksek Z sayısına sahip olduğundan (iyodun Z sayısı 53), foton soğurulma olasılığı bu detektörle daha yüksektir. Öte yandan, yarıiletken Ge detektörlerinin enerji çözme gücü NaI detektörlerine kıyasla çok üstündür. Örneğin, ⁶⁰Co'ın 1332 keV gama enerjisi için NaI'ün çözme gücü (FWHM) 72 keV ise yüksek saflıkta bir Ge için 1.8 keV'dir (Şekil 12). Bu özellik karmaşık gama spektrumları ölçümünde çok önemlidir. Bu tezin konusu olan uygulamamda, yüksek saflıkta Ge (Hyper purity Ge, HPGe) dedektörü kullanılmıştır.

Şekil 12. ⁶⁰Co'ın 1172 ve 1332 keV gama enerjilerinde NaI ve HPGe detektörlerinde elde edilen spektrum

1.6. Çalışma Bölgesinin Özellikleri

Bu tezde seçilen çalışma bölgesi Kuzeydoğu Anadolu'da, Doğu Karadeniz kıyı şeridi boyunca uzanan, $40^{0}20'$ ve $41^{0}12'$ doğu meridyenleri ile $40^{0}20'$ ve $41^{0}17'$ kuzey paralelleri arasında yer alan deniz kumsallarıdır (Şekil 13).

Yaklaşık 90 km uzunluğundaki çok dar olan kıyı şeridi ve alüvyon düzlükleri Rize topografyası içinde ayrı bir yeri vardır. Çok sayıda akarsu tarafından kesilen bu şeridin en geniş düzlüklerini taban seviyesi ovaları oluşturur. Tümüyle akarsuların getirdiği alüvyonlardan oluşan bu düzlükler, akarsuların denize kavuştuğu noktadan itibaren içeriye doğru 500-600 metreye kadar taban seviyesi ovası şeklinde, 9-10 km'ye kadar da taraça düzlükleri şeklinde uzanırlar. Bu düzlüklerin kıyı boyunca olan genişlikleri ise yaklaşık olarak 200 m ile 1000 m arasında değişmekte olup hemen tamamı yerleşim alanı olmuştur. Bunlardan en geniş olanı Ardeşen ilçe merkezinin yerleşim alanını oluşturan Fırtına Deresi'nin taban seviyesi ovasıdır.

Kıyı çizgisi küçük boyutlu ve asimetrik girinti ve çıkıntılardan oluşur. Bütün burunların önüne kıyıdan 5-25 m, hatta bazen 150 m uzaklıkta ve boyutları 5-10-15 m arasında değişen taş adacıkları mevcuttur. Diğer taraftan karayolunun inşası sırasında geniş ölçüde tahrip edilmiş olmasına rağmen yer yer taraça ve falezlere de rastlanmaktadır.

Şekil 13. Çalışma bölgesi

Ayrıca Rize ilinin genel jeolojisi ile ilgili olarak MTA Trabzon Bölge Müdürlüğü ve KTÜ Jeoloji Mühendisliği'nden elde edilen bilgiler doğrultusunda, Rize İkizdere-Güneyce bölgesinden yukarıya doğru ve Çayeli Kaptanpaşa Vadisi boyunca da önceden jeolojik harita üzerinde belirlenen istasyonlardan taraça ve kayaç örneklemeleri yapılmıştır.

1.6.1. Genel Jeoloji

1.6.1.1. Hamurkesen Formasyonu (JLh)

İnceleme alanında Kaçkar Granitoyidler ile çevrelenmiş olan bazik volkanitler, yaşları kesin olmamakla birlikte benzer litolojik özellikleri ve stratigrafik konumu nedeniyle Hamurkesen Formasyonu ile deneştirilerek aynı formasyon adı verilmiştir.

Bazalt-andezit lav ve piroklastlarından oluşan birimde genelde piroklastlar egemendir. Tabakalı yapı göstermezler. Birimin kalınlığı yaklaşık 500 m kadardır. Formasyon yaşı kesin olarak belirlenememiştir. Ancak Doğu Ponditler'in genelinde Üst Jura-Alt Kretase yaşlı resifal kireç taşlarının altında izlenen volkano-tortul karakterli bu formasyonun Liyas-Dogger yaş aralığında geliştiği kabul edilmektedir.

1.6.1.2. Berdiga Formasyonu (JKr)

İncele alanında izlenen Üst Jura-Alt Kretase yaşlı resifal kireç taşlarına litostratigrafik benzerlikleri nedeniyle Berdiga formasyonu işe deneştirilerek aynı ad verilmiştir.

Formasyon açık gri renkli resifal kireç taşı ve kumlu kireç taşlarından oluşur. Kaçkar granitoyidleri kireç taşlarını kesmiş ve kontakt metamorfizmaya uğratmıştır. Bu nedenle diğer formasyonlarla olan alt ve üst dokanak ilişkileri sağlıklı olarak görülmemektedir. Birim genelde Kaçkar Dağları yöresinde 10-30 m kalınlıktadır.

1.6.1.3. Çatak Formasyonu (Krü-1)

İnceleme alanında İyidere, Derepazarı, Çamlıhemşin, Çayeli-Kaptanpaşa güneylerinde geniş bir alanda yüzeylenir. Ayrıca İkizdere-Güneyce, Varda Yayla, Ballıköy (Anzer) ve Ovit Geçidi yörelerinde de izlenir.

Çatak formasyonu bazalt-andezit karaterli lav ve piroklastlar ile kumtaşı, çamurtaşı, marn ve silttaşı aratabakalarından oluşan bazik volkanotortul bir istif yapısına sahiptir. Birim genel olarak gri-yeşil renklidir. Birim kalınlığı 750-1000 m arasında değişir.

1.6.1.4. Kızılkaya Formasyonu (Krü-2)

Formasyon inceleme alanında, Çayeli-Madenköy ile İkizdere-Güneyce arasındaki bir alanda ve Ardeşen-Tunca, Çamlıhemşin-Topluca yörelerinde yüzeylenmektedir.

Birim genelde pembemsi gri ve gri-beyaz renkli riyodasit-dasitik lav ve piroklastlarından oluşur. Birimin kalınlığı 400-500 m civarındadır.

1.6.1.5. Çağlayan Formasyonu (Krü-3)

Formasyon inceleme alanında Kalkandere güneyi, Güneysu çevresi, Çayeli-Madenköy, Aşıklar, Pazar-Başköy, Ardeşen-Köprüköy, Tunca, Fındıklı ve güneyi ile Çamlıhemşin-Topluca yörelerinde yüzeylenir.

Çağlayan formasyonu bazalt-andezit lav ve piroklastlarıyla irlikte ara tabakalı kırmızı biyomikrit, marn ve kumtaşlarından oluşur.

1.6.1.6. Çayırbağ Formasyonu (Krü-4b)

Formasyon alanında, Ardeşen-Işıklı güneyinde ve Fındıklı-Saat Köyü yörelerinde yüzeylenir. Formasyon yeşilimsi gri, pembemsi ve morumsu gri renk tonlarında görülen riyolit-riyodasit lav ve piroklastlarından oluşur. Birimin kalınlığı 100-200 m arasında değişir.

1.6.1.7. Bakırköy Formasyonu (Krü-5a)

İnceleme alanında Rize il merkezi ile Kalkandere ilçesi arasındaki bir alanda yüzeylenir. Formasyon gri renkli marn, gri-beyaz renkli kireç taşı, kumlu kireçtaşı ve az oranlarda kumtaşlarından oluşur. İnce orta kalınlıkta bir tabaka yapısı mevcuttur. Birimin kalınlığı 100-250 m arasında değişir.

1.6.1.8. Kaçkar Granitoyidleri I,II (γ_2, γ_3)

Doğu Karadeniz bölgesinin doğu kesiminde yer alan ve bölgenin en yüksek zirvelerini oluşturan Kaçkar Dağları, granitoyidlerin yaygın olarak izlendiği yerlerdir.

İnceleme alanında Üst Kretase volkanitleri içersine sokulum yapmış ve dokanakları boyunca kontakt metamorfizma meydana getirmiş olan granitoyidler Kaçkar granitoyidi I (γ_2) olarak tanımlanmıştır.

Eosen volkanitleri (Kabaköy Formasyonu) içinde görülen küçük çaplı intrüzif stoklar daha genç magmasal evreye ait intrüzyonlar olarak değerlendirilmiş ve Kaçkar granitoyidi II (γ_3) olarak ayırt edilmiştir.

1.6.1.9. Kabaköy Formasyonu (Ev)

Kabaköy formasyonuna ait tipik yüzeylenmeler Rize il merkezi, Kalkandere, Çayeli, Pazar yörelerinde izlenmektedir.

Formasyon masif ve düzensiz katmanlanma gösteren andezit ve yer yer de bazaltik lav, tüf, breş ve aglomeralardan oluşmuştur. Birim içinde boyutları birkaç cm den 1 m' ye kadar değişen volkanik kökenlik bloklar yer almaktadır. Birimin kalınlığı 800 m' dir.

1.6.1.10. Pazar Formasyonu (Mp)

Formasyon tabanda yer yer çakıltaşları ile başlayıp, üste doğru kumtaşı, kumlu kireçtaşı ve kireçtaşı arakatmanları içeren gri renkli marn ardalanmasıyla devam eder. Birimin en üst kesimleri kum, çakıltaşı ve kayaç parçaları içeren kırmızı renkli kil ve çamurlarla son bulur. Birimin kalınlığı 30-100 m arasında değişmektedir.

1.6.1.11. Hamidiye Formasyonu (Pl)

Formasyon Hamidiye, Değirmendere, Ardeşen-Çamlıhemşin yol kavşağı ile Elmalı Mahallesi arası, Düz Mahalle ve Pirinçlik yöresinde yüzeylenmektedir.

Kötü katmanlama gösteren, kum ve kil mercekleri içeren, gevşek çimentolu çakıl taşlarından oluşturmuştur. Birimin kalınlığı 50 m olarak belirlenmiştir.

1.6.1.12. Çağrankaya Formasyonu (Ma, Obs)

İnceleme alanında İkizdere-Büyük Yayla (Veşo Yayla) ve Çağrankaya Yayla yöresinde yüzeylenir. Çağrankaya formasyonu andezit, andezit tüf (Ma) ve obsidyenlerden (Obs) oluşmuştur. Andezitler koyu gri-siyahımsı, andezit tüfler ize açık renkli olarak izlenir. Obsidyenler siyah ve kahve renklidir. Formasyon kalınlığı, andezitik tüfler için 150 m, obsidyen için 50-100 m olarak belirlenmiştir.

2. YAPILAN ÇALIŞMALAR

2.1. Giriş

Bu çalışmada amaçlanan, Rize İli deniz kumlarındaki doğal gama radyonüklid dağılımlarının, kum tane boyutuna ve mineral konsantrasyonuna göre ayrıntılı incelemesi başlıca üç çalışmayla tamamlandı. Örneklerin toplanması için arazi çalışmaları, örneklerin ölçümlere hazırlanması için laboratuar çalışmaları ve elde edilen sonuçların analizleri için ilgili parametrelerin hesaplanması yapıldı.

Gama radyoaktivite ölçümlerinde Rize Üniversitesi Fen-Edebiyat Fakültesi Fizik Bölümü'ndeki HPGe detektör sistemi kullanıldı. Mikroskobik ölçümler KTÜ Fen-Edebiyat Fakültesi Fizik Bölümü'nde ve KTÜ Maden Mühendisliği Fakültesi'nde, ICP-MS ölçümleri Kanada'da ACME Analytic Laboratuarı'nda ve toplam alfa-beta ölçümü TAEK-ÇNAEM Sağlık Fiziği Laboratuarı'nda yapıldı.

2.2. Arazi Çalışmaları

2.2.1. Sahil Kum Örneklemelerinin Yapılması, Örneklerin Toplanması

Yaklaşık 90 km uzunluğundaki Rize kıyı şeridi boyunca, GPS ile koordinatları belirlenen 7 istasyonun her birinde (Tablo 4), bölgeyi temsil edecek biçimde 3'er örnekleme yapıldı. Örnekleme, IAEA'nın 1363 no'lu teknik raporunda belirtildiği biçimde yapıldı. 1 m² lik bir alanın merkezinden ve dört köşesinden olmak üzere, yüzey tabakasından (0-20 cm derinlik) kum örnekleri alındı. Bu beş örnek, örnekleme yerini temsil ettiği kabul edilerek yaklaşık olarak 20 kg alındı, örnekleme noktasında homojen olarak karıştırıldı ve önceden etiketlenen taşıma kaplarına yerleştirildi (IAEA, 2003). Toplanan örnekler laboratuar çalışmaları için KTÜ Maden Mühendisliği Cevher ve Kömür Ayrıştırma Laboratuarı'na götürüldü.

İstasyon No	İstasyon Adı	Koordinatları
1	Fındıklı	$41^{0}16$ 'N $- 41^{0}08$ ' E
2	Ardeşen	$41^{0}12$ 'N $- 40^{0}57$ ' E
3	Pazar	$41^{0}10$ 'N $- 40^{0}53$ ' E
4	Çayeli	$41^{0}04$ 'N $- 40^{0}42$ ' E
5	Rize(Merkez)	$41^{0}01$ 'N $- 40^{0}26$ ' E
6	Derepazarı	$41^{0}01$ 'N $- 40^{0}25$ ' E
7	İyidere	$41^{0}00'N - 42^{0}22'E$

Tablo 4. Sahil boyunca kum örneklemeleri yapılan istasyonlar ve koordinatları

2.2.2. İkizdere ve Çayeli-Kaptanpaşa Vadileri Kum ve Kayaç Örneklemeleri

Rize ilinin genel jeolojisi ile ilgili olarak MTA Trabzon Bölge Müdürlüğü ve KTÜ Jeoloji Mühendisliği'nden elde edilen bilgiler doğrultusunda önceden jeolojik harita üzerinde belirlenen istasyonlardan literatürde belirtilen biçimde kum ve kayaç örneklemeleri yapıldı (IAEA, 2003). Rize İkizdere-Güneyce bölgesinden yukarıya doğru 4 kum, 3 kayaç ve Çayeli Kaptanpaşa Vadisi boyunca da 5 kum, 6 kayaç örneği (Tablo 5) etiketlenerek, laboratuar çalışmaları için KTÜ Maden Mühendisliği Cevher ve Kömür Ayrıştırma Laboratuarı'na götürüldü. Örnek isimlendirmesi istasyon adı örneğin KAPT1+K veya G veya B ve örnek G1, G2, K1, K2 şeklinde yapıldı. (K: Kum, B: Bazalt, G: Granit)

Bölge	İstasyon Adı	Bölge	İstasyon Adı
	KAPT1K		İKİZ1K
	KAPT1G1		İKİZ1G
	KAPT1G2		İKİZ2K
Jaşa	KAPT2K1	yce	İKİZ2G
tanţ	KAPT2K2	üne	İKİZ3K
(ap)	KAPT2G1	Ē	İKİZ4K
eli-F	KAPT2G2	dere	İKİZ4B
aye	КАРТ3К	kiz	
Ĵ	KAPT4K	· <u> </u>	
	KAPT4B		
	KAPT4G		

Tablo 5. Sediment ve kayaç örneklemeleri yapılan istasyonlar

2.3. Laboratuar Çalışmaları

2.3.1. Örneklerin Hazırlanması

Sahilden ve yukarı bölgelerden toplanan kum örnekleri KTÜ Maden Mühendisliği Cevher ve Kömür Ayrıştırma Laboratuarı'nda ılık suda yıkanarak temizlendi ve 110 ⁰C etüvde yaklaşık 12 saat süreyle kurutularak sabit kuru ağırlıkları elde edildi. Numunelerin her biri laboratuarda örnek bölücü yardımıyla 1/4'e, 1/16'e ve 1/64'e bölünerek homojenize edildi.

2.3.1.1. Kum Örneklerinde Mineral Ayrıştırma İşlemi

Sahil kum örneklerinde ağır mineral konsantresini ayırmak için akış diyagramı oluşturuldu (Şekil 14). Temizlenen ve kurutulan kum örnekleri 1000 µm'lik elekten elenerek yabancı maddelerden (yaprak, deniz kabuğu, taş vs.) arındırıldı.

Ağır minerallerin yoğunlukları 2.89 g/cm³'den büyük olduğundan ilk olarak gravimetrik ayırma işlemi gerçekleştirildi. Özgül ağırlık farkına dayalı ağır ortam

ayrıştırması, bromoform (CHBr₃, d=2.89 g/cm³) kullanılarak yapıldı. İçersinde bromoform bulunan 1000 ml'lik beher kabına spatula ile kum örneği aktarıldı, cam karıştırıcı ile karıştırıldı ve bir müddet beklenilerek sıvı üzerinde yüzen hafif kum mineralleri metal süzgeç yardımıyla ortamdan alındı. Bromoform sıvısında çöken ağır mineral konsantresi, kâğıt filtreden sıvı süzdürülerek elde edildi (Şekil 15). Bu konsantre kendi içersinde manyetik ve manyetik olmayan ağır mineralleri içermektedir (Rosenblum, 1958,). Buna göre ağır mineral konsantresi manyetik ve manyetik olmayan mineral gruplarına bir el mıknatısı ayrıştırıldı (Şekil 16). Böylece, başlangıç (işlenmemiş) numune, hafif mineraller, manyetik ve manyetik olmayan ağır mineraller olmak üzere her bölgeye ait kum örneğinden 4 grup numune elde edildi.

Bu işlem, numuneler içersindeki ağır mineral konsantresinin oldukça az miktarda bulunması, gravimetrik ayrıştırma için gerekli olan bromoformun uçucu, zehirli ve çok pahalı olması ve de laboratuardaki araç-gereç kullanımının kısıtlı olması gibi etkenlerden dolayı, sahil boyunca her bölgeye ait birer numune için uygulandı.

Bu numuneler, doğal radyoaktivite düzeyini belirleyebilmek için kapağı hava kaçırmayan polietilen kaplara kondu, hassas terazide tartıldı ve etiketlendi. İçersindeki ²²²Rn ve ²²⁰Rn ve bunların torun çekirdekleriyle radyoaktif dengeye gelebilmeleri için 30 gün bekletildi.

Örneklerindeki majör ve iz element tespiti ve mineralojik dağılım incelemeleri için öğütme işlemi yapıldı, etiketlendi. ICP-MS ölçümleri için Kanada'da Acme Laboratuarı'na, XRD ölçümleri için KTÜ Fen-Edebiyat Fakültesi Fizik Bölümü'ne gönderildi.

Şekil 14. Mineral ayrıştırma için akış diyagramı

Şekil 15. Gravimetrik ayırma işleminde kullanılan deney düzeneği

Şekil 16. Manyetik (sağda) ve manyetik olmayan (solda) ağır mineral grupları

2.3.1.2. Kum Örneklerinde Tane Boyutu Belirleme İşlemi

Temizlenen ve kurutulan kum numunelerinde tane büyüklüklerini tespit etmek için uygulanan elek analizi sonucu 6 farklı tane büyüklük kesiti (Tablo 6) elde edildi. Bu elek aralıklarında elenen kum örneklerinden, sahil boyu her bölgenin 3'er örneğine ait 126 adet, yukarı bölgelere ait 54 adet numune hazırlandı.

Bu numuneler, doğal radyoaktivite düzeyini belirleyebilmek için kapağı hava kaçırmayan polietilen kaplara kondu, hassas terazide tartıldı ve etiketlendi. İçersindeki ²²²Rn ve ²²⁰Rn ve bunların torun çekirdekleriyle radyoaktif dengeye gelebilmeleri için 30 gün bekletildi.

No	Elek Aralığı (µm)
0	İşlenmemiş Numune
1	1000-850
2	850-600
3	600-300
4	300-250
5	<250

Tablo 6. Elek aralıkları

2.3.1.3. Kayaç Örneklerinin Hazırlanması

Kayaç örnekleri KTÜ Maden Mühendisliği Cevher ve Kömür Ayrıştırma Laboratuarında bazalt ve granit olarak ayrıştırıldı. Her bir kayaç için oluşturulan numune hazırlama akış diyagramı Şekil 17'deki gibidir.

Kayaç numunesi laboratuarda çekiç yardımıyla kaba kırma işlemi yapıldı. Burada numune sırasıyla; çekiçle kaba kırma, dilim kesme, ince kırma, örnek bölme, merdanelide öğütme, örnek bölme, ince öğütme ve tekrar örnek bölme işlemleri gerçekleştirildi. Kayaçlardan 9 adet ince kırılmış ve 9 adet ince öğütülmüş kısımlar için toplam 18 adet örneğin hazırlama işlemi gerçekleştirildi (Tablo 7).

Bu numuneler, doğal radyoaktivite düzeyini belirleyebilmek için kapağı hava kaçırmayan polietilen kaplara kondu, hassas terazide tartıldı ve etiketlendi. İçersindeki

²²²Rn ve ²²⁰Rn ve bunların torun çekirdekleriyle radyoaktif dengeye gelebilmeleri için 30 gün bekletildi.

Şekil 17. Kayaç örnekleri hazırlama akış diyagramı

	Numune Adı		Numune Adı
1	İkiz1GK	10	İkiz1GÖ
2	İkiz2GK	11	İkiz2GÖ
3	İkiz4BK	12	İkiz4BÖ
4	Kapt1G1K	13	Kapt1G1Ö
5	Kapt1G2K	14	Kapt1G2Ö
6	Kapt2G1K	15	Kapt2G1Ö
7	Kapt2G2K	16	Kapt2G2Ö
8	Kapt4BK	17	Kapt4BÖ
9	Kapt4GK	18	Kapt4GÖ

Tablo 7. Kayaç örnekleri (K: Kırma, Ö: Öğütme)

2.3.2. Mikroskobik Çalışma

Kayaç örnekleri içersindeki minerallerin tespiti için kayaç numunelerinden 3-5 mm kalınlığında dilim kesme işlemi yapıldı. KTÜ Jeoloji Mühendisliği Örnek Hazırlama ve Araştırma laboratuarında, dilimin tek tarafı mikroskop lamına yapıştırıldı ve diğer taraftan zımpara makinesi ile zımparalandı. Bu işlem, minerallerin optik mikroskopta görüntülenmesini sağlamak amacıyla, lamdaki numunenin şeffaflaşmasına kadar sürdürüldü. Elde edilen mineral fotoğrafları sayfa 121'de verilmiştir.

2.3.3. X-ışını kırınımı Ölçümleri

Mineral tayininde kesin ve güvenilir metot X-ışını difraksiyon (XRD) yöntemidir. Makro ve mikro incelemelerde belirlenemeyen bileşenler, X-ışını kırınım desenlerinden faydalanılarak, kesin bir tayinle saptanabilir ve kompozisyonları başarılı bir şekilde ve düşük hata paylı olarak ortaya konabilir.

Manyetik, manyetik olmayan ve hafif mineral konsantrasyonuna ayrıştırılmış kum örneklerinin, kayaç örneklerinin ve yukarı bölgelere ait kum örneklerinin X-ışını kırınım analizi yapıldı. Bu işlem için Şekil 18'de gösterilen Rigaku D/Max-IIIC difraktometresi kullanıldı. Ölçümler sırasında, difraktometredeki bakır hedefe 35 keV'luk gerilim ve 30 mA'lik akım uygulanarak elde edilen CuK_{α} ($\lambda = 1,5418$ Å) X-ışınları kullanıldı. Ölçümler, oda sıcaklığında, $20^{\circ} \le 2\theta \le 60^{\circ}$ aralığı boyunca 0.05°'lik adımlar ile yapıldı.

Şekil 18. X-ışını difraktometresi (Rigaku D/Max-IIIC)

2.3.4. Elemental Analiz Ölçümleri

İndüktif Olarak Eşleştirilmiş Plazma-Kütle Spektrometresi, ICP-MS, (Inductively Coupled Plasma – Mass Spectrometer) katı ve sıvı örneklerde çok sayıda elementin hızlı, ucuz, hassas ve doğru biçimde, niteliksel ve niceliksel olarak ölçülmesine olanak sağlayan ileri teknoloji ürünü bir analiz tekniğidir. Teknik elektromanyetik indüksiyonla 10.000 °K sıcaklığa ulaştırılan argon plazması tarafından örneğin iyonize edilmesi; iyonize elementlerin kütle spektrometresi tarafından burada kütle/yük (m/z) oranlarına göre ayrılarak ve element derişimlerinin elektron çoklayıcı bir dedektör tarafından ölçülmesi aşamalarını içerir. Örnekteki tüm elementlerin derişimleri 1 ile 2 dakika arasında değişen oldukça kısa bir sürede ölçülür.

Analitik bir cihaz olarak ICP-MS iki üniteden oluşmaktadır: i) İndüktif olarak eşleştirilmiş plazma (ICP) ve ii) Kütle spektrometresi (MS).

Manyetik, manyetik olmayan ve hafif mineral konsantrasyonuna ayrıştırılmış kum örneklerinde, kayaç örneklerinde ve yukarı bölgelere ait kum örneklerinde 11 majör oksit ve 40 adet iz element tayini, Kanada'da Acme Laboratories Inc.'de Perkin Elmer Elan 6000 model ICP-MS (Şekil 19) kullanılarak yapıldı. Sonuçlar sayfa 88'de verilmiştir.

Şekil 19. ICP-MS (Perkin Elmer Elan 6000)

2.3.5. Toplam Alfa-Toplam Beta Radyoaktivite Ölçümleri

Numunelerin toplam alfa ve toplam beta radyoaktivite analizleri, ÇNAEM Sağlık Fiziği Bölümü Laboratuarında bulunan Berthold marka LB770 model 10 Kanallı Düşük Seviyeli Alfa-Beta sayım cihazında yapıldı. Dedeksiyon ortamı ve elektronik devre olmak üzere başlıca iki kısımdan meydana gelir (Şekil 20).

Şekil 20. Alfa-Beta sayım cihazının blok diyagramı

Dedeksiyon ortamı olarak en çok kullanılan gazlar argon, ksenon, izobütan, helyum ve metandır. Bir tüp, bu gazlardan biri veya ikisinin karışımı ile doldurulup içine iki elektrot

konulur. Gaz içinde meydana gelen iyonlar zıt işaretli elektrotlarda toplanırlar, İyonların elektrotlarda toplanmasından meydana gelen elektrik akımı laboratuar sayım cihazının elektronik devresinde dedekte edilir.

Alfa veya beta sayımında kullanılan bu gaz akışlı orantılı sayıcılar genellikle yarım küre şeklinde bir sayım odasına sahiptir. Ortalarında tungstenden yapılmış bir tel halka bulunur. Tel, anot görevi, oda duvarları da katot görevi görür. Akışkan gaz, oda içinden geçirilerek oda içinde pozitif iyonlar oluşturulur. Dedektörün çalışma voltajı 1650 V olup çapı 5 cm'dir. Bu sayıcılarda kullanılan akışkan gaz %90 argon ve %10 metan karışımı içermektedir.

Numuneler, önceden darası ve boş sayımı alınmış paslanmaz çelikten yapılmış olan özel kap (planşet) içine kabı taşmayacak şekilde planşet içerisinde tartılarak kayıt edildi. Planşet 105 °C sıcaklığındaki bir etüv fırını içine konularak numuneler iyice kurutuldu, Daha sonra bütün örnekler toplam alfa ve toplam beta aktiflikleri tayin edilmek üzere detektöre konularak 500 dakika süreyle sayıldı.

2.3.6. Gama Spektrometrik Ölçümler

Gama ışını spektrometrik analizler Rize Üniversitesi Fen-Edebiyat Fakültesi Nükleer Fizik Laboratuarı'nda bulunan GC1018 model, % 10 bağıl verime sahip yüksek saflıkta Ge (HPGe) detektör kullanılarak yapıldı. Dedektörün numune odası inşaat malzemelerinden ve kozmik ışınlardan gelen zemin (background) radyasyona karşı 10 cm kalınlığında kurşun bloklarla zırhlanmıştır. Spektrum alma ve analiz işlemleri çok kanallı analizöre (MCA) sahip bilgisayarda Genie 2000 v3.0 yazılımı kullanılarak yapıldı (Canberra, 2004). Dedektörün enerji çözünürlüğü ⁶⁰Co'ın 1332 keV gama fotonu için 1.8 keV'tur. Bu çalışmada kullanılan gama spektrometre sisteminin akış diyagramı Şekil 21'de gösterilmiştir.

Şekil 21. Gama Spektrometre sisteminin şematik gösterimi

2.3.6.1. Enerji Kalibrasyonu

Gama spektrumundaki piklerin hangi enerjideki gamalar olduğunu belirlemek için çok ve farklı enerjili γ piklerine sahip bir kaynak kullanılarak enerji kalibrasyonu yapılır. Buda çok kanallı analizörde (MCA) elde edilen spektrumda, gama enerjilerinin analiz edilebilmesi için, kanalların her birinin hangi enerjiye karşılık geldiğinin bilinmesini gerektirir. Böylece numunenin spektrumunda bulunan radyoaktif çekirdek türleri enerjilerine bakılarak belirlenebilir.

Gama enerjileri bilinen standart bir gama kaynağına ihtiyaç vardır. Bu çalışmada enerji kalibrasyonu için bir çok farklı gama enerjisinde gama yayan (Şekil 22)¹⁵²Eu kalibrasyon kaynağı kullanıldı.¹⁵²Eu kaynağa ait bilgiler Tablo 8'de verilmiştir.

Şekil 22. ¹⁵²Eu'nin bozunma şeması

152 Eu (T _{1/2} = 13.516 y)						
$E_{\gamma}(keV)$	$I_{\gamma}\%$	Gama/s	$E_{\gamma}(keV)$	$I_{\gamma}\%$	Gama/s	
121.8	28.4	30719.65	778.9	13.0	14061.81	
244.7	7.5	8123.40	964.1	14.6	15792.50	
344.3	26.6	28772.63	1085.8	10.2	11043.93	
411.1	2.2	2412.14	1112.1	13.6	14710.82	
444.0	2.8	3050.33	1408.0	20.8	22498.90	

Tablo 8. ¹⁵²Eu kalibrasyon kaynağının özellikleri

Enerji kalibrasyonu için, dedektör önüne konulan ¹⁵²Eu standart kaynağın spektrumu (Şekil 23) elde edilerek enerjilerin hangi kanallara geldiği tespit edildi (Tablo 9). Şekil 24'te enerjinin kanallara göre değişim grafiği kalibrasyon eğrisi gösterilmiştir. Kalibrasyon eğrisinden,

(17)

Enerji-kanal sayısı ilişkisi programca lineer fitle elde edildi. Kalibrasyon bağıntısı sık sık kontrol edilerek kayma olup olmadığı saptandı.

Şekil 23. Enerji kalibrasyonu için ¹⁵²Eu standart kaynakla elde edilen spektrum

Kanal Numarası	E (keV)	Kanal Numarası	E (keV)
283	121.8	1944	778.9
594	244.7	2168	867.3
845	344.3	2413	964.1
1014	411.1	2787	1112.1
1097	444.0	3535	1408.0

Tablo 9. Enerjinin kanallara göre değişimi

Şekil 24. Enerjinin kanala göre değişimi

2.3.6.2. Verim Kalibrasyonu

Dedektörün saydığı gama sayımlarının detektöre gelen gerçek gama sayısını belirleyebilmek için detektöre ait verim düzeltmesinin yapılması gereklidir. İlgilenilen enerjilerdeki detektör verimleri aşağıdaki formül kullanılarak hesaplanmıştır.

$$\varepsilon = \frac{N}{A \cdot I_{\gamma} \%}$$
(18)

 ε ; HPGe dedektörünün ilgilenilen gama enerjisindeki verimi, N; ilgilenilen enerjideki toplam sayım hızı (sayım/zaman), A; verim kalibrasyonu için kullanılan standart kaynağın o anki aktivitesi (boz/s), $I_{\gamma}\%$; gama ışınının bolluğu'dur.

Böylece farklı gama enerjileri için hesaplanmış olan verim değerlerinin (Tablo 10) ilgili gama enerjilerine karşı OriginPro 8.0 yazılımında grafiği (Şekil 25) çizdirilerek eğri denklemi Eşitlik (19) elde edilmiştir.

E (keV)	Verim
121.8	0.005543
244.7	0.003442
344.3	0.002471
411.1	0.002057
444.0	0.001895
778.9	0.001050
867.3	0.000953
964.1	0.000868
1112.1	0.000774
1408.0	0.000661

Tablo 10. Standart kaynağın gama enerjilerindeki dedektörün verim değerleri

$$Verim = \exp(-31.39 + 14.39x \ln(E) - 2.518x \ln(E)^{2} + 0.1367x \ln(E)^{3})$$
(19)

Şekil 25. Verim değerlerinin enerjilere göre değişimi

2.3.6.3. Minimum Dedeksiyon Limiti

Minimum dedeksiyon limiti, belli koşullar altında ölçüm sisteminin dedeksiyon kapasitesini ifade etmek için kullanılan bir terimdir. Minimum Dedeksiyon Limiti (MDL) için kullanılan ifade (IAEA, 1989)

$$MDL = 4.66\sqrt{Background / t. Y..m.\eta}$$
(20)

Burada Background; arkaplan radyasyon değeri, t; sayım zamanı, Y; bolluk, m; kütle ve η; fotopikteki verimdir.

Ana Çekirdek	Kız Çekirdek	Enerji (keV)	MDL (Bq/kg)
²³⁸ U	²¹⁴ Pb	295.2	4.31
	²¹⁴ Pb	351.9	4.09
	²¹⁴ Bi	609.3	5.44
	²¹⁴ Bi	1120.3	15.22
²³² Th	²¹² Pb	239.63	2.25
	²⁰⁸ Tl	583.8	5.27
	²¹² Bi	727.1	6.12
	²²⁸ Ac	911.2	9.48
⁴⁰ K		1460.1	79.87

Tablo 11. Detektörle algılanan radyonüklidlerin minimum dedeksiyon limit değerleri

2.3.6.4. Aktivite Konsantrasyonu

²³⁸U, ²³²Th ve ⁴⁰K radyonüklidlerinin aktivite konsantrasyonlarını belirlemek için gama-ışını analiz yapılır. Şekil 26'daki spektrumda görüldüğü gibi ⁴⁰K aktivite konsantrasyonu doğrudan kendisinin gama ışını spektrumundaki pikinden Denk. (21) kullanılarak tayin edilir.

$$A(Bq/kg) = \frac{\text{Net Alan}}{\text{Sayma Süresi x Verim x Dallanma Oranı x Kütle}}$$
(21)

Ancak ²³²Th ve ²³⁸U'in yarı ömürleri çok uzun ve doğadaki konsantrasyonu da çok düşüktür. Bundan dolayı bunların radyometrik olarak doğrudan tayini çok zordur. ²³²Th ve ²³⁸U serilerindeki bozunma ürünlerinin gama spektrumlarından faydalanılarak yapılan aktivite ölçümlerinden, ²³²Th ve ²³⁸U ürünlerine ait olan aktiviteler elde edilir.

²³⁸U in bozunma ürünleri ²¹⁴Pb (295 ve 352 keV), ²¹⁴Bi (609, 1120 ve 1765 keV,);
²³²Th in bozunma ürünleri ²²⁸Ac (209, 338 ve 911 keV), ²¹²Pb (239 keV) ²¹²Bi (727 keV) ve ²⁰⁸Tl (583 keV) kalıcı denge koşulunda ele alınarak gama ölçümleri yapılmaktadır.

Şekil 26. Rize Merkez kum numunesine ait tipik gama spektrum örneği

2.4. Hesaplanan Radyasyon Parametreleri

2.4.1. Radyum Eşdeğer Aktivitesi

²³⁸U, ²³²Th ve ⁴⁰K ın çevrede dağılımı birbirlerinden farklıdır. Farklı miktarlardaki bu spesifik aktivitelerinden radyasyona maruz kalmayı standartlaştırmak için radyum eşdeğer aktivitesi (Ra_{eq}) aşağıdaki ifade ile tanımlanmaktadır. (Beretka vd., 1985)

$$Ra_{eq} = C_U + 1.43 C_{Th} + 0.07 C_K$$
(22)

Burada C_U , C_{Th} ve C_K sırasıyla ²³⁸U, ²³²Th ve ⁴⁰K ın Bq/kg biriminde spesifik aktiviteleridir.

2.4.2. Soğurulan Gama Doz Hızı (D)

Yüzeyden 1 m yükseklikteki havada soğurulan gama doz hızını hesaplamak için spesifik aktivite konsantrasyonları belli dönüşüm faktörleri ile çarpılır (UNSCEAR, 2000).

 $D = [0.621 C_{Th} + 0.462 C_{U} + 0.0417 C_{K}] nGy/h$ (23)

Burada C_U , C_{Th} ve C_K sırasıyla ²³⁸U, ²³²Th ve ⁴⁰K ın Bq/kg biriminde spesifik aktiviteleridir.

2.4.3. Yıllık Etkin Doz

Soğrulan doz için dönüşüm (0.7 Sv/Gy) ve dış ortamda maruz kalma faktörü (0.2) (UNSCEAR, 2000) dikkate alınarak etkin doz aşağıdaki formülle hesaplanır;

Etkin Doz Hızı (mSv/y)=Doz Hızı (nGy/h)x8760 h x $0.2 \times 0.7 \text{ Sv/Gy} \times 10^{-6}$ (24)

2.4.4. Dış Tehlike İndeksi (H_{ex})

Beretka ve Mathew, (1985) tarafından tanımlanan dış tehlike indeksi;

$$H_{ex} = C_U / 370 + C_{Th} / 259 + C_K / 4810$$
(25)

ifadesiyle verilmektedir.

Burada C_U, C_{Th} ve C_K sırasıyla ²³⁸U, ²³²Th ve ⁴⁰K' ın Bq/kg biriminde spesifik aktiviteleridir. Radyasyon zararının önemsiz olabilmesi için H_{ex}' in değeri 1 den küçük olmalıdır.

3. BULGULAR VE TARTIŞMA

Önceki bölümde anlatılan yöntemlerle hazırlanan kayaç ve kum numunelerinde doğal gama radyoaktivite düzeyinin ayrıntılı incelemesinin ve radyoaktivite dağılım ilişkilerinin belirlenebilmesi için gama spektrometrik analizleri, toplam alfa-beta radyoaktivite analizleri, ICP-MS elemental analizleri ve XRD analizleri yapılarak sonuçlar tablolar ve grafikler halinde verilmiştir.

3.1. Sahil Boyu Kum Örneklerinde Farklı Mineral Gruplarındaki Gama Radyoaktivite Değerleri

Mineral ayrıştırma işlemi sonucu elde edilen farklı mineral gruplarındaki kum örneklerinin 2.3.6 bölümünde anlatılan yöntemle gama spektrumları elde edildi. Rize (Merkez) bölgesine ait tipik gama spektrumları Şekil 27'de gösterilmiştir. Elde edilen spektrumların analizleri yapılarak Toryum serisine ait ²⁰⁸Tl (583 keV), ²¹²Pb (239 keV), ²¹²Bi (727 keV) ve ²²⁸Ac (911 keV), Uranyum serisine ait ²¹⁴Bi (609 keV), ²¹⁴Pb (295 keV), ²¹⁴Pb (727 keV) radyoizotopların gama radyoaktivite değerleri Tablo 12 ve 13'te verilmiştir. Radyoaktivite değerlerinin kalıcı denge koşulunu sağladığı görülmektedir. Bu radyoizotopların gama radyoaktivitelerinin ortalamaları alınarak ²³²Th ve ²³⁸U gama radyoaktivite değerleri elde edilmiştir. Bölgelerin farklı mineral gruplarındaki ²³²Th, ²³⁸U, ⁴⁰K ve ¹³⁷Cs radyoizotoplarının gama radyoaktivite (Bq/kg), Radyum eşdeğer aktivite (Bq/kg), Soğurulan gama doz hızı (nGy/h) ve Dış tehlike indeks değerleri Tablo 14 ve 15'te verilmiştir.

Şekil 27. Rize (Merkez) bölgesine ait farklı mineral gruplarındaki tipik gama spektrumu

		TI-208	Ph-212	Bi-212	Ac-228
		(583.8 keV)	(239.63keV)	(727.17 keV)	(911.24 keV)
Fındıklı				· · · ·	· · ·
	Kum (Ayrıştırılmamış)	11.78 ±0.53	12.27 ±0.99	12.15 ±1.43	11.67 ±1.12
	Hafif Mineraller	14.49 ±1.49	14.62 ± 1.58	14.29 ±1.67	13.51 ±1.53
	Manyetik Mineraller	78.35 ±6.56	78.20 ±4.74	78.56 ±6.31	76.87 ±7.11
	Manyetik Olmayan Mineraller	93.96 ±9.28	93.19 ±9.42	94.63 ±8.86	94.41 ±10.18
Ardeşen					
-	Kum (Ayrıştırılmamış)	14.91 ± 1.30	15.32±1.36	14.87 ±1.62	15.18 ±1.27
	Hafif Mineraller	16.21 ± 1.78	16.88 ±1.56	16.92 ±1.82	17.10 ±1.67
	Manyetik Mineraller	51.47 ±5.26	51.76 ±6.07	51.88 ±6.13	50.87 ±4.40
	Manyetik Olmayan Mineraller	106.35 ± 11.80	106.79 ±11.07	106.38 ±9.15	105.94 ±11.14
Pazar					
	Kum (Ayrıştırılmamış)	10.33 ± 1.18	10.17 ± 1.02	10.09 ±1.16	10.32 ± 1.11
	Hafif Mineraller	14.01 ± 1.68	13.84±1.32	14.10 ± 1.26	13.96 ±1.40
	Manyetik Mineraller	39.79 ±4.09	38.54 ±4.58	39.87 ±3.27	40.05 ±3.98
	Manyetik Olmayan Mineraller	48.37 ±5.63	49.53 ±5.72	49.19 ±4.64	49.35 ±4.63
Çayeli					
-	Kum (Ayrıştırılmamış)	13.08 ±1.23	12.76 ±1.47	12.54 ±1.31	12.38 ±1.13
	Hafif Mineraller	19.11 ±1.61	18.59 ± 1.52	18.82 ±1.61	18.97 ±2.21
	Manyetik Mineraller	33.26 ± 3.50	32.69 ±2.99	33.64 ±3.80	32.19 ±2.89
	Manyetik Olmayan Mineraller	47.20 ±4.29	46.39 ±4.91	46.12 ±4.67	46.35 ±5.48

Tablo 12. Sahil kumları farklı mineral gruplarındaki Toryum serisine ait radyoizotopların gama radyoaktivite değerleri (Bq/kg)

Tablo 12'nin devamı

		Tl-208 (583.8 keV)	Pb-212 (239.63keV)	Bi-212 (727.17 keV)	Ac-228 (911.24 keV
Rize					
	Kum (Ayrıştırılmamış)	35.84 ±2.94	34.76 ±2.76	36.81 ±3.58	36.48 ±3.49
	Hafif Mineraller	39.06 ±3.21	37.89 ± 3.01	40.13 ±3.91	39.76 ±3.80
	Manyetik Mineraller	64.15 ±5.27	62.23 ±4.94	65.90 ±6.42	65.30 ±6.25
	Manyetik Olmayan Mineraller	99.98 ±8.21	96.99 ±7.70	102.71 ±10.00	101.77 ±9.74
Derepazarı					
-	Kum (Ayrıştırılmamış)	26.44 ± 2.23	28.02 ± 2.66	27.58 ± 3.04	27.48 ± 3.05
	Hafif Mineraller	29.37 ± 3.02	30.31 ± 2.88	30.24 ± 3.63	29.85 ± 2.77
	Manyetik Mineraller	50.94 ± 4.10	52.12±6.24	51.09±4.13	52.87 ± 4.65
	Manyetik Olmayan Mineraller	70.88 ± 7.91	71.74±6.07	71.43±7.67	71.12±6.31
İyidere					
-	Kum (Ayrıştırılmamış)	15.15 ± 1.18	15.73 ± 1.26	14.46 ± 1.12	17.90 ± 1.45
	Hafif Mineraller	15.40 ± 1.64	15.18 ± 1.52	14.98 ± 1.54	14.87 ± 1.46
	Manyetik Mineraller	102.12 ± 10.97	99.46±10.49	101.15 ± 8.28	101.12±9.65
	Manyetik Olmayan Mineraller	90.12 ± 8.83	89.29 ± 8.03	88.69 ± 7.16	90.13 ± 10.77

		Bi-214 (609.3 keV)	Pb-214 (295.2 keV)	Pb-214 (351.9 keV)
Fındıklı				
	Kum (Ayrıştırılmamış)	14.13±1.61	13.65 ± 1.13	13.77 ± 1.48
	Hafif Mineraller	24.17±2.81	23.47 ± 2.30	23.91 ± 1.95
	Manyetik Mineraller	35.67 ± 4.05	35.12±3.39	33.56 ± 2.99
	Manyetik Olmayan Mineraller	45.82 ± 5.45	46.79 ± 5.04	45.97±4.21
Ardeşen				
	Kum (Ayrıştırılmamış)	11.19±0.94	10.88 ± 1.05	10.76 ± 1.16
	Hafif Mineraller	18.30 ± 1.78	17.83 ± 1.79	18.25 ± 1.54
	Manyetik Mineraller	32.79 ± 3.34	33.29 ± 3.43	33.64 ± 3.25
	Manyetik Olmayan Mineraller	57.03±6.44	56.86 ± 6.44	57.12±4.91
Pazar				
	Kum (Ayrıştırılmamış)	14.17±1.35	13.87 ± 1.27	13.69 ± 1.15
	Hafif Mineraller	14.48 ± 1.51	14.69 ± 1.23	14.55 ± 1.19
	Manyetik Mineraller	33.45 ± 2.88	33.88 ± 2.85	34.10 ± 2.90
	Manyetik Olmayan Mineraller	63.67±5.14	63.23 ± 6.46	62.57 ± 6.37
Çayeli				
5	Kum (Ayrıştırılmamış)	9.12±1.07	8.36 ± 0.95	8.75 ± 0.72
	Hafif Mineraller	7.79 ± 0.70	8.11±0.95	8.44 ± 0.81
	Manyetik Mineraller	27.30 ± 2.24	26.61 ± 2.48	27.18 ± 3.23
	Manyetik Olmayan Mineraller	36.23 ± 3.49	35.12 ± 3.33	34.72 ± 3.65

Tablo 13. Sahil kumları farklı mineral gruplarındaki Uranyum serisine ait radyoizotopların gama radyoaktivite değerleri (Bq/kg)

		Bi-214	Pb-214	Pb-214
		(609.3 keV)	(295.2 keV)	(351.9 keV)
Rize				
	Kum (Ayrıştırılmamış)	20.43±1.68	20.98 ± 2.04	20.11±1.73
	Hafif Mineraller	24.31 ±2.00	24.97 ± 2.43	23.94 ± 2.06
	Manyetik Mineraller	40.24±3.30	41.34 ± 4.02	39.63±3.41
	Manyetik Olmayan Mineraller	53.72±3.41	55.19 ± 3.37	52.90 ± 3.55
Derepazarı				
_	Kum (Ayrıştırılmamış)	24.15 ± 2.43	22.54±1.63	23.33 ± 2.28
	Hafif Mineraller	27.13±3.41	27.26 ± 2.75	27.65 ± 2.13
	Manyetik Mineraller	38.63 ± 4.98	37.90 ± 3.04	37.17±2.44
	Manyetik Olmayan Mineraller	47.49±5.03	46.38 ± 5.09	48.90±4.62
İyidere				
	Kum (Ayrıştırılmamış)	11.08 ± 1.11	10.88 ± 0.88	10.97 ± 1.07
	Hafif Mineraller	12.79 ± 1.35	12.87 ± 1.15	12.95 ± 1.24
	Manyetik Mineraller	44.93 ± 4.04	45.38 ± 5.20	45.25 ± 5.41
	Manyetik Olmayan Mineraller	58.64±5.19	61.58 ± 6.54	62.15±7.11

Tablo 13'ün devamı

Mineral ayrıştırma işlemi yapılmamış kum örneklerinde ²³²Th, 10.23±1.13 Bq/kg (Pazar)–35.84±3.16 Bq/kg (Rize) aralığında değişmekte ve ortalama radyoaktivite değeri 18.49±1.72 Bq/kg'dır. ²³⁸U, 8.77±0.87 Bq/kg (Çayeli)–23.34±2.12 Bq/kg (Derepazarı) aralığında değişmekte ve ortalama radyoaktivite değeri 14.58±1.37 Bq/kg'dır. ⁴⁰K, 266.05±17.41 Bq/kg (Pazar)–744.94±33.79 Bq/kg (İyidere) aralığında değişmekte ve ortalama radyoaktivite değeri 463.94±27.63 Bq/kg'dır. ¹³⁷Cs, 2.48±0.05 Bq/kg (Çayeli)–4.83±0.11 Bq/kg (Fındıklı) aralığında değişmekte ve ortalama radyoaktivite değeri 3.99±0.10 Bq/kg'dır.

Hafif mineral örneklerinde ²³²Th, 14.01±1.40 Bq/kg (Pazar)–39.06±3.45 Bq/kg (Rize) aralığında değişmekte ve ortalama radyoaktivite değeri 21.13±2.03 Bq/kg'dır. ²³⁸U, 8.15±0.84 Bq/kg (Çayeli)–27.29±2.81 Bq/kg (Derepazarı) aralığında değişmekte ve ortalama radyoaktivite değeri 18.45±1.76 Bq/kg'dır. ⁴⁰K, 356.82±15.67 Bq/kg (Pazar)-838.84±47.17 Bq/kg (İyidere) aralığında değişmekte ve ortalama radyoaktivite değeri 515.63±28.50 Bq/kg'dır. ¹³⁷Cs, 0.92±0.02 Bq/kg (Rize)-1.17±0.03 Bq/kg (Ardeşen) aralığında değişmekte ve ortalama radyoaktivite değeri 1.03±0.03 Bq/kg'dır.

Manyetik mineral örneklerinde ²³²Th radyoaktivite değeri, 32.93 ± 3.38 Bq/kg (Çayeli)-100.89±9.68 Bq/kg (İyidere) aralığında değişmekte ve ortalama 59.88±5.72 Bq/kg'dır. ²³⁸U, 27.05±2.60 Bq/kg (Çayeli)-45.21±4.58 Bq/kg (İyidere) aralığında değişmekte ve ortalama radyoaktivite değeri 35.93±3.41 Bq/kg'dır. ⁴⁰K, 169.02±9.04 Bq/kg (İyidere)-369.55±18.67 Bq/kg (Rize) aralığında değişmekte ve ortalama radyoaktivite değeri 251.32±12.64 Bq/kg'dır. ¹³⁷Cs, 1.37±0.04 Bq/kg (Çayeli)-3.71±0.11 Bq/kg (İyidere) aralığında değişmekte ve ortalama radyoaktivite değeri 2.58±0.07 Bq/kg'dır.

Manyetik olmayan mineral örneklerinde ²³²Th radyoaktivite değeri, 46.41±4.73 Bq/kg (Çayeli)-106.33±10.36 Bq/kg (Ardeşen) aralığında değişmekte ve ortalama 79.54±7.16 Bq/kg'dır. ²³⁸U, 35.44±3.57 Bq/kg (Çayeli)-63.12±5.98 Bq/kg (Pazar) aralığında değişmekte ve ortalama radyoaktivite değeri 51.86±4.76 Bq/kg'dır. ⁴⁰K, 34.43±1.66 Bq/kg (Fındıklı)-384.67±27.76 Bq/kg (Rize) aralığında değişmekte ve ortalama radyoaktivite değeri 196.70±9.25 Bq/kg'dır. ¹³⁷Cs, 0.98±0.03 Bq/kg (Fındıklı)-2.48±0.05 Bq/kg (Ardeşen) aralığında değişmekte ve ortalama radyoaktivite değeri 1.55±0.04 Bq/kg'dır.

Bölgelerin manyetik olmayan ağır kum minerallerindeki ²³²Th (79.54 \pm 7.16 Bq/kg) ve ²³⁸U (51.86 \pm 4.76 Bq/kg) ortalama radyoaktivite değerleri, hafif (²³²Th; 21.13 \pm 2.03 Bq/kg, ²³⁸U; 18.45 \pm 1.76 Bq/kg) ve manyetik (²³²Th; 59.88 \pm 5.72 Bq/kg, 35.93 \pm 3.41 Bq/kg) kum

minerallerindeki değerlerinden daha yüksektir. Bu, manyetik olmayan kum mineral içeriğinde Th ve U taşıyıcı kum minerallerinin varlığını göstermektedir. Diğer taraftan ⁴⁰K, hafif kum minerallerinde (515.63±28.50 Bq/kg), manyetik (251.32±12.64 Bq/kg) ve manyetik olmayan (196.70±9.25 Bq/kg) kum minerallerindekine göre daha yüksek radyoaktiviteye sahiptir (Tablo 14).

Bölge	Örnek Adı	²³² Th	²³⁸ U	⁴⁰ K
Fındıklı	Kum	12.02 ±1.03	13.84 ±1.41	510.19 ±35.18
Ardeşen	Kum	15.10 ±1.44	10.99 ±1.06	582.18 ±34.45
Pazar	Kum	10.23 ±1.13	13.84 ±1.34	266.05 ±17.41
Çayeli	Kum	12.67 ±1.24	8.77 ±0.87	359.95 ±19.71
Rize	Kum	35.84 ±3.16	20.33 ±1.76	433.68 ±32.14
Derepazarı	Kum	27.49 ±2.76	23.34 ±2.12	350.56 ±20.73
İyidere	Kum	16.08 ±1.26	10.97 ±1.05	744.94 ±33.79
	Ortalama:	18.49 ±1.72	14.58 ±1.37	463.94 ±27.63
Fındıklı	HM	14.25 ±1.52	23.84 ±2.27	384.99 ±21.46
Ardeşen	HM	16.85 ±1.66	18.15 ±1.74	666.69 ±45.96
Pazar	HM	14.01 ± 1.40	14.70 ±1.38	356.82 ±17.58
Çayeli	HM	18.88 ±1.79	8.15 ±0.84	381.86 ±25.57
Rize	HM	39.06 ±3.45	24.20 ±2.09	398.00 ±26.07
Derepazarı	HM	29.80 ±2.93	27.29 ±2.81	582.18 ±15.67
İyidere	HM	15.06 ±1.47	12.84 ±1.20	838.84 ±47.17
	Ortalama:	21.13 ±2.03	18.45 ± 1.76	515.63 ±28.50
Fındıklı	MM	78.16 ±6.75	34.46 ±3.44	241.01 ±16.73
Ardeşen	MM	51.48 ±5.47	33.22 ± 3.50	172.15 ±9.52
Pazar	MM	39.67 ±4.11	33.96 ±2.95	212.84 ±6.98
Çayeli	MM	32.93 ±3.38	27.05 ± 2.60	300.48 ±18.54
Rize	MM	64.15 ±5.66	40.06 ±3.46	369.55 ±18.67
Derepazarı	MM	51.89 ±4.98	37.54 ±3.37	294.22 ±8.99
İyidere	MM	100.89 ±9.68	45.21 ±4.58	169.02 ±9.04
	Ortalama:	59.88 ±5.72	35.93 ±3.41	251.32 ±12.64
Fındıklı	MOM	94.07 ±9.41	46.19 ±3.68	34.43 ±1.66
Ardeşen	MOM	106.33 ±10.36	56.93 ±5.61	150.24 ±6.87
Pazar	MOM	49.33 ±5.05	63.12 ±5.98	165.89 ±5.81
Çayeli	MOM	46.41 ±4.73	35.44 ±3.57	228.49 ±9.67
Rize	MOM	99.98 ±8.82	53.48 ±3.37	384.67 ±27.76
Derepazarı	MOM	71.29 ±2.79	47.55 ±4.87	275.44 ±6.69
İyidere	MOM	89.40 ±8.99	60.33 ±6.25	137.72 ±6.29
	Ortalama:	79.54 ±7.16	51.86 ±4.76	196.70 ±9.25

Tablo 14. Sahil boyu kum örneklerinde mineral ayrıştırma yapılarak elde edilen doğal gama radyoaktivite değerleri (Bq/kg). Kum: Ayrıştırılmamış örnek, HM: Hafif Mineral, MM: Manyetik Mineral, MOM: Manyetik Olmayan Mineral
Bölge	Örı	nek Adı	¹³⁷ Cs	Ra _{eq}	D	YEDE	H _{ex}
Fındıklı	Kum		4.83±0.11	66.73±5.35	28.41	0.035	0.190
Ardeşen	Kum		4.57±0.13	73.33 ± 5.53	30.29	0.037	0.209
Pazar	Kum		3.71 ± 0.11	47.09±4.17	18.12	0.022	0.132
Çayeli	Kum		2.48 ± 0.05	52.08 ± 4.02	19.85	0.024	0.147
Rize	Kum		4.18 ± 0.08	101.94±8.53	29.70	0.036	0.283
Derepazarı	Kum		3.83 ± 0.09	87.19±7.51	27.11	0.033	0.242
İyidere	Kum		4.31±0.12	86.10 ± 5.22	37.13	0.046	0.247
		Ortalama:	3.99 ± 0.10	73.50 ± 5.76	27.23	0.033	0.213
Fındıklı	HM		0.92 ± 0.02	71.16±5.95	27.95	0.034	0.199
Ardeşen	HM		1.17 ± 0.03	88.91±7.33	37.23	0.046	0.253
Pazar	HM		0.99 ± 0.03	59.71±4.62	22.54	0.028	0.168
Çayeli	HM		0.98 ± 0.03	61.88±5.19	20.86	0.026	0.174
Rize	HM		0.92 ± 0.02	107.92 ± 8.84	30.20	0.037	0.299
Derepazarı	HM		1.08 ± 0.03	110.65±8.10	38.73	0.048	0.310
İyidere	HM		1.16 ± 0.03	93.09±6.60	41.85	0.051	0.267
		Ortalama:	1.03 ± 0.03	84.76±6.66	31.34	0.038	0.241
Fındıklı	MM		2.18 ± 0.05	146.22±13.09	20.77	0.025	0.395
Ardeşen	MM		3.70 ± 0.08	106.84 ± 11.32	18.55	0.023	0.289
Pazar	MM		1.79 ± 0.05	90.69 ± 8.82	18.15	0.022	0.245
Çayeli	MM		1.37 ± 0.04	74.13±7.44	14.54	0.018	0.200
Rize	MM		2.30 ± 0.07	131.79±11.55	22.49	0.028	0.356
Derepazarı	MM		2.99 ± 0.07	111.75±10.49	20.57	0.025	0.302
İyidere	MM		3.71 ± 0.11	189.49 ± 18.42	27.15	0.033	0.512
		Ortalama:	2.58 ± 0.07	121.56±11.59	20.32	0.025	0.330
Fındıklı	MOM		0.98 ± 0.03	180.72 ± 17.14	27.18	0.033	0.488
Ardeşen	MOM		2.48 ± 0.05	208.98 ± 20.43	32.90	0.040	0.564
Pazar	MOM		1.37 ± 0.03	133.66±13.19	32.22	0.040	0.361
Çayeli	MOM		1.36 ± 0.03	101.79±10.33	19.25	0.024	0.275
Rize	MOM		1.51 ± 0.03	196.45±15.98	30.92	0.038	0.531
Derepazarı	MOM		1.37 ± 0.03	149.50 ± 8.87	26.40	0.032	0.404
İyidere	MOM		1.79 ± 0.05	188.18±19.11	33.43	0.041	0.508
		Ortalama:	1.55 ± 0.04	165.61±15.01	28.90	0.035	0.450

Tablo 15. Mineral ayrıştırma yapılarak elde edilen sahil kum örneklerindeki ¹³⁷Cs gama radyoaktivite (Bq/kg), Radyum eşdeğer aktivite (Bq/kg), Soğurulan gama doz hızı (nGy/h), Yıllık etkin doz eşdeğeri (mSv/y) ve Dış tehlike indeks değerleri

Sahil kumlarının farklı mineral gruplarındaki ²³²Th, ²³⁸U, ⁴⁰K gama radyoaktivite değerlerinden hesaplanan radyum eşdeğer aktivite (Ra_{eq}, Bq/kg), soğurulan gama doz hızı (D, nGy/h), yıllık etkin doz eşdeğeri (YEDE, mSv/y) ve dış tehlike indeksi (Hex) değerleri Tablo 15'te verilmiştir.

Mineral ayrıştırma işlemi yapılmamış kum örneklerinde radyum eşdeğer aktivitesi ortalama 73.50±5.76 Bq/kg değeriyle, 47.09±4.02-101.94±8.53 Bq/kg aralığında değişmektedir. Hafif kum minerallerinde 59.71±4.62-110.65±8.84 Bq/kg aralığında değişmekte ve ortalama 84.76±6.66 Bq/kg dır. Manyetik kum minerallerinde 74.13±7.44-

189.49±18.42 Bq/kg aralığında değişmekte ve ortalama 121.56±11.59 Bq/kg'dır. Manyetik olmayan kum minerallerinde ise 101.79±8.87-208.98±20.43 Bq/kg ve ortalama 165.61±15.01 Bq/kg'dır. Bütün değerler önerilen maksimum 370 Bq/kg değerinin altındadır (UNSCEAR, 2000).

Soğurulan gama doz hızı değeri ortalama 29.95 nGy/h, maksimum 37.13 nGy/h değeri İyidere (ayrıştırılmamış kum örneğinde), minimum 18.12 nGy/h değeri Pazar (ayrıştırılmamış kum örneğinde) görülmektedir (Tablo 15). UNSCEAR 2000 raporunda ülkelerdeki soğurulan gama doz hızı değer aralığını 24-160 nGy/h ve ortalama 55 nGy/h vermektedir. Çalışma bölgemizdeki ortalama soğurulan gama doz hızı değerlerinin verilen dünya ortalama soğurulan gama doz hızı değerinden küçük olduğu tespit edilmiştir.

Dış tehlike indeksi değerleri tüm bölgelerdeki mineral gruplarında 1'den küçük olduğu ve en yüksek 0.51 değeriyle İyidere manyetik kum minerallerinde ve en düşük 0.13 değeriyle Pazar ayrıştırılamamış kum örneğinde hesaplanmıştır. Ortalama 0.31 değerine sahiptir. Yıllık etkin doz eşdeğerinin en düşük değeri 0.02 mSv/y Çayeli manyetik kum minerallerinde, en yüksek değeri 0.05 mSv/y İyidere hafif minerallerde ve ortalama değeri ise 0.03 mSv/y olarak bulunmuştur.

²³²Th, ²³⁸U, ⁴⁰K ve ¹³⁷Cs radyoizotopların ağır mineral ve toplama göre yüzde dağılım değerleri Tablo 16'da verilmiştir. Doğal ve yapay radyoizotopların bölgelere göre dağılımları grafiklerle gösterilmiştir (Şekil 28-34). Bütün bölgelerdeki hafif kum minerallerinin, manyetik ve manyetik olmayan kum minerallerinden daha fazla radyoizotop aktivitesini sağladığı açıkça görülmektedir. Hafif mineraller kütlece toplam miktarın ortalama %91.40'ını oluşturmaktadır. Bu da ortalama ²³²Th radyoaktivitesinin %75.75'ini, ²³⁸U radyoaktivitesinin %81.18'ini, ⁴⁰K radyoaktivitesinin %95.59'unu ve ¹³⁷Cs radyoaktivitesinin ise % 85.28'ini içermektedir. Manyetik mineraller kütlece toplam miktarının ortalama % 3.15'ini oluşturmaktadır. Bu da ortalama ²³²Th radyoaktivitesinin %7.35'ini, ²³⁸U radyoaktivitesinin %5.21'ini, ⁴⁰K radyoaktivitesinin %1.78'ini ve ¹³⁷Cs radyoaktivitesinin işe %7.37'sini içermektedir. Manyetik olmayan mineraller ise kütlece toplam miktarın ortalama %5.45'ini oluşturmaktadır. Bu da ortalama ²³²Th radyoaktivitesinin %2.62'sini ve ¹³⁷Cs radyoaktivitesinin %16.61'ini, ²³⁸U radyoaktivitesinin %13.61'ini, ⁴⁰K radyoaktivitesinin %2.62'sini ve ¹³⁷Cs radyoaktivitesinin %16.61'ini, ²³⁸U radyoaktivitesinin %13.61'ini, ⁴⁰K radyoaktivitesinin %2.62'sini ve ¹³⁷Cs

Fındıklı			Ağır minerale göre dağılım			Toplama göre dağılım				
	% Miktar	% Miktar	²³² Th (%)	²³⁸ U (%)	$^{40} m{K}(\%)$	¹³⁷ Cs (%)	²³² Th (%)	²³⁸ U (%)	⁴⁰ K (%)	¹³⁷ Cs (%)
Hafif	92.6						67.26	87.97	97.39	88.21
Ağır	7.4	100.00	100.00	100.00	100.00	100.00				
Manyetik	3.4	45.95	41.39	38.80	85.61	65.55	13.55	4.67	2.24	7.73
Man. Olm.	4.0	54.05	58.61	61.20	14.39	34.45	19.19	7.36	0.38	4.06
Toplam	100						100.00	100.00	100.00	100.00
Ardeşen			Ağ	jır minerale g	göre dağılır	n		Toplama gi	öre dağılım	
	% Miktar	% Miktar	²³² Th (%)	²³⁸ U (%)	40 K (%)	¹³⁷ Cs (%)	²³² Th (%)	²³⁸ U (%)	40 K (%)	¹³⁷ Cs (%)
Hafif	88.5						59.96	75.31	96.97	74.68
Ağır	11.5	100.00	100.00	100.00	100.00	100.00				
Manyetik	5.4	46.96	30.00	34.06	50.36	56.93	11.18	8.41	1.53	14.42
Man. Olm.	6.1	53.04	70.00	65.94	49.64	43.07	26.08	16.28	1.51	10.91
Toplam	100						97.22	100.00	100.00	100.00
Pazar			Ağ	gir minerale g	göre dağılır	n	Toplama göre dağılım			
	% Miktar	% Miktar	²³² Th (%)	²³⁸ U (%)	40 K (%)	¹³⁷ Cs (%)	²³² Th (%)	²³⁸ U (%)	⁴⁰ K (%)	¹³⁷ Cs (%)
Hafif	93.5						82.34	80.70	96.50	90.21
Ağır	6.5	100.00	100.00	100.00	100.00	100.00				
Manyetik	2.8	43.08	37.83	28.94	49.26	49.70	6.98	5.58	1.72	4.87
Man. Olm.	3.7	56.92	62.17	71.06	50.74	50.30	11.47	13.71	1.78	4.92
Toplam	100						100.79	100.00	100.00	100.00
Çayeli			Ağ	gir minerale g	göre dağılır	n		Toplama gi	öre dağılım	
	% Miktar	% Miktar	²³² Th (%)	²³⁸ U (%)	40 K (%)	¹³⁷ Cs (%)	²³² Th (%)	²³⁸ U (%)	⁴⁰ K (%)	137 Cs (%)
Hafif	93.73						86.60	78.33	95.92	91.48
Ağır	6.27	100.00	100.00	100.00	100.00	100.00				
Manyetik	1.27	20.21	15.24	16.20	24.99	20.37	2.04	3.51	1.02	1.73
Man. Olm.	5.00	79.79	84.76	83.80	75.01	79.63	11.36	18.16	3.06	6.78
Toplam	100.00						100.00	100.00	100.00	100.00

Tablo 16. Bölgelere göre ²³²Th, ²³⁸U, ⁴⁰K ve ¹³⁷Cs radyonüklidlerinin toplama ve ağır minerale göre yüzde dağılım değerleri

Tablo 16 nin devami

Rize			Ağır minerale göre dağılım			Toplama göre dağılım				
	% Miktar	% Miktar	²³² Th (%)	²³⁸ U (%)	40 K (%)	¹³⁷ Cs (%)	²³² Th (%)	²³⁸ U (%)	40 K (%)	¹³⁷ Cs (%)
Hafif	91.07						82.09	83.55	91.45	83.83
Ağır	8.93	100.00	100.00	100.00	100.00	100.00				
Manyetik	3.27	36.57	27.00	30.16	35.64	46.67	4.84	4.96	3.05	7.55
Man. Olm.	5.67	63.43	73.00	69.84	64.36	53.33	13.07	11.49	5.50	8.63
Toplam	100.00						100.00	100.00	100.00	100.00
Derepazarı			Ağ	ğır minerale	göre dağılı	m		Toplama go	ire dağılım	
	% Miktar	% Miktar	²³² Th (%)	²³⁸ U (%)	40 K (%)	¹³⁷ Cs (%)	²³² Th (%)	²³⁸ U (%)	40 K (%)	¹³⁷ Cs (%)
Hafif	84.00						70.55	76.32	91.57	75.24
Ağır	16.00	100.00	100.00	100.00	100.00	100.00				
Manyetik	4.93	30.83	24.50	26.03	32.26	49.34	7.22	6.17	2.72	12.21
Man. Olm.	11.07	69.17	75.50	73.97	67.74	50.66	22.24	17.52	5.71	12.54
Toplam	100.00						100.00	100.00	100.00	100.00
İyidere			Ağ	ğır minerale	göre dağılı	m		Toplama go	ire dağılım	
	% Miktar	% Miktar	²³² Th (%)	²³⁸ U (%)	40 K (%)	¹³⁷ Cs (%)	²³² Th (%)	²³⁸ U (%)	40 K (%)	¹³⁷ Cs (%)
Hafif	96.40						81.46	86.08	99.36	93.07
Ağır	3.60	100.00	99.63	99.63	99.63	99.63				
Manyetik	1.00	27.93	30.43	22.51	32.23	44.54	5.66	3.14	0.21	3.10
Man. Olm.	2.60	71.69	69.20	77.11	67.40	55.09	12.88	10.77	0.43	3.83
Toplam	100.00						100.00	100.00	100.00	100.00

Şekil 28. Fındıklı bölgesi kum örneğinde mineral konsantrasyonuna göre a) ²³²Th, b) ²³⁸U, c) ⁴⁰K ve d) ¹³⁷Cs radyoizotoplarının yüzde dağılım değerleri

Şekil 29. Ardeşen bölgesi kum örneğinde mineral konsantrasyonuna göre a) ²³²Th, b) ²³⁸U, c) ⁴⁰K ve d) ¹³⁷Cs radyoizotoplarının yüzde dağılım değerleri

Şekil 30. Pazar bölgesi kum örneğinde mineral konsantrasyonuna göre a) ²³²Th, b) ²³⁸U, c) ⁴⁰K ve d) ¹³⁷Cs radyoizotoplarının yüzde dağılım değerleri

Şekil 31. Çayeli bölgesi kum örneğinde mineral konsantrasyonuna göre a) ²³²Th, b) ²³⁸U, c) ⁴⁰K ve d) ¹³⁷Cs radyoizotoplarının yüzde dağılım değerleri

Şekil 32. Rize bölgesi kum örneğinde mineral konsantrasyonuna göre a) ²³²Th, b) ²³⁸U, c) ⁴⁰K ve d) ¹³⁷Cs radyoizotoplarının yüzde dağılım değerleri

Şekil 33. Derepazarı bölgesi kum örneğinde mineral konsantrasyonuna göre a) ²³²Th, b) ²³⁸U, c) ⁴⁰K ve d) ¹³⁷Cs radyoizotoplarının yüzde dağılım değerleri

Şekil 34. İyidere bölgesi kum örneğinde mineral konsantrasyonuna göre a) ²³²Th, b) ²³⁸U, c) ⁴⁰K ve d) ¹³⁷Cs radyoizotoplarının yüzde dağılım değerleri

Bölgeye ve yönteme göre radyoizotopların sınıflandırmasını yapabilmek için SPSS 13.0 (Statistical Package for the Social Sciences) istatistik programında çoklu değişken analizi uygulandı. Bununla birlikte yapılan sınıflandırmada farklılık varsa, farklılıkların değerlendirilmesi için Student-Newman-Keuls (S-N-K) testi yapıldı.

Sahil kum örneklerindeki farklı kum minerallerine göre ²³²Th, ²³⁸U ve ⁴⁰K dağılımlarının çoklu değişken analizi sonucu Fisher (F) ve P değerleri Tablo 17'de verilmektedir.

	F	df	Р
²³² Th	26.824	3	0.000
²³⁸ U	59.587	3	0.000
40 K	9.116	3	0.001

Tablo 17. Yönteme göre istatistiksel çoklu değişken analizi

²³²Th, ²³⁸U ve ⁴⁰K için P<0.05 olduğundan, çoklu değişken analizine göre ²³²Th, ²³⁸U ve ⁴⁰K hafif, manyetik ve manyetik olmayan kum minerallerinde birbirinden farklıdır. Aralarındaki bu farklılığın değerlendirilmesi için yapılan S-N-K testine göre; ²³²Th ve ²³⁸U benzer biçimde; Başlangıç-Hafif Mineraller, Manyetik mineraller ve Manyetik olmayan

mineraller olmak üzere 3 gruptan oluştuğu görülmektedir (Tablo 18-19). Ancak ⁴⁰K; Başlangıç-Hafif Mineraller ve Manyetik – Manyetik olmayan mineraller olmak üzere 2 gruptan oluşmaktadır (Tablo 20).

Tablo 18. ²³²Th'nin farklı mineral gruplarındaki sınıflandırması

Yöntem	1	2	3
Başlangıç	18.49		
Hafif Mineraller	21.13		
Manyetik Mineraller		59.88	
Manyetik Olm. Mineraller			79.54

Tablo 19. ²³⁸U'in farklı mineral gruplarındaki sınıflandırması

Yöntem	1	2	3
Başlangıç	14.58		
Hafif Mineraller	18.45		
Manyetik Mineraller		35.93	
Manyetik Olm. Mineraller			51.86

Tablo 20. ⁴⁰K'ın farklı mineral gruplarındaki sınıflandırması

Yöntem	1	2
Başlangıç	463.94	
Hafif Mineraller	515.63	
Manyetik Mineraller		251.32
Manyetik Olmayan Mineraller		196.69

Bölgelere göre örneklerdeki ²³²Th, ²³⁸U ve ⁴⁰K dağılımlarının farklı olup olmadıklarını test etmek için çoklu değişken analizi uygulanarak Fisher (F) ve P değerleri hesaplandı (Tablo 21). ²³²Th ve ⁴⁰K için P>0.05 olduğundan, çoklu değişken analizine göre ²³²Th ve ⁴⁰K radyoaktivite değerleri bölgelere göre farklılık göstermemektedir.

		10	
	F	df	Р
²³² Th	2.65	6	0.051
²³⁸ U	2.82	6	0.041
⁴⁰ K	1.19	6	0.355

Tablo 21. Bölgelere göre istatistiksel çoklu değişken analizi

²³⁸U radyoaktivitesi için ise; P<0.05 olduğundan ²³⁸U radyoaktivitesi bölgelere göre farklılık göstermektedir. Farklılığın değerlendirilmesi için yapılan S-N-K testine göre; Çayeli-Fındıklı-Ardeşen-Pazar-İyidere ve Fındıklı-Ardeşen-Pazar-İyidere-Rize-Derepazarı olmak üzere iki gruptan oluşmaktadır (Tablo 22).

Tablo 22. ²³⁸U'in bölgelerdeki sınıflandırması

Bölgeler	1	2
Çayeli	19.85	
Fındıklı	29.58	29.58
Ardeşen	29.82	29.82
Pazar	31.41	31.41
İyidere	32.34	32.34
Rize		33.93
Derepazarı		34.52

3.2. Sahil Boyu Kum Örneklerinde Tane Boyutuna Göre Gama Radyoaktivite Değerleri

Fındıklı, Ardeşen, Pazar, Çayeli, Rize, Derepazarı ve İyidere bölgelerine ait 3'er örnekten tane boyut analizine göre ayrıştırılan 126 adet örnek için ²³²Th, ²³⁸U, ⁴⁰K ve ¹³⁷Cs radyoizotoplarının gama spektrometrik analiz sonuçları EKLER bölümündeki Ek 1-14 tablolarında verilmiştir.

Burada tane boyutlarına göre bölgelerin ²³²Th, ²³⁸U, ⁴⁰K ve ¹³⁷Cs radyoaktivite değerleri kg başına Bq biriminde verilmiştir (Tablo 23). Şekil 35-37'deki grafiklerde doğal radyoizotopların gama radyoaktivite dağılımları gösterilmiştir.

Tane boyutlarına göre bölgelerin ²³²Th ortalama radyoaktivite değeri 29.48±3.09 (300-250 μ m)–37.62±3.93 (<250 μ m) Bq/kg aralığında değişmektedir. ²³²Th'nin tane boyutuna göre genel ortalama değeri ise 33.05±3.38 Bq/kg'dır.

²³⁸U ortalama radyoaktivite değeri 600-300 μm tane boyutunda 19.72±2.10 Bq/kg en yüksek değere, 300-250 μm tane boyutunda 16.58±1.69 Bq/kg en düşük değere sahiptir. ²³⁸U'in tane boyutuna göre genel ortalama değeri ise 18.26±1.87 Bq/kg'dır.

⁴⁰K'ın ortalama radyoaktivite değeri 391.22±17.73 Bq/kg (300-250 μm)–460.11±24.25 Bq/kg (<250 μm) ve tane boyutuna göre genel ortalama değeri ise 427.83±19.58 Bq/kg'dır.

 137 Cs'nin ortalama radyoaktivite değeri ise, 3.34±0.34 Bq/kg (<250 µm)–6.75±0.69 Bq/kg (1000-850 µm) aralığında değişmekte ve tane boyutuna göre genel ortalama değeri ise 4.98±0.50 Bq/kg'dır.

Bölge	Örnek Adı	²³² Th	²³⁸ U	⁴⁰ K	¹³⁷ Cs
Fındıklı	1000-850	33.63 ±3.30	20.96 ±2.17	524.37 ±16.53	7.49 ±0.74
Ardeşen	1000-850	34.63 ±3.14	18.17 ±1.66	453.98 ±22.04	6.32 ±0.67
Pazar	1000-850	33.23 ±3.28	16.52 ±1.57	423.34 ±20.44	6.56 ±0.69
Caveli	1000-850	27.03 ± 2.88	9.60 ± 1.05	345.90 ±18.84	6.43 ±0.61
Rize	1000-850	34.99 ±3.31	20.22 ± 1.88	446.12 ±19.09	6.28 ±0.63
Derepazarı	1000-850	32.89 ±3.56	17.33 ± 1.82	454.34 ±21.59	7.82 ± 0.82
İvidere	1000-850	26.37 ± 2.70	17.93 ± 1.95	484.13 ± 22.71	6.35 ± 0.69
Ortalama	1000-850	31.83 ±3.17	17.25 ± 1.73	447.45 ±20.18	6.75 ±0.69
Fındıklı	850-600	34.34 ±3.16	22.75 ±2.07	451.98 ±12.41	6.16 ±0.58
Ardeşen	850-600	38.98 ±3.62	24.49 ± 2.26	396.74 ±17.95	5.94 ±0.56
Pazar	850-600	32.75 ±3.04	15.96 ±1.49	416.68 ±16.64	5.67 ±0.57
Çayeli	850-600	26.99 ±3.02	11.21 ±1.14	417.04 ±22.14	5.95 ± 0.60
Rize	850-600	29.71 ±2.88	17.30 ±1.56	450.31 ±19.00	5.49 ±0.58
Derepazarı	850-600	35.91 ±4.07	18.11 ±2.04	448.70 ±19.96	6.39 ±0.67
İyidere	850-600	29.13 ±3.12	19.87 ±2.12	437.81 ±16.74	5.55 ± 0.48
Ortalama	850-600	32.55 ±3.27	18.53 ±1.81	431.32 ±17.84	5.88 ±0.58
Fındıklı	600-300	34.37 ±3.39	35.66 ±3.86	408.12 ±12.41	5.32 ±0.49
Ardeşen	600-300	41.69 ±3.92	22.92 ±2.22	401.08 ±16.75	4.99 ±0.49
Pazar	600-300	34.63 ±3.08	15.00 ± 1.35	427.84 ±20.02	5.32 ± 0.50
Çayeli	600-300	30.30 ± 3.50	11.50 ± 1.23	409.14 ±23.85	5.16 ±0.50
Rize	600-300	27.26 ±2.64	14.06 ±1.45	447.94 ±19.59	5.10 ± 0.50
Derepazarı	600-300	35.91 ±4.07	18.16 ±2.18	363.77 ±14.44	4.87 ±0.50
İyidere	600-300	32.29 ±3.43	20.72 ± 2.40	405.42 ±17.05	4.39 ±0.44
Ortalama	600-300	33.78 ±3.43	19.72 ±2.10	409.04 ±17.73	5.02 ± 0.49
Fındıklı	300-250	22.89 ±2.54	25.69 ±2.57	470.87 ±14.16	4.07 ±0.36
Ardeşen	300-250	41.06 ±3.61	22.24 ±1.89	301.44 ±18.27	3.92 ±0.36
Pazar	300-250	23.06 ±2.53	11.50 ± 1.30	485.19 ±17.98	4.09 ±0.38
Çayeli	300-250	29.93 ±3.29	9.41 ±1.13	391.78 ±22.21	3.63 ±0.41
Rize	300-250	22.72 ±2.15	11.99 ±1.12	383.73 ±17.95	3.91 ±0.38
Derepazarı	300-250	38.40 ±4.33	15.82 ±1.66	302.63 ±17.69	3.92 ±0.39
İyidere	300-250	28.29 ±3.18	19.44 ±2.16	402.93 ±16.88	3.86 ±0.40
Ortalama	300-250	29.48 ±3.09	16.58 ±1.69	391.22 ±17.88	3.92 ±0.38
Fındıklı	<250	40.73 ±4.01	30.00 ±3.33	482.53 ±14.00	3.50 ±0.33
Ardeşen	<250	49.63 ±4.76	25.24 ±2.41	329.71 ±20.21	3.52 ± 0.34
Pazar	<250	28.37 ±3.01	11.46 ±1.28	503.41 ±32.89	3.34 ±0.35
Çayeli	<250	33.51 ±3.19	11.28 ±1.25	447.42 ±20.50	3.32 ±0.32
Rize	<250	38.68 ±4.25	21.11 ±2.37	430.30 ±24.08	3.09 ±0.33
Derepazarı	<250	38.81 ±4.54	17.23 ±1.72	430.82 ±22.90	3.50 ± 0.35
İyidere	<250	33.58 ±3.78	18.34 ±1.93	596.59 ±35.20	3.12 ±0.33
Örtalama	<250	37.62 ±3.93	19.24 ±2.04	460.11 ±24.25	3.34 ±0.34
Genel Ortala	ma	33.05 ±3.38	18.26 ±1.87	427.83 ±19.58	4.98 ±0.50

Tablo 23. Sahil kumları farklı tane boyutlarında ²³²Th, ²³⁸U, ⁴⁰K ve ¹³⁷Cs radyoizotoplarının ortalama gama radyoaktivite değerleri (Bq/kg)

Şekil 35. ²³⁸U'in bölgelerdeki tane boyutuna göre radyoaktivite değişimi

Şekil 36. ²³²Th'nin bölgelerdeki tane boyutuna göre radyoaktivite değişimi

Şekil 37. ⁴⁰K'ın bölgelerdeki elek aralıklarına göre radyoaktivite değişimi

		% Miktar	²³² Th (%)	²³⁸ U (%)	⁴⁰ K (%)	¹³⁷ Cs (%)
Fındıklı	1000-850	17.37	17.57	13.05	19.92	31.54
	850-600	18.08	17.80	13.37	15.36	19.72
	600-300	32.34	33.26	40.11	27.67	25.73
	300-250	16.15	12.08	16.51	20.16	12.74
	<250	16.06	19.29	16.97	16.88	10.28
	Toplam:	100.00	100.00	100.00	100.00	100.00
Ardeşen	1000-850	19.61	16.82	17.00	21.31	38.97
	850-600	20.96	20.36	20.40	22.61	19.42
	600-300	38.00	38.69	38.59	38.48	26.96
	300-250	18.61	20.58	20.47	15.13	13.20
	<250	2.82	3.55	3.54	2.47	1.45
	Toplam:	100.00	100.00	100.00	100.00	100.00
Pazar	1000-850	18.75	20.57	20.58	24.03	35.64
	850-600	18.80	20.48	20.33	18.03	21.86
	600-300	34.74	35.52	35.50	29.07	29.70
	300-250	16.90	13.88	14.13	14.05	7.92
	<250	10.80	9.56	9.47	14.83	4.87
	Toplam:	100.00	100.00	100.00	100.00	100.00
Çayeli	1000-850	17.60	16.27	16.87	15.90	34.54
	850-600	18.12	16.90	18.07	17.18	22.70
	600-300	33.92	32.79	34.04	33.34	24.61
	300-250	16.53	17.89	16.58	21.22	10.41
	<250	13.83	16.15	14.44	12.37	7.75
	Toplam:	100.00	100.00	100.00	100.00	100.00
Rize	1000-850	16.49	20.51	20.43	13.53	32.78
	850-600	17.47	16.27	16.36	16.23	21.19
	600-300	28.60	23.23	23.21	27.86	25.14
	300-250	18.84	15.20	15.07	19.93	10.76
	<250	18.60	24.79	24.93	22.45	10.13
	Toplam:	100.00	100.00	100.00	100.00	100.00
Derepazarı	1000-850	17.68	16.47	17.60	19.63	33.09
	850-600	15.02	14.68	15.04	16.56	15.57
	600-300	32.69	31.96	32.78	33.85	29.98
	300-250	16.04	16.26	16.04	13.33	10.46
	<250	18.57	20.64	18.55	16.63	10.90
•	Toplam:	100.00	100.00	100.00	100.00	100.00
lyidere	1000-850	19.10	17.72	18.29	23.93	31.68
	850-600	6.33	5.93	6.15	5.94	8.05
	600-300	37.54	36.89	37.44	30.71	34.01
	300-250	19.37	19.74	21.77	15.74	14.20
	<250	17.65	19.73	16.35	23.69	12.06
	Toplam:	100.00	100.00	100.00	100.00	100.00

Tablo 24. Sahil kumları tane boyutuna bağlı olarak ²³²Th, ²³⁸U, ⁴⁰K ve ¹³⁷Cs radyonüklidlerinin yüzde dağılım değerleri

Sahil boyu kum örneklerinin farklı tane boyutu aralıklarında ölçülen ortalama ²³²Th, ²³⁸U, ⁴⁰K ve ¹³⁷Cs gama radyoaktivitelerinin yüzde dağılımları Tablo 24'te verilmektedir.

Şekil 35'te genel ortalamalara göre yüzde dağılım değişimi gösterilmektedir. ²³²Th radyoaktivitesinin %33.19'u, ²³⁸U radyoaktivitesinin %34.53'ü ve ⁴⁰K radyoaktivitesinin %31.57'si 600-300 μ m aralığındaki kum tane boyutunda en yüksek değere sahiptir. ¹³⁷Cs radyoaktivitesinin en yüksek dağılım gösterdiği tane boyutu ise %34.03 ile 1000-850 μ m aralığındaki kum tane boyutundadır.

Şekil 38. Sahil kum örneklerinin farklı tane boyutuna göre ortalama radyoizotop dağılımları

Bölgelere göre örneklerin ²³²Th, ²³⁸U ve ⁴⁰K radyoaktivite dağılımlarının farklı olup olmadıklarını test etmek için çoklu değişken analizi uygulanarak Fisher (F) ve P değerleri hesaplandı (Tablo 25). ²³²Th, ²³⁸U ve ⁴⁰K için P<0.05 olduğundan, çoklu değişken analizine göre ²³²Th, ²³⁸U ve ⁴⁰K radyoaktivite değerleri bölgelere göre farklılık göstermektedir.

	F	df	Р
²³² Th	4.84	6	0.01
²³⁸ U	16.28	6	0.00
⁴⁰ K	4.30	6	0.03

Tablo 25. Bölgelere göre istatistiksel çoklu değişken analizi

Farklılığın değerlendirilmesi için yapılan S-N-K testine göre; ²³²Th Çayeli-İyidere-Rize-Fındıklı-Pazar-Derepazarı, Derepazarı-Ardeşen olmak üzere iki gruptan (Tablo 26) oluşmaktadır.

Bölgeler	1	2
Çayeli	27.54	
İyidere	29.10	
Rize	29.86	
Fındıklı	30.00	
Pazar	30.07	
Derepazarı	34.16	34.16
Ardeşen		39.13

Tablo 26. ²³²Th'nin bölgelere göre sınıflandırması

S-N-K testine göre; ²³⁸U; Çayeli-Pazar, Pazar-Rize-Derepazarı-İyidere, Rize-Derepazarı-İyidere ve Fındıklı bölgeleri olmak üzere 4 gruptan oluşmaktadır (Tablo 27).

Bölgeler	1	2	3	4
Çayeli	10.79			
Pazar	14.12	14.12		
Rize		17.01	17.01	
Derepazarı		17.10	17.10	
İyidere		17.91	17.91	
Ardeşen			21.24	
Fındıklı				26.21

Tablo 27. ²³⁸U'in bölgelere göre sınıflandırması

S-N-K testine göre; ⁴⁰K; Çayeli-İyidere-Ardeşen-Derepazarı-Pazar ve İyidere-Ardeşen-Derepazarı-Pazar-Fındıklı-Rize bölgeleri olmak üzere iki gruptan (Tablo 28) oluşmaktadır.

Bölgeler	1	2
Çayeli	343.52	
İyidere	388.11	388.11
Ardeşen	390.90	390.90
Derepazarı	390.90	390.90
Pazar	393.86	393.86
Fındıklı		496.31
Rize		508.65

Tablo 28. ⁴⁰K'ın bölgelere göre sınıflandırması

Örneklerin farklı tane boyutların göre ²³²Th, ²³⁸U ve ⁴⁰K radyoaktivite dağılımlarının farklı olup olmadıklarını test etmek için çoklu değişken analizi uygulanarak Fisher (F) ve P değerleri hesaplandı (Tablo 29). ²³²Th, ²³⁸U ve ⁴⁰K için P>0.05 olduğundan, çoklu değişken analizine göre ²³²Th, ²³⁸U ve ⁴⁰K radyoaktivite değerleri tane boyutlarına göre farklılık göstermemektedir.

Tablo 29. Örneklerin farklı tane boyutlarına göre istatistiksel çoklu değişken analizi

	F	df	Р
²³² Th	2.444	5	0.057
²³⁸ U	0.753	5	0.591
⁴⁰ K	0.983	5	0.444

3.3. Yukarı Bölge Kum Örneklerinde Tane Boyutuna Göre Doğal Gama Radyoaktivite Değerleri

İkizdere ve Kaptanpaşa Vadileri boyunca toplanan kum örneklerinin tane boyutuna göre ²³²Th, ²³⁸U serilerine ait radyoizotopların gama spektrometrik analiz sonuçları EKLER bölümünde Ek 15-18 tablolarında verilmiştir. Burada ²³²Th, ²³⁸U, ⁴⁰K ve ¹³⁷Cs radyoizotoplarının tane boyutuna göre gama radyoaktivite değerleri tablolar ve grafikler halinde verilmektedir.

Tablo 30'da İkizdere bölgesine ait kum örneklerinin farklı tane boyutlarında radyoizotopların gama radyoaktivite değerleri verilmiştir.

Bölge	Örnek	²³² Th	²³⁸ U	⁴⁰ K	¹³⁷ Cs
İkizdere1	1000-850	23.74 ±2.30	93.60 ±5.29	560.21 ±25.18	6.79 ±0.18
İkizdere2	1000-850	56.45 ±5.81	215.72 ±13.38	1280.98 ±63.87	6.34 ±0.15
İkizdere3	1000-850	23.82 ±2.46	197.19 ±10.19	1355.32 ±61.80	5.90 ±0.14
İkizdere4	1000-850	11.91 ±1.12	68.39 ±3.62	445.74 ±20.32	6.80 ±0.17
	Ortalama	28.98 ±2.92	143.73 ±8.12	910.56 ±42.79	6.45 ±0.16
İkizdere1	850-600	25.71 ±2.48	92.98 ±5.79	543.13 ±28.00	6.21 ±0.16
İkizdere2	850-600	62.34 ±5.96	205.93 ±12.18	1167.93 ±54.27	5.86 ±0.16
İkizdere3	850-600	26.45 ± 2.72	192.12 ±8.05	1299.44 ±43.76	5.36 ±0.15
İkizdere4	850-600	14.04 ± 1.44	86.13 ±4.37	567.98 ±24.03	6.61 ±0.15
	Ortalama	32.13 ±3.15	144.29 7.60	894.62 ±37.51	6.01 ±0.16
İkizdere1	600-300	28.10 ± 2.85	88.02 ±4.72	489.45 ±17.47	5.45 ±0.13
İkizdere2	600-300	68.53 ±7.06	216.24 ±12.78	1200.51 ± 50.70	5.34 ±0.12
İkizdere3	600-300	26.94 ± 2.70	174.25 ±7.86	1158.55 ±42.36	4.92 ±0.12
İkizdere4	600-300	14.01 ± 1.40	72.35 ±4.22	461.67 ±22.97	5.32 ±0.12
	Ortalama	34.40 ± 3.50	137.72 ±7.40	827.55 ±33.38	5.26 ±0.12
İkizdere1	300-250	27.12 ±2.74	76.01 ±4.26	401.73 ±14.37	4.91 ±0.12
İkizdere2	300-250	65.14 ±6.18	183.02 ±10.08	971.32 ±36.41	4.60 ±0.11
İkizdere3	300-250	25.25 ±2.61	163.49 ±10.15	1086.44 ±60.55	4.70 ±0.13
İkizdere4	300-250	14.63 ±1.49	60.03 ±3.05	363.56 ±13.58	4.59 ±0.11
	Ortalama	33.04 ± 3.25	120.64 ±6.89	705.76 ±31.23	4.70 ±0.12
İkizdere1	<250	29.66 ±3.04	76.13 ±4.06	385.80 ± 10.86	4.11 ±0.09
İkizdere2	<250	66.51 ±6.51	212.06 ±12.01	1183.80 ±48.65	3.77 ±0.09
İkizdere3	<250	28.25 ±2.96	153.29 ±7.30	988.24 ±36.19	3.44 ±0.08
İkizdere4	<250	15.62 ±1.57	55.37 ±3.34	321.82 ±15.17	4.01 ±0.10
	Ortalama	35.01 3.52	124.21 ±6.68	719.91 ±27.72	3.83 ±0.09
Ge	enel Ortalama:	32.71 ±3.27	134.12 ±7.34	811.68 ±34.53	5.25 ±0.13

Tablo 30. İkizdere Vadisi kum örneklerinde tane boyutuna göre ²³²Th, ²³⁸U, ⁴⁰K ve ¹³⁷Cs radyoizotoplarının gama radyoaktivite değerleri (Bq/kg)

İkizdere Vadisi boyunca alınan kum örneklerindeki ortalama ²³²Th radyoaktivite değeri 32.71±3.3.27 Bq/kg ve 11.91±1.12–68.53±7.06 Bq/kg aralığında değişmektedir. ²³²Th'nin en yüksek ortalama gama radyoaktivitesi <250 µm tane boyutunda 35.01±3.52 Bq/kg değerine sahiptir. En düşük ortalama gama radyoaktivite değeri ise 1000-850 µm tane boyutunda 28.98±2.92 Bq/kg'dır. ²³⁸U radyoaktivitesi ortalama 134.12±7.34 Bq/kg değerinde ve 55.37±3.05–216.24±13.38 Bq/kg aralığında değişmektedir. En yüksek ortalama radyoaktivite değeri 850-600 µm tane boyutunda 144.29±7.60 Bq/kg'dır. En düşük ortalama radyoaktivite değeri ise 300-250 µm tane boyutunda 120.64±6.89 Bq/kg'dır. ⁴⁰K radyoaktivitesi ise ortalama 811.68±34.53 Bq/kg ve 321.82±10.86–1355.32±63.87 Bq/kg aralığında değişmektedir. En düşük ve en yüksek gama radyoaktivite değerleri sırasıyla 300-250 µm tane boyutunda 705.76±31.23 Bq/kg, 1000-850 µm tane boyutunda 910.56±42.79 Bq/kg'dır. ¹³⁷Cs radyoaktivitesi ise ortalama 5.25±0.13 Bq/kg ve 6.80±0.18–3.44±0.08 Bq/kg aralığında değişmektedir. En düşük ve en yüksek gama

radyoaktivite değerleri sırasıyla <250 μ m tane boyutunda 3.83±0.09 Bq/kg, 1000-850 μ m tane boyutunda 6.45±0.16 Bq/kg'dır.

Şekil 39. ²³²Th'in İkizdere bölgesi kumunda elek aralıklarına göre radyoaktivite değişimi

Şekil 40. ²³⁸U'in İkizdere bölgesi kumunda elek aralıklarına göre radyoaktivite değişimi

İkizdere2 kum örneğindeki ²³²Th gama radyoaktivite değeri İkizdere1-İkizdere3 ve İkizdere4 örneklerindeki ²³²Th gama radyoaktivite değerlerinden yaklaşık 3 kat yüksek olduğu görülmektedir (Şekil 39).

²³⁸U ve ⁴⁰K gama radyoaktiviteleri İkizdere2 ve İkizdere3 bölgelerinde diğer bölgelerden yaklaşık 2 kat yüksek değere sahiptir (Şekil 40, 41). Bu bölgelerin uranyumca zengin oluşu bölgenin granitik kayaçlarla kaplı olmasından kaynaklanmaktadır.

Şekil 41. ⁴⁰K'ın İkizdere bölgesi kumunda elek aralıklarına göre radyoaktivite değişimi

İyidere bölgesinden İkizdere Vadisi boyunca örnekleme noktalarına göre örneklerin ²³²Th, ²³⁸U ve ⁴⁰K radyoaktivite dağılımlarının farklı olup olmadıklarını test etmek için çoklu değişken analizi uygulanarak Fisher (F) ve P değerleri hesaplandı (Tablo 31). ²³²Th, ²³⁸U ve ⁴⁰K için P<0.05 olduğundan, çoklu değişken analizine göre ²³²Th, ²³⁸U ve ⁴⁰K radyoaktivite değerleri örnekleme noktalarına göre farklılık göstermektedir.

	E.	10	
	F	df	Р
²³² Th	392.37	4	0.000
²³⁸ U	87.56	4	0.000
⁴⁰ K	305.98	4	0.000

Tablo 31. İyidere-İkizdere Vadisi boyunca örnekleme noktalarına göre istatistiksel çoklu değişken analizi

Farklılığın değerlendirilmesi için yapılan S-N-K testine göre; ²³²Th 4, 3-1, 0 ve 2 no'lu örnekleme noktaları 4 grupta toplanmaktadır (Tablo 32).

Tablo 32. ²³²Th'nin örnekleme noktalarına göre sınıflandırması

Bölgeler	1	2	3	4
4	13.64			
3		24.93		
1		26.25		
0			29.10	
2				61.80

S-N-K testine göre; ²³⁸U; 4, 0-3, 3-1 ve 2 no'lu örnekleme noktaları olmak üzere 4 gruptan oluşmaktadır (Tablo 33).

Tablo 33.²³⁸U'in örnekleme noktalarına göre sınıflandırması

Bölgeler	1	2	3	4
4	14.29			
0		17.91		
3		20.38	20.38	
1			22.14	
2				39.53

S-N-K testine göre; ⁴⁰K; 0-4-1 ve 2-3 no'lu örnekleme noktaları olmak üzere 2 gruptan oluşmaktadır (Tablo 34).

Bölgeler	1	2
0	388.11	
4	404.81	
1	450.20	
2		1110.62
3		1129.41

Tablo 34. ⁴⁰K'ın örnekleme noktalarına göre sınıflandırması

İyidere bölgesinden İkizdere Vadisi boyunca kum örneklerinin farklı tane boyutuna göre ²³²Th, ²³⁸U ve ⁴⁰K radyoaktivite dağılımlarının farklı olup olmadıklarını test etmek için çoklu değişken analizi uygulanarak Fisher (F) ve P değerleri hesaplandı (Tablo 35). ²³²Th, ²³⁸U ve ⁴⁰K için P<0.05 olduğundan, çoklu değişken analizine göre ²³²Th, ²³⁸U ve ⁴⁰K radyoaktivite değerleri örnekleme noktalarına göre farklılık göstermektedir.

Tablo 35. İyidere-İkizdere Vadisi boyunca kum örneklerinin tane boyutuna göre istatistiksel çoklu değişken analizi

	F	df	Р
²³² Th	7.80	5	0.00
²³⁸ U	7.80	5	0.00
⁴⁰ K	4.23	5	0.09

Farklılığın değerlendirilmesi için yapılan S-N-K testine göre; ²³²Th: 0-1-2, 2-3-4, 3-4-5 no'lu tane boyutları 3 grupta (Tablo 36), ²³⁸U: 0-1-2, 1-2-3, 3-4-5 no'lu tane boyutları 3 grupta (Tablo 37) ve 40 K: 5-4-1-2-3 ve 1-2-3-0 no'lu tane boyutları 2 grupta toplanmaktadır (Tablo 38).

Tablo 36.²³²Th'nin tane boyutuna göre sınıflandırması

Bölgeler	1	2	3
0	27.92		
1	28.38		
2	30.00	30.00	
3		32.46	32.46
4		33.29	33.29
5			34.81

Bölgeler	1	2	3
0	18.87		
1	20.90	20.90	
2	21.62	21.62	
3		23.13	23.13
4			26.03
5			26.91

Tablo 37. ²³⁸U'in tane boyutlarına göre sınıflandırması

Tablo 38. ⁴⁰K'ın tane boyutlarına göre sınıflandırması

Bölgeler	1	2
5	641.96	
4	649.50	
1	738.58	738.58
2	712.65	712.65
3	672.46	672.46
0		764.65

Kaptanpaşa bölgesine ait kum örneklerinin farklı tane boyutlarında ²³²Th, ²³⁸U, ⁴⁰K ve ¹³⁷Cs radyoizotoplarının gama radyoaktivite değerleri Tablo 39'da verilmiştir. Kaptanpaşa Vadisi boyunca alınan kum örneklerindeki ortalama²³²Th radyoaktivite değeri 24.48±2.43 Bq/kg ve 12.80±1.22–40.80±4.07 Bq/kg aralığında değişmektedir.²³²Th'nin en düşük ve en yüksek ortalama gama radyoaktivite değerleri sırasıyla, 1000-850 µm tane boyutunda 20.42±2.02 Bq/kg, <250 µm tane boyutunda 28.31±2.81 Bq/kg değerine sahiptir. ²³⁸U radyoaktivitesi ortalama 19.46±1.91 Bq/kg değerinde ve 8.95±0.95-29.69±2.97 Bq/kg aralığında değişmektedir. En düşük ve en yüksek ortalama radyoaktivite değerleri sırasıyla, 1000-850 µm tane boyutunda 15.31±1.51 Bq/kg, <250 µm tane boyutunda 22.38±2.18 Bq/kg'dır. ⁴⁰K radyoaktivitesi ise ortalama 609.66±27.90 Bq/kg ve 360.90±13.10-1036.34±52.54 Bq/kg aralığında değişmektedir. En düşük ve en yüksek gama radyoaktivite değerleri sırasıyla 300-250 µm tane boyutunda 484.30±23.61 Bq/kg, 850-600 µm tane boyutunda 714.39±35.16 Bq/kg'dır.¹³⁷Cs radyoaktivitesi ise ortalama 5.13±0.13 Bq/kg ve 3.68±0.09-7.14±0.20 Bq/kg aralığında değişmektedir. En düşük ve en yüksek gama radyoaktivite değerleri sırasıyla <250 µm tane boyutunda 3.80±0.10 Bq/kg, 1000-850 µm tane boyutunda 6.74±0.17 Bq/kg'dır.

Bölge	Örnek	²³² Th	²³⁸ U	⁴⁰ K	¹³⁷ Cs
Kaptanpaşa1	1000-850	12.80 ±1.22	8.95 ±0.95	561.04 ±23.24	6.54 ±0.16
Kaptanpaşa2	1000-850	27.70 ±2.74	18.25 ±1.69	567.78 ±28.19	6.05 ±0.14
Kaptanpaşa3	1000-850	31.77 ±3.23	22.17 ±2.17	1000.29 ±40.02	7.14 ±0.16
Kaptanpaşa4	1000-850	14.92 ±1.47	14.41 ±1.48	714.61 ±25.42	7.09 ±0.20
Kaptanpaşa5	1000-850	14.94 ±1.45	12.78 ±1.26	588.58 ±25.96	6.90 ±0.18
	Ortalama	20.42 ± 2.02	15.31 ±1.51	686.46 ±28.57	6.74 ±0.17
Kaptanpaşa1	850-600	14.89 ±1.45	15.61 ±1.56	530.35 ±23.90	5.59 ±0.15
Kaptanpaşa2	850-600	33.53 ±3.42	22.11 ±2.10	664.17 ±37.05	5.51 ±0.14
Kaptanpaşa3	850-600	35.44 ±3.58	27.15 ±2.64	1036.34 ±52.54	5.38 ±0.13
Kaptanpaşa4	850-600	14.61 ±1.43	15.43 ±1.53	703.75 ±28.44	5.37 ±0.13
Kaptanpaşa5	850-600	18.20 ±1.81	16.60 ± 1.62	637.36 ±33.88	5.39 ±0.15
	Ortalama	23.34 ±2.34	19.38 ±1.89	714.39 ±35.16	5.45 ±0.14
Kaptanpaşa1	600-300	16.49 ±1.61	16.93 ±1.71	488.58 ±27.87	5.26 ±0.14
Kaptanpaşa2	600-300	38.17 ±3.73	23.63 ±2.35	534.97 ±23.58	5.17 ±0.15
Kaptanpaşa3	600-300	38.06 ±3.84	26.98 ±2.55	1003.35 ±52.25	4.92 ±0.14
Kaptanpaşa4	600-300	17.34 ±1.76	16.35 ±1.63	585.98 ±27.84	4.94 ±0.13
Kaptanpaşa5	600-300	18.38 ±1.75	18.46 ±1.67	609.48 ±25.68	5.19 ±0.11
	Ortalama	25.69 ±2.54	20.47 ±1.98	644.47 ±31.44	5.09 ±0.13
Kaptanpaşa1	300-250	20.51 ± 2.05	14.88 ±1.56	361.46 ±15.64	5.06 ±0.12
Kaptanpaşa2	300-250	35.02 ± 3.42	22.90 ± 2.26	515.93 ±25.73	4.29 ±0.11
Kaptanpaşa3	300-250	34.05 ±3.31	28.14 ±2.97	781.21 ±31.36	4.60 ±0.11
Kaptanpaşa4	300-250	16.59 ±1.73	15.55 ±1.58	375.61 ±19.20	4.21 ±0.11
Kaptanpaşa5	300-250	17.13 ±1.71	17.20 ± 1.66	387.26 ±26.11	4.58 ±0.11
	Ortalama	24.66 ±2.44	19.73 ±2.01	484.30 ±23.61	4.55 ±0.11
Kaptanpaşa1	<250	23.60 ± 2.30	19.67 ±1.95	378.04 ±13.10	3.78 ±0.09
Kaptanpaşa2	<250	40.80 ± 4.07	26.86 ± 2.63	576.09 ±17.96	3.85 ± 0.09
Kaptanpaşa3	<250	39.89 ±3.95	29.69 ± 2.75	830.25 ±37.44	3.94 ±0.11
Kaptanpaşa4	<250	17.94 ±1.81	18.79 ±1.89	360.90 ± 15.80	3.78 ±0.11
Kaptanpaşa5	<250	19.32 ±1.93	16.90 ±1.67	448.09 ±19.22	3.68 ±0.10
	Ortalama	28.31 ±2.81	22.38 ±2.18	518.67 ±20.70	3.80 ±0.10
Gene	l Ortalama:	24,48 ±2.43	19.46 ±1.91	609.66 ±27.90	5.13 ±0.13

Tablo 39. Kaptanpaşa Vadisi kum örneklerinde tane boyutuna göre ²³²Th, ²³⁸U, ⁴⁰K ve ¹³⁷Cs radyoizotoplarının gama radyoaktivite değerleri (Bq/kg)

Kaptanpaşa2 ve Kaptanpaşa3 bölgelerine ait kum örneklerinde ²³²Th ve ²³⁸U gama radyoaktivite değerleri, diğer bölgelerdeki değerlerden yaklaşık 2 kat daha büyüktür. Tane boyutu küçüldükçe ²³²Th ve ²³⁸U gama radyoaktivite değerleri hemen hemen düzgün bir şekilde artmaktadır. ⁴⁰K için ise tersi gözlenmektedir (Şekil 42-44).

Şekil 42. ²³²Th'nin Kaptanpaşa bölgesi kumunda tane boyutuna göre radyoaktivite değişimi

Şekil 43. ²³⁸U'in Kaptanpaşa bölgesi kumunda tane boyutuna göre radyoaktivite değişimi

Şekil 44. ⁴⁰K'ın Kaptanpaşa bölgesi kumunda tane boyutuna göre radyoaktivite değişimi

Çayeli bölgesinden Kaptanpaşa Vadisi boyunca örnekleme noktalarına göre örneklerin ²³²Th, ²³⁸U ve ⁴⁰K radyoaktivite dağılımlarının farklı olup olmadıklarını test etmek için çoklu değişken analizi uygulanarak Fisher (F) ve P değerleri hesaplandı (Tablo 40). ²³²Th, ²³⁸U ve ⁴⁰K için P<0.05 olduğundan, çoklu değişken analizine göre ²³²Th, ²³⁸U ve ⁴⁰K radyoaktivite değerleri örnekleme noktalarına göre farklılık göstermektedir.

	F	df	Р
²³² Th	21.90	5	0.000
²³⁸ U	13.12	5	0.000
40 K	6.10	5	0.001

Tablo 40. İyidere-İkizdere Vadisi boyunca örnekleme noktalarına göre istatistiksel çoklu değişken analizi

Farklılığın değerlendirilmesi için yapılan S-N-K testine göre: ²³²Th; 0-1, 1-2, 2-3, 3-4, 5 no'lu örnekleme noktaları 4 grupta (Tablo 41) ve ²³⁸U; 0-1, 1-2, 2-3-4, 4-5 no'lu örnekleme noktaları 4 grupta toplanmaktadır (Tablo 42). ⁴⁰K; 5, 0-1-2-3-4 no'lu örnekleme noktaları ise 2 grupta toplanmaktadır (Tablo 43).

Bölgeler	1	2	3	4	5
0	19.36				
1	20.84	20.84			
2		22.62	22.62		
3			24.41	24.41	
4				26.24	
5					29.04

Tablo 41.²³²Th'nin örnekleme noktalarına göre sınıflandırması

Tablo 42.²³⁸U'in örnekleme noktalarına göre sınıflandırması

Bölgeler	1	2	3	4
0	13.63			
1	14.67	14.67		
2		16.50	16.50	
3			18.03	
4			19.05	19.05
5				20.70

Tablo 43. ⁴⁰K'ın örnekleme noktalarına göre sınıflandırması

Bölgeler	1	2
5	460.24	
0		617.63
1		579.68
2		567.12
3		539.90
4		528.46

Çayeli bölgesinden Kaptanpaşa Vadisi boyunca kum örneklerinin farklı tane boyutuna göre ²³²Th, ²³⁸U ve ⁴⁰K radyoaktivite dağılımlarının farklı olup olmadıklarını test etmek için çoklu değişken analizi uygulanarak Fisher (F) ve P değerleri hesaplandı (Tablo 44). ²³²Th, ²³⁸U ve ⁴⁰K için P<0.05 olduğundan, çoklu değişken analizine göre ²³²Th, ²³⁸U ve ⁴⁰K radyoaktivite değerleri örnekleme noktalarına göre farklılık göstermektedir. Farklılığın değerlendirilmesi için yapılan S-N-K testine göre; ²³²Th: 1-4-5, 0, 2-3 no'lu tane boyutları 3 grupta (Tablo 45). ²³⁸U: 0, 1-5-4, 2, 3 no'lu tane boyutları 4 grupta (Tablo 46) ve ⁴⁰K: 0, 1-4-5, 4-5-2, 3 no'lu tane boyutlarıyla 4 grupta toplanmaktadır (Tablo 47).

	F	df	Р
²³² Th	129.53	5	0.000
²³⁸ U	52.74	5	0.000
⁴⁰ K	74.38	5	0.000

Tablo 44. Çayeli-Kaptanpaşa Vadisi boyunca kum örneklerinin tane boyutuna göre istatistiksel çoklu değişken analizi

Tablo 45.²³²Th'nin tane boyutuna göre sınıflandırması

Bölgeler	1	2	3
1	16.07		
4	15.36		
5	16.91		
0		27.54	
2			32.72
3			33.94

Tablo 46.²³⁸U'in tane boyutuna göre sınıflandırması

Bölgeler	1	2	3	4
0	10.79			
1		13.69		
5		15.43		
4		15.70		
2			21.59	
3				25.34

Tablo 47. ⁴⁰K'ın tane boyutuna göre sınıflandırması

Bölgeler	1	2	3	4
0	343.52			
1		460.63		
4		494.02	494.02	
5		540.45	540.45	
2			556.00	
3				898.31

3.4. Kayaç Örneklerinde Doğal Gama Radyoaktivite Değerleri

Kaptanpaşa ve İkizdere Vadileri kayaç örneklerinde Toryum ve Uranyum serilerine ait radyoizotopların ve ⁴⁰K gama radyoaktivite değerleri Ek 19-20 tablolarında verilmiştir. Kayaçlara ait ²³⁸U, ²³²Th ve ⁴⁰K radyoizotoplarının gama radyoaktivite değerleri grafiklerde gösterilmiştir (Şekil 45-50). ²³²Th ve ²³⁸U için öğütülmüş kayaç örneklerindeki radyoaktivite değeri, kırılmış olan kayaç örneklerindeki radyoaktivite değerinden yüksektir. ⁴⁰K için ise tersi gözlenmiştir.

İkizdere Vadisi kayaç örneklerinde ²³²Th değeri 33.68±3.51-44.39±4.41 Bq/kg aralığında değişmekte ve ortalama radyoaktivite değeri 39.60±4.07 Bq/kg'dır. ²³⁸U 17.33±1.65-29.25±5.04 Bq/kg aralığında değişmekte ve ortalama 22.81±2.97 Bq/kg'dır. ⁴⁰K, 312.03±22.54-539.15±71.58 Bq/kg aralığında değişmekte ve ortalama 392.92±41.94 Bq/kg'dır.

Kaptanpaşa Vadisi kayaç örneklerindeki ²³²Th radyoaktivite değeri 26.12±2.92-44.39±4.70 Bq/kg aralığında değişmekte ve ortalama radyoaktivite değerleri 33.84±3.84 Bq/kg'dır. ²³⁸U, 13.80±1.65-29.25±5.04 Bq/kg aralığında değişmekte ve ortalama 18.87±2.44 Bq/kg'dır. ⁴⁰K, 307.54±15.17-518.40±71.58 Bq/kg aralığında değişmekte ve ortalama 384.23±38.71 Bq/kg'dır.

Kayaç örneklerinde ¹³⁷Cs radyoizotopu gözlenememiştir.

İkizdere kayaçlarındaki ²³²Th ve ²³⁸U gama radyoaktivite değerleri, Kaptanpaşa bölgesi kayaçlarındaki radyoaktivite değerlerinden yüksek olduğu tespit edilmiştir. ⁴⁰K gama radyoaktivite değerleri ise hemen hemen aynıdır.

Şekil 45. İkizdere bölgesi kayaç örneklerinde ²³⁸U radyoaktivite değişimi

Şekil 46. İkizdere bölgesi kayaç örneklerindeki 232 Th radyoaktivite değişimi

Şekil 47. İkizdere bölgesi kayaç örneklerindeki ⁴⁰K radyoaktivite değişimi

Şekil 48. Kaptanpaşa bölgesi kayaç örneklerindeki ²³⁸U radyoaktivite değişimi

Şekil 49. Kaptanpaşa bölgesi kayaç örneklerindeki ²³²Th radyoaktivite değişimi

Şekil 50. Kaptanpaşa bölgesi kayaç örneklerindeki ⁴⁰K radyoaktivite değişimi

3.5. Toplam Alfa - Toplam Beta Radyoaktivite Değerleri

Sahil boyu her bölgeye ait kum örneklerinin ve kayaç örneklerinin kg başına toplam alfa ve toplam beta radyoaktivitesi Tablo 48 ve Tablo 49'da verilmiştir. Toplam alfa ve toplam betaların nedeni kara orijinli doğal radyoaktif kaynakların başında bulunan ve doza en büyük katkısı olan ²³⁸U ve ²³²Th radyoaktivitelerinden kaynaklanmaktadır. ²³⁸U (bozunma ürünlerinin en yüksek bollukta olanları ²¹⁴Bi, ²¹⁴Pb) ve ²³²Th (bozunma ürünlerinin en yüksek bollukta olanları ²²⁸Ac ve ²⁰⁸Tl) hem alfa hem de gama ışını yayınlamaktadır. Bozunma ürünlerinin bazıları beta ışını yayınlıyor olsa dahi yayınlanma olasılığı çok düşük olduğu için etkisi fazla kabul olmaz ve doz hesaplarında dikkate alınmazlar. Toplam alfa radyoaktivitesinin yüksek çıktığı Ardeşen bölgesi (38.03±3.21 Bq/kg) örneklerinin ²³⁸U ve ²³²Th (25.24±2.41-49.63±4.76 Bq/kg) (veya bunların bozunma ürünlerinin) gama radyoaktiviteleri de yüksek çıkmıştır.

	Toplam Alfa	Toplam Beta
Fındıklı	21.11±2.11	163.23 ± 16.03
Ardeşen	38.03±3.21	294.15 ± 29.42
Pazar	32.18±3.54	248.32 ± 24.17
Çayeli	27.21±2.38	209.45 ± 20.46
Rize	20.76 ± 2.76	155.65±15.38
Derepazarı	24.13 ± 2.49	186.24±18.23
İyidere	34.92 ± 3.32	263.84 ± 26.44

Tablo 48. Sahil kum örneklerinde Toplam Alfa-Toplam Beta radyoaktivite değerleri (Bq/kg)

Tablo 49. Kayaç örneklerinde Toplam Alfa-Toplam Beta radyoaktivite değerleri (Bq/kg)

	Toplam Alfa	Toplam Beta			
İkizdere1	394.12±27.13	243.76±15.43			
İkizdere2	276.25±19.21	419.24±26.37			
İkizdere3	131.65±9.09	302.18 ± 19.87			
Kaptanpaşa1	245.38 ± 17.18	415.22 ± 26.68			
Kaptanpaşa2	432.45 ± 30.22	502.18 ± 31.49			
Kaptanpaşa3	100.72 ± 7.32	252.79±16.55			
Kaptanpaşa4	306.16±21.56	171.35 ± 11.38			
Kaptanpaşa5	932.57±65.72	1269.01±78.33			

⁴⁰K hem beta (%89.28 bollukta beta yayınlar) hem de gama vericisidir. Doğal örneklerde beta radyoaktivitesinin genel kaynağı ⁴⁰K'tır. Beta vericilerinin en önemlisi ve en yüksek konsantrasyonda olanıdır. Doğal örneklerdeki beta radyoaktivitesi doz hesaplarında sadece bu radyonüklid dikkate alınır. Bu nedenle beta radyoaktivitesinin

yüksek çıktığı Ardeşen bölgesinde gama spektrometrik analizde 40 K (453.98±22.04 Bq/kg) radyoaktivite değeri de yüksek çıkmıştır.

Bu bilgiler ışığında şunu söyleyebiliriz. Farklı noktalardan alınan kum örneklerinin toplam alfa-beta radyoaktivite değerleri genel olarak bir yakınlık göstermektedir. Bazı yerlerde alfa ve beta radyoaktivitesinin yüksek çıkmasının nedenini bu örneklerdeki ²³⁸U, ²³²Th ve ⁴⁰K konsantrasyonlarının diğer yerlere nispeten daha yüksek konsantrasyonda olmasındandır.

3.6. ICP-MS Ölçüm Değerleri

Sahil kum örneklerinde, kayaç örneklerinde ve yukarı bölgelere ait kum örneklerinde 11 majör oksit ve 40 adet iz element tayini, Kanada'da Acme Laboratories Inc.'de Perkin Elmer Elan 6000 model ICP-MS kullanılarak yapılan elemental analiz sonuçları Tablo 50-55'te verilmiştir.

Tablo 50. Sahil boyu başlangıç kum numunelerinde başlıca oksitlerin ortalama (Ort), standart sapma (SS) ve değişim aralıkları

				Fındıklı	Ardeşen	Pazar	Çayeli	Rize	Derepazarı	İyidere
SiO ₂	Ort	(%)	67.26	64.92	64.33	75.46	71.99	71.57	47.70	74.82
	SS	(%)	9.68							
	Değişim	(%)	47.70-							
			75.46							
Al_2O_3	Ort	(%)	12.90	13.34	14.93	9.99	12.40	12.45	15.54	11.68
	SS	(%)	1.90							
	Değişim	(%)	9.99-							
	-		15.54							
Fe ₂ O ₃	Ort	(%)	5.63	6.83	5.60	4.37	4.23	3.43	12.49	2.46
	SS	(%)	3.34							
	Değişim	(%)	2.46-							
			12.49							
MgO	Ort	(%)	2.27	2.77	2.54	1.61	1.82	1.35	4.85	0.97
	SS	(%)	1.30							
	Değişim	(%)	0.97-							
			4.85							
CaO	Ort	(%)	2.98	2.97	3.69	2.49	2.53	2.18	5.11	1.92
	SS	(%)	1.10							
	Değişim	(%)	1.92-							
			5.11							
Na ₂ O	Ort	(%)	2.60	2.32	3.55	2.52	3.08	2.61	1.46	2.64
	SS	(%)	0.65							
	Değişim	(%)	1.46-							
			3.55							
K ₂ O	Ort	(%)	1.85	1.64	1.97	0.68	1.07	2.62	2.48	2.49
	SS	(%)	0.76							
	Değişim	(%)	0.68-							
			2.62							
TiO ₂	Ort	(%)	0.53	0.54	0.50	0.41	0.41	0.33	1.27	0.24
	SS	(%)	0.34							
	Değişim	(%)	0.24-							
			1.27							
Tablo 50'nin devamı

P_2O_5	Ort	(%)	0.08	0.11	0.09	0.06	0.10	0.05	0.14	0.04
	SS	(%)	0.04							
	Değişim	(%)	0.04-							
			0.14							
MnO	Ort	(%)	0.09	0.10	0.10	0.07	0.08	0.06	0.15	0.04
	SS	(%)	0.04							
	Değişim	(%)	0.04-							
			0.15							
Cr_2O_3	Ort	(%)	0.01	0.01	0.01	0.01	0.00	0.00	0.02	0.00
	SS	(%)	0.01							
	Değişim	(%)	0.00-							
			0.02							

Tablo	51.	Sahil	boyu	başlangıç	kum	örneklerindeki	iz	elementlerin	ortalama	(Ort)	ve
		standa	art sap	ma (SS) de	gerlei	ri					

Elem	ent			Fındıklı	Ardeşen	Pazar	Çayeli	Rize	D.pazarı	İyidere
V	Ort	(ppm)	139.43	136.00	115.00	88.00	95.00	72.00	423.00	47.00
	SS	(ppm)	128.28							
Cu	Ort	(ppm)	23.90	36.00	27.60	20.30	23.00	13.40	39.00	8.00
	SS	(ppm)	11.29							
Zn	Ort	(ppm)	52.57	72.00	53.00	43.00	51.00	34.00	90.00	25.00
	SS	(ppm)	22.28							
Ga	Ort	(ppm)	12.44	13.20	14.20	10.60	11.50	11.00	16.70	9.90
	SS	(ppm)	2.40							
Pb	Ort	(ppm)	6.93	7.60	5.10	4.00	4.20	7.90	14.10	5.60
	SS	(ppm)	3.51							
Sr	Ort	(ppm)	187.26	194.80	258.80	124.10	165.90	183.00	219.40	164.80
	SS	(ppm)	43.16							
Rb	Ort	(ppm)	46.83	30.90	43.20	11.40	19.90	78.30	67.00	77.10
	SS	(ppm)	27.57							
Ba	Ort	(ppm)	368.14	226.00	474.00	115.00	220.00	516.00	510.00	516.00
	SS	(ppm)	173.00							
Zr	Ort	(ppm)	92.41	168.10	92.50	98.70	87.90	55.60	77.30	66.80
	SS	(ppm)	36.58							
Nb	Ort	(ppm)	4.43	3.50	4.30	3.30	3.90	5.70	5.00	5.30
	SS	(ppm)	0.93							
Th	Ort	(ppm)	4.40	3.20	3.80	2.40	3.50	5.90	7.60	4.40
	SS	(ppm)	1.78							
Sm	Ort	(ppm)	2.93	2.91	2.87	3.18	2.52	2.56	4.52	1.93
	SS	(ppm)	0.81							
Gd	Ort	(ppm)	3.10	3.30	3.02	3.65	3.09	2.36	4.34	1.94
_	SS	(ppm)	0.79							
Ga	Ort	(ppm)	12.44	13.20	14.20	10.60	11.50	11.00	16.70	9.90
	SS	(ppm)	2.40							
Hf	Ort	(ppm)	2.67	4.70	2.60	3.30	2.30	1.60	2.10	2.10
	SS	(ppm)	1.04							

Sn	Ort	(ppm)	1.00	1.00	1.00	1.00	0.00	1.00	3.00	0.00
	SS	(ppm)	1.00							
Tb	Ort	(ppm)	0.53	0.61	0.54	0.67	0.54	0.36	0.64	0.34
	SS	(ppm)	0.13							
W	Ort	(ppm)	0.96	0.00	0.80	0.50	0.70	1.10	1.50	2.10
	SS	(ppm)	0.69							
Pr	Ort	(ppm)	3.53	2.84	3.24	3.21	2.99	4.32	5.69	2.39
	SS	(ppm)	1.12							
U	Ort	(ppm)	1.13	0.90	1.00	0.70	0.80	1.40	2.00	1.10
	SS	(ppm)	0.45							
Y	Ort	(ppm)	19.04	23.00	20.20	25.70	21.00	12.70	18.00	12.70
	SS	(ppm)	4.94							
La	Ort	(ppm)	14.19	10.10	12.60	10.90	10.80	22.60	21.80	10.50
	SS	(ppm)	5.54							
Ce	Ort	(ppm)	26.84	20.70	25.20	23.00	22.30	39.00	38.20	19.50
	SS	(ppm)	8.23							
Nd	Ort	(ppm)	13.99	12.50	12.80	13.40	13.10	15.00	22.60	8.50
	SS	(ppm)	4.28							

Tablo 51'in devamı

Tablo 52. İyidere bölgesi başlangıç, hafif, manyetik ve manyetik olmayan kum örneklerindeki majör oksit değerleri

				İ(Başlangıç)	Í(Hafif)	I(Manyetik)	Í(Manyetik olmayan)
SiO ₂	Ort	(%)	59.60	74.82	74.03	40.13	49.43
	SS	(%)	17.53				
Al_2O_3	Ort	(%)	12.75	11.68	12.6	11.5	15.23
	SS	(%)	1.72				
Fe_2O_3	Ort	(%)	9.76	2.46	2.47	23.29	10.83
	SS	(%)	9.84				
MgO	Ort	(%)	3.07	0.97	0.96	6.33	4.02
-	SS	(%)	2.61				
CaO	Ort	(%)	7.32	1.92	1.72	10.89	14.75
	SS	(%)	6.54				
Na ₂ O	Ort	(%)	1.9	2.64	3.17	1	0.79
	SS	(%)	1.18				
K ₂ O	Ort	(%)	1.60	2.49	2.75	0.67	0.5
	SS	(%)	1.18				
TiO ₂	Ort	(%)	0.97	0.24	0.23	2.31	1.09
	SS	(%)	0.98				
P_2O_5	Ort	(%)	0.12	0.04	0.05	0.25	0.13
	SS	(%)	0.10				
MnO	Ort	(%)	0.17	0.04	0.04	0.38	0.23
	SS	(%)	0.16				
Cr_2O_3	Ort	(%)	0.02	0.002	< 0.002	0.017	0.027
	SS	(%)	0.02				

				R(Başlangıç)	R(Hafif)	R(Manyetik)	R(Manyetik olmayan)
SiO ₂	Ort	(%)	56.04	71.57	71.65	33.52	47.44
	SS	(%)	18.85				
Al_2O_3	Ort	(%)	12.19	12.45	13.08	9.26	13.98
	SS	(%)	2.05				
Fe_2O_3	Ort	(%)	13.61	3.43	2.99	35.14	12.88
	SS	(%)	15.06				
MgO	Ort	(%)	3.43	1.35	1.22	5.45	5.69
	SS	(%)	2.48				
CaO	Ort	(%)	6.37	2.18	1.77	7.9	13.64
	SS	(%)	5.59				
Na ₂ O	Ort	(%)	1.93	2.61	3.03	1.09	0.97
	SS	(%)	1.05				
K_2O	Ort	(%)	1.71	2.62	2.82	0.66	0.74
	SS	(%)	1.17				
TiO ₂	Ort	(%)	1.37	0.33	0.26	3.68	1.22
	SS	(%)	1.60				
P_2O_5	Ort	(%)	1.12	0.05	0.05	0.27	0.12
	SS	(%)	1.10				
MnO	Ort	(%)	0.19	0.06	0.05	0.38	0.27
	SS	(%)	0.16				
Cr_2O_3	Ort	(%)	0.03	0.003	< 0.002	0.026	0.045
	SS	(%)	0.02				

Tablo 53. Rize (Merkez) bölgesi başlangıç, hafif, manyetik ve manyetik olmayan kum örneklerindeki başlıca oksit değerleri

Element			İ(Başlangıç)	İ(Hafif)	İ(Manyetik)	İ(Manyetik olmayan)
V	Ort	210	47	52	506	235
	SS	215.85				
Cu	Ort	14.05	8	7.6	25.4	15.2
	SS	8.33				
Zn	Ort	60	25	24	125	66
_	SS	47.55				
Ga	Ort	15.65	9.9	10.8	20.2	21.7
DI	SS	6.16			15.0	20.0
Pb	Ort	14.575	5.6	5.5	17.3	29.9
C.,	<u> </u>	11.02	164.9	1606	215 6	166.2
51	Ort	278.825	104.8	108.0	313.0	400.3
Dh	SS Ort	143.33 51.025	77 1	70.4	20.8	178
KU	S	31.025	//.1	/9.4	29.0	17.0
Ba	Ort	337 5	516	513	164	157
Da	SS	204 41	510	515	104	157
Zr	Ort	138 55	66.8	57.2	278.4	151.8
	SS	102.47	00.0	07.2	270.1	10110
Nb	Ort	17.75	5.3	3.7	30.1	31.9
	SS	15.33				
Th	Ort	13.45	4.4	4.1	25.3	20
	SS	10.84				
U	Ort	2.675	1.1	1.2	3.8	4.6
	SS	1.79				
Y	Ort	41.225	12.7	10.4	75.8	66
	SS	34.51				
La	Ort	55.425	10.5	10.5	106.1	94.6
~	SS	52.09				
Ce	Ort	102.35	19.5	18.4	194.9	176.6
NT 1	SS	96.59	0.5	0.1	77.1	70
Na	Ort	41.675	8.5	9.1	//.1	12
Sm	SS Ort	38.02 7.69	1.02	1 71	12.00	12.00
5111	SC SC	7.08	1.95	1./1	15.99	15.09
Gd	Ort	7 1725	1 0/	1 74	13 37	11.64
Ou	SS	6 20	1.74	1./-	15.57	11.04
Ga	Ort	15.65	99	10.8	20.2	21.7
04	SS	6.16		1010	2012	
Hf	Ort	4.175	2.1	1.9	8	4.7
	SS	2.85				
Sn	Ort	7.5	<1	<1	8	7
	SS	0.71				
Tb	Ort	1.18	0.34	0.29	2.19	1.9
	SS	1.01				
W	Ort	223.225	2.1	3	75.4	812.4
	SS	394.28				
Pr	Ort	11.645	2.39	2.31	21.65	20.23
	SS	10.75				

Tablo 54. İyidere bölgesi başlangıç, hafif, manyetik ve manyetik olmayan kum örneklerindeki element değerleri (ppm)

Element			R(Başlangıç)	R(Hafif)	R(Manyetik)	R(Manyetik olmayan)
V	Ort	379.25	72	53	1058	334
	SS	470.32				
Cu	Ort	23.70	13.4	11.7	30.3	39.4
_	SS	13.42				
Zn	Ort	113.00	34	29	232	157
Ca	55	98.98	11	11.1	21.4	21.0
Ga	ort	10.33	11	11.1	21.4	21.9
Ph	Ort	18.13	7 9	54	18 7	40.5
10	SS	15 99	1.)		10.7	T0.5
Sr	Ort	293.68	183	174.7	417.1	399.9
	SS	132.82				
Rb	Ort	53.48	78.3	80.5	23.2	31.9
	SS	30.16				
Ba	Ort	361.55	516	525	188	217.2
	SS	183.96				
Zr	Ort	142.88	55.6	52.7	263	200.2
	SS	105.62				20.2
Nb	Ort	15.95	5.7	3.7	24.1	30.3
T 1.	55	13.26	5.0	1.0	10.2	26
In	Ort	13.78	5.9	4.9	18.3	20
II	SS Ort	10.18	1.4	1.2	3.4	15
U	SS	2.03	1.4	1.2	5.4	4.5
Y	Ort	37.73	12.7	10	56.4	71.8
1	SS	31.12	12.,	10	2011	71.0
La	Ort	51.50	22.6	9.9	71.2	102.3
	SS	42.95				
Ce	Ort	95.70	39	17.7	130.8	195.3
	SS	82.57				
Nd	Ort	54.73	15	8.6	119.5	75.8
C	SS	52.74	0.54	1.74	0.00	12.0
Sm	Ort	7.02	2.56	1./4	9.99	13.8
Cd	SS Ort	5.85	2.26	17	0.62	11.65
Gu	SS S	0.33 5.04	2.30	1.7	9.02	11.03
Ga	Ort	16 35	11	11.1	21.4	21.9
ou	SS	6.12		11.1	21.1	21.7
Hf	Ort	4.38	1.6	1.6	7.5	6.8
	SS	3.22				
Sn	Ort	5.67	1	<1	7	9
	SS	4.16				
Tb	Ort	1.12	0.36	0.27	1.64	2.19
	SS	0.95				
W	Ort	3.47	1.1	<0.5	3.4	5.9
D .,	55	2.40	4.00	0.04	15 70	01.20
PT	SS	10.94 0.17	4.32	2.24	15.79	21.39
	55	2.1/				

Tablo 55. Rize (Merkez) bölgesi başlangıç, hafif, manyetik ve manyetik olmayan kum örneklerindeki element değerleri (ppm)

3.7. X-Işını Kırınım Desenleri

Manyetik, manyetik olmayan ve hafif mineral konsantrasyonuna ayrıştırılmış kum örneklerinin, kayaç örneklerinin ve yukarı bölgelere ait kum örneklerinin X-ışını kırınım analizleri KTÜ Fizik Bölümü'nde Rigaku D/Max-IIIC difraktometresi kullanılarak yapıldı. Ölçümler sırasında, difraktometredeki bakır hedefe 35 keV'luk gerilim ve 30 mA'lik akım uygulanarak elde edilen CuK_a ($\lambda = 1,5418$ Å) X-ışınları kullanıldı. Ölçümler, oda sıcaklığında, $20^{\circ} \le 2\theta \le 60^{\circ}$ aralığı boyunca 0.05° 'lik adımlar ile yapıldı. Tespit edilen mineraller ve özellikleri Tablo 56'da verilmiştir.

Mineral Adı	Kimyasal Formülü	Yoğunluğu (g/cm ³)
Albit	$(Na, Ca)Al(Si, Al_3)O_8$	2.63
Anortit	CaAl ₂ Si ₂ O ₈	2.75
Ojit	$Ca(Mg, Fe)Si_2O_6$	3.51
Kloritoit	$\operatorname{Fe} \operatorname{Mg}_{0.6} \operatorname{Mn}^{2+}_{0.2} \operatorname{Al}_{4} \operatorname{Si}_{2} \operatorname{O}_{10} (\operatorname{OH})_{4}$	3.47
Klinoklor	$(Mg, Al)(Si, Al)_4O_{10}(OH)_8$	2.83
Epidot	$\operatorname{Ca}_{2}(\operatorname{Al},\operatorname{Fe})_{3}(\operatorname{Si}_{2}\operatorname{O}_{7})(\operatorname{SiO}_{4})(OH)_{2}$	3.69
Hallosit	Al ₂ Si ₂ O ₅ (OH) ₄ .2H ₂ O	2.59
Hematit	Fe ₂ O ₃	5.28
İllit	$(K, H_3O)Al_2Si_3AlO_{10}(OH)_2$	2.75
İlmenit	FeTiO ₃	4.79
Maghemit	Fe ₂ O ₃	5.49
Magnesibekit	$Na_2Mg_3Fe_2Si_8O_{22}(OH)_2$	3.13
Magnetit	Fe ['] O ₄	5.21
Margarit	$\operatorname{CaAl}_{2}(\operatorname{Al}_{2}\operatorname{Si}_{2})\operatorname{O}_{10}(\operatorname{OH})_{2}$	3.08
Mikroklin	KAlSi ₃ O ₈	2.56
Montmorillonit	$Ca_{0.2}(Al,Mg)_2Si_4O_{10}(OH)_2.4H_2O$	2.01
Muskovit	$KAl_2Si_3AlO_{10}(OH)_2$	2.83
Ortoklas	KAl ₂ Si ₃ O ₈	2.55
Pilogobit	$\mathrm{KMg}_{3}(\mathrm{Si}_{3}\mathrm{Al})\mathrm{O}_{10}(\mathrm{OH})_{2}$	2.83
Kuvars	SiO ₂	2.65

Tablo 56. X-Işını kırınım deseninde elde edilen mineraller ve özellikleri

Şekil 51. Fındıklı bölgesi kum numunesinin X-ışını kırınım deseni

Şekil 52. Ardeşen bölgesi kum numunesinin X-ışını kırınım deseni

Şekil 54. Çayeli bölgesi kum numunesinin X-ışını kırınım deseni

Şekil 53. Pazar bölgesi kum numunesinin X-ışını kırınım deseni

Şekil 55. Rize (Merkez) bölgesi kum numunesinin X-ışını kırınım deseni

Şekil 56. Derepazarı bölgesi kum numunesinin X-ışını kırınım deseni

Şekil 57. İyidere bölgesi kum numunesinin X-ışını kırınım deseni

Şekil 59. İyidere bölgesi manyetik kum numunesinin X-ışını kırınım deseni

Şekil 60. İyidere bölgesi manyetik olmayan kum numunesinin X-ışını kırınım deseni

Şiddet (Sayım) 600 200 400 0 Albit Kuvars ŧ 10 Anortit 20 Albit Anortit Kuvars 20 (derece) 30 Anortit - Anortit Kuvars -Anortit 40 - Kuvars Kuvars 50 Kuvars Kuvars 60

Şekil 62. Rize (Merkez) bölgesi manyetik kum numunesinin X-ışını kırınım deseni

Şiddet (Sayım) 200 600 400. 0 _Illit -Epidot 10 IÎlit Epidot 20 Epidot Illit Illit Anortit 20 (derece) <u>Epidot</u> Ojit 30 __Epidot -Ojit -Illit Kuvars 40 -Kuvars , ≸∽Kuvars Epidot Anortit Ojit 50 ≡ Kuvars 60

Şekil 63. Rize (Merkez) bölgesi manyetik olmayan kum numunesinin ışını kırınım deseni

×

Şiddet (Sayım)

Şekil 65. İkizdere bölgesi 2 no'lu kum örneğinin X-ışını kırınım deseni

Şekil 67. İkizdere bölgesi 4 no'lu kum örneğinin X-ışını kırınım deseni

Şekil 69. Kaptanpaşa bölgesi 2 no'lu kum örneğinin X-ışını kırınım deseni

Şekil 70. Kaptanpaşa bölgesi 3 no'lu kum örneğinin X-ışını kırınım deseni

Şekil 71. Kaptanpaşa bölgesi 4 no'lu kum örneğinin X-ışını kırınım deseni

400

600

Kuvars

Muskovit

Şekil 74. Kaptanpaşa bölgesi 2 no'lu kayaç örneğinin X-ışını kırınım deseni

Şekil 73. Kaptanpaşa bölgesi 1 no'lu kayaç örneğinin X-ışını kırınım deseni

Şekil 75. Kaptanpaşa bölgesi 3 no'lu kayaç örneğinin X-ışını kırınım deseni

Şekil 77. Kaptanpaşa bölgesi 5 no'lu kayaç örneğinin X-ışını kırınım deseni

Şekil 79. İkizdere bölgesi 2 no'lu kayaç örneğinin X-ışını kırınım deseni

3.8. Mikroskobik Bulgular

Şekil 80. Kaptanpaşa bölgesine ait 1 no'lu granitik kayacındaki mineraller

Şekil 81. Kaptanpaşa bölgesine ait 2 no'lu granitik kayacındaki mineraller

Şekil 82. İkizdere bölgesine ait 1 no'lu granitik kayacındaki mineraller

4. SONUÇLAR

Rize İli deniz kumlarındaki doğal gama radyoaktivite dağılımlarının, kum tane boyutuna ve farklı mineral gruplarına göre ayrıntılı incelemesi yapıldı. Bölgeye ve yönteme göre radyoizotopların sınıflandırmasını yapabilmek için SPSS 13.0 (Statistical Package for the Social Sciences) istatistik programında çoklu değişken analizi uygulandı. Bununla birlikte yapılan sınıflandırmada farklılık varsa, farklılıkların değerlendirilmesi için Student-Newman-Keuls (S-N-K) testi yapıldı. Ölçülen sonuçlar ve hesaplanan değerler ayrıntılı olarak Bulgular ve Tartışma ve Ekler bölümünde verildi.

Bu bölümde doğal ve yapay radyoizotopların kum mineral konsantrasyonuna ve tane boyutuna göre, elemental analiz sonuçlarıyla ilgileşim değerleri hesaplandı. Benzer çalışmalarda verilen değerlerle karşılaştırılması yapıldı.

Şekil 83. ²³⁸U'in ²³²Th, ⁴⁰K, oksitler ve elementlerle olan korelasyon değerleri

Şekil 84. ²³²Th'in ²³⁸U, ⁴⁰K, oksitler ve elementlerle olan korelasyon değerleri

Şekil 85. ⁴⁰K'ın ²³²Th, ²³⁸U, oksitler ve elementlerle olan korelasyon değerleri

Kum örneklerindeki ²³²Th ve ²³⁸U radyoaktivite dağılımları arasında düzgün bir ilişki vardır (R^2 =0.954). ²³²Th-⁴⁰K arasında (R^2 = -0.338) ve ²³⁸U-⁴⁰K arasında (R^2 = -0.311) ise

zayıf bir ilişki vardır. Bu zayıf ilişki, Th ve U taşıyıcı kum minerallerinin ⁴⁰K konsantrasyonu içermediğini gösterir.

²³⁸U ve ²³²Th radyoaktivite değerleri, benzer şekilde demiroksit, magnezyumoksit, kalsiyumoksit, titanyumoksit ve kromoksit içeren ve yoğunluğu 2.83 g/cm³, den büyük olan ağır minerallerle (Ojit, Kloritoit, Klinoklor, Epidot, Hematit, İlmenit, Maghemit, Magnetit ve Margarit) düzgün bir ilişkiye sahiptir.

Mevcut çalışmayla kıyaslama için, dünyanın farklı bölgelerine ait kum örneklerindeki ²³⁸U, ²³²Th ve ⁴⁰K radyoaktivitelerinin ortalama ve/veya değişim değerleri Tablo 57'de verilmiştir. Tabloda ayrıca ²³⁸U, ²³²Th ve ⁴⁰K radyoaktivitelerinin dünya ortalama değerleri de yer almaktadır. Mevcut çalışmamızda elde ettiğimiz sonuçlar, Türkiye (Rize) Fırtına vadisi sedimentlerinde (Kurnaz vd., 2007) ve Kıbrıs toprak örneklerinde (Tzortis vd., 2004) elde edilen sonuçlarla yakın değişim aralığındayken, Çanakkale'deki sahil kum örneklerinden elde edilen sonuçlardan ise oldukça düşüktür (Örgün vd., 2007). Tablo 57'den görüldüğü gibi, Ürdün, Libya, Pakistan, Hong Kong, Çin, Kuveyt, Yugoslavya ve ABD'deki kum örneklerinde ²³⁸U, ²³²Th radyoaktivitelerinin, Rize sahil kumlarındaki değerlerinden kısmen, bununla birlikte ⁴⁰K radyoaktivitesinin ise Hong Kong'daki değerlerinden oldukça düşüktür (Ahmad vd., 1997, Shenber, 1997, Arkam vd., 2006, Yu vd., 1992, Xinvei vd., 2006, Saad ve Al-Azmi, 2002, Vukotic vd., 1998, NCRP, 1987). Ağır ve manyetik mineral içeriğindeki ²³⁸U, ²³²Th ve ⁴⁰K radyoaktivitelerinin Bangladeş, Hindistan ve Avustralya'daki değerleri, çalışmamızda elde ettiğimiz değerleren oldukça yüksektir (Alam vd., 1999, Mohanty vd., 2004, de Meijer vd., 2001).

Genel olarak dünya ortalama değerleriyle bu çalışmamızın sonuçları kıyaslandığında; ²³⁸U ve ²³²Th radyoaktivitelerinin dünya ortalama değerleri yüksek, ⁴⁰K radyoaktivitesinin dünya ortalama değeri ise düşüktür (UNSCEAR, 2000).

Ülles	²³⁸ U	²³² Th	⁴⁰ K	Kaynahlan
Uike	(Bq/kg)	(Bq/kg)	(Bq/kg)	Kaynaklar
Türkiye (Rize)	20.88 ±1.73	33.38 ±2.71	521.53 ±48.25	Şimdiki Çalışma
	(7.34-60.33)	(10.23-100.89)	(137.72-1217.57)	
Türkiye (Çanakkale)	260.36 ±20.81	532.04 ±42.56	1165.75 ±81.55	Örgün vd., 2007
	(78.8-1885.2)	(96.6-4360.3)	(687.1-1421.2)	
Türkiye (Fırtına Vadisi)	(16.0-113.0)	(17.0-87.0)	(51.0-1605.0)	Kurnaz vd., 2007
Kıbrıs (Toprak örneği)	(0.01-39.3)	(0.01-39.8)	(0.04-565.8)	Tzortis vd., 2004
Mısır (North Sinai)	6.5 ±1.3	6.4 ±2.6	178 ±27	Seddeek, 2005
Mısır	56 ±3.3	83.4 ±6.3	88 ±26	Seddeek, 2005
	(2.9-261.5)	(2.3-506.5)	(59-107)	
Mısır	(5.0-13.8)	(2.3-15.3)	(29-582)	Ibrahiem vd., 1993
Mısır	24.7 ±4.3	31.4 ±9.4	428 ±36	El-Mamoney ve Khater, 2004
	(5.3-105.6)	(2.3-221.9)	(98-1011)	
Ürdün (Adasiah)	20.1 ±2.3	9.9 ±1.7	89 ±5.3	Ahmad vd., 1997
	(16.4-25.2)	(7.1-31.2)	(81-99)	
Ürdün (Jerash)	27.9 ±9.4	12.4 ±3	120 ±36	Ahmad vd., 1997
	(14.8-59.4)	(3.5-17.1)	(66-263)	
Ürdün (Ghor As-Safi)	27.3 ±2.7	21.6 ±3.3	356 ±16	Ahmad vd., 1997
	(22.7-32.4)	(16.3-28.5)	(331-379)	
Libya (Tripoli)	10.5 ± 1.5	9.5 ±1.5	270 ±9.8	Shenber, 1997
	(8.7-12.8)	(7.7-9.7)	(265-282)	

Tablo 57. Mevcut çalışmayla kıyaslama için dünyanın farklı bölgelerine ait kum örneklerindeki ²³⁸U, ²³²Th ve ⁴⁰K ortalama ve/veya radyoaktivite değişim değerleri

Tablo 57'nin devamı

Ť11	²³⁸ U	²³² Th	⁴⁰ K	17
Ulke	(Bq/kg)	(Bq/kg)	(Bq/kg)	Kaynaklar
Bangladeş	19 ±4.8	36.7 ±6.5	458 ±160	Alam vd., 1999
	(10.8-27.3)	(27.4-49.4)	(117-688)	
Bangladeş (Zirkon)	6439 ±326	1324 ±96	472 ±57	Alam vd., 1999
Bangladeş (Ağır Mineral)	2582 ±205	4684 ±68	639 ±21	Alam vd., 1999
Bangladeş	14.5 ±8.2	34.8 ±2.4	302 ± 142	Chowdhury vd., 1998
	(5.9-27.8)	(24.8-64.0)	(118-481)	
Brezilya (Preta)	121 ±33	239 ±74	110 ±62	Freitas ve Alencar, 2004
	(54-180)	(128-349)	(47-283)	
Brezilya (Dois Rios)	39 ±28	48 ±30	412 ±82	Freitas ve Alencar, 2004
	(6-78)	(12-87)	(269-527)	
Brezilya	(25-2412)	(190-36620)	-	Malanca vd., 1995
Hong Kong	27.7 ±3	29.8 ±1.6	1210 ±94	Yu vd., 1992
Hindistan (Kalpakkam)	124	1613	358	Kannan vd., 2002
	(36-258)	(352-3872)	(324-405)	
Hindistan (Kamataka)	249.2 ±1.9	489.6 ±3.4	55 ±6	Narayana vd., 1994
Hindistan (Ağır Mineral)	(600-1100)	(6500-10700)	(90-100)	Mohanty vd., 2004
Hindistan (Hafif Mineral)	(100-160)	(80-150)	(220-350)	Mohanty vd., 2004
Kuveyt	(8.1-28.3)	(1.8-5.6)	(71-173)	Saad ve Al-Azmi, 2002
ABD	37	26	<296	NCRP, 1987
Avustralya (Hafif Mineral)	(2.5-20)	(1.1-50)	(17-1770)	de Meijer vd., 2001
Avustralya (Ağır Mineral)	(15.7-1070)	(7-25800)	(14-240)	de Meijer vd., 2001
Avustralya (Zirkon)	(3300-3900)	(680-750)	(45-56)	Bruzzi vd., 2000
Avustralya (Zirkon Mineral)	2250	503	326	Beretka ve Mathew, 1985
Pakistan	14.4 ±2.5	35.2 ±2	610.5	Arkam vd., 2006

Tablo 57'nin devar	nı
--------------------	----

Ülke	²³⁸ U (Bq/kg)	²³² Th (Bq/kg)	⁴⁰ K (Bq/kg)	Kaynaklar
Çin (Baoji Weihe)	(10.2-38.3)	(27.0-48.8)	(635.8-1126.7)	Xinvei vd., 2006
Yugoslavya	7.8 ±2.1	6.7 ±3.6	150 ±88	Vukotic vd., 1998
İspanya	(3.8-7.0)	(2.4-6.1)	(175-291)	Gonzales-Chornet vd., 2004
Dünya Ortalaması	15	15	260	UNSCEAR, 1982
-	25	25	370	UNSCEAR, 1988
	(10-50)	(7-50)	(100-700)	
	40	35	370	UNSCEAR, 1993
	(8-160)	(4-130)	(100-700)	
	32	45	420	UNSCEAR, 2000

5. ÖNERİLER

Bu araştırmada yalnızca Rize İl sınırları içinde bulunan sahil kumlarındaki doğal ve yapay radyoaktivite düzeyleri belirlenmiştir. Bundan sonra ülkemizin farklı jeolojik özellikleri olan sahil bölgelerinde de ölçümlerin planlanması ve Türkiye'nin sahil kıyı şeridi boyunca radyoaktivite haritasının yapılması yararlı olacaktır.

Ülkemizin radyoaktif kaynaklarının tam olarak bilinmemesi, insan sağlığının korunması açısından radyolojik risk tahminine yönelik bilgi vermesi, gelecekte radyoaktif kirliliğin değişiminin değerlendirilmesine ve izlenmesine yönelik kontrolün sağlanması açısından bu konularda bilimsel çalışmalar düzenli olarak yapılmalıdır.

6. KAYNAKLAR

- Ahmad, N., Matiullah, Khatibeh, A., J., A., H., Ma'ly, A. ve Kenawy, M., A., 1997. <u>Radiat. Measurement.</u>, 28, 341-344.
- Alam, M., N., Chowdhury, M., I., Kamal, M., Ghose, S., Islam, M., N., Mustafa, M., N., Miah, M., M., H.ve Ansary, M., M., 1999. The ²²⁶Ra, ²³²Th and ⁴⁰K activities in beach sand minerals and beach soils of Cox's Bazar, Bangladesh. <u>Environ.</u> <u>Radioact.</u>, 46, 243-250.
- Alencar, A., S. ve Freitas, A., C., 2005. Reference levels of natural radioactivity fort he beach sands in a Brazilian southeastern coastal region. Radiat. Meas., 40, 76-83.
- Arkam, M., Riffat, M., Q., Ahmad, N. ve Solaija T., J., 2006. Determination of gammaemitting radionuclides in the inter-tidal sediments off Balochistan (Pakistan) coast, Arabian Sea. <u>Rad. Prot. Dos.</u>, 123, 268-273.
- Bennett, B. G., 1997. Exposure to natural radiation worldwide. In Proceedings of the Fourth International Conference on High Levels of Natural Radiation: Radiation Doses and Health Effects, Beijing, China. Elsevier, Tokyo, 15–23. s.
- Beretka, J. ve Mathew, P. J., 1985. Natural radioactivity of Australian building materials, industrial wastes and by products. <u>Health Phys.</u>, 48, 87–95.
- Bruzzi, L., Baroni, M., Mazzotti, G., Mele, R. ve Righi, S., 2000. Radioactivity in raw materials and end products in the Italian ceramics industry. <u>J. Environ. Rad.</u>, 47, 171-181.
- Canberra, 2004. Gamma Acquisition and Analysis, Basic Spectroscopy Software. User Manuel, Canberra Industiries, Inc. USA.
- Chowdhury, M. I., Alam, M. N. ve Ahmed, A. K. S., 1998. Concentration of radionuclides in building and ceramic materials of Bangladesh and evaluation hazard. <u>J.</u> <u>Radioanal. Nucl. Chem.</u>,231, 117-122.
- Cullen, T.L., 1977. A Review of Brezilian investigation in areas of high natural radioactivity, Part I: radiometric and dosimetric studies. In: Cullen, T.L., Pena Franca, E. (Eds.), Proceedings of International Symposium on Areas of High Natural Radioactivity, 1975. Academia Brasileria De Ciencias, Rio de Janeiro, Brazil, 49–64. s.
- de Meijer, R. J., Put, L. W., Schuiling, R. D., de Reus, J. H. ve Wiersma, J., 1988. Provenance of coastal sediments using natural radioactivity of heavy mineral sands. <u>Rad. Prot. Dos.</u>, 24, 55-58
- de Meijer, R.J., James, I.R., Jennings, P.J. ve Koeyers, J.E., 2001. Cluster analysis of radionuclide concentrations in beach sand. <u>Appl. Radiat. Isotop.</u>, 54, 535-542.
- Eisenbud, M., 1987. Environmental Radioactivity, Third Edition, ISBN. 0-12-235153, Academic Pres, Inc., London.
- El-Mamoney, M.H. ve Khater, A.E.M., 2004. Environmental characterization and radioecological impacts of non-nuclear industries on the Red Sea coast. J. Environ. <u>Radio.</u>, 73, 151-168.

- Freitas, A.C. ve Alencar, A.S., 2004. Gamma dose rates and distribution of natural radionuclides in sand beaches-Ilha Grande, Southeastern Brazil. J. Environ. <u>Radio.</u>, 75, 211-223.
- Ghiassi-nejad, M., Mortazavi, S.M.J., Cameron, J.R., Niroomand-rad, A. ve Karam, P.A., 2002. Veryhigh background radiation areas of Ramsar, Iran: preliminarybiological studies. <u>Health Phys.</u>, 82, 87–93.
- IAEA, 1989. Measurement of Radionuclides in food and Environment; TRS, No. 295.
- IAEA, 1996. International Basic Safety Standatrs for Protection Against Ionizing Radiation and fort he Safety of Radiation Sources. <u>IAEA</u>, No. 115.
- IAEA, 2003. Guidelines for radioelement mapping using gamma ray spectrometry, International Atomic Energy Agency, <u>IAEA</u> TecDoc-1363.
- Ibrahiem, N.M., Abd El Ghani, A.H., Shawky, S.M., Ashraf, E.M. ve Farouk, M.A., 1993. Measurement of radioactivity levels in soil in the Nile delta and middle Egypt. <u>Health Phys.</u>, 64, 620-627.
- Kanan, V., Rajan, M.P., Iyengar, M.A.R. ve Ramesh, R., 2002. Distribution of natural and anthropogenic radionuclides in soil and beach sand samples of Kalpakkam (India) using hyper pure germanium (HPGe) gamma ray spectrometry. <u>App.</u> <u>Radiat. Isot.</u> 57, 109-119.
- Knoll, F., K., 1999. Radiation Detection and Measurement. John Willey and Sons.
- Krane, S. K. (Edit: Şarer, B.), 2001 Nükleer Fizik 1. Cilt Ders Kitabı, Birinci Baskı, Palme Yayın Dağıtım LTD. ŞTİ., Ankara.
- Kurnaz A., Küçükömeroğlu B., Keser R., Okumuşoğlu N.T., Korkmaz F., Karahan G. ve Çevik U., 2007. Determination of radioactivity levels and hazards of soil and sediment samples in Firtina Valley (Rize, Turkey), <u>Appl. Radiat. Isot.</u>, 65, 1281-1289.
- Malanka, A., Pessina, V. ve Dallara, G., 1993. Radionuclide content of building materials and gamma ray dose rates in dwellings of Rio Grande Do Notre, Brazil. <u>Radiat.</u> <u>Prot. Dosim.</u>, 48, 199-203.
- Mishra, U.C., 1993. Exposure due to the high natural radiation background and radioactive springs around the world. In:Proceedings of the International Conference on High Level Natural Radiation Areas, 1990, Ramsar, Iran. IAEA Publication Series, <u>IAEA</u>, Vienna, 29. s.
- Mohanty, A.K., Sengupta, D., Das, S.K., Saha, S.K. ve Van, K.V., 2004. Natural radioactivity and radiation exposure in the high background area at Chhatrapur beach placer deposit of Orissa. India. J. Environ. Radioact., 75, 15-33.
- Narayana, Y., Somashekarappa, H.M., Radhakrishna, A.P., Balakrishna, K.M. ve Siddappa, K., 1994. External gamma radiation dose rates in coastal Karnataka. J. Radiological Prot. 14, 257-264.
- NCRP, 1987. Exposure of the population of the United States and Canada from natural background radiation. Report No. 94, National Council on Radiation Protection and Measurements, Bethesda, Maryland.

- NCRP, 1987. Exposure of the population of the United States and Canada from natural background radiation. Report No. 94,National Council on Radiation Protection and Measurements, Bethesda, Maryland.
- Örgün, Y., Altınsoy, N., Şahin, S., Y., Güngör, Y., Gültekin, A., H., Karahan, G. ve Karacık, Z. 2007. Natural and anthropogenic radionuclides in rocks and beach sands from Ezine region (Çanakkale), Western Anatolia, Turkey. <u>Appl. Radiat.</u> <u>Isotop.</u>, 65, 739-747.
- Paschoa, A.S., 2000. More than forty years of studies of natural radioactivity in Brazil. Technology 7, 193–212.
- Paul, A.C., Pillai, P.M.B., Haridasan, P., Radhakrishnan, S. ve Krishnamony, S., 1998. Population exposure to airborne thorium at the high natural radiation areas in India. J. Environ. Radioact., 40, 251–259.
- Penna Franca, E., 1977. Review of Brazilian investigations in areas of high natural radioactivity, Part II: internal exposure and cytogenetic survey. In: Cullen, T.L., Penna Franca, E. (Eds.), Proceedings of International Symposium on High Natural Radioactivity, 1975. Academia Brasileria De Ciencias, Rio de Janeiro, Brazil, 29–48. s.
- Rosenblum, S., 1958. Magnetic susceptibility of minerals. American Mineralogist 43, 170– 173.
- Saad, H.R. ve Al-Azmi, D., 2002. Radioactivity concentrations in sediments and their correlation to the coastal structure in Kuwait. <u>Appl. Rad. Isotop.</u>, 56, 991-997.
- Shenber, M.A., 1997. Measurement of natural radioactivity levels in soil in Tripoli. <u>Appl.</u> <u>Radiat. Isot.</u>, 48, 147-148.
- Sohrabi, M., 1998. The state-of-the-art on worldwide studies in some environments with elevated naturally occurring radioactive materials (NORM). <u>Appl. Rad. Isotop.</u>, 49, 169–188.
- Sunta, C.M., 1993. A review of the studies of high background radiation areas of the S-W coast of India. In Proceedings of the International Conference on High levels of Natural Radiation Areas, 1990, Ramsar, Iran. IAEA Publication Series, IAEA, Vienna, 71–86. s.
- Tzortis, M., Svoukis, E. ve Tsertos, H., 2004. A comprehensive study of natural gamma radioactivity levels and associated dose rates from surface soils in cyprus.<u>Rad.</u> <u>Prot. Dos.</u>,109, 217-224.
- UNSCEAR, 1982. Ionizing Radiation: Sources and Biological Effects. United Nations, New York.
- UNSCEAR, 1988. Sources and Effects and Risks of Ionizing Radiation. Report to the General Assembly with Scientific Annexes, United Nations, New York.
- UNSCEAR, 1993. Sources and Effects and Risks of Ionizing Radiation. Report to the General Assembly with Scientific Annexes, United Nations, New York.
- UNSCEAR, 2000. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources, Effects and Risk of Ionizing Radiation.

- Vukotic, P., Borisov, G., I., Kuzmic, V., Antovic, N., Dapcevic, S., Uvarov, V., V., Kulakov, V., M., 1998. J. Radioanalyt. Nucl. Chem., 235, 151-157.
- Wei, L. ve Sugahara, T., 2000. An introductory overview of the epidemiological study on the population at the high background radiation areas in Yangjiang, China. <u>J.</u> <u>Rad. Res.</u>, 41, 1–7.
- Xinwei, L. ve Xiaolan, Z., 2006. Measurement of natural radioactivity in sand samples collected from the Baoji Weihe Sands Park, China. <u>Environ. Geol.</u>, 50, 977-982.
- Yu, K.N., Guan, Z.J., Stokes, M.J. ve Young, E.C.M., 1992. The assessment of the natural radiation dose committed to the Hong Kong people. <u>J. Environ. Radio.</u>, 17, 31-48.

7. EKLER

Bölge:	Örnek	Tl-208 (583.8 keV)	Pb-212 (239.63 keV)	Bi-212 (727.17 keV)	Ac-228 (911.24 keV)	²³² Th
Fındıklı (1)	1000-850	32.56 ±2.98	33.15 ±3.24	34.47 ±2.69	32.01 ±3.96	32.33 ±3.11
Fındıklı (1)	850-600	31.39 ±4.42	32.45 ± 3.78	33.49 ±2.67	28.61 ±2.23	31.47 ±2.91
Fındıklı (1)	600-300	29.35 ±4.65	35.58 ± 2.43	29.89 ±3.66	34.39 ±3.19	32.87 ±3.38
Fındıklı (1)	300-250	23.68 ±3.13	20.19 ±1.66	23.11 ±2.45	27.10 ±2.49	23.91 ±2.83
Fındıklı (1)	<250	38.01 ± 2.12	40.12 ±3.59	39.60 ±4.12	37.59 ±4.89	38.40 ± 3.90
Fındıklı (2)	1000-850	32.12 ±2.58	40.66 ±4.14	33.38 ±3.44	30.90 ± 2.89	33.26 ±3.12
Fındıklı (2)	850-600	42.13 ±3.73	28.59 ± 2.47	43.43 ±4.21	26.09 ± 2.72	36.00 ±3.41
Fındıklı (2)	600-300	38.41 ±3.14	38.19 ±3.61	23.13 ±2.40	36.46 ±3.31	35.43 ±3.22
Fındıklı (2)	300-250	19.60 ±1.74	21.96 ±2.09	28.31 ±2.86	26.33 ±3.11	23.57 ±2.48
Fındıklı (2)	<250	48.60 ±4.96	42.84 ±4.55	36.33 ±3.72	49.56 ±4.40	43.29 ±4.16
Fındıklı (3)	1000-850	38.24 ± 3.68	31.40 ±3.34	33.40 ± 3.80	42.30 ± 4.06	35.30 ±3.67
Fındıklı (3)	850-600	42.09 ± 3.64	37.44 ± 3.02	32.53 ±2.84	27.70 ± 3.01	35.55 ±3.18
Fındıklı (3)	600-300	31.04 ± 3.60	36.80 ± 4.37	25.81 ±2.49	41.20 ± 3.63	34.82 ± 3.56
Fındıklı (3)	300-250	19.06 ±1.93	15.51 ±1.69	21.20 ±2.24	31.42 ±3.71	21.18 ±2.32
Fındıklı (3)	<250	41.67 ±3.47	50.19 ±4.63	31.17 ±3.38	44.78 ±4.86	40.50 ±3.96
Ortalama (1)	1000-850	34.31 ±3.08	35.07 ±3.57	33.75 ±3.31	35.07 ±3.64	33.63 ±3.30
Ortalama (2)	850-600	38.54 ±3.93	32.83 ± 3.09	36.48 ±3.24	27.47 ±2.65	34.34 ±3.16
Ortalama (3)	600-300	32.93 ± 3.80	36.86 ± 3.47	26.28 ±2.85	37.35 ±3.38	34.37 ±3.39
Ortalama (4)	300-250	20.78 ±2.27	19.22 ±1.81	24.21 ±2.52	28.28 ± 3.10	22.89 ±2.54
Ortalama (5)	<250	42.76 ±3.52	44.38 ±4.26	35.70 ±3.74	43.98 ±4.72	40.73 ±4.01
Ger	nel Ortalama	33.86 ±3.32	33.67 ±3.24	31.28 ±3.13	34.43 ±3.50	33.19 ±3.28

Ek 1. Fındıklı Bölgesine ait örneklerin farklı tane tane boyutlarında Toryum serisine ait radyoizotopların gama radyoaktivite değerleri (Bq/kg)

Dölgo	Örmelt	Bi-214	Pb-214	Pb-214	238 _{T I}
Doige	Ornek	(609.3 keV)	(295.2 keV)	(351.9 keV)	U
Fındıklı (1)	1000-850	20.52 ± 2.22	20.17 ±2.34	20.77 ±1.97	22.02 ±2.35
Fındıklı (1)	850-600	19.71 ±2.25	25.94 ± 2.90	24.89 ±2.17	23.23 ±2.29
Fındıklı (1)	600-300	33.55 ±2.77	37.60 ± 3.22	38.67 ±3.44	36.66 ±3.30
Fındıklı (1)	300-250	24.14 ±1.96	26.68 ±2.35	28.48 ±2.59	25.91 ±2.32
Fındıklı (1)	<250	30.15 ± 3.61	25.35 ± 2.88	30.38 ±2.87	29.15 ±3.08
Fındıklı (2)	1000-850	22.38 ±1.92	16.87 ±1.95	17.33 ±1.87	20.06 ±2.11
Fındıklı (2)	850-600	25.70 ±2.19	22.90 ±2.61	25.98 ±2.46	24.53 ±2.31
Fındıklı (2)	600-300	38.28 ± 3.62	32.21 ±3.28	39.66 ±4.60	35.96 ± 3.70
Fındıklı (2)	300-250	18.16 ±1.60	26.35 ± 2.94	24.98 ±2.05	22.82 ±2.13
Fındıklı (2)	<250	34.61 ±3.65	23.39 ±2.11	32.28 ±3.37	31.58 ±3.22
Fındıklı (3)	1000-850	19.61 ±1.48	20.83 ± 2.24	20.99 ±2.43	20.81 ± 2.04
Fındıklı (3)	850-600	19.48 ±0.77	20.96 ±1.92	21.19 ±2.04	20.50 ± 1.60
Fındıklı (3)	600-300	33.83 ±2.78	35.24 ±5.45	32.65 ±6.04	34.36 ±4.59
Fındıklı (3)	300-250	26.68 ±2.47	28.36 ± 3.52	28.58 ±3.77	28.32 ± 3.24
Fındıklı (3)	<250	28.56 ± 4.90	30.43 ± 3.34	28.59 ±2.23	29.27 ± 3.70
Ortalama (1)	1000-850	20.84 ±1.88	19.29 ±2.18	19.70 ±2.09	20.96 ± 2.17
Ortalama (2)	850-600	21.63 ±1.74	23.27 ± 2.48	24.02 ± 2.22	22.75 ± 2.07
Ortalama (3)	600-300	35.22 ± 3.06	35.02 ± 3.98	36.99 ±4.69	35.66 ± 3.86
Ortalama (4)	300-250	22.99 ±2.01	27.13 ±2.94	27.35 ±2.81	25.69 ± 2.57
Ortalama (5)	<250	31.10 ± 4.05	26.39 ±2.77	30.41 ±2.82	30.00 ± 3.33
G	enel Ortalama	26.36 ±2.55	26.22 ±2.87	27.69 ±2.93	27.01 ±2.80

Ek 2. Fındıklı Bölgesine ait örneklerin farklı tane tane boyutlarında Uranyum serisine ait radyoizotopların gama radyoaktivite değerleri (Bq/kg)

Bölge:	Örnek	TI-208	Pb-212	Bi-212	Ac-228	²³² Tb	
		(583.8 keV)	(239.63 keV)	(727.17 keV)	(911.24 keV)	111	
Ardeşen (1)	1000-850	31.35 ±3.45	33.56 ±2.13	34.98 ±1.89	31.79 ±2.67	33.36 ±2.47	
Ardeşen (1)	850-600	36.89 ±2.10	38.01 ±2.97	37.90 ±2.68	37.98 ±2.67	37.79 ±2.71	
Ardeşen (1)	600-300	39.40 ±3.17	38.69 ±3.04	40.12 ±3.56	40.35 ± 3.43	39.62 ±3.20	
Ardeşen (1)	300-250	43.32 ±2.66	42.78 ±2.07	44.08 ±3.76	43.11 ±3.98	43.04 ±3.05	
Ardeşen (1)	<250	49.09 ±4.03	47.62 ±3.78	50.43 ±4.91	49.97 ±4.78	49.09 ±4.33	
Ardeşen (2)	1000-850	29.93 ±3.38	31.87 ±3.18	32.98 ±3.74	42.78 ±3.83	34.56 ±3.59	
Ardeşen (2)	850-600	42.78 ±3.91	36.95 ±3.41	39.03 ±3.52	44.55 ± 5.03	39.62 ±3.94	
Ardeşen (2)	600-300	41.94 ±3.64	50.59 ±4.85	30.68 ±2.68	54.53 ±5.65	42.37 ±3.99	
Ardeşen (2)	300-250	31.52 ±2.65	40.64 ±4.79	44.39 ±3.90	49.26 ±4.47	41.76 ±3.90	
Ardeşen (2)	<250	54.30 ±4.87	57.60 ±6.76	38.34 ±3.68	63.82 ± 6.87	51.95 ±5.21	
Ardeşen (3)	1000-850	32.53 ± 2.82	34.01 ±3.52	33.23 ± 3.06	42.90 ±4.34	35.98 ±3.35	
Ardeşen (3)	850-600	47.92 ±5.63	36.77 ±3.80	34.01 ±3.81	44.77 ± 4.40	39.54 ±4.22	
Ardeşen (3)	600-300	51.92 ±5.75	47.71 ±5.02	30.42 ±3.59	45.00 ± 3.96	43.06 ±4.58	
Ardeşen (3)	300-250	40.73 ±4.05	33.07 ±2.68	43.22 ±5.18	39.91 ±±3.71	38.39 ±3.88	
Ardeşen (3)	<250	54.10 ±4.71	46.23 ±5.53	46.25 ±5.47	56.23 ± 4.84	47.85 ±4.74	
Ortalama (1)	1000-850	31.27 ±3.22	33.15 ±2.94	33.73 ±2.90	39.16 ±3.61	34.63 ±3.14	
Ortalama (2)	850-600	42.53 ±3.88	37.24 ±3.39	36.98 ±3.34	42.43 ±4.03	38.98 ± 3.62	
Ortalama (3)	600-300	44.42 ±4.19	45.67 ±4.30	33.74 ±3.28	46.63 ±4.35	41.69 ±3.92	
Ortalama (4)	300-250	38.52 ± 3.12	38.83 ±3.18	43.90 ±4.28	44.09 ± 4.05	41.06 ±3.61	
Ortalama (5)	<250	52.50 ±4.54	50.48 ±5.36	45.01 ±4.69	56.67 ± 5.50	49.63 ±4.76	
Gei	nel Ortalama	41.85 ±3.79	41.07 ±3.83	38.67 ±3.70	45.80 ±4.31	41.20 ±3.81	

Ek 3. Ardeşen Bölgesine ait örneklerin farklı tane tane boyutlarında Toryum serisine ait radyoizotopların gama radyoaktivite değerleri (Bq/kg)
Bölgo	Örnok	Bi-214	Pb-214	Pb-214	238 _T 1
Doige	OTHER	(609.3 keV)	(295.2 keV)	(351.9 keV)	U
Ardeşen (1)	1000-850	19.95 ±2.38	13.82 ±1.61	14.26 ±1.64	17.24 ±1.83
Ardeşen (1)	850-600	35.58 ±3.90	24.30 ±2.69	29.81 ±2.56	27.71 ±2.87
Ardeşen (1)	600-300	30.40 ±3.54	18.67 ±2.13	28.21 ±2.49	25.20 ±2.54
Ardeşen (1)	300-250	23.72 ±2.33	21.47 ±1.87	16.55 ±1.66	21.22 ±1.94
Ardeşen (1)	<250	29.93 ±2.92	15.41 ±1.41	15.19 ±1.60	24.09 ±2.35
Ardeşen (2)	1000-850	19.98 ±2.15	15.66 ±1.28	18.19 ±2.10	18.97 ±1.95
Ardeşen (2)	850-600	29.82 ±3.16	23.65 ±1.91	25.78 ±2.10	25.23 ±2.37
Ardeşen (2)	600-300	25.86 ±2.82	18.28 ±1.95	23.30 ±2.28	22.14 ±2.38
Ardeşen (2)	300-250	23.56 ±2.08	22.03 ±1.83	20.09 ±2.14	22.30 ±2.04
Ardeşen (2)	<250	26.35 ±2.46	19.77 ±2.01	19.71 ±1.67	25.12 ±2.49
Ardeşen (3)	1000-850	18.12 ±1.15	18.96 ±1.20	17.17 ±1.44	18.29 ±1.20
Ardeşen (3)	850-600	20.53 ±1.60	20.61 ±1.68	20.51 ±1.44	20.53 ±1.54
Ardeşen (3)	600-300	20.89 ±1.64	21.36 ±1.51	21.79 ±1.85	21.43 ±V1.73
Ardeşen (3)	300-250	23.10 ±1.12	22.63 ±1.50	23.28 ±2.15	23.20 ± 1.70
Ardeşen (3)	<250	25.71 ±2.04	26.10 ±2.25	26.98 ±2.58	26.51 ±2.38
Ortalama (1)	1000-850	19.35 ±1.89	16.15 ±1.36	16.54 ±1.73	18.17 ±1.66
Ortalama (2)	850-600	28.64 ±2.89	22.85 ±2.10	25.37 ±2.03	24.49 ±2.26
Ortalama (3)	600-300	25.72 ±2.67	19.44 ±1.86	24.43 ±2.21	22.92 ±2.22
Ortalama (4)	300-250	23.46 ±1.84	22.04 ±1.73	19.97 ±1.99	22.24 ±1.89
Ortalama (5)	<250	27.33 ±2.47	20.43 ±1.89	20.63 ±1.95	25.24 ±2.41
G	enel Ortalama	24.90 ±2.35	20.18 ±1.79	21.39 ±1.98	22.61 ±2.09

Ek 4. Ardeşen Bölgesine ait örneklerin farklı tane tane boyutlarında Uranyum serisine ait radyoizotopların gama radyoaktivite değerleri (Bq/kg)

Pälaot	Örnak	Tl-208	Pb-212	Bi-212	Ac-228	²³² Tb
Doige:	OTHER	(583.8 keV)	(239.63 keV)	(727.17 keV)	(911.24 keV)	111
Pazar (1)	1000-850	30.18 ±2.28	33.55 ±3.11	32.06 ±3.45	32.22 ±3.62	32.06 ±3.24
Pazar (1)	850-600	29.98 ±1.18	31.35 ±2.61	32.26 ±2.95	33.01 ±3.22	31.84 ±2.62
Pazar (1)	600-300	28.14 ±1.12	30.42 ±2.48	29.68 ±1.98	30.22 ±2.65	29.90 ±2.06
Pazar (1)	300-250	21.37 ±4.21	25.39 ±3.72	26.19 ±2.87	22.45 ±2.54	24.00 ±3.05
Pazar (1)	<250	23.17 ±4.26	27.94 ±2.71	23.59 ±3.65	27.03 ±3.29	25.86 ±3.41
Pazar (2)	1000-850	34.26 ±3.00	35.71 ±2.87	19.74 ±1.76	46.86 ±4.50	32.57 ±3.04
Pazar (2)	850-600	38.72 ±3.73	30.13 ±2.45	31.86 ±3.48	34.81 ±2.95	35.40 ±3.47
Pazar (2)	600-300	50.25 ±5.11	34.88 ±3.28	25.66 ±2.85	51.25 ±4.36	39.74 ±3.92
Pazar (2)	300-250	15.50 ±1.50	25.90 ±2.86	32.99 ±3.27	24.16 ±2.20	22.98 ±2.34
Pazar (2)	<250	28.05 ± 2.77	39.49 ±3.20	19.50 ±1.74	40.00 ±3.92	30.39 ±2.76
Pazar (3)	1000-850	37.32 ±3.81	39.46 ±4.22	25.12 ±2.63	41.42 ±4.27	35.05 ±3.55
Pazar (3)	850-600	30.31 ±2.84	29.18 ±2.71	33.50 ±3.74	29.24 ±3.12	31.01 ±3.03
Pazar (3)	600-300	38.72 ±4.35	31.08 ±2.82	25.20 ± 2.40	39.40 ±3.72	34.26 ±3.26
Pazar (3)	300-250	18.37 ±2.05	26.89 ±2.51	27.31 ±2.41	20.17 ±2.04	22.21 ±2.18
Pazar (3)	<250	23.00 ± 2.38	34.14 ±2.79	22.87 ±2.16	34.97 ±3.75	28.85 ± 2.85
Ortalama (1)	1000-850	33.02 +3.03	36.24 +3.40	25.64 +2.61	40 16 +4 13	33 23 +3 28
Ortalama (1)	850-600	33.00 + 2.58	30.24 ± 3.40 30.22 ± 2.50	3254 ± 2.01	40.10 ± 4.13 32 35 ± 3.10	33.23 ± 3.20 32.75 ± 3.04
Ortalama (2)	600 300	39.00 ± 2.50 39.04 ± 3.53	30.22 ± 2.57 32.13 ± 2.86	32.34 ± 3.37 26.85 ± 2.41	32.33 ± 3.10 40.20 ± 3.58	32.73 ± 3.04 34.63 ± 3.08
Ortalama (3)	300 250	18.41 ± 2.50	32.13 ± 2.00 26.06 ± 2.03	20.03 ± 2.41	40.29 ± 3.36	34.03 ± 3.08 23.06 ± 2.53
Ortalama (4)	-250	10.41 ± 2.39 24.74 ± 3.14	20.00 ± 3.03	20.03 ± 2.03 21.00 ± 2.52	22.20 ± 2.20	23.00 ± 2.03 28.37 ± 3.01
Ortaiailla (3)	R230	24.74 IJ.14	55.00 ±2.90	21.77 IZ.JZ	34.00 ±3.03	20.37 ±3.01
Gei	nel Ortalama	29.82 ±2.97	31.70 ±2.96	27.17 ±2.76	33.81 ±3.34	30.41 ±2.99

Ek 5. Pazar Bölgesine ait örneklerin farklı tane tane boyutlarında Toryum serisine ait radyoizotopların gama radyoaktivite değerleri (Bq/kg)

Bölgo	Örnok	Bi-214	Pb-214	Pb-214	238 _{T 1}
Doige	OTHER	(609.3 keV)	(295.2 keV)	(351.9 keV)	U
Pazar (1)	1000-850	18.53 ±1.53	13.46 ±1.21	15.88 ±1.85	16.72 ±1.66
Pazar (1)	850-600	16.16 ±1.42	15.94 ±1.55	13.57 ±1.11	15.44 ±1.38
Pazar (1)	600-300	12.72 ±1.52	14.79 ±1.61	13.86 ±1.16	14.84 ±1.53
Pazar (1)	300-250	8.04 ±0.88	13.60 ±1.48	11.03 ±1.26	11.48 ±1.30
Pazar (1)	<250	12.91 ±1.54	7.84 ±0.81	10.59 ±1.03	11.00 ±1.21
Pazar (2)	1000-850	24.14 ±2.12	13.33 ±1.17	15.14 ±1.51	17.77 ±1.58
Pazar (2)	850-600	21.13 ±2.37	15.54 ±1.86	17.34 ±1.91	17.63 ±1.94
Pazar (2)	600-300	13.68 ±1.42	12.40 ±1.27	17.18 ±1.69	16.13 ±1.61
Pazar (2)	300-250	7.27 ±0.67	14.50 ±1.48	11.03 ±1.13	11.55 ±1.09
Pazar (2)	<250	12.80 ±1.22	7.22 ±0.71	10.18 ±0.90	11.35 ±1.02
Pazar (3)	1000-850	14.18 ±1.07	15.07 ±1.62	15.19 ±1.76	15.05 ±1.48
Pazar (3)	850-600	14.09 ±0.55	15.16 ±1.39	15.33 ±1.48	14.83 ±1.16
Pazar (3)	600-300	13.23 ±0.53	13.95 ±0.93	14.58 ±0.98	14.01 ±0.90
Pazar (3)	300-250	10.04 ±1.98	12.31 ±1.35	11.56 ±0.90	11.46 ±1.50
Pazar (3)	<250	10.89 ±2.00	11.09 ±1.72	12.97 ±1.47	12.02 ±1.62
Ortalama (1)	1000-850	18.95 ±1.57	13.96 ±1.33	15.40 ±1.71	16.52 ±1.57
Ortalama (2)	850-600	17.13 ±1.45	15.55 ±1.60	15.41 ±1.50	15.96 ±1.49
Ortalama (3)	600-300	13.21 ±1.16	13.71 ±1.27	15.21 ±1.28	15.00 ±1.35
Ortalama (4)	300-250	8.45 ±1.18	13.47 ±1.44	11.21 ±1.10	11.50 ±1.30
Ortalama (5)	<250	12.20 ±1.59	8.72 ±1.08	11.25 ±1.13	11.46 ±1.28
G	enel Ortalama	13.99 ±1.39	13.08 ±1.34	13.69 ±1.34	14.09 ±1.40

Ek 6. Pazar Bölgesine ait örneklerin farklı tane tane boyutlarında Uranyum serisine ait radyoizotopların gama radyoaktivite değerleri (Bq/kg)

Dölgor	Örnalı	TI-208	Pb-212	Bi-212	Ac-228	²³² Tb
Doige:	OTHER	(583.8 keV)	(239.63 keV)	(727.17 keV)	(911.24 keV)	111
Çayeli (1)	1000-850	25.58 ±4.21	26.39 ±3.72	27.19 ±2.87	23.45 ±2.54	25.64 ±3.05
Çayeli (1)	850-600	23.17 ±4.26	27.94 ±2.71	23.59 ±3.65	27.03 ±3.29	25.86 ±3.41
Çayeli (1)	600-300	27.25 ±4.17	23.81 ±3.04	26.05 ±3.65	29.11 ±3.68	26.82 ±3.78
Çayeli (1)	300-250	29.69 ±3.18	31.10 ±4.12	30.66 ±3.90	29.76 ±3.78	30.03 ±3.77
Çayeli (1)	<250	30.96 ±2.13	33.55 ±2.77	32.40 ±3.03	32.53 ±3.16	32.41 ±2.86
Çayeli (2)	1000-850	42.53 ±4.53	30.37 ±2.51	15.16 ±1.65	38.01 ±4.44	28.84 ±2.97
Çayeli (2)	850-600	26.34 ±2.50	26.60 ±2.92	25.84 ±2.51	24.20 ±2.77	28.95 ±3.07
Çayeli (2)	600-300	41.09 ±4.81	21.53 ±2.38	23.42 ± 2.04	44.54 ±5.34	33.98 ±3.68
Çayeli (2)	300-250	24.30 ±2.70	27.65 ±2.33	37.30 ±3.51	38.68 ±4.55	29.78 ±3.11
Çayeli (2)	<250	44.92 ±3.91	45.35 ±4.08	19.97 ±1.71	44.65 ±3.69	34.58 ±2.99
Çayeli (3)	1000-850	32.79 ±3.64	32.62 ± 3.48	19.23 ±1.58	29.70 ±2.56	26.62 ±2.62
Çayeli (3)	850-600	23.25 ± 2.30	29.44 ±3.48	22.63 ± 2.05	22.01 ±2.02	26.17 ±2.57
Çayeli (3)	600-300	34.66 ±3.86	21.46 ±1.82	25.36 ±2.03	34.01 ±3.79	30.11 ±3.04
Çayeli (3)	300-250	26.78 ±2.57	25.47 ± 3.00	38.08 ±3.65	34.58 ±3.01	29.96 ±3.00
Çayeli (3)	<250	39.60 ±4.38	36.93 ±4.40	28.78 ±2.99	38.52 ±4.41	33.55 ±3.71
Ortalama (1)	1000-850	33.64 +4.13	29.80 +3.24	20.53 +2.03	30.39 +3.18	27.03 +2.88
Ortalama (2)	850-600	24.25 + 3.02	27.99 +3.04	24.02 + 2.74	24.41 + 2.69	26.99 + 3.02
Ortalama (3)	600-300	34.34 ± 4.28	22.27 ± 2.41	24.94 ± 2.57	35.89 ± 4.27	30.30 ± 3.50
Ortalama (4)	300-250	26.92 ± 2.82	28.07 ± 3.15	35.35 ± 3.69	34.34 ± 3.78	29.93 ± 3.29
Ortalama (5)	<250	38.50 ± 3.47	38.61 ± 3.75	27.05 ± 2.57	38.56 ± 3.75	33.51 ± 3.19
Ger	nel Ortalama	31 53 +3 54	20 35 +3 12	26 38 ±2 72	32 72 +3 54	20 55 +3 18
UE	iici Ortalallia	51.55 ±3.54	29.55 ±5.12	20.30 ±2.72	32.12 ±3.34	29.55 ±5.16

Ek 7. Çayeli Bölgesine ait örneklerin farklı tane tane boyutlarında Toryum serisine ait radyoizotopların gama radyoaktivite değerleri (Bq/kg)

Bölgo	Örnak	Bi-214	Pb-214	Pb-214	238 _{T T}
Doige	OTHER	(609.3 keV)	(295.2 keV)	(351.9 keV)	U
Çayeli (1)	1000-850	10.38 ±0.85	6.68 ±0.74	9.13 ±0.94	8.89 ±0.91
Çayeli (1)	850-600	17.23 ±1.71	10.55 ±0.93	12.00 ±1.15	12.07 ±1.12
Çayeli (1)	600-300	11.94 ±1.18	7.98 ±0.72	15.91 ±1.32	12.39 ±1.17
Çayeli (1)	300-250	6.98 ±0.60	11.21 ±1.33	6.91 ±0.82	8.18 ±0.90
Çayeli (1)	<250	14.15 ±1.33	8.54 ±0.79	12.20 ±1.25	11.60 ±1.16
Çayeli (2)	1000-850	11.41 ±1.14	7.23 ±0.78	8.86 ±1.02	9.45 ±0.99
Çayeli (2)	850-600	12.83 ±1.09	10.65 ±1.26	10.42 ±0.85	10.68 ±0.98
Çayeli (2)	600-300	10.49 ±1.05	10.57 ±0.89	12.64 ±1.06	11.16 ±1.00
Çayeli (2)	300-250	8.17 ±0.76	11.09 ±1.31	8.53 ±0.81	9.09 ±0.97
Çayeli (2)	<250	11.19 ±1.11	9.12 ±0.77	11.17 ±0.99	10.84 ±0.98
Çayeli (3)	1000-850	10.77 ±1.13	10.38 ±1.33	10.36 ±1.29	10.46 ±1.25
Çayeli (3)	850-600	11.46 ±1.11	11.31 ±1.28	11.08 ±1.35	10.88 ±1.31
Çayeli (3)	600-300	9.76 ±1.25	11.42 ±1.80	11.93 ±1.51	10.95 ±1.51
Çayeli (3)	300-250	9.76 ±1.25	11.42 ±1.80	11.93 ±1.51	10.95 ±1.51
Çayeli (3)	<250	11.80 ±1.69	10.92 ±1.58	11.25 ±1.55	11.40 ±1.60
Ortalama (1)	1000-850	10.86 ±1.04	8.10 ±0.95	9.45 ±1.09	9.60 ±1.05
Ortalama (2)	850-600	13.84 ±1.30	10.84 ±1.16	11.17 ±1.12	11.21 ±1.14
Ortalama (3)	600-300	10.73 ±1.16	9.99 ±1.13	13.50 ±1.29	11.50 ±1.23
Ortalama (4)	300-250	8.30 ±0.87	11.24 ±1.48	9.13 ±1.04	9.41 ±1.13
Ortalama (5)	<250	12.38 ±1.38	9.52 ±1.05	11.54 ±1.26	11.28 ±1.25
Ge	enel Ortalama	11.22 ±1.15	9.94 ±1.15	10.96 ±1.16	10.60 ±1.16

Ek 8. Çayeli Bölgesine ait örneklerin farklı tane tane boyutlarında Uranyum serisine ait radyoizotopların gama radyoaktivite değerleri (Bq/kg)

Dölgor	Örnek	TI-208	Pb-212	Bi-212	Ac-228	²³² Tb
Bolge:	OTHER	(583.8 keV)	(239.63 keV)	(727.17 keV)	(911.24 keV)	111
Rize (1)	1000-850	35.84 ±2.94	34.76 ±2.76	36.81 ±3.58	36.48 ±3.49	35.84 ±3.16
Rize (1)	850-600	28.03 ±2.32	26.07 ±1.96	26.94 ±2.21	26.26 ±2.56	26.82 ±2.24
Rize (1)	600-300	22.03 ±1.66	24.49 ±2.27	23.40 ±2.52	23.52 ±2.64	23.41 ±2.37
Rize (1)	300-250	21.89 ±0.86	22.89 ±1.91	23.55 ±2.15	24.10 ±2.35	23.24 ±1.91
Rize (1)	<250	38.01 ±3.12	40.12 ±4.59	39.6 ±6.12	37.59 ±5.89	38.40 ±5.30
Rize (2)	1000-850	36.90 ±3.16	43.47 ±4.37	26.83 ±2.17	37.04 ±4.32	35.61 ±3.38
Rize (2)	850-600	33.81 ±3.64	27.87 ±2.41	29.19 ±2.95	30.04 ±2.75	30.78 ±3.07
Rize (2)	600-300	24.90 ±2.83	31.10 ±3.14	22.19 ±2.28	30.05 ± 2.48	26.84 ±2.61
Rize (2)	300-250	21.62 ±2.17	20.98 ±1.83	25.21 ±2.89	23.06 ±2.06	22.79 ±2.18
Rize (2)	<250	34.69 ±3.53	42.12 ±4.26	38.78 ±3.80	41.33 ±3.32	37.04 ±3.55
Rize (3)	1000-850	36.94 ±3.52	42.44 ±5.02	24.92 ±2.47	33.73 ±3.18	33.54 ±3.39
Rize (3)	850-600	34.97 ±3.87	26.81 ±2.93	33.57 ±3.55	26.15 ±2.65	31.51 ±3.33
Rize (3)	600-300	30.27 ±3.01	39.86 ±3.50	22.37 ±1.94	39.70 ±3.74	31.52 ±2.95
Rize (3)	300-250	16.88 ±2.00	22.68 ±2.71	26.43 ±2.27	22.91 ±2.58	22.13 ±2.34
Rize (3)	<250	44.81 ±4.35	53.12 ±4.97	27.60 ± 2.50	49.84 ±5.50	40.60 ±3.91
Ortolomo (1)	1000 850	26 56 ±2 21	40.22 ±4.05	20 52 +2 74	35 75 ±3 66	24.00 ±2.21
Ortalania (1)	1000-830 8 5 0 600	30.30 ± 3.21	40.22 ± 4.03	29.32 ± 2.74	33.73 ± 3.00	34.99 ± 3.31
Ortalama (2)	830-600	32.27 ± 3.28	20.92 ± 2.43	29.90 ± 2.90	27.48 ± 2.03	29.71 ± 2.88
Ortalama (3)	600-300	25.73 ± 2.50	31.82 ± 2.97	22.66 ± 2.24	31.09 ± 2.96	27.26 ± 2.64
Ortalama (4)	300-250	20.13 ± 1.68	22.18 ± 2.15	25.06 ± 2.44	23.35 ± 2.33	22.72 ± 2.15
Ortalama (5)	<250	39.17 ±3.67	45.12 ±4.61	35.33 ±4.14	42.92 ±4.90	38.68 ±4.25
Ger	el Ortalama	30.77 +2.87	33.25 +3.24	28.49 +2.89	32.12 +3.30	30.67 +3.05

Ek 9. Rize Bölgesine ait örneklerin farklı tane tane boyutlarında Toryum serisine ait radyoizotopların gama radyoaktivite değerleri (Bq/kg)

Bölgo	Örnek	Bi-214	Pb-214	Pb-214	238 _{1 1}
Doige	OTHER	(609.3 keV)	(295.2 keV)	(351.9 keV)	U
Rize (1)	1000-850	21.27 ±2.08	16.06 ±1.62	16.55 ±1.74	19.33 ±1.93
Rize (1)	850-600	22.54 ±1.84	19.56 ±1.67	14.48 ±1.42	17.90 ±1.61
Rize (1)	600-300	13.18 ±1.55	10.33 ±1.20	16.07 ±1.39	13.46 ±1.35
Rize (1)	300-250	8.74 ±0.96	14.60 ±1.74	11.23 ±1.06	11.60 ±1.18
Rize (1)	<250	21.99 ±2.06	21.38 ±2.23	16.39 ±1.59	21.28 ±2.12
Rize (2)	1000-850	27.31 ±2.44	11.34 ±0.97	16.61 ±1.72	21.00 ±1.96
Rize (2)	850-600	24.35 ±2.67	21.13 ±2.16	14.74 ±1.39	18.63 ±1.85
Rize (2)	600-300	15.06 ±1.65	10.53 ±1.18	20.28 ±2.34	15.40 ±1.69
Rize (2)	300-250	8.82 ±0.72	16.42 ±1.75	10.45 ±1.08	11.25 ±1.16
Rize (2)	<250	24.27 ±2.44	14.92 ±1.22	17.60 ±1.88	20.04 ± 2.04
Rize (3)	1000-850	20.43 ±1.68	20.98 ±2.04	20.11 ±1.73	20.33 ±1.76
Rize (3)	850-600	15.98 ±1.32	15.35 ±1.26	15.29 ±1.21	15.37 ±1.23
Rize (3)	600-300	12.56 ±0.95	13.34 ±1.44	13.44 ±1.56	13.33 ±1.31
Rize (3)	300-250	12.47 ±0.49	13.42 ±1.23	13.57 ±1.31	13.13 ±1.03
Rize (3)	<250	21.67 ±1.78	22.57 ±3.49	20.91 ±3.87	22.00 ±2.94
Ortalama (1)	1000-850	23.00 ±2.07	16.13 ±1.55	17.76 ±1.73	20.22 ±1.88
Ortalama (2)	850-600	20.95 ±1.94	18.68 ±1.70	14.84 ±1.34	17.30 ±1.56
Ortalama (3)	600-300	13.60 ±1.38	11.40 ±1.27	16.60 ±1.76	14.06 ±1.45
Ortalama (4)	300-250	10.01 ±0.72	14.81 ±1.57	11.75 ±1.15	11.99 ±1.12
Ortalama (5)	<250	22.64 ±2.09	19.62 ±2.31	18.30 ±2.45	21.11 ±2.37
Ge	enel Ortalama	18.04 ±1.64	16.13 ±1.68	15.85 ±1.69	16.94 ±1.68

Ek 10. Rize Bölgesine ait örneklerin farklı tane tane boyutlarında Uranyum serisine ait radyoizotopların gama radyoaktivite değerleri (Bq/kg)

Bölgot	Örnek	TI-208	Pb-212	Bi-212	Ac-228	²³² Tb
Doige.	OTHER	(583.8 keV)	(239.63 keV)	(727.17 keV)	(911.24 keV)	111
Derepazarı (1)	1000-850	32.09 ±5.50	33.15 ±4.86	34.19 ±3.75	29.31 ±3.31	32.17 ±3.99
Derepazarı (1)	850-600	30.25 ±5.56	36.48 ±3.54	30.79 ±4.77	35.29 ±4.30	33.77 ±4.45
Derepazarı (1)	600-300	35.58 ±5.44	31.09 ±3.97	34.01 ±4.76	38.00 ± 4.80	33.77 ±4.45
Derepazarı (1)	300-250	38.01 ±3.12	40.12 ±4.59	39.60 ±6.12	37.59 ±5.89	35.01 ±4.94
Derepazarı (1)	<250	29.98 ±2.78	33.35 ±3.61	31.86 ±3.95	32.02 ±4.12	38.40 ±5.30
Derepazarı (2)	1000-850	43.43 ±4.43	27.56 ±3.07	28.98 ±3.10	36.23 ±3.32	32.80 ±3.30
Derepazarı (2)	850-600	35.44 ±3.22	48.61 ±5.80	35.28 ±3.71	34.53 ±3.23	39.94 ±4.09
Derepazarı (2)	600-300	53.54 ±4.81	31.73 ±3.19	31.90 ±3.38	47.26 ±4.14	39.94 ±4.09
Derepazarı (2)	300-250	30.46 ±3.38	34.97 ±4.07	57.11 ±6.46	45.35 ±4.90	41.86 ±4.16
Derepazarı (2)	<250	34.97 ±3.71	28.22 ±3.35	26.65 ±2.46	39.45 ±3.77	38.65 ±4.34
Derepazarı (3)	1000-850	40.10 ±4.47	31.49 ±3.24	33.63 ±3.51	33.08 ±2.74	33.71 ±3.39
Derepazarı (3)	850-600	31.97 ±3.10	39.45 ±3.85	28.57 ±3.26	32.34 ±3.61	34.03 ±3.67
Derepazarı (3)	600-300	39.02 ±4.65	34.58 ±3.50	29.13 ±3.08	47.24 ±3.78	34.03 ±3.67
Derepazarı (3)	300-250	31.96 ±3.67	39.13 ±3.52	50.43 ±5.79	47.38 ±4.52	38.33 ±3.88
Derepazarı (3)	<250	36.48 ±4.27	31.88 ±3.15	30.29 ±3.29	32.27 ±3.62	39.37 ±3.99
Ortalama (1)	1000-850	38.54 ± 4.80	30.73 ± 3.73	32.27 ± 3.45	32.87 ±3.12	32.89 ± 3.56
Ortalama (2)	850-600	32.55 ± 3.96	41.51 ± 4.40	31.55 ±3.91	34.05 ± 3.71	35.91 ±4.07
Ortalama (3)	600-300	42.71 ±4.97	32.47 ±3.55	31.68 ±3.74	44.17 ±4.24	35.91 ±4.07
Ortalama (4)	300-250	33.48 ±3.39	38.07 ±4.06	49.04 ±6.12	43.44 ±5.10	38.40 ±4.33
Ortalama (5)	<250	33.81 ±3.58	31.15 ±3.37	29.60 ±3.23	34.58 ±3.84	38.81 ±4.54
				• · • • · · · · ·		
Ger	nel Ortalama	36.22 ±4.14	34.79 ±3.82	34.83 ± 4.09	37.82 ± 4.00	36.38 ±4.11

Ek 11. Derepazarı Bölgesine ait örneklerin farklı tane tane boyutlarında Toryum serisine ait radyoizotopların gama radyoaktivite değerleri (Bq/kg)

Dölgo	Örnalz	Bi-214	Pb-214	Pb-214	238 _{T I}
Doige	OTHER	(609.3 keV)	(295.2 keV)	(351.9 keV)	U
Derepazarı (1)	1000-850	15.56 ±1.49	10.95 ±0.94	20.24 ±1.73	17.27 ±1.60
Derepazarı (1)	850-600	22.07 ±2.52	22.33 ±1.90	15.72 ±1.68	20.11 ±1.96
Derepazarı (1)	600-300	23.34 ±2.22	11.71 ±1.12	21.34 ±2.03	19.62 ±1.85
Derepazarı (1)	300-250	11.16 ±1.18	21.02 ±2.10	15.18 ±1.44	15.22 ±1.58
Derepazarı (1)	<250	22.63 ±2.61	10.91 ±1.26	20.75 ±2.29	17.43 ±1.88
Derepazarı (2)	1000-850	16.81 ±1.50	15.05 ±1.38	19.25 ±1.81	17.65 ±1.74
Derepazarı (2)	850-600	16.24 ±1.90	17.57 ±1.56	16.14 ±1.68	17.04 ±1.73
Derepazarı (2)	600-300	18.59 ±1.66	13.94 ±1.25	16.79 ±1.42	17.65 ±1.71
Derepazarı (2)	300-250	11.96 ±1.26	17.28 ±1.65	15.59 ±1.29	15.08 ±1.39
Derepazarı (2)	<250	21.39 ±2.24	13.35 ±1.47	19.02 ±1.61	17.13 ±1.76
Derepazarı (3)	1000-850	17.51 ±1.80	17.28 ±2.07	17.91 ±2.18	17.08 ±2.12
Derepazarı (3)	850-600	15.78 ±2.01	18.45 ±2.91	17.28 ±2.44	17.19 ±2.44
Derepazarı (3)	600-300	17.06 ±2.33	17.61 ±3.45	17.07 ±2.99	17.21 ±2.97
Derepazarı (3)	300-250	16.92 ±1.83	17.29 ±2.15	17.25 ±2.09	17.16 ±2.02
Derepazarı (3)	<250	16.91 ±1.32	17.55 ±1.59	17.75 ±1.63	17.14 ±1.51
Ortalama (1)	1000-850	16.63 ±1.59	14.43 ±1.46	19.13 ±1.91	17.33 ±1.82
Ortalama (2)	850-600	18.03 ±2.15	19.45 ±2.12	16.38 ±1.93	18.11 ±2.04
Ortalama (3)	600-300	19.66 ±2.07	14.42 ±1.94	18.40 ±2.15	18.16 ±2.18
Ortalama (4)	300-250	13.35 ±1.42	18.53 ±1.96	16.00 ±1.61	15.82 ±1.66
Ortalama (5)	<250	20.31 ±2.06	13.94 ±1.44	19.17 ±1.85	17.23 ±1.72
Ge	enel Ortalama	17.60 ±1.86	16.15 ±1.79	17.82 ±1.89	17.33 ±1.88

Ek 12. Derepazarı Bölgesine ait örneklerin farklı tane tane boyutlarında Uranyum serisine ait radyoizotopların gama radyoaktivite değerleri (Bq/kg)

Dälger	Örnak	TI-208	Pb-212	Bi-212	Ac-228	²³² Tb
Dolge:	Offick	(583.8 keV)	(239.63 keV)	(727.17 keV)	(911.24 keV)	111
İyidere (1)	1000-850	25.78 ±2.39	28.68 ±3.10	27.40 ±3.40	27.54 ±3.54	27.40 ±3.22
İyidere (1)	850-600	27.60 ±4.73	28.51 ±4.18	29.40 ±3.23	25.21 ±2.85	27.67 ±3.43
İyidere (1)	600-300	26.02 ±4.78	31.37 ±3.04	26.48 ±4.10	30.35 ±3.70	29.04 ±3.83
İyidere (1)	300-250	30.60 ±4.68	26.74 ±3.41	29.25 ±4.09	32.68 ±4.13	30.11 ±4.25
İyidere (1)	<250	32.69 ±2.68	34.50 ±3.95	34.06 ±5.26	32.33 ±5.07	33.02 ±4.56
İyidere (2)	1000-850	25.62 ±2.67	35.56 ±3.16	19.15 ±2.12	28.57 ±2.92	26.86 ±2.59
İyidere (2)	850-600	33.54 ±2.90	25.02 ±2.10	36.36 ±4.33	22.40 ±2.08	28.34 ±2.85
İyidere (2)	600-300	34.72 ±3.49	37.73 ±3.81	20.05 ±1.99	28.60 ±2.46	32.02 ±3.06
İyidere (2)	300-250	23.63 ±1.97	20.30 ±1.90	36.79 ±4.24	38.78 ±3.12	28.44 ±2.68
İyidere (2)	<250	31.97 ±2.65	37.68 ±3.79	28.71 ±3.39	40.11 ±3.78	34.10 ±3.39
İyidere (3)	1000-850	24.61 ±2.19	31.89 ±2.73	18.55 ±2.04	27.42 ±2.40	24.86 ±2.29
İyidere (3)	850-600	43.08 ±4.39	24.93 ±2.72	39.65 ±3.24	18.90 ±1.79	31.38 ±3.07
İyidere (3)	600-300	40.89 ±3.83	39.13 ±3.78	22.12 ±2.34	30.80 ±2.69	35.81 ±3.40
İyidere (3)	300-250	16.75 ±1.36	19.55 ±1.69	32.41 ±2.93	44.74 ±5.25	26.32 ±2.62
İyidere (3)	<250	30.54 ± 2.73	45.67 ±4.58	19.95 ±2.22	46.92 ±4.61	33.61 ±3.38
Ortalama (1)	1000-850	25 34 +2 42	32.04 + 3.00	21 70 +2 52	27.84 +2.95	26 37 +2 70
Ortalama (1)	850 600	23.34 ± 2.42 24.74 ± 4.01	32.04 ± 3.00	21.70 ± 2.52 25.14 ± 2.60	27.04 ± 2.93	20.37 ± 2.70 20.12 ± 2.12
Ortalallia (2)	630-000	34.74 ± 4.01	20.13 ± 3.00	33.14 ± 3.00	22.17 ± 2.24	29.15 ± 5.12
Ortalama (3)	600-300	33.87 ± 4.03	36.08 ± 3.54	22.89 ± 2.81	29.92 ±2.95	32.29 ±3.43
Ortalama (4)	300-250	23.66 ± 2.67	22.20 ± 2.33	32.82 ± 3.76	38.73 ±4.17	28.29 ± 3.18
Ortalama (5)	<250	31.73 ±2.69	39.28 ±4.11	27.57 ± 3.62	39.79 ± 4.48	33.58 ±3.78
Ge	nel Ortalama	29.87 ±3.16	31.15 ±3.20	28.02 ±3.26	31.69 ±3.36	29.93 ±3.24

Ek 13. İyidere Bölgesine ait örneklerin farklı tane tane boyutlarında Toryum serisine ait radyoizotopların gama radyoaktivite değerleri (Bq/kg)

Bölgo	Örnalz	Bi-214	Pb-214	Pb-214	238 _{1 1}
Doige	OTHER	(609.3 keV)	(295.2 keV)	(351.9 keV)	U
İyidere (1)	1000-850	18.08 ±2.09	17.43 ±1.52	15.17 ±1.52	18.28 ±1.77
İyidere (1)	850-600	21.36 ±1.89	20.81 ±2.25	19.39 ±1.92	19.75 ±1.91
İyidere (1)	600-300	26.16 ±2.83	16.36 ±1.70	23.12 ±2.74	21.23 ±2.39
İyidere (1)	300-250	15.08 ±1.26	24.06 ±2.84	14.79 ±1.55	18.54 ±1.85
İyidere (1)	<250	20.86 ±2.16	13.30 ±1.13	17.21 ±2.04	18.27 ±1.85
İyidere (2)	1000-850	22.43 ±2.65	14.77 ±1.44	12.68 ±1.43	18.07 ±1.88
İyidere (2)	850-600	21.89 ±1.82	26.58 ±2.72	18.89 ±1.70	22.17 ±2.07
İyidere (2)	600-300	27.55 ±3.01	17.39 ±1.73	25.79 ±2.19	22.78 ±2.18
İyidere (2)	300-250	13.68 ±1.18	27.89 ±2.95	13.85 ±1.11	19.32 ±1.89
İyidere (2)	<250	22.06 ±2.26	11.72 ±1.33	18.10 ±1.75	19.88 ±2.01
İyidere (3)	1000-850	17.01 ±2.92	18.12 ±1.99	17.02 ±1.33	17.43 ±2.20
İyidere (3)	850-600	16.03 ±2.95	16.32 ±2.53	19.09 ±2.16	17.69 ±2.38
İyidere (3)	600-300	18.86 ±2.88	18.03 ± 2.52	19.27 ±3.04	18.16 ±2.64
İyidere (3)	300-250	20.15 ±1.65	20.99 ±3.24	19.44 ±3.60	20.46 ±2.73
İyidere (3)	<250	15.89 ±1.47	16.89 ±2.09	17.02 ±2.25	16.87 ±1.93
Ortalama (1)	1000-850	19.17 ±2.55	16.77 ±1.65	14.96 ±1.42	17.93 ±1.95
Ortalama (2)	850-600	19.76 ±2.22	21.24 ±2.50	19.12 ±1.93	19.87 ±2.12
Ortalama (3)	600-300	24.19 ±2.91	17.26 ±1.98	22.73 ±2.65	20.72 ± 2.40
Ortalama (4)	300-250	16.30 ±1.36	24.31 ±3.01	16.03 ±2.09	19.44 ±2.16
Ortalama (5)	<250	19.60 ±1.97	13.97 ±1.52	17.44 ±2.01	18.34 ±1.93
Ge	enel Ortalama	19.81 ±2.20	18.71 ±2.13	18.05 ±2.02	19.26 ±2.11

Ek 14. İyidere Bölgesine ait örneklerin farklı tane tane boyutlarında Uranyum serisine ait radyoizotopların gama radyoaktivite değerleri (Bq/kg)

	TI-208	Pb-212	Bi-212	Ac-228	²³² Th
÷	(583.8 KeV)	(239.03KeV)	(121.17 KeV)	(911.24 KeV)	
lkizdere1					
1000-850	30.66 ± 2.53	24.30 ± 2.31	17.88 ± 1.58	19.52 ± 2.06	23.66 ± 2.13
850-600	28.52 ± 2.64	21.38 ± 1.74	32.13 ± 3.59	28.58 ± 2.98	26.94 ± 2.68
600-300	37.95 ± 4.03	28.06 ± 3.34	24.01 ± 2.40	27.93 ± 2.96	29.91 ± 3.28
300-250	20.72±2.19	23.04 ± 2.75	35.52 ± 3.94	21.33 ± 1.76	25.78 ± 2.64
<250	28.74 ± 2.46	30.82 ± 3.51	22.88 ± 2.61	27.70 ± 2.74	28.50 ± 2.97
İkizdere2					
1000-850	57.09 ± 5.53	67.59 ± 6.87	47.16 ± 5.00	59.62±6.03	58.54 ± 5.74
850-600	71.89±8.60	72.36±6.96	60.23 ± 5.19	62.65±6.14	66.73±6.79
600-300	67.63±7.04	65.17±7.00	59.21±6.39	60.72±6.17	64.78 ± 6.58
300-250	55.69±4.66	50.37 ± 5.14	79.24 ± 7.92	63.28 ± 5.18	66.57±6.55
<250	73.15±7.71	67.16±6.71	62.87 ± 5.47	49.31±4.47	65.63±6.37
İkizdere3					
1000-850	25.69 ± 2.36	23.06 ± 2.45	21.16±1.85	20.08 ± 2.22	23.85 ± 2.44
850-600	33.03 ± 3.48	22.78 ± 2.18	25.01 ± 2.73	26.78 ± 2.56	27.47 ± 2.87
600-300	33.93 ± 3.10	30.01 ± 3.08	21.59 ± 2.17	22.35 ± 2.14	27.35 ± 2.77
300-250	25.20 ± 2.75	24.28 ± 2.82	22.94 ± 2.70	26.70 ± 2.95	24.49 ± 2.68
<250	31.65 ± 2.73	26.11±2.79	24.12 ± 2.62	23.71 ± 2.27	27.79 ± 2.72
İkizdere4					
1000-850	10.56±0.96	14.01 ± 1.30	11.88 ± 1.30	10.60 ± 1.09	12.05 ± 1.17
850-600	15.57 ± 1.48	12.76 ± 1.53	12.67 ± 1.48	17.23 ± 1.64	14.50 ± 1.50
600-300	14.25 ± 1.66	12.35 ± 1.12	11.51±0.99	15.13 ± 1.41	13.40 ± 1.26
300-250	14.61 ± 1.43	15.05 ± 1.54	18.40 ± 2.19	13.27 ± 1.48	14.98 ± 1.57
<250	19.61±2.25	18.35 ± 1.70	16.03 ± 1.46	13.57±1.18	17.08 ± 1.61

Ek 15. İkizdere Vadisi boyunca kum örneklerindeki farklı tane boyutlarında Toryum serisine ait radyoizotopların gama radyoaktivite değerleri

	Bi-214	Pb-214	Pb-214	238 	⁴⁰ K	¹³⁷ Cs
	(609.3 keV)	(295.2 keV)	(351.9 keV)	U	(1460.8 keV)	(661.6 keV)
İkizdere1						
1000-850	19.72 ± 1.88	17.22 ± 1.68	17.04 ± 1.60	18.45 ± 1.71	607.21 ± 29.93	6.61±0.19
850-600	22.27 ± 2.46	27.69 ± 2.34	24.73 ± 2.38	23.18 ± 2.25	655.35 ± 39.65	5.88 ± 0.13
600-300	24.96 ± 2.18	21.98 ± 2.30	22.66 ± 1.85	22.44 ± 2.10	537.54 ± 24.13	5.21 ± 0.15
300-250	24.38 ± 2.61	26.49 ± 2.39	17.59 ± 1.92	22.52 ± 2.33	377.59 ± 20.77	4.58 ± 0.11
<250	38.05 ± 4.36	24.06 ± 2.77	29.43 ±2.37	29.74±3.14	362.01±8.15	3.82 ± 0.09
İkizdere2						
1000-850	34.28 ± 3.84	27.96±3.13	35.36±3.01	32.61 ± 3.20	1177.08±77.97	6.84±0.16
850-600	52.65 ± 4.28	45.70±5.33	42.01 ± 4.74	46.51 ± 4.78	1092.45 ± 35.58	5.97±0.18
600-300	59.57 ± 5.56	33.31±3.09	35.42 ± 3.55	43.94±4.18	1283.92 ± 28.11	5.31±0.11
300-250	37.53 ± 4.34	53.23 ± 5.36	46.76±4.86	43.93 ± 4.70	869.51±26.62	5.01±0.11
<250	54.07 ± 4.70	34.75 ± 3.32	50.26 ± 5.79	48.86 ± 4.72	1346.98 ± 53.57	3.86 ± 0.10
İkizdere3						
1000-850	19.52 ± 1.79	17.23 ± 1.47	19.48±2.29	18.57 ± 1.90	1601.29±95.93	5.20±0.13
850-600	21.05 ± 2.49	24.06 ± 2.18	24.50±2.31	22.17 ± 2.26	1560.06 ± 48.27	5.20±0.12
600-300	26.18 ± 3.13	20.17 ± 2.23	20.41 ± 2.28	23.70 ± 2.73	1360.13±77.37	5.01±0.12
300-250	22.35 ± 2.28	23.41 ± 2.48	23.14 ± 2.58	22.43 ± 2.43	1109.61±53.86	4.79 ± 0.14
<250	29.86 ± 3.12	17.25 ± 1.82	21.06 ± 2.49	23.83 ± 2.42	913.02±33.46	3.41 ± 0.08
İkizdere4						
1000-850	16.07 ± 1.45	11.23 ±0.96	13.30 ± 1.30	13.41 ± 1.21	497.20 ± 11.87	6.78 ± 0.17
850-600	21.30 ± 1.79	14.04 ± 1.27	12.94 ± 1.45	15.21 ± 1.39	639.85±13.10	6.64 ± 0.16
600-300	17.56 ± 1.73	16.14 ± 1.73	14.47 ± 1.33	15.98 ± 1.64	465.49±28.19	5.34±0.11
300-250	15.67±1.69	17.00 ± 1.52	12.27 ± 1.11	15.36 ± 1.46	376.97±11.66	4.39±0.10
<250	19.00 ± 2.23	12.52 ± 1.11	15.48±1.59	16.41±1.63	329.48 ± 19.14	4.09 ± 0.11

Ek 16. İkizdere Vadisi boyunca kum örneklerindeki farklı tane boyutlarında Uranyum serisine ait radyoizotoplarının, ⁴⁰K ve ¹³⁷Cs radyoizotoplarının gama radyoaktivite değerleri (Bq/kg)

0	TI-208	Pb-212	Bi-212	Ac-228	²³² Th
Kapt1					
1000-850	15.46 ± 1.35	9.83 ± 0.80	11.71 ± 1.38	16.60 ± 1.82	13.78 ± 1.32
850-600	19.39 ± 1.98	13.97 ± 1.25	16.87±1.55	15.34 ± 1.53	15.88 ± 1.55
600-300	18.86 ± 2.26	15.60 ± 1.53	19.32 ± 2.27	14.42 ± 1.26	16.61 ± 1.77
300-250	18.62 ± 1.62	17.21 ± 1.53	21.19 ± 2.20	23.32 ± 2.14	19.10 ± 1.85
<250	24.65 ± 2.96	16.24 ± 1.64	24.20 ± 1.96	28.51 ± 2.34	24.16±2.32
Kapt2					
1000-850	35.42 ± 3.87	18.65 ± 1.90	23.62 ± 2.24	33.56 ± 3.47	28.04 ± 2.77
850-600	34.39 ± 3.09	25.75 ± 2.79	37.95 ± 3.47	35.41±3.63	34.50 ± 3.26
600-300	46.23 ± 4.37	34.38 ± 3.35	34.28 ± 3.34	47.37±4.15	39.65 ± 3.73
300-250	35.49 ± 3.65	38.28 ± 4.46	27.17±2.55	44.49 ± 3.94	36.10±3.61
<250	50.60 ± 4.94	30.23 ± 3.13	42.68 ± 3.47	52.44 ± 5.77	43.06±4.28
Kapt3					
1000-850	35.28 ± 3.12	20.59 ± 2.30	32.37 ± 3.74	41.85±4.12	31.68 ± 3.24
850-600	37.17±4.38	42.27 ±4.68	28.07 ± 2.43	31.44 ± 2.75	36.92 ± 3.85
600-300	37.15 ± 4.02	33.44 ± 3.96	43.26±4.23	49.48 ± 4.23	39.41 ± 3.98
300-250	27.28 ± 2.99	46.00 ± 4.03	28.74 ± 2.63	34.44 ± 3.70	33.32 ± 3.17
<250	47.64 ± 5.35	32.58 ± 2.66	32.01 ± 3.35	49.37 ± 4.40	39.99 ± 3.95
Kapt4					
1000-850	17.67±1.87	12.82 ± 1.27	10.53 ± 0.89	19.89 ± 1.67	15.19 ± 1.40
850-600	18.37 ± 1.71	16.38 ± 1.81	13.41 ± 1.18	11.31 ± 1.05	14.80 ± 1.43
600-300	19.62 ± 1.87	16.26 ± 1.43	17.29 ± 1.81	21.03 ± 2.36	18.34 ± 1.87
300-250	14.36 ± 1.42	17.89 ± 1.80	14.88 ± 1.66	18.98 ± 2.09	16.83 ± 1.78
<250	17.97 ± 2.09	13.64 ± 1.20	16.03 ± 1.80	22.84 ± 1.96	18.51 ± 1.82
Kapt5					
1000-850	14.67 ± 1.43	11.64±0.98	15.63 ± 1.43	19.46 ± 1.85	14.61 ± 1.33
850-600	19.90 ± 1.90	16.20 ± 1.37	19.79 ± 2.17	13.96 ± 1.18	18.21 ± 1.78
600-300	20.10 ± 1.90	17.63 ± 1.84	20.03 ± 1.63	21.94 ± 2.23	20.16 ± 1.97
300-250	16.13 ± 1.85	16.85 ± 1.60	14.76 ± 1.43	20.76 ± 1.87	16.63 ± 1.67
<250	18.25 ± 2.01	16.73 ± 1.43	19.59 ± 1.82	22.73 ± 2.14	19.97±1.85

Ek 17. Kaptanpaşa kum örneklerindeki farklı tane boyutlarında Toryum serisine ait radyoizotopların gama radyoaktivite değerleri

	Bi-214	Pb-214	Pb-214	²³⁸ U	⁴⁰ K	¹³⁷ Cs
Kapt1						
1000-850	11.76 ± 1.08	7.33 ± 0.85	8.76±0.93	9.02 ± 0.94	518.56 ± 18.56	6.96 ± 0.20
850-600	17.27 ± 2.00	14.94 ± 1.37	13.56 ± 1.16	15.66 ± 1.55	513.41±15.75	5.91±0.14
600-300	20.51 ± 2.24	13.85 ± 1.46	14.26 ± 1.35	16.37 ± 1.71	610.17 ± 30.26	5.50 ± 0.15
300-250	13.01 ± 1.42	17.88 ± 2.03	13.67 ± 1.45	14.42 ± 1.54	313.04 ± 11.54	5.33 ± 0.12
<250	20.86 ± 1.94	16.75 ± 1.46	16.08 ± 1.88	19.48 ± 1.82	422.50 ± 9.60	4.13±0.09
Kapt2						
1000-850	20.70 ± 1.83	14.30 ± 1.16	18.47±1.53	18.30 ± 1.58	513.93±32.02	6.28 ± 0.15
850-600	25.89 ± 3.11	23.30 ± 2.57	20.33 ± 1.75	23.25 ± 2.46	607.42 ± 36.26	6.04 ± 0.18
600-300	22.64 ± 2.16	17.32 ± 1.49	28.65 ± 2.73	23.42±2.31	551.48±13.07	5.27 ± 0.14
300-250	15.82 ± 1.50	28.49 ± 2.72	18.57±1.63	21.36±2.11	530.50 ± 34.78	4.31±0.12
<250	34.86 ± 3.60	22.81 ± 2.46	23.23 ± 2.22	26.90 ± 2.76	668.75±19.61	4.13 ± 0.10
Kapt3						
1000-850	25.04 ± 2.42	21.36±1.98	17.40 ± 1.40	21.15 ± 1.89	923.54±20.65	6.83 ± 0.18
850-600	35.58 ± 2.90	24.25 ± 2.57	24.34 ± 2.75	26.11±2.55	1170.62 ± 52.80	4.92 ± 0.15
600-300	33.96 ± 2.73	24.54 ± 2.15	25.16±2.62	27.38 ± 2.61	1130.53 ± 39.14	4.47 ± 0.13
300-250	23.68 ± 2.37	35.09 ± 4.15	29.81±3.52	27.77 ± 3.07	812.80 ± 48.06	4.37 ± 0.11
<250	35.55 ± 3.80	22.71 ± 2.52	25.10±2.35	28.55 ± 2.80	737.31±29.60	3.90 ± 0.10
Kapt4						
1000-850	15.35 ± 1.83	14.20 ± 1.27	9.74±1.07	14.51 ± 1.60	681.85 ± 24.94	7.46 ± 0.21
850-600	16.80 ± 1.45	16.75±1.59	13.65 ± 1.41	15.19 ± 1.49	785.86±42.59	5.27 ± 0.15
600-300	14.28 ± 1.40	18.15 ± 2.15	18.42±2.09	17.36±1.91	603.12 ± 26.97	4.43 ± 0.12
300-250	15.92 ± 1.81	15.11±1.79	13.98 ± 1.14	15.96 ± 1.57	327.55 ± 20.45	4.06 ± 0.10
<250	20.96 ± 2.06	13.89 ± 1.25	18.66 ± 2.18	18.09 ± 1.76	348.76±12.71	3.84 ± 0.11
Kapt5						
1000-850	17.80 ± 1.84	9.30±0.85	9.52 ± 0.90	12.18 ± 1.17	627.14 ± 28.49	7.15 ± 0.21
850-600	21.72 ± 1.92	18.98±1.63	18.23 ± 2.18	19.27 ± 1.83	711.70±33.91	5.58 ± 0.17
600-300	21.54 ± 1.73	14.63 ± 1.30	19.27±2.02	19.16±1.73	721.43±46.32	5.49 ± 0.11
300-250	16.18±1.33	22.65 ± 2.10	15.18 ± 1.43	17.36±1.58	340.92 ± 23.10	4.55 ± 0.10
<250	18.17±2.14	13.17±1.31	19.45±2.16	16.97±1.86	502.12±23.83	3.94±0.11

Ek 18. Kaptanpaşa kum örneklerindeki farklı tane boyutlarında radyoizotoplarının gama radyoaktivite değerleri (Bq/kg)

	Tl-208 (583.8 keV)	Pb-212 (239.63keV)	Bi-212 (727.17 keV)	Ac-228 (911.24 keV)	²³² Th
İkiz1GK	37.90±2.49	39.63±3.30	41.23±3.97	41.73±4.07	40.25±3.51
İkiz1GÖ	40.22 ± 2.58	42.06 ± 3.50	43.75±4.21	44.29 ± 4.32	42.72±3.71
İkiz2GK	38.16±3.54	42.45 ± 4.59	40.87 ± 4.40	40.76±5.24	40.56±4.36
İkiz2GÖ	41.77 ± 3.87	46.46 ± 3.03	44.74 ± 4.91	44.61±5.74	44.39±4.41
İkiz4BK	33.34 ± 2.74	35.19±4.03	32.18 ± 4.96	32.97 ± 5.17	33.68±4.25
İkiz4BÖ	35.63 ± 2.92	37.61±4.30	34.38 ± 3.36	35.24 ± 5.52	36.00±4.17
Kapt1G1K	36.83 ± 3.13	31.77 ± 4.47	37.27 ± 3.45	38.97 ± 5.40	35.98±4.16
Kapt1G1Ö	39.08 ± 3.50	33.72 ± 4.74	39.55 ± 4.85	41.35 ± 5.74	38.18±4.70
Kapt1G2K	37.86 ± 3.24	39.06±4.51	37.89 ± 2.85	34.71±3.75	37.95 ± 3.72
Kapt1G2Ö	41.44 ± 3.83	42.76 ± 4.03	41.48 ± 3.11	37.99±4.11	41.54±3.95
Kapt2G1K	31.58 ± 2.17	34.22 ± 2.82	33.25 ± 3.31	33.18±3.22	33.06±2.92
Kapt2G1Ö	33.75 ± 2.32	36.57 ± 3.01	35.53 ± 3.54	35.45 ± 3.44	35.32±3.12
Kapt2G2K	27.31 ± 3.54	23.56±3.31	27.63 ± 4.78	28.89 ± 4.01	26.68 ± 3.92
Kapt2G2Ö	29.56 ± 3.92	25.51±3.59	29.92 ± 5.18	31.28±4.34	28.88 ± 4.27
Kapt4BK	23.40 ± 3.30	28.22 ± 2.74	27.87 ± 3.16	27.30±3.33	26.12±3.24
Kapt4BÖ	25.03 ± 3.60	30.18 ± 2.93	29.80 ± 3.38	29.19±3.56	27.93 ± 3.48
Kapt4GnK	25.72 ± 3.73	31.02 ± 3.01	30.63 ± 3.47	30.01 ± 3.66	28.71±3.58
Kapt4GnÖ	29.66 ± 3.45	35.77 ± 3.47	35.32 ± 3.00	34.60 ± 4.22	33.11±3.76

Ek 19. Kaptanpaşa ve İkizdere Vadi kayaçlarında Toryum serisine ait radyoizotopların gama radyoaktivite değerleri (Bq/kg)

	Bi-214	Pb-214	Pb-214	238 _{T T}	⁴⁰ K
	(609.3 keV)	(295.2 keV)	(351.9 keV)	U	(1460.8 keV)
İkiz1GK	21.38±2.96	20.76 ± 1.53	17.85 ± 2.02	20.20 ± 2.20	539.15±22.54
İkiz1GÖ	24.51±2.51	24.19 ± 2.90	25.07 ± 3.05	23.91 ±2.96	312.03±39.69
İkiz2GK	25.24 ± 3.22	29.52 ± 4.65	27.65 ± 3.90	27.50±3.91	336.24±44.31
İkiz2GÖ	29.00 ± 3.96	29.94 ± 5.86	29.02 ± 5.08	29.25 ± 5.04	313.80 ± 25.82
İkiz4BK	17.09 ± 1.85	17.47 ± 2.17	17.42 ± 2.11	17.33 ± 2.04	518.40 ± 71.58
İkiz4BÖ	18.43 ± 1.44	19.13 ± 1.74	19.35 ± 1.78	18.69±1.65	337.88 ± 47.68
Kapt1G1K	18.53 ± 2.72	17.96 ± 1.40	16.39 ± 1.85	18.00 ± 2.02	315.99 ± 31.93
Kapt1G1Ö	20.79 ± 2.19	20.04 ± 2.57	19.99 ± 2.50	20.18 ± 2.41	414.23 ± 35.62
Kapt1G2K	21.42 ± 2.08	21.15 ± 2.40	20.73 ± 2.53	20.35 ± 2.45	433.68±32.14
Kapt1G2Ö	22.57 ± 2.19	22.29 ± 2.52	21.83 ± 2.66	21.43 ± 2.58	491.24±35.20
Kapt2G1K	16.61±1.61	16.40 ± 1.86	16.07 ± 1.96	15.78 ± 1.90	369.07±15.17
Kapt2G1Ö	19.25 ± 1.87	19.00 ± 2.15	18.62 ± 2.27	18.28 ± 2.20	483.78±42.69
Kapt2G2K	16.60 ± 2.12	19.41 ± 3.06	20.29 ± 2.56	18.61 ±2.57	362.13 ± 30.18
Kapt2G2Ö	18.26 ± 2.33	21.35 ± 3.37	22.32 ± 2.82	20.48 ± 2.83	441.40 ± 47.45
Kapt4BK	12.30 ± 1.57	14.39 ± 2.27	15.04 ± 1.90	13.80 ± 1.91	307.54 ± 36.10
Kapt4BÖ	13.96 ± 1.78	16.33 ± 2.57	17.07 ± 2.16	15.66 ± 2.16	310.51 ± 38.47
Kapt4GnK	15.04 ± 1.92	17.59 ± 2.77	18.38 ± 2.32	16.86 ± 2.33	325.90 ± 42.95
Kapt4GnÖ	16.40±2.09	19.18 ± 3.02	20.05 ± 2.53	18.40 ± 2.54	337.88 ± 47.68

Ek 20. Kaptanpaşa ve İkizdere Vadi kayaçlarında Uranyum serisine ait radyoizotopların ve ⁴⁰K gama radyoaktivite değerleri (Bq/kg)

ÖZGEÇMİŞ

14.05.1980 tarihinde Samsun' da doğdu. İlk ve orta öğrenimini Samsun' da tamamladı. 1997 yılında Samsun Ondokuz Mayıs Üniversitesi Fen-Edebiyat Fakültesi Fizik Bölümü'nde lisans eğitimine başladı. 2001 yılında fakülte üçüncüsü ve bölüm birincisi olarak lisans eğitimini tamamladı. Aynı yıl Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü'nde Yüksek Lisans eğitimine başladı. 2001 Aralık' ta K.T.Ü. Rize Fen-Edebiyat Fakültesi'nde Araştırma Görevlisi olarak göreve başladı. 2004 yılında Yüksek Lisans eğitimini tamamladı ve aynı yıl Doktora eğitimine başladı. Halen Rize Üniversitesi Fen-Edebiyat Fakültesi Fizik Bölümü'nde Araştırma Görevlisi olarak çalışan Recep KESER, iyi derecede İngilizce bilmektedir.